

Information Sciences 113 (1999) 293-300

A characterization of fuzzy trees

INFORMATION SCIENCES

M.S. Sunitha, A. Vijayakumar

Department of Mathematics. Cochin University of Science & Technology. Cochin-682 022, India

Received 19 October 1997; received in revised form 29 May 1998; accepted 20 August 1998

Abstract

In this paper some properties of fuzzy bridges and fuzzy cutnodes are studied. A characterization of fuzzy trees is obtained using these concepts. \mathbb{C} 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

The theory of fuzzy sets finds its origin in the pioneering paper of Zadeh [11]. Since then, this philosophy of "gray mathematics" [6] had tremendous impact on logic, information theory, etc. and finds its applications in many branches of engineering and technology [5].

A fuzzy subset [9] of a nonempty set S is a mapping $\sigma: S \to [0, 1]$. A fuzzy relation on S is a fuzzy subset of $S \times S$. If μ and v are fuzzy relations, then $\mu \circ v(u, w) = \sup\{\mu(u, v) \mid \Delta v(v, w): v \in S\}$ and $\mu^{k}(u, v) = \sup\{\mu(u, u_{1}) \mid \Delta \mu(u_{1}, u_{2}) \mid \Delta + \Delta \mu(u_{k-1}, V): u_{1}(u_{2}, \dots, u_{k-1} \in S)\}$, where Δ stands for minimum. The theory of fuzzy graphs was independently developed by Rosenfeld [9] and Yeh and Bang [10] in 1975. A fuzzy graph is a pair $G: (\sigma, \mu)$, where σ is a fuzzy subset of S and μ is a fuzzy relation on S such that $\mu(u, v) \leq \sigma(u) \mid \Delta \sigma(v)$ for all u, v in S. A fuzzy graph $H: (\tau, v)$ is called a fuzzy subgraph of $G: (\sigma, \mu)$ if $\tau(u) \leq \sigma(u)$ and $v(u, v) \leq \mu(u, v)$ for all u, v. It is a spanning subgraph if $\tau(u) = \sigma(u)$ for all u. A path μ of length u is a sequence of distinct nodes $u_{0}, u_{1}, u_{2}, \dots, u_{n}$ such that $\mu(u_{i-1}, u_{i}) > 0$, $i = 1, 2, 3, \dots, n$ and the weight of the

Corresponding author. E-mail: mathshod/a/md2/vsnl/net.in 0020-0255/99/\$19.00 (- 1999) Elsevier Science Inc. All rights reserved PII: \$ 0.0.2.0 - 0.2.5.5 (-9.8.) 1.0.0.6.6 - X weakest arc is defined as its strength. If $u_0 = u_n$ and $n \ge 3$ then ρ is called a cycle. Also, $\sup\{\mu^k(u, v) : k = 1, 2, 3...\}$ gives the strength of connectedness between any two nodes u and v, denoted by $\mu^{\nu}(u, v)$. A fuzzy graph $G: (\sigma, \mu)$ is connected if $\mu^2(u, v) > 0$ for all u, v.

Recently, automorphisms of fuzzy graphs [3], fuzzy interval graphs [4], fuzzy line graphs [7], cycles and cocycles of fuzzy graphs [8], etc., have also been studied.

In this paper some properties of fuzzy bridges and fuzzy cutnodes are studied and a characterization of fuzzy trees is obtained using them.

Throughout, we assume that S is finite, μ is reflexive and symmetric [9]. In all the examples σ can be chosen in any manner satisfying the definition of a fuzzy graph. Also, we denote the underlying crisp graph by $G^* : (\sigma^*, \mu^*)$, where $\sigma^* = \{u \in S : \sigma(u) > 0\}$ and $\mu^* = \{(u, v) \in S \times S : \mu(u, v) > 0\}$.

2. Fuzzy bridges and fuzzy cutnodes

Definition 1 [9]. An arc (u, v) is a fuzzy bridge of $G : (\sigma, \mu)$ if deletion of (u, v) reduces the strength of connectedness between some pair of nodes.

Equivalently, (u, v) is a fuzzy bridge if and only if there exist x, y such that (u, v) is an arc of every strongest x-v path.

Definition 2[9]. A node is a fuzzy cutnode of G: (σ, μ) if removal of it reduces the strength of connectedness between some other pair of nodes.

Equivalently, w is a fuzzy cutnode if and only if there exist u, v distinct from w such that w is on every strongest u-v path.

Theorem 1 [9]. The following statements are equivalent.

1. (u, v) is a fuzzy bridge.

2. (u, v) is not a weakest arc of any cycle.

Remark 1. Let $G: (\sigma, \mu)$ be a fuzzy graph such that $G^*: (\sigma^*, \mu^*)$ is a cycle and let $t = \min\{\mu(u, v): \mu(u, v) > 0\}$. Then all arcs (u, v) such that $\mu(u, v) > t$ are fuzzy bridges of G.

Theorem 2. Let $G: (\sigma, \mu)$ be fuzzy graph such that $G^*: (\sigma^*, \mu^*)$ is a cycle. Then a node is a fuzzy cutnode of G if and only if it is a common node of two fuzzy bridges.

Proof. Let w be a fuzzy cutnode of G. Then there exist u and v, other than w, such that w is on every strongest u-v path. Now $G^{-1}(\sigma^{-1}, \mu^{-1})$ being a cycle, there exits only one strongest u-v path containing w and by Remark 1, all its arcs are fuzzy bridges. Thus w, is a common node of two fuzzy bridges. Conversely, let

M.S. Sunitha, A. Vijayakumar I. Information Sciences 113 (1999) 293-300

w be a common node of two fuzzy bridges (u, w) and (w, v). Then both (u, w)and (w, v) are not the weakest arcs of *G* (Theorem 1). Also the path from *u* to *v* not containing the arcs (u, w) and (w, v) has strength less than $\mu(u, w) \wedge \mu(w, v)$. Thus the strongest *u*-*v* path is the path *u*, *w*, *v* and $\mu^x(u, v) = \mu(u, w) \wedge \mu(w, v)$. Hence *w* is a fuzzy cutnode

Theorem 3. If w is a common node of at least two fuzzy bridges, then w is a fuzzy cutnode.

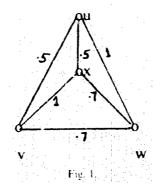
Proof. Let (u_1, w) and (w, u_2) be two fuzzy bridges. Then there exist some u, v such that (u_1, w) is on every strongest u - v path. If w is distinct from u and v it follows that w is a fuzzy cutnode. Next, suppose one of v, u is w so that (u_1, w) is on every strongest u - w path or (w, u_2) is on every strongest w - v path. If possible let w be not a fuzzy cutnode. Then between every two nodes there exist, at least one strongest path not containing w. In particular, there exist at least one strongest path ρ , joining u_1 and u_2 , not containing w. This path together with (u_1, w) and (w, u_2) forms a cycle.

Case 1. If u_1, w, u_2 is not a strongest path, then clearly one of $(u_1, w), (w, u_2)$ or both become the weakest arcs of the cycle which contradicts that (u_1, w) and (w, u_2) are fuzzy bridges.

Case 2. If u_1, w_1u_2 is also a strongest path joining u_1 to u_2 , then $\mu^x(u_1, u_2) = \mu(u_1, w) \Lambda \mu(w, u_2)$, the strength of ρ . Thus arcs of ρ are at least as strong as $\mu(u_1, w)$ and $\mu(w, u_2)$ which implies that $(u_1, w), (w, u_2)$ or both are the weakest arcs of the cycle, which again is a contradiction. \Box

Remark 2. The condition in the above theorem is not necessary. In Fig. 1, *w* is a fuzzy cutnode; (u, w) and (v, x) are the only fuzzy bridges.

Remark 3. In the following fuzzy graph (Fig. 2), (u_1, u_2) and (u_3, u_4) are the fuzzy bridges and no node is a fuzzy outnode. This is a significant difference from the crisp graph theory.



295

296 M.S. Sunitha, A. Vijayakumar I Information Sciences 113 (1999) 293-300

Theorem 4. If (u, v) is a fuzzy bridge, then $\mu^{i}(u, v) = \mu(u, v)$.

Proof. Suppose that (u, v) is fuzzy bridge and that $\mu^{v}(u, v)$ exceeds $\mu(u, v)$. Then there exists a strongest $u \neq v$ path with strength greater than $\mu(u, v)$ and all arcs of this strongest path have strength greater than $\mu(u, v)$. Now, this path together with the arc (u, v) forms a cycle in which (u, v) is the weakest arc, contradicting that (u, v) is a fuzzy bridge.

Remark 4. The converse of the above theorem is not true. The condition for the converse to be true is discussed in Theorem 9.

3. Fuzzy trees

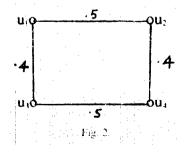
Definition 3 [9]. A connected fuzzy graph $G: (\sigma, \mu)$ is a fuzzy tree if it has a fuzzy spanning subgraph $F: (\sigma, v)$, which is a tree, where for all arcs (u, v) not in $F, \mu(u, v) < v^{\alpha}(u, v)$.

Equivalently, there is a path in F between u and v whose strength exceeds $\mu(u, v)$.

Lemma 4 [9]. If (τ, v) is a fuzzy subgraph of (σ, μ) , then for all $u, v, v^2(u, v) \leq \mu^2(u, v)$.

Theorem 5. If $G : (\sigma, \mu)$ is a fuzzy tree and $G^* : (\sigma^*, \mu^*)$ is not a tree, then there exists at least one arc (u, v) in μ^* for which $\mu(u, v) < \mu^{\gamma}(u, v)$.

Proof. If G is a fuzzy tree, then by definition there exists a fuzzy spanning subgraph $F: (\sigma, v)$, which is a tree and $\mu(u, v) < v^{\gamma}(u, v)$ for all arcs (u, v) not in F. Also $v^{\gamma}(u, v) \leq \mu^{\gamma}(u, v)$ by Lemma 1. Thus $\mu(u, v) < \mu^{\gamma}(u, v)$ for all (u, v) not in F and by hypothesis there exist at least on arc (u, v) not in F, which completes the proof. \square



297

Definition 4 [3]. A complete fuzzy graph is a fuzzy graph $G: (\sigma, \mu)$ such that $\mu(u, v) = \sigma(u) \Lambda \sigma(v)$ for all u and v.

Lemma 2 [3]. If G is a complete fuzzy graph, then $\mu^{*}(u, v) = \mu(u, v)$.

Lemma 3 [3]. A Complete fuzzy graph has no fuzzy cutnodes.

Remark 5. The converse of lemma 2 is not true (Fig. 3). Also, a complete fuzzy graph may have a fuzzy bridge (Fig. 4).

Theorem 6. If $G: (\sigma, \mu)$ is a fuzzy tree, then G is not complete.

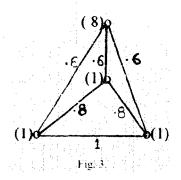
Proof: If possible let G be a complete fuzzy graph. Then $\mu^{\chi}(u, v) = \mu(u, v)$ for all u, v [lemma 2]. Now G being a fuzzy tree, $\mu(u, v) < v^{\chi}(u, v)$ for all (u, v) not in F. Thus $\mu^{\chi}(u, v) < v^{\gamma}(u, v)$, contradicting lemma 1. \Box

Theorem 7 [9]. If G is a fuzzy tree, then arcs of F are the fuzzy bridges of G.

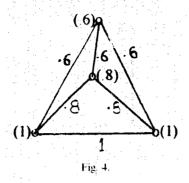
Theorem 8. If G is a fuzzy tree, then internal nodes of F are the fuzzy cutnodes of G.

Proof. Let w be any node in G which is not an end node of F. Then by Theorem 7, it is the common node of at least two arcs in F which are fuzzy bridges of G and by Theorem 3, w is a fuzzy cutnode. Also, if w is an end node of F, then w is not a fuzzy cutnode; for, if so, there exist u, v distinct from w such that w is on every strongest u, v path and one such path certainly lies in F. But w being an end node of F, this is not possible. \square

Corollary: A fuzzy cutnode of a fuzzy tree is the common node of at least two fuzzy bridges.



98. M.S. Sunitha, A. Vijavākumar I Information Sciences 113 (1999) 293-300



4. Main result

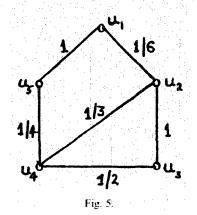
Theorem 9. \mathcal{J} : (σ, μ) is a fuzzy tree if and only if the following are equivalent. (1) (u, e) is a fuzzy bridge. (2) $\mu^{\chi}(u, v) = \mu(u, v)$.

Proof. Let $G: (\sigma, \mu)$ be a fuzzy tree and let (u, v) be a fuzzy bridge. Then $\mu^{2}(u, v) = \mu(u, v)$ (Theorem 4). Now, let (u, v) be an arc in G such that $\mu^{2}(u, v) = \mu(u, v)$. If G^{*} is a tree, then clearly (u, v) is a fuzzy bridge; otherwise, it follows from theorem 5 that (u, v) is in F and (u, v) is a fuzzy bridge (Theorem 7).

Conversely, assume that (1) \iff (2). Construct a maximum spanning tree $T: (\sigma, v)$ for G [2]. If (u, v) is in T, by an algorithm in [2], $\mu^{\alpha}(u, v) = \mu(u, v)$ and hence (u, v) is a fuzzy bridge. Now, these are the only fuzzy bridges of G; for, if possible let (u', v') be a fuzzy bridge of G which is not in T. Consider a cycle C consisting of (u', v') and the unique u'-v' path in T. Now arcs of this u'-v' path being fuzzy bridges they are not weakest arcs of C and hence (u', v') must be the weakest arc of C and hence cannot be a fuzzy bridge (Theorem 1).

Moreover, for all arcs (u', v') not in *T*, we have $\mu(u', v') < v^3(u', v')$; for, if possible let $\mu(u', v') \ge v^{\alpha}(u', v')$. But $\mu(u', v') < \mu^{\alpha}(u', v')$ (strict inequality holds, since (u', v') is not a fuzzy bridge). So, $v^{\alpha}(u', v') < \mu^{\alpha}(u', v')$ which gives a contradiction, since $v^{\alpha}(u', v')$ is the strength of the unique u' v' path in *T* and by an algorithm in [2], $\mu^{\alpha}(u', v') = v^{\alpha}(u', v')$. Thus *T* is the required spanning subgraph *F*, which is a tree and hence *G* is a fuzzy tree. \Box

Remark 6. For a fuzzy tree G, the spanning subgraph F is unique (Theorem 7). It follows from the proof of the above theorem that F is nothing but the maximum spanning tree T of G.



Theorem 10. A fuzzy graph is a fuzzy tree if and only if it has a unique maximum spanning tree.

Remark 7. For a fuzzy graph which is not a fuzzy tree there is at least one arc in T which is not a fuzzy bridge and arcs not in T are not fuzzy bridges of G. This observation leads to the following theorem.

Theorem 11. If $G: (\sigma, \mu)$ is a fuzzy graph with $\sigma^* = S$ and |S| = p then G has at most p - 1 fuzzy bridges.

Theorem 12. Let $G(\sigma, \mu)$ be a fuzzy graph and let T be a maximum spanning tree of G. Then end nodes of T are not fuzzy cut nodes of G.

Corollory: Every fuzzy graph has at least two nodes which are not fuzzy cut nodes.

However, there are fuzzy graphs with diametrical nodes, nodes which have maximum eccentricity [1], as fuzzy cutnodes, distinct from crisp graph theory. See u_3 and u_5 of Fig. 5.

References

- [1] P. Bhattacharva. Some remarks on fuzzy graphs. Pattern Recognition Lett. 6 (1987) 297-302.
- [2] P. Bhattacharya, F. Süraweera, An algorithm to compute the supremum of maximin powers and a property of fuzzy graphs. Pattern Recognition Lett, 12 (1991) 413–420.
- [3] K.R. Bhutani, On automorphisms of fuzzy graphs. Pattern Recognition Lett. 9 (1989) 159-162.
- [4] W.L. Craine, Characterization of fuzzy interval graphs. Fuzzy Sets and Systems 68 (1994) 181–193.
- [5] G.J. Klir, Bo Yuan, Fuzzy sets and fuzzy logic: Theory and Applications, PHI (1997).

299

M.S. Sunitha, A. Vijayakumar / Information Sciences 113 (1999) 293-300

- [6] B. Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic, Hyperion, New York, 1993.
- [7] J.N. Mordeson, Fuzzy line graphs, Pattern Recognition Lett. 14 (1993) 381-384:
- [8] J.N. Mordeson, P.S. Nair, Cycles and cocycles of fuzzy graphs, Inform. Sci. 90 (1996) 39/49.
- [9] A. Rosenfeld, Fuzzy graphs. in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.), Fuzzy Sets and their Applications to Cognitive and Decision Processes, Academic Press, New York, 1975, pp. 77-95.
- [10] R.T. Yeh, S.Y. Bang, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.), Fuzzy Sets and their Applications to Cognitive and Decision Processes, Academic Press, New York, 1975, pp. 125–149
- [11] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.

300