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Abstract

The concept of convex extendability is introduced to answer the problem of �nding the smallest
distance convex simple graph containing a given tree. A problem of similar type with respect
to minimal path convexity is also discussed. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

We consider only �nite, simple, undirected graphs G of order p and size q. Let us
denote, diam(G)= max{d(u; v); u; v∈V (G)}; N (u) the neighborhood of u=
{v: d(u; v)= 1}; N [u] = {u}∪N (u); Nk(u)= {v: d(u; v)= k} for k =1; 2; : : : ; diam(G),
and C(G) the center of G. The de�nitions and terms not mentioned here are from [2].
Of concern in this paper are the geodesic convexity and minimal path convexity

de�ned for the vertex set of a connected graph. In a connected graph G with its
intrinsic metric d, Mulder [9] has de�ned the interval between u and v as

I(u; v)= {x: x is on a shortest u− v path}:

A⊆V (G) is geodesic convex (d-convex) if I(u; v)⊆A for every u and v in A. Sev-
eral aspects of geodesic convexity in graphs have been discussed by Soltan [11],
Hebbare [8], Rao and Hebbare [10], Mulder [9] and Van de Vel [12].
A⊆V (G) is minimal path convex (m-convex) if I(u; v)= {x: x is on a chordless

u − v path}⊆A for any u and v in A. Separation properties, evaluation of convex
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Fig. 1.

invariants, etc. have been studied by Farber and Jamison [6], Duchet [4,5], Bandelt [1]
and many others.
In an attempt to classify graphs according to the number of non-trivial convex sets,

Hebbare [7] called the empty set, singleton of vertices, set of vertices inducing a
complete subgraph and V (G) as trivial convex sets and de�ned a graph to be (k; !)-
convex if it has k non-trivial convex sets and its clique number, the size of the largest
clique, is !. (0; 2)-convex graphs were called distance convex simple (d.c.s.) and
m-convex simple (m.c.s.) [3] under geodesic convexity and m-convexity, respectively.
An in-depth study of d.c.s. graphs have been made in [8,10] especially under pla-

narity.
Km;n for m; n¿1 are d.c.s. and any d.c.s. graph is m.c.s. The graph G of Fig. 1 is

an m.c.s. graph which is not d.c.s.
In this paper we �rst consider a problem posed in [8]. ‘Describe the smallest d.c.s.

graph containing a given tree of order at least four’. This problem motivates the de�-
nition of a convex extendable tree and we prove that, any tree of order atmost nine is
so, this bound is sharp, trees of diameter three, �ve and trees of diameter four whose
central vertex has even degree are also convex extendable. An analogous problem for
m.c.s. graph is also discussed.

2. Convex extendable trees

The following properties of d.c.s. graphs are of interest to us.

Theorem 1 (Hebbare [8]). A distance convex simple graph is planar if and only if
q=2p− 4.

Theorem 2 (Hebbare [8]). A connected planar graph of order at least four is distance
convex simple if and only if for each vertex u of degree at least three; there is a
unique vertex u′ such that N (u)=N (u′).

Two such vertices u and u′ are called partners.
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Problem (Hebbare [8]). Describe the smallest distance convex simple graph containing
a given tree of order at least four.

K2; n is such a graph for K1; n. For a tree T which is not a star, let V1 and V2 be the
bipartition of V (T ) with |V1|=m; |V2|= n, then Km;n is a d.c.s. graph containing a
tree isomorphic to T . However, to �nd the smallest d.c.s. graph we note by Theorem 1
that, for any d.c.s. graph q¿2p − 4 and the lower bound is attained if and only if
it is planar. So, for a given tree T if there exists a planar d.c.s. graph containing T
as a spanning subgraph, then that will be the smallest d.c.s. graph containing T . This
observation motivates,

De�nition 1. A tree T is convex extendable if it is a spanning tree of a distance
convex simple graph.

From the remarks made above, it is clear that K1; n is convex non-extendable. Hence,
we consider only trees which are not stars.

De�nition 2 (Buckley and Harary [2]) The sequential join G1 +G2 + · · ·+Gn of the
graphs G1; G2; : : : ; Gn is the graph obtained by joining all the vertices of Gi to all the
vertices of Gi+1 for i=1; 2; : : : ; n− 1. The tree Sm;n' �Km +K1 +K1 + �Kn is called a
double star.

We shall now describe an operation frequently used in this paper. Let u and v be
non-adjacent vertices of G. Join u to all the vertices in N (v) and v to all the vertices
in N (u). The resulting graph is denoted by G ? (u; v) and in this graph N (u)=N (v).

Remark 2.1. If G is planar, u; v∈V (G), uv 6∈E(G), for any w1; w2 ∈N (u)∪N (v);
w1 6∈N (u)∩N (v); {u; v} is a w1 − w2 separator and if G can be embedded so that
u; v; N (u) and N (v) are all in the same face, then G ? (u; v) is planar. Also, if u and v
are partners, then G ? (u; v)'G.

Lemma 3. Any path of length at least four is convex extendable.

Proof. Let P be a path of at least four, C(P) be its center and let u∈C(P). Then
Ni(u) consists of two non-adjacent vertices for i=1; 2; : : : ; r − 1 and Nr(u) is either a
pair of non-adjacent vertices or a singleton according as C(P)'K1 or K2, where r is
the radius of P. Now the graph

G= 〈u〉+ 〈N (u)〉+ 〈N2(u)〉+ · · ·+ 〈Nr(u)〉

is a planar d.c.s. graph containing P.

Theorem 4. Any tree of order at most nine is convex extendable.
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Proof. If T is a path then it is convex extendable by Lemma 3. Suppose that T is not
a path. Let u be a vertex of T such that d(u)¿3 and let N (u)= {a1; b1; : : : ; an}, n¿3.
Case I: N3(u)=�. Assume that d(a1)= min{d(ai): ai ∈N (u)}. Choose u′ ∈N2(u)

such that N2(u)∩N (a1)\{u′}=�. Construct G'T ? (u; u′)? (a1; a2)? · · ·?(an−1; an) if
n is even and G'T ? (u; u′)? (a2; a3)? · · ·?(an−1; an) if n is odd. Using Theorem 2
and Remark 1, it follows that G is a planar d.c.s. graph which contains T .
Case II: N3(u) 6=�. Choose u′ ∈N2(u) such that d(u′)= max{d(v): v∈N2(u)} and

let N =N (u)∪N (u′)= {v1; v2; : : : ; vm}. Note that, m¿3. Since |V (T )|6 9, N (vi)−
{u; u′}=� for at least one value of i.
Subcase 1: N [u]∪N [u′] =V (T ). Then T ? 〈u; u′〉'K2; p−2 is such a planar d.c.s.

graph.
Subcase 2: N [u]∪N [u′] 6=V (T ), but N [u]∪N [u′]∪ (⋃m

i=1 N (vi))=V (T ).
Without loss of generality, assume that N (v1)\{u; u′}=�. Then, the required graph is

T ? (u; u′)? (v1; v2)? (v3; v4)? · · ·?(vm−1; vm) if m is even and T ? (u; u′)? (v2; v3)? · · ·?
(vm−1; vm) if m is odd.
Subcase 3: N [u]∪N [u′]∪ (⋃m

i=1 N (vi)) 6=V (T ) but N [u]∪N [u′]∪ (
⋃m
i=1 N (vi))∪

(
⋃m
i=1 N2(vi))=V (T ).
Here, note that N (vi)\{u; u′} 6=� for atmost two values of i say 1 and 2. Let w1 ∈

N (vi)− {u; u′} be such that d(w1)¿2. Since |V (T )|6 9; d(w1) cannot exceed three.
If d(w1)= 3, by the choice of u′, w1 ∈N4(u) in T and let u − v2 − u′ − v1 − w1, be
the u− w1 path in T (that is v1 ∈N (u) and v2 ∈N (u′)).
Now G'T ? (u; w1)? (v1; v2) is the required planar d.c.s. graph.
If d(w1)= 2, let w2 ∈N (w1)−{v}1, then T ? (u; u′)? (w2; v1)? (v2; v3) is the required

graph.
Subcase 4: N [u]∪N [u′]∪ (⋃m

i=1 N (vi))∪ (
⋃m
i=1 N2(vi)) 6=V (T ). Then N [u]∪N [u′]∪

(
⋃m
i=1 N (vi))∪ (

⋃m
i=1 N2(vi))∪ (

⋃m
i=1 N3(vi))=V (T ).

Note that, N (vi)−{u; u′} 6=� for only one value of i. There is only one vertex w1 in
it and there are two vertices w2 and w3 such that w1w2 and w2w3 ∈E(T ). Then, T ?

(u; u′)? (v1; w2) is the required graph. Since |V (T )|69, the proof is complete.

Theorem 5. The following classes of trees are convex extendable:
(a) Trees of diameter three.
(b) Trees of diameter four whose central vertex has even degree.
(c) Trees of diameter �ve.

Proof
(a) Since T is of diameter three, T ' Sm;n for some m; n¿0. Let C(T )= {c1; c2},

V ( �Km)= {a1; a2; : : : ; am} and v( �Kn)= {b1; b2; : : : ; bn}. Then T ? (b1; c1)? (a1; c2) is
a planar d.c.s. graph containing T as a spanning tree.

(b) Let diam(T )= 4 and the central vertex c has even degree. Let N (c)= {a1; a2; : : : ;
an} and c′ ∈N2(c). Then T ? (c; c′)? (a1; a2)? (a3; a4)? · · ·?(an−1; an) is the re-
quired graph.

(c) Proof is on similar lines.
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Fig. 2. Convex non-extendable trees of order 10.

Remark 2.1.
(i) In (b), if the central vertex has odd degree, the result need not be true (Fig. 2a).
(ii) There exists convex non-extendable trees of diameter six (Fig. 2b).
(iii) A su�cient condition for a tree to be convex non-extendable is that V (T ) has

a bipartition V1 and V2 such that |V1| is odd and each vertex of V1 is of degree
greater than 2.

3. Minimal path convex simple graphs

If m-convexity is considered, (0; 2)-convex graphs are called m-convex simple.

Theorem 6 (Changat [3]). A connected graph G is m-convex simple if and only if G
has no non-trivial clique separators.

We consider a problem similar to the problem discussed in Section 2.

Problem. Find the smallest m.c.s. graph containing a given tree T , |T |¿4.

If T =K1; n; n¿3; K2; n is such a graph and its size is 2n.

Theorem 7. The size q of the smallest m-convex simple graph containing a tree
T (6=K1; n) satis�es; p − 1 + m=26q6p + m − 2; where |V (T )|=p and m is the
number of pendant vertices.

Proof. Let u1 be a pendant vertex of T and v be the vertex adjacent to u1. Let
u2; u3; : : : ; uk be the other pendant vertices adjacent to v. Let v1; v2; : : : ; vl be the pendant
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Fig. 5.

vertices other than u′is. Add edges to T such that {u2; u3; : : : v1; v2; : : : ; vl} induces a
tree T ′ in which {u2; u3; : : : ; uk} and {v1; v2; : : : ; vl} is a bipartition. This is possible by
taking a spanning tree of Kk; l. The resulting graph is triangle-free and neither a vertex
nor an edge can separate G. So, by Theorem 5, G is an m.c.s. graph and size of G
is p−1 + k + l− 1=p+m− 2 where m is the number of pendant vertices of T . So,
q6p+ m− 2.
Now, note that m.c.s. graphs are triangle-free blocks and hence all vertices are of

degree at least two. Therefore, to make T a block, the degree of pendant vertex is
to be increased by atleast one. So, atleast [m=2] edges are to be added and hence
q¿p− 1 + [m=2]¿p− 1 + m=2.

The following examples illustrate that there are trees attaining both the bounds.
Consider the tree T1 in Fig. 3. Here p=9; m=6:
The graph G in Fig. 4 is an m.c.s. of size q=11=p− 1 + m=2 containing T1.
Consider the tree T2 of Fig. 5. In T2, {x1; x2} is a clique such that T2−{x1; x2} is

totally disconnected. So, to get an m.c.s. graph atleast �ve edges are to be added.
Hence q=13=p+ m− 2.
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