
Computationally Effi cient Bootstrap 
Prediction Intervals for Returns 
and Volatilities in ARCH and 
GARCH Processes

BEI CHEN,1* YULIA R. GEL,1 N. BALAKRISHNA2 AND 
BOVAS ABRAHAM1

1 Department of Statistics and Actuarial Science, University of 
Waterloo, Waterloo, Ontario, Canada
2 Department of Statistics, Cochin University of Science and 
Technology, Cochin, India

ABSTRACT
We propose a novel, simple, effi cient and distribution-free re-sampling tech-
nique for developing prediction intervals for returns and volatilities following 
ARCH/GARCH models. In particular, our key idea is to employ a Box–Jenkins 
linear representation of an ARCH/GARCH equation and then to adapt a sieve 
bootstrap procedure to the nonlinear GARCH framework. Our simulation 
studies indicate that the new re-sampling method provides sharp and well 
calibrated prediction intervals for both returns and volatilities while reducing 
computational costs by up to 100 times, compared to other available 
re-sampling techniques for ARCH/GARCH models. The proposed procedure 
is illustrated by an application to Yen/U.S. dollar daily exchange rate 
data. Copyright © 2010 John Wiley & Sons, Ltd.

key words fi nancial time series; volatility forecasting; bootstrap; non-
Gaussian distribution

INTRODUCTION

Measuring volatility plays an important role in assessing risk and uncertainty in fi nancial markets. 
One of the core techniques for modeling volatility dynamics in empirical fi nance is the autoregres-
sive conditional heteroscedastic (ARCH) model, introduced by Engle (1982). The pioneering idea 
of the ARCH approach is to view volatility as a linear function of previous squared returns. By 
adding a ‘moving average’ (MA) part, Bollerslev (1986) proposed incorporating available informa-
tion on previous volatilities, which resulted in the Generalized ARCH (GARCH) model. There now 
exists a variety of modifi cations of the ARCH/GARCH approach: exponential GARCH (Nelson, 
1991), nonlinear GARCH (Engle and Ng, 1993), integrated GARCH (Engle and Bollerslev, 1986), 
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fractionally integrated GARCH (Baillie et al., 1996), long memory GARCH (Conrad and 
Karanasos, 2006), etc., and new extensions continue to appear regularly (see Bera and Higgins, 
1993; Shephard, 1996; Tsay, 2002; Taylor, 2005; Bollerslev, 2008; and references therein for an 
overview). Although the sequence of volatilities is typically unobservable, predicting volatility by 
ARCH/GARCH models is straightforward due to its functional structure. However, the existing 
literature mainly focuses on point forecasts of volatility (see Baillie and Bollerslev, 1992; Andersen 
and Bollerslev, 1998; Andersen et al., 2001; Engle and Patton, 2001; Poon, 2005; and references 
therein), and relatively little attention has been paid to constructing prediction intervals. Compared 
to point forecasts, prediction intervals provide extra assessment of the uncertainty associated with 
the corresponding point forecast, which can better guide risk management decisions. However, 
construction of prediction intervals requires knowledge of the distribution of the observed data, 
which is typically unknown in practice. Hence, data are usually assumed to follow some hypotheti-
cal distribution, and the resulting prediction interval can be adversely affected by departures from 
that assumption (Thombs and Schucany, 1990). An alternative is to employ distribution-free 
re-sampling techniques, e.g., the bootstrap. One of the most popular and effi cient bootstrap proce-
dures in a time series context is based on assessing the predictive error distribution by re-sampling 
residuals from the fi tted model (Bühlmann, 2002; Politis, 2003; Härdle et al., 2003). In particular, 
Miguel and Olave (1999) propose constructing bootstrap-based prediction intervals of returns and 
volatilities by directly adding re-sampled residuals from an ARCH model to the respective point 
forecasts. Reeves (2005) suggests including an additional step of re-estimating the ARCH parame-
ters for each bootstrapped realization of returns, which enables uncertainty in sample parameter 
estimates to be incorporated. Pascual et al. (2006) combine and further extend these procedures by 
developing prediction intervals for both returns and volatilities from GARCH models, and the 
obtained prediction intervals are found to be well-calibrated, i.e., the number of observed data falling 
within a prediction interval coincides with the declared coverage. However, the discussed proce-
dures are based on maximum likelihood (ML) estimation of ARCH/GARCH parameters and, hence, 
are computationally expensive. In this paper, we propose a novel, simple and effi cient sieve-based 
bootstrap procedure to construct prediction intervals of returns and volatilities in ARCH/GARCH 
processes. The sieve bootstrap is a re-sampling technique that is widely utilized in linear time series 
modeling due to its effi ciency, low computational costs and non-restrictive assumptions (Kreiss, 
1988; Bühlmann, 1997; Politis, 2003; Härdle et al., 2003; Pascual et al., 2004). The idea of the 
sieve bootstrap is to approximate an observed process by a linear model, typically autoregressive 
(AR), and to generate ‘new’ realizations from the same model but with the re-sampled innovations. 
Notice that ARCH/GARCH equations can also be represented as AR/ARMA processes from the 
Box-Jenkins family of models. In particular, the squared return from an ARCH/GARCH model is a 
linear process that follows an AR/ARMA equation (Tsay, 2002; Box et al., 2008). Hence, we can 
also adopt a sieve bootstrap procedure for the ARCH/GARCH case, i.e. develop prediction intervals 
for squared returns and then apply probability transformations to construct the required prediction 
intervals for returns and volatility. Since our approach involves only estimation of AR/ARMA 
models by linear Least Squares (LS), our computational costs are very low, while constructed pre-
diction intervals for both returns and volatility are competitive in terms of coverage and sharpness, 
compared to other available techniques. In the next section, we discuss the models, assumptions and 
the new proposed bootstrap algorithm. In section 3, we present an extensive simulation study of 
various ARCH and GARCH models and distributions for innovation processes. We illustrate our 
new method by applying it to Yen/U.S. dollar daily exchange rate data in section 4. The paper is 
concluded by discussion in section 5.
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ARCH AND GARCH MODELS AS AR AND ARMA MODELS

We start our discussion from a general class of GARCH(p, q) models and then consider ARCH(1) 
and GARCH(1, 1) processes as examples.

Models and assumptions
Suppose {yt}T

t=1 is a GARCH(p, q) process, p, q ≥ 1. For t = 1, . . . , T:

 yt t t= σ ε  (1)

 σ α α β σt i t i
i
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j t j
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where {εt}T
t=1 is a sequence of independent, identically distributed (i.i.d.) random variables with zero 

mean, unit variance and E(εt
4) < ∞; {σt}T

t=1 is a stochastic process assumed to be independent of 
{εt}T

t=1; α0, αi and βj are unknown parameters satisfying α0 ≥ 0, αi ≥ 0 and βj ≥ 0, for i = 1, . . . , p 
and j = 1, . . . , q. Let m = max(p, q). Throughout this paper, we assume that {yt}T

t=1 is weakly station-
ary, i.e. Σm

i=1(αi + βi) < 1 is satisfi ed, where αi = 0 for i > p and βi = 0 for i > q (Tsay, 2002). Further, 
we assume that the strict stationarity conditions of {yt}T

t=1 given in Bougerol and Picard (1992a,b) 
hold.1 Note that in fi nancial contexts {yt}T

t=1 and {σt}T
t=1 are referred to as return and volatility processes, 

respectively. If q = 0, {yt}T
t=1 is an ARCH(p) process. Let us now represent a GARCH(p, q) process 

in an autoregressive moving average (ARMA) form. If we denote vt = yt
2 − σt

2, then
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where {vt}T
t=1 is white noise, but not i.i.d.in general. Under the strict stationary assumption of {yt}T

t=1, 
{vt}T

t=1 is identically distributed. Note that if q = 0, formula (3) reduces to an AR(m) model. For 
example, let us consider the linear forms of two special cases of a GARCH(p, q) process. Suppose 
{yt}T

t=1 follows an ARCH(1):

 yt t t= σ ε  (4)

 σ α αt ty2
0 1 1

2= + −  (5)

1 Bougerol and Picard (1992a,b) provide the necessary and suffi cient conditions for the existence of a strictly stationary 
solution of (1) and (2). Let τn = (β1 + α1ε 2

n, β2, . . . , βq−1)′ ∈ �q−1, ξn = (ε 2
n, 0, . . . , 0)′ ∈ �q−1, α = (α2, . . . , αp−1)′ ∈ �p−2. 
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where Ik is a k × k-identity matrix for k ∈ �+. The top Lyapunov exponent γL associated with the sequence 

{An, −∞ < n < ∞} is γ L n n
n

E A A A=
+≤ <∞inf log . . .0 0 1
1

1
, assuming that E(log�A0�) < ∞. (Here �M� =  sup{�Mx�d/�x�d :  

x ∈ �d, x ≠ 0} and ���d is the Euclidean norm in �d.) Bougerol and Picard (1992a,b) show that if E(log�A0�) < ∞ holds, then 
(1) and (2) have a unique stationary solution if and only if γL < 0.
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Then, in view of (3), equations (4) and (5) can be expressed in the AR(1) form:

 y y vt t t
2

0 1 1
2= + +−α α  (6)

Note that {yt}T
t=1 is both weakly and strictly stationary if α1

2 ≤ 1/3 (Box et al., 2008; Tsay, 2002). 
Now suppose {yt}T

t=1 is a GARCH(1, 1) process given by

 yt t t= σ ε  (7)

 σ α α β σt t ty2
0 1 1

2
1 1

2= + +− −  (8)

Then (7) and (8) can be rewritten as the ARMA(1,1) form:

 y y v vt t t t
2

0 1 1 1
2

1 1= + +( ) + −− −α α β β  (9)

assuming that α1 + β1 < 1 to ensure the weak stationarity of {yt}T
t=1 (Box et al., 2008; Tsay, 2002). 

Nelson (1990) showed that {yt}T
t=1 is also strictly stationary if E[log(β1 + α1εt)] < 1. The linear rep-

resentation of the GARCH(p, q) process allows us to utilize the sieve bootstrap algorithm to construct 
prediction intervals for returns and volatilities.

Sieve bootstrap procedure of GARCH(p, q) process
The sieve bootstrap is proposed for estimating the distribution of a statistical quantity within a class of 
linear processes (Kreiss, 1988; Bühlmann, 1997). Given a sample of size T, the idea of the sieve bootstrap 
is to fi t a sequence of AR models of order p(T), where p(T) → ∞ as T → ∞, and then to construct a ‘new’ 
bootstrap realization generated from the re-sampled residuals (Grenander, 1981). The asymptotic proper-
ties of the sieve bootstrap are studied by Bühlmann (1997), Bickel and Bühlmann (1999), Härdle et al. 
(2003), Politis (2003) and Lahiri (2003). Recently, the sieve bootstrap has been gaining popularity for 
constructing prediction intervals for linear processes. In particular, Thombs and Schucany (TS) (1990) 
and Cao et al. (1997) consider the performance of sieve bootstrap prediction intervals for fi nite AR(p) 
models, while Alonso et al. (2002, 2003) extend the sieve bootstrap algorithm to the AR(∞) model with 
absolutely summable coeffi cients, and Pascual et al. (2004) apply the sieve bootstrap procedure to inte-
grated ARMA (ARIMA) processes. Here we adopt the sieve bootstrap idea for developing prediction 
intervals for returns and volatility in GARCH(p, q) processes. Let h = 1, . . . , s, s ≥ 1, be a lead time. 
Let {yt}T

t=1 be an observed sample from (1)–(2), where p and q are assumed to be known.2 Then, we 
proceed with the following algorithm to construct prediction intervals for yT+h and σ 2

T+h:

• Step 1. Estimate the ARMA coeffi cients α̂0, α β α β1 1+( ) +( )� �, . . . , m m , β̂1, . . . , β̂q from the 

representation (3) using the Least Squares (LS) method. Then, calculate ˆ ˆα α β βi i i i= +( ) −� , for 
i = 1, . . . , p.

• Step 2. Estimate the residuals {v̂t}T
t=m+1 by

 ˆ ˆ ˆ ˆ , , . . . ,v y y v t mt t i i t i
i

m

j t j
j

q

= − − +( ) + = +−
=

−
=

∑ ∑2
0

2

1 1

1α α β β� for TT  (10)

 Set v̂t = 0, for t = 1, . . . , m.

2 Note that in practice the order of the GARCH process is unknown. We can select the model order by the Akaike informa-
tion criterion (AIC) (Akaike, 1974), the Bayesian information criterion (BIC) (Schwarz, 1978) or the corrected AIC (AICc) 
(Hurvich and Tsai, 1989).
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• Step 3. Center the estimated residuals using

 �v v
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 The empirical distribution of the centered residuals {ṽt}T
t=m+1 is

 ˆ
,F yv T v y

t m

T

t
( ) = ≤{ }

= +
∑ 1 �

1

 (12)

• Step 4. Sample with replacement from F̂v,T(y) to obtain the bootstrap error process {v*t}T
t=1.

• Step 5. Construct a bootstrap sample of squared returns {yt
2*}T

t=1 by

 y y v vt i i t i
i
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 where yk i
m

i i
2

0 11* = − +( ){ }=α α βΣ �  and v*k = 0 for k ≤ 0. In practice we generate T + 150 y2*t  and 
then discard the fi rst 150 generated values in order to minimize the effect of the initial values. The 
effect of initial values is negligible asymptotically (Kreiss and Franke, 1992).

• Step 6. Given {y2*t }T
t=1 from Step 5, estimate the coeffi cients α0*, α β α β1 1+( ) +( )� �* *, . . . , m m , 

β̂*1, . . . , β̂*q by LS and then calculate ˆ * ˆ*α α β βi i i i= +( ) −� * , for i = 1, . . . p. The bootstrap sample 
of volatility {σ 2*t }T

t=1 is obtained by
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 with σt
2* = α̂0/{1 − Σm

i=1(α̂i + β̂i)}, t = 1, . . . , m.
• Step 7. Sample with replacement from F̂v,T(y) to obtain the bootstrap prediction error process 

{vT+h}s
h=1, where s � 1.

• Step 8. Let yT*+h = yT+h, for h � 0. The h-step-ahead forecast of the squared return is given by
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 and the h-step-ahead forecast of volatility is obtained by
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 for h = 1, . . . , s.
• Step 9. Repeat Steps 4–8 B times, where B is number of bootstrap replicates.

Remark. Note that under the strict stationarity assumption σt
2 can be uniquely represented in terms 

of past observations as
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i
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where the ci’s depend on the GARCH parameters αj and βj, j = 1, . . . , m (Berkes et al., 2003). Thus, 
σt

2 is deterministic conditional on the past observations. As addressed in Pascual et al. (2006), if the 
model parameters are known, the one-step ahead volatility is perfectly predictable given {yt}T

t=1. The 
only uncertainty associated with the one-step ahead prediction comes from the parameter estimation 
whose variability goes to 0 as T → ∞.

Now, we can use the bootstrap distributions of y 2
T
*+h and σ 2

T
*+h produced by Steps 4–9, i.e. F̂y

2
T+h
* and 

F̂σ
2
T+h
* respectively, to approximate the unknown distributions of y2

T+h and σ 2
T+h, for h = 1, . . . , s. Hence, 

the 100(1 − α)% prediction interval of y2
T+h is given by

 [ , * ], , . . . ,0 1 1H h sT h+ −( ) =α  (18)

where H*T+h(1 − α) is the (1 − α) quantile of F̂y
2
T+h
*. The respective 100(1 − α)% prediction interval of 

yT+h (PI*y ) is

 [ * , * ]Q QT h T h+ +( ) −( )α α2 1 2  (19)

where Q HT h T h+ +( ) = − −( )* *α α2 1  and Q HT h T h+ +−( ) = −( )* *1 2 1α α . Similarly, the 100(1 − α)% 
bootstrap prediction interval of σ 2

T+h (PI*σ 2) is given by

 [ , * ]0 1KT h+ −( )α  (20)

where K*T+h(1 − α) is the (1 − α) quantile of F̂σ
2
T+h
*.

Remark. Note that to save computing time, similar to the conditional bootstrap of Cao et al. (1997) 
and Miguel and Olave (1999), we can omit the re-estimation Steps 4–6 in our algorithm. We call 
such a simplifi ed procedure a conditional sieve bootstrap (CSB). However, CSB does not take into 
account the variance due to parameter estimation. Consequently, the prediction interval of the one-
step ahead forecast of volatility does not exist.

NUMERICAL RESULTS

Here we investigate the performance of our method by simulations from various ARCH(p) and 
GARCH(p, q) models, with N(0,1) and t5 error distributions. For every combination of model and 
error distribution, we compare our new unconditional sieve bootstrap (USB) and conditional sieve 
bootstrap (CSB) with the method proposed by Pascual et al. (2006) (PRR) based on the following 
algorithm:

• Step 1. Simulate the series and generate R = 1000 future values yT+h and σ 2
T+h, for h = 1, . . . , s. 

Then, the empirical length of the prediction interval of yT+h is obtained by

 L y yT h y
e

T h
R

T h
R

+ +
−( )

+
( )= −,

1 2 2α α  (21)

 and that of σ 2
T+h is given by
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• Step 2. Compute B = 1000 bootstrap forecasts {y*,
T+h

b}B
b=1 and {σ 2*T+h

,b}B
b=1 and then construct the 

100(1 − α)% PI*y and PI*σ2, h = 1, . . . , s. The lengths of PI*y and PI*σ2 are obtained respectively by

 L Q QT h y
M

T h T h+ + += −( ) − ( ),
,* * *1 2 2α α  (23)

 and

 L K
T h

M
T h+ += −( )

,
,* *

σ α2 1  (24)

• Step 3. Estimate the coverage of PI*y  and PI*σ2 using
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1
0 1 2

1
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 for h = 1, . . . , s. Note that the coverage is defi ned as the proportion of future values lying within 
the prediction interval.

• Step 4. Repeat Steps 1–3 MC = 1000 times. Compute the average and the standard error of the 
coverage of PI*y by

 C C MCT h y T h y
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 and those of the length of PI*y by

 L L MCT h y T h y
M

M

MC

+ +
=

= ∑, ,
,* * /

1

 (29)

 s e L L L MCT h y T h y
M

T h y
M

MC

. ( * ) ( * * ), ,
,

,+ + +
=

= −{ }∑ 2

1

1

2
/  (30)

 Similarly, the average and the standard error of the coverage of PI*σ2 are given by
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 and those of the length of PI*σ2 are given by

 L L MCT h T h
M
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,* *σ σ2 2
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/  (33)
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We compare the performance of USB, CSB and PRR in terms of C
–*T+h,y, L

–*T+h,y, C
–*T+h,σ2, L

–*T+h,σ2 and 
CPU time, based on the following three models:3

• Model 1: ARCH(1)

 yt t t= σ ε ,  (35)

 σ t ty2
1

20 1 0 4= + −. .  (36)

• Model 2: ARCH(2)

 yt t t= σ ε ,  (37)

 σ t t ty y2
1

2
2

20 1 0 2 0 15= + +− −. . .  (38)

• Model 3: GARCH(1, 1)

 yt t t= σ ε ,  (39)

 σ σt t ty2
1

2
1

20 05 0 1 0 85= + +− −. . .  (40)

where {εt} follows either N(0, 1) or t5. In our study, we set the signifi cance level α to 0.05, which 
corresponds to a 95% prediction interval (PI).

As shown in Tables I–V, USB and CSB provide competitive coverage for PI*y, especially for small 
and moderate sample sizes, while for larger T all three methods perform similarly. In short-term volatility 
forecasts, USB outperforms PRR for all ARCH models (see Tables I–IV) and both methods yield equiva-
lent results for GARCH models (see Table V). For longer term volatility forecasts, PRR has a slight edge 
over USB and CSB for small sample sizes. The performance of all three methods tends to be equivalent 
for larger samples. On comparing USB and CSB, typically USB is somewhat more precise than CSB 
across all samples, models and distributions. Note that the empirical lengths of prediction intervals of 
returns and volatilities shown in Tables I–V are obtained using equations (21) and (22).

Now we compare the three methods in terms of CPU time.4 Figure 1 presents the dynamic of the 
estimated CPU time for various sample sizes based on B = 1000. Note that our results on CPU time 
are the average of 100 repetitions. As indicated by Figure 1, CSB and USB substantially outperform 

3 We also investigated the algorithm of Miguel and Olave (1999). Their results are found to be equivalent to CSB in terms 
of coverage and sharpness. However, the required CPU time is substantially higher than that of CSB. Hence we omit the 
method of Miguel and Olave from further comparison.
4 The computations were conducted on the Vidal cluster, which has 2 Operon processors with 4 GB RAM on each computing 
node.
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Table I. Prediction intervals for returns of ARCH(1) model with N(0, 1) errors

Lead time Sample 
size

Method Average 
coverage for 
return (SE)

Average 
length for 

return (SE)

Average 
coverage for 

volatility (SE)

Average 
length for 

volatility (SE)

 1 T Empirical 95% 1.54 95% —

 300 PRR 94.53 (0.02) 1.53 (0.49) 92.50 (0.26) 0.20 (0.24)
USB 94.75 (0.04) 1.56 (0.21) 92.00 (0.27) 0.33 (0.11)
CSB 94.51 (0.05) 1.57 (0.22) — —

1000 PRR 94.83 (0.01) 1.53 (0.43) 93.80 (0.24) 0.18(0.16)
USB 94.97 (0.04) 1.56 (0.15) 94.20 (0.23) 0.35(0.07)
CSB 94.89 (0.05) 1.57 (0.23) — —

3000 PRR 94.92 (0.01) 1.54 (0.41) 92.70 (0.26) 0.18 (0.12)
USB 95.14 (0.04) 1.55 (0.14) 95.00 (0.22) 0.35 (0.05)
CSB 95.03 (0.04) 1.54 (0.12) — —

10 T Empirical 95% 1.61 95% 0.34

 300 PRR 94.61 (0.02) 1.60 (0.14) 93.43 (0.05) 0.36 (0.11)
USB 94.84 (0.02) 1.62 (0.16) 91.24 (0.06) 0.33 (0.11)
CSB 94.78 (0.02) 1.61 (0.16) 91.33 (0.06) 0.33 (0.11)

1000 PRR 94.75 (0.01) 1.60 (0.09) 94.43 (0.02) 0.36 (0.06)
USB 95.09 (0.01) 1.63 (0.10) 93.55 (0.03) 0.35 (0.07)
CSB 95.07 (0.01) 1.62 (0.11) 93.60 (0.03) 0.35 (0.08)

3000 PRR 94.84 (0.01) 1.60 (0.07) 94.79 (0.02) 0.36 (0.04)
USB 95.14 (0.01) 1.62 (0.08) 94.32 (0.02) 0.35 (0.05)
CSB 95.19 (0.01) 1.62 (0.08) 94.30 (0.02) 0.35 (0.05)

20 T Empirical 95% 1.62 95% 0.36

 300 PRR 94.54 (0.02) 1.59 (0.14) 93.36 (0.05) 0.36 (0.11)
USB 94.81 (0.02) 1.62 (0.16) 91.27 (0.06) 0.33 (0.11)
CSB 94.86 (0.02) 1.62 (0.17) 91.29 (0.06) 0.33 (0.11)

1000 PRR 94.82 (0.01) 1.60 (0.09) 94.46 (0.02) 0.36 (0.06)
USB 95.14 (0.01) 1.63 (0.10) 93.62 (0.03) 0.35 (0.07)
CSB 95.12 (0.01) 1.63 (0.11) 93.56 (0.03) 0.35 (0.08)

3000 PRR 94.92 (0.01) 1.60 (0.07) 94.79 (0.02) 0.36 (0.04)
USB 95.12 (0.01) 1.62 (0.08) 94.30 (0.02) 0.35 (0.05)
CSB 95.11 (0.01) 1.62 (0.07) 94.35 (0.02) 0.35 (0.05)

PRR. In particular, PRR requires 100 times as much CPU time as that of USB for small sample 
sizes. Remarkably, CSB provides the best performance with only relatively minor loss in terms of 
sharpness and coverage.

Finally, USB and CSB typically yield some improvements in terms of returns, while PRR gener-
ally provides slightly better results for volatilities. With increasing sample size, all three methods 
perform equivalently. However, USB, and especially CSB, are substantially less computationally 
demanding. Hence, USB and CSB may be selected as preferred procedures for constructing PIs for 
returns and volatilities. If only PIs for returns are of interest, then CSB is a better choice.

Remark. In practical applications, a fi tted ARCH/GARCH model can exhibit a high degree of per-
sistency. For example, for a case of an GARCH(1, 1) model, high persistency means α̂1 + β̂1 ≈ 1, 
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Table II. Prediction intervals for returns of ARCH(1) model with errors following a t-distribution with 5 
degrees of freedom, i.e. t5

Lead time Sample 
size

Method Average 
coverage for 
return (SE)

Average 
length for 

return (SE)

Average 
coverage for 

volatility (SE)

Average 
length for 

volatility (SE)

 1 T Empirical 95% 1.55 95% —

 300 PRR 94.56 (0.02) 1.53 (0.54) 85.80 (0.35) 0.22 (0.31)
USB 94.75 (0.04) 1.55 (0.22) 90.60 (0.29) 0.33 (0.23)
CSB 94.81 (0.04) 1.55 (0.28) — —

1000 PRR 94.77 (0.01) 1.53 (0.65) 89.10 (0.31) 0.21 (0.65)
USB 95.00 (0.04) 1.55 (0.19) 93.20 (0.25) 0.33 (0.20)
CSB 94.90 (0.04) 1.54 (0.17) — —

3000 PRR 94.92 (0.01) 1.54 (0.55) 91.70 (0.28) 0.19 (0.29)
USB 95.08 (0.03) 1.54 (0.27) 95.00 (0.22) 0.33 (0.09)
CSB 95.06 (0.03) 1.54 (0.15) — —

10 T Empirical 95% 1.62 95% 0.35

 300 PRR 94.59 (0.02) 1.59 (0.21) 92.24 (0.07) 0.37 (0.20)
USB 95.11 (0.02) 1.66 (0.30) 90.34 (0.08) 0.34 (0.28)
CSB 95.03 (0.02) 1.65 (0.28) 89.20 (0.10) 0.32 (0.20)

1000 PRR 94.83 (0.01) 1.60 (0.14) 94.16 (0.03) 0.36 (0.12)
USB 95.35 (0.01) 1.65 (0.17) 92.58 (0.04) 0.33 (0.20)
CSB 95.31 (0.01) 1.65 (0.17) 92.26 (0.04) 0.32 (0.12)

3000 PRR 94.96 (0.01) 1.60 (0.10) 94.75 (0.02) 0.36 (0.07)
USB 95.41 (0.01) 1.65 (0.12) 93.23 (0.03) 0.33 (0.09)
CSB 95.44 (0.01) 1.65 (0.12) 93.34 (0.03) 0.33 (0.09)

20 T Empirical 95% 1.64 95% 0.37

 300 PRR 94.56 (0.02) 1.59 (0.21) 92.16 (0.07) 0.37 (0.20)
USB 95.10 (0.02) 1.66 (0.32) 90.23 (0.08) 0.34 (0.32)
CSB 95.04 (0.02) 1.65 (0.29) 89.11 (0.10) 0.32 (0.22)

1000 PRR 94.82 (0.01) 1.60 (0.14) 94.13 (0.03) 0.36 (0.12)
USB 95.34 (0.01) 1.65 (0.18) 92.52 (0.04) 0.33 (0.20)
CSB 95.26 (0.01) 1.65 (0.17) 92.16 (0.04) 0.32 (0.11)

3000 PRR 94.93 (0.01) 1.60 (0.10) 94.65 (0.02) 0.36 (0.07)
USB 95.42 (0.01) 1.65 (0.12) 93.27 (0.03) 0.33 (0.09)
CSB 95.43 (0.01) 1.66 (0.12) 93.34 (0.03) 0.33 (0.09)

which may lead to instability of the LS estimation. Although in our studies we have not encountered 
any stability problems even for a case of α̂1 + β̂1 being 0.95 and 0.981, in practice that might lead 
to a failure of convergence and infl ated standard errors, especially for small and moderate samples. 
Under such circumstances, we can follow the approach of Kristensen and Linton (2006) and censor 
the LS estimator at 1 − ε for a small positive ε.

CASE STUDY

In this section we apply the proposed USB and CSB algorithm to construct prediction intervals of 
returns and volatilities of the daily Yen/U.S. dollar exchange rate, i.e., the number of Yen per U.S. 
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Table III. Prediction intervals for returns of ARCH(2) model with N(0, 1) errors

Lead time Sample 
size

Method Average 
coverage for 
return (SE)

Average 
length for 

return (SE)

Average 
coverage for 

volatility (SE)

Average 
length for 

volatility (SE)

 1 T Empirical 95% 1.52 95% —

 300 PRR 94.39 (0.02) 1.50 (0.30) 90.30 (0.30) 0.19 (0.10)
USB 94.59 (0.04) 1.52 (0.16) 91.80 (0.27) 0.28 (0.09)
CSB 94.65 (0.04) 1.51 (0.15) — —

1000 PRR 94.80 (0.01) 1.52 (0.31) 95.10 (0.22) 0.18 (0.10)
USB 94.91 (0.03) 1.52 (0.12) 93.60 (0.24) 0.28 (0.05)
CSB 94.94 (0.03) 1.52 (0.11) — —

3000 PRR 94.85 (0.01) 1.51 (0.32) 93.20 (0.25) 0.17 (0.13)
USB 94.88 (0.03) 1.52 (0.11) 94.10 (0.24) 0.28 (0.03)
CSB 94.89 (0.03) 1.52 (0.10) — —

10 T Empirical 95% 1.54 95% 0.25

 300 PRR 94.56 (0.02) 1.54 (0.13) 93.55 (0.06) 0.29 (0.08)
USB 94.70 (0.02) 1.54 (0.14) 91.92 (0.07) 0.28 (0.09)
CSB 94.71 (0.02) 1.54 (0.14) 91.15 (0.08) 0.27 (0.09)

1000 PRR 94.77 (0.01) 1.54 (0.08) 94.30 (0.03) 0.28 (0.04)
USB 94.86 (0.01) 1.55 (0.08) 93.97 (0.04) 0.28 (0.05)
CSB 94.87 (0.01) 1.54 (0.08) 93.83 (0.04) 0.28 (0.05)

3000 PRR 94.84 (0.01) 1.54 (0.07) 94.68 (0.02) 0.27 (0.03)
USB 94.88 (0.01) 1.54 (0.06) 94.61 (0.02) 0.28 (0.03)
CSB 94.85 (0.01) 1.54 (0.06) 94.51 (0.02) 0.28 (0.03)

20 T Empirical 95% 1.55 95% 0.28

 300 PRR 94.59 (0.02) 1.54 (0.12) 93.59 (0.06) 0.29 (0.08)
USB 94.65 (0.02) 1.54 (0.14) 91.88 (0.07) 0.28 (0.09)
CSB 94.70 (0.02) 1.54 (0.14) 91.11 (0.08) 0.27 (0.09)

1000 PRR 94.79 (0.01) 1.54 (0.08) 94.28 (0.03) 0.28 (0.04)
USB 94.91 (0.01) 1.55 (0.08) 93.94 (0.04) 0.28 (0.05)
CSB 94.85 (0.01) 1.54 (0.08) 93.88 (0.04) 0.28 (0.05)

3000 PRR 94.89 (0.01) 1.55 (0.07) 94.66 (0.02) 0.27 (0.03)
USB 94.90 (0.01) 1.55 (0.06) 94.66 (0.02) 0.28 (0.03)
CSB 94.87 (0.01) 1.54 (0.06) 94.49 (0.02) 0.28 (0.03)

dollar. In order to avoid modeling particular weekend effects, we exclude all of the observations on 
Saturdays and Sundays (Andersen et al., 2003). Consequently, our full sample includes the daily 
average Yen/U.S. exchange rate from March 28th, 1998 to July 28th, 2006: a total of 2175 observa-
tions. Figure 2 presents the observed data.

We transform the exchange rate into log returns using

 y
t

t = ∗100 log
Yen U.S. exchange rate in day

Yen U.S. exchange rate  in day t −
⎛
⎝⎜

⎞
⎠⎟1

 (41)

The new series of returns yt has a pattern shown in Figure 3, which is stationary and has mean 
close to zero. Tables VI and VII present summary statistics of yt.
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Table IV. Prediction intervals for returns of ARCH(2) model with errors following a t-distribution with 5 
degrees of freedom, i.e. t5

Lead time Sample 
size

Method Average 
coverage for 
return (SE)

Average 
length for 

return (SE)

Average 
coverage for 

volatility (SE)

Average 
length for 

volatility (SE)

 1 T Empirical 95% 1.52 95% —

 300 PRR 94.56 (0.02) 1.53 (0.55) 87.20 (0.33) 0.23 (0.45)
USB 94.86 (0.03) 1.55 (0.25) 90.90 (0.29) 0.30 (0.22)
CSB 94.73 (0.03) 1.53 (0.26) — —

1000 PRR 94.76 (0.01) 1.54 (0.39) 91.20 (0.28) 0.20 (0.25)
USB 94.89 (0.03) 1.52 (0.15) 92.30 (0.27) 0.28 (0.10)
CSB 94.77 (0.03) 1.52 (0.15) — —

3000 PRR 94.90 (0.01) 1.52 (0.36) 93.20 (0.25) 0.18 (0.14)
USB 95.03 (0.03) 1.54 (0.37) 94.50 (0.23) 0.29 (0.07)
CSB 95.14 (0.03) 1.52 (0.12) — —

10 T Empirical 95% 1.58 95% 0.28

 300 PRR 94.72 (0.02) 1.58 (0.25) 92.40 (0.08) 0.35 (0.52)
USB 95.13 (0.02) 1.61 (0.25) 91.03 (0.08) 0.30 (0.19)
CSB 94.91 (0.02) 1.59 (0.34) 88.91 (0.11) 0.30 (0.68)

1000 PRR 94.84 (0.01) 1.56 (0.15) 94.22 (0.04) 0.32 (0.61)
USB 95.18 (0.01) 1.59 (0.15) 92.54 (0.05) 0.28 (0.10)
CSB 95.18 (0.01) 1.59 (0.15) 92.52 (0.05) 0.28 (0.10)

3000 PRR 94.92 (0.01) 1.56 (0.09) 94.84 (0.02) 0.30 (0.05)
USB 95.28 (0.01) 1.59 (0.12) 93.93 (0.03) 0.29 (0.10)
CSB 95.32 (0.01) 1.59 (0.11) 93.78 (0.03) 0.29 (0.07)

20 T Empirical 95% 1.56 95% 0.30

 300 PRR 94.70 (0.02) 1.57 (0.25) 92.33 (0.08) 0.35 (0.59)
USB 95.06 (0.02) 1.61 (0.26) 90.96 (0.08) 0.30 (0.20)
CSB 94.93 (0.02) 1.60 (0.52) 88.91 (0.11) 0.34 (2.05)

1000 PRR 94.86 (0.01) 1.56 (0.16) 94.18 (0.04) 0.32 (0.50)
USB 95.22 (0.01) 1.59 (0.15) 92.56 (0.05) 0.28 (0.10)
CSB 95.22 (0.01) 1.60 (0.16) 92.48 (0.05) 0.28 (0.10)

3000 PRR 94.97 (0.01) 1.56 (0.10) 94.84 (0.02) 0.30 (0.05)
USB 95.33 (0.01) 1.60 (0.11) 93.95 (0.03) 0.29 (0.08)
CSB 95.26 (0.01) 1.59 (0.11) 93.78 (0.03) 0.29 (0.08)

As Table VI indicates, the estimated kurtosis is considerably higher than 3, indicating that the return 
distribution is leptokurtic. The p-values of the Jarque–Bera test (Jarque and Bera, 1980), the Robust 
Jarque–Bera test (Gel and Gastwirth, 2008) and the SJ test (Gel et al., 2007) are shown to be less 
than 0.0001, so there is strong evidence to reject the hypothesis that yt is Gaussian. Also, autocorrela-
tions of squared returns are highly signifi cant, shown in Table VII. As discussed by West and Cho 
(1995) as well as Andersen and Bollerslev (1998), a GARCH(1, 1) is a suitable model for yt.

Next, we partition the full sample into an in-sample estimation set from March 28th, 1998 to June 
15th, 2006 and an out-of-sample verifi cation set from June 16th, 2006 to July 28th, 2006. That is, 
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Table V. Prediction intervals for returns of GARCH(1, 1) model with N(0, 1) errors

Lead time Sample 
size

Method Average 
coverage for 
return (SE)

Average 
length for 

return (SE)

Average 
coverage for 

volatility (SE)

Average 
length for 

volatility (SE)

 1 T Empirical 95% 3.81 95% —

 500 PRR 94.61 (0.02) 3.79 (0.89) 91.50 (0.28) 1.21 (1.37)
USB 94.76 (0.04) 3.88 (0.45) 91.00 (0.29) 1.38 (0.51)
CSB 94.69 (0.04) 3.86 (0.46) — —

1000 PRR 94.74 (0.01) 3.82 (0.90) 93.40 (0.25) 1.14 (0.66)
USB 94.88 (0.03) 3.85 (0.38) 93.40 (0.25) 1.30 (0.44)
CSB 94.84 (0.04) 3.85 (0.36) — —

3000 PRR 94.87 (0.01) 3.81 (0.86) 94.70 (0.22) 1.07 (0.61)
USB 94.99 (0.03) 3.86 (0.31) 94.60 (0.23) 1.30 (0.48)
CSB 94.75 (0.04) 3.88 (0.33) — —

10 T Empirical 95% 3.86 95% 1.66

 500 PRR 94.49 (0.02) 3.88 (0.88) 92.01 (0.08) 1.91 (7.31)
USB 94.67 (0.03) 3.92 (0.43) 90.12 (0.11) 1.66 (0.64)
CSB 94.52 (0.03) 3.89 (0.44) 88.29 (0.13) 1.59 (0.60)

1000 PRR 94.74 (0.02) 3.90 (0.63) 93.36 (0.05) 1.70 (0.81)
USB 94.78 (0.02) 3.89 (0.35) 92.09 (0.08) 1.65 (0.50)
CSB 94.69 (0.03) 3.89 (0.35) 91.84 (0.09) 1.64 (0.55)

3000 PRR 94.86 (0.01) 3.89 (0.61) 94.39 (0.03) 1.67 (0.73)
USB 94.84 (0.02) 3.89 (0.26) 94.12 (0.05) 1.69 (0.44)
CSB 94.68 (0.03) 3.92 (0.28) 93.99 (0.05) 1.71 (0.47)

20 T Empirical 95% 3.92 95% 1.80

 500 PRR 94.32 (0.02) 3.92 (1.50) 91.14 (0.08) 2.44 (20.58)
USB 94.55 (0.02) 3.92 (0.43) 89.29 (0.10) 1.72 (0.67)
CSB 94.36 (0.02) 3.90 (0.45) 87.53 (0.12) 1.66 (0.64)

1000 PRR 94.65 (0.02) 3.92 (0.50) 92.83 (0.05) 1.82 (0.77)
USB 94.66 (0.02) 3.90 (0.35) 91.31 (0.07) 1.74 (0.55)
CSB 94.61 (0.02) 3.90 (0.34) 91.26 (0.08) 1.74 (0.62)

3000 PRR 94.81 (0.01) 3.93 (0.43) 94.24 (0.03) 1.81 (0.60)
USB 94.73 (0.02) 3.91 (0.25) 93.70 (0.04) 1.80 (0.44)
CSB 94.66 (0.02) 3.92 (0.24) 93.75 (0.04) 1.81 (0.40)

based on a sample of 2143 observations, we make 31-step ahead predictions. By equation (3), we 
fi t an ARMA(1, 1) model to yt

2 using LS. The resulting estimated model is given by

 y y v vt t t t
2

1
2

10 006 0 9810 0 9284= + + −− −. . .  (42)

i.e. α̂0 = 0.006, α̂1 = 0.0525 and β̂1 = 0.9284. Consistent with the previous literature, the estimate 
α̂1 + β̂1 is close to unity.

Based on the fi tted model (42), we fi rst construct the 95% PIs of returns yt+h from June 16th to 
July 28th, 2006, using CSB and USB procedures, respectively. Figure 4 presents the estimated dis-
tributions of 1-step ahead and 10-step ahead squared returns. Note that since the squared returns are 
non-negative, each histogram shows a one-sided shape strictly greater than zero. From Figure 4, 
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Figure 1. Estimated CPU time for PRR, USB and CSB applied to the GARCH(1,1) process of sample sizes 
from 200 to 3000

Figure 2. The yen/US daily exchange rates from 28 March 1998 to 28 July 2006

Figure 3. Yen/US daily returns from 28 March 1998 to 28 July 2006
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the estimated distributions obtained by CSB are very similar to those by USB. By taking the upper 
95% quantiles of the estimated distributions, we acquire the 95% PIs of returns yt+h, h = 1, . . . , 31. 
Figures 5 and 6 show the 95% PIs of returns, provided by CSB and USB respectively, together with 
the true values of returns. Notice that the true observations are well covered by the PIs yielded by 
both CSB and USB.

Finally, we construct the 95% PIs for future volatilities of returns. Figure 7 shows the estimated 
distributions of future volatilities σ 2

t+h, h = 1, . . . , 31. Figure 9 indicates that the distributions of 
volatilities may be asymmetric. Similarly, we take the upper 95% quantiles of the estimated distribu-
tions to construct the PIs of volatilities using CSB and USB. In practice, we do not observe the vola-
tility directly. For verifi cation purposes, we calculate realized volatility from October 9th, 2005 to 
November 23rd, 2005 based on 5-minute returns using the following equation:

 σ t t t ny y2
1

2 2= + +, ,…  (43)

Table VI. Summary statistics for log returns yt

Mean Median SD Skewness Kurtosis Max. Min.

−0.0024 0.0013 0.5611 −0.6037 8.0743 2.7413 −4.8567

Table VII. Autocorrelations of log returns yt at different lags

Autocorrelations γ(1) γ(2) γ(3) γ(10) γ(15) γ(20)

yt 0.2106 0.0086 −0.0573 0.0323 −0.0190 −0.0024
yt

2 0.0742 0.2204 0.1033 0.0729 0.0916 0.0492
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Figure 4. Histograms of bootstrap predictions of the future squared returns
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Figure 5. The 95% CSB prediction intervals of returns from 16 June to 18 July 2006

Figure 6. The 95% USB prediction intervals of returns from 16 June to 18 July 2006

where n is the number of observations per day (Andersen and Bollerslev, 1998; Taylor, 2005). Note 
that n is approximately 268 in our sample. Figures 8 and 9 present the 95% PIs for volatilities together 
with the realized volatilities. In contrast to the PIs of returns, the 95% PIs of volatilities by USB 
outperform those of CSB. All of the realized volatilities lie within the 95% USB PIs, but one 
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Figure 7. Histograms of bootstrap predictions of the future volatilities of returns

Figure 8. The 95% CSB prediction intervals of volatilities from 16 June to 18 July 2006
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Figure 9. The 95% USB prediction intervals of volatilities from 16 June to 18 July 2006

observation lies outside the boundary in the CSB case. Therefore, the consideration of variance due 
to parameter estimation is necessary if computational resources is plenty.

DISCUSSION

In this paper we propose a novel, fast and effi cient method for constructing prediction intervals for 
returns and volatilities from ARCH/GARCH models. Our main idea is to transform the non-linear 
ARCH/GARCH re-sampling problem to a linear framework. In particular, we employ the fact that 
any stationary ARCH/GARCH model can be represented as a Box-Jenkins model where the squared 
ARCH/GARCH returns follow a linear AR/ARMA equation. Hence, we can now utilize a sieve 
bootstrap procedure applied to such an AR/ARMA model. The sieve bootstrap is known to be one 
of the most effi cient and popular re-sampling procedures for linear time series and its asymptotic 
and computational properties are well investigated. Adapting the sieve bootstrap in an ARCH/
GARCH framework allows us to substantially decrease computational costs while providing com-
petitively sharp and well calibrated prediction intervals for both returns and volatilities. The key 
reason for such an improvement is the fact that a linear AR/ARMA representation of ARCH/GARCH 
enables us to estimate all the model parameters using recursive Least Squares (LS) or Yule–Walker 
(YW), which reduces the required computational time by up to a factor of 100, compared to other 
available re-sampling techniques for ARCH/GARCH models. In addition, such an approach is truly 
distribution-free and sets minimal restrictions on an ARCH/GARCH innovation process. In the 
future, we plan to extend the proposed ‘linearizing’ re-sampling procedure to testing for ARCH/
GARCH effects and ARCH/GARCH model selection, as well as to derive asymptotic properties of 
the sieve bootstrap in an ARCH/GARCH framework.
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