MQFD: A MODEL FOR SYNERGIZING TPM AND QFD

A Thesis

Submitted by

PRAMOD.V.R Reg.No.2946

for the award of the degree of DOCTOR OF PHILOSOPHY

of

Cochin University of Science and Technology

Under the Guidance of

Dr. V. P. JAGATHY RAJ

SCHOOL OF ENGINEERING COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI – 682 022, KERALA JUNE 2007

This is to certify that the thesis entitled "MQFD: A Model for Synergizing TPM and QFD" is a report of original work carried out by Shri.Pramod.V.R, under my supervision and guidance in School of Engineering. No part of the work reported in this thesis has been presented for any other degree from any other institution.

Prof.(Dr.) V. P. Jagathy Raj Professor School Of Management Studies CUSAT, Kochi - 22

Kochi - 22 14-06-2007

DECLARATION

I here by declare that the work presented in this thesis is based on the original work done by me under the super vision of Prof.(Dr.) V. P. Jagathy Raj, Professor, School Of Management Studies, Cochin University of Science and Technology, Kochi in School of Engineering . No part of this thesis has been presented for any other degree from any other institution.

Pramod .V.R

Kochi - 22 14-06-2007

Acknowledgments

The research that has gone into this thesis has been thoroughly enjoyable. That enjoyment is largely a result of the interaction that I have had with my supervisor, and colleagues. I feel very privileged to have worked with my supervisor, Dr.V.P.Jagathy Raj. To him I owe a great debt of gratitude for his patience, inspiration and friendship. Dr.V.P.Jagathy Raj has taught me a great deal about the field of maintenance Engineering by sharing with me the joy of discovery and investigation that is the heart of research.

I would also like to thank Dr. S.R. Devadasan, Professor, Department of Production Engineering, P.S.G. College of Technology, Coimbatore, Tamilnadu State, India, who supervised my initial research and helped me through out the period of my research work. Through him I made the attempts to locate the area of Research.

The School of Engineering and School of management studies has provided an excellent environment for my research. I spent many enjoyable hours with department members and fellow students. Without this rich environment I doubt that many of my ideas would have come to fruition.

I am extremely grateful to Professor. G. Madhavan Nair, Lecturer, Department of English, Amrita Viswa Vidya peetham, Kollam, Kerala State, India, Dr. P.T. Rajan Nambiar, Former Principal, School of Engineering, Cochin University of science and technology, Kochi, Kerala State, India, Professor C.K., Ramaswamy, Lecturer, Chinmaya Mission College, Palakkad, Kerala state, India, and Professor K,P. Gopinatha Pillai, Retired Professor, Bishop Moore College, Mavelikara, Kerala state, India who spent their valuable time to correct the linguistic errors and grammatical mistakes, which resulted in the improvement of the standard of English language used in this thesis.

I am extremely thankful to the anonymous referees of the papers published based on this research, Professor A. Gunasekaran, editor of "International Journal of services and operations management, Professor Pervaiz K Ahmed, editor of "International Journal of Management Practice", Dr. David Gallear, U K editor, International Journal of Process Management and Benchmarking, and Professor Saleh O Douffuaa, Editor, Journal of quality in Maintenance Engineering and several anonymous referees whose comments and remarks enabled us to improve the presentation quality of the research to a significant extent. We are grateful to all the respondents of the surveys reported in this thesis.

Thanks are also due to my family who has been extremely understanding and supportive of my studies. I feel very lucky to have a family that shares my enthusiasm for academic pursuits.

Finally I'd like to thank my Father, Prof. G. Ramakrishna Panicker, and my mother Mrs. K.G.Santhakumari Amma for encouraging me so much over the years.

Pramod .V.R.

ABSTRACT

This thesis presents the methodology of linking Total Productive Maintenance (TPM) and Quality Function Deployment (QFD). The Synergic power of TPM and QFD led to the formation of a new maintenance model named Maintenance Quality Function Deployment (MQFD). This model was found so powerful that, it could overcome the drawbacks of TPM, by taking care of customer voices. Those voices of customers are used to develop the house of quality. The outputs of house of quality, which are in the form of technical languages, are submitted to the top management for making strategic decisions. The technical languages, which are concerned with enhancing maintenance quality, are strategically directed by the top management towards their adoption of eight TPM pillars. The TPM characteristics developed through the development of eight pillars are fed into the production system, where their implementation is focused towards increasing the values of the maintenance quality parameters, namely overall equipment efficiency (OEE), mean time between failures (MTBF), mean time to repair (MTTR), performance quality, availability and mean down time (MDT). The outputs from production system are required to be reflected in the form of business values namely improved maintenance quality, increased profit, upgraded core competence, and enhanced goodwill. A unique feature of the MQFD model is that it is not necessary to change or dismantle the existing process of developing house of quality and TPM projects, which may already be under practice in the company concerned. Thus, the MOFD model enables the tactical marriage between OFD and TPM.

First, the literature was reviewed. The results of this review indicated that no activities had so far been reported on integrating QFD in TPM and vice versa. During the second phase, a survey was conducted in six companies in which TPM had been implemented. The objective of this survey was to locate any traces of QFD implementation in TPM programme being implemented in these companies. This survey results indicated that no effort on integrating QFD in TPM had been made in these companies. After completing these two phases of activities, the MOFD model was designed. The details of this work are presented in this research work. Followed by this, the explorative studies on implementing this MQFD model in real time environments were conducted. In addition to that, an empirical study was carried out to examine the receptivity of MOFD model among the practitioners and multifarious organizational cultures. Finally, a sensitivity analysis was conducted to find the hierarchy of various factors influencing MQFD in a company. Throughout the research work, the theory and practice of MQFD were juxtaposed by presenting and publishing papers among scholarly communities and conducting case studies in real time scenario.

Keywords: TPM, QFD, MQFD, Receptivity

CONTENTS

	Ackno	wledgmen	ts	Page Number i	
	Abstra	.ct		ii	
	Conter	nts		iii	
	List of	Figures		xiii	
	List of	Tables		xviii	
	Nome	nclature		xxvi	
1.	Introd	luction		1	
	1.1.	Backgi	round	1	
	1.2.	Resear	ch Problem	2	
	1.3.	Resear	ch objectives	3	
	1.4.	Resear	ch methodology	3	
	1.5.	1.5. Chapter organization			
	1.6.	6. Conclusion			
2.	Litera	7			
	2.1.	Introduc	tion	7	
	2.2.	QFD: A	perspective from literature	7	
	2.3.	TPM: A	perspective from literature	9	
		2.3.1.	Autonomous Maintenance (A M)	10	
		2.3.2.	Individual Improvement (I I)	10	
		2.3.3.	Planned Maintenance (P M)	11	
		2.3.4.	Quality Maintenance (Q M)	11	
		2.3.5.	Office TPM (O TPM)	11	
		2.3.6.	Education and Training (E & T)	12	
		2.3.7.	Safety Health and Environment (S H E)	12	
		2.3.8.	Initial control/ Development Management	12	
			(I C/ DM)		
	2.4.	QFD in ²	TPM and vice versa: a literature perspective	13	
	2.5.	TPM and	d QFD In Engineering Education	16	
	2.6.	Conclus	ion	17	

3.	QFD a	and TPM:	a survey in	practicing environment	20	
	3.1.	Introduc	tion		20	
	3.2.	Survey N	Aethodology	/	20	
	3.3.	Analysis	of response	es from TPM perspective	20	
	3.4.	Analysis	of response	s from QFD perspective	24	
	3.5.	Conclusi	Conclusion			
4.	MQFI): A mode	l for synerg	gizing TPM and QFD	27	
	4.1.	Introduc	tion		27	
	4.2.	Use of Q	FD for TPM	1	27	
	4.3.	MQFD r	nodel		29	
	4.4.	Impleme	entation aspe	ects of MQFD	31	
		4.4.1.	Step 1		31	
			4.4.1.1.	Rationale	31	
		4.4.2.	Step 2		31	
			4.4.2.2.	Rationale	31	
		4.4.3.	Step 3		32	
			4.4.3.1.	Rationale	32	
		4.4.4.	Step 4		32	
			4.4.4.1.	Rationale	33	
		4.4.5.	Step 5		33	
			4.4.5.1.	Rationale	33	
		4.4.6.	Step 6		33	
			4.4.6.1.	Rationale	34	
		4.4.7.	Step 7		34	
			4.4.7.1.	Rationale	34	
		4.4.8.	Step 8		34	
			4.4.8.1	Rationale	35	
		4.4.9.	Step 9		36	
			4.4.9.1.	Rationale	36	
		4.4.10.	Step 10		36	
			4.4.10.1.	Rationale	36	
		4.4.11.	Step 11		36	

			4.4.11.1.	Rationale	38
		4.4.12.	Step 12		39
			4.4.12.1.	Rationale	39
		4.4.13.	Step 13		39
			4.4.13.1	Rationale	39
		4.4.14	Step 14		40
			4.4.14.1.	Rationale	40
		4.4.15.	Step 15		40
			4.4.15.1.	Rationale	40
		4.4.16.	Step 16		40
			4.4.16.1	Rationale	40
		4.4.17.	Step 17		41
			4.4.17.1	Rationale	41
	4.5.	Conclusi	ion		41
5.	Custor improv	ner Voice vement th	Adoption f rough MQI	or maintenance Quality FD and its receptivity analysis	42
	5.1.	Introduc	tion		42
	5.2.	Receptiv	ity of MQFI	D	42
		5.2.1.	First phase	e of survey	43
		5.2.2.	Second ph	ase of survey	4 4
		5.2.3.	Third phas	se of survey	47
		5.2.4.	Interpretat	ion from MQFD receptivity	48
			survey		
	5.3.		Conclusion	n	48
6.	Implei case st	mentation udy	of MQFD i	n a Vehicle Service Station: A	50
	6.1.	Introduc	tion		50
	6.2.	About th	e company		50
	6.3.	Impleme	entation stud	у	50
		6.3.1.	Computati	on of Availability	59
		6.3.2.	Computati	on of MDT	59
		6.3.3.	Computati	on of MTBF	60
		6.3.4.	Computati	ion of MTTR	60

		6.3.5.	Computation of OEE	60				
	6.4.	Conclusi	on	65				
7.	Implementation of MQFD in Tyre manufacturing: An							
	impler	nentation	study	66				
	7.1.	Introduc	tion	66				
	7.2.	About th	e tyre manufacturing unit	66				
	7.3.	Data Col	lection	67				
	7.4.	Construc	tion of HoQ	68				
		7.4.1.	Appropriate Component Selection	72				
		7.4.2.	Appropriate Component Loading	73				
		7.4.3.	Appropriate Drumstick Application	73				
		7.4.4.	Appropriate Drum Squeegee Application	73				
		7.4.5.	Appropriate Drum Squeegee Folding and	74				
			Stitching					
		7.4.6.	Appropriate Ply Down	74				
		7.4.7.	Appropriate Bead Placement on Roller	75				
		7.4.8.	Appropriate Bead Stitching	75				
		7.4.9.	Appropriate Turn up Stitching Back Stitcher	76				
		7.4.10.	Appropriate Turn up Stitching Bottom	77				
			Stitcher					
		7.4.11.	Appropriate Tread Application and Splicing	77				
		7.4.12.	Appropriate Tread stitching	78				
		7.4.13.	Appropriate Sidewall Application and	78				
			splicing					
		7.4.14.	Appropriate Final operation	79				
		7.4.15.	Appropriate Drum Collapsing	79				
	7.5.	Root Car	use Analysis	80				
	7.6.	Analysis	Of Maintenance Parameters	81				
		7.6.1.	Computation of Availability	82				
			7.6.1.1. Inference	-83				
		7.6.2.	Computation of M DT	84				
			7.6.2.1. Inference	85				

	7.6.3.	Computation of Material waiting loss	85
		7.6.3.1. Inference	86
	7.6.4.	Computation of MTBF	86
		7.6.4.1. Inference	88
	7.6.5.	Computation of MTTR	88
		7.6.5.1. Inference	89
	7.6.6.	Computation of OEE losses	90
		7.6.6.1. Inference	91
	7.6.7.	Computation of OEE	91
		7.6.7.1. Inference	92
	7.6.8.	Computation of Performance Efficiency	92
		7.6.8.1. Inference	94
	7.6.9.	Computation of Rate of quality	94
		7.6.9.1. Inference	95
7.7.	Interpre	etation of the results	96
7.8.	Conclus	sion	96
Imple	mentation	n of MQFD in the Mines of a Cement Plant	97
Imple 8.1.	ementation Introduc	n of MQFD in the Mines of a Cement Plant ction	97 97
Imple 8.1. 8.2.	mentation Introduc About t	n of MQFD in the Mines of a Cement Plant ction he Company	97 97 97
Imple 8.1. 8.2.	mentation Introduc About t 8.2.1.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials	97 97 97 98
Imple 8.1. 8.2.	mentation Introduc About th 8.2.1. 8.2.2.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification	97 97 97 98 98
Imple 8.1. 8.2.	Ementation Introduc About th 8.2.1. 8.2.2. 8.2.3.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy	97 97 97 98 98 98
Imple 8.1. 8.2.	mentation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department	97 97 98 98 99 99
Imple 8.1. 8.2.	mentation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department Operations carried out at the mines	97 97 98 98 99 99 99
Imple 8.1. 8.2. 8.3.	mentation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. Implem	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department Operations carried out at the mines	97 97 98 98 99 99 100 100
Imple 8.1. 8.2. 8.3.	Ementation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. Implem 8.3.1.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department Operations carried out at the mines entation study Identification of critical equipments	97 97 98 98 99 99 100 100 100
Imple 8.1. 8.2. 8.3.	mentation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. Implem 8.3.1. 8.3.2.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department Operations carried out at the mines entation study Identification of critical equipments Failure analysis of equipments	97 97 98 98 99 99 100 100 100 100
Imple 8.1. 8.2. 8.3.	mentation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. Implem 8.3.1. 8.3.2. 8.3.3.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department Operations carried out at the mines entation study Identification of critical equipments Failure analysis of equipments Failure index	97 97 98 98 99 99 100 100 100 102 102
Imple 8.1. 8.2. 8.3.	mentation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. Implem 8.3.1. 8.3.2. 8.3.3. 8.3.4.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department Operations carried out at the mines entation study Identification of critical equipments Failure analysis of equipments Failure index Interpretations	97 97 98 98 99 99 100 100 100 102 102 116
Imple 8.1. 8.2. 8.3.	mentation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. Implem 8.3.1. 8.3.2. 8.3.3. 8.3.4.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department Operations carried out at the mines entation study Identification of critical equipments Failure analysis of equipments Failure index Interpretations 8.3.4.1. Hydraulic problems	97 97 98 98 99 99 100 100 100 102 102 116 116
Imple 8.1. 8.2. 8.3.	mentation Introduc About th 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. Implem 8.3.1. 8.3.2. 8.3.3. 8.3.4.	n of MQFD in the Mines of a Cement Plant ction he Company Credentials ISO 9000 Certification Quality Policy Mines Department Operations carried out at the mines entation study Identification of critical equipments Failure analysis of equipments Failure index Interpretations 8.3.4.1. Hydraulic problems 8.3.4.2. Electrical problems	97 97 98 98 99 99 100 100 100 102 102 116 116 116

8.

		8.3.4.4.	Engine problems	117	
		8.3.4.5.	Power Take off Problems	117	
		8.3.4.6.	Under Carriage Problems	117	
		8.3.4.7.	Bucket Problems	118	
		8.3.4.8.	Probability of Seasonal	118	
			Problems		
8.4.	Construc	tion of Ho	Q	118	
8.5.	Calculati	ions of main	ntenance quality parameters	123	
	8.5. 1.	Computat	tion of OEE	124	
	8.5.2.	Computat	tion of Availability	124	
	8.5.3.	Computat	tion of MDT	125	
	8.5.4.	Computat	tion of MTBF	125	
	8.5. 5.	Computat	tion of MTTR	126	
8.6.	Primary	data		126	
8.7.	Calculati	ion of main	tenance parameters and analysis of	138	
	failures				
	8.7.1.	Maintena	nce Quality Analysis of EX 400	138	
	8.7.2.	Maintena	nce Quality Analysis of PC 2	142	
	8.7.3.	Maintena	nce Quality Analysis of PC 3	147	
	8.7.4.	Common suggestions for PC 2 and PC 3			
	8.7. 5.	Maintena	nce Quality Analysis of Dumpers	151	
		8.7.5.1.	Maintenance Quality Analysis	151	
			ofH1		
		8.7.5.2.	Maintenance Quality Analysis	155	
			of H2		
		8.7.5.3.	Maintenance Quality Analysis	159	
			of H3		
		8.7.5.4.	Maintenance Quality Analysis	163	
			of H 4		
		8.7.5.5.	Maintenance Quality Analysis	167	
			of H5		
		8.7.5.6.	Maintenance Quality Analysis	171	

				of H6	
			8.7.5.7.	Maintenance Quality Analysis	175
				of H7	
			8.7.5.8.	Maintenance Quality Analysis	179
				of H8	
	8.8.	Implement	ntation of TI	PM pillars	183
	8.9.	Conclusi	on		188
9.	Implen	nentation	of MQFD in	n mattress manufacturing	190
	9.1.	Introduct	ion		190
	9.2.	About the	e Company		190
	9.3.	Types of	mattresses		190
	9.4.	Study ph	ases		191
		9.4 .1.	Phase1 – D	Data collection. (Getting customer	191
			language)		
		9.4 .2.	Phase 2 – 7	Fechnical data collection	192
		9.4 .3.	Phase 3- S	uggest guidelines to implement	192
			Technical	remedies through TPM	
		9.4 .4.	Phase 4- A	ction plans to implement	192
			Technical	remedies	
	9.5.		Survey		192
	9.6.		Interpretati	ion from the questionnaire	195
	9.7.		HoQ const	ruction	195
	9.8.		Strategic d	ecisions	199
	9.9.		Success of	the MQFD implementation	209
	9.10.		Conclusion	1	209
10.	Quality MQFD	y Improve	ement in En	gineering Education through	210
	10.1.	Introduct	ion		210
	10.2.	Quality o	of engineerin	g education	212
	10.3.	TPM and	l engineering	g education	213
		10.3.1.	Autonomo	us maintenance	213
		10.3.2.	Individual	improvement	214

	10.3.3.	Planned ma	aintenance	215
	10.3.4.	Quality ma	intenance	216
	10.3.5.	Education	and Training	216
	10.3.6.	Office TPN	Ν	216
	10.3.7.	Initial cont	rol/Development management	217
	10.3.8.	Safety, hea	lth and environment	217
10.4	I. QFD and	l Engineering	g Education	218
	10.4.1.	Section 1:0	Customer requirements (Voice of	218
		Customers)	
	10.4.2.	Section 2:7	Fechnical languages	219
	10.4.3.	Section 3:H	Relationship matrix	219
	10.4.4.	Section 4:	Prioritizing customer	219
		requiremer	nts	
	10.4.5.	Section 5:	Prioritizing Technical remedies	220
	10.4.6.	Section 6:	Correlation Matrix	220
10.5	5. Synergiz	ing TPM and	d QFD through MQFD	224
10.6	5. MQFD i	n Engineerin	g Education	225
10.7	7. Impleme	ntation Strat	egies	227
	10.7.1.	Step 1		229
		10.7.1.1	Rationale	229
	10.7.2.	Step 2		229
		10.7.2.1.	Rationale	229
	10.7.3	Step 3		230
		10.7.3.1.	Rationale	230
	10.7.4.	Step 4		231
		10.7.4.1.	Rationale	231
	10.7.5.	Step 5		232
		10.7.5.1.	Rationale	232
	10.7.6.	Step 6		232
		10.7.6.1.	Rationale	232
	10.7.7.	Step 7		233
		10.7.7.1	Rationale	233

	10.7.8.	Step 8		233
		10.7.8.1.	Rationale	233
	10.7.9.	Step 9		234
		10.7.9.1.	Rationale	234
	10.7.10.	Step 10		234
		10.7.10.1.	Rationale	234
	10.7.11.	Step 11		235
		10.7.11.1.	Rationale	235
	10.7.12.	Step 12		235
		10.7.12.1.	Rationale	235
	10.7.13.	Step 13		236
		10.7.13.1.	Rationale	236
	10.7.14.	Step 14		236
		10.7.14.1.	Rationale	236
	10.7.15.	Step 15		236
		10.7.15.1.	Rationale	237
	10.7.16.	Step 16		237
		10.7.16.1.	Rationale	237
10.8.	Reaction	S		237
10.9.	Major Re	eactions		244
10.10.	Conclusi	on		246
Strateg Deploy	gic recepti ment acro	vity of Main oss heteroge	ntenance Quality Function eneous organizational cultures	248
11.1.	Introdu	ction		248
11.2.	Structu	re of the que	stionnaire	248
11.3.	Survey			249
11.4.	Backgr	ound of the o	organizations and the cultures	252
	prevaili	ing in them		
11.5.	Custom	er voice add	option	257
11.6.	Impact	of MQFD		258
11.7.	MQFD	implementa	tion steps	261
11.8.	Strategi	ic receptivity	y scorecard of MQFD	270

11.

	11.9.	Conclusio	on	270
1	2. Multi (Functio	Criteria Dec on deploym	cision Making in Maintenance Quality ent through analytical hierarchy Process	273
	12.1.	Introduct	ion	273
	12.2.	Overview	on AHP	273
	12.3.	Sample a	pplication study	276
		12.3.1.	Survey	276
		12.3.2.	Computation of consistency ratio	286
	12.4.	Results a	nd discussions	305
	12.5.	Applicati	on	307
	12.6.	Conclusio	n	308
1	3. Conclu	sion		311
	13.1.	Introduct	ion	311
	13.2.	Receptivi	ty of the research work	312
	13.3.	Future sc	ope of research	312
	13.4.	Concludi	ng Remarks	313
	Referer	ices		314
	Annexu	ire		331
	Papers	published h	oased on this research work	367

LIST OF FIGURES

		Page Number
Figure 1.1.	Research methodology	4
Figure 1.2.	Chapter organization of the doctoral work	5
Figure 2.1.	Format of HoQ Matrix	8
Figure 2.2.	Eight-TPM Pillars	9
Figure 3.1.	Implementation of TPM pillars in Company 1	22
Figure 3.2.	Implementation of TPM pillars in Company 2	22
Figure 3.3.	Implementation of TPM pillars in Company 3	22
Figure 3.4.	Implementation of TPM pillars in Company 4	22
Figure 3.5.	Implementation of TPM pillars in Company 5	22
Figure 3.6.	Implementation of TPM pillars in Company 6	22
Figure 3.7.	Level of implementing TPM pillars in six companies	22
Figure 3.8.	Overall percentage level of implementing TPM pillars in	23
	six companies	
Figure 3.9.	Proportion of internal-external customers concept in six	26
	TPM implementing companies	
Figure 3.10	Proportion of QFD implementation in six companies	26
Figure 4.1.	Use of QFD for TPM	28
Figure 4.2.	MQFD Model	30
Figure 5.1.	Awareness of TPM among international participants	43
Figure 5.2.	Awareness of QFD among international participants	44
Figure 5.3.	MQFD receptivity among the participants of international	44
	conference	
Figure 5.4.	Awareness of TPM among Practising Managers	45
Figure 5.5.	Awareness of QFD among Practising Managers	45
Figure 5.6.	Awareness of TPM among MBA students	45
Figure 5.7.	Awareness of QFD among MBA students	46
Figure 5.8.	MQFD receptivity among practising managers	46
Figure 5.9.	MQFD receptivity among MBA students	46
Figure 5.10.	Awareness of TPM among ITQM conference Participants	47
Figure 5.11.	Awareness of QFD among ITQM conference Participants	47

Figure 5.12.	MQFD receptivity among ITQM participants	48
Figure 5.13.	Overall MQFD receptivity	48
Figure 6. 1.	House of Quality matrix	53
Figure 7.1.	Tyre building machine	68
Figure 7.2.	A sample quality sheet	69
Figure 7.3.	HoQ matrix	70
Figure 7.4.	Root cause analysis to minimize scrap	80
Figure. 7.5.	Graphical representation of the variations in availability	82
Figure 7.6	Graphical representation of the variations in MDT	85
Figure 7.7.	Graphical representation of the variations in MTBF	87
Figure 7.8.	Graphical representation of the variations in MTTR	89
Figure 7.9	Graphical representation of the variations in OEE Losses	90
Figure7.10.	Graphical representation of the variations in OEE	92
Figure 7.11.	Graphical representation of the variations in Performance	93
	efficiency	
Figure 7.12.	Graphical representation of the variations in Rate of quality	95
Figure 8.1.	Pie chart on the failure of excavator EX 400 during the year 2004	106
Figure 8.2.	Pie chart on the failure of excavator EX 400 during the year 2005	106
Figure 8.3.	Pie chart on the failure of excavator PC2 during the year 2004	107
Figure 8.4.	Pie chart on the failure of excavator PC2 during the year 2005	107
Figure 8.5.	Pie chart on the failure of excavator PC3 during the year 2004	108
Figure 8.6.	Pie chart on the failure of excavator PC3 during the year 2005	108
Figure 8.7.	Pie chart on the failure of Dumper H1 during the year 2004	109
Figure 8.8.	Pie chart on the failure of Dumper H2 during the year 2005	109
Figure 8.9.	Pie chart on the failure of Dumper H3 during the year 2004	110
Figure 8.10.	Pie chart on the failure of Dumper H3 during the year 2005	110
Figure 8.11.	Pie chart on the failure of Dumper H4 during the year 2004	111
Figure 8.12.	Pie chart on the failure of Dumper H4 during the year 2005	111
Figure 8.13.	Pie chart on the failure of Dumper H5 during the year 2004	112
Figure 8.14.	Pie chart on the failure of Dumper H5 during the year 2005	112
Figure 8.15.	Pie chart on the failure of Dumper H6 during the year 2004	113
Figure 8.16.	Pie chart on the failure of Dumper H6 during the year 2005	113
Figure 8.17.	Pie chart on the failure of Dumper H7 during the year 2004	114

Figure 8.18.	Pie chart on the failure of Dumper H7 during the year 2005	114
Figure 8.19.	Pie chart on the failure of Dumper H8 during the year 2004	115
Figure 8.20.	Pie chart on the failure of Dumper H8 during the year 2005	115
Figure 8.21	HoQ Matrix	119
Figure 8.22.	Variation of availability of EX 400 during 2004 and 2005	140
Figure 8.23.	Variation of MTBF of EX 400 during 2004 and 2005	140
Figure 8.24.	Variation of MTTR of EX 400 during 2004 and 2005	141
Figure 8.25.	Variation of MDT of EX 400 during 2004 and 2005	141
Figure 8.26.	Variation of OEE of EX 400 during 2004 and 2005	142
Figure 8.27.	Variation of availability of PC 2 during 2004 and 2005	144
Figure 8.28.	Variation of MTBF of PC 2 during 2004 and 2005	144
Figure 8.29.	Variation of MTTR of PC 2 during 2004 and 2005	145
Figure 8.30.	Variation of MDT of PC 2 during 2004 and 2005	145
Figure 8.31.	Variation of OEE of PC 2 during 2004 and 2005	146
Figure 8.32.	Variation of availability of PC 3 during 2004 and 2005	148
Figure 8.33.	Variation of MTBF of PC 3 during 2004 and 2005	148
Figure 8.34.	Variation of MTTR of PC 3 during 2004 and 2005	149
Figure 8.35.	Variation of MDT of PC 3 during 2004 and 2005	149
Figure 8.36.	Variation of OEE of PC 3 during 2004 and 2005	150
Figure 8.37.	Variation of availability of H1 during 2004 and 2005	153
Figure 8.38.	Variation of MTBF of H1 during 2004 and 2005	153
Figure 8.39.	Variation of MTTR of H1 during 2004 and 2005	154
Figure 8.40.	Variation of MDT of H1 during 2004 and 2005	154
Figure 8.41.	Variation of OEE of H1 during 2004 and 2005	155
Figure 8.42.	Variation of availability of H2 during 2004 and 2005	157
Figure 8.43.	Variation of availability of H2 during 2004 and 2005	157
Figure 8.44.	Variation of MTTR of H2 during 2004 and 2005	158
Figure 8.45.	Variation of MDT of H2 during 2004 and 2005	158
Figure 8.46.	Variation of OEE of H2 during 2004 and 2005	159
Figure 8.47.	Variation of availability of H3 during 2004 and 2005	161
Figure 8.48.	Variation of MTBF of H3 during 2004 and 2005	161
Figure 8.49.	Variation of MTTR of H3 during 2004 and 2005	162
Figure 8.50.	Variation of MDT of H3 during 2004 and 2005	162

Figure 8.51.	Variation of OEE of H3 during 2004 and 2005	163
Figure 8.52.	Variation of availability of H4 during 2004 and 2005	165
Figure 8.53.	Variation of MTBF of H4 during 2004 and 2005	165
Figure 8.54.	Variation of MTTR of H4 during 2004 and 2005	166
Figure 8.55.	Variation of MDT of H4 during 2004 and 2005	166
Figure 8.56.	Variation of OEE of H4 during 2004 and 2005	167
Figure 8.57.	Variation of availability of H5 during 2004 and 2005	169
Figure 8.58.	Variation of MTBF of H5 during 2004 and 2005	169
Figure 8.59.	Variation of MTTR of H5 during 2004 and 2005	170
Figure 8.60.	Variation of MDT of H5 during 2004 and 2005	170
Figure 8.61.	Variation of OEE of H5 during 2004 and 2005	171
Figure 8.62.	Variation of availability of H6 during 2004 and 2005	173
Figure 8.63.	Variation of MTBF of H6 during 2004 and 2005	173
Figure 8.64.	Variation of MTTR of H6 during 2004 and 2005	174
Figure 8.65.	Variation of MDT of H6 during 2004 and 2005	174
Figure 8.66.	Variation of OEE of H6 during 2004 and 2005	175
Figure 8.67.	Variation of availability of H7 during 2004 and 2005	177
Figure 8.68.	Variation of MTBF of H7 during 2004 and 2005	177
Figure 8.69.	Variation of MTTR of H7 during 2004 and 2005	178
Figure 8.70.	Variation of MDT of H7 during 2004 and 2005	178
Figure 8.71.	Variation of OEE of H7 during 2004 and 2005	179
Figure 8.72.	Variation of Availability of H8 during 2004 and 2005	181
Figure 8.73.	Variation of MTBF of H8 during 2004 and 2005	181
Figure 8.74.	Variation of MTTR of H8 during 2004 and 2005	182
Figure 8.75.	Variation of MDT of H8 during 2004 and 2005	182
Figure 8.76.	Variation of OEE of H8 during 2004 and 2005	183
Figure 9.1.	HoQ Matrix	194
Figure 10.1.	House of Quality Matrix	222
Figure 10.2.	MQFD for Engineering Education	228
Figure 10.3	Receptivity from experts	244
Figure 11.1.	Research methodology	251
Figure 11.2.	Average ratings of MQFD's impact on maintenance	259
	Quality Parameters	

Figure 11.3.	Ratings on achieving targets through MQFD	
Figure 11.4	Average response score against MQFD implementation	263
	steps	
Figure 12.1.	Seven phase activities of AHP	275
Figure 12.2.	Descritization hierarchy of MQFD	277
Figure 12.3.	Hierarchy of sensitivity of critical factors	306

LIST OF TABLES

		Page Number
Table 2.1.	Articles reporting the linking of TPM with other	15
	manufacturing strategies and principles	
Table 2.2.	Articles reporting the linking of QFD with other	16
	manufacturing strategies and principles	
Table 3.1.	Eight pillars of TPM	21
Table 3.2.	Over all percentage level of implementation of TPM	21
	pillars	
Table 3.3.	Level of using internal and external customers concept	23
Table 3.4.	QFD implementation status in companies	24
Table 3.5.	Benefits achieved by companies 2 and 4 after	24
	implementing QFD	
Table 4.1.	Action to be taken to construct eight TPM pillars	37
Table 5.1.	Questionnaire used for surveying the receptivity of	42
	MQFD model	
Table 6.1.	Details of the vehicles considered for study	51
Table 6.2.	Data on Customers' voice	52
Table 6.3.	Technical descriptors and their computed scores	55
Table 6.4	Technical languages which are not required to pass through the TPM pillars	56
Table 6.5.	Technical languages, which are required to pass through TPM pillars.	57
Table 6.6.	Vehicle maintenance data	61
Table 6.7.	Tangible parameters to measure the success of MQFD	64
Table 7.1.	Major Customer Complaints from July to December2005	67
Table 7.2.	Percentage normalized value of customer technical interactive score and correlated weight factors of technical language	71
Table 7.3.	TPM Pillars and actions recommended for implementing TPM pillars for appropriate component selection	72
Table 7.4.	TPM Pillars and actions recommended for implementing TPM pillars for appropriate Component Loading	73
Table 7.5.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Drumstick Application	73

Table 7.6.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Drum Squeegee Application	74
Table 7.7	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Drum Squeegee Folding and Stitching	74
Table 7.8.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Ply Down.	75
Table 7.9.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Bead Placement on BPR	75
Table 7.10.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Bead Stitching	76
Table 7.11.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Turn up Stitching Back Stitcher.	76
Table 7.12.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Turn up Stitching Bottom Stitcher	77
Table 7.13.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Tread Application and Splicing	77
Table 7.14.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Tread stitching.	78
Table 7.15.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Sidewall Application and splicing	78
Table 7.16.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Final operation,	79
Table 7.17.	TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Drum Collapsing.	79
Table 7.18.	Data Used for Calculation of Maintenance Quality Parameters.	81
Table 7.19.	Data Used for Calculating Availability	82
Table 7.20.	Data Used for Calculation of MDT	84
Table 7.21.	Data Used for Calculation of Material waiting loss	86
Table 7.22	Data Used for Calculation of MTBF	87
Table 7.23.	Data Used for Calculation of MTTR	89
Table 7.24.	Data Used for Calculation of OEE Losses	90
Table 7.25.	OEE from July to December 2005	91
Table 7.26.	Data Used for Calculation of Performance efficiency	93
Table 7.27.	Data Used for Calculation of Rate of quality	95
Table 8.1	List of heavy equipments considered for study	101
Table 8.2.	Specifications of Excavators	101
Table 8.3.	Specifications of Dumpers	102

Table 8.4.	Codes used for representing various failure modes	103
Table 8.5.	Data on Customers' voice	120
Table 8.6.	Technical descriptors and their computed scores	122
Table 8.7.	Equipment maintenance data of EX 400 during the years 2004 and 2005	127
Table 8.8.	Equipment maintenance data of PC2 during the years 2004 and 2005	128
Table 8.9.	Equipment maintenance data of PC3 during the years 2004 and 2005	129
Table 8.10.	Equipment maintenance data of H1 during the years 2004 and 2005	130
Table 8.11.	Equipment maintenance data of H2 during the years 2004 and 2005	131
Table 8.12.	Equipment maintenance data of H3 during the years 2004 and 2005	132
Table 8.13.	Equipment maintenance data of H4 during the years 2004 and 2005.	133
Table 8.14.	Equipment maintenance data of H5 during the years 2004 and 2005	134
Table 8.15.	Equipment maintenance data of H6 during the years 2004 and 2005	135
Table 8.16.	Equipment maintenance data of H7 during the years 2004 and 2005	136
Table 8.17.	Equipment maintenance data of H 8 during the years 2004 and 2005	137
Table 8.18.	Maintenance parameters of EX 400 during the years 2004 and 2005	139
Table 8.19.	Maintenance parameters of PC2 during the year 2004 and 2005	143
Table 8. 20	Maintenance parameters of PC3 during the years 2004 and 2005	147
Table 8.21.	Maintenance parameters of H1 during the years 2004 and 2005	152
Table 8.22.	Maintenance parameters of H2 during the years 2004 and 2005	156
Table 8.23.	Maintenance parameters of H3 during the years 2004 and 2005	160
Table 8.24.	Maintenance parameters of H4 during the years 2004 and 2005	164
Table 8.25.	Maintenance parameters of H5 during the years 2004 and 2005	168
Table 8.26.	Maintenance parameters of H6 during the years 2004 and 2005	172
Table 8.27.	Maintenance parameters of H7 during the years 2004 and 2005	176
Table 8.28.	Maintenance parameters of H8 during the years 2004 and 2005	180

Table 8.29.	Technical languages, which are not required to pass through the TPM pillars	184
Table 8.30.	Technical languages, which are required to pass through the TPM pillars	185
Table 9.1.	Terms associated with mattress manufacturing	193
Table 9.2.	Explanation of the technical languages	196
Table 9.3.	Technical descriptors and their computed scores	198
Table 9. 4.	Action plans of TPM pillars for the technical language 'use better quality bear block'	200
Table 9. 5.	Action plans of TPM pillars for the technical language 'Use better quality foams'	201
Table 9. 6.	Action plans of TPM pillars for the technical language 'Better dye of cloth'.	201
Table 9.7.	Action plans of TPM pillars for the technical language 'Better quality checking of cutting tool'	202
Table 9. 8.	Action plans of TPM pillars for the technical language 'Use better cloths'	202
Table 9. 9.	Action plans of TPM pillars for the technical language' Strict tolerance limit'	203
Table 9.10.	Action plans of TPM pillars for the technical language 'Better quality control'	203
Table 9.11.	Action plans of TPM pillars for the technical language' Optimize the ingredients'.	204
Table 9.12.	Action plans of TPM pillars for the technical language 'Incorporate folding Characteristics'	204
Table 9.13.	Action plans of TPM pillars for the technical language 'Better design of die for better pattern'.	204
Table 9.14.	Action plans of TPM pillars for the technical language 'Variation feasibility of pattern'	205
Table 9. 15.	Action plans of TPM pillars for the technical language 'Dedicated Team'	205
Table 9.16.	Action plans of TPM pillars for the technical language 'Customer relationship schemes'	205
Table 9. 17.	Action plans of TPM pillars for the technical language 'Incorporate feasible credit limit'	206
Table 9. 18.	Action plans of TPM pillars for the technical language 'Effective supply chain'	206
Table 9. 19.	Action plans of TPM pillars for the technical language 'Effective order management system'	206
Table 9. 20.	Action plans of TPM pillars for the technical language 'Sales promotion schemes'	206
Table 9. 21.	Action plans of TPM pillars for the technical language 'Better advertisement schemes'	207
Table 9. 22.	Action plans of TPM pillars for the technical language 'Discount schemes'	207
Table 9. 23.	Action plans of TPM pillars for the technical language 'Scheduling the production'.	207

Table 9. 24.	Action plans of TPM pillars for the technical language 'Optimization of stock'	208
Table 9. 25	Action plans of TPM pillars for the technical language 'Better packaging material (with regard to both thickness and folding feasibility)'	208
Table 9. 26	Action plans of TPM pillars for the technical language 'Cost reduction strategy'	208
Table 10.1.	Six Big Losses in engineering educational scenario	215
Table 10.2.	Symbols representing the relation ships and their values	219
Table. 10.3.	Computed scores of technical parameters of house of quality	223
Table 10.4	Technical requirements of Engineering education	224
Table 10.5	Profiles of Engineering Educationalists who responded to the survey.	238
Table 10.6.	Reactions of Engineering Educationalists	240
Table 11. 1.	Strategic steps for MQFD implementation	249
Table 11.2.	Respondents profile and their organization's turnover	250
Table 11.3.	Year of inception of respondents' organization.	252
Table 11.4.	Statistics on World-Class Management strategies applied in organization	252
Table 11.5.	Methods employed for collecting customer feedback	253
Table 11.6.	Current practices influencing MQFD adoption	254
Table 11.7	Impact of MQFD with reference to maintenance quality parameters	259
Table 11.8.	Strategic decisions favorable and unfavorable conditions of MQFD implementation	260
Table 11.9.	Respondents comments against Step 1	263
Table 11.10.	Respondents comments against Step 2	264
Table 11.11.	Respondents comments against Step 3	264
Table 11.12.	Respondents comments against Step 4	265
Table 11.13.	Respondents comments against Step 5	265
Table 11.14.	Respondents' comments against Step 6	266
Table 11.15.	Respondents' comments against Step 7	266
Table 11.16	Respondents' comments against Step 8	266
Table 11.17.	Respondents' comments against Step 9	267
Table 11.18.	Respondents' comments against Step 10	267
Table 11.19.	Respondents' comments against Step 11	267
Table 11.20.	Respondents' comments against Step 12	268

Table 11.21.	Respondents' comments against Step 13	268
Table 11.22.	Respondents' comments against Step 14	269
Table 11.23.	Respondents' comments against Step 15	269
Table 11.24.	Respondents' comments against Step 16	269
Table 11.25.	Matrices used for quantitative assessment	270
Table 11.26.	Strategic receptivity scorecard of MQFD	271
Table 12.1.	Multifarious applications of AHP	274
Table 12.2.	Saatys 1-9 scale for multy criteria decision making	278
Table 12.3.	Weightage of parameters in Saaty's scale.	279
Table 12.4.	Pairwise degree comparison matrix of critical factors of Critical factors of the component 'House of Quality'	281
Table 12.5.	Pairwise degree comparison matrix of critical factors of Critical factors of the component 'Decision making'	282
Table 12.6.	Pairwise degree comparison matrix of Critical factors of the component 'TPM'	282
Table 12.7.	Pairwise degree comparison matrix of Critical factors of the component 'maintenance parameters'	283
Table 12.8.	Pairwise degree comparison matrix of Critical factors of the component 'quality parameters'	283
Table 12.9.	Normalized values of critical factors of the component 'House of Quality'	284
Table 12.10.	Normalized values of critical factors of the component 'Decision making'	284
Table 12.11.	Normalized values of critical factors of the component 'TPM Pillars'	284
Table 12.12.	Normalized values of critical factors of the component 'maintenance parameters'	285
Table 12.13.	Normalized values of critical factors of the component 'quality parameters'	285
Table 12.14.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'customer'	288
Table 12.15.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'technology'	288
Table 12.16.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'competitors'	289
Table 12.17.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'personnel'	289
Table 12.18.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'autonomous maintenance'	290
Table 12.19.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'individual improvement'	290
Table 12.20.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'planned maintenance'.	291
Table 12.21.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'quality maintenance'	291

Table 12.22.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'Office TPM'	291
Table 12.23.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'Education and Training'	292
Table 12.24.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'Development Management'	292
Table 12.25.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'Safety, health and Environment'	293
Table 12.26.	Normalized values of Sub-factors of the critical factor 'customer'	293
Table 12.27.	Normalized values of Sub-factors of the critical factor 'technology'	294
Table 12.28.	Normalized values of Sub-factors of the critical factor 'competitors'	294
Table 12.29.	Normalized values of Sub-factors of the critical factor 'personnel'	294
Table 12.30.	Normalized values of Sub-factors of the critical factor ' autonomous maintenance'	295
Table 12.31.	Normalized values of Sub-factors of the critical factor 'individual improvement'	295
Table 12.32.	Normalized values of Sub-factors of the critical factor 'planned maintenance'	295
Table 12.33.	Normalized values of Sub-factors of the critical factor 'quality maintenance'	296
Table 12.34.	Normalized values of Sub-factors of the critical factor 'Education and Training'	296
Table 12.35.	Normalized values of Sub-factors of the critical factor 'Office TPM'	296
Table 12.36.	Normalized values of Sub-factors of the critical factor 'Development Management'	297
Table 12.37.	Normalized values of Sub-factors of the critical factor 'Safety health and environment'	297
Table 12.38.	Global sensitivity of Sub-factors of the critical factor 'Customer'	297
Table 12.39.	Global sensitivity of Sub-factors of the critical factor 'Technology'	297
Table 12.40.	Global sensitivity of Sub-factors of the critical factor	298
Table 12.41.	Global sensitivity of Sub-factors of the critical factor	298
Table 12.42.	Global sensitivity of Sub-factors of critical factor	298
Table 12.43.	Global sensitivity of Sub-factors of critical factor	298
Table 12.44.	Global sensitivity of Sub-factors of the critical factor	299
Table 12.45.	Global sensitivity of Sub-factors the critical factor	299
Table 12.46.	Global sensitivity of Sub-factors of the critical factor	299

	'Education and training'	
Table 12.47.	Global sensitivity of Sub-factors of the critical factor	299
	'Development management'	
Table 12.48.	Global sensitivity of Sub-factors of the critical factor	299
	'Office TPM'	
Table 12.49.	Global sensitivity of Sub-factors of the critical factor	300
	'Safety, Health and Environment'	
Table 12.50.	Saaty's Table for Random Index vs. Size of the Matrix	300
Table 12.51.	Global sensitivity and local sensitivities of critical factors	301
	and Sub-factors of MOFD	001
Table 12.52.	Global sensitivity and Sub-factors in the descending order	303
Table 12.53.	Local sensitivity and critical factors in the descending	304
	order	

NOMENCLATURE

AHP	Analytical Hierarchy Process
HoQ	House of Quality
IIM	Indian Institute of management
INR	Indian Rupees
MDT	Mean Down Time
MQFD	Maintenance Quality Function Deployment
MTBF	Mean Time Between Failure
MTTR	Mean Time To Repair
OEE	Overall Equipment Effectiveness
PMA	Palakkad management association
РРН	Planned production hours
QFD	Quality Function Deployment
TPD	Tones Per Day
TPM	Total Productive Maintenance
RPN	Risk Priority Number
CTI	Customer Technical Interactive
CWTI	Correlated Weightage of Technical Language
РРН	Planned Production Hours

Chapter · 1

.

INTRODUCTION

Content		
1.1.	BACKGROUND	
1.2.	RESEARCH PROBLEM	
1.3.	RESEARCH OBJECTIVES	
1.4.	RESEARCH METHODOLOGY	
1.5.	CHAPTER ORGANIZATION	
1.6.	CONCLUSION	

INTRODUCTION

1.1. Background

Immediately after the Second World War, the world began to witness the competitive era. In order to thrive in this competitive era, mankind is forced to evolve new and better methodologies, models and innovations. Time and again, many strategies have been adopted by the global community to face this situation. Maintenance is one of such strategies used in this competitive battleground (Murthy, et al, 2002, Tsang, 1998, and Tsang and Chan, 2000). One of the most popular maintenance models that are being currently discussed curiously among the researchers and practitioners over the past two decades is "Total Productive Maintenance (TPM)". Although TPM was propagated during 1970s, it became popular among the researchers and practitioners only after late 1980s. TPM emanated due to the realization that the maintenance activities should not only be technologically improved but also blended with managerial concepts (Blanchard 1997). Particularly the relevance of implementing total quality for enhancing the quality of maintenance activities facilitated the evolution of TPM concepts. Today TPM is being implemented in numerous countries and fields (Ahmed et.al, 2005, Chan et.al, 2005).

The fast rate of acceptance of TPM indicates the practitioners' thirst for improving maintenance quality. However a critical analysis of the theory indicates that TPM concepts are not yet exhaustive to effect continuous maintenance quality improvement. Presumably, due to this reason, articles introducing many new tools, techniques and approaches are intended for enhancing the efficacies of TPM keep emerging in literature world (Blanchard 1997, Bamber et. al. 1999).

In essence, TPM couples the principles of maintenance engineering and Total Quality management (TQM). While many TQM strategies have been adopted, the strategy of infusing quality in maintenance engineering in accordance to the customer reactions is yet to find its authentic place in the TPM field. Meanwhile, it is observed that in this contemporary industrial scenario, customer aspirations have become the central core of business (Paiste, 2003). While referring to various literatures on TPM, it was observed that there has been no tool or technique available in TPM to take care of customer views properly. However in TQM field, QFD has been predominantly used as an efficient tool in this direction (Chan and Wu, 2002). In this context, during the research work reported in this thesis, efforts were made to integrate the principles of QFD with that of TPM. This gave rise to the evolution of a model named "Maintenance Quality Function deployment" (MQFD). During this research work, this model was subjected to implementation studies in various industrial and educational scenarios. Further, the method of enhancing the efficacy of this model was also examined.

First, the literature was reviewed. The results of this review indicated that no activities had so far been reported on integrating OFD in TPM and vice versa. During the second phase, a survey conducted among six companies in which TPM had been implemented. The objective of this survey was to locate any traces of QFD implementation in TPM programme being implemented in these companies. This survey results indicated that no effort on integrating QFD in TPM had been made in these companies. After completing these two phases of activities, the MQFD model was designed. The details of this work are presented in this research work. Followed by this, explorative studies on implementing this MQFD model in real time environments were conducted. In addition to that an empirical study was carried out to examine the receptivity of MQFD model among the practitioners and multifarious organizational cultures. Finally, a sensitivity analysis was conducted to find the hierarchy of various factors influencing MQFD in a company. Through out the research work, the theory and practice of MQFD were juxtaposed by presenting and publishing papers among scholarly communities and conducting case studies in real time scenario.

1.2. Research Problem

Currently organizations have realized the importance by attaining maintenance quality continuously for attaining core competence in global market. Researchers and theoreticians have suggested the use of TPM concepts for this purpose. However, it has been observed that there is no tool and technique accommodated in TPM concepts to transfer the voice of customers into practical scenario. TPM is the conglomeration of TQM and maintenance engineering principles. When TPM concepts are studied and viewed from this perspective, it is found that TPM concepts are not exhaustive in suggesting the solutions for taking care of customer voices. However, no, maintenance model exists that can take care of customers voices. In this background, the problem of the research work has been defined as follows:

"TPM is ineffective in taking care of customer voices".

1.3. Research objectives

The objectives of the research are enumerated below.

- 1. To study the fundamental tenets of TPM and QFD.
- 2. To study the various models deploying TPM and QFD.
- 3. To design a theoretical model which would link the features of TPM and QFD
- 4. To conduct investigations on the theoretically designed model.
- 5. To explore the practical feasibility of the theoretically designed model by conducting case studies and receptivity analysis.
- 6. To study the behavior of the theoretically designed model in multifarious organizational cultures.
- 7. To carryout sensitivity analysis of various factors influencing the theoretically designed model.

1.4. Research methodology

The research was carried out to accomplish the objectives by following a systematic methodology. The steps followed are shown in Figure 1.1. First, the books dealing with TPM and QFD principles were studied. Then, literatures

dealing with fundamentals of TPM were studied. Also, the author attended a winter school titled "Total Productive Maintenance and Strategic Maintenance Quality Engineering", organized by Dr. S.R Devadasan and Dr. S.Muthu, sponsored by All India Council of Technical Education, India, held at PSG College of Technology, Coimbatore, India. Secondly, a theoretical model titled as " Maintenance Quality Function Deployment" (MQFD) was designed by integrating TPM and QFD principles. Thirdly, investigations were conducted with the objective of studying the practical feasibility of MQFD implementation.

Fourthly, an empirical study was conducted to explore the practical feasibility of applying MQFD model holistically in multifarious cultures and environments. Fifthly, the sensitivity analysis of MQFD using AHP was studied. Finally the prerequisites for successfully implementing MQFD in practical environments were explored.

Figure 1. 2. Chapter organization of the research work

1.5. Chapter organization

This research work is reported in this thesis in six parts. In the first part, the antecedent of initiating this research work has been apprised by presenting the literature survey reporting the study of previous works on TPM and QFD. After that, the principles behind designing MQFD model are described. These details are presented in the first four chapters. Second part deals with the receptivity study of MQFD, which was concluded on the podiums of academicians and practitioners. This study is discussed in the fifth chapter. Third part deals with the implementation studies. These studies are presented in chapters 6-10. Fourth part deals with the strategic receptivity of MQFD in multifarious organizational climates. This part of this research work is narrated in chapter 11. Fifth part deals with the sensitivity analysis of factors influencing MQFD implementation. The details of this study, which was carried out using the technique Analytical Hierarchy Process (AHP), are explained in chapter 12. Sixth part of the thesis deals with the concluding remarks of this research work, which are presented, in chapter 13.

1.6. Conclusion

This thesis reports a research work, which has resulted in the evolution of a model called MQFD. During this research work, unrealistic assumptions have been avoided. Hence, it is expected that both theoreticians and practitioners would find it convenient to read through the chapters of this doctoral thesis.
Chapter . 2

LITERATURE SURVEY

Content

- 2.1. INTRODUCTION
- 2.2. QFD: A PERSPECTIVE FROM LITERATURE
- 2.3. TPM: A PERSPECTIVE FROM LITERATURE
- 2.4. QFD IN TPM AND VICE VERSA: A LITERATURE PERSPECTIVE
- 2.5. TPM AND QFD IN ENGINEERING EDUCATION
- 2.6. CONCLUSION

LITERATURE SURVEY

2.1. Introduction

In this chapter, the literatures surveyed during this research work are narrated from three different views. First, the status reports of TPM and QFD have been appraised from the literature perspective. Second, the intrusion of TPM into QFD and vice versa is examined by citing relevant papers. Third, the impact of TPM and QFD in engineering education has been presented. These narrations reveal the gaps existing in research arena with respect to the integration of TPM and QFD.

2.2. QFD: A perspective from literature

The origin of QFD is traced to the quality tables that were developed in Kobo Shipyard, Japan in the year 1960.The formal appearance of QFD as the TQM technique was made possible through the works of Yoji Akao in the year 1972 (Akao and Mazur 2003).Thereafter the popularity of QFD spread across the world. Also a large number of case studies reporting QFD's successful implementation and its benefits appeared in literature (Chan and Wu 2002). A few researchers have brought out different definitions (Zairi and Youssef 1995) leading to the proposition that QFD is a technique used for converting customers' vague languages into technical languages. Therefore QFD facilitates deployment of customers' voices into practising environment. In this era of increasing competition, QFD is supposed to reveal the hidden and open voices of customers and support the organizational managers in meeting market requirements.

The implementation of QFD progresses through the development of a composite matrix known as House of Quality (HoQ). The conceptual features of HoQ are shown in Figure 2.1. As shown, HoQ consists of six main submatrices (Kumar and Midha 2002, Han et.al, 2001). The construction of HoQ begins by developing customer language matrix whose inputs are vague customer voices. Consequently, the second matrix titled 'ranking of customer

languages' is developed. The values indicating the ranks of the customer languages are determined by considering the competitors' performance and companys' affordability in fulfilling the customer languages. The third matrix consisting of the technical languages corresponding to the customer languages is developed. The fourth matrix is constructed by entering values to represent the degree of relationships between customers and technical languages. The fifth matrix consisting of values representing the ranking of technical languages is then formed. The sixth and last major sub-matrix of HoQ is the correlation matrix, which is constructed by entering the values to represent the correlation among the technical languages. All these matrices developed are joined to construct HoQ.

The construction of HoQ requires the involvement of personnel with adequate theoretical and practical knowledge about the customers' voices that are under consideration. Followed by the development of HoQ, the engineers and production managers are required to study the completed QFD's contents and develop target values and process plans. Thus the customer voices are translated into technical languages through the development of HoQ, which penetrates into the field of practice.

Figure 2.1. Format of HoQ Matrix

During the earlier days of its birth, QFD was used as a product development (Lokmay and Khurana, 1995) technique. However during the recent times, it is proved to be a feasible technique for several applications where customer voices are required to be translated into technical languages (Han and Wu, 2002; Sahney et.al.2003; Sahney et.al.2004).

2. 3. TPM: A perspective from literature

The origin of TPM is traced to 1970 and as in the case of QFD, its place of birth is Japan (Cooke 2002, Ireland and Dale 2001). Before the evolution of TPM, the field of maintenance engineering was adopting technology oriented approaches like condition monitoring, preventive maintenance and reliability centered maintenance. Presumably on realizing the absence of totality and human elements, the principles of TPM were promoted by Japanese Institute of Plant Maintenance (JIPM) (Bamper et.al 1999). Later it spread to different parts of the world including western countries.

Figure 2.2 Eight-TPM Pillars

Fundamentally TPM encompasses various elements of TQM and maintenance engineering. In fact there have been researches linking TPM with quality (Ben-Daya and Duffuaa, 1999). Because of the shadowing of TQM, TPM envisages the total involvement of employees towards enhancing maintenance quality with equipments (Cooke 2000, Ireland and Dale, 2001). Several definitions of TPM have been brought out (Bamber et.al, 1999). Several approaches of implementing TPM have also been brought out. A bird's eye view of literature would indicate that eight pillar approach of implementing TPM is the most exhaustive one (Yamashina, 2000; Cigolini and Turco,1997). The conceptual features of this approach are depicted in Figure 2.2. As shown, maintenance engineering and total quality control form the foundation of TPM programe. After laying this foundation, TPM programme is developed by constructing the following eight pillars (Ahmed et.al, 2005). The conceptual features of these pillars briefly describe in the following eight sections. Simultaneous review of articles by Ahmed.et.al .(2005), Cigolini and Turco .(1997), Ireland and Dale (2001), Bamber et.al (1999). and Patra et.al (2005) would reveal that the pillar numbers from five to eight have grown from the earlier days of TPM to the contemporary days.

2.3.1. Autonomous Maintenance (A M)

According to this pillar, the sense of ownership over the equipment operated by the workers shall have to be developed. In other words, the worker should consider the equipment that he/ she operates as his/ her own child and in case of its failure, the worker should react immediately to restore its status quo. This is a contradiction to the traditional maintenance engineering approach in which even minor maintenance problems are attended by the employees working in maintenance engineering department (Cooke, 2000).

2.3.2. Individual Improvement (I I)

According to this pillar, the worker has to improve himself/ herself to the extent of attending to maintenance failures. He/she must also learn to analyze the cause of maintenance failures using tools like why-why analysis and performance measurement analysis. This is a contradiction to the conventional maintenance engineering approach in which, a separate team consisting of maintenance engineering professionals carries out the analysis and finds out the causes of maintenance failures. The solution provided through this conventional

approach often would fail to penetrate into the field conditions because of its incompatibility.

2.3.3. Planned Maintenance (P M)

This pillar is a shadowed from of conventional preventive maintenance approach (Ireland and Dale 2001). In order to build this pillar, the maintenance schedule must be drawn in advance. Besides, provision should be made to allot sufficient resources to meet the planned schedule. Another aspect of this pillar is the control of maintenance costs and elimination of equipment losses. Six big losses identified in TPM field are (Chan et.al,2005),

- a. Breakdown losses
- b. Set-up and adjustment losses
- c. Minor/ Idling stoppage losses
- d. Reduced speed losses
- e. Defect/ Rework losses
- f. Start-up losses

2.3.4. Quality Maintenance (Q M)

In order to construct this pillar, the organization has to inculcate the culture of zero defect philosophy and use of all resources including equipments for attaining continuous quality improvement. In the absence of TPM, the equipment is never a focus for achieving quality of operations.

2.3.5. Office TPM (O TPM)

In order to construct this pillar, the smart methods and administrative activities shall have to be promoted to support TPM activities. Further cost reduction in maintenance of equipments shall have to be supported by office administration. This is a unique emphasis of TPM since no other model on continuous improvement has envisaged the supporting role of office administration in organisations.

2.3.6. Education and Training (E & T)

According to this pillar, the employees of different levels must be imparted education and training on TPM. Such programmes may deal with the TPM tools and techniques. Although training is imparted to employees even in conventional maintenance approach, its scope is restricted to a section of workers working in maintenance engineering department.

2.3.7. Safety Health and Environment (S H E)

This pillar encompasses the humane approach. According to this pillar, the TPM programme has to evolve a policy on environment, health and safety, which has to be strictly enforced with the commitment and support of the management. Further the awareness on environment, health and safety among the employees shall be effected through the adoption of top down approach, installation of relevant facilities and imparting education and training.

2.3.8. Initial control/ Development Management (I C/ D M)

In order to construct this pillar, the TPM programme shall allow the review of designs for preventing further mistakes, use of manufacturing process data and establishment of equipments start up times. These principles are not followed in conventional maintenance engineering approaches.

In a nutshell, the implementation of TPM is marked by the construction of the eight pillars and prevention of equipment losses. After constructing these pillars to different heights, the TPM programme is liable to contribute higher degree of maintenance quality. In order to assess the level of maintenance quality, the literature on TPM envisages the usage of the parameter known as Overall Equipment Effectiveness (OEE). The computation of OEE is carried out using the following mathematical formulae (Nakaajima, 1993).

OEE = Availability x Performance Efficiency x Rate of Quality of Products

Some authors claim that OEE is the only parameter that has got the capability to indicate the maintenance quality of equipments in organization

(Kwon and Lee, 2004). However, some authors have claimed that OEE alone cannot be considered as performance indicator of TPM programmes (Blanchard 1997). Hence it is recommended that the parameters namely Mean Time Between Failure (MTBF), Mean Time To Repair (MTTR), Performance Quality, Mean Down Time (MDT) and Availability, which require only simple computations, shall also be used for assessing maintenance quality level. According to the management policy, any one of the above performance measurement parameters or group of them shall be chosen to measure the maintenance quality level of the equipments.

Today literature is available to indicate the application of TPM to various extent in different countries (Eti et.al,2004, Tsang and Chan 2000, Ahmed et.al 2004, Cigolilini and Turco, 1997). To cap it all, TPM is considered to be one of the world class manufacturing strategies (Yamashina, 2000, Bamber et.al, 1999). These developments indicate the prowess of TPM which has played a phenomenal role in revolutionizing maintenance management and engineering approaches and thus have gained a heritage position in world class manufacturing principles. However like any other managerial and technological models, TPM also suffers from certain drawbacks. Particularly its scope is restricted to enhancing maintenance quality of equipments only. Its scope does not extent to enhancing maintenance quality of products and services offered by the organizations. Presumably, due to this limitation, TPM models have not been incorporated with customer voice adoption techniques like QFD.

2.4. QFD in TPM and vice versa: a literature perspective

After studying the characteristics of TPM and QFD, the author developed an impression that QFD adoption in TPM projects would be a synergizing contribution to TPM professionals. Hence the author aspired to locate any work that reports the adoption of QFD in TPM projects and vice versa. At this juncture, it was very encouraging to see an article by Chan and Wu (2002). They have reviewed as many as 650 publications, which is considered to be relatively an exhaustive literature on QFD. They have dealt with QFD right from its birth to its dissemination to various countries and fields. They have listed the popular application fields of QFD, which include product development, quality management and customer need analysis. They have also identified the industrial sectors in which QFD is applied. Some of them are transportation, communication, software systems and manufacturing. In addition to that, they have listed articles, which report the linking of QFD with simultaneous engineering, knowledge intensive engineering, quality engineering, rehabilitation engineering, requirement engineering, and so on. However this list does not include TPM. On the whole, the review of this paper clearly indicated the absence of any work linking QFD with TPM. In order to further confirm the absence of QFD application in TPM field, some more papers were reviewed in this direction. The details of reviewing these articles are briefly described in this section.

Terziovski, and Sohal, (2000) have collected responses from approximately 400 Managers. They have discussed the use of seven new quality tools, namely, Failure Mode and Effect Analysis, QFD, Creativity tools, Standardization tools and "5S" for achieving continuous improvement. They have cited that some companies use TPM as a tool for Kaizen. However they have not indicated any work involving the application of QFD in TPM and vice versa. Rho et.al (2001) concentrated on various studies designed to investigate the relationship between manufacturing strategies, practices, and performance. They have compared the results from three different nations namely Korea, U.S and Japan. They have included TPM and QFD in their studies but have not attempted to integrate them. Negri and Galli (1997) have worked on the quality improvement strategies in Italy and have cited that TPM influences process control on preventive basis and minimizes down time. They have identified QFD as one of the most effective and reliable approaches. However they have not mingled QFD and TPM with each other in their studies.

Voss and Blackmon (1998) studied the differences in manufacturing strategies between Japanese and Western manufacturing companies. Cultural differences caused difference in attitude towards the duration of implementation, which led to the adoption of long term and short term strategies. They have analyzed the data that have been drawn from 600 companies situated in 20 countries. They have mentioned that Japanese considered TPM as one of the long-term strategies. They have reported a higher level of adoption of QFD than TPM in Japan. They have also reported higher payoff of TPM than QFD, whereas this trend is reversed in western countries. However the difference in these quantified parameters is very less and hence, we inferred that TPM and QFD are dominating both Western and Japanese companies. However, this study reveals no integration between TPM and QFD principles.

After realizing the absence of any article regarding the integration of QFD and TPM, the author developed curiosity to check whether any attempts have been made to link any other manufacturing strategies with them. It was quiet surprising to see few articles, which have emerged in this direction. Those linking efforts exerted by TPM and QFD researchers and practitioners are presented in Tables 2.1 and 2.2. As seen, these articles indicate the feasibility of linking both TPM and QFD with other similar approaches with different combinations. Hence it was inferred that the synergizing of QFD and TPM principles would also be a feasible proposition.

Articles	Contribution
McKone et. al. (2001)	Have presented a framework for linking TPM with JIT and manufacturing performance.
Mc Kone et. al. (1999)	Have presented a framework for linking TPM with environment, organisational and managerial contexts.
Cua et. Al. (2001)	Have presented a framework for linking TPM with JIT

 Table 2.1. Articles reporting the linking of TPM with other manufacturing strategies and principles

Articles	Contribution	
Olhager and West (2002)	An improved version of HoQ called House of Flexibility has been presented. (QFD and Manufacturing Flexibility principles are linked.)	
Witter et.al. (1995)	A model called 'enhanced QFD has been presented. The Concept of reusability has been linked with QFD.	
Ginn et. al. (1998)	A model interfacing QFD and FMEA has been proposed.	

Table 2.2. Articles reporting the linking of QFD with other manufacturing strategies and principles

2.5. TPM and QFD In Engineering Education

The ever-rising global competitive waves keep invading all fields and geographical regions. This phenomenon has been pressing mankind to infuse higher degree of quality in all spheres of products, processes and services (Prendergast.et.al ,2001,Chong and Rundus, 2004). The knowledge required for attaining higher degree of quality originates from the brains of human resources. Hence a society will be enjoying higher degree of quality of life, if its human resources are effectively groomed and developed. The responsibility for contributing highly useful human resources for the welfare of the society of all regions is lying with educational institutions. Today globalization process progresses at a faster pace making the humans face common challenges irrespective of the societies and countries to which they belong (Irandoust And Sjoberg, 2001). In most of the societies these challenges are largely tackled by engineering professionals (Paten et.al, 2005). Hence, a large portion of social contribution originates from engineering educational institutions (Johnston, 2001). Needless to mention, the engineering educational institutions have to contribute high quality human resources who are not only technocrats but also society-friendly individuals (Perez-Foguet et.al, 2005). While the business world has been reporting the adoption of different continuous quality improvement models (Kaye and Anderson, 1999), the examination of their application feasibility for infusing higher degree of quality in engineering education will lead to useful contribution to all kinds of societies over the globe(Johnston,2001).

Total quality management (TQM) models have revolutionized the organizations of all types (Chong and Rundus. 2004. Hoque, 2003, Montes.et.al, 2003). Presumably due to this reason, during the recent years, some engineering educationalists and researchers have been striving to apply TQM and its techniques in engineering education (Sahney et.al, 2004). Some engineering educational institutions have started practising TQM (Jaraiedi and Ritz, 1994, Prendergast.et.al ,2001, Swift, J.A, 1996). These efforts are getting focused on attaining specific strategies. For example, the engineering educational institutions are becoming quality system conscious since many of them have implemented ISO 9001: 2000 quality system standard. Likewise Hwarng and Teo, (2001) and Lam and Zhao, (1998) have reported the pilot implementation of QFD in engineering education. These efforts have yielded in achieving higher degree of quality in administering engineering educational institutions, testing the students' capabilities to meet the requirements of their employer and building excellence in the learning of engineering advancements (Ferrer-Balas et.al, 2004). These favourable results indicate that, on application of well-proven quality engineering and management models, the quality level of engineering education would rise. In this context, during this research work, it was foreseen that the synergising effect of implementing TPM and QFD together would trigger significant stride in attaining higher degree of quality in engineering education. However, it appears that no researcher and practitioner has so far attempted to link these two techniques and apply them in the engineering educational scenario.

2.6. Conclusion

The world community began to realize the importance of quality when competitive war invaded the globe after the Second World War (Cooke, 2003). Various Total Quality Management (TQM) techniques and tools were almost immediately implemented in different organizational cultures as a sequel to the competitive war (Irani et al.,2004, Kaynak, 2003, Hoque,2003, Jung and Wang ,2004, Sahney et al,2004, and Montes et al., 2003). Amidst this visible and pompous trend, a humble revolution has been taking place in the field of maintenance engineering (Tsang and Chan,2000). This revolution is today addressed under the name TPM. Before the evolution of TPM, the maintenance engineering community was exposed largely to technologically oriented approaches (Deshpande and Modak,2002, Eti.et al., 2004, Murthy,et al,2002). These approaches segregated maintenance activities from the mainstream operations of the organizations. The emanation of TPM was a strategic change in the maintenance engineering arena because, unlike the previous approaches, TPM linked maintenance engineering with human elements like operator empowerment and involvement (Nakajima, 1993).

Today in parallel with the TQM implementation, a significant number of organizations have been adopting TPM (Mc Kone et al., 1999, Cua et al., 2001, Mc Kone et al., 2001) The objective of this effort is to achieve high degree of competitiveness through the enhancement of maintenance quality. The age of TPM is little more than three decades and its adoption has resulted in various benefits including the reduction in rejections, reworks and stoppages of equipments (Chan, et al., 2005). Of late, the researchers have been trying to establish the link between TPM and TQM (Miyake and Enkawa, 1999). This is presumably due to the reason that both principles dominate world-class organizational cultures and offer benefits in various forms and magnitudes (Mitchel et.al, 2002; Cua et al., 2001; McKone et al., 1999; McKone et al., 2000). These researchers' 2001: Yamashina, findings indicate the imperativeness of interlinking TQM strategies with TPM. However, the literature overview would indicate that both research and practice in the direction of interlinking specific TQM strategies with TPM have been dismally low. Particularly both TQM and TPM envisage the customer satisfaction (Jostes and Helms, 1994). In TQM field, customer satisfaction is given significant thrust whereas in TPM field, the thrust on customer satisfaction has been given only indirect and minimum thrust.

In TQM field, the customer satisfaction is achieved through customer voice adoption (Hwarng and Teo, 2001). In order to achieve this strategy, the technique, QFD technique is being dominantly employed in TQM field (Fung et al., 1999,Zairi and Yousef,1996, Kathawala, and Motwani, 1994, Bouchereau, and Rownalds, 2000, Masui, et al., 2003). However, no specific technique is envisaged in TPM field to achieve customer satisfaction. Considering the power of customer satisfaction in improving quality, it is imperative that both TPM and QFD have to be interlinked.

Besides achieving higher degree of quality levels, recent researchers have been appraising the need for sustaining engineering education (Ashford, 2004, Ferrer-Balas et.al, 2004). The sustainability of engineering education is ensured by maintaining the quality of engineering education. TPM provides a way for bringing out such kind of changed scenario in engineering education. Another requirement of engineering education is to react according to its customers. In practical application, the technique QFD is found to meet this requirement. Hence the application feasibility of QFD in engineering educational scenario has to be studied. However both TPM and QFD cannot be applied in their present forms in engineering education since they are compatible with applications only in manufacturing and service organizations. In order to accomplish this process, both QFD and TPM have to be remoulded in a systematic way, so that they are made suitable for application in engineering educational scenario.

Chapter . **3**

QFD AND TPM: A SURVEY IN PRACTICING ENVIRONMENT

Content

- 3.2. SURVEY METHODOLOGY
- 3.3. ANALYSIS OF RESPONSES FROM TPM PERSPECTIVE
- 3.4. ANALYSIS OF RESPONSES FROM QFD PERSPECTIVE
- 3.5. CONCLUSION

QFD AND TPM: A SURVEY IN PRACTICING ENVIRONMENT

3.1. Introduction

While the literature review hinted the absence of any work on the integration of QFD with TPM programs, the author developed interest to assess the status in the practical arena. In order to accomplish this task, the author conducted a survey systematically in six companies. The details of the work carried out in this direction are presented in this chapter.

3.2. Survey Methodology

First, the questionnaire shown in the Annexure A was designed. As shown, this questionnaire consisted of two components. The first component consisted of 10 questions and aimed to assess the level of TPM implementation in the responding company. The second component contained four questions and aimed at checking the status of QFD implementation in the responding company. With this questionnaire, the author visited five companies in the city of Coimbatore, India that were implementing TPM. The author was referred by those companies to the competent authorities from whom he could collect valuable responses through face-to-face meetings. The positions held by these competent authorities are ranging from 'Works Manager' to 'General Manager'. Besides, the questionnaire was sent through e-mail to 53 companies in India that were implementing TPM. However, one company only returned the filled-in questionnaire. This poor response might be due to the nonavailability of time and expertise for completing the questionnaire. The responses gathered this way were analyzed.

3.3. Analysis of responses from TPM perspective

Since some of the companies were reluctant to disclose their identity, the author has preferred to refer them in this chapter as Company 1, Company 2 and so on. The question A I aimed to check whether TPM has been implemented in the company. Since all the six companies have implemented TPM, the response was

affirmative. The questions AII to AIX aimed to estimate the level of implementing eight pillars of TPM. The rationales behind in designing these questions are described here. As appraised in Chapter 2, One of the methods of anchoring TPM programme is by building eight pillars (Ahmed, et al., 2005).

Hence the questions A II to IX were designed to estimate the level of implementing eight pillars of TPM. The responses gathered against these questions have been graphically depicted in Figures 3.1-3.6. The reader is advised to refer Table 3.1 for the titles of the TPM pillars against the numbers quoted in Figures 3.1-3.6. In order to facilitate the readers to have a better understanding, level of implementing TPM pillars in six companies together and the Overall percentage level of implementing TPM pillars in six companies are depicted in Figures 3.7 and 3.8 respectively.

Table 3.1. Eight pillars of TPM

Pillar 1	Autonomous Maintenance (Jishu- Hozen)
Pillar 2	Individual Improvement (Kobetsu Kaizen)
Pillar 3	Planned Maintenance
Pillar 4	Quality Maintenance
Pillar 5	Office TPM
Pillar 6	Education and Training
Pillar 7	Safety, Health and Environment
Pillar 8	Initial Control (Development Management)

Table 3.2. Over all percentage level of implementation of TPM pillars

Company	Overall percentage level of implementing TPM pillars
1	55
2	35
3	32
4	57
5	37
6	61

Figure 3.5. Implementation of TPM pillars in Company 5

Figure 3.2. Implementation of TPM pillars in Company 2

Figure 3.4. Implementation of TPM pillars in Company 4

Figure 3.6. Implementation of TPM pillars in Company 6

Figure 3.7. Level of implementing TPM pillars in six companies

Figure 3.8. Overall percentage level of implementing TPM pillars in six companies

Company	Level of using internal and external customers concept plotted in the Likert's scale of range 0-10
1	5
2	2.5
3	0
4	3.5
5	4
6	8

Table 3.3 Level of using internal and external customers concept

As indicated, none of the companies has been found to have fully constructed TPM pillars. In company 2 the fifth TPM pillar (titled as office TPM) has not been implemented at all. Table 3.2 shows the overall percentage level of constructing TPM pillars in the companies. As shown, the overall implementation level of TPM pillars in the companies range from 32 to 61%. These levels affirm that six companies under study could be considered as TPM implementing companies. Also, that, the trend of implementing TPM pillars coincided with that of the companies situated in other parts of the world (Ireland and Dale, 2001). Hence, albeit the size of the sample was small, the

inferences drawn from those companies would be representing the global scenario.

Company	QFD Implementation status plotted in the Likert's scale of range 0-10
Company 1	QFD not implemented
Company 2	4
Company 3	QFD not implemented
Company 4	7
Company 5	QFD not implemented
Company 6	QFD not implemented

Table 3.4. QFD implementation status in companies

Table 3.5. Benefits achieved by companies 2 and 4 after implementing QFD

Benefits Achieved after implementing QFD	Company 2	Company 4
Reduced design changes	Yes	Yes
Shorted Product Development cycles	Nil	Yes
Lowered costs and enhanced productivity	To some extent	Yes
Improved product quality and reliability	Nil	Yes
Increase market share	To some extent	Yes
Increased attention to customers perspectives	Nil	Nil
Any other, Please Specify	Nil	Reduce Redesign & Reworks
		(Cost of Quality)

3.4. Analysis of responses from QFD perspective

Since QFD deals with transferring customers' vague language into technical language, the proportion of utilizing internal and external customers concept while implementing TPM programs was examined using question A X. The responses gathered are tabulated in Table 3.3 and pictorially depicted in Figure 3.9. As shown, except in the case of company 6, the level of utilizing internal and external customer concept is either nil or very small. Question BI aimed at determining whether the company ever implemented QFD. The QFD implementation status in these companies using a Likert's scale of range 0-10 is shown in Table 3.4 and Figure 3.10. Except companies 2 and 4, other companies have never implemented QFD. Hence, the data pertaining to the subsequent questions were gathered only from companies 2 and 4. As shown, the responses to question B III indicated that the implementation of QFD was confined within top and middle level management personnel. The responses gathered against question BIV are tabulated in Table 3.5. As indicated, company 2 has reaped very little benefits while company 4 has gained benefits in all aspects by implementing QFD. The QFD implementation status shown in Table 3.5 corroborates the observations indicated in Table 3.4. Therefore, the benefits gained by implementing QFD would be proportional to the level of its implementation.

3.5. Conclusion

On the whole, the questionnaire survey findings in the six TPM implementing companies led the author to draw the following inferences:

- 1. Though it is reported in literature by some authors that TPM is one of the strategies of propelling companies towards world class manufacturing (McKone, et al., 2001, Yamashina, 2000), its level of implementation in practising scenario with reference to the eight pillars is not very appreciable.
- 2. There exists every possibility that a company may implement TPM without installing one or more of the TPM pillars (Ahmed,et.al, 2005, Ireland and Dale, 2001).
- 3. TPM implementing companies possess no or very little knowledge about QFD since TPM does not stipulate the incorporation of internal and external customer concept.

Figure 3.9. Proportion of internal-external customers concept in six TPM implementing companies

Figure 3.10. Proportion of QFD implementation in six companies

There was no sign of the six TPM implementing companies having applied QFD in their TPM projects. On the whole, the results of the literature review and practical survey did not reveal any appreciable difference. In other words, both literature and practical survey confirmed that no authentic model linking TPM and QFD has been adopted in both research and practice.

Chapter .4

MQFD: A MODEL FOR SYNERGIZING TPM AND QFD

Content

- 4.1. INTRODUCTION
- 4.2. USE OF QFD FOR TPM
- 4.3. MOFD MODEL
- 4.4. IMPLEMENTATION ASPECTS OF MOFD
- 4.5. CONCLUSION

MOFD: A MODEL FOR SYNERGIZING TPM AND OFD

4.1. Introduction

While ascertaining the absence of any model linking TPM and QFD in both literature and practising arena, two methodologies of linking these two principles were examined. One methodology proposes that QFD can be introduced into TPM principles. The other methodology proposes the reverse, in the sense that TPM can be introduced into QFD projects. In both of these methodologies, there is likelihood that these two principles do not get linked, appropriately to evolve synergic benefits. To overcome this possibility, this research work was started by designing the MQFD model exclusively for linking these two principles. The conceptual features of MQFD model are described in this chapter. Next, its implementation procedure is enumerated and described by adopting a hypothetical case study.

4.2. Use of QFD for TPM

Both QFD and TPM have widely been in existence during last three decades (Akao and Mazur, 2003, Nakajima, 1993, Chan et.al., 2005). Though their objectives are about the quality improvement aspects, their perceptions and orientations are focused on attaining different objectives. In order to nourish their synergic benefits, it became necessary to examine the use of QFD for TPM. This aspect is depicted in Figure 4.1. As hinted, the objectives of QFD are largely on meeting the external customers' requirements through the involvement of managerial employees, whereas the objectives of TPM are mainly concentrated upon the enhancement of operators' capabilities towards enhancing maintenance quality of equipment. These differing objectives will lead to the division between managerial staff and the operators. If QFD is properly integrated with TPM programme, then those differing objectives can be focused towards the unified direction of achieving continuous maintenance quality improvement. However this would be a challenging task. Because, QFD professionals have not so far applied it for improving equipment's maintenance quality. Likewise TPM professionals have not been orienting towards continuous maintenance quality improvement of products produced by the organizations.

Figure 4.1. Use of QFD for TPM

Hence the task of integrating QFD and TPM has to be carried out with precautions because of their inherent divergent objectives. This finding necessitated the development of MQFD model exclusively to integrate QFD and TPM principles.

4.3. MQFD model

The conceptual features of the MQFD model are shown in Figure 4.2. As shown, the performance of a company will be heard through the voice of customers. Those voices of customers are used to develop the HoQ (Chein and Su, 2003). This process has to be accomplished by MQFD team. The outputs of HoQ, which are in the form of technical languages (Rahim and Baksh, 2003), are submitted to the top management for making strategic decisions. This step is necessitated because researchers have established the need for applying strategic approach in both QFD (Lu and Kuei, 1995) and TPM (Murthy, et al, 2002, Hunt, and Xavier, 2003) projects for ensuring their success.

The technical languages which are concerned with enhancing maintenance quality are strategically directed by the top management towards eight TPM pillars. The TPM characteristics imbibed through the development of eight pillars are fed into the production system. Here, their implementation is focused towards increasing the values of the maintenance quality parameters, namely OEE, MTBF, MTTR, performance quality, availability and MDT.

The outputs from production system are required to be reflected in the form of business values namely improved maintenance quality, increased profit, upgraded core competence, (Miyake and Enkawa, 1999) and enhanced goodwill (Ahmed, et al, 2005). The rationale behind measuring these business oriented outputs is that, maintenance is established a business function and hence any maintenance model is required to show performance in the form of the above business metrics (Zhu, et al., 2002, Eti, et al, 2004). All the quantified values of outputs are used for developing another HoQ and comparing with set targets. At this point, the next cycle begins.

The MQFD model implementation would be a never-ending continuous improvement process. A unique feature of the MQFD model is that it is not necessary to change or dismantle the process of developing house of quality and TPM projects, which might be already in practice in the company concerned. Thus, the MQFD model enables the tactical marriage between QFD and TPM.

4.4. Implementation aspects of MQFD

In order to illustrate the implementation aspects of MQFD, a hypothetical case study is presented here. For this purpose a company manufacturing sanitary paper products is considered. The products of this company are facial tissues, pocket tissues, lady napkins and diapers. The steps that are to be carried out to apply MQFD model are presented below. These steps have been developed as an analogy to those followed in TPM and QFD implementation case studies like those reported by Eti. et.al (2004), Ireland and Dale (2001), Chin et.al, (2001) and Pun et.al (2000). The rationale behind developing each step is also appraised.

4.4.1 Step 1.

MQFD experts deliver seminar to the top management personnel who subsequently agree to implement MQFD in the company.

4.4.1.1 Rationale

The vitality of top management support and commitment for the successful implementation of both TPM and QFD models have been well established by the researchers (Emiliani, 2005, Kaye, and Andersen, 1999, Cooke, 2000, Kathawala and Motwani, 1994). The core requirement of the above seminar is to convince the top management about the potential value of implementing MQFD and to gain their commitment and ownership to it. Similar emphasis is made in Chan et.al (2005) while enumerating the twelve steps of a TPM implementation programme.

4.4.2. Step 2.

The MQFD experts and top management personnel undergo brainstorming sessions on MQFD implementation. At the end of these sessions, they decide to apply MQFD in the production process of diapers because its sales volume is the highest of all the other three products produced.

4.4.2. 2. Rationale

The rationale of this step is that top management personnel are cautious while embarking any new programme. At the same time, they will be attracted to the models, which will lead to sales and revenue increase. Same approach has been reported by Ghobadian and Terry (1995) while describing the implementation of QFD in a company by name Alitalia. Similar step is envisaged under the name 'focus group brainstorming' in Pun et.al (2000) and Chin et.al (2001).

4.4.3. Step 3.

MQFD team consisting of eight members is formed. The constitutional structure of this team is given below.

- I Works manager
- II Engineer "A"
- III Engineer "B"
- IV Foreman "A"
- V Foreman "B"
- VI Quality controller
- VII Factory Accountant
- VIII Marketing Manager

4.4.3.1 Rationale

The individual knowledge will be too narrow and self centered for adoption in real time environments. A team effort is required to make better decisions (van der Wall, and Lynn, 2002). When members from different departments join, practically compatible continuous improvement results will emerge (Chan, et al, 2005). The synergic combination of multi-disciplinary efforts will lead to very valuable decisions (Ollero, et al., 2002). Quite interestingly the formation of team is envisaged while implementing both TPM and QFD principles (Ireland and Dale, 2001, Rahim. and Baksh, 2003, Tsang and Chan, 2000). Hence the team shown above is formed while implementing MQFD which has to be done with care (Balthazard and Gargeya 1995).

4.4.4. Step 4.

Top management permits the MQFD team to meet once in a week in the training hall.

4.4.4.1. Rationale

After formation of MQFD team, the management shall support its effective functioning by providing the required resources. One among them is the management's willingness to allot a certain time during the working hours for convening MQFD meetings. In order to fulfill this requirement, while implementing MQFD, the management shall gesture by earmarking one or two hours in a week for MQFD members' meeting. Similar appraisal has been made by Bamber et.al (1999) who has cited time allocation as one of the factors effecting successful implementation of TPM.

4.4.5. Step 5

MQFD experts conduct a half-a-day seminar to both management and employees.

4.4.5.1. Rationale

When MQFD gains momentum, a section of management and employees may feel skeptic about its fruitful results. This feeling may emerge in the form of resistance to change. In order to mitigate these reverberations on MQFD, a seminar explaining its features and expected benefits to be reaped by the company is required to be conducted. Similar observations have been reported by Ireland and Dale (2001). Also, a step like the one said above has been suggested with regard to the implementation of TPM in a company in Tsang and Chan (2000).

4.4.6. Step 6.

MQFD team identifies the following four customer languages.

- Customer language 1:" Eva tape (used for tying diapers on babies) is getting peeled off."
- **Customer language 2:** "Other companies are making T shaped diapers. Diapers produced by our company are X shaped which are difficult to handle".

- **Customer language 3:** "Packing of diapers produced by competitor companies are tri-fold which are attractive after packing whereas diapers produced by our company are bi-fold".
- *Customer language 4:* "The diapers produced by the competitor companies last longer".

4.4.6.1. Rationale

Identifying customer language is a difficult exercise. The different sources and channels are to be tactically tapped and traced to gather customer languages. MQFD team has to adopt suitable methodologies to identify the above customer languages. For this purpose the MQFD team may refer to the methodologies reported in article like Chin.et.al (2001), Kumar and Midha (2001), Ghobadian and Terry .(1995) and Pun et.al (2000).

4.4.7. Step 7.

MQFD team ranks the customer languages according to their importance and decides to choose the 'customer language 1' for subsequent consideration.

4.4.7. 1. Rationale

Prioritisation has been an accepted practice in several fields. For example Juran and Gryna (1997), recommend the use of Parato analysis to identify vital few quality problems. Likewise, the field of inventory management uses ABC analysis to prioritise the materials as A, B and C categories (Zomerdijk, and Vries, 2003). Hence, MQFD implementation would be more result oriented if customer languages are ranked and considered according to their priorities. However, the choosing of appropriate metrics and scales for ranking customer languages would be a challenging task.

4.4.8. Step 8.

MQFD team conducts brainstorming sessions and develops HoQ. This stage progresses through the following steps (Besterfield, et al., 2004) by conducting the eight brainstorming sessions in succession.

- **Brainstorming session I:** Customer language is subjected to discussions. Finally the customer requirements (whats) are listed.
- **Brainstorming session II**: The technical features of fulfilling customers' requirements are subjected to discussions. Finally the technical descriptors with respect to the customer requirements are listed.
- **Brainstorming session III**: The relationships between customer requirements and technical descriptors are discussed. Finally the relationship matrix between customer requirements and technical descriptors is developed.
- **Brainstorming session IV**: The technical descriptors are subjected to discussion for establishing relationships among themselves. Finally, the interrelationship matrix between technical descriptors is developed.
- **Brainstorming session** V: The competitors' status with reference to customer requirements is discussed. Finally, the competitive assessments are quantified using numerical values.
- **Brainstorming session VI:** The customer requirements are subjected to discussions for establishing their priorities. Finally, the customer requirements are prioritized using numerical values.
- **Brainstorming session VII:** The technical descriptors are subjected to discussions for establishing their priorities. Finally, the technical descriptors are prioritized using numerical values.
- **Brainstorming session VIII:** All the outcomes of Brainstorming session I -VII are subjected to discussions from the holistic point of view. Finally these outcomes are entered into the HoQ matrix.

4.4.8.1. Rationale

The need of conducting brainstorming sessions in attaining maintenance strategies is established in research (Madu, 2000). This exercise results in systematic conversion of customer languages (requirements) into technical languages (descriptors). In addition to that, HoQ matrix shows a clear picture of the ranking, relationships among customer and technical languages. In addition to that, correlation among technical languages, if any is revealed. Hence the above step utilizing these features is a core aspect of MQFD programme.

4.4.9. Step 9.

The highest ranked technical language brought out of HoQ is as follows. "It is found that oil used at the cutter knife flows over the tape while cutting. It causes it to get peeled off. Use of oil is to be avoided by installing artificial chiller unit".

4.4.9. 1. Rationale

Vital few problems damage the systems to the maximum possible extent. Hence solving of vital few problems would overcome major malfunctioning of the systems (Logothetis, 1997). Therefore when technical language with highest priority is chosen, it would lead to solving of major deficiencies and trading off minor deficiencies (Besterfield, et al., 2004).

4.4.10. Step 10

MQFD team submits the results to the top management personnel.

4.4.10.1. Rationale

The continuous support and leadership of management are prerequisites for the successful laying of foundation of any programme in an organization. In order to sustain its development, the management's sustained involvement is vital. Hence it is essential that MQFD team reports to the top management about the progress of MQFD. Similar thrust is made by Bamber et.al (1999) for the successful implementation of TPM.

4.4.11. Step 11

The top management personnel along with MQFD experts conclude that the results reported by the MQFD team are to be fed into the TPM pillars. Table 4.1 shows the action taken in this regard. The technical languages drawn from HoQ will have to be positioned to enhance maintenance quality. This task is made possible by passing through the TPM eight pillars.

Autonomous	The operators running diaper machine are informed about
Maintenance	the suggestions of MQFD team and are trained to
(Jishu- Hozen -Pillar 1)	maintain the artificial chiller unit on their own. The operators develop confidence to maintain artificial chiller unit
Individual Improvement (Kobetsu Kaizen- Pillar 2)	MQFD team members analyse different losses that emanate due to maintenance failure of artificial chiller unit and ranked the losses using risk priority numbers (R.P.N). The factors considered are severity, occurrence, and detection
Planned Maintenance (Pillar 3)	MQFD team identifies the maintenance requirements and their frequencies. MQFD team conducts one-point lessons to the operators who are required to run artificial chiller unit. At the end, MQFD team presents the operators with a timetable on planned maintenance of artificial chiller unit and a small sized maintenance diary with dates and check-lists containing the planned maintenance operations to be carried out.
Quality Maintenance (Pillar 4)	MQFD team conducts one point lesson on entering data on defects. MQFD team sets up a system to monitor defects on the basis of any duration. For this purpose, MQFD trains the operators to enter the data while operating the artificial chiller unit in maintenance diary and presents it to the MQFD experts. MQFD team members decide to conduct Why-Why analysis, poke yoke and kaizen. MQFD members decide to orient towards zero defects.

Table 4.1. Action to be t	aken to construct	eight TPM pillars
---------------------------	-------------------	-------------------

Table Contd.....

Office TPM (Pillar 5)	MQFD team prepares a software for personnel working in office to compute incentives for the operators who are operating artificial chiller unit. The use of this software by the office personnel ensures that the incentive computation is straightforward and free from errors.
Education and Training (Pillar 6)	MQFD team designs and develops curriculum for providing education and training on artificial chiller unit. MQFD team prepares the list of operators and supervisors who are required to participate in these programmes and the benefits they are required to gain.
Safety, Health and Environment (Pillar 7)	MQFD members go to the work place to demonstrate to the operators who are working on the artificial chiller unit about the safety, health and environment measures that are required to be taken care of. MQFD members conduct moke drill exercise to check the preparedness of operators working on artificial chiller unit towards safety, health and environmental aspects.
Initial Control (Development Management-Pillar 8)	MQFD team develops the rules for rewarding the operators based upon the MTBF, OEE, MTTR, MDT, performance quality, and availability of artificial chiller unit. A reward system for calculating the tangible and intangible values of the incentives based upon the above parameters concerning the artificial chiller unit is developed. This motivates that the operators of the diaper machine to run artificial chiller unit without any resistance.

4.4.11.1. Rationale

As mentioned earlier, one of the approaches of enhancing maintenance quality is through the development of TPM pillars (Ahmed, et al, 2005, Ireland and Dale, 2001). Hence this step is necessitated. Action taken by each pillar is presented in Table 4.1.

4.4.12. Step 12

The construction of eight TPM pillars is completed. The results are directed towards the operation of the production system. In this regard, MQFD team computes the six TPM parameters namely OEE, MTBF, MTTR, performance quality, MDT and availability.

4.4.12.1. Rationale

Many authors have claimed that OEE is the most effective measure of maintenance quality (Chan, et al., 2005), However organizations would be in need of viewing maintenance quality from different perspectives (Ahmed, et al, 2005, Juran, and Gryna, 1997, Blanchard, 1997). This is made possible by measuring the other parameters cited above. For example, the company's perspective of maintenance quality is viewed by seeing the down time of equipments and products. This is made possible by referring to MDT.

4.4.13. Step 13

The overall results indicate 60% increase in organisational performance. MQFD members compare this result with the set target. They find that the target set is 70%.

4.4.13.1. Rationale

There is every chance that the maintenance quality of a company may be improved at the cost of its business performance. The ultimate objective of MQFD shall be the achievement of core competence. Hence, after implementing MQFD cycle, it is essential to ultimately measure its contributions towards its business success. Researchers have cited the importance of ensuring the integrity of TPM benefits with business performance (Ahmed, et al, 2005, Seth and Tripathi, 2005). Though MQFD cycle results in business performance improvement, its level has to be checked with the that of the target. This will enable the company to reap of ultimate benefits of implementing MQFD.
4.4.14. Step 14

MQFD members conduct brainstorming sessions among themselves and conclude that the performance quality is to be improved. Subsequently they evaluate the tactical suggestions and ideas emerged during these brainstorming sessions.

4.4.14.1. Rationale

Continuous improvement is a hallmark of TPM (Blanchard, 1997). But before embarking on the next cycle of MQFD, brainstorming sessions are to be conducted among its team members. These brainstorming sessions will lead to the revealing of the effective way of promoting the next cycle of MQFD.

4.4.15. Step 15

Tactical suggestions of MQFD team members are submitted to the top management for taking strategic decisions. The strategic decisions lead to the approval of implementing the tactical suggestions.

4.4.15.1. Rationale

The findings and results of MQFD will have to be used for company's sustained and continuous improvement. Hence, strategic decisions are required to be made for implementing the outcomes of MQFD. Since management holds the key, the task of making strategic decisions in this direction has been accomplished by the management (Madu, 2000).

4.4.16. Step 16

The tactical suggestions are implemented. The overall maintenance quality reaches the set target of 70%.

4.4.16.1. Rationale

Since the suggestions have to yield value and results (Ireland and Dale, 2001), they have to be tactic. As the title itself hints, tactic suggestions lead to the attainment of set targets.

4.4.17. Step 17

On observing the favorable impact of MQFD, management revises the target for attaining maintenance quality as 80%. In this background, the MQFD members prepare themselves to work along with quality engineers to proceed towards the conduct of next cycle of MQFD, which begins by the construction of new HoQ. Thus MQFD leads to overall maintenance quality improvement with a particular reference to the voice of customers.

4.4.17. 1. Rationale

It is necessary to revise the targets for facilitating the company to achieve global competitiveness (Chan, et al., 2005). Since, customers' views are changing from time to time, it is necessary to update the HoQ and carry out the subsequent steps. Now MQFD has to spread across the organization. Hence quality engineers and other competent personnel are also included in the MQFD implementation cycle. Thus MQFD is set to aid the company to achieve core competence through the threshold of enhancing maintenance quality.

4.5. Conclusion

In this chapter, the conceptual and implementation features of MQFD model have been presented. This model has been designed by the author by linking QFD's HoQ with TPM principles. In order to configure this model for fitting it in practical situations, the author has integrated maintenance quality with the business performance parameters namely profit, core competence and goodwill with the MQFD model. In order to direct the MQFD program along the streams of management's mission and policies, the provision for making the strategic decisions has been included. The author has presented a hypothetical case study, which illustrates MQFD's implementation steps. The MQFD model and its implementation aspects were the foundations of this research work. The subsequent activities carried out during this research work on these foundations are presented in the following chapters of this thesis.

Chapter . 5

CUSTOMER VOICE ADOPTION FOR MAINTENANCE QUALITY IMPROVEMENT THROUGH MQFD AND ITS RECEPTIVITY ANALYSIS

Content

- 5.1 INTRODUCTION
- 5.2 RECEPTIVITY OF MOFD
- 5.3 CONCLUSION

RECEPTIVITY ANALYSIS MOFD MODEL

5.1. Introduction

Before implementing a new methodology, it is essential to check its receptivity among the target groups. This exercise is also necessary to foresee its failure chances (Dale and Hayward, 1984). This is a critical imperative, because numerous models and approaches surface in today's research and practical arena as the solution to face competition. However some of them are sustained while the remaining are either perishing or getting obsolete (Schneider,2000). Even the success proven TQM model has failed to work in certain conditions (Nwabueze 2001 a,b). This phenomenon inspired the author to foresee the success possibility of MQFD. In order to meet this requirement, the receptivity of this model was checked among the practising managers, academicians, and students of management and engineering fraternities. The responses of this audience were collected using questionnaires. The inferences drawn were useful to understand how well the MQFD model would work in modern organizations. The details of this work are briefly presented in this chapter.

5.2. Receptivity of MQFD

Table 5.1.	Questionnai	re used fo	r surveying	the receptivit	y of MQFD model

	······································
1.Are you familiar with TPM ?	Yes/No
2. Are you familiar with QFD?	Yes/No
3. To which extent you are able to a	appreciate the essence and importance
of MQFD?	
0 1 2	3 4 5 6 7 8 9 10
0=No	t at all 10=Full
4.To which extent you believe th companies?	at MQFD could be implemented in
0 1 2	
0=No	t at all 10=Full
5.To which extent you appreciate the	hat MQFD will result in maintenance
quality improvement?	
0 1 2	3 4 5 6 7 8 9 10
0=No	t at all 10=Full
6.Any other remarks that you would	like to mention about MQFD

The questionnaire shown in Table 5.1 was used to explore the receptivity of MQFD during the three phases.

5.2.1. First phase of survey

The first phase of survey was conducted in the ninth International symposium on Logistics held at Indian Institute of Management (IIM), Bangalore, India. This international symposium was organized by the University of Notingham, UK and IIM, Bangalore during July 12 to 14, 2004. Both engineering and management professionals from different countries participated in this international symposium. Majority of them were academicians. After presenting a paper describing the salient features of MQFD in one of the sessions, the author distributed the questionnaire among the audience of this session. The filled-in questionnaires were gathered from 19 academicians.

The responses indicated that both TPM and QFD are disseminated well among academicians. This observation is depicted in Figures 5.1 and 5.2. The receptivity of MQFD was inferred from questions 3, 4, 5 and 6 under three titles namely 'Appreciation of the essence and importance of MQFD', 'Feasibility of Implementing MQFD' and 'MQFD's capability in existing maintenance quality improvement'. The average values computed from the responses are shown in Figure 5.3. As indicated the receptivity of MQFD among the participants of above international conference is just little above the value 5 in a Likert's scale of range 0-10. The reason for this average receptivity of receptivity is attributed to the lack of knowledge possessed by the respondents on QFD and TPM.

Figure 5.1. Awareness of TPM among international participants

Figure 5.2. Awareness of QFD among international participants

Figure 5.3. MQFD receptivity among the participants of international conference

5.2.2. Second phase of survey

The second phase of the survey was conducted at "Palghat Management Association" (PMA), Kerala state, India. As the title implies, the objective of this association is to serve as the podium for the management professionals residing in and around Palakkad district' Kerala state, India. The author presented the features of MQFD in a monthly meeting of PMA on August 10, 2005. After the meeting, the same questionnaire shown in Table 5.1 was distributed to two classes of audience. One class of audience consisted of practising managers and the other consisted of, MBA students. During this phase, the responses were gathered from 18 practising managers. The awareness level of TPM and QFD among both category of audience are shown in Figures 5.4, 5.5, 5.6 and 5.7.An overview of these Figures would indicate that awareness on TPM is widespread among both practicing managers and MBA students while it is not so in the case of QFD. The receptivity of MQFD among practising managers is fairly well. That is, the average value of MQFD receptivity under the three aspects is more than 6 in the Likert's scale of range 0-10. But it is not so in the case of MBA students in which case the values are only little above 5 in the Likert's scale of range 0-10. These observations are shown in Figures 5.8 and 5.9, which imply that the degree of practical experience influences the receptivity of MQFD.

Figure 5.4. Awareness of TPM among Practising Managers

Figure 5.5. Awareness of QFD among Practising Managers

Figure 5.6. Awareness of TPM among MBA students

Figure 5.7 Awareness of QFD among MBA students

Figure 5.8. MQFD receptivity among practising managers

Figure 5.9 MQFD receptivity among MBA students

5.2.3. Third phase of survey

The third phase of the survey was conducted in the national conference on Innovated TQM held at PSG College of Technology, Coimbatore, India (Hereafter referred to as ITQM conference). ITQM conference was held during February 25-26,2005. The author got an opportunity to present three papers dealing with MQFD in ITQM conference. The participants consisted of research scholars, graduate and postgraduate students, one engineering college teacher and one practitioner. After presenting the paper, the author distributed the questionnaire to the audience and collected their responses. During this phase, the responses were gathered from 12 conference participants. The responses indicated that the concepts of TPM are well known to the respondents while QFD principles are known to them only to an average extent. These findings are depicted in Figures 5.10 and 5.11. The MQFD receptivity among ITQM participants is depicted in Figure 5.12.As shown, the MQFD receptivity among them is either less or little above the average level.

Figure 5.10. Awareness of TPM among ITQM conference Participants

Figure 5.11. Awareness of QFD among ITQM conference Participants

Figure 5.12. MQFD receptivity among ITQM participants

5.2.4. Interpretation from MQFD receptivity survey

Despite the reasonable exposure to QFD and TPM, the MQFD receptivity among the respondents against the questionnaire shown in Table 5.1 is little above the average level. The overall MQFD receptivity is indicated in Figure 5.13.This finding indicates that preliminary exposure to MQFD is vital for its successful implementation. Hence it is necessary that before embarking on MQFD, a company has to conduct a number of exposure and orientation programmes on MQFD.

Figure 5.13. Overall MOFD receptivity

5.3. Conclusion

Because of the weak link between research and practice, the new models like MQFD cannot be transferred from research environment to the practicing

field within a quick span of time. In order to explore in this direction, the levels of MQFD receptivity among various professional communities were examined. This was accomplished by surveying in three different podiums and responses were collected from varied kinds of professionals. In most cases, the MQFD receptivity was just little more or less than the level 5 in the Likert's scale of range 0-10. This state reveals the conservative mindset of professionals who are not willing to mix techniques and approaches which would emanate for attaining different strategies. Hence the results of MQFD receptivity indicated that the implementation of MQFD was not going to be an easy task.

Chapter 6

IMPLEMENTATION OF MOFD IN A VEHICLE SERVICE STATION: A CASE STUDY

Content

- **6.1 INTRODUCTION**
- 6.2 ABOUT THE COMPANY
- 6.3 IMPLEMENTATION STUDY
- 6.4 CONCLUSION

IMPLEMENTATION OF MOFD IN A VEHICLE SERVICE STATION: A CASE STUDY

6.1. Introduction

In order to examine the working of MQFD in real time situation, its implementation study was conducted in an Indian state government run public sector automobile service station. The details of this work are presented in this chapter.

6.2. About the company

The case study on MQFD being reported in this chapter was carried out in a maintenance intensive automobile service station. This service station is located at Coimbatore city of India. This service station is run by the Tamil Nadu state Government of India. This service station is required to cater for the maintenance requirements of Tamil Nadu state Government's vehicles. This service station was chosen for the study because of the intense maintenance engineering activities being carried out in it.

6.3. Implementation study

To begin with, the customer reaction was obtained using a questionnaire as shown in Annexure B. Ten vehicles were considered for study. The details of the vehicles are depicted in Table 6.1. The drivers of the vehicles are the customers of this service station. By making use of the long experience of the automobile engineer, the list containing the maintenance quality aspects was prepared. The drivers were asked to mark their reactions against those aspects. In total, the reactions from 14 drivers were collected pertaining to 20 maintenance quality aspects. The data collected through this questionnaire based survey is tabulated in Table 6.2. As an example, the details of the data presented against serial number 1 in Table 6.2 are illustrated here. This question aimed to gather the reaction of each driver about the condition of the driver's seat of the vehicle. Out of the 14 drivers, three of them have mentioned 'excellent', while 5 and 6 of them have mentioned that it is 'good' and 'average' respectively. None of them have felt that the driver's seat of the vehicle

that they drive is in bad condition. The selection of maintenance quality aspect was prioritised on the basis of drivers' reactions in the order ranging from 'Bad' to 'Excellent'. That is, the maintenance quality aspects in which 'Bad' reactions dominate are given the highest priority in choosing for subsequent study. It is gradually decreased from average to excellent reactions. The priorities were quantified by assigning weightages 1,2,3, and 4 for the reactions 'Excellent', 'Good', 'Average' and 'Bad' respectively. The priority scores thus computed have been entered in the last column of Table 6.2. As a sample, the computation of the priority score against the condition of the driver's seat is presented below.

NO:	REG. NO.	Make	Year Of Manufacture
1	TN 07 G- 223	Bajaj Trax	1995
2	TN 38 G- 111	Mahindra and Mahindra 540	1997
3	TN 38 G- 139	Mahindra and Mahindra 540	1998
4	TN 38 G- 182	Mahindra and Mahindra 540	1998
5	TDI 129	Mahindra and Mahindra 540	1984
6	TDI 130	Mahindra and Mahindra 540	1984
7	TAN 150	Mahindra and Mahindra 540	1988
8	TN 38 G- 107	Mahindra and Mahindra 540	1997
9	TN 38 G- 253	Mahindra and Mahindra 540	1998
10	TN 38 G- 110	Mahindra and Mahindra 540	1997

 Table 6.1. Details of the vehicles considered for study

"Number of 'Excellent' reactions \times 1+ Number of 'Good' reactions \times 2+ Number of 'Average' reactions \times 3+ Number of 'Bad' reactions \times 4"= (3 \times 1+5 \times 2+ 6 \times 3 +3 \times 0) = 31.

As shown in the last column of Table 6.2, the 'ride comfort' and 'condition of the head light' shall be the highest priorities for choosing subsequent study since their score is 37. This score is the highest among all. These details were input into HoQ (Besterfield et.al 2004). The HoQ thus developed is shown in Figure 6.1. After this, the technical languages numbering 32 was prepared by the Automobile engineer. The driver's reactions (which are

referred to as customer voices in QFD terminology) and the technical languages were entered in rows and columns of the correlation matrix. The correlation between the customers' voice and technical languages were entered using the following three symbols, which are shown below.

	Customers' voice	Num				
SLNo.		Excellent priority	Good priority	Average priority	Bad priority	Scores
1	Condition of driver's seat	3	5	6	-	31
2	Condition of rear-view mirror	1	11	1	1	30
3	Condition of headlights	1	6	4	3	37
4	Engine condition	4	6	3	1	31
5	Condition of gearbox	2	7	4	1	32
6	Condition of transmission	1	8	4	1	34
7	Condition of suspension/springs	1	6	6	1	36
8	Condition of tyres	2	7	3	2	33
9	Condition of steering	1	6	5	2	36
10	Condition of brakes	-	11	3	-	34
11	Condition of clutches	-	12	2	-	33
12	Ride comfort	(a.)	6	7	1	37
13	Handling characteristics	1	11	1	1	30
14	Oil leaks, if any	-	10	4	-	32
15	Fuel efficiency	-	9	4	1	34
16	Periodic maintenance	1	11	2	-	29
17	Response from maintenance department against problems	1	8	5	-	32
18	Control of repeated			19		
	breakdowns	1	9	4	-	31
19	Consideration of drivers' suggestions by maintenance personnel	-	9	4	1	34
20	Skill of maintenance workers	1	9	3	1	32

Table 0.2. Data on Customers void	Table	6.2.	Data	on	Customers'	voice
-----------------------------------	-------	------	------	----	------------	-------

Strong Relation ship =

Medium relation ship = Δ

Weak Relation ship = •

In case of no relationship, the corresponding cell is left blank. These data were entered into the HoQ matrix shown in Figure 6.1. Followed by that the correlation matrix was developed using the same symbols used for constructing relationship matrix to bring out the correlation among technical languages.

CTL-Correlated weightage of the technical hangeage

Figure 6.1 House of Quality matrix

CTP-Customer technical interactive score

In order to quantify the relationships and correlate using numerical values, the pattern followed by Lu and Kuei (1999) for quantifying the relationships was used. Accordingly, the values 9, 3 and 1 were assigned to strong relationship/ correlation, medium relationship/ correlation, and weak relationship/ correlation respectively. No values were assigned against blank cells. These values were used to compute Customer-technical interactive scores and weighted correlated values. As a sample, the method of calculating Customer-technical interactive score is illustrated here by considering the technical language "Good Quality Fuel". The relationship of customer voices (that is, drivers' reactions) namely 'poor engine condition' and 'poor fuel efficiency' against 'good quality fuel' is indicated by the symbol Δ , whose value is 3. The Customer technical interactive scores in this case was calculated as follows:

Formula:	Customer	=	n	Relationship values ×	Expected
	technical		$\mathbf{\nabla}$	between customer	value of
	interactive		2	voice and technical	customer
	score		i=1	languages	voice

Where n refers to the number of customer voices.

Example: Customer technical interactive score for 'good quality fuel' = $9 \times 13 + 9 \times 34 + 3 \times 31 = 678$

In order to visualize the relative weightages, the percentage normalized value of customers technical interactive scores were computed as follows.

Formula used: Percentage normalized value of customers technical interactive

Example: Percentage normalized score of customers technical interactive score against the technical voice "good quality fuel"

$$= (678/25551) \times 100 = 2.65$$

These computed scores are displayed in Table 6.3. The weighted correlated value is calculated by summing the values of correlations. As shown in Table 6.3, the weighted correlated value against the technical parameter "good quality fuel" is 9.

SI No.	Technical descriptors	Custo mer technic al interac tive score (1)	Percentage normalized value of customers technical interactive score (2)	Correlated weightage of the technical language (3)	Percentage normalized value of correlated weightage (4)	Sum of (2)+(4)
1	Good quality fuel	678	2.65	9	1.57	4.22
2	Good spare parts	1458	5.71	21	3.67	9 38
3	Check oil level	1243	4.86	27	4.72	9.58
4	Check gauges	468	1.83	27	4.72	6.55
5	Change brake lining pads	393	1.54	1	0.16	1.70
6	Check fan belts periodically	118	0.46	9	1.57	2.03
7	Proper tyre inflation pressure	933	3.65	28	4 89	8.54
8	Check for proper function of alternator/dynamo	10	0.04	18	3.15	3.19
9	Routine checkup of battery terminals	119	0.47	9	1.57	2.04
10	Grease periodically	867	3.39	18	3.15	6.54
11	Check eve vision frequently	108	0.42	0	0.00	0.42
12	No intoxication for drivers	673	2.63	1	0.18	2.81
13	Battery water level check	119	0.46	9	1.57	2.03
14	Check radiator coolant	375	1.47	9	1.57	3.04
15	Tighten nuts and bolts frequently	1452	5.68	9	1.57	7.25
16	Check for oil leak	1497	5.86	9	1.57	7.43
17	Clean daily	1242	4.86	10	1.75	6.61
18	Periodic checkup	2271	8.88	121	21.15	30.03
19	Retread/replace tyres as needed	442	1.73	18	3.15	4.88
20	New and improved suspensions	1413	5.53	0	0.00	5.53
21	Training maintenance	2208	8.64	10	1.75	10.39
22	Pedal boots (for clutch, brake, gas pedal)	297	1.16	22	3.85	5.01
23	Periodic maintenance	1969	7.71	87	15.20	22.91
24	Water service	262	1.03	9	1.57	2.60
25	Replace fused bulbs	333	1.30	0	0.00	1.30
26	Halogen bulbs	333	1.30	0	0.00	1.30
27	Ergonomic seats	612	2.39	3	0.52	2.91
28	Rear-view mirror in good	270	1.06	0	0.00	1.06
29	Better maintenance strategies	1772	6.94	81	14.16	21.10
30	Seat belts	142	0.56	3	0.52	1.08
31	Body tinkering and painting works	327	1.28	3	0.52	1.80
32	Drivers' rest/sleep	1147	4.48	1	0.18	4.66

Table 6.3. Technical desc	riptors and t	their compute	d scores
---------------------------	---------------	---------------	----------

technical languages	Actions to be taken
Periodical Check up	Conduct once in every six months
Good spare parts	Always buy spare parts from Original equipment manufacturers.
Good quality fuel	Fuel should be purchased from government owned depots only
Proper Tyre inflation pressure	Tyre inflation pressure has to be checked periodically for each vehicle. The frequency of checking has to be decided as per the recommendation of the manufacturers.
Check Gauges	Gauges are to be checked by both drivers and maintenance personnel immediately after the engine is started.
Check fan belts periodically	Fan belt should not be loose. This has to be checked when the alternator/dynamo is not functioning. Due to this, battery will not get charged. This will result in engine starting troubles.
Routine checkup of battery terminals	This has to done once in a week. This is to remove any scale formation.
Grease periodically	Greasing has to be done at specified points. This has to be done after every 1500 kilometers of ride. The purpose of greasing is to prevent wear and tear of machinery parts and severe vibrations.
Battery water level check.	This can help to enhance the life of the battery.
Check radiator coolant	This avoids the corrosion of aluminum parts and hence the life of the waterpump and cylinder head assembly can be improved. The frequency of checking is once in every week.
Retread/ replace tyres as	Tyres have to be replaced for every 55,000
needed	to 60,000 kilometers. Rethreading has to be done after 25,000 kilometers or when tyre is worn out which ever is early.
Replace fused bulbs	Replacement of fused bulbs and other electrical accessories has to be done when they fail.
Body tinkering and painting works	This has to be done according to the decision of the competent authority, which will be based up on the situation or body condition.
Pedal boots (for clutch, brake and gas pedal)	This has to be done as a routine maintenance practice.
Check for proper function of alternator/dynamo	Fan belt should not be loose. This has to be checked when the alternator/dynamo is not functioning. Due to this, battery will not get charged. This will result in engine starting troubles.
Halogen bulbs	It is used for visible lighting. Replacement has to be done as and when bulbs fail.

Table 6.4. Technical languages which are not required to pass through the TPM pillars

Technical languages	Actions to be taken
Training maintenance people	When a new vehicle is purchased, training should be imparted to drivers/ maintenance personnel. They should be deputed to attend those training sessions which will be conducted by the authorize dealers. This is achieved by the pillar 'Education and Training'.
Check for oil leak	This has to be checked daily before the vehicle is being put into use. This has to be bone through the pillar 'Education and Training'.
Tighten nuts and bolts frequently	Everyday before starting the vehicle, nuts and bolts are to be checked and if found any looseness they are to be tightened. This has to be done by the implementation of the pillar 'Autonomous Maintenance'.
Check oil level	This has to be implemented by the pillar 'Autonomous Maintenance'.
Change brake lining pads	Checking of brakes has to de done when there are complaints from the drivers. In addition to that, break lining pads are to be replaced once in every 20000 kilometers of running. It has to be done by implementation of the pillar 'Planned Maintenance'.
Check eye vision of the drivers frequently	Drivers have to ensure that their eye vision is good. They have to do the checkup every year. In addition to that drivers of age above 40 are needed to do complete health checkups every year. This has to be done by implementation of the pillar 'Safety, Health and Environment'
Ergonomic seats	The seat designs of drivers are to be changed as per the ergonomics requirements. In addition to that drivers should be instructed to use seat belts. This has to be implemented by the pillar, 'Safety, Health and Environment'
Drivers' rest/sleep	Drivers are advised to avoid night driving as far as possible, especially during peak sleeping hours. This has to be implemented by the pillar, 'Safety, Health and Environment'
Rear-view mirror in good position	This has to be adjusted by the drivers before starting the engine. This has to be implemented by the pillar, 'Autonomous Maintenance'.
No intoxication for drivers	Drivers are instructed to avoid alcohol. This has to be implemented by the pillar 'Education and Training'
Clean daily	Vehicles have to be maintained always clean. For that daily cleaning is essential .Cleaning has to be done by drivers. Extreme care has to be taken in the conditions of wind screen and glasses.

 Table 6.5
 Technical languages, which are required to pass through TPM pillars.

Table Contd

Periodic maintenance	This has to be executed in the interval of every three months. This is very important in the case of vehicles which are used in hilly terrains. This has to be implemented by the pillar, 'Planned Maintenance'.		
Seat belts	Drivers are instructed to use seat belts. This has to be implemented by the pillar, 'Education and Training'.		
Better maintenance strategies	Maintenance personnel should be imparted training once in every six months. They should be trained about fuel economy, economic speed, conducting of special classes by Indian oil corporation adds a lot in this regard. Their theme includes economic usage of fuel and lubricants. People are deputed for the course in every six months. This has to be implemented by the nillar 'Education and Training'		
Water service	It has to be done in every 1600 Kilometers. This has to be implemented by the pillar, 'Planned Maintenance'.		
New & improved suspensions	This has used for good cushioned effect for both drivers as well as passengers. This has to be implemented by the pillar, 'Safety, Health and Environment.		

In order to visualize the relative weightages of technical correlation, the percentage normalized value of correlated weights were calculated using the following formula.

Percentage normalized value of correlated weightage =

Correlated weightage of the technical language Sum of Correlated weightages

Example: Percentage normalized value of correlated weightage against the technical parameter 'good quality fuel'= $9/572 \times 100 = 1.57$

Both percentage normalized score of customers technical interactive score and percentage normalized value of correlated weightage have been added and entered in the side of correlation matrix of HoQ and are termed as total normalized values.

The Automobile engineer was interviewed to spell out the technical descriptors. These are given code numbers P1, P2, P3,.....P32. Though his intension was to prioritise the implication of technical requirements based on

percentage normalized value of correlated weightage, he expressed the feasibility of implementing all the technical requirements. According to the MQFD model the Automobile engineer was asked to make strategic decisions to either direct the technical requirements towards the TPM eight pillars implementation or an immediate and direct implementation. Such decisions taken by him are portrayed in Tables 6.4 and 6.5. However these technical requirements could not be implemented in this service station because it is an Indian state government run public sector, which requires decision making by the top level committee by following long democratic procedures. Hence the Automobile engineer was asked to anticipate the result of implementing the MQFD by considering six of its maintenance quality parameters of MQFD model. In order to compare the present and future performance, the past data of ten vehicles serviced by the service station were collected. They are shown in Table 6.6. The sample calculations of maintenance quality parameters (Chan et.al, 2005,Juran and Gryna,1997) are presented in the subsequent subsections.

6.3.1. Computation of Availability

Availability is a measure of what percentage of the total time the vehicle is available for use. It is calculated using the following formula

Availability	=	(Scheduled running time - Down time) / (Scheduled
		running time)

For example, for vehicle 1 during the year 2003,

Availability = [365 days - (1 + 18 + 1) days] / 365 days= 94.98%

6.3.2. Computation of MDT

MDT is the average down time of the vehicle. That is, the average time a vehicle would be out of service during a specified year once it breaks down or is brought for service. It is the sum of down time and idle time.

MDT = Total down time / Number of breakdowns or service entries
=
$$\Sigma$$
 (Down times) / (Number of down times)

For vehicle 1 in 2003,

MDT = (1 + 18 + 1) days / 3= 6.6 days = 7 days

6.3.3. Computation of MTBF

MTBF is the average time a vehicle would run trouble-free before experiencing any sort of failure. In our situation, information was available only regarding the cases of failure where the vehicle was brought into the workshop for maintenance. Hence, this was assumed accordingly.

MTBF = Σ (TBF) / (N_f + 1)

where

TBF = Time between failures $N_{f} = Number of failures$

For vehicle 1 in 2003,

MTBF = (80 + 72 + 39 + 173) days / (3 + 1)= 92 days

6.3.4. Computation of MTTR

MTTR is the average time taken to repair a vehicle once it is brought into service.

It is given by the following formula

MTTR = Total repair time / Number of workshop visits

In this workshop, it was not possible to gather data required to find total repair time. Hence, it was decided to take the time to repair as the amount of time the vehicle is laid back inside the workshop. This made MTTR equal to MDT.

6.3.5. Computation of OEE

OEE is an effective way of analyzing any vehicle. It is a product of availability, performance rate and quality rate, which are measures of

equipment losses (Jonsson and Lesshammar,1999). Thus, overall effectiveness of the vehicle was considered the ultimate tool in the measuring the success of TPM implementation in the company. It is given by the following formula,

OEE = Availability × Performance rate × Quality rate

Here, Performance Rate was given an assumed constant value of 0.90 and Quality Rate was given a value of 0.95.

Using these values, OEE for vehicle 1 in the year 2003 was calculated as follows

OEE =
$$94.98 \times 0.90 \times 0.95$$

= 85.48%

Serial Number	Date of Arrival	Date of Release	Downtime
1	7003		(Days)
I	<u>2005</u> March 20 2003	March 20 2003	1
	June 02 2003	June 10 2003	18
	July 28 2003	July 28, 2003	10
	2004	July 20, 2005	1
	$\frac{2004}{1000}$	February 13 2004	24
	April 19 2004	May 04 2004	16
	July 22 2004	August 04 2004	13
	September 01 2004	September 08 2004	8
	November 29 2004	November 30 2004	ů I
	December 28 2004	December 28 2004	1
2	2003	<u>December 20,200 (</u>	···· ·
-	February 02 2003	February 18 2003	13
	November 11 2003	November 11 2003	1
	2004	10,000 11,2000	-
	February 13.2004	February 13.2004	1
	May 18.2004	Mav18.2004	1
	July 17 2004	July 17 2004	1
	August 27 2004	August 27 2004	1
	September 29 2004	November 17 2004	49
3	2003		
	January 21 2003	January 23, 2003	2
	February 04 2003	February 04, 2003	1
	April 11 2003	April 11, 2003	1
	August 11 2003	August 11, 2003	1
	December 29 2003	December 29, 2003	1
	2004		
	May 6,2004	May 6,2004	1
	July 14, 2004	July 14, 2004	1
	September 7,2004	September 14,2004	8

 Table 6.6.
 Vehicle maintenance data

Table Contd

4	2003		
	February 17, 2003	February 17, 2003	1
	April 09, 2003	April 09, 2003	1
	July 25, 2003	September 10,2003	46
	September 29, 2003	September 30, 2003	1
	2004	50p.0	-
	Eebruary 27, 2004	February 27, 2004	1
	May 17, 2004	Turne 15, 2004	1
	May 17, 2004	June13, 2004	20
	August 13, 2004	August 13, 2004	I
5	2003		
	March19 2003	March19, 2003	1
	April 22 2003	May14, 2003	24
	June 19, 2003	June 24, 2003	5
	November 27, 2003	December12, 2004	76
	2004		
	May 16, 2004	June 23, 2004	39
6	2003		
	June 02, 2003	June 10, 2003	9
	October 07 2003	October 07 2003	1
	2004	0000001 07, 2005	1
	2004 Marsh 25, 2004	Marsh 20, 2004	2
	March 25, 2004	March 29, 2004	3
	2003		
	March 04 2003	March 04 2003	I
	March 12 2003	March 12 2003	1
	May 26, 2003	June 11,2003	16
	October 08, 2003	October 08, 2003	1
	November 08 2003	November 08, 2003	1
	November 20, 2003	December 11, 2003	21
	2004		
	April 14, 2004	April 14, 2004	1
	September 10 2004	September 10, 2004	1
8	2003	September 10, 2001	
	March 07, 2003	March 07 2003	1
	March 17, 2003	March 26, 2003	0
	April 07, 2003	April 07, 2003	9 1
	April 07, 2003	April 07, 2003	1
	September 19, 2003	September 19, 2003	
	November 14, 2003	November 14, 2003	l
	December 15, 2003	February 03, 2004	48
	<u>2004</u>		
	April 12, 2004	April 12, 2004	1
	May, 31, 2004	May, 31, 2004	1
	August 13, 2004	August 13, 2004	1
	October 29, 2004	October 29, 2004	1
9	2003		
	November 14, 2003	November 14, 2003	1
	2004		-
	January 19 2004	January 19 2004	1
	February 20, 2004	February 20, 2004	1
1	March 02 2004	March 02 2004	
	Tumo 19 2004	1×10^{-10}	
ł	Julie 10, 2004	June 18, 2004	
	September 27, 2004	September 27, 2004	
	November 16, 2004	December 16, 2004	30
		}	
		•	

10	2003 February 11, 2003 March 21, 2003 May, 26, 2003 December 01, 2003	February 11, 2003 March 21, 2003 June 03, 2003 December 30, 2003	1 1 7 29
	2004 January 22, 2004 May 03, 2004 September 16, 2004 October 14, 2004	February 06, 2004 May 03, 2004 September 16, 2004 October 14, 2004	14 1 1 1

Like the above, the values of maintenance quality parameters concerning the remaining nine vehicles were also computed. The computed values of maintenance quality parameters were shown to the automobile engineer of the service station. Then he was asked to imagine that MQFD was implemented and forecast the values for the year 2005. Those values (both computed and forecast) are shown in Table 6.7. As indicated, he anticipates improvement in maintenance quality of vehicles 1-5. He expects the retainment of maintenance quality values for vehicles 6-10. The reason he cites is that these vehicles are new and retaining the previous year's maintenance quality itself is a major achievement. Finally he was asked to declare the anticipated outputs of MQFD implementation. According to his forecast, there will be 5% improvement in maintenance quality and 20% increase in profit (due to less expenditure on maintenance activities). He is also confident that core competence will get upgraded from the current level of 2 in the Likert's scale of range 0-10 to the level of 7. Further he expects that the goodwill of the service station will enhance from the current level of 4 in the Likert's scale of range 0-10 to the level of 8. According to him, the core competence will be revealed through enhanced skill level of both maintenance staff and drivers, increased awareness over new maintenance methods and reduced number of breakdowns. The goodwill will be revealed through increased owner satisfaction, reduced delivery time of vehicles, drivers' satisfaction and saving in fuel cost. These benefits closely coincide with the theoretical drawn predictions shown in Figure 4.2.

	Year	Availability In percentage	MDT (Days)	MTBF (Days)	OEE In percentage	Remarks
1	2003	94.98	6	92	85.48	
	2004	82.97	10	50	74.67	Slightly old
	2005(Anticipated)	96	5	110	90	
2	2003	96.16	7	97	86.54	
	2004	86.39	10	59	77.75	Slightly old
	2005(Anticipated)	98	5	120	92	
3	2003	99.27	1	72	89.34	
	2004	97.72	3	89	87.95	Slightly old
	2005 (Anticipated)	99.27	1	72	89.34	
4	2003	87.26	12	74	78.53	
	2004	92.24	10	93	83.02	Slightly old
	2005(Anticipated)	95	5	95	88	
5	2003	82.42	16	75	74.18	
	2004	77.81	41	142	70.03	Old
	2005(Anticipated)	82.42	16	75	74.18	
6	2003	97.49	5	147	87.74	
	2004	99.18	3	222	89.26	Old
	2005(Anticipated)	99.18	3	222	89.26	
7	2003	89.68	6	54	80.71	
	2004	99.91	1	121	89.92	New
	2005(Anticipated)	99.91	1	121	89.92	
8	2003	97.35	2	75	87.62	
	2004	99.82	1	82	89.84	Very New
	2005(Anticipated)	99.82	1	82	89.84	
9	2003	99.95	1	190	89.96	
	2004	91.55	5	53	82.40	
	2005(Anticipated)	91.55	5	53	82.40	New
10	2003	89.50	10	81	80.55	
-	2004	95.75	4	69	86.18	New
	2005(Anticipated)	95.75	4	69	86.18	INCW

Table 6.7. Tangible parameters to measure the success of MQFD

6.4. Conclusion

The implementation possibility of MQFD was checked in an Indian state government run Public sector service station. The successful development of MQFD documents and the reactions of the Automobile engineer were very encouraging to infer that MQFD would be a feasible model for successfully implementing it and nourishing the synergic benefits of QFD and TPM.

Chapter -7

IMPLEMENTATION OF MOFD IN TYRE MANUFACTURING: AN IMPLEMENTATION STUDY

Content

- 7.1. INTRODUCTION
- 7.2. ABOUT THE TYRE MANUFACTURING UNIT
- 7.3. DATA COLLECTION
- 7.4. CONSTRUCTION OF HOQ
- 7.5. ROOT CAUSE ANALYSIS
- 7.6. ANALYSIS OF MAINTENANCE PARAMETERS
- 7.7. INTERPRETATION OF THE RESULTS
- 7.8. CONCLUSION

IMPLEMENTATION OF MQFD IN TYRE MANUFACTURING: AN IMPLEMENTATION STUDY

7.1. Introduction

The mankind has been sensing the need of transportation. During the contemporary days, transportation has become a part of many activities of the organization. Hence the smooth running of transportation system improves the performance of the organization. Since majority of the transportation occurs through road, the world communities' dependence on tyres keeps increasing. The tyres are made up of rubber which provides cushioning effect to the wheels and thereby increases the speed and comfort of the transportation systems. This situation reveals that any contribution on increasing the quality of manufacturing tyres would benefit the entire human race. In this context, the study on MQFD implementation was conducted in a tyre building section in a unit of an Indian company. The details of this work are presented in this chapter.

7.2. About the Tyre manufacturing unit

The tyre-manufacturing unit in which MQFD implementation was conducted is located at the village called Perambra of Thrichur district of India. This tyre manufacturing unit was chosen for the study because TPM is being implemented in it. This company's tyres have created a niche for itself in the Indian tyre market. After three decades of consistent growth, today, it has become India's premier tyre manufacturing company. The commercial production of this company began in 1977 with an installed capacity of 420,000 tyres and tubes. On November 17, 2003 the company entered into a strategic alliance with Michelin, a French based company for setting up a joint venture company for producing dual branded truck and bus radial tyres in India. Michelin will also provide technical assistance for manufacturing of passenger radial tyres. The company is ISO 9001 certified in 1994. It has also got QS 9000: 1998 certifications for quality management systems.

7.3. Data Collection

To begin with, the customer complaints received during the months from July to December 2005 were analyzed. The tyre building section supplies green (uncured) tyres to the curing section. One of the machines used in tyre building section is shown Figure 7.1. Since the green tyres are subsequently cured by the employees of the curing section, they were considered as the internal customers of the tyre building section. Relevant data were gathered by referring to the data sheet called quality matrix which was maintained in the technical department. A sample portion of the quality sheet referred is shown in Figure 7.2. The complaints of internal customers in the curing department are regularly collected and maintained by the technical department. Those data were collected and were analyzed. The complaints with maximum frequency were considered for implementation study and expressed as a percentage of total number of tyres produced in each month. Those data are shown in Table 7.1.

Customer Complaints	Bead off Turn up wrinkle				Loos	e turn up	Air under tread			
Month	Number	Percentage	Number	Percentage	Number	Percentage	Number	Percentage		
July 2005	73	0.06	29	0.024	10	0.008	10	0.008		
August 2005	100	0.076	27	0.020	6	0.005	7	0.005		
September 2005	56	0.05	18	0.016	7	0.006	13	0.012		
October 2005	69	0.061	26	0.023	9	0.008	13	0.012		
November 2005	68	0.056	21	0.017	9	0.008	7	0.006		
December 2005	95	0.078	16	0.013	10	0.008	5	0.004		

Table 7.1. Major Customer Complaints from July to December2005

7.4. Construction of HoQ

Ranking of customer complaints was done based on the discussion with technical managers. Those complaints were entered as the customer voices in the HoQ matrix. Customer voices were converted into appropriate technical languages by discussing with the technical and quality managers. The relationships of customer voices with technical languages were established by discussing with technical and quality managers and were assigned weight factors for the purpose of quantifying them. The HoQ thus constructed during this implementation study is shown in Figure 7.3. The methodology explained in chapter 6 was adopted to construct this HoQ.The calculated CTI, CWTL and other related terms are given in Table 7.2.

Figure 7.1 Tyre building machine

Technical Requirements	Appropriate component selection	Appropriate component loading	Appropriate drum stick application	Appropriate drum squeegee application	Appropriate drum squeegee folding and stitching	Appropriate ply down	Appropriate bead placement on BPR	Appropriate bead stitching	Appropriate turn up stitching back stitcher	Appropriate turn up stitching bottom stitcher	Appropriate tread application and splicing	Appropriate tread stitching	Appropriate SW application and splicing	Appropriate final operation	Appropriate drum collapsing
Bead off		V	V	V	1	1	1	1	1						
Loose turn up	1		1	*	1	1	1	1	1	ar in					
Turn up wrinkle			1	1	1	1		1	1	V					
AUT	1	V								1	1	1	12		
Off cent. Tread		V													
TUP air			1	~	1				V	1					
Wrong trd splice	V										V				
F/O wrinkles						1	V	1						V	
SW wrinkles	1									V			V		
Cord cut															1

Figure 7.2. A sample quality sheet

Figure 7.3 HoQ Matrix

CWTL=Correlated weightage of the technical language

CTI=Customer technical interactive score

× ,												
Appropriate drum collapsing	51	Γ		Γ	Π	Π	Ι	Τ	Т] •	-
Appropriate final operation	11				Π		1		∎	t	17	1
Appropriate SW application and splicing	£				Ħ		1	↑	1		81	2
Appropriate tread stitching	71				◄	Π		T	T		117	
Appropriate tread application and splicing	1			Γ		Π	1	-	T	T	66	Ē
Appropriate turnup stitching bottom distribution of the state of the s	01									•	1 44	P10
Appropriate turnup stitching backsritcher	1		-	-			-				822	2
Appropriate beed stitching	r í s	-		•					•		134	8
Appropriate beed placement on BPR	Ľ		ł				_	•	•		921	6
Appropriate ply down	۲ <u>۱</u>							ł	•		552	8
Appropriate drum squeegee folding as the state of the sta	'	ł	ł	Ł			◀				96	ŝ
Appropriate drum squeegee application	Ľ			ł			•				96	ľ
Appropriate drumatick application							•				96	5
Appropriate component loading	[•						ie	2
Appropriate component selection			•		-		1			•	861	Ē
		Bead off	Loose turn up	Turn up wrinkle	AUT	Uff centered tread	I'UP air	Wrong trd splice	F/O wrinkles	SW WTINKIES Cord cut	E	

− ທ ຕ ຕ ພ ດ ດ ດ ດ ຊີ Kuanks of cusomer languages

Technical language	СТІ	Percentage normalized value of CTI (a)	CWTL	Percentage normalized value of CWTL (b)	Sum of (a) and (b)
Appropriate component selection	198	12.11	61	13.20	25.31
Appropriate component loading	91	5.56	60	12.99	18.55
Appropriate drum stick application	96	5.87	56	12.12	17.99
Appropriate drum squeegee application	96	5.87	42	9.09	14.96
Appropriate drum squeegee folding and stitching	96	5.87	36	7.79	13.66
Appropriate ply down	252	15.41	34	7.36	22.77
Appropriate bead placement on BPR	126	7.71	30	6.49	14.2
Appropriate bead stitching	134	8.19	31	6.71	14.9
Appropriate Turn up stitching back stitcher	228	13.94	18	3.90	17.84
Appropriate Turn up stitching bottom stitcher	144	8.80	4	0.86	9.66
Appropriate tread application and splicing	99	6.05	31	6.71	12.76
Appropriate tread stitching	21	1.28	16	3.46	4.74
Appropriate SW application and splicing	18	1.10	23	4.98	6.08
Appropriate final operation	27	1.65	5	1.08	2.73
Appropriate drum collapsing	9	0.55	15	3.25	3.8
Total	1635	100	462	100	200

 Table 7.2. Percentage normalized value of customer technical interactive score and correlated weight factors of technical language.

From the Table 7.2, it can be observed that appropriate component selection, component loading and ply down are the most critical technical requirements to ensure good quality green tyre. These are the technical requirements having very high sum of CTI and CWTL. By discussing with the assistant manager-production, who is also in charge of TPM implementation, it is found out that these technical requirements can be implemented using some of the TPM pillars. Hence actions have been recommended for implementation through each TPM pillar against each technical language. These recommendations are narrated in the following subsections.

7.4.1. Appropriate Components Selection

Appropriate components selection is vital for maintaining the components like tread, bead and sidewall in good condition. There should not be any damage to these components, as use of defective components will affect the quality of green tyre. Appropriate component selection can be implemented by applying certain TPM pillars which are indicated with recommended actions in Table 7.3.

TPM Pillars	Actions recommended
Autonomous maintenance	Operators should inspect all the components and make sure that they are in good condition. Actions have to be taken to prevent any damages to the components.
Education and training	All employees should be trained to use good components and taught the methods of handling them appropriately so that they are not damaged during handling.
Quality maintenance	All the actions needed to assure quality should be strictly followed. The components should have specified dimensions
Individual improvement	All the machines used for component preparation should be in good condition and all the employees should have knowledge about the activities of the machine and specifications of components.

 Table 7.3. TPM Pillars and actions recommended for implementing TPM pillars for appropriate component selection
7.4.2. Appropriate Component Loading

Component centering and placement are important for loading. This can be by applying certain TPM pillars which are indicated with recommended actions in Table 7.4.

rable 7.4. I PM Phars and actions recommended for implementing I PM phars for
appropriate Component Loading

TPM Pillars	Actions recommended
Individual improvement	Loading of each component should be given sufficient care to ensure that appropriate placement and centering occur.
Education and training	Employees should be trained in appropriate component loading and taught how to do it appropriately.
Quality maintenance	All activities needed to ensure appropriate loading and splicing of components should be strictly followed.

7.4.3. Appropriate Drumstick Application

The quantity of drumstick should be optimum. The area applied also should be exact. This can be ensured by applying certain TPM pillars which are indicated with recommended actions in Table 7.5.

 Table 7.5. TPM Pillars and actions recommended for implementing TPM pillars for

 Appropriate Drumstick Application

TPM Pillars	Actions recommended
Education and training	Employees should be trained in drumstick application and its quantity to be applied. They should know the exact area where the drum stick has to be applied.

7.4.4. Appropriate Drum Squeegee Application

Drum Squeegee should stick appropriately. Centering and placement have also to be correct. This can be implemented by applying certain TPM pillars which are indicated with recommended actions in Table 7.6.

TPM Pillars	Actions recommended
Education and training	Employees should be trained how to place and center the drum squeegee appropriately and about its importance in assuring the quality of green tyre.
Quality maintenance	All activities needed to ensure quality of green tyres should be undertaken. Employees should make sure that drum squeegee sticks appropriately.

Table 7.6. TPM Pillars and actions recommended for implementing TPM pillars for Appropriate Drum Squeegee Application

7.4.5. Appropriate Drum Squeegee Folding and Stitching

Appropriate Drum Squeegee Folding and Stitching have to be ensured so that while folding and stitching drum squeegee, there will be no wrinkles. In order to achieve this, the tools should be in good condition. This can be implemented by applying certain TPM pillars which are indicated with recommended actions in Table 7.7

 Table 7.7 TPM Pillars and actions recommended for implementing TPM pillars for Appropriate

 Drum Squeegee Folding and Stitching.

TPM Pillars	Actions recommended			
Autonomous The stitching tool should be in good condition. This is achiev maintenance regular cleaning, lubricating and tightening of bolts.				
Planned maintenance	All the maintenance activities should be planned in advance and scheduled as per the plans to ensure good quality products.			
Education and Employees should be made aware of the importance of training operation and how to do it appropriately.				
Quality All the activities needed to ensure quality has to be done. stitching tool should be kept in good condition.				

7.4.6. Appropriate Ply Down

Ply is the most critical component of a tyre. There should not be any wrinkles or open end. In order to achieve this level of quality, the tools should be maintained in good condition. This can be implemented by applying certain TPM pillars which are indicated with recommended actions in Table 7.8.

Table 7.8 TPM Pillars and actions recommended for implementing	TPM pillars for
Appropriate Ply Down.	

TPM Pillars	Actions recommended
Autonomous maintenance	This is done to keep the stitching tool in good condition. Regular cleaning, lubricating and tightening of bolts are to be done.
Planned maintenanceAll the maintenance activities should be planned in adva scheduled as per the plans to ensure optimum ply down.	
Education and training	Employees should be educated on manufacturing aspects of ply.
Quality maintenance	All the activities needed to ensure the quality of ply should be undertaken. The stitching tool should be kept in good condition.

7.4.7. Appropriate Bead Placement on Roller

Selection of good beads and its appropriate placement on the roller are very important to produce a good tyre. Bead should be placed squarely and concentrically. This can be implemented by applying certain TPM pillars which are indicated with recommended actions in Table 7.9.

	TPM Pillars	Actions recommended
	Education and training	The employees should be trained about the importance of appropriate bead placement and the methods of placing it squarely and concentrically.
. ·	Quality maintenance	All activities needed to ensure quality of centering of bead should be carriedout. The bead should be in good condition and should have specified dimensions.

 Table 7.9. TPM Pillars and actions recommended for implementing TPM pillars for

 Appropriate Bead Placement on BPR

7.4.8. Appropriate Bead Stitching

Appropriate Bead Stitching can be achieved by maintaining the stitching tool in appropriate condition. This can be implemented by applying certain TPM pillars, which are indicated with recommended actions in Table 7.10.

TPM Pillars	Actions recommended			
Autonomous maintenance	This is done to keep bead stitching tool in good condition by regular cleaning, lubricating and tightening of bolts.			
Planned maintenance	All the maintenance activities should be planned in advance and scheduled according to the plans to ensure good quality products.			
Education and training	nd Employees should be made aware of the importance of this operation and the method of doing it appropriately.			
Quality maintenance	All the activities needed to ensure quality of bead stitching should be carriedout. The bead stitching tool should be kept in good condition.			

Table 7.10.	TPM Pillars	and actions	recommended	for im	plementing `	TPM pillars for
		Appropri	iate Bead Stitc	hing		

7.4.9. Appropriate Turn up Stitching Back Stitcher

Appropriate Turn up Stitching Back Stitcher can be achieved by maintaining the back stitching tool in appropriate condition. This can be implemented by applying certain TPM pillars, which are indicated with recommended actions in Table 7.11.

Table 7.11	TPM Pillars and actions recommended for implementing TPM pillars for
	Appropriate Turn up Stitching Back Stitcher.

TPM Pillars	Actions recommended			
Autonomous maintenance	This is done to keep the back stitching tool in good condition. Regular cleaning, lubricating and tightening of bolts are to be carried out.			
Planned maintenance	 All the maintenance activities should be planned in advance and scheduled according to the plans to ensure the quality of backstitching. Employees should be educated on the importance of back stitching operation and the method of carrying out it appropriately. 			
Education and training				
Quality maintenance	All the activities needed to ensure quality of back stitching should be carried out. The back stitching tool should be kept in good condition.			

7.4.10. Appropriate Turn up Stitching Bottom Stitcher

Appropriate Turn up Stitching Bottom Stitcher can be achieved by maintaining the stitching tool in appropriate condition. This can be implemented by applying certain TPM pillars, which are indicated with recommended actions in Table 7.12.

Table 7.12. TPM Pillars and actions recommended for implementing TPM pillars for
Appropriate Turn up Stitching Bottom Stitcher

TPM Pillars	Actions recommended				
Autonomous maintenance	This is done to keep the bottom-stitching tool in good condition. Regular cleaning, lubricating and tightening of bolts are to be done.				
Planned maintenance	All the maintenance activities should be planned in advance and scheduled according to the plans to ensure the quality of bottom stitching.				
Education and training	Employees should be educate4d on the importance of bottom- stitching operation and the method of doing it appropriately.				
Quality maintenance	All the activities needed to ensure quality of bottom stitching should be done. The bottom stitching tool should be kept in good condition				

7.4.11. Appropriate Tread Application and Splicing

Appropriate placement, centering and splicing of tread are essential for ensuring quality of green tyre. Usage of fresh tread paint is also necessary to avoid foreign particles going inside the space between the ply and the tread. This can be implemented by applying certain TPM pillars, which are indicated with recommended actions in Table 7.13.

 Table 7.13. TPM Pillars and actions recommended for implementing TPM pillars for

 Appropriate Tread Application and Splicing.

TPM Pillars	Actions recommended
Autonomous maintenance	Workers should inspect the tread and paint to ensure their quality. If any abnormality is found, it should be corrected immediately
Education and training	Employees should be trained to splice the tread appropriately. They should be educated on the importance of appropriate tread application and splicing.

7.4.12. Appropriate Tread Stitching

Appropriate tread stitching can be achieved by maintaining the tread stitching tool in appropriate condition. This can be implemented by applying certain TPM pillars, which are indicated with recommended actions in Table 7.14

TPM Pillars	Actions recommended
Autonomous maintenance	This is done to keep the tread stitching tool in good condition. Regular cleaning, lubricating and tightening of bolts are to be done.
Planned maintenance	All the maintenance activities should be planned in advance and scheduled according to the plans to ensure the quality of tread stitching.
Education and training	Employees should be educated on the importance of bead stitching operation and trained to do tread stitching appropriately.
Quality maintenance	All the activities needed to ensure quality of tread stitching should be done. The tread stitching tool should be kept in good condition.

 Table 7.14 TPM Pillars and actions recommended for implementing TPM pillars for

 Appropriate Tread stitching

7.4.13. Appropriate Sidewall Application and splicing

Appropriate centering, placement and splicing of sidewall can be ensured by by applying certain TPM pillars, which are indicated with recommended actions in Table 7.15.

Table 7.15	. TPM Pillars and actions recommended for implementing TPM pillars for	r
	Appropriate Sidewall Application and splicing.	

TPM Pillars	Actions recommended
Autonomous maintenance	Employees should inspect to ensure quality of side wall of the tyres and if any abnormality is found out it should be corrected immediately
Quality maintenance	All activities to ensure quality of side wall of the tyres should be undertaken. Side wall should be in good condition and should have specified dimensions
Education and training	Employees should be trained on the method of splicing sidewall appropriately and should be made educated on its importance.

7.4.14. Appropriate Final Operation

Appropriate Final Operation can be carried out by maintaining the tool to be checked in appropriate condition. This can be implemented by applying certain TPM pillars, which are indicated with recommended actions in Table 7.16.

 Table 7.16. TPM Pillars and actions recommended for implementing TPM pillars for

 Appropriate Final operation

TPM Pillars	Actions recommended
Autonomous maintenance	This is done to keep the tool in good condition. Regular cleaning, lubricating and tightening of bolts are to be done.
Planned maintenance	All the maintenance activities should be planned in advance and scheduled according to the plans to ensure good quality of tyres.
Education and training	Employees should be educated on the importance of tread operation and trained to do it appropriately.
Quality maintenance	All the activities needed to ensure quality of tyres should be done. The tool should be kept in good condition.

7.4.15. Appropriate Drum Collapsing

Appropriate Drum Collapsing can be achieved by maintaining the tool in appropriate condition. This can be implemented by applying certain TPM pillars, which are indicated with recommended actions in Table 7.17.

IPM Pillars	Actions recommended
Autonomous maintenance	This is done to keep drum and its components in good condition. Regular cleaning, lubricating and tightening of bolts are to be done.
Planned maintenance	All the maintenance activities should be planned in advance and scheduled according to the plans to ensure the quality of green tyres.
Education and training	Employees should be educated on the importance of tyre drum collapsing operation and trained to do it appropriately.
Quality maintenance	All the activities needed to ensure quality of tyres should be done. The drum and its components should be kept in good condition and the cord used should be of good quality. Otherwise drum collapsing may result in cord cut.

 Table 7.17 TPM Pillars and actions recommended for implementing TPM pillars for

 Appropriate Drum Collapsing

7.5. Root Cause Analysis

In addition to the spelling out of maintenance quality characteristics and application of TPM pillars, a root cause analysis of bead off using Why-Why technique was conducted. The block diagram indicating this exercise is shown in Figure 7.4.

7.6. Analysis Of Maintenance Parameters

The ultimate aim of this implementation study was to achieve optimum equipment utilization by eliminating losses due to breakdowns, defects, idle time, etc. Therefore, an analysis of maintenance quality parameters was carried out to understand the effectiveness of implementing MQFD in the company.

Months	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
Scheduled time (minutes)	44640	44640	43200	44640	43200	44640
Cycle time (minutes)	12.3	12.3	12.3	12.3	12.3	12.3
Mechanical Break down (minutes)	865	2275	2210	280	945	1610
Electrical break down (minutes)	650	775	1515	505	530	1047
Instrumentation breakdown (minutes)	90	190	0	0	0	0
Set up and adjustment loss (minutes)	0	0	40	0	0	220
Scheduled break down (minutes)	480	160	0	0	0	0
Tool change loss (minutes)	30	0	50	0	0	0
Number of break downs	30	35	38	12	18	27
Actual output (Number of tyres)	2885	1997	1922	2558	1346	1464
Scrap (Number. of tyres)	0	2	6	1	10	0
Material waiting loss (minutes)	2235	4470	2830	1025	1095	2400
Manpower loss (minutes)	1545	4700	3080	6720	11130	815
Power loss (minutes)	0	0	0	0	0	0
Number of down times	63	69	77	41	52	65

 Table 7.18. Data Used for Calculation of Maintenance Quality Parameters.

These parameters are Availability, Performance efficiency, Rate of quality, OEE, MTBF, MTTR, and MDT. Through this analysis, the factors to be prioritized to improve the performance of machines were found out. This analysis was done with respect to the parameters of tyre building machine which was selected for MQFD implementation. Various data used for calculating maintenance quality parameters are shown in Table 7.18.

7.6.1 Computation of Availability

Availability is a measure of what percentage of the total time the equipment is available for use. It is calculated using the following formula

Month	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
Scheduled time (Minutes)	44640	44640	43200	44640	43200	44640
OEE loss (Minutes)	2115	3400	3765	785	1475	2877
Availability (%)	95.3	92.4	91.3	98.2	96.6	93.6

Table 7.19. Data Used for Calculating Availability

Figure. 7.5 Graphical representation of the variations in availability

In other words it is the total time a machine is available for operation, expressed as the percentage of scheduled time.

Availability =
$$[(\text{Scheduled time} - \text{OEE loss})/\text{Scheduled time}] \times 100$$

For example, the availability of machine during July 2005 is found out as follows.

Scheduled time	=	24×31 hours = $24 \times 31 \times 60$ minutes = 44640 minutes
OEE loss	=	mechanical break down + electrical break down + instrumentation break down + set up and adjustment loss + scheduled break down + tool change loss
OEE loss	=	865+650+90+0+480+30 = 2115 minutes
Availability	=	[(Scheduled time – OEE loss)/ Scheduled time] ×100
	=	[(44640-2115)/44640]× 100 = 95.3%

The values of availability for the months from July 2005 to December 2005 were calculated and entered in Table 7.19. The graphical representation of the changes in availability with respect to the passage of time is depicted in Figure 7.5.

7.6.1.1. Inference

The values indicated in Table 7.21 and Figure 7.5 show that machine has very good availability. The value that was aimed to achieve was 90%. Throughout the months under study, availability has been higher than 90%. During October 2005 availability of 98% was observed indicating very good performance of tyre building machine. The reason for high availability is due to low OEE loss. The factors causing OEE loss are mechanical, electrical and instrumentation breakdowns, tool change loss, set up and adjustment loss and scheduled breakdown. Among these, the main reason was found to be the mechanical breakdown of the machine.

7.6.2 Computation of MDT

MDT was calculated during this study using the formula given below.

MDT = Total down time / Number of breakdowns or service entries = Total down time/ Number of down times

The values of MDT calculated using the above formula are presented in Table 7.20 and depicted graphically in Figure 7.6. The sample calculation of MDT during **July 2005** is presented below.

OEE loss	=	2115 minutes,	Material waiting loss	=	2235 minutes
Manpower loss	=	1545 minutes,	Power loss	=	0 minutes
Total down time	=	5895 minutes,	Number of downtimes	=	63
MDT = 5895/ 63	=	93.6 minutes			

Month	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
OEE loss (minutes)	2115	3400	3765	785	1475	2877
Material waiting loss (minutes)	2235	4470	2830	1025	1095	2400
Manpower loss (minutes)	1545	4700	3080	6720	11130	815
Power loss (minutes)	0	0	0	0	0	0
Total downtime (minutes)	5895	12570	9675	8530	13700	6092
Number of downtimes	63	69	77	41	52	65
MDT (minutes)	93.6	182.2	125.6	208.0	263.5	93.7

Table 7.20. Data Used for Calculation of MDT

MDT Chart

Figure 7.6 Graphical representation of the variations in MDT

7.6.2.1. Inference

As shown in Table 7.20 and Figure 7.6, MDT is lowest during July 2005. During November 2005 and October 2005, MDT values are high indicating poor performance of the machine. This is mainly due to high manpower loss.

7.6.3 Computation of Material waiting loss

The data on material waiting loss gathered are presented in Table 7.21. The last row of this table shows the trial material loss during the month under study.

Materials	July 2005 (Minutes)	August 2005 (Minutes)	September 2005 (Minutes)	October 2005 (Minutes)	November 2005 (Minutes)	December 2005 (Minutes)
Ply	2195	4010	2055	640	870	1125
Squeegee	0	100	80	0	40	165
Side wall	70	120	290	0	120	0
Tread	0	0	0	0	0	835
Bead	70	90	40	130	40	135
Chafer	60	0	0	0	0	0
Breaker	0	150	0	255	25	140
Total material waiting loss	2235	4470	2830	1025	1095	2400

Table 7.21. Data Used for Calculation of Material waiting loss

7.6.3.1. Inference

As shown in Table 7.21, material-waiting loss is high during the month of August 2005 and it is low during November 2005. The main reason of material waiting loss is the time lost waiting for ply. So importance should be given in making the ply available at the required time.

7.6.4. Computation of MTBF

MTBF is the average time between failures.

 $MTBF = [\Sigma TBF]/[Nf + 1]$

 $\Sigma TBF =$ Sum of time between failures = Total scheduled time - Total failure time

Nf = Number of failures

As a sample, the calculation of MTBF during July 2005is presented below.

Mechanical break down = 865 minutes,	Electrical break down = 650 minutes
Instrumentation breakdown = 90 minutes,	Total failure time = 1605 minutes
Scheduled time = 44640 minutes,	No. of failures $= 29$

Months	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
Mechanical break down (Minutes)	865	2275	2210	280	945	1610
Electrical break down (Minutes)	650	775	1515	505	530	1047
Instrumentation break down (Minutes)	90	190	0	0	0	0
Total failure time (Minutes)	1605	3240	3725	785	1475	2657
Scheduled time (Minutes)	44640	44640	43200	44640	43200	44640
No. of failures	29	34	38	12	18	27
MTBF (Minutes)	1434.5	1182.9	1012.2	3373.5	2196.1	1499.4

Table 7.22 Data Used for Calculation of MTBF

MTBF Chart

Figure 7.7. Graphical representation of the variations in MTBF

MTBF = [44640-1605]/29 = 1434.5 minutes.

Similarly the MTBF values for the months from July to December 2005 were calculated and displayed in Table 7.22 and Figure 7.7.

7.6.4.1. Inference

As shown in table 7.22 and Figure 7.7, there is high MTBF during October and November 2005 indicating good performance of the machine. This implies that during that period, failure time and number of failures were comparatively lower. During July 2005 though the failure time was small, the number of failures was high making MTBF lower.

7.6.5. Computation of MTTR

Mean time to repair is the average time taken to repair a machine once it is in the breakdown condition. It is given by the following formula

```
MTTR = Total repair time/ Number of repairs
```

In the study being reported, time taken to repair was not available. So total break down time was taken as total repair time. This includes mechanical breakdown, electrical breakdown, instrumentation breakdown and scheduled breakdown.

The values of MTTR calculated using the above formula are presented in Table 7.23 and depicted graphically in Figure 7.8. The same calculation of MTTR during **July 2005** is presented below.

Total failure time	=	1605 minutes, Scheduled break down = 480 minutes
Total repair time	=	2085 minutes, Number of repairs = 30
MTTR = 2085/30	=	60.5 minutes

Similarly the MTTR values for the months from July to December 2005 were computed and displayed in Table 7.23 and Figure 7.9.

7.6.5.1. Inference

As shown in Table 7.23 and Figure 7.8, during October and November, 2005, MTTR was high. This implies that it took longer time to repair. During July,2005, repair was faster. Reduction in repair time implies either that the management is highly responsive to failures or that the failures were not so critical that they could be solved in a small duration of time.

Month	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
Total failure time (Minutes)	1605	3240	3725	785	1475	2657
Scheduled break down (Minutes)	480	160	0	0	0	0
Total repair time (Minutes)	2085	3400	9485	7505	10595	2657
No. of repairs	30	35	38	12	18	27
MTTR (Minutes)	69.5	97.1	249.6	625.4	588.6	98.4

Table 7.23. Data Used for Calculation of MTTR

MTTR Chart

Figure 7.8 Graphical representation of the variations in MTTR

7.6.6. Computation of OEE losses

Months	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
Mechanical Break down (Minutes)	865	2275	2210	280	945	1610
Electrical break down (Minutes)	650	775	1515	505	530	1047
Instrumentation break down (Minutes)	90	190	0	0	0	0
Set up and adjustment loss (Minutes)	0	0	40	0	0	220
Scheduled break down (Minutes)	480	160	0	0	0	0
Tool change loss (Minutes)	30	0	50	0	0	0
OEE Loss (Minutes)	2115	3400	3765	785	1475	2877

Table 7.24. Data Used for Calculation of OEE Losses

Figure 7.9 Graphical representation of the variations in OEE Losses

In order to categorize the intensity of losses due to various failure modes ,OEE losses were calculated. OEE loss table for the months from July to December 2005 are shown in Table 7.26 and Figure 7.9.

7.6.6.1. Inference

OEE losses were found to be higher during August and September 2005. This is due to losses caused by mechanical breakdowns. During August and September 2005, electrical breakdowns were also high. During October OEE loss was very low indicating very good performance of the machine. After calculating OEE losses, OEE was calculated.

7.6.7. Computation of OEE

OEE is the product of Availability, Performance efficiency and Rate of quality

The values of OEE calculated using the above formula are presented in Table 7.25 and depicted graphically in Figure 7.10. The same calculation of OEE during **July 2005** is presented below.

 Availability
 =
 95.3%,
 Performance efficiency = 83.4%

 Rate of quality
 =
 100%,
 OEE = [95.3×83.4×100/1000000]×100 = 79.5%

The OEE for the months from July to December 2005 were calculated and displayed in Table 7.25 and Figure 7.11.

Month	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
Availability [%]	95.3	92.4	91.3	98.2	96.6	93.6
Performance efficiency [%]	83.4	59.6	59.9	71.7	39.7	43.1
Rate of quality [%]	100.0	99.9	99.7	99.9	99.3	100
OEE [%]	79.5	55.0	54.5	70.4	38.1	40.3

 Table 7.25. OEE from July to December 2005

OEE chart

Figure 7.10. Graphical representation of the variations in OEE

7.6.7.1. Inference

As shown in Table 7.25 and Figure 7.10, Though an OEE of 85% was aimed to achieve, it was never achieved due to low performance efficiency. Because of comparatively higher performance efficiency value, an OEE of 79.5% was obtained in the month of July.

7.6.8. Computation of Performance Efficiency

Performance efficiency is total time during which actual production takes place. This is expressed as a percentage of the total time the machine is available.

Performance efficiency = [(Actual output × Cycle time)/(Scheduled time - OEE loss)]×100

Month	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
Actual output (Number of tyres)	2885	1997	1922	2558	1346	1464
Cycle time (Minutes)	12.3	12.3	12.3	12.3	12.3	12.3
Scheduled time (Minutes)	44640	44640	43200	44640	43200	44640
OEE Loss (Minutes)	2115	3400	3765	785	1475	2877
Performance efficiency [%]	83.4	59.6	59.9	71.7	39.7	43.1

Table 7.26. Data Used for Calculation of Performance efficiency

Performance efficiency chart

Figure 7.11. Graphical representation of the variations in Performance efficiency

The values of performance efficiency calculated using the above formula are presented in Table 7.26 and depicted graphically in Figure 7.11. The same calculation of performance efficiency during **July 2005** is presented below.

Similarly the Performance efficiency for the months from July to December 2005 were calculated and displayed in Table 7.26 and Figure 7.12

Actual output	= 2885	
Cycle time	= 12.3 minutes	
Scheduled time	= 44640 minutes	OEE loss = 2115 minutes
Performance efficiency	= [(2885×12.3)/(44640 - 21	15)] × 100 = 83.4%

Cycle time is the time needed to build a tyre and it is 12.3 minutes.

7.6.8.1. Inference

As shown in Table 7.26 and Figure 7.11, During July 2005 and October 2005 performance efficiency values are comparatively higher than that during the other months. During the other months it was lower because of the low production rate. Lower performance efficiency indicates losses other than OEE losses. This includes scheduled idle time, manpower loss, energy loss, material waiting loss, etc. During November 2005 man power loss was the main reason for a sudden fall of performance efficiency. But during August, September and December 2005, OEE loss was the main reason for low production. Though a performance efficiency of 95% was targeted, it was never achieved.

7.6.9. Computation of Rate of quality

Rate of quality is the number of quality tyres produced, expressed as a percentage of total tyre production. The formula used to compute the rate of quality is given below.

```
Rate of quality = [(Actual output-Scrap)/ Actual output]×100
```

The values of rate of quality calculated using the above formula are presented in Table 7.27 and depicted graphically in Figure 7.12. The same calculation of rate of quality during July 2005 is presented below.

Actual output = 2885 tyres Scrap = 0

Rate of quality = (2885-0)/2885 = 100%

Similarly the rate of quality for the months from July to December 2005 were calculated and displayed in Table 7.27 and Figure 7.12.

Month	July (2005)	August (2005)	September (2005)	October (2005)	November (2005)	December (2005)
Actual output (Number of tyres)	2885	1997	1922	2558	1346	1464
Scrap (Number of tyres)	0	2	6	1	10	0
Rate of quality	100.0	99.9	99.7	99.9	99.3	100

 Table 7.27. Data Used for Calculation of Rate of quality

Figure 7.12. Graphical representation of the variations in Rate of quality

7.6.9.1 Inference

As shown in Table 7.27 and Figure 7.13, Very high performance quality was maintained in the tyre building section. Scrap produced was very low.

Quality of 100% was targeted which was nearly or fully achieved during all months.

7.7. Interpretation of the results

Analysis of maintenance parameters shows that very high values of machine availability and rate of quality were achieved. But performance efficiency has not achieved to the expectation. Therefore, OEE has not been achieved as aimed. This is mainly because of the manpower and ply waiting losses. In order to reduce the manpower loss, it is necessary to reduce absenteeism by enhancing the employee morale and commitment to work. For this purpose, the top and middle management should have good knowledge about TPM and should be actively involved in it. Only then they will encourage the workers to participate in TPM. Assigning the responsibility of implementing TPM solely to the facilitators will affect the effectiveness of its implementation.

7.8. Conclusion

The implementation feasibility of MQFD was checked in an Indian tyre manufacturing unit. The experience of conducting this implementation study indicated that MQFD would be a powerful technique in using customer voices for enhancing maintenance quality. It was also found out that MQFD was very useful in indicating the maintenance quality level of the company through the quantification of appropriate parameters. The results were very encouraging to infer that MQFD would be a feasible model for successfully implementing it and nourishing the synergic benefits of QFD and TPM.

Chapter · 8

IMPLEMENTATION OF MOFD IN THE MINES OF A CEMENT PLANT

Content

- 8.1. INTRODUCTION
- 8.2. ABOUT THE COMPANY
- 8.3. IMPLEMENTATION STUDY
- 8.4. CONSTRUCTION OF HOQ
- 8.5. CALCULATIONS OF MAINTENANCE QUALITY PARAMETERS
- 8.6. PRIMARY DATA
- 8.7. CALCULATION OF MAINTENANCE PARAMETERS AND ANALYSIS OF FAILURES
- 8.8. IMPLEMENTATION OF TPM PILLARS
- 8.9. CONCLUSION

IMPLEMENTATION OF MOFD IN THE MINES OF A CEMENT PLANT

8.1. Introduction

In order to examine the implementation aspects of MQFD in a mining organization, an implementation study was carried out in a maintenance intensive mine located at Palakkad district of India. This mine is known as Pandarath mine and run by the Kerala state Government of India. This mine is required to cater to the lime requirements of Malabar Cement Limited (MCL), which is situated in Palakkad district. This mine was chosen for the study because of the intensive maintenance engineering activities being carried out in it and the admirable cooperation extended by the General Manager, Deputy Chief Engineer and Plant Engineer towards the pursuance of the module of this research work being reported in this chapter. These professionals were present during the lecture on MQFD delivered on 10th August 2005 by the author in the monthly meeting of Palakkad Management Association. This meeting was chaired by the General Manager of MCL. He granted permission to pursue the implementation study in the mine section. The details of conducting this study are presented in this chapter.

8.2. About the Company

MCL is the only company, which manufactures Portland cement manufacturer in Kerala. MCL was incorporated in April 1978. MCL commenced commercial production in 1984, with the capital outlay of Indian Rupees (INR) 680 million and paid up equity capital of INR 260 million. MCL is owned fully by the Government of Kerala, India. The 1200 ton per day (TPD) plant at Walayar (a place near Palakkad) is continuously running in profit. The factory is rated to produce 4.2 lakh tones cements per annum. The company meets about 10 percent of total cement consumption in Kerala. The company moves with a work force of over 1000 dedicated and highly skilled personnel. MCL is incorporated with the state of art dry process technology for manufacturing of super quality cement whose, quality is much above the level specified by the national standard. MCL is incorporated with the following infrastructure:

- Limestone reserve of about 10 million tones.
- Modern dry process manufacturing technology with four-stage suspension pre-heater system.
- Modern 110 TPD Closed Circuit Cement Mill.
- Most modern Instrumentation and Control system for efficient process engineering.
- Stringent Quality Control system to ensure quality of the product.
- Elaborate pollution control system to meet pollution control standards.

8.2.1. Credentials

Following are the credentials of MCL:

- The only integrated gray cement company in Kerala State of India.
- The first public sector cement company in the country to receive ISO 9000 certification.
- The first Public sector cement company to win the National Award for the best achievements in Energy Conservation.
- MCL's Accumulated net profit is INR 479 million as on March 31,2005.
- There has been no loss of production due to labor unrest or strike since inception.

8.2.2. ISO 9000 Certification

- MCL obtained IS/ISO 9002: 1994 certification in November 1996.
- The revised standard ISO 9001: 2000 in August 2003.

8.2.3. Quality Policy

Every employee of MCL commits to comply with all requirements to continually improve the effectiveness of the Quality Managements System and strives:

- To identify various group of customers.
- To understand their respective needs and desires either stated or not stated.
- To ensure best possible quality in products and services.
- To meet and exceed their expectations.

The company maintains capacity utilization of more than 100% for the past two financial years. That is 109.51% in the financial year 2003-2004 and a utilization of 105.39% in the year 2004-2005. This is an achievement that commands respect on considering the fact that the national average is well below 70%.

8.2.4. Mines Department

Malabar cements mines department, known as Pandarath Mines is located 9 kilometers away from the main plant at Walayar located at Palakkad district of Kerala state. The mine is the chief supplier of limestone to the MCL plant. The Pandarath Mines is an open pit mine where the extraction of limestone is accomplished by blasting of limestone rocks using explosives. The cost of maintenance of mining equipments lies in the range of 40-55 percent of the total mines operating cost. In Pandarathu mines, the average cost of maintenance of mining equipments is around 30 percent of total mines operating costs. The figure is much lower than industrial average. This achievement is made possible through systematic maintenance practice. It is also a result of teamwork right from the top-level executives to the bottom level workers. The team now strives to achieve better performance and any change in this regard will be accepted positively. The organizational commitment, employee involvement, and attitude towards change are highly positive.

8.2.5.Operations carried out at the mines

The operations carried out at Pandarath mines are enumerated below.

- 1. Identification of area where limestone deposit is present (based on topographical survey)
- 2. Drilling of the rocks to lay the heavy explosives
- 3. Blasting of the rocks
- 4. The broken rocks are then loaded by the hydraulic shovels
- 5. These rocks are then carried away to the crushers using dumpers
- 6. Crushing of these rocks is carried out by the primary and secondary crushers
- 7. The crushed limestone is then carried away to the plant by the aerial ropeway.

8.3. Implementation study

This implementation study of this module of research work was conducted in four phases. Phase 1 consisted of categorizing various failure modes of the critical equipments. During Phase 2, the HoQ was prepared and subjected to analysis. During Phase 3, the suggestions to implement TPM Pillars for each output of HoQ were developed. The calculation of maintenance quality parameters were carried out during Phase 4. The activities carried out during these phases are described in the following subsections.

8.3.1. Identification of critical equipments

As a beginning, the author tried to locate the critical machines in the mines. Critical machines are those machines whose failure can lead to the stoppage of the entire unit. Through careful reviewing of the previous records and subsequent discussions with the department engineers, the author came to a conclusion that the most important or rather critical machines in the mines were

the loading machines and dumpers. After that the author analyzed the present condition of the critical machines and then decided to apply the MQFD with respect to the heavy equipments. The details of the heavy equipments considered for the study are presented in Tables.8.1, 8. 2 and 8.3.

Serial Number	Equipment Name	Manufacturer	Туре
1	PC2	BEML	Excavator
2	PC3	BEML	Excavator
3	EX400	TATA Hitachi	Excavator
4	H1	BEML	Dumper
5	H2	BEML	Dumper
6	НЗ	BEML	Dumper
7	H4	BEML	Dumper
8	Н5	BEML	Dumper
9	Нб	BEML	Dumper
10	H7	BEML	Dumper
11	H8	BEML	Dumper

Table 8.1 List of heavy equipments considered for study

Table 8.2. Specifications of Excavators

Excavators	Manufacturer	Power	Tonnage
PC 650	Bharath Earth Movers Limited (BEML)	404 BHP	600 Tones per hour (Tph)
EX 400	Tata Hitachi	350 BHP	450 Tph

Dumpers (Haulpak)	Manufacturer	Туре	Engine	Power	Pay load
H1 – H7	BEML	Rear dump	Kirloskar Cummins	380 BHP	32 Tonnes
H8	BEML	Rear dump	Kirloskar Komatsu	380 BHP	32 Tonnes

 Table 8.3.
 Specifications of Dumpers

8.3.2. Failure analysis of equipments

The failures occurring in the equipments were closely studied. Researchers have reported that the maintenance is consuming one third of the total costs of a firm (Chan et al, 2005). This fact motivated the author to analyze the failures and categorize them. Here pie chart was used to represent the intensity of failures. The total failures occurring in a machine during the years 2004 and 2005 were categorized and depicted in pie charts. These are shown in Figures 8.1 to 8.20. The meaning of failure codes can be seen in Table 8.4. This gave a clear idea of which types of failures are predominant in each machine. Based on that, the author was able to recommend action plans for each equipment.

8.3.3. Failure index

Performance of the machines was observed and a few major problems were identified. Those problems that are recurring frequently and those which can cause the stoppage of the machines were sorted out. The constantly recurring failure modes and the codes adopted to represent them are presented in Table 8.4.

Serial Number	Failure Code	Failure
1	ENG 1	Engine oil leak
2	ENG 2	Less pulling
3	ENG 3	Turbocharge problem
4	ENG 4	Overheat
5	ENG 5	Over smoke
6	ENG 6	Radiator water leak
7	ENG 7	Air lock
8	ENG 8	Fuel line filter problem
9	ENG 9	Injector trouble
10	ENG 10	V Belt's problem
11	ENG 11	Component failure
12	ENG 12	Engine seizure
13	ENG 13	Diesel dilution
14	ENG 14	Fuel contamination
15	ENG 15	Engine mounting failure
16	ENG 16	Compressor problems
17	ENG 17	Overheating
18	ENG 18	Silencer problem
19	ENG 19	Maintenance
20	ENG 20	Cooler failure
21	ELT I	Low battery charge
22	ELT 2	Starting trouble
23	ELT 3	Alternator problem
24	ELT 4	Head light problem
25	ELT 5	Equipment electrical trouble

 Table 8.4.
 Codes used for representing various failure modes

Table Contd....

26	ELT 6	Short circuit
27	MNT 1	Planned maintenance
28	MNT 2	Over hauling
29	MNT 3	Major repairs
30	PTO 1	PTO trouble
31	OIL 1	Oil filling
32	HYDI	Oil leak
33	HYD 2	Hose/ pipe failure
34	HYD 3	Cylinder seal changing
35	35 HYD4	Hydraulic component
35		trouble
36	HYD 5	System trouble
37	HYD 6	Pin locks/Connecting link
		failure
38	HYD 7	Hydraulic coolant failure
39	STR 1	Structural failure
40	STR 2	Fastener problem
41	UDC 1	Track out
42	UDC 2	Track link cut
43	UDC 3	Track shoe changing/Bolt
		tightening
44	UDC 4	Track loose
45	UDC 5	Track pin out
46	UDC 6	Track roller/ sprocket
		problem
47	UDC 7	Idler problem
48	UDC 8	Final drive trouble
49	BKT 1	Bucket welding
50	BKT 2	Bucket repair
51	BKT 3	Bucket tooth trouble
L		l=

Table Contd...

School of Engineering, CUSAT, Cochin-22

Page 104 of 370

52	CAB 1	Cabin vibration
53	CAB 2	Operator seat trouble
54	CAB 3	Windshield/glass failure
55	BRK1	Break Trouble
56	TRS 8	Oil From Transmission
57	TRS 4	Transmission Trouble
58	TRS 5	Steering Trouble
59	TRE 3	Tube Cut
60	TRE 2	Clutch Problem
61	PNE 1	Air Leak
62	TRS 7	Final Drive Problem
63	PNE 3	Break Fluid Leak
64	MNT 2	Major Overhauling
65	UDC 9	Other Usual Under
		Carriage Trouble S
66	UDC 10	Unknown under carriage
		troubles
67	HYD 8	Abnormal hydralic
68	BKT 4	Bucket Collar Failure
69	TRE 4	Tyre O ring failure
70	TRS I	Transmission linkage
		problem
71	HYD 9	Hydraulic filter chock
72	CAB 4	Cabin fan failure
73	TRE 5	Wheel bolt cut
L	<u> </u>	

Figure 8.1. Pie chart on the failure of excavator EX 400 during the year 2004

Figure 8.2. Pie chart on the failure of excavator EX 400 during the year 2005

Implementation of MQFD in the Mines of a Cement Plant

Figure 8.3. Pie chart on the failure of excavator PC2 during the year 2004

Figure 8.4. Pie chart on the failure of excavator PC2 during the year 2005

Figure 8.5. Pie chart on the failure of excavator PC3 during the year 2004

Figure 8.6. Pie chart on the failure of excavator PC3 during the year 2005

Implementation of MQPD in the mines of a Centeri I unit

Figure 8.7. Pie chart on the failure of Dumper H1 during the year 2004

Figure 8.8. Pie chart on the failure of Dumper H2 during the year 2005

School of Engineering, CUSAT, Cochin-22

Figure 8.9. Pie chart on the failure of Dumper H3 during the year 2004

Figure 8.10. Pie chart on the failure of Dumper H3 during the year 2005

Implementation of MQFD in the Mines of a Cement Plant

Figure 8.11. Pie chart on the failure of Dumper H4 during the year 2004

Figure 8.12. Pie chart on the failure of Dumper H4 during the year 2005

Implementation of MQYD in the mines of a Cemeni I unit

Figure 8.13. Pie chart on the failure of Dumper H5 during the year 2004

Figure 8.14. Pie chart on the failure of Dumper H5 during the year 2005

Figure 8.15. Pie chart on the failure of Dumper H6 during the year 2004

Figure 8.16. Pie chart on the failure of Dumper H6 during the year 2005

Figure 8.17. Pie chart on the failure of Dumper H7 during the year 2004

Figure 8.18. Pie chart on the failure of Dumper H7 during the year 2005

Implementation of MQFD in the Mines of a Cement Plant

Figure 8.19. Pie chart on the failure of Dumper H8 during the year 2004

Figure 8.20. Pie chart on the failure of Dumper H8 during the year 2005

8. 3.4. Interpretations

Representation of the failures using pie charts gave a clear indication of the intensiveness of their occurrence. The problems occurring in the equipments were classified into ten catogories. After a careful analysis of all the equipments, the problems, their cause, and suggestions to eliminate or rather minimize these problems ware made. Those are narrated in the following subsections. Among them Structural problems, Engine problems (mainly engine seizure), Bucket problems, Power take off problems, and Under-carriage problems are the problems that cause stoppage of machines. Hydraulic and Electrical problems are the most frequently occurring problems.

8.3.4 .1. Hydraulic problems (designated as Hyd1-Hyd8)

Hydraulic problems contribute towards the major share of total problems. In other words, more than 50% of the total failures belong to this category of problems. These problems are usually identified by leakages and pressure drops. They are caused due to O-ring failure, leakage in hoses, improper fitting and overheating due to overload.

Suggestions to minimize the problems are

- Use O-rings and hoses supplied by Original Equipment Manufacturers (OEM).
- 2. Assure the quality of the maintenance activities by providing intensive training to the personnel.
- 3. Avoid overloading of the machine which in turn can cause the overheating of parts. This may lead to the failure of machines.

8.3.4 .2. Electrical problems (designated as ELT1-ELT10)

Major electrical failures experienced in machines were starting trouble and generator problems. The electrical problems vary from severe generator problems to minor lighting problems. These problems though do not cause machine stoppage, but can occur frequently. Majority of these problems can be rectified by the operator himself. However, in order to rectify the generator problems, contacting the manufacturer is recommended. In order to ensure long life of battery, water level should be checked frequently.

8.3.4.3. Structural problems (designated as STR1-STR10)

These failures are mainly caused due to overloading, improper lubrication and poor quality components. It includes the failure of boom, boom cylinder, arms and linkages.

Suggestions to minimize these problems are as follows:

- 1. Avoid overloading of machines.
- 2. Ensure that the lubrication is done according to the manufacturer's instructions.
- 3. Ensure proper linkage between the components must be ensured

8.3.4.4. Engine problems (designated as ENG1-ENG10)

These are the few major problems that can lead to the stoppage of machines. Out of these problems, engine seizure is the most severe of all. This problem can cause the equipment to stay for several months. Another problem found in engines is oil leakage. It can be reduced to some extent by using good quality oil seals and their proper installation.

8.3.4.5. Power Take off Problems (PTO)

Frequency of these problems is lesser when compared to other problems. But the time for repair may be extending up to three to four shifts. Hence it affects MTTR. Periodic inspection and replacement if required on PTO bearings are suggested to minimize these problems.

8.3.4.6. Under-carriage Problems (UDC)

The undercarriage is the track on which the machine moves. This warrants high degree of training at operator's level. For example, if the

equipment is deployed on unleveled ground, the load distribution on track rollers of excavators will be very high. The PC 650 excavator weighs about 65 tonnes and is supported by 16 track rollers. On a level ground, the load distribution will be uniform but as stated above when the equipment is operated in unleveled ground, a single-track roller may be subjected to a load of 65 tonnes.

8.3.4.7. Bucket Problems (BKT)

Bucket is the part that holds the materials that needs to be transferred. Bucket Problem includes bucket welding, bucket repair and bucket tooth trouble. Bucket problem is one of the frequently occurring problems. There are two buckets available as standby. These are to be kept 'ready to use' condition always.

8.3.4.8. Probability of Seasonal Problems

An interesting fact observed through the analysis of failures is that all the machines show breakdowns in high numbers during the months June and July, during which monsoon occurs. So the machines' tendency for failure during various months should be studied and proper check-ups must be done.

8.4. Construction of HoQ

In order to construct HoQ, the customer reactions were obtained using a questionnaire. The operators of the dozers and dumpers were considered as the customers of this mine. By making use of the long experience of the Deputy Chief Engineer and Plant Engineer, the list containing the maintenance quality aspects was prepared. Based on that, a questionnaire shown in Annexure C was developed and distributed to the equipment operators. In order to enable better understanding, the question were translated in local language Malayalam. The equipment operators were asked to mark their reactions against those aspects. In total, the reactions from 24 equipment operators were collected pertaining to 20 maintenance quality aspects. The data collected through this questionnaire-based survey is tabulated in Table 8.5.

CTL=Correlated weightage of the technical language

Figure 8.21 HoQ Matrix

As an example, the details of the data presented against serial number 1 in Table 8.5 are illustrated here. This question aimed to gather the reaction of each oprator about the condition of operator's cabin of the vehicle. Out of the 24 operators, none of them have mentioned 'excellent', while 2, 9, 9, and 4 of them respectively have mentioned that it is 'good', 'average', 'bad' and 'extremely bad'. None of them have felt that the operator's cabin of the equipment that they drive is in excellent condition. The selection of maintenance quality aspect was prioritised on the basis of operators' reactions in the order ranging from 'Bad' to 'Excellent'. That is, the maintenance quality aspects in which 'Bad' reactions dominate are given the highest priority in choosing for subsequent study. It is gradually decreased from average to excellent reactions. The priorities were quantified by assigning weightages 0,1,2,3, and 4 for the reactions 'Excellent', 'Good', 'Average', 'Bad' and 'Extremely bad', respectively. The priority thus computed has been entered in the last column of Table 8.5. As a sample the computation of the expected value against the condition of the operator's seat is presented below.

Number of 'Excellent' reactions \times 0+ Number of 'Good' reactions \times 1+ Number of 'Average' reactions \times 2+ Number of 'Bad' reactions \times 3+ Number of 'Extremely Bad' reactions \times 4= (0 x 0+ 2 \times 1 + 9 \times 2 + 9 \times 3 + 4 \times 4) = 63.

rial	Customers'		Priority Scores				
		Excellent Priority	Good Priority	Average Priority	Bad Priority	Extremely bad Priority	
1	Bad Operators' Cabin	0	2	9	9	4	63
2	Bad seat	2	1	14	5	2	52
3	Poor Lighting & Ventilation at Cabin	0	5	10	8	1	53
4	Poor Wind Shield	0	3	12	9	0	54
5	Poor Control Panel	0	2	12	8	2	58
6	Bad Engine Condition	1	6	14	3	0	43

Table 8.5. Data on Customers' voice

Table Contd...

School of Engineering, CUSAT, Cochin-22

Page 120 of 370

7	Poor transmission/ Hydraulic pump	1	4	12	7	0	49
8	Equipment covered with dust and smoke	2	0	8	14	0	58
9	Improper final drive/ under carriage	4	8	10	2	0	34
10	Less load carrying capacity	3	3	14	4	0	43
11	Handling difficulties	2	6	16	0	0	38
12	Improper maintenance of Lubrication System	1	4	17	2	0	44
13	Improper Periodic Maintenance	3	1	14	6	0	47
14	Improper face/ Bench	1	3	8	12	0	55
15	Loose material is Unavailable	4	2	14	4	0	42
16	Bad Response from Maintenance department	1	6	10	7	0	47
17	Repeated breakdowns	1	4	11	7	1	51
18	Negligence to operator's suggestions	1	4	14	5	0	47
19	Lack of skill ness to operators	2	6	15	0	1	40
20	Unskilled Maintenance People	2	6	11	5	0	43

As shown in the last column of Table 8.5, the 'bad operators cabin' and 'equipment covered with dust and smoke' shall be the highest priorities for choosing subsequent study since their scores are 63 and 58 respectively. These

scores are highest among all. These details were the inputs of 'HoQ' (Besterfield et.al 2004).

Serial Number.	Technical descriptors	Customer technical interactive score (CTI) (1)	Percentage normalized value of customers technical interactive score (2)	Correlated weightage of the technical language (CTWL) (3)	Percentage normalized value of correlated weightage (4)	Sum of (2)+(4)
1	Schedule blasting time	423	1.05	0	0	1.05
2	Tightening loose parts	2181	5.41	9	6.29	11.7
3	Repair	4277	10.7	48	33.6	44.3
4	Routine cleaning	2387	5.92	10	6.99	12.9
5	Routine lubrication	1390	3.44	0	0	3.44
6	Routine Hydraulic Oil Filling	924	2.29	0	0	2.29
7	Welding Cracks	1528	3.79	9	6.29	10.1
8	Tinkering	880	2.18	9	6.29	8.47
9	Replacement of damaged parts	3984	9.87	9	6.29	16.2
10	Operator awareness	4948	12.3	1	0.7	13
11	Leakage checking of diesel	483	1.2	0	0	1.2
12	Calibration of pump/ injector	985	2.44	0	0	2.44
13	Periodic replacement	3222	7.98	18	12.6	20.6
14	Routine maintenance	3947	9.78	18	12.6	22.4
15	Training Classes	4872	12.1	12	8.39	20.5
16	Halogen lamp	447	1.18	0	0	1.18
17	Leveling	3443	8.53	0	0	8.53

Table 8.6 Technical descriptors and their computed scores

After this, 17 technical languages were prepared by exploiting the long term experience of the Deputy Chief Engineer and Plant Engineer. The HoQ constructed during this implementation study is shown in Figure 8.21. The methodology explained in chapter 6 was adopted to construct this HoQ. The calculated CTI and CTWL and other related terms are given in Table 8.6. Table 8.6 Technical descriptors and their computed scores

As shown in Table 8.6, the weighted correlated value against the technical parameter 'tightening loose parts' is 9.In order to visualize the relative

weightages of technical correlation, the percentage normalized value of correlated weights were calculated using the following formula.

Percentage normalized value of correlated weightage =

Correlated weightage of the technical language \times 100 Sum of Correlated weightages

Example: Percentage normalized of correlated weightage against the technical parameter 'tightening loose parts'= $9/143 \times 100 = 6.29$

Both percentage normalized score of CTI score and percentage normalized value of correlated weightage have been added and entered in the side of correlation matrix of HoQ and are termed as total normalized values. The Deputy Chief Engineer and Plant Engineer were interviewed to spell out the technical descriptors. They also expressed the feasibility of implementing all the technical requirements.

According to the procedure of implementing MQFD model, the Deputy chief Engineer and Plant Engineer were asked to make strategic decisions to either direct the technical requirements towards the implementation through TPM eight pillars implementation or an immediate and direct implementation However these technical requirements could not be implemented in this mines because it is an Indian state government run public sector, which requires decision making by the top level committee by following long democratic procedures. Hence the Deputy chief Engineer and Plant Engineer were asked to anticipate the result of implementing the MQFD by considering the six maintenance quality parameters of MQFD model. In order to compare the present and future performance, the past data of eleven equipments were collected. They are depicted in Tables 8.7 to 8.17. The calculations of maintenance quality parameters (Chan et.al, 2005,Juran and Gryna,1997) are presented in the subsequent subsections.

8.5. Calculations of maintenance quality parameters

In order to calculate the maintenance quality parameters of equipments, the author reviewed the equipments' datasheets maintained by the company. The practice of recoring the machine running time, break down and planned maintenance time in the logbook was being regularly undertaken. This led the author a notion to interpret the effectiveness of maintenance based on some parameters. This approach could lead to tangible interpretation.

Generally the effectiveness of maintenance is calculated based on 10 parameters. They are

1.OEE, 2. MTBF, 3. MTTR, 4. Performance quality, 5. MDT,6. Availability,7. Improved maintenance, 8. Increased profit, 9. Improved core competence and 10. Enhanced goodwill.

8.5.1. Computation of OEE

Performance efficiency was assigned a constant value as $^{350}/_{600}$ to PC 650 machines. Since the capacity of these machines is 600 Tph but achieved is just 350 Tonnes. It is assigned a value of $^{350}/_{400}$ for EX 400 since its capacity is 400 tones per hour (Tph) but achieved is 350 Tph. Dumpers' performance rate value was assigned a value of 0.85. The rate of quality was assigned the value of 0.95.

Using these values, OEE for equipment 1 (PC2) during the month of January 2004 was calculated as follows:

 $\begin{array}{rcl} \textbf{OEE} & = & 94.60 \text{ X } 0.90 \text{ X } (350/600) \\ & = & 52.42\% \end{array}$

8.5.2. Computation of Availability

The equipment availability is calculated as follows.

Availability = (Planned production hours -Downtime) (Planned production hours)

Generally for the purpose of calculations, the time is calculated on daily, or monthly or yearly basis depending on the operating condition of the equipment. Here Planned production hours (PPH) is the planned time available for production operations, and downtime is the total time during which the system is not operating because of equipment failures, setup/ adjustment requirements, and other fixtures, etc. Therefore during the implementation study being reported here, availability was expressed as the ratio of actual operating time to loading time. Availability is a measure of the total time the equipment is available for use. It is calculated using the following formula.

Availability = {<u>PPH - (Breakdown time + Maintenance time)</u>} (Planned production hours)

For example, Availability of PC2 during the month January 2004 is,

Availability = $\frac{236.5}{250} \times 100$ = 94.60%

8.5. 3. Computation of MDT

MDT is the average down time of the equipment. That is, the average time equipment would be out of service during a specified month once it breaks down or is brought for service. The method adopted to calculate MDT is presented below.

For example, the MDT of PC 2 during the month January 2004 is,

MDT =
$$(8.5 + 5 + 142.5)$$
 hours
(10+2+18)

= 5.20 hours

8.5. 4. Computation of MTBF

MTBF is the average time equipment would run trouble-free before experiencing any sort of failure. The methodology adopted to compute MTBF is presented below.

MTBF	=	Total Running time
		(Number of breakdowns + Number of maintenance)

For example, the MTBF of PC 2 during the month January 2004 is,

$$MTBF = \frac{94 \text{ hours}}{12}$$

= 7.23 hours

8.5. 5. Computation of MTTR

MTTR is the average time taken to repair equipment once it is brought into service.

It is given by the following formula

MTTR = (Break down time +maintenance time) / (Number of break down + number of maintenance)

For example, for PC 2 during the month January 2004,

$$MTTR = \frac{13.5 \text{ hours}}{12}$$

= 1.13 hours

8.6. Primary data

The primary data obtained from the mines department for the purpose of conducting implementation study of MQFD are shown in Tables 8.7 to 8.17. These tables contain the maintenance records of the eleven equipments, which were selected for the implementation of MQFD.

	一個的	A	lachine Name	: EXCAVATO	R EX 400		
Month	PPH (hours)	Run time (hours)	Breakdown time (<u>hours</u>)	Maintenance time (hours)	Number of breakdowns	Number of maintenance	Number of idle
January 2004	387.5	151.5	7	50	3	1	44
February 2004	362.5	118.5	83.5	0	12	0	43
March 2004	112.5	38.25	2	0.5	4	1	18
April 2004	-	76.5	1.78	Major Overh	auling	1	- P
May 2004				Major Overna	aunng		
June 2004	107.5						
July 2004	115						
August 2004	37.5	9	0	0	1	0	7
September 2004	375	162.5	49	3	1	0	21
October 2004	387	116.25	10.5	50	11	2	49
November 2004	394.5	99.25	45	0	4	1	27
December 2004	387	90	6	150	2	1	25
January 2005	387 5	149	20	0.5	6	1	47
February 2005	350	175	14	0.5	5	1	51
March 2005	387.5	195.5	32.5	0.5	14	0	47
April 2005	375	129.25	3	0	5	0	46
May 2005	387.5	146	10.45	0	5	0	49
June 2005	375	148.5	8	6.5	3	2	51
July 2005	387.5	85.5	120.5	0.5	4	1	35
August 2005	387	158	81.25	3.25	5	4	43
September 2005		1 anas	1	Maintenar	nce		1 20
October 2005	387.5	204.75	50	8.45	8	7	52

Table 8.7. Equipment maintenance data of EX 400 during the years 2004 and 2005

A FE			Machi	ne Name : PC 2			
Month	PPH (hours)	Run time (hours)	Break down time (hours)	Maintenance time (hours)	Number of breakdowns	Number of maintenance	Number of idle
January 2004	250	94	8.5	5 0.3	10	2	18
February 2004	362.5	158	15.25	4.75	5	4	21
March 2004	387.5	192.5	15.25	25.5	11	12	32
April 2004	375	195.25	8	7.25	4	2	23
May 2004	387.5	185.5	20.75	1	11	1	27
June 2004	375	76.5	1.75	201	2	2	12
July 2004	387	196	19.5	14	5	2	33
August 2004	387.5	127.25	16	12.5	5	1	26
September 2004	375	69.25	43	169	3	1	18
October 2004	387.5	144.25	42	0 0	13	0	22
November 2004	375	94	4	144.5	2	3	12
December 2004	387.5	165.75	5.75	125	6	2	27
January 2005	387.5	143.5	30.75	0	9	0	31
February 2005	350	127	109.25	4	2	1	30
March 2005	387.5	139	31.75	52.25	14	2	37
April 2005	375	194.5	24	31.25	10	3	43
May 2005	387.5	176.25	22	6	12	3	46
June 2005	375	131	32.5	0	26	0	42
July 2005	387.5	141	39.5	30.25	• 16	5	35
August 2005	387.5	116.5	134.25	2	5	1	28
September 2005	370	109.5	44.5	136.5	6	5	32
October 2005	350	137.75	76.25	84.5	7	1	29
November 2005	388	220.5	40.75	2	8	1	53
December 2005	387.5	138.25	152.75	2	3	2	29

Table 8.8. Equipment maintenance data of PC2 during the years 2004 and 2005

	Machine Name : EXCAVATOR PC3											
Month	PPH (hours)	Run time (hours)	Breakdown time(hours)	Maintenance time(hours)	Number of breakdown	Number of maintenance	Number of idle					
January 2004	387.5	145.5	30.25	0.5	10	1	24					
February 2004	362.5	46	15.5	277.5	6	1	11					
March 2004	387.5	206	14.5	21	10	4	44					
April 2004	375	173	10.5	4.25	9	4	43					
Mav2004	387.5	132	8.25	2	7	1	39					
hune2004	375	154.5	35.75	18.75	4	1	36					
July 2004	387.5	105.25	20.25	137.5	8	1	27					
August 2004	387.5	121.25	14.5	25	5	1	37					
September 2004	375	139.25	9.75	87.5	3	1	35					
October 2004	387.5	15.25	7.75	325	1	1	5					
November 2004	375	141	18.25	18.75	10	1	43					
December 2004	387	178	37	0	10	0	44					
January 2005	387.5	110.75	28	112.5	9	1	19					
February 2005	350	131.75	37.5	87.5	1	2	19					
March 2005	387	168	35	57.75	14	2	31					
April 2005	375	179.25	22.5	1	14	1	33					
May 2005	387.5	130	38.75	56.25	13	3	27					
June 2005	375	94.75	153.75	0.5	14	1	24					
July 2005	387.5	114	26.75	62.5	12	9	33					
August 2005	387.5	142.75	9.5	26.5	6	3	38					
September 2005	375	110.5	5.5	10.25	14	6	28					
October 2005	325	142.25	24.75	6	11	3	30					
November 2005	375	126.25	113.25	63.5	4	2	26					
December 2005	387.5	188.75	113.25	1	11	1	35					

Table 8.9. Equipment maintenance data of PC3 during the years 2004 and 2005

1			Mac	hine Na	me : HAUL P	PACKI	H1		
Month	PPH (hours)	Run time (hours)	Brea	kdown hours)	Maintanen time(hour	ice I s) b	Number of preakdown	Number of maintanence	Number of idle
January	(nouro)	(110 11 0)							
2004	387.5	183.75	12	2.75	33.25		5	2	49
February	200 5	101			10.75		2		10
2004	362.5	131	2	3.5	12.75	-	3	4	49
March 2004	387.5	194	/	.25	24.25	-	4	2	45
2005	375	200.5	122	2.5	12.5	5	1	2	53
May									
2004	387.5	77	7	.75	218.5		3	4	22
June		1111	-						
2004	375	193	14	4.75	50	-	4	2	43
July	387 5	246 75	2	25	0	35	1	0	40
Anonst	567.5	240.75	-		V		1	v	77
2004	387.5	173.75	3	0.5	56.25		8	2	37
September									
2004	375	89.5	2	0.5	218.75	0	7	1	20
October	207.5	17675	6	1.6	05.75			2	22
2004	387.5	1/0./5	3	1.5	95.75	-	2	2	23
2004	375	83.35	1.	4.25	237.5	0	3	1	18
December 2004	ine i	1973	230	101	3	0			
January 2005									34
February 2005	a series and a series of the s	Majo	r Overl	hauling					10
March 2005	terts 1								
April	Dell'								. M
2005									
May									40
2005	6/100								6.9
2005	1 CONT			-					
July	ENG3								15
2005	light g								
August	000								0
2005									33
September									
October	113								31
2005	a bitr								
November	0.72								24
2005					6				
December	-								1000
2005		-	_			_	-		-

Table 8.10. Equipment maintenance data of H1 during the years 2004 and 2005

Machine Name : HAUL PACK H2											
Month	PPH (hours)	Run time (hours)	Breakdown time(hours)	Maintenance time(hours)	Number of breakdown	Number of maintenance	Number of idle				
January 2004	387.5	203.25	37	8	6	2	55				
February 2004	362.5	184.75	9.25	3	1	1	54				
March 2004	387.5	240.5	11	3	4	1	51				
April 2004	375	182	0	25	0	1	53				
May 2004	387.5	193	8.25	2	4	1	59				
2004	375	166.75	24.75	0	7	0	48				
2004	387.5	174.5	40.75	23.25	11	2	47				
2004	387.5	211.5	38.75	0	10	0	51				
2004 October	375	220.25	35.5	50	8	2	38				
2004	387.5	246.5	29.25	0	8	0	47				
November (04)	375	246.75	31	0	8	0	39				
December 2004	387.5	220	27.25	0	4	0	44				
January 2005	387.5	221.25	17.5	0	4	0	51				
2005	350	181	18.75	0	3	0	48				
March 2005	394	155	4.5	68.75	2	2	44				
2005	375	217	22	6.25	8	1	48				
May 2005	387.5	223.5	54.75	0	5	0	49				
June 2005	375	157	43.25	0	6	0	48 ·				
July 2005	387.5	151.25	48.5	53.75	10	3	40				
August 2005	387.5	155.5	97.25	27.5	8	5	37				
September 2005	375	209.75	4.75	3.5	. 3	6	50				
October 2005	325	157	37.25	60	6	5	24				
November 2005	381.5	236.5	11.5	1.5	3	3	43				
December 2005	394	172.25	136	1	5	1	28				

Table 8.11. Equipment maintenance data of H2 during the years 2004 and 2005

	Contraction of the	Same A	Machine Na	ame : HAUL PA	Machine Name : HAUL PACK H3										
Month	PPH (hours)	Run time (hours)	Breakdown time(hours)	Maintenance time(hours)	Number of breakdown	Number of maintenance	Number of idle								
January 2004	387.5	211.25	2.5	0	1	0	46								
February 2004	362.5	159	0	6.5	0	2	51								
March 2004	387.5	214	22.5	37.25	6	4	42								
April 2004	375	145	20.75	21.75	6	4	41								
May 2004	387.5	134.25	16.75	89.5	4	4	43								
2004	375	183.5	11.25	0	5	0	53								
2004	387.5	105.25	20.5	212.5	3	3	23								
2004	387.5	4.25	2	318.75	. 1	2	11								
2004	375	77	37.75	200	7	4	19								
2004	387.5	285.75	18.75	0	7	0 .	37								
2004	375	256.75	40.75	0	9	0	40								
December 2004	387.5	191	23	37	3	1	34								
January 2005	387.5	231	19.25	19.25	5	4	42								
February 2005	350	234	0	0.5	0	1	43								
March 2005	394	223.25	16	1	6	2	48								
2005	375	177.5	49.5	0	6	0	48								
May 2005	350	225	15.75	0	5	0	53								
2005	375	164.5	12.25	5.75	3	3	48								
July 2005	387.5	200.75	36.5	- 1	12	2	42								
August 2005	387.5	250.75	31.5	3	6	4	40								
2005	375	206	26	1	5	2	47								
October 2005	387.5	251.75	19.5	5.25	5	5	29								
November 2005	394.5	239	56.5	11	2	6	31								
December 2005	394	274	13.5	25	2	4	35								

Table 8.12. Equipment maintenance data of H3 during the years 2004 and 2005

24655	Machine Name : HAUL PACK H4											
Month	PPH (hours)	Run time (hours)	Breakdown time(hours)	Maintenance time(hours)	Number of breakdown	Number of maintenance	Number of idle					
January 2004	387.5	237	19.75	0.	4	0	34					
February 2004	362.5	218.25	9.5	23.75	4	4	35					
March 2004	387.5	260.5	9.5	0	4	0	42					
April 2004	375	225.75	12	9.75	4	1	47					
May 2004	387.5	207.5	33.25	0	8	0	46					
June 2004	375	212.75	9.75	17.25	6	1	38					
July 2004	387.5	202.5	19.25	87.5	6	2	30					
August 2004	387.5	165.5	12.25	150	5	2	27					
September 2004	375	229	8.5	62.5	4	1	32					
October 2004	375	0	0	375	0	1	0					
November 2004	375	0	0	375	0	1	0					
December 2004	262	177	5.75	0	2	. 0	22					
January 2005	387.5	91.75	35.75	137.5	8	2	20					
February 2005	350	226	18	1.5	4	3	38					
March 2005	393	259	0.75	9.5	3 .	4	51					
April 2005	375	263	15.25	11.25	5	5	35					
May 2005	394	249.25	15.75	2	6	5	44					
June 2005	375	202	16.75	1.5	6	6	44					
July 2005	393	242.75	17.75	18	6	4	41					
August 2005	387.5	232.25	42	1.5	5	3	47					
September 2005	375	223	9.5	3.5	3	4	37					
October 2005	387.5	268.25	8	2	4	5	28					
November 2005	375	282	8.75	21.5	5	4	43					
December 2005	387.5	29	342.5	3.5	1	1	4					

Table 8.13. Equipment maintenance data of H4 during the years 2004 and 2005

	Machine Name : HAUL PACK H-5										
Month	PPH (hours)	Run time (hours)	Breakdown time(hours)	Maintenance time(hours)	Number of breakdown	Number of maintenance	Number of idle				
January 2004	387.5	170.5	15	0	6	0	45				
February 2004	362.5	150.75	15.75	18	5	2	49				
March 2004	387.5	241	24	9.5	6	3	53				
April 2004	375	144	8	66	2	5	51				
May 2004	387.5	187.5	38.75	31.25	5	4	47				
June 2004	375	145.5	18.25	112.75	6	3	41				
July 2004	387.5	210.25	28.75	25	11	. 1	38				
August 2004	387.5	234.75	23.25	12.5	. 9	1	44				
September 2004	375	256	11.5	12.5	6	1	48				
October 2004	387.5	156	40	137.5	14	1	30				
November 2004	375	130.5	34	62	8	1	25				
December 2004	387.5	266	19.25	0	5	0	41				
January 2005	387.5	234.25	11.25	1.5	3	2	50				
February 2005	350	216.25	13.5	4	5	4	39				
March 2005	394	252	2.25	46.75	2	5	51				
April 2005	375	278	0	7	5	5	55				
May 2005	387.5	210	17.25	0	5	0	54				
June 2005	375	101	145	0	6	0	37				
July 2005	362.5	227	9.5	5.5	5	5	51				
August 2005	362.5	229.75	19.75	2	6	4	50				
September 2005	175	136	0	1	0	2	26				
October 2005	387.5	231.5	17.25	7	8	5	47				
November 2005	394	276	30.75	13	12	8	42				

Table 8.14. Equipment maintenance data of H5 during the years 2004 and 2005

			Machine Na	me : HAUL PAC	СК Н-6		
Month	PPH (hours)	Run time (hours)	Breakdown time(hours)	Maintenance time(hours)	Number of breakdown	Number of maintenance	Number of idle
January 2004	387.5	120.25	9	62.5	4	2	51
February 2004	362.5	159	1.25	14.5	7	2	44
March 2004	387.5	78	42	153.5	7	4	45
April 2004	375	168.5	12.5	50.75	7	3	38
May 2004	387.5	170	24.75	8.25	13	2	39
June 2004	375	114	7.75	175	8	1	42
July 2004	387.5	217.75	10	7.25	7	3	49
August 2004	387.5	207.75	31.25	32.75	3	2	29
September 2004	375	198.5	47.75	37.5	9	1	44
October 2004	387.5	226.25	21.25	62.5	3	2	44
November 2004	375.5	223	24.5	0	8	0	38
December 2004	387.5	296	31	0	1	0	37
January 2005	387.5	220.5	11	0	4	0	47
February 2005	350	185	14.5	0	5	0	36
March 2005	387	253.75	11.25	8.25	4	2	46
April 2005	375	205.75	24	5.5	9	2	48
May 2005	387.5	234.25	24.25	32.25	5	3	50
June 2005	375	254	26.5	1	8	3	42
July 2005	387.5	250.5	9.5	2	4	4	50
August 2005	394	230	31.5	2.5	11	4	46
September 2005	100	69.5	6.75	0.5	3	1	8
October 2005	275	161	8.5	6	5	5	34
November 2005	394.5	126	87	105	4	2	24
December 2005	394	187.25	41.5	2	10	2	48

Table 8.15. Equipmer	t maintenance dat	a of H6 during	the years	2004 and 2005
----------------------	-------------------	----------------	-----------	---------------

18-15-S	Machine Name : HAUL PACK H-7								
Month	PPH (hours)	Run time (hours)	Breakdown time(hours)	Maintenance time(hours)	Number of breakdown	Number of Number of maintenance	Number of idle		
January 2004	387.5	70.5	3.5	237.5	1	1	22		
February 2004	362.5	122.75	22	23	5	6	30		
March 2004	387.5	155.25	6.75	73.25	3	4	31		
April 2004	375	195.5	12.25	6.25	4	1	38		
May 2004	387.5	108.75	8.25	137.5	3	1	27		
June 2004	375	7.75	3.5	362.5	1	2	2		
July 2004	387.5	0	0	387.5	0	1	0		
August 2004	387.5	4.5	15.25	356.25	4	2	4		
September 2004	375	204.25	19	62.5	3	1	36		
October 2004	387.5	180.85	152	0	5	0	28		
November 2004	375	236	14	0	4	0	40		
December 2004	387.5	232	23.25	23.45	10	4	42		
January 2005	387.5	207	17.75	0	4	0	43		
February 2005	350	144.25	11.25	72.5	4	2	32		
March 2005	394	250.5	15.25	10.5	6	2	39		
April 2005	375	225.75	39.75	0.5	8	1	35		
May 2005	387.5	214	17.75	50	3	2	44		
June 2005	275	221.25	2	1	2	2	44		
July 2005	225	108.25	17	46.75	9	10	18		
August 2005	75	39	14.5	0.5	5	1	9		
September 2005	0	0	0	0	0	0	0		
October 2005	387.5	250.45	23.5	2	8	4	32		
November 2005	375	236	14	0	4	0	40		
December 2005	387.5	232	23.25	23.45	10	4	42		

Table 8.16. Equipment maintenance data of H7 during the years 2004 and 2005

Ser 2	Charles to	A STREET	Machine Na	me : HAUL PAC	CK H-8		新地址 加速
Month	PPH (hours)	Run time (hours)	Breakdown time(hours)	Maintenance time(hours)	Number of breakdown	Number of maintenance	Number of idle
January 2004	387.5	185	31.25	7.75	7	2	50
February 2004	362.5	207.75	6	2	2	1	49
March 2004	387.5	167.5	13	8	5	2	46
April 2004	375	180.75	7.5	0	3	0	51
May 2004	387.5	182.75	0	2.5	0	1	56
June 2004	375	213	21.75	0	10	0	146
July 2004	387.5	226.5	17	0	8	0	52
August 2004	387.5	40	11	262.5	2	1	15
November 2004 December 2004 January 2005 February 2005	antination of a chief of the ch			Major Overha	auling		
March 2005	287.5	29	200	6	1	1	15
April 2005	0	0	0	0	0	0	0
May 2005	0	0	0	0	0	0	0
June 2005	262.5	116.75	21.25	5.5	6	4	35
July 2005	0	0	0	0	0	0	0
August 2005	162.5	84.5	55.5	4.5	7	1	26
September 2005	175	34	5.25	1.5	2	1	17
October 2005	312.5	183.25	23	75.5	8	3	39
November 2005	381.5	253	63.5	3.5	12	2	33
December 2005	407	286.5	23.25	1.5	6	3	41

Table 8.17. Equipment maintenance data of H 8 during the years 2004 and 2005

School of Engineering, CUSAT, Cochin-22

8.7. Calculation of maintenance parameters and analysis of failures

During this stage of implementation study, the maintenance parameters were calculated separately for all the eleven equipments. The values of these parameters are tabulated in Tables 8.18-8.28 and plotted in graphs shown in Figures 8.22-8.44. These graphs were selected to identify desirable and undesirable trends. Desirable trends were ignored and the undesirable variations from the mean were carefully analysed. After analysis the reasons for these variations were studied and suggestions were given.

8.7.1. Maintenance Quality Analysis of EX 400

The values of maintenance quality parameters pertaining to the equipment EX 400 are shown Table 8.18. The values are graphically depicted in Figure 8.22. - 8.26.

Findings

A study of these Table and Figures indicated that there has been sudden variations in availability during the months December 2004 and July 2005 of the otherwise stable equipment, EX 400. Records show that this is the most stable equipment used in the mines. During these months, records show that the maintenance time was also high. So the appropriate personnel were consulted and reasons for these variations were identified. It was the replacements of the boom, stick, level cylinders and the maintenance of swivel joint, which caused the reduction in the availability.

Suggestions

Considering the fact that no maintenance is possible for the cylinders, the following suggestions were given:

- A stock of cylinders must be maintained at the store so as to make the maintenance faster
- Seals must be readily available in the stores.

 Monitor the seals and cylinders that are working properly now and those which are outdated or which have exceeded their lifetime must be replaced since the failure of cylinders can lead to the failure of other components also.

Also the hydraulic problems and their causes must be analysed thoroughly since most of the breakdowns are due to hydraulic problems and elimination of which can improve the availability of machine considerably.

		MTBF	MDT	MTTR	
Month	Availability(%)	(hours)	(hours)	(hours)	OEE(%)
January		1			
2004	85.29	37.88	4.92	14.25	47.27
February					
2004	76.97	9.88	4.44	6.96	42.65
March 2004	97.78	7.65	3.23	0.50	54.19
April 2004	4				
May 2004	MAJ	OR OVERHA	ULING		
June 2004			OLING		
July 2004				<u> </u>	
August 2004	100.00	9.00	4.07	0.00	55.42
September	[
2004	86.13	162.50	10.12	0.00	47.73
October					
2004	81.30	8.94	4.37	4.65	45.05
November			ļ		
2004	99.00	19.85	9.23	0.90	54.86
December			ł		
2004	59.65	30.00	10.61	52.00	33.06
January					
2005	94.80	21.29	4.42	2.86	52.54
February			1		
2005	96.00	29.17	3.07	2.33	53.20
March2005	91.60	13.96	3.15	2.32	50.76
April 2005	99.20	25.85	4.82	0.60	54.97
May 2005	97.20	29.20	4.47	2.09	53.87
June 2005	96.13	29.70	4.04	2.90	53.27
July 2005	69.00	17.10	7.55	24.20	38.24
August 2005	78.20	17.56	4.40	9.39	43.34
September					
2005	Maintenance				
October					
2005	84.90	13.65	2.73	3.90	47.05
November					
2005					
December					
2005			ł	}	

 Table 8.18. Maintenance parameters of EX 400 during the years 2004 and 2005

Figure 8.22. Variation of availability of EX 400 during 2004 and 2005

Figure 8.23 .Variation of MTBF of EX 400 during 2004 and 2005

Figure 8.24 .Variation of MTTR of EX 400 during 2004 and 2005

Figure 8. 26. Variation of OEE of EX 400 during 2004 and 2005

8.7.2. Maintenance Quality Analysis of PC 2

The values of maintenance quality parameters pertaining to the equipment PC 2are shown Table 8.19. The values are graphically depicted from Figure 8.27. to 8.26. A study of these table and figures indicated that there has been a sudden decrease in the availability during June and September 2004. The reasons to this situation is that maintenance works were done during these periods. The maintenances were done to eliminate bucket, undercarriage and structural problems during these months.

Findings

January, March and October 2004 record a very low value in MTBF and the major reason other than those specified above is the high number of breakdowns during these months. Number of unscheduled maintenance would also high especially during March 2004. The MTTR had increased during the months June, September and November 2004 due to undercarriage welding.

During September and October 2005 availability was low as a lot of maintenance works were carried out during these months. The reason for decrease in availability during 2005 are exactly the same that caused a decrease in its availability during 2004. During March, June and July 2005, MTBF was low, This is attributed due to the reason that a high number of brake downs occurred during these months similar to the year 2004.

During December and February 2005, high break down hours combined with bucket problems increased the MTTR.

	Availability	MTBF		MTTR	
Month	(%)	(hrs)	MDT (hrs)	(hrs)	OEE(%)
January					
2004	94.60	7.83	5.20	1.13	52.42
February					
2004	94.48	17.56	6.82	2.22	52.36
March 2004	89.48	8.37	3.55	1.77	49.59
April 2004	95.93	32.54	6.20	2.54	53.16
May 2004	94.39	15.46	5.18	1.81	52.31
June 2004	45.93	19.13	18.66	50.69	25.45
July 2004	91.34	28.00	4.78	4.79	50.62
August 2004	92.65	21.21	8.13	4.75	51.34
September					
2004	43.47	17.31	13.90	53.00	24.09
October					
2004	89.16	11.10	6.95	3.23	49.41
November					
2004	60.40	18.80	16.53	29.70	33.47
December				ĺ	
2004	66.26	20.72	6.34	16.34	36.72
January					
2005	92.06	15.94	6.10	3.42	51.02
February					
2005	67.64	42.33	6.76	37.75	37.49
March 2005	• 78.32	8.69	4.69	5.25	43.40
April 2005	85.27	14.96	3.22	4.25	47.25
May 2005	92.77	11.75	3.46	1.87	51.41
June 2005	91.33	5.04	3.59	1.25	50.61
July 2005	82.00	6.71	4.40	3.32	45.44
August 2005	64.84	19.42	7.97	22.71	35.93
September					
2005	51.08	9.95	6.06	16.45	28.31
October					
2005	54.07	17.22	5.74	20.09	29.96
November	}				
2005	88.98	24.50	2.70	4.75	49.31
December					
2005	60.06	27.65	7.33	30.95	33.29

 Table 8.19. Maintenance parameters of PC2 during the year 2004 and 2005

Figure 8. 27 .Variation of availability of PC 2 during 2004 and 2005

Figure 8. 28 .Variation of MTBF of PC 2 during 2004 and 2005

Figure 8. 29. Variation of MTTR of PC 2 during 2004 and 2005

Figure 8. 30. Variation of MDT of PC 2 during 2004 and 2005

Figure 8. 31. Variation of OEE of PC 2 during 2004 and 2005

Suggestions

After recording and analyzing the above observations, the following suggestions are made:

- Since the reason for the decrease in availability of PC2 in the years 2004 and 2005 are the same, the author suggests that strict care must be taken to analyze the problems and their causes.
- The machine during certain months shows high number of breakdowns. This matters since even a small breakdown can cause considerable wastage of time.
- Even though the MTBF shows an increasing trend from September 2005 –December 2005, under carriage and bucket problems are also occurring every month constantly. This must be eliminated to increase the availability.

8.7.3. Maintenance Quality Analysis of PC 3

The values of maintenance quality parameters pertaining to the equipment PC 3 are shown Table 8.20. The values are graphically depicted in Figure 8.32-8.36.

A study of these tables and figures revealed the following observations.

Year 2004

During the months of February and October 2004, the MTTR was high due to the failure of front and rear bucket and engine failure. Hence the availability was low during these months.

and the second sec		MTBF	MDT	MTTR	
Month	Availability(%)	(hours)	(hours)	(hours)	OEE(%)
January2004	92.06	13.23	6.91	2.80	51.02
February2004	19.17	6.57	17.58	41.86	10.62
March 2004	90.84	14.71	3.13	2.54	50.34
April 2004	96.07	13.31	3.61	1.13	53.24
May 2004	97.35	16.50	5.44	1.28	53.95
June 2004	85.47	30.90	5.38	10.90	47.36
July 2004	59.29	11.69	7.84	17.53	32.86
August 2004	89.81	20.21	6.19	6.58	49.77
September 2004	74.07	34.81	6.04	24.31	41.05
October 2004	14.13	7.63	53.18	166.38	7.83
November 2004	90.13	12.82	4.33	3.36	49.95
December 2004	90.44	17.80	3.87	3.70	50.12
January 2005	63.74	11.08	9.54	14.05	35.32
February 2005	64.29	43.92	9.92	41.67	35.63
March 2005	76.03	10.50	4.66	5.80	42.14
April 2005	93.73	11.95	4.08	1.57	51.94
May 2005	75.48	8.13	5.99	5.94	41.83
June2005	58.87	6.32	7.19	10.28	32.62
July 2005	76.97	5.43	5.06	4.25	42.65
August 2005	90.71	15.86	5.21	4.00	50.27
September 2005	95.80	5.53	5.51	0.79	53.09
October 2005	90.54	10.16	4.15	2.20	50.17
November 2005	52.87	21.04	7.77	29.46	29.30
December 2005	70.52	15.73	4.23	9.52	39.08

Table 8. 20. Maintenance parameters of PC3 during the years 2004 and 2005

Figure 8. 32. Variation of availability of PC 3 during 2004 and 2005

Figure 8. 33. Variation of MTBF of PC 3 during 2004 and 2005

Page 148 of 370

Figure 8. 34. Variation of MTTR of PC 3 during 2004 and 2005

Figure 8. 35. Variation of MDT of PC 3 during 2004 and 2005

Figure 8. 36. Variation of OEE of PC 3 during 2004 and 2005

Year 2005

MTBF and MTTR were high due to the bucket, PTO and structural problem. The equipment has commissioned after changing the welded bucket and rectifying the PTO problem. In June 2005, the availability was low due to the failure of charging pump. Charging pump is a gear operated hydraulic pump. All the pilot operations of the valve blanks are carried out by charging pump. Its failure is a peculiar problem. In November 2005, some problems occurred in the equipments and the equipment got stopped. Later it was rectified by structural welding and replacing the PTO by a new one.

Suggestions

Even though the equipment got more than 75% availability consistently, few moths (6 out of 24 months) the availability was low. It can be rectified by

- i) Keeping a stand by of overhauled / new engine.
- ii) Keeping a stand by of ready front and rear bucket

iii) Keeping a stand by of ready arm.

8.7.4. Common suggestions for PC 2 and PC 3

Hydraulic excavator PC 2 and PC 3 are identical machines. In order to improve the maintenance parameters, sub-assemblies can be procured and kept as standby units. Such standby units can be fitted in anyone of the above excavators. The standby units suggested would include the following:

- 1. At least one each hydraulic cylinder with boom arm, and bucket.
- 2. Bucket assembly
- 3. Hydraulic pump assemblies
- 4. Engine assemblies
- 5. One set of final drive
- 6. Arm assemblies

When comparing PC2 and PC3, hydraulic oil leak contributed to the major portion of breakdown distribution. This contributes more than 50percent in case of PC 2. In order to curb this, replacement of entire hydraulic hoses and O-rings are suggested.

8.7. 5. Maintenance Quality Analysis of Dumpers

In this section, the maintenance quality analyses of dumpers are presented.

8.7.5.1. Maintenance Quality Analysis of H 1

The values of maintenance quality parameters pertaining to the equipment H1 are shown in Table 8.21. The values are graphically depicted from Figures 8.37 to 8.41. The study of these table and figures indicated that there has been the problems arising in this machine are those which cause stoppage of the machine. The decrease in the availability, MTBF and MTTR occurred due to

transmission problems and engine failure. The machine is now in the workshop and is undergoing major overhauling. A better performance is expected after its major overhauling. It must be noted that the machine is in the workshop for the past 18 months and the work must be speeded up.

Month	Availability (%)	MTBF MDT (hours) (hours)		MTTR (hours)	OEE (%)
January 2004	88.13	26.25	3.64	6.57	71.16
February 2004	90.00	18.71	4.13	5.18	72.68
March 2004	91.87	32.33	3.79	5.25	74.19
April 2004	96.00	66.83	3.12	5.00	77.52
May 2004	41.61	11.00	10.71	32.32	33.60
June 2004	82.73	32.17	3.71	10.79	66.81
July 2004	99.42	246.75	2.82	2.25	80.28
August 2004	77.61	17.38	4.55	8.68	62.67
September 2004	36.20	11.19	10.20	29.91	29.23
October 2004	62.00	25.25	7.03	21.04	50.07
November 2004	32.87	20.84	13.26	62.94	26.54
December 2004					
January 2005					
February 2005					
March 2005	MAJOR OVERI	HAULING			
April 2005					
May 2005					
June 2005					
July 2005					
August 2005					
September 2005					
October 2005					
November 2005					
December 2005					

Table 8.21. Maintenance parameters of H1 during the years 2004 and 2005

Figure 8.37. Variation of availability of H1 during 2004 and 2005

Figure 8.38. Variation of MTBF of H1 during 2004 and 2005

Figure 8.39. Variation of MTTR of H1 during 2004 and 2005

Figure 8.40. Variation of MDT of H1 during 2004 and 2005

Figure 8.41. Variation of OEE of H1 during 2004 and 2005

8.7.5.2. Maintenance Quality Analysis of H2

The values of maintenance quality parameters pertaining to the equipment EX 400 are shown Table 8.22. The values are graphically depicted in Figures from 8.42. to 8.46.

Findings

Months that demand alertness are August, October, and December 2005. The reasons being a high number of breakdowns due to brake problems, engine seizure suspension problem and steering works. These problems have led to a decrease in the availability of the machine which otherwise shows a high availability.

During July 2004, July 2005 and August 2005, a low value of MTBF was recarded due to high number of breakdowns. Form July 2005, MTBF has been showing a decreasing trend. During March and December 2005, a high value of MTTR was recorded. Bucket welding, engine seizure and suspension problems have contributed to this high value of MTTR.

Suggestions

During July 2004 and July 2005, a high number of breakdowns occurred. The effect of the various climatic seasons on the machine must be analysed. Especially during rainy seasons spanning June and July months proper measures must be taken. Since the engine and suspension problems have been on the rise, condition monitoring of these parts must be carried out.

Month	Availability	MTBF	MDT (bours)	MTIR	OEE
January 2004	88.39	25.41	2.92	5.63	71.37
February 2004	96.62	92.38	3.17	6.13	78.02
March 2004	96.39	48.10	2.63	2.80	77.83
April 2004	93.33	182.00	3.57	25.00	75.37
May 2004	97.35	38.60	3.04	2.05	78.61
June 2004	93.40	23.82	3.79	3.54	75.42
July 2004	83.48	13.42	3.55	4.92	67.41
August 2004	90.00	21.15	2.89	3.88	72.68
September 2004	77.20	22.03	3.22	8.55	62.34
October 2004	92.45	30.81	2.56	3.66	74.65
November 2004	91.73	30.84	2.73	3.88	74.07
December 2004	92.97	55.00	3.49	6.81	75.07
January 2005	95.48	55.31	3.02	4.38	77.10
February 2005	94.64	60.33	3.31	6.25	76.42
March 2005	81.41	38.75	4.98	18.31	65.74
April 2005	92.47	24.11	2.77	3.14	74.67
May 2005	85.87	44.70	3.04	10.95	69.34
June 2005	88.47	26.17	4.04	7.21	71.44
July 2005	73.61	11.63	4.46	7.87	59.44
August 2005	67.81	11.96	4.64	9.60	54.75
September 2005	97.80	23.31	2.80	0.92	78.97
October 2005	70.08	14.27	4.80	8.84	56.59
November 2005	96.59	39.42	2.96	2.17	78.00
December 2005	65.23	28.71	6.52	22.83	52.67

 Table 8.22. Maintenance parameters of H2 during the years 2004 and 2005

Figure 8.42. Variation of availability of H2 during 2004 and 2005

Figure 8.43. Variation of MTBF of H2 during 2004 and 2005

Figure 8.44. Variation of MTTR of H2 during 2004 and 2005

Figure 8.45. Variation of MDT of H2 during 2004 and 2005

Figure 8.46. Variation of OEE of H2 during 2004 and 2005

8.7.5.3. Maintenance Quality Analysis of H 3

The values of maintenance quality parameters pertaining to the equipment H3 are shown Table 8.23. The values are graphically depicted in Figures 8.47 to 8.51. A study of these table and figures reveal the following observations.

Findings

In July 2004, final drive problem, changing of brake line and engine component failure have resulted in decrease in availability. In August and September 2004, a lot of engine work lead to new engine being mounted and this has contributed to decrease in availability. In July 2005, a high number of brake problems have resulted in low MTBF.

Suggestions

Final drive problems can be reduced to some extent by decreasing the load carried by the machine. Recurrence of component failure and subsequent

engine work occurred as new engine was mounted. The machine is also showing tyre problems continuously from December 2004 to December 2005. Frequent occurrence of this problem must be carefully analyzed and proper actions have to be taken.

Month	Availability (%)	MTBF (hours)	MDT (hours)	MTTR (hours)	OEE (%)
January 2004	99.35	211.25	3.75	2.50	80.23
February 2004	98.21	79.50	3.84	3.25	79.30
March 2004	84.58	21.40	3.34	5.98	68.30
April 2004	88.67	14.50	4.51	4.25	71.60
May 2004	72.58	16.78	4.97	13.28	58.61
June 2004	97.00	36.70	3.30	2.25	78.33
July 2004	39.87	17.54	9.73	38.83	32.20
August 2004	17.23	. 1.42	27.38	106.92	13.91
September 2004	36.60	7.00	9.93	21.61	29.55
October 2004	95.16	40.82	2.31	2.68	76.84
November 2004	89.13	28.53	2.41	4.53	71.98
December 2004	84.52	47.75	5.17	15.00	68.25
January 2005	90.06	25.67	3.07	4.28	72.73
February 2005	99.86	234.00	2.64	0.50	80.63
March 2005	95.69	27.91	3.05	2.13	77.27
April 2005	86.80	29.58	3.66	8.25	70.09
May 2005	95.50	45.00	2.16	3.15	77.12
June 2005	95.20	27.42	3.90	3.00	76.87
July 2005	90.32	14.34	3.33	2.68	72.94
August 2005	91.10	25.08	2.74	3.45	73.56
September 2005	92.80	29.43	3.13	3.86	74.94
October 2005	93.61	25.18	3.48	2.48	75.59
November 2005	82.89	29.88	3.99	8.44	66.93
December 2005	90.23	45.67	2.93	6.42	72.86

Table 8.23. Maintenance parameters of H3 during the years 2004 and 2005

Figure 8.47. Variation of availability of H3 during 2004 and 2005

Figure 8.48. Variation of MTBF of H3 during 2004 and 2005

Page 161 of 370

Figure 8.49. Variation of MTTR of H3 during 2004 and 2005

Figure 8.50. Variation of MDT of H3 during 2004 and 2005

Figure 8.51. Variation of OEE of H3 during 2004 and 2005

8. 7.5.4. Maintenance Quality Analysis of H 4

The values of maintenance quality parameters pertaining to the equipment H4 are shown Table 8.24. The values are graphically depicted in Figure 8.52 to 8.56.

Findings

Year 2004

During October and November 2004, high breakdown occurred due to the breaking of engine axle.

Year 2005

During the months January and December 2005, breakdown due to transmission problem, engine failure, master cylinder booster problem and cabin problems has contributed to the reduction in the availability.

During June 2005, a high number of breakdown and maintenance stoppages have led to the increase in MTBF.

Suggestions

The author observed a number of transmission problems occurring in this machine from July 2004 to November 2005 and at least two transmission problems are occurring every month in this period. Since transmission trouble being a critical one, its cause must be detected and proper actions must be taken to eliminate the same. The author suggested to stock spare gearbox and differential components in order to make the maintenance work faster.

	Availability	MTBF	MDT	MTTR	, OEE
Month	(%)	(hours)	(hours)	(hours)	(%)
January 2004	94.90	59.25	3.96	4.94	76.63
February 2004	90.83	27.28	3.35	4.16	73.34
March 2004	97.55	65.13	2.76	2.38	78.77
April 2004	94.20	45.15	2.87	4.35	76.07
May 2004	91.42	25.94	3.33	4.16	73.82
June 2004	92.80	30.39	3.61	3.86	74.94
July 2004	72.45	25.31	4.87	13.34	58.50
August 2004	58.13	23.64	6.53	23.18	46.94
September 2004	81.07	45.80	3.95	14.20	65.46
October 2004	0.00	0.00	375.00	375.00	0.00
November 2004	0.00	0.00	375.00	375.00	0.00
December 2004	97.81	88.50	3.54	2.88	78.98
January 2005	55.29	9.18	9.86	17.33	44.65
February 2005	94.43	32.29	2.76	2.79	76.25
March 2005	97.39	.37.00	2.31	1.46	78.64
April 2005	92.93	26.30	2.49	2.65	75.04
May 2005	95.49	22.66	2.63	1.61	77.11
June 2005	95.13	16.83	3.09	1.52	76.82
July 2005	90.90	24.28	2.95	3.58	73.40
August 2005	88.77	29.03	2.82	5.44	71.69
September 2005	96.53	31.86	3.45	1.86	77.95
October 2005	97.42	29.81	3.22	1.11	78.67
November 2005	91.93	31.33	1.79	3.36	74.24
December 2005	10.71	14.50	59.75	173.00	8.65

Table 8.24. Maintenance parameters of H4 during the years 2004 and 2005

Figure 8.52. Variation of availability of H4 during 2004 and 2005

Figure 8.53. Variation of MTBF of H4 during 2004 and 2005

Implementation of MQFD in the Mines of a Cement Plant

Figure 8.54. Variation of MTTR of H4 during 2004 and 2005

Figure 8.55. Variation of MDT of H4 during 2004 and 2005

Figure 8.56. Variation of OEE of H4 during 2004 and 2005

8.7.5.5. Maintenance Quality Analysis of H5

The values of maintenance quality parameters pertaining to the equipment EX 400 are shown Table 8.25. The values are graphically depicted in Figures 8.57 to 8.61.

Findings

Year 2004

During June 2004, a number of maintenance works were carried out as the front wheel cylinder kit has changed. Also engine oil service was undertaken besides the changing of air leak component hose.

During October 2004, breakdown occurred due to engine failure, differential failure and final drive problem. These breakdows resulted in low availability.

During November 2004, vehicle accident has lead to cabin damage, which resulted in low MTBF.

Year 2005

During June and November 2005, equipment was not taking load, which has resulted in high breakdown time, and thus causing low MTBF.

Suggestions

By carefully analyzing this machine the author discovered that engine problems are frequently occurring. This resulted in less pulling and hence less load carrying capacity of the machine. The author suggests a thorough fuel injection pump calibration and weekly inspection of air filter. Also the author observed a number of transmission problems which must be looked into and proper actions should be initiated.

· · · · · · · · · · · · · · · · · · ·	Availability	MTBF	MDT	MTTR	OEE
Month	(%)	(hours)	(hours)	(hours)	(%)
January 2004	96.13	28.42	4.25	2.50	77.62
February 2004	90.69	21.54	3.78	4.82	73.23
March 2004	91.35	26.78	2.36	3.72	73.77
April 2004	80.27	20.57	3.98	10.57	64.82
May 2004	81.94	20.83	3.57	7.78	66.16
June 2004	65.07	16.17	4.59	14.56	52.54
July 2004	86.13	17.52	3.55	4.48	69.55
August 2004	90.77	23.48	2.83	3.58	73.30
September 2004	93.60	36.57	2.16	3.43	75.58
October 2004	54.19	10.40	5.14	11.83	43.76
November 2004	74.40	14.50	7.19	10.67	60.08
December 2004	95.03	53.20	2.64	3.85	76.74
January 2005	96.71	46.85	2.79	2.55	78.09
February 2005	95.00	24.03	2.79	1.94	76.71
March 2005	87.56	36.00	2.45	7.00	70.71
April 2005	98.13	27.80	1.49	0.70	79.24
May 2005	95.55	42.00	3.01	3.45	77.16
June 2005	61.33	16.83	6.37	24.17	49.53
July 2005	95.86	22.70	2.22	1.50	77.41
August 2005	94.00	22.98	2.21	2.18	75.91
September 2005	99.43	68.00	1.39	0.50	80.29
October 2005	93.74	17.81	2.60	1.87	75.70
November 2005	88.90	13.80	1.90	2.19	71.78
December 2005	87.73	20.64	2.18	3.63	70.84

Table 8.25. Maintenance parameters of H5 during the years 2004 and 2005

Figure 8.57. Variation of availability of H5 during 2004 and 2005

Figure 8.59. Variation of MTTR of H5 during 2004 and 2005

Figure 8.60. Variation of MDT of H5 during 2004 and 2005

Figure 8.61. Variation of OEE of H5 during 2004 and 2005

8.7.5.6. Maintenance Quality Analysis of H6

The values of maintenance quality parameters pertaining to the equipment H6 are shown Table 8.26. The values are graphically depicted in Figures 8.62 to 8.66.

Findings

During November 2005, due to pin pivot work, transmission problems and engine problems increased the volume of maintenance works.

Suggestions

Even after carrying out a considerable amount of work on the engine, a number of problems like cooling, turbo, belt, oil leak and over smoke are frequently occurring. This shows that improper maintenance and check up have been carried out. Lubrication and cooling problems must be looked into which can reduce the turbo problems to some extent. Oil leak can be avoided by using good quality oil seals and their proper installation.

Month	Availability (%)	MTBF (hours)	MDT (hours)	MTHR. (hour)	OEE
Ianuary 2004	81 55	20.04	4 69	11.92	65.85
February 2004	95.66	17 67	2.84	1 75	77 24
	33.00 40.55	7.00	5.57	1.75	40.01
March 2004	49.55	7.09	5.55	17.77	40.01
April 2004	83.13	16.85	4.30	6.33	67.13
May 2004	91.48	11.33	4.03	2.20	73.87
June 2004	51.27	12.67	5.12	20.31	41.40
July 2004	95.55	21.78	2.88	1.73	77.16
August 2004	83.48	41.55	5.29	12.80	67.41
September 2004	77.27	19.85	3.27	8.53	62.39
October 2004	78.39	45.25	3.29	16.75	63.30
November 2004	93.48	27.88	3.32	3.06	75.48
December 2004	92.00	296.00	2.41	31.00	74.29
January 2005	97.16	55.13	3.27	2.75	78.46
February 2005	95.86	37.00	4.02	2.90	77.40
March 2005	94.96	42.29	2.56	3.25	76.68
April 2005	92.13	18.70	2.87	2.68	74.40
May 2005	85.42	29.28	2.64	7.06	68.98
June 2005	92.67	23.09	2.28	2.50	74.83
July 2005	97.03	31.31	2.36	1.44	78.35
August 2005	91.37	15.33	2.69	2.27	73.78
September 2005	92.75	17.38	2.54	1.81	74.90
October 2005	94.73	16.10	2.59	1.45	76.49
November 2005	51.33	21.00	8.95	32.00	41.45
December 2005	88.96	15.60	3.45	3.63	71.83

 Table 8.26.
 Maintenance parameters of H6 during the years 2004 and 2005

Figure 8.62. Variation of availability of H6 during 2004 and 2005

Figure 8.63. Variation of MTBF of H6 during 2004 and 2005

Figure 8.64. Variation of MTTR of H6 during 2004 and 2005

Figure 8.65. Variation of MDT of H6 during 2004 and 2005

Figure 8.66. Variation of OEE of H6 during 2004 and 2005

8.7.5.7. Maintenance Quality Analysis of H7

The values of maintenance quality parameters pertaining to the equipment H7 are shown Table 8.27. The values are graphically depicted in Figures 8.67 - 8.71.

Findings

During January2005 and June, July, and August 2004, a number of maintenance works took place mainly due to the final drive and transmission complaints. This has led to the decrease in availability significantly.

The negative trend shown by graph from March 2005 is not due to the failures but due to the decrease in working hours. Also during April 2005, transmission, final drive and propeller shaft problems were reported. During December,2005, the number of breakdowns has increased and in July and August,2005, engine changing and release valve kit have been changed respectively. All these have contributed to the increase in MTBF.

Suggestions

The author observed a number of final drive and transmission problems and he suggested that the load given to the machine has to be decreased.

Month	Availability (%)	MTBF (hours)	MDT (hours)	MTTR (hours)	OEE(%)
January 2004	37.81	35.25	13.21	120.50	30.53
February 2004	87.59	11.16	5.85	4.09	70.73
March 2004	79.35	22.18	6.11	11.43	64.08
April 2004	95.07	39.10	4.17	3.70	76.77
May 2004	62.39	27.19	8.99	36.44	50.38
June 2004	2.40	2.58	73.45	122.00	1.94
July 2004	0.00	0.00	0.00	0.00	0.00
August 2004	4.13	0.75	38.30	61.92	3.33
September 2004	78.27	51.06	4.27	20.38	63.20
October 2004	60.77	36.17	6.26	30.40	49.08
November 2004	96.27	59.00	3.16	3.50	77.74
December 2004	87.95	16.57	2.78	3.34	71.02
January 2005	95.42	51.75	3.84	4.44	77.05
February 2005	76.07	24.04	5.41	13.96	~ 61.43
March 2005	93.46	31.31	3.05	3.22	75.47
April 2005	89.27	25.08	3.39	4.47	72.08
May 2005	82.52	42.80	3.54	13.55	66.63
June 2005	98.91	55.31	1.12	0.75	79.87
July 2005	71.67	5.70	3.16	3.36	57.87
August 2005	80.00	6.50	2.40	2.50	64.60
September 2005	0.00	0.00	0.00	0.00	0.00
October 2005	93.42	20.87	3.11	2.13	75.44
November 2005	96.27	59.00	3.16	3.50	77.74
December 2005	87.95	16.57	2.78	3.34	71.02

Table 8. 27. Maintenance parameters of H7 during the years 2004 and 2005

Figure 8.67. Variation of availability of H7 during 2004 and 2005

Figure 8.68. Variation of MTBF of H7 during 2004 and 2005

Figure 8.69. Variation of MTTR of H7 during 2004 and 2005

Figure 8.70. Variation of MDT of H7 during 2004 and 2005

Figure 8.71. Variation of OEE of H7 during 2004 and 2005

8.7.5.8. Maintenance Quality Analysis of H8

The values of maintenance quality parameters pertaining to the equipment H8 are shown Table 8.28. The values are graphically depicted in Figures 8.72-8.76.

Findings

This is the most unstable and unavailable machine among the dumpers in the mine. On further enquiry the author came to know that the engine used in this particular machine is komatsu engine, which has a lot of special features. However, but it has less power when compared to Kirloskar Cummins engine used in the other dumpers. Komatsu engine fitted in this dumper is a prototype developed by Bharath Earth Movers Limited and as a result, a number of teething troubles were noticed. This eventually made this vehicle a low available and performing vehicle.
Month	Availability (%)	MTBF (bours)	MDT (bours)	MTTR (hours)	OEE (%)
January 2004	89.94	20.56	3.43	4.33	72.62
February 2004	97.79	69.25	2.98	2.67	78.97
March 2004	94.58	23.93	4.15	3.00	76.37
April 2004	98.00	60.25	3.60	· 2.50	79.14
May 2004	99.35	182.75	3.59	2.50	80.23
June 2004	94.20	21.30	1.04	2.18	76.07
July 2004	95.61	28.31	2.68	2.13	77.21
August 2004	29.42	13.33	19.31	91.17	23.76
September 2004		•			
October 2004					
November 2004					
December 2004	MAJOR OVERHAU	LING			
January 2005					
February 2005					
March 2005	28.35	14.50	15.21	103.00	22.89
April 2005					
May 2005					0.00
June 2005	89.81	11.68	3.24	2.68	72.52
July 2005					
August 2005	63.08	10.56	2.29	7.50	50.93
September 2005	96.14	11.33	7.05	2.25	77.64
October 2005	68.48	16.66	2.59	8.95	55.30
November 2005	82.44	18.07	2.73	4.79	66.57
December 2005	93.92	31.83	2.41	2.75	75.84

 Table 8.28.
 Maintenance parameters of H8 during the years 2004 and 2005

Implementation of MQFD in the Mines of a Cemeni runi

Figure 8.72. Variation of Availability of H8 during 2004 and 2005

Figure 8.73. Variation of MTBF of H8 during 2004 and 2005

Figure 8.74. Variation of MTTR of H8 during 2004 and 2005

Figure 8.75. Variation of MDT of H8 during 2004 and 2005

Page 182 of 370

Suggestions

The author suggested that in future purchases, units that have proved its reliability and worthiness must be considered. If this machine is more prone to failures, in future this machine must be decommissioned in future.

8.8. Implementation of TPM pillars

As mentioned in an earlier chapter, TPM is formed by eight pillars. This part deals with action plans for eight TPM pillars for directing the outputs of HoQ through them. The outputs of HoQ are

- 1. Scheduled blasting time
- 2. Tightening loose parts
- 3. Repair
- 4. Routine cleaning
- 5. Routine lubrication
- 6. Routine hydraulic Oil filling
- 7. Welding cracks

- 8. Tinkering
- 9. Replacement of damaged parts
- 10. Operator awareness
- 11. Leakage checking of diesel
- 12. Calibration of Pump/Injector
- 13. Periodic replacement
- 14. Routine maintenance
- 15. Training classes
- 16. Halogen lights
- 17. Leveling.

Strategic decision was made to categorize the above HoQ and outputs as required to pass through TPM pillars and those not required to pass through TPM pillars. The actions to be taken in this regard are tabulated in Tables 8.29 and 8.30.

Fable 8.29 T	echnical languages,	which are not	required to pass	through the	TPM pillars
---------------------	---------------------	---------------	------------------	-------------	--------------------

Technical languages	Actions to be taken
Scheduled blasting	A schedule has to be made for the time of blasting. This has to be
time	decided by considering the present availability of loose material and the
	probability of getting loose material during each blasting.
Routine cleaning	Cleaning of the equipments in addition to the daily cleaning by the
<u>-</u>	operators has to be carried out on a scheduled way.
Welding Cracks	Cracks, as soon as they are detected have to be welded.
Tinkering	Tinkering works have to be done at a regular interval.
Leakage checking of	Diesel leak has to be checked frequently.
diesel	
Calibration of pump/	Pumps/ injectors have to be calibrated at regular intervals.
injector.	
Periodic replacement	Replacement of some specific parts of the equipments has to be carried
	out at regular intervals.
Routine maintenance	Maintenance of some typical parts has to be done on routine basis.
Halogen lamp	Halogen lamps have to be provided in the equipments. This will help
	them to work safely during night shifts.
Leveling	The place where the equipments are fixed for working should be
	leveled well. This will help them to do their functions efficiently.
	People have to be deputed for the training classes. They should be
Training Classes	trained about the basic principles and the activities at work places
	where they have to be attentive. It can be executed without the aid of
	TPM pillars.

Technical		Actions to be taken
Tightoning	Autonomouo	Onortor should clean lubricate and tighten the loose
lightening	Maintenance	operators should clean, hubicate and tighten the loose
loose parts	Maintenance	parts of their equipments. If any cracks or some
	(Jisnu-Hozen -	abnormalities are observed, it should be informed to the
	Pillar I)	maintenance wing at the earliest. Some orientation
		programs have to be conducted to set their mind in that
		direction
	Individual	Operators should be trained to clean, lubricate and
	Improvement	tighten the loose parts. This has to become a culture.
	(Kobetsu Kaizen-	Some orientation programs have to be conducted to set
	Pillar 2)	their mind in that direction. In addition to that they
		should be motivated by suitable rewards.
	Planned	Maintenance of the equipments has to be conducted in a
	Maintenance	scheduled way. It has to be done based on the
	(Pillar 3)	recommendation of manufacturers and experience of the
		maintenance executives.
	Quality	It has to be assured that the equipments leaving the
	Maintenance	maintenance shop are defect free to the extent possible.
	(Pillar 4)	
	Office TPM	Spare procurement lead time is to be reduced to 48
	(Pillar 5)	hours from 60days.
	Education and	Employees should be motivated to pursue higher
	Training	studies. They should be given suitable training in
	(Pillar 6)	mechanical, electrical works and positive attitude.
	Safety, Health and	Employees should be made aware of doing their work in
	Environment	a safe way. Some classes on safety aspects have to be
	(Pillar 7)	conducted. They should be made health conscious.
		Environment has to be kept clean. Implementation of 5S
	[principles can provide remarkable results in this
		direction.
	Initial Control/	First the principles have to implemented for some
	Development	selected machines. When this is achieved, the
	Management	implementation has to be extended to other areas.
	(Pillar 8)	· · · · · · · · · · · · · · · · · · ·
Repair	Autonomous	The vehicles reaching the repair shops should be
	Maintenance	repaired under the strict control of the concerned diesel
	(Jishu- Hozen -	mechanic. If any work is done by assistants it should be
	Pillar 1)	known to him. Ultimately it has to be carried out under
		the attention of the concerned officer
	Individual	Mind setup of the people has to be developed for
	Improvement	conducting the autonomous maintenance. This
	(Kobetsu Kaizen-	recommends for defining appropriate authority and
	Pillar 2)	responsibility hierarchies. Installation of an appropriate
		communication channel can provide remarkable results
1	1	in this direction.

Table 8.30. Technical languages, which are required to pass through the TPM pillars

Table Contd.....

	· · · · · · · · · · · · · · · · · · ·	
	Planned	Maintenance of each equipment has to be done
	Maintenance	according to the recommendations of the manufacturer,
	(Pillar 3)	observations of daily inspection, and life monitoring
		records. If some deviations have to be done, it should be
		checked in all aspects.
	Quality	It has to be assured that the equipments leaving the
	Maintananaa	workshop are defect free
	(D)11. (1)	workshop are derect nee.
	(Pillar 4)	
	Office TPM	Transactions concerning spare parts purchase, order
	(Pillar 5)	placements, payments to suppliers etc have to be done at
		proper time.
	Education and	Maintenance personnel should be educated to carryout
	Training	the maintenance works in a systematic way. They
1	(Pillar 6)	should attend sufficient classes in that direction. They
	(should be motivated to pursue higher studies and for
1		undate knowledge level for acquiring knowledge on
		current modern maintenance practices carried out all
		ensued the world
l I	Safety, Health and	The maintenance shop has to be kept in a hygienic
1	Environment	condition. Personnel should be trained to conduct their
	(Pillar 7)	work in a safe way. Accident prone workers have to be
		identified and given only simple jobs. Besides 5S
1		practices need to be implementated.
1	Initial Control/	First actions have to be taken to ensure that some
	Development	selected equipments are in good and perfect condition.
	Management-	Later it has to be expanded to other equipments.
	(Pillar 8)	
Routine	Lubricants have to be	applied on the equipments on a scheduled basis. This has
hourie	to done by the oper	rators. A colour coding has to be made to identify the
Indication	lubrication spots an	d the lubricants. This will prevent the application of
1	improper lubriconte a	t the enote
1	Autor trans	Oncorretory lubricate their equipments
	Autonomous	Operators nuoricate then equipments.
	Maintenance	
	(Jishu- Hozen -	
	Pillar I)	
	Individual	Train the operators in that direction. They should have
	Improvement	fundamental knowledge about the purpose of
	(Kobetsu Kaizen-	lubrication, grades of lubricants etc.
	Pillar 2)	
	Planned	Prepare a schedule for lubrication interval of each
	Maintenance	machinery part and follow it.
	(Pillar 3)	
	Quality	This aims to assure proper (covering all points of
	Maintenance	lubrication scheduled) timely (exactly as per the
	(Dillor 4)	noriodicity) and affective (to anours right quality of
ł	(rmar 4)	by history and encouve (to ensure right quality of by history)
1		Tuoricant is red) application of lubricants.
1	L LITTICE L PM	t transactions for purchase of lubricants and order
	(Pillar 5)	placements, have to be carried out quickly in regular

Table Contd.....

	Education and	Technical training on tribology, grades and standards of
	Training	lubricants and method of storing and handling needs to
	(Pillar 6)	be implemented.
	Safety, Health and	This aims for safe way of handling the lubricants. The
	Environment	godown should be hygienic. Lubricants should be stored
	(Pillar 7)	at a safe place such that it should not be affected by dirt
		or moister. The chances of lubricants get mixed should
		be avoided.
Routine	Hydraulic oil has to	be topped up at a fixed interval to make up the quantity
Hydraulic Oil	lost through leakages	. Proper checking intervals are to be fixed.
filling.		
	Autonomous	Operators while cleaning has to identify the leaks if any
[Maintenance	at the joints.
	(Jishu- Hozen -	
ł	Pillar 1)	
	Individual	Attitudinal training to the operators has to be imported
	Improvement	in this direction.
	(Kobetsu Kaizen-	
	Pillar 2)	
	Planned	Hydraulic hoses and O-Rings are to be changed once in
	Maintenance	every 3000 hours of operation of equipment
	(Pillar 3)	every soconours of operation of equipment
	Quality	It has to be assured that the hoses and the O-rings are
	Maintenance	brought from the original equipment manufacturers. As
Į	(Pillar 4)	it is a regular problem it has to be consulted with the
}	(1 11111 4)	manufacturer Sometimes they will be able to include
		some changes in the material structure or design and
		supply better
	Office TPM	Equipment history keeping should be done usingan
1	(Pillar 5)	appropriate software for better data analysis as against
	(1 ma 5)	the present manual record keeping
	Education and	Training on software based data management has to be
	Training	imparted to the operators
	(Pillar 6)	imparted to the operators.
	Safety Health and	Removing the bases and O rings fiving back at has to
	Salety, fieatin and	he done in a sofe way. It should be converd that all
	(Dillor 7)	be used in a safe way. It should be assured that on
Depleasement	Demograd ports if only	identified should be replaced immediately.
of domaged	Autonomoura	Operators can change nin looks busket tooth and O
of uanageu	Maintononas	operators can change pill locks, bucket teetil and O-
parts.	Maintenance	rings in non-critical areas.
	(JIShu- Hozen -	
	Pillar I)	
	Individual	Operators mindset has to be tuned to carry out above
	Improvement	JODS.
	(Kobetsu Kaizen-	
l	Pillar Z)	
Ĩ	Planned	Plans have to be evolved based on the history of
1	Maintenance	reconditioning / replacement of the components.
	(Pillar 3)	

Table Contd.....

	Quality	Concept of Zero Break Down shifts for operation to be
	Maintenance	implemented
	(Pillar 4)	
	Office TPM	Implementation of ERP (Enterprise resource
	(Pillar 5)	programming)
	Education and	Training on ERP package to be imparted.
	Training	
	(Pillar 6)	
	Safety, Health and	Assurance of clean hygienic garage floor
	Environment	
	(Pillar 7)	
Operator	Operators should be	aware of keeping the condition of the equipments as good
awareness	as new. They should	be taught about the basic lessons and the chances and
	symptoms of malfun	ctioning of their equipments and emergency preventive
	measures. It has to be	made as a culture in the organization.
	Autonomous	All periodic checking shall be carried out by the
	Maintenance	operators and if required the assistance of diesel
1	(lishu- Hozen	mechanics is to be sought
	Dillar 1)	incentances is to be sought.
1	Individual	Training on team building and team work has to be
]	Improvement	imported to the equipment energies
]	(Vobston Koizon	imparteu to me equipment operators.
	(KUUCISU Kaizell-	
	Plilar 2)	
	Plainteu	An unrecuried defects / manunctions noticed during
	(Diller 2)	periodic checking shall be rectified during planned
	(Pillar 5)	
	Quality	Zero defect shifts
	Maintenance	
	(Pillar 4)	
	Office TPM	Participation in Equipment history data upkeeping
Į	(Pillar 5)	
	Education and	Technical training on maintenance aspects and
	Training	hydraulics basics
	(Pillar 6)	
	Safety, Health and	Clean equipment, usages of personal protective
	Environment	equipments and safe working area
	(Pillar 7)	
Į	Initial Control /	To improve material handling rate of machines in Tons
	Development	Per Hour (TPH)
	Management	
	(Pillar 8)	

8.9. Conclusion

In a public sector company like MCL, the importance of quality and cost reduction techniques play important roles. The implementation of the technique MQFD in its mines department will help them to achieve this in a very convenient and systematic way. The suggestions and the findings, if utilized in an effective way, will increase the equipments' OEE. MQFD has to be adopted as a program throughout the life time of the organization and it requires continuous improvement in every aspects. The author expects that MCL will implement MQFD in each and every department. Through this exercise, MCL will achieve its goals, thereby will attain excellency.

Chapter .9

IMPLEMENTATION OF MQFD IN MATTRESS MANUFACTURING

Content

- 9.1. INTRODUCTION
- 9.2. ABOUT THE COMPANY
- 9.3. TYPES OF MATTRESSES
- 9.4. STUDY PHASES
- 9.5. SURVEY
- 9.6. INTERPRETATION FROM THE QUESTIONNAIRE
- 9.7. HOQ CONSTRUCTION
- 9.8. STRATEGIC DECISIONS
- 9.9. SUCCESS OF THE MOFD IMPLEMENTATION
- 9.10. CONCLUSION

IMPLEMENTATION OF MOFD IN MATTRESS MANUFACTURING

9.1. Introduction

In order to examine the implementation aspects of MQFD in a nonconventional manufacturing company, an implementation study was carried out in a maintenance intensive mattress-manufacturing unit. This mattressmanufacturing unit is located at a place called Pampady at Kottyam District of India. This mattress-manufacturing unit is run by the Kerala state Government of India. This mattress-manufacturing unit was chosen for the study because of the intense maintenance engineering activities being carried out in it.

9.2. About the Company

The implementation study being reported in this chapter was carried out in the company by name Rubber Co-operative Limited (hereafter referred to as RUBCO). RUBCO has in a short span, redefined the way the cooperative sector functions and set the pace for the co-operative movement in Kerala state of India. RUBCO was setup in the year 1997 with the objective of effectively utilizing the abundantly available rubber resources of Kerala. RUBCO was started as a single unit company. Today RUBCO has grown into a conglomerate of value INR.280 Crore (US\$560,000,00) with well-diversified operations. RUBCO's market has extended beyond the boundaries of Kerala. RUBCO manufactures and markets a variety of products such as mattresses, slippers etc. The implementation study being reported in this chapter was restricted to the application of MQFD in mattress manufacturing at RUBCO.

9.3. Types of mattresses

RUBCO manufactures a wide range of mattresses catering to the diverse segments of the market. The names and their charectoristics are enumerated below.

1. Dosth - Attractively priced mattresses that combine comfort and durability.

- 2. Safal Attractively priced mattresses that combine comfort and durability.
- Heaven and Heaven Plus Premium mattresses offering best luxury and sleeping comfort
- 4. Hi-tech Premium mattresses offering best luxury and sleeping comfort.
- 5. Yathri A mattress ideal for hotels and tourist resorts.
- 6. Heal A mattress suitable for hospitals.
- 7. Relief A mattress specially designed for the Orthopedic patients.

During this implementation study, the product 'Heaven' was subjected to MQFD study as . its sales volume was high.

9.4. Study phases

The implementation study was carried out in four phases. The activities carried out under each phase are narrated in the following subsections.

9.4.1. Phase1 – Data collection (Getting customer language)

During this phase, the voices of the customers were gathered. Here customers refer to the distributors to whom RUBCO supplies the mattresses. The structured questionnaire shown in Annexure D was prepared and distributed to the distributors. The list of distributers was given by RUBCO. The respondents were requested to provide their feedback, which were entered as the inputs of HoQ. During this stage, the information on consumers' complaints on RUBCO's products was collected.

9.4 .2. Phase 2 – Technical data collection

The second part of the study consisted of finding solutions to the complaints received from the customers in the form of technical languages. For this purpose, interviews and brainstorming sessions were held with the executives and the shopfloor workers. This helped to get the preliminary knowledge on the technical solutions against the complaints received from the customers. After that the relationships between customer and correlation between technical languages were established. Using all these data, HoQ shown in Figure 9.1was prepared.

9.4.3 Phase 3- Suggestion for implementing technical remedies through TPM

The HoQ matrix prioritizes these technical requirements. The decision regarding the outputs of HoQ to be either implemented directly or through the TPM pillars was made by consulting with the General Manager. These decisions were made based on the easiness and cost effectiveness of implementation.

9.4 .4 Phase 4- Action plans to implement technical remedies

After that, an action plan for implementing the technical remedies was prepared. Among the technical remedies, some have to pass through TPM and some can be implemented directly. Those, which have to pass through TPM, were sorted out and implementation plans against each pillar were formulated. Another set of action plans had to be prepared for those which need not pass through TPM pillars.

9.5. Survey

In order to gather knowledge on the drawbacks of the product/service from the customer point of view, the questionnaire shown in Annexure D was prepared in a structured format so that honest replies from the customers could be received. A likert's scale of range 0-9 was included with each questions for enabling the customers to answer precisely. Here 0 represents "not at all satisfied", 5 represents "somewhat satisfied" and 9 represents "fully satisfied". The sample size of the survey was little more that 50% of the population. That is, 11 out approximately 20 distribution centers were covered. The questionnaire was prepared encompassing seven dimensions. They were: 1. Essential product features, 2. Design parameters,

9.6. Interpretation from the questionnaire

From the questionnaire based survey, a number of problems were identified. The most important among them are listed below.

- i) The mattress sags, which will create ripples on them
- ii) The emergency order fulfillment is very poor.
- iii) The thickness of the mattress is varying from the specified limit
- iv) The responsiveness of the supply chain is poor.
- v) The colour of clothes does not have much variety.
- vi) The sales promotion activities are not up to the mark.

The customers from outside Kerala state had some additional grievances regarding the sales promotion activities, the colour of clothes of the mattress, the thickness variation, advertisement promotions and order fulfillment.

9.7. HoQ construction

The problems identified were input into HoQ. After this, the technical languages numbering 28 were prepared by discussing with the competent personnel from the technical and production departments. The customers' reactions and the technical languages were entered in rows and columns of the correlation matrix of HoQ. In order to have a clear understanding of various terminologies connected with mattress manufacturing,

and the second	
Use better quality bare block	The use of better quality bare block would prevent the sagging of mattress and thereby bending in the long run.
Use better foams	The use of better quality foams would result in good cushioning effect, prevent sagging, provide a good finish to the mattress and thereby more durability.
Better dye of cloth	The use of better dye of cloth would ensure better quality of colour of clothes of the mattress.
Better quality checking of cutting tool	This aspect would ensure that the thickness of the mattress do not vary, the corner cutting is as specified and thereby provide better finish.
Use better clothes	The use of better clothes would ensure good cushioning effect, attractive colour, and good quality of stitching.
Strict tolerance limit	This would provide better quality control and tolerance limits to all the aspects of the mattress.
Better quality control	The effective quality control of the process would ensure that all the characteristics of the mattress are maintained well.
Optimization of the ingredients	The proper mix of the ingredients would ensure that the mattress is 100% sufficient in weight and thereby the finish is maintained.
Incorporate folding characteristics	The folding characteristics of a mattress would ensure user- friendliness.
Better design of die for better patterns	The dies should be of good quality and their design should be optimum, to ensure that the patterns are excellent, both in shape and size. This would ensure that the appearance of the mattress is also attractive.
Dedicated team	There should be dedicated team to ensure that the complaint residual system is made effective. This helps to rectify the complaints immediately.
Customer relationship schemes	The customer relationship schemes should be made more effective so that a good ambient relationship exists between the company and the customer.
Effective supply chain	The supply chain should be made more effective so that the responsiveness, transportation and the ability to meet the order are met efficiently.

 Table 9. 2 Explanation of the technical languages

Table contd....

Effective order management system	The order management system should be made more effective to ensure that the order reaches the right customer at the right time.
Sales promotion schemes	There should be schemes for sales promotion so that sales efficiency is maintained and improved.
Better advertisement schemes	There should be better schemes for advertisement so that goodwill as well as the effectiveness in sales promotion are maintained.
Disc ount schemes	There should be sufficient number of discount schemes to counter the competition effectively. This would also help in sales promotion activities.
Cost reduction strategies	The cost reduction strategies should be such that the product quality is enhanced with reduction of cost as needed.
Better pricing strategy	The pricing of the product should be highly competitive friendly and should be able to maintain the increase in sales.
Better packaging materials	The packaging materials should be of good quality so that the mattresses are not damaged during transportation. The packaging material should be of a viable thickness as well as attractive. It should be user friendly and durable to the extreme conditions.
Optimization of stock	The stock should be optimized so that the orders are met according to the demand, effectively and efficiently. This would also alert the supply chain network to be effective.
Scheduling of production	The effective scheduling of production would help reduce the complaints by enabling the ability to meet the order and make the supply chain more responsive.
Outsourcing the transportation facility	Through the adoption of outsourcing, the transportation facility can be made more responsive and thereby more effective. As a result, it would be able to meet the order and keep the customers happy.

a brief explanation of technical languages is presented in Table 9.2. The methodology explained in Chapter 6 was adopted to construct this HoQ. The calculated CTI, CTWL and other related terms are given in Table 9.3.

An example of computing customer technical interactive score for 'Use better quality bare block' is presented below.

CTI of 'Use better quality bare block' = $9 \times (24 + 70 + 45 + 73 + 63) = 2475$

Serial Number.	Technical descriptors	СТІ	Percentage normalized value of customers technical interactive score (2)	CTWL	Percentage normalized value of correlated weightage (4)	Sum of (2)+(4)
1	Use better quality bare block	2475	6.49	12	3.59	10.08
2	Use better foams	3537	9.27	12	3.59	12.86
3	Better dye of cloth	1062	2.78	1	0.3	3.083
4	Better quality check of cutting tool	1242	3.26	12	3.59	6.848
5	Use better cloths	3665	9.61	3	0.9	10.5
6	Strict tolerance limits	1479	3.88	3	0.9	4.775
7	Better quality control	2330	6.11	14	4.19	10.3
8	Optimize the ingredients	1251	3.28	17	5.09	8.369
9	Incorporate folding characteristics	936	2.45	12	3.59	6.046
10	Better die design for better pattern	1854	4.86	10	2.99	7.854
11	Variation feasibility of patterns	1854	4.86	0	0	4.86
12	Dedicated team	486	1.27	14	4.19	5.465
13	Customer relation schemes	486	1.27	18	5.39	6.663
14	Dealer meetings	954	2.5	12	3.59	6.093
15	Incorporate feasible credit limits	558	1.46	0	0	1.463
16	Effective supply chain	2169	5.69	18	5.39	11.07

Table 9. 3. Technical descriptors and their computed scores

Table contd.....

17	Effective order management system	1380	3.62	30	8.98	12.6
18	Sales promotion schemes	468	1.23	18	5.39	6.616
19	Better advertisement schemes	468	1.23	9	2.69	3.921
20	Discount schemes	1026	2.69	19	5.69	8.378
21	Cost reduction strategy	511	1.34	13	3.89	5.232
22	Better pricing strategy	511	1.34	18	5.39	6.729
23	Better packaging material	1608	4.21	0	0	4.215
24	Higher thickness of packaging material	990	2.59	9	2.69	5.289
25	Packaging materials with handling feasibility	1539	4.03	9	2.69	6.728
26	Optimization of stocks	1170	3.07	21	6.29	9.354
27	Scheduling of production	964	2.53	18	5.39	7.916
28	Outsourcing transportation facility	1179	3.09	12	3.59	6.683

9.8. Strategic decisions

The outputs of the HoQ were subjected to strategic decision making to choose the technical descriptors which should be passed through TPM pillars and those to be implemented directly. According to the MQFD model, the action plansof TPM pillars for each technical languages were made after discussing with the General Manager. These details are narrated in Tables 9.4 - 9.26.

Table 9. 4. Action plans of TPM pillars for the technical language 'use better quality bear block'

TPM Pillars	Actions recommended
Autonomous maintenance	Operators have to clean the machine by themselves. In addition to that they have to regularly check the machine. If any cracks or faults are found, they have to be rectified. This will improve the quality of bear block.
Individual improvement	A mindset has to be developed among the employees to pursue autonomous maintenance. They should take interest to study the various functions of the bear block building machine and come out with the strategies to improve the utilization of the machine.
Planned maintenance	An advance planning has to be done on all the maintenance aspects and it has to be scheduled in such a way that it will not affect the production. This will prevent future breakedown.
Quality maintenance	The quality policy should be implemented effectively at all levels of the process. The quality has to be checked in accordance with the quality policy of the company. Allowable tolerance limits should be assigned and strictly followed. The proper mix of the coir and the latex should be decided and followed strictly.
Education and training	The employees should be trained about the TPM pillars and its importance. The training needs for each class of employees have to be identified in accordance with the future prospects of the company and training has to be given accordingly. Lectures have to be arranged for enabling them to understand the importance of the different aspects involved in mattress maufacturing
Safety, Health and environment	The shop floor has to be kept clean and better house keeping has to be followed to prevent any mishaps. People should be made aware of various safety aspects and the ways to perform the work safely. Oil, dirt etc from the shop floor should be removed. Safety principles in the work environment should be followed. Stress on the clean environment should be given due importance. Good hygienic conditions and better housekeeping principles should be kept in place.
Initial control/ Development management	This pillar aims to confirm whether the full capacity of the machine is utilized. The need of this approach is to ensure good quality of the bear block always available. In order to achieve this, first a target has to be fixed for the number of bear blocks to be manufactured in a week. After achieving this, the target has to be revised. In this way, company will have good quality bear blocks always available.

TPM Pillars	Actions recommended
Individual improvement	The operator must be fully aware of the quality of the forms used for the manufacture of various mattresses. As the forms are purchased from outside, even if some small defects are there, operators should be able to identify them and inform to the concerned personnel. This will help the suppliers to aware of the quality aspects of the forms they have to supply.
Planned maintenance	Train the workers on the quality constraints of the different kinds of foams. Schedule the right kind of quality of foams after thorough inspection.
Quality maintenance	Company has to provide proper benchmarking on the quality of forms which are getting supplied by various suppliers.
Education and training	People should be motivated to pursue higher studies. This will indirectly help to enhance the quality of execution of this task. In order to achieve that, some training classes have to be conducted covering the various aspects of forms, methods of application, etc.
Safety, health and environment	Forms after purchase should be maintained well by proper house keeping. It should be stored and handled with care. The adoption of hygienic policies will help to prevent the form being covered by dirts during storage and handling.

Table 9. 5. Action plans of TPM pillars for the technical language 'Use better quality foams'

Table 9. 6. Action plans of TPM pillars for the technical language 'Better dye of cloth'

TPM Pillars	Actions recommended
Individual improvement	The employees should be trained on the different classes of dye used for cloth and thereby made aware on the quality aspects.
Quality maintenance	Regarding this aspect, the quality of die and the cloths have to be taken into account. Certain quality aspects have to be put forward for both. The micron size for cloth thickness, intensity of threads, material used for clothes, (threads), ratio of colour compounding etc has to be fixed earlier and informed to the concerned people. In addition to that proper quality checking has to be done for clothes, dies colour mixing and methods of application. Ensure that the cloths produced are meeting quality requirements through stringent quality checks. Also ensure that the dye of cloth used is of superior quality
Education and training	The employees should be trained on the variety of cloths and dyes used, the quality aspects adopted for the selection and their chemical compositions.
Safety, health and environment	While selecting the die or compounds used for die, hazardous nature of dyes (poisonous, odor, allergic, etc) should be avoided to ensure the safe and healthy environment.

Table 9.7. Action plans of TPM pillars for the technical language 'Better quality checking of cutting tool'

IPM Pillars	Actions recommended
Autonomous maintenance	The employees should regularly check the condition of the operating machines to ensure that the tools are proper, both in condition and place.
Individual improvement	A mindset has to be created among the employees to take initiative to find the various methodologies for detecting the troubles occurring. The employees should be trained about the different tools used, its properties, its efficiency criteria, etc. The employees should be trained about the different cutting tools used, the cutting speeds, efficiency, its effectiveness, etc. In addition to that, they should be made aware of various cutting tools used for each application, the selection of tools etc.
Planned maintenance	The condition of cutting tools should be checked regularly to prevent any disparities and for this, proper scheduling should be put in to place and strictly followed.
Quality maintenance	Stringent quality checks should be followed to ensure proper quality in working conditions.
Education and training	The employees should be trained about the different cutting tools used, the cutting speeds, efficiency, its effectiveness, etc.
Safety, health and environment	The scraps should be removed regularly. User friendly environment, should be maintained. The employees must be protected from any health hazards.

Table 9. 8. Action plans of TPM pillars for the technical language 'Use better cloths'

TPM Pillars	Actions recommended
Individual improvement	Employees minds should be tuned for checking the clothes. They should be motivated to gather the information regarding the various quality aspects of clothes and point out to the management in the case of finding any defects.
Quality maintenance	Ensure that each material meets the required quality standards to ensure a better variety and finish of mattress.
Education and training	Train the employees about the variety of cloths and threads used to ensure a better quality both in the process and in the product.

TPM Pillars	Actions recommended
Individual improvement	Create awareness among the employees about the effects of variation from the tolerance limit, and its importance towards the total quality of the finished product.
Planned maintenance	The maintenance should be scheduled effectively and efficiently in a planned way so that the variation in dimensions does not occur.
Quality maintenance	Identify the tolerance limits and strictly adhere to those limits. The tolerance limits set should be feasible enough for implementation.
Education and training	Train the employees about the quality aspects, the importance of tolerance and its limits, etc
Initial control/ development management	If the tolerance is found to be beyond the limits, then go for better design by allocating feasible tolerance limits in the new design.

Table 9. 9. Action plans of TPM pillars for the technical language' Strict tolerance limit'

Table 9. 10. Action plans of TPM pillars for the technical language 'Better quality control'

TPM Pillars	Actions recommended
Individual improvement	Employees' mind should be tuned to gather information regarding various quality aspects of the products, the quality policy, its importance and its necessity, both to the company as well as to themselves. They should be able to suggest better methods in scheduling, maintenance and quality control.
Planned maintenance	All the maintenance activities should be planned in advance in advance and scheduled as per the plans to ensure quality products. This will avoid the maintenance activities during the period of production.
Quality maintenance	All the quality elements should be thoroughly checked to confirm systematic order and strictly adhere to it.
Education and training	The employees should be trained about the modern quality philosophies, their purposes and relevance to the company. Training classes on SPC, TQM and Kaizens will be contributing a lot in this direction. The importance and necessity for the quality aspects to be followed in the company has to be convincing to all the employees.

TPM Pillars	Actions recommended
Autonomous maintenance	Ensure that all the ingredients are properly mixed, in amount, quality and proportion.
Individual improvement	Employees should be trained about the right mix of ingredients to be put in to produce the final product.
Quality maintenance	Check for the quality of final output produced for a sample initially and hence ensure that a proper mix is there. This should be followed, if found suitable to the subsequent outputs.
Education and training	Employees should be trained about the different materials to be used, the right mix, the proper use of material, etc.

Table 9. 11. Action plans of TPM pillars for the technical language' Optimize the ingredients'.

Table 9. 12. Action plans of TPM pillars for the technical language 'Incorporate folding Characteristics'

TPM Pillars	Actions recommended
Education and	Educate the employees about the need for folding characteristics in
training	mattresses and inspire the employees to be creative in bringing out
	ideas for facilitating the betterment of the product.
Development	Apply the folding characteristics in to the next design if found
management	feasible and attractive.

Table 9. 13. Action plans of TPM pillars for the technical language 'Better design of die for better pattern'.

TPM Pillars	Actions recommended
Education and	Educate the need for better designs of patterns to be incorporated in
training	to the mattress. If found feasible, also design the different sizes of the
	patterns.
Development	Incorporate better die designs in the next manufacturing phase based
management	on the scale of feasibility of the new designs.

Table 9. 14. Action plans of TPM pillars for the technical language 'Variation feasibilityof pattern'

TPM Pillars	Actions recommended
Development	The design variations in the patterns, both in size and shape to be
management	incorporated in to the next manufacturing phase.

Table 9. 15. Action plans of TPM pillars for the technical language 'Dedicated Team'

TPM Pillars	Actions recommended
Individual improvement	Each individual in the team should be fully aware of the different constraints attached to the policies of the company. Sufficient training about subordination of the individual interest for the organizational goals should be given and stressed on
Education and training	The assigned team should be trained and educated on the different aspects attached and associated to the different departments and the different levels of the organization.

Table 9.16. Action plans of TPM pillars for the technical language 'Customer relationship schemes'

TPM Pillars	Actions recommended
Education and training	Some training classes have to be conducted to the employees regarding the customers, customer behavior, aspirations and how customers evaluate the product. This will make them to enhance their part of work concentrating on customers. The employees related to the work should be given ample education and training on the feasibility and the acceptance of the different schemes allotted to the customer.
Office TPM	The merits and demerits of various schemes and packaging to be allotted for each class of customers can be analyzed. Softwares can be made use in this direction. In addition to that, sufficient planning has to be done for on time delivery, payment collection, discount schemes, free samples and gifts to various classes of customers. Periodic review of various schemes has also to be conducted to find out the best schemes during each business period.
Development management	The schemes should be reviewed then and there to avoid mistakes. This can also help to analyze for better schemes available and feasible to the company.

Table 9. 17. Action plans of TPM pillars for	the technical language	Incorporate feasible credit
	limit'	

TPM Pillars	Actions recommended
Education and training	Appropriate training has to be imparted to the employees working in the accounts department to evaluate various customers and benchmark their credit limits. In the current scenario, a lot of well-established techniques are available for this purpose. In addition to that, employees should be motivated to pursue suitable higher studies such as industrial psychology, marketing, and finance.
Office TPM	Using computer softwares, the worth of each credit schemes has to be evaluated. Computer based softwares can help to benchmark the credit limits of each client giving inputs from the client's organizational matters and warning signals when it approaches the limit and exceeds the limit. This minimizes the tasks of various decision making regarding credit.

Table 9. 18. Action plans of TPM pillars for the technical language 'Effective supply chain'

TPM Pillars	Actions recommended
Office TPM	Numerous varieties of software are available to manage the supply chain effectively and efficiently. So those should be put into effect with immediate effect.
Development management	The supply chain network should be designed and re-designed till a fully self-sustainable design is reached. Thus the company can ensure the effectiveness and efficiency of the network. Target fixation and their revisions in supply chains and continuous revise of the targets achieving each will enhance their efficiency and effectiveness.

Table 9. 19. Action plans of TPM pillars for the technical language 'Effective order management system'

JIPM Pillars	Actions recom	mended
Office TPM	A computer based order management Automate order management system, more route, the time delays, the carrying capac	system has to be implemented. onitor various order, its operating ity etc.

Table 9. 20 Action plans of TPM pillars for the technical language 'Sales promotion schemes'

TPM Pillars	Actions recommended
Education and	Appropriate lectures/ tutorials have to be imparted to the workers on
training	general aspects of marketing, sales, sales promotion and modern schemes available in that direction. The employees should be trained and educated on the schemes available as part of the sales promotion activities.
Development management	Redesign the schemes if required, analyze and re-analyze, till a feasible scheme is approvable, to both the company and the customers.

PM Pillars	Actions recommended
Education and training	Awareness programmes regarding the need of advertising, ineffectiveness and how its reflections and feedback have to be incorporated in production have to be conducted. Employees should be made aware of the schemes available and they should be induced for participation from all levels irrespective of their levels.
Development management	The design of the schemes should be analyzed thoroughly, checked for inconsistencies, and if any, should be redesigned, till an optimum and feasible scheme is reached which shall be acceptable to all.

Table 9. 21 Action plans of TPM pillars for the technical language	'Better	advertisement
schemes'		

Table 9. 22 Action plans of TPM pillars for the technical language 'Discount schemes'

IPM Pillars	Actions recommended
Education and training	The employees should be educated on the various schemes made available and induced to come up with ideas for designing new schemes.
Development management	Review the various discount schemes currently adopted by the company. If it is observed that some inadequacies are existing in the schemes, re- design the schemes till an optimum design is reached.

Table 9. 23 Action plans of TPM pillars for the techni	ical language 'Scheduling the production'
--	---

TPM Pillars	Actions recommended
Autonomous maintenance	The employee must be made aware of the machine capacity and should be able to meet the production schedule.
Individual improvement	The employees should be trained to understand and adhere to the schedule strictly.
Planned maintenance	Activities related to the maintenance should be planned in advance to minimize breakdowns.
Quality maintenance	There should be quality plans and policies, which should be adhered to, so that wastes are reduced and production is improved.
Office TPM	There are many softwares available for the purpose of keeping a check on planning and scheduling. The best among them should be incorporated for enhancing its effectiveness.
Education and training	The employees should be trained about the scheduling process, its need and importance, and the essence to stick to it.

TPM Pillars	Actions recommended
Individual	The various pros and cons of the existing inventory policies followed in
improvement:	the company and the best strategies to be adopted for the inventory reduction should be made known to the employees. Also, the hidden costs associated with improper utilization of the inventory should be exposed to the employees. They should be motivated to reduce inventory levels.
Education and training	Training classes have to be conducted on materials management. Principles like ABC analysis has to be taught to the employees. They should be imparted training on Six Big Losses and better inventory management methods. The employees should be trained about the different levels of optimum stock and its importance to the company.
Office TPM	Numerous softwares are available, to monitor the stock levels and re- order points for inventory. These should be incorporated to enhance the efficiency and effectiveness of stock management.

Table 9. 24 Action plans of TPM pillars for the technical language 'Optimization of stock'

Table 9. 25 Action plans of TPM pillars for the technical language 'Better packaging material (with regard to both thickness and folding feasibility)'

TPM Pillars	Actions recommended
Development management	The design changes related to packaging, if found feasible should be incorporated into the new schedule of production. As a trial basis, some better packing materials can be incorporated and tested. Based on the results, further refinements can be done. Incorporating low packing material makes the transformation easy.
Education and training	Employees should be trained on various packing methods, safe loading and unloading methods. Few classes and practical sessions have to be conducted for ensuring better utilization of chain blocks, hoists and max pullers.
Safety, health and environment	It should be made sure that the packaging material is eco-friendly and doesn't cause any health hazards.

Table 9. 26 Action plans of TPM pillars for the technical language 'Cost reduction strategy'

TPM Pillars	Actions recommended
Education and	Training has to be imparted to the employees on various cost aspects and
training	their impacts to the company. They should also be trained on the various
	methods to reduce the cost.
Quality	In order to maintain the cost at the most optimum level, the rejection rate
maintenance	should be minimized to the lowest level. Company has to adopt strategies
	to prevent reworks. The wastages in men, money, material and machinery
	have to be analyzed in each process and actions have to be taken to
	minimize them.
Planned	The maintenance aspects should be planned to make sure that the
maintenance	maximum capacity of the plant is utilized. Most of the preventive
	maintenance activities will be held during off peak season.

9.9. Success of the MQFD implementation

The technical requirements evolved out of the implementation study could not be implemented in this mattress-manufacturing unit. RUBCO being an Indian state government run public sector, the decision on implementing MQFD has to be made by the top level committee which has to adhere to long democratic procedures. Moreover, the competent personnel were not interested to spend time to forecast the chance of succesful implementation of MQFD in RUBCO. Hence, the chance of succesful implementation of MQFD could not be exactly assessed.

9.10. Conclusion

The implementation possibility of MQFD was checked in RUBCO, which is an Indian state government run public sector mattress manufacturing unit. Since TPM and QFD had not been implemented, the competent personnel of RUBCO could not nourish the implementation aspects of MQFD. However, the experience of developing HoQ and passing of technical descriptors through TPM pillars indicated the practical implementation feasibility of MQFD model even in non conventional manufacturing units like RUBCO.

Chapter . 10

QUALITY IMPROVEMENT IN ENGINEERING EDUCATION THROUGH MQFD

Content

- **10.1. INTRODUCTION**
- **10.2. QUALITY OF ENGINEERING EDUCATION**
- **10.3. TPM AND ENGINEERING EDUCATION**
- **10.4. OFD AND ENGINEERING EDUCATION**
- 10.5. SYNERGIZING TPM AND QFD THROUGH MQFD
- **10.6. MOFD IN ENGINEERING EDUCATION**
- **10.7. IMPLEMENTATION STRATEGIES**
- 10.8. REACTIONS
- **10.9. MAJOR HIGHLIGHTS**
- **10.10.CONCLUSION**

QUALITY IMPROVEMENT IN ENGINEERING EDUCATION THROUGH MQFD

10.1. Introduction

The ever-rising global competitive waves keep invading all fields and geographical regions. This phenomenon has been pressing mankind to infuse higher degree of quality in all spheres of products, processes and services (Prendergast.et.al ,2001, Chong and Rundus, 2004). The knowledge required for attaining higher degree of quality originates from the brains of human resources. Hence a society can enjoy higher degree of quality of life, if its human resources are effectively groomed and developed. The responsibility for contributing highly useful human resources for the welfare of the society of all regions lies with educational institutions. Today globalization process progresses at a faster pace making the humans face common challenges inespective of the societies and countries to which they belong (Irandoust And Sibberg, 2001). In most of the societies these challenges are largely tackled by engineering professionals (Paten et.al, 2005). Hence, a large portion of social contribution originates from engineering educational institutions (Johnston, 2001). Needless to mention, the engineering educational institutions have to contribute high quality human resources who are not only technocrats but also society-friendly individuals (Perez-Foguet et.al, 2005). While the business world has been reporting the adoption of different continuous quality improvement models (Kaye and Anderson, 1999), the examination of their application feasibility for infusing higher degree of quality in engineering education will lead to useful contribution to all kinds of societies over the globe(Johnston, 2001).

Total quality management (TQM) models have revolutionized the organizations of all types (Chong and Rundus, 2004, Hoque, 2003, Montes.et.al, 2003). Presumably due to this reason, during the recent years, some engineering educationalists and researchers have been striving to apply TQM and its techniques in engineering education (Sahney et.al, 2004). Some engineering educational institutions have started practising TQM

(Jaraiedi and Ritz, 1994, Prendergast.et.al ,2001, Swift, J.A, 1996). These efforts are getting focused on attaining specific strategies. For example, the engineering educational institutions are becoming quality system conscious since many of them have implemented ISO 9001: 2000 quality system standard. Likewise Hwarng and Tco, (2001), and Lam and Zhao, (1998) have reported the pilot implementation of quality function deployment (QFD) in engineering education. These efforts have yielded in achieving higher degree of quality in administering engineering educational institutions, testing the students' capabilities to meet the requirements of their employer and building excellence in the learning of engineering advancements (Ferrer-Balas et.al, 2004). These favorable results indicate that, on application of well-proven quality engineering and management models, the quality level of engineering education would raise. In this context, this chapter brings into focus the contribution of total productive maintenance (TPM) and QFD in practising environments.

Both TPM and QFD have played valuable roles in achieving continuous quality improvement in organizations (Emiliani, 2004). Both researchers and practitioners have reported a large number of successful case studies on TPM (Chan. et.al, 2005, Eti. et.al, 2004) and QFD (Hwarng and Teo, 2001). Because of their success in practical environments, the research on the application of TPM and QFD engineering education promises valuable outcome. In this background, the author was motivated to examine the roles of TPM and QFD in attaining higher degree of quality in the engineering educational scenario. Besides, a careful study indicated that the synergising effect of implementing TPM and QFD together would trigger a significant stride in attaining higher degree of quality in engineering education. However, it appears that no researcher or practitioner has so far attempted to link these two techniques and apply them in the engineering educational scenario. This chapter reports a research project through which the author attempted to makeup for this deficiency. First, the author is presenting the salient features of applying TPM and QFD in engineering education with the anticipated impacts. Next, the author is describing the design of a model called "Maintenance Quality Function Deployment"(MQFD). This model combines TPM and QFD principles. Followed by that, the author has presented a survey in which he has examined the receptivity of applying MQFD in Indian Engineering Educational scenario.

10.2. Quality of engineering education

The various quality eras which have been revolutionalising the organizations of all types and sizes during the past five decades (Kaye and Anderson, 1999) have their foundation on the preaching of quality gurus (Bendell et.at, 1995). But quality gurus have attributed different meanings and definitions to quality. For example, Juran has referred to quality as 'fitness for use'. Taguchi has viewed quality as the loss that it imparts to the society. Upon drawing inferences from these definitions, the author interpreted that quality of engineering education would refer to the production of human resources who are capable, contributive and adaptive in required to the advancements and usefulness to the society (de Graaff and Christensen, 2004). The engineering educational institutions failing to understand this definition will be fading away from the modern competitive scenario (Veltz, 2001). This shows the need for rigorous application of continuous quality improvement concepts in engineering educational institutions. Besides achieving higher degree of quality levels, recent researchers have been appraising the need for sustaining engineering education (Ashford, 2004, Ferrer-Balas et.al, 2004). The sustainability of engineering education is ensured by maintaining the quality of engineering education. TPM provides a way for bringing out such kind of changed scenario in engineering education. Another requirement of engineering education is to react according to its customers. In practical application, the technique QFD is found to meet this requirement. Hence the application feasibility of QFD in engineering educational scenario has to be studied. However both TPM and QFD cannot be applied in their present forms in engineering education since they are compatible with applications only in manufacturing and service organizations. In order to accomplish this process, both QFD and TPM have to be remoulded in a systematic way, so that they are made suitable for application in engineering educational scenario.

10.3.TPM and engineering education

TPM originated in Japan during 1970 (Cooke 2002, Ireland and Dale 2001). Before the evolution of TPM, the field of maintenance engineering had been adopting technology oriented approaches like condition monitoring, preventive maintenance and reliability centered maintenance (Deshpande and Modak,2002, Eti.et.al, 2004,). Presumably, on realizing the absence of human and totality components in the maintenance engineering field, the principles of TPM were promoted by Japanese Institute of Plant Maintenance (JIPM) (Bamber et.al 1999). Later it spread to different parts of the world. Fundamentally TPM encompasses various elements of TQM and maintenance engineering. Besides there have been researches linking TPM with quality (Ben-Daya and Duffuaa, 1999). Because of the shadowing of TQM, TPM envisages the total involvement of employees for enhancing the maintenance quality of equipments (Cooke 2000, Ireland and Dale, 2001). Several definitions and approaches of TPM have so far been brought out (Bamber et.al, 1999) in the literature arena. A bird's eye view of those literatures would indicate that eight-pillar approach of implementing TPM is the most exhaustive one (Yamashina, 2000; Cigolini and Turco, 1997). Maintenance engineering and total quality control form the foundation of TPM programme. After laying this foundation, TPM programme is developed by constructing the eight pillars (Ahmed et.al, 2005). Hence, the examination of applying TPM in the engineering educational scenario is to be carried out by studying the implementation of the eight pillars in it. But, TPM pillars are highly biased towards manufacturing aspects and hence cannot be adopted in their current form into the engineering educational scenario. Therefore TPM pillars need to be suitably moulded for implementing them in the engineering educational scenario. The modalities of transferring TPM pillars from the manufacturing context to the engineering educational context are briefly appraised in the following subsections.

10.3.1. Autonomous maintenance

In the manufacturing scenario, this pillar envisages the development of a sense of ownership among workers of the equipment operated by them. The transfer of this pillar into engineering educational scenario would emphasize the empowerment of the employees and students over the curriculum they study and the infrastructure they use. This means that the employees and students have to participate in curriculum development. Also, during the course of teaching-learning process both communities are to be facilitated to explore the theory and practice of curriculum in engineering application. Likewise the ownership rights on infrastructure of both employees and students should be distributed and both communities should strive to use the infrastructure for imbibing engineering skills and knowledge (Gelfand,2005). This process would lead to the generation of enormous creative ideas. The development and management of knowledge through creative ideas are the hallmarks of today's competitive scenario. Hence the building up of this pillar would ensure the enhancement of the quality of engineering education.

10.3.2. Individual improvement

In the manufacturing scenario, this pillar motivates the worker to improve himself/herself in such a way that he/ she attains capability to attend independently to the maintenance failures. He/she must also learn to analyze the cause of maintenance failures using tools like why-why analysis and performance measurement analysis (Malina and Selto, 2004). These aspects translate into the engineering educational scenario in the form of helping both employees and students to develop required skills of knowledge of their own. In other words, this pillar of TPM envisages the development of self-learning capabilities of not only students but also employees. This is a valuable exercise in today's context, because even after a student completes the course of study and leaves the engineering educational institution, enormous developments take place in the engineering profession (Perkins, 2002). In this situation, the same student, after getting employed, is also required to learn further (Horvath et.al,2003). At that point of time, the individual improvement of capabilities acquired through self-learning will prevent him/her from becoming an obsolete person in the society. The condition is the same in the case of employees. The employees with certain knowledge and skill-sets recruited at an early time need to be exposed to the latest advancements in future. However, it is the arduous
task in practice to conduct a number of educational and training programmes for the employees for keeping them updated with knowledge and skill-sets. In this situation, the employees possessing self-learning traits will be able to exhibit individual improvement capabilities. This kind of individual improvement capability of employees will be of use in providing the students of engineering educational institutions with updated knowledge and skill sets.

10.3.3. Planned maintenance

In the manufacturing scenario, this pillar is built by drawing maintenance schedule in advance. Besides, this pillar envisages the allotment of sufficient resources to meet the planned schedule. The translation of this aspect into the engineering educational scenario would mean the development of a calendar containing not only the routine activities, but also the developmental activities such as field visits, expert lecturers, conduct of conferences and demonstration of new products. However, such a calendar of activities must be prepared in accordance with the resources that the management is prepared to invest. Further in the manufacturing scenario, the planned maintenance needs to control maintenance costs and estimate equipment losses. The enumeration of these losses and translation of them into the engineering educational scenario are prescribed in Table 10.1. The elimination or reduction of these losses would lead to the enhancements of the quality of education in engineering educational scenario.

	Equipment losses	Six Big Losses in engineering educational scenario
1	Breakdown losses	Cancellation of classes, Field visits etc.
2	Setup and adjustment losses	Newly enrolled students get admission into some other courses leave the present course
3	Minor idling stoppage losses	Infrastructure is not adequate and strengthened to ensure that the classes and the practice sessions are held without interruption.
4.	Reduced speed losses	The coverage of syllabus and technical sessions are not at the pace planned.
5.	Defect/ Rework	Conduct of extra and special classes for the students who have failed in theory and practice tests and examination.
6.	Startup losses	Students not exposed to fundamental principles and language skills fail to perform in written tests and examinations

								•
Tahle	10 1	Six	Rin	I neeps in	n ennine	orina /	educationa	sconario
IUDIÇ	10.1	UIA	Dig	L03363 II	i ciigiiic	unig i	cuucutiona	I SUÇINGINU

10.3.4. Quality maintenance

In the manufacturing scenario, the building of this pillar is made possible by inculcating the zero defect philosophy in the organization. The translation of this aspect in the engineering education scenario envisages the succesful completion of the course by all the students within the prescribed stipulated time and all of them being offered suitable jobs by the companies even before they complete the course.

10.3.5. Education and Training

In the manufacturing scenario, this pillar emphasizes the imparting of education and training to all levels of employees. This corresponds in the engineering educational scenario to the development of educational and training programmes for all levels of employees. For example, a teacher handling topics on welding technology should be provided with practical training on welding. Likewise the laboratory assistants in the welding department should be educated on the theoretical principles of welding. The merging of theory and practice through engineering education and training would enhance the quality of education in the engineering educational scenario.

10.3.6. Office TPM

As the title implies, this pillar envisages the attainment of a higher degree of quality in office administration. The adoption of this pillar will be very useful in the engineering educational scenario because engineering educational institutions are dominated by administrative activities like admission of students, fee collection, conduct of tests, evaluation of answer scripts and consolidation of marks. (Ko and Cheng, 2004). According to this pillar, the employees and students of engineering educational institutions should be relieved of the burden that arise due to the administrative hurdles. In fact, the administration must be supportive in enhancing the quality of the products produced by engineering educational institutions.

10.3.7. Initial control/Development management

In the manufacturing scenario, this pillar emphasizes the review of designs for preventing further mistakes, use of manufacturing process data and establishment of equipment startup times. This aspect in the engineering educational scenario translates into the reviewing of curriculum, use of the feedback received from both students and employees and establishment of administrative practices and teaching-learning process for ensuring the delivery of quality products. These data have to be referred to while developing and managing appraisal programmes and upgradation activities.

10.3.8. Safety, health and environment

Current researchers are attributing greater value to the synergy of Safety, Health and Environment (SHE) (Cowing et.al, 2004, Deshpande and Modak,2002, Abe and Starr, 2003, Atherton,2002, and Duarte, 2004). Appropriate implementation of safety aspects can enhance the sustainability of the whole system (Graber, 2004). This enunciation has given rise to the modern manufacturing concepts like green manufacturing and cleaner manufacturing. In the absence of safety and health, accidents will occur, which can result in catastrophic and irrecoverable failures causing large financial, human, and environmental losses. Therefore SHE has to be in built as a culture (Farrington-Darby et al,2005) in organization of all types. For this purpose, as envisaged by the researchers like Allen-Gil, et.al, (2006), Ashford et.al, (2004) Fenner et.al, (2005), Lundholm, (2005), Lourdel, et.al, (2005), and Bryce.et.al, (2004), the students of engineering educational institutions should be taught the ethics of preventing the environmental degradation as a result of their contributions. Further the consciousness of safety and health has to be instilled in to the minds of the students. Further, this pillar envisages the setting up of safety devices and teaching of safety principles while undergoing practice sessions by these students. This pillar also insists on installing medical facilities in engineering educational institutions. In order to ensure the psychological health of both employees and students, counseling centers have to be installed in engineering educational institution (Rajan, 2005).

10.4.QFD and Engineering Education

Ideally, soon after the completion of courses, students should be capable of working in companies (Andersen, 2004). But, this is not happening in practice (Zairi, 1992, Sardana and Arya, 2003). Engineering education has traditionally concentrated on preparing students for professional careers in manufacturing and construction, but now those industries employ fewer engineers than ever before (Wei,2005). In order to meet this deficiency, the engineering educational system has to be modified to suit the requirements of its customers, who are primarily the companies employing the engineering students. In this context, the voice of the customers plays an important role. The voice of the customers will be in the form of their wants and needs, which shall have to become drivers of engineering educational development. These drivers shall have to envisage the engineering education to produce the products, which are acceptable to the customers. However, this challenging task has to be accomplished in accordance with the desires of the customers of engineering education in an economical manner. In this background, the usefulness of the technique QFD for enabling the accomplishment of the above engineering educational challenges is appraised here. For this purpose, the QFD matrix shown in Figure 10.2 has been developed by observing the current engineering educational scenario and drawing inferences from general and engineering educational environment. The contents of six sections of QFD matrix (Zairi and Youssef, 1996, Chein and Zu, 2003) developed to evolve solutions in response to the customers' voice in the engineering educational scenario are briefly described in the following subsections.

10.4.1. Section 1: Customer requirements (Voice of Customers)

The QFD matrix development process begins by considering customer requirements as inputs. An engineering educational institution has to find the potential customers, and determine their tastes and views (Sardana and Arya,2003, Irandoust. and Sjoberg.,2001). By gathering the necessary data regarding the desires of customers, technical remedies can be found out. The aspirations and expectations of the students joining the engineering educational

institutions, their parents and the companies appointing the engineering graduates have to be ascertained. This has to be carried out by employing questionnaire based surveys, personal interviews and brainstorming sessions. This section of QFD shown in Figure 10.1 has been incorporated with possible outcomes of this exercise.

10.4.2. Section 2: Technical languages

This section shows how the customers' vague languages can be interpreted in terms of technical languages. As shown in Figure 10.1, in the engineering educational scenario, this has to be achieved through the employment of highly qualified and experienced employees, enhancement of qualification and experience of existing employees, development of value based curriculum, and conduct of industrial visits, in plant training etc.

10.4.3. Section 3: Relationship matrix

This matrix shows the relation between sections 1 and 2. Such relationships are graded as strong, moderate and weak. As shown in Figure 10.1, they are represented using three symbols. For the purpose of analyzing further, they are assigned values. The relationship symbols used and the values assigned are shown in Table 10.2. (Lu and Kuei, 1995, Perk, 2003).

Relationship	Symbol	Value
Strong		9
Moderate		3
Weak		1

 Table 10.2 Symbols representing the relationships and their values

10.4.4.Section 4: Prioritizing customer requirements

Among all customer requirements, one of the most crucial has to be considered for further analysis. Hence it is necessary to prioritize the customer requirements using a suitable quantification methodology. In the section 4 of QFD shown in Figure 10.1, the 21 customer requirements are prioritized in the descending order. Accordingly, the highest prioritized customer requirement is given the number 21. The lowest prioritised customer requirement is given the number 1. As shown in Figure 10.1, the customer requirement "Technical knowledge" is given the maximum priority value 21 and the customer requirement "Fees structure" is given the value 1.

10.4.5. Section 5. Prioritizing Technical remedies

Like in the case of customer requirements, due to several type of constraints, all the technical remedies cannot be considered for implementation in the engineering educational scenario. This is a very crucial point because engineering education is several decades old and has spotted a niche in almost all societies of the world (Wei,2005). Therefore, many technical remedies cannot be promulgated within a short period. Therefore the technical remedies have to be prioritized based on their importance and feasibility of implementation. The section 5 of QFD shown in Figure 10.1 provides a means to carryout this task. As shown, the highest prioritized technical remedy is 'motivation' and the lowest prioritized technical remedy is of technical remedies has to be made by considering the correlation and the relationship metrices.

10. 4.6. Section 6: Correlation Matrix

This matrix is developed with a view to showing the correlation between different technical requirements. Many technical requirements will have relationships among other with different degrees of correlation. The degree of correlation is categorized as strong, moderate and weak, depending on their intensity. The same symbols and values used for denoting relationships have been used to compile section 6 of the QFD shown in Figure 10.1.

In order to quantify the relationships and correlate using numerical values, the pattern followed by Lu and Kuei (1995) for quantifying the relationships was used. Accordingly, the values 9, 3 and 1 were assigned to strong relationship/ correlation, medium relationship/ correlation, and weak relationship/ correlation respectively. No values were assigned against blank cells. These values were used to compute Customer-technical interactive scores and weighted correlated values. As a sample, the method of calculating Customer-technical interactive score is illustrated here by considering the

technical language "motivation". The relationship of customer voices namely 'technical knowledge', against 'motivation' is indicated by the symbol whose value is 9. While the relationship of 'repeated breakdown' with 'good result' is denoted by the symbol, whose value is 1. The customer technical interactive scores have been calculated as follows:

Formula:	Customer technical	=	n	Relationship values × between customer	Expected value of customer voice
	interactive		$\sum_{i=1}^{n}$	voice and technical	
	score		i=1	languages	

Where 'n' refers to the number of customer voices.

Example: Customer technical interactive score for 'qualified and experienced staff' = $9 \times 57 + 3 \times 10 + 1 \times 4 = 547$

In order to visualize the relative weightages, the percentage normalized value of customer technical interactive scores has been computed as follows. Formula: Percentage normalized value of customers' technical interactive score

> = <u>Customer technical interactive score</u> × 100 Sum of customer technical interactive score

Example: Percentage normalized score of customers technical interactive score against the technical voice 'qualified and experienced staff' = $(547/3832) \times 100 = 14.27$

These computed scores are displayed in Table 10.3. The weighted correlated value is calculated by summing the values of correlations. As shown in Figure 10.1, the weighted correlated value against the technical parameter "excellent coaching" is 12.03.

In order to visualize the relative weightages of technical correlation, the percentage normalized value of correlated weights has been calculated using the following formula.

					/			Property Contraction	23.37 Vialue	(r) (r) (r)	22.26 10.23	62 2 to	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a de la de l	Ŷ	
		_	$\left\langle \right\rangle$	Sect	tion							Ĩ X X		0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
		Qualified and experienced Staff	Vell Designed Syllabus	ndustrial Visit	nplant Training	ersonality Development Classes	eminar by Experts	nternet acces	itness Centre 25	Disciplined Campus	Aodem Equipments 2	diractive Brochure	ctive placement Cell	xcellent Coaching	A otivation	Section 4
B adents	Technical Knowledge Logical reasoning Analytical thinking Quickness in response Adaptability to change of environment Communication skill General awareness Morale								Sec	tion	3					21 5 2 3 7 11 10 20
Parents	Good result Section 1 Awareness Section 1 Responsibility Expenditure Fees Structure Safety and security Skill Consistency Worth to greanization			•	•	•		•			•			•		19 18 13 6 1 9 17 8 15
	Quality of work Dedication Health Scope for training and development	•	•			•	A S	ectio	n 5	•						12 14 16 4
	Priority numbers	3	6	10	9	4	7 Figu	11 ire 10	13).2 H	12 ouse	5 of Q	14 vality	8 Mat	2 rix	1	J

Percentage normalized value of correlated weightage =

<u>Correlated weightage of the technical language</u> × 100 Sum of Correlated weightages

Example: Percentage normalized correlated weightage against the technical

parameter 'motivation' = $5/22 \times 100 = 22.73$

Table. 10.3. Computed scores of technical parameters of house of quality

Serial Number	Technical descriptors	Customer technical interactive score (1)	Percentage normalized value of customers technical interactive score (2)	Correlated weightage of the technical language (3)	Percentage normalized value of correlated weightage (4)	Priority value (2)+(4)
1	Qualified and Experienced employees	547	14.27	2	9.1	23.37
2	Well designed curriculum design	528	13.78	1	4.55	18.33
3	Industrial visits	204	5.32	1	4.55	9.87
4	In plant training	217	5.67	1	4.55	10.22
5	Personality development classes	504	13.16	2	9.1	22.26
6	Seminar by experts	303	7.91	1	4.55	12.46
7	Internet access	156	4.07	1	4.55	8.62
8	Fitness center	144	3.76	0	0	3.76
9	Disciplined Campus	50	1.3	1	4.55	5.85
10	Modern equipments	432	11.27	2	9.1	20.37
11	Attractive brochure	0	0	0	0	0
12	Active placement cell	63	1.64	2	9.1	10.74
13	Excellent coaching	461	12.03	3	13.64	25.67
14	Motivation	222	5.82	5	22.73	28.55

Both percentage normalized score of customer technical interactive score and percentage normalized value of correlated weightage have been added and entered in the correlation matrix (section 6) of QFD shown in Figure 10.1 and are termed as total normalized values. The inference drawn from the QFD presented in Figure 10.1 is that the technical requirements shown in Table 10.4 are to be fulfilled in response to the customers voice according to the indicated order of priority values.

Technical requirements	Priority numbers	Priority value
Motivation	1	28.55
Excellent coaching	2	25.67
Qualified and Experienced staff	3	23.37
Personality development classes	4	22.26
Modern equipments	5	20.37
Well designed syllabus	6	18.33
Seminar by experts	7	12.46
Active placement cell	8	10.74
In plant training	9	10.22
Industrial visits	10	9.87
Internet access	11	8.62
Disciplined Campus	12	5.85
Fitness center	13	3.76
Attractive brochure	14	0

Table 10.4 Technical requirements of Engineering education

10.5. Synergizing TPM and QFD through MQFD

The previous sections dealt with the power of TPM in enhancing quality of products and the capability of QFD in translating customer languages into technical languages in the engineering educational scenario. However, both TPM and QFD principles lack linking mechanisms to avail the synergic power of them. In order to fill this lacuna, the author proposes here a model called MQFD. Its conceptual features are depicted in Figure 3. As shown, the performance of an institution will be heard through the voice of customers. Those voices of customers are used as the inputs to develop the house of quality. The house of quality has to be built by the QFD team. The outputs of house of quality, which are in the form of technical languages, are submitted to the top management for making strategic decisions. This step becomes necessary because researchers have established the need for applying strategic approach in both QFD (Lu and Kuei 1995) and TPM (Tsang 1998; Murthy et.al.,2002) projects for ensuring their success. The technical languages which are concerned with enhancing maintenance quality are strategically directed by the top management for applying eight TPM pillars on them. The TPM characteristics evolved through the development of eight pillars are fed into the production system, where their implementation focuses on increasing the values of the maintenance quality parameters. The outputs from production system are required to be reflected in the form of improved maintenance quality, increased profit, upgraded core competence, and enhanced goodwill (Al-Najjar, 1996). All the quantified values of these outputs are used for developing another house of quality and comparing with set targets. Now the next cycle begins. Thus implementation of MQFD model is a never-ending continuous improvement process. A unique feature of MQFD model is that it does not envisage any change or dismantling of the existing structure of house of quality and TPM. Therefore, even if an organization has already been applying TPM and QFD, it is possible to superimpose MQFD on its environment. Thus MQFD model enables the tactical marriage of QFD and TPM.

10.6. MQFD in Engineering Education

MQFD in an engineering educational institution has to begin by forming a team of seven to eight teaching and supporting employees from different departments. This MQFD team shall be headed by a senior teaching employee. The responsibility of MQFD team is to find out the voice of customers through different media and convert them into technical languages. This is accomplished by building the house of quality. The output of the house of quality will be submitted to the decision makers of the engineering educational institution to make decisions at the strategic level. Some outputs of house of quality would be so simple that they could be implemented without any difficulty. For example, making the time schedule for conducting any course does not require much strategical effort. Such kind of outputs of house of quality can be implemented at this stage. However while implementing them, close watch will have to be kept to examine whether they align with the goals of the engineering educational institution. If required, some modifications will

be done based on the suggestions at tactical level. Some of the outputs of house of quality are so complex that they would require critical thinking and analysis at the strategic level. Those outputs shall have to be directed towards the eight TPM pillars of MQFD model. The results obtained have to be processed by the production module of MQFD model. Production can be equated with the teaching learning process in engineering education. As shown in Figure 10.2, this process has to be designed to fulfill the following requirements of engineering education.

- Increasing the percentage of engineering students getting employed before and after completing their courses
- Increasing the percentage of students passing engineering
- Increasing the number of companies aspiring to recruit students
- Increasing the performance quality of employed students
- Decreasing the percentage of students giving up / stopping the course of study before completion and
- Increasing the availability of qualified and experienced teachers.

One cycle of MQFD implementation will lead to the sustained development of engineering educational institution the results of which will be reflected in the following forms:

- Higher accreditation score
- Raising of surplus funds
- Increased core competencies (Irandoust And Sjoberg, 2001) and
- Enhanced goodwill of engineering education.

The rationale behind the achievements of the above are narrated here. Today in many societies accreditation system is installed to assess the performance of engineering educational institutions. These systems make use of scoring scheme. Higher score indicate higher degrees of quality of education offered by the engineering educational institution. When the quality of employees and students improves, students are willing to pay higher fees for the courses offered by the engineering educational institution. Likewise, companies will also be seeking the help of students and employees to solve practical problems and execute the project by paying the fees. These developments will lead to the raising of surplus funds, which can be used for further development of the engineering educational institution. On the application of MQFD, the hidden talents will be reflected in the form of core competencies of the engineering educational institution. Achievement of these excellences will lead to higher reputation of the engineering education offered by the institution among its customers. Thus MQFD would help the engineering education achieve success, which is found eluding in the societies of various parts of the world (Zairri, 1992). The attractive aspect of MQFD implementation in engineering education is that its implementation does not require much financial investments. Rather, many refinements are possible with slight modifications in the currently followed practices to make the products of engineering education acceptable to their customers.

10.7. Implementation Strategies

Successful implementation of MQFD model in engineering education needs the wholehearted cooperation of all personnel in the institution. In order to accomplish this task, a step-by-step approach has to be adopted. After witnessing the emergence of several technological and management models during the last three decades, today the global community examines the reasons for their failures. This implies that many models have suffered failures. In some cases they have even met the fate of extinction. Hence a foolproof set of implementation steps pertaining to MQFD application in the engineering educational scenario is presented in the following subsections. The rationale behind suggesting these steps is also narrated in these subsections.

10.7.1 Step 1

MQFD experts have to convince the management and the Principal/ Director of the engineering educational institution of the benefits that can be reaped through its implementation. This exercise has to be carried out by organizing seminars and brainstorming sessions with the involvement of management personnel, representatives and the Principal.

10.7.1.1 Rationale

The vitality of top management support and commitment for the successful implementation of both TPM and QFD models have been well established in literature (Emiliani, 2005; Kaye and Andersen, 1999; Cooke, 2000; Kathawala and Motwani, 1994). The core requirement of the above seminar and brainstorming sessions is to convince the top management of the benefits to be achieved by implementing MQFD and to ensure their commitment and ownership to it. Similar emphasis is made in Chan et.al (2005) while enumerating the twelve steps for the TPM implementation programme. As many seminars and brainstorming sessions are being held in an engineering educational institutions by different professional bodies, this exercise would not be a difficult task. However, convincing the decision makers of the implementation of MQFD in the engineering educational scenario depends on the competencies of MQFD experts.

10.7.2. Step 2

Management and the Principal have to announce the implementation of MQFD as a policy. They have to state the objectives so that they can reach all personnel in the institution. Different types of educational campaigns have to be conducted for the personnel at different levels in order to make them fit to attain MQFD objectives.

10.7.2.1.Rationale

The rationale of this step is that top management personnel become cautious while embarking on any new programme. At the same time, they will be attracted to the models, which will lead to sales and revenue increase. The same approach has been adopted by Ghobadian and Terry (1995) while describing the implementation of QFD in a company by name Alitalia. A similar step is envisaged under the name 'focus group brainstorming' in Pun et.al (2000) and Chin et.al (2001). During this stage, the problem of resistance to change can be sensed. This has to be tackled using appropriate change management approaches (Ferrer-Balas et.al, 2004). There will be another bottleneck which has to be overcome. Conducting different types of educational campaigns for different categories of people will be expensive. Hence a suitable educational campaign has to be designed which is economical and reachable to as many personnel as possible.

10.7.3 Step 3

A MQFD team consisting of 7-8 members of different departments may have to be formed. They have to meet once in a week and draw out plans for the implementation.

10.7.3.1 Rationale

The individual knowledge will be too narrow and self centered for adoption in real time environments. A team effort is required to make superior decisions (van der Wall and Lynn, 2002). When members from different departments join, practically compatible continuous improvement results will emerge (Chan. et.al, 2005). The synergic combination of multi-disciplinary efforts will lead to very valuable decisions(Ollero, et.al., 2002). Quite interestingly, the formation of a team is envisaged while implementing both TPM and QFD principles (Ireland, and Dale ,2001, Rahim, and Baksh, 2003, Tsang, and Chan, 2000). Hence the team shown above is formed while implementing MQFD, which has to be done with care (Balthazard, and Gargeya, 1995).

After the formation of MQFD team, the management shall support its effective functioning by providing the required resources. One among them is the management's willingness to allot a certain time during the working hours for conducting MQFD meetings. In order to fulfill this requirement, while implementing MQFD, the management shall help by earmarking one or two hours in a week for MQFD members' meeting. Similar appraisal has been made by Bamber et.al (1999) who has cited 'time allocation' as one of the factors affecting successful implementation of TPM. When MQFD gains momentum, a section of the management and employees may feel sceptic about its fruitful results. This feeling may emerge in the form of resistance to change. In order to mitigate these reverberations on MQFD, a seminar explaining its features and expected benefits to be reaped by the institution is required to be conducted. Similar observations have been reported by Ireland and Dale (2001). Also, the step like the above has been suggested with regard to the implementation of TPM in a company in T Sang et.al (2000). This is a feasible exercise in engineering educational institutions. As members from different departments join, many new ideas will emerge. The synergic effort will lead to very valuable decisions that would aid in effecting continuous quality improvement of engineering education.

10.7.4. Step 4

Customer languages in engineering educational scenario have to be identified. For this purpose the feedback of parents, alumnis and the employers who have employed aluminis has to be rigorously and regularly entertained.

10.7.4.1. Rationale

Identifying customer language is a difficult exercise. The different sources and channels are to be tactically tapped and traced to gather customer languages. MQFD team has to adopt suitable methodologies to identify the above customer languages. For this purpose the MQFD team may refer to the methodologies reported in article like Chin.et.al (2001), Kumar and Midha (2001), Ghobadian and Terry.(1995) and Pun et.al(2000). The difficulty of carrying out this exercise in the engineering educational scenario is multifarious. The customers of engineering education are large in numbers and varied in types. Hence interviewing them to gather the customer languages of engineering education will be a cumbersome exercise. If necessary, some other suitable methods will also have to be evolved.

10.7.5. Step 5

Customer languages shall have to be ranked based up on their importance. This can be done by making use of the experience and views of the management and employees.

10.7.5.1. Rationale

Prioritization has been an accepted practice in several fields. For example, Juran and Gryna (1997), recommend the use of Parato analysis to identify the vital few quality problems. Likewise, the field of inventory management uses ABC analysis to prioritise the materials as A, B and C categories (Zomerdijk, and Vries, 2003). Hence, MQFD implementation would be more result oriented if customer languages are ranked and considered according to their priorities. However, the choosing of appropriate metrics and scales for ranking customer languages of engineering education would be a challenging task because, meeting the requirements of varied types of customers is a difficult task in the engineering educational scenario. However, the technical skills and experience of MQFD experts and members may come in handy to overcome this difficulty.

10.7.6. Step 6

House of quality shall have to be built to convert customer languages into technical languages.

10.7.6.1. Rationale

This exercise results in systematic conversion of customer languages (requirements) into technical languages (descriptors). In addition to that, house of quality matrix shows a clear picture of the ranking and relationships between customer and technical languages. Besides, correlations among the technical languages are revealed. Hence the above step utilizing these features is a core aspect of MQFD programme. In the engineering educational scenario also, many factors are interrelated. For example, a company interested in recruiting graduates from an engineering educational institution desires to introduce a technology in the curriculum. The administrative procedures of that engineering educational institution may not permit the addition of this topic in the curriculum to fulfill the requirements of this company. Hence the relationships among these contradicting factors shall have to be studied.

10.7.7. Step 7

Management and the Principal have to take strategic decision to choose the outputs of house of quality, which have to be passed through eight TPM pillars.

10.7.7.1 Rationale

A few vital problems damage the systems to the maximum possible extent. Hence solving these problems would help overcome the major malfunctioning of the systems (Logothetis, 1997). Therefore, when technical language with the highest priority is chosen, it would lead to the solving of major deficiencies and trading off minor deficiencies Besterfield,et.al(2004). The outputs of house of quality have to be studied and then passed through appropriate TPM pillars. A good understanding of TPM pillars and their influence on the engineering educational system are very essential for carrying out this step.

10.7.8. Step 8

The chosen outputs of house of the quality has to be sent through eight pillars of TPM

10.7.8.1 Rationale

As mentioned earlier, TPM pillars have been found to be powerful. In fact, they serve as gateways for achieving the goals of TPM. The power of TPM pillars in enhancing the quality in the engineering education has been well explained in one of the previous sections. Hence this step is playing a vital role in applying MQFD in the engineering educational institution.

10.7.9. Step 9

The results of implementing the eight pillars of TPM have to be used for refining the curriculum.

10.7.9.1 Rationale

Since traditionally curriculum based education is enforced in the engineering educational scenario, improving its contents using the reliable inputs will play a powerful role in improving the quality of engineering education. Engineering educationalists seldom use rationalised data for refining curriculum. This step makes up this deficiency.

10.7.10. Step 10

The results have to be evaluated based on suitable parameters which include the number of students recruited by companies, the number of students who have completed the course, the number of companies recruiting students, the performance quality of engineering students, the number of students dropping out of the course and the availability of expertise among both the teaching staff and students.

10.7.10.1 Rationale

Many authors have claimed that the overall equipment effectiveness (OEE) is the most effective measure of the maintenance quality (Chan et.al, 2005). However engineering educational institutions cannot use OEE for measuring maintenance quality because it is designed for use in industrial environments. Hence engineering educational institutions have to measure their maintenance quality from different perspectives (Ferrer-Balas et.al, 2004). This is made possible by measuring the other parameters cited above.

10.7.11. Step 11

The results shall have to be compared with the set targets of the engineering educational institution.

10.7.11.1 Rationale

Researchers have stated the importance of comparing the integrity of TPM benefits with business performance (Ahmed,et.al,2005, Seth and Tripathi, 2005). In engineering educational institutions, the implementation of MQFD cycle may result in business performance improvement. However, its level has to be checked with that of the target (Grygoryev and Karapetrovic, 2005, Shen, 2004). This will enable the engineering educational institution to reap the ultimate benefits of implementing MQFD. In other words, this will enable the engineering educational institution, to climb one step towards in meeting the requirements of its customers.

10.7.12. Step 12

The deviation of the results, if any, has to be identified.

10.7.12.1 Rationale

The findings and results of MQFD have to be used for engineering educational institution's sustained and continuous improvement. Hence, strategic decisions are required to be made for implementing the outcomes of MQFD. Since management holds the key, the task of making strategic decisions in this direction has to be carried out by the management (Madu, 2000). During recent years, the sustainability of engineering education has been largely debated. This step is necessary to achieve the sustainability of engineering education.

10.7.13. Step 13

The tactical suggestions have to be proposed to the management and the Principal, who have to make strategic decisions to implement them.

10.7.13.1. Rationale

The engineering educational scenario is largely driven by external forces and traditional practices. For example, the educational system adopted in the United States of America is considered as the 'world-class education' by the engineering educationalists of most of the other countries. Hence, the engineering educational scenario prevailing in those countries are driven by the American educational system. In this context, restructuring engineering education is a challenging task. Therefore the decision in this regard has to be made by the management and the Principal and those decisions will have to be strategic in nature.

10.7.14. Step 14

Recommended actions evolved after MQFD proceedings will have to be implemented.

10.7.14.1 Rationale

Since the suggestions have to yield value and results (Ireland and Dale, 2001), they have to be implemented in the engineering educational system. For ensuring successful implementation, all departments and personnel have to be prepared themselves and tune their minds to accept the changes and improvements.

10.7.15. Step 15

The target, which has been achieved, will have to be revised along with the house of quality matrix. If there are changes in customers' languages, that also have to be considered while revising the matrix.

10.7.15.1 Rationale

Due to the rapid changes taking place in technologies and management fields, the demands of the customers of engineering education have been dynamic. Therefore a continuous revision of the house of quality has to be carried out to cope with this dynamics. In fact, the engineering educational system has never been so critical due to the dynamic demands of customers. Hence, MQFD exercise needs to be continued further and new targets have to be set to meet customers' dynamic demands.

10.7.16. Step 16

The working of MQFD programme as a whole has to be reviewed. During its progress, the views of the management and the Principal will have to be studied. The effect of experimenting the MQFD for continuously enhancing the quality of engineering education has to be examined.

10.7.16.1 Rationale

Currently the world is shrinking in size due to the globalization process.(Cravens, et.al, 2003 Rose-Ackerman, 2002, Soudien, 2002, Czinkota and Ronkainen, 2005). Hence, the engineering education has to meet the dynamic requirements of customers at the global level (Johnston, 2001). Hence, it is necessary that the management and principal have to ensure that the developments taking place in various departments are directed towards attaining its core competence in the global market.

10.8. Reactions

After exploring the methodology of implementing MQFD in the engineering educational scenario, engineering educationalists were approached to sense their reactions The profiles of these educationalists are presented in Table 10.5. These engineering educationalists were personally approached by the author and appraised about the features of MQFD and its application in the

engineering educational scenario. Then the questionnaire as depicted in AnnexureE enabling them to assess the extent of applying each step of MQFD in the engineering educational scenario was given to them. The decisions and questions supplied and the reactions of the respondents pertaining to MQFD implementation steps are shown in Table 10.5. As shown, the respondents had to tick any one of the response Yes- Surely, Yes- Partially, Yes-Feebly, and Not Possible. Also the respondents had the option of writing their comments against each question. The frequency table of the responses of the respondents is also given in Table 10.6. As indicated, against most of the steps, the respondents' reactions were favorable. The responses are summarized and pictorially depicted in Figure 10.3. As shown, only 1.1% of the total respondents were pessimistic about implementing MQFD steps in the engineering educational scenario.

Serial Name of the Number Respondent		Positions and locations in India	Years of service in Engineering Education (approximate)		
1	Dr.M.C.Philipose	Principal, TKM College of Engineering, Kollam. Kerala state	25		
2	Professor. R.V.Shenoy	Principal, Musaliar College of Engineering & Technology. Kerala state	30		
3	Professor. P.Nizzar	Director, TKM Institute of Technology, Karuvelil, Kollam Kerala state	35		
4	Professor. P.A.Abraham	Professor, Department of Mechanical Engineering, TKM College of Engineering, Kollam, Kerala state	30		
5	Professor. K.Bala Chandra Sharma	Principal, Balas Elias Mathew II College of Engineering, Kollam, Kerala state	30		
6	Dr.George vargese	Professor & HOD, Department of Electronics and Communication Engineering, TKM College of Engineering, Kollam, Kerala state	25		

Table	10.5	Profiles	of	Engineering	Educationalists	who r	esponded	to	the survey	٧.
			-							

Table Contd.....

K GangadharanTechnology, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State8Professor. Joshi C HaranProfessor, Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State259Professor. R.Govindan KuttyDean and Vice Principal, Park College of Engineering and Technology, Coimbatore, Tamil Nadu State.3510Professor. A.K.Balakrishnan NairChairman and HOD,Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State3511Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathanamthita., Kerala state4012Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state2513Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state2514Professor. P. Govindan NairRetired Professor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Mechanical Engineering, NSS College of Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran Nair	7	Professor.	Chairman& HOD, Department of Information	35
Coimbatore, Tamil Nadu State8Professor. Joshi C HaranProfessor, Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State259Professor. R.Govindan KuttyDean and Vice Principal, Park College of Engineering and Technology, Coimbatore, Tamil Nadu State.3510Professor. A.K.Balakrishnan NairChairman and HOD, Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State3511Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathanamthita, Kerala state4012Dr.V.Balakrishna Pathanamthita, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. V.Girija DeviProfessor & Head, Department of Mair3516Professor. P. Govindan NairRetired Professor & Head, Department of Mechanical Engineering, NSS College of Engineeri		K Gangadharan	Technology, Amrita Viswa Vidyapeetham,	
8 Professor. Joshi C Professor, Department of Mechanical 25 9 Professor. Dean and Vice Principal, 35 9 Professor. Dean and Vice Principal, 35 10 Professor. Coimbatore, Tamil Nadu State. 35 10 Professor. Chairman and HOD, Department of 35 10 Professor. Chairman and HOD, Department of 35 11 Dr.P.G.Bhaskaran Director, Mount Zion Engg. Collge, 40 12 Dr.V.Balakrishna Patired Pricipal, NSS College of Engineering, 40 13 Professor.SitaLekshmi Professor & Head, Instrumentation and 25 14 Dr.M.R.Vikraman Professor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state 25 15 Professor. V.Girija Professor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state 25 16 Professor. P. Govindan Nair Professor & Head, Department of Mechanical Engineering, NSS College of Engineering, P			Coimbatore, Tamil Nadu State	
HaranEngineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State9Professor.Dean and Vice Principal, Park College of Engineering and Technology, Coimbatore, Tamil Nadu State.3510Professor.Chairman and HOD,Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State3511Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathkanamthitta, Kerala state4012Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. V.Girija DeviProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30	8	Professor. Joshi C	Professor, Department of Mechanical	25
9Professor. R.Govindan KuttyDean and Vice Principal, Park College of Engineering and Technology, Coimbatore, Tamil Nadu State.3510Professor. A.K.Balakrishnan NairChairman and HOD, Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State3511Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathaamthitta, Kerala state4012Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering, Professor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30		Haran	Engineering, Amrita Viswa Vidyapeetham,	
9 Professor. Dean and Vice Principal, Park College of Engineering and Technology, Coimbatore, Tamil Nadu State. 35 10 Professor. Chairman and HOD,Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State 35 11 Dr.P.G.Bhaskaran Nair Director, Mount Zion Engg. Collge, Pathanamthitta., Kerala state 40 12 Dr.V.Balakrishna Panicker Pathanamthitta, Kerala state 40 13 Professor.SitaLekshmi Amma. B Professor & Head, Instrumentation and Control engineering, NSS College of Engineering, Palakkad, Kerala state 25 14 Dr.M.R.Vikraman Professor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state 25 15 Professor. V.Girija Devi Professor & Head, Department of Electronics and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state 35 16 Professor. P. Govindan Nair Retired Professor & Head, Department of Engineering, Palakkad, Kerala state 30 17 Dr.V.P. Sukumaran Nair Professor. Red, Department of Mechanical Engineering, Palakkad, Kerala state 30 18 Professor. Retired Principal, NSS College of Engineering, Palakkad, Kerala state 30 <			Coimbatore, Tamil Nadu State	
R.Govindan KuttyPark College of Engineering and Technology, Coimbatore, Tamil Nadu State.10Professor.Chairman and HOD,Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State3511Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathanamthitta., Kerala state4012Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija BoeviProfessor & Head, Department of Score & Head, Department of Mechanical Engineering, NSS College of Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor, Retired Principal, NSS College of Engineering, Palakkad, Kerala state3018Professor, Retired Principal, NSS College of Engineering,	9	Professor.	Dean and Vice Principal,	35
Image: Combatore, Tamil Nadu State.10Professor.Chairman and HOD, Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State3511Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathanamthitta., Kerala state4012Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30		R.Govindan Kutty	Park College of Engineering and Technology,	
10 Professor. Chairman and HOD,Department of Mechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State 35 11 Dr.P.G.Bhaskaran Nair Director, Mount Zion Engg. Collge, Pathanamthitta., Kerala state 40 12 Dr.V.Balakrishna Panicker Retired Pricipal, NSS College of Engineering, Palakkad, Kerala state 40 13 Professor.SitaLekshmi Amma. B Retired Pricipal, NSS College of Engineering, Palakkad, Kerala state 25 14 Dr.M.R.Vikraman Professor & Head, Department of Electronics and Communication Engineering, Palakkad, Kerala state 25 15 Professor. V.Girija Devi Professor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state 25 16 Professor. P. Govindan Nair Retired Professor & Head, Department of Mechanical Engineering, Palakkad, Kerala state 30 17 Dr.V.P. Sukumaran Nair Professor & Head, Department of Mechanical Engineering, Palakkad, Kerala state 30 18 Professor. Retired Pricesor & Head, Department of Mechanical Engineering, Palakkad, Kerala state 30 17 Dr.V.P. Sukumaran Nair Professor & Head, Department of Mechanical Engineering, NSS College of Engineering, Palakkad, Kerala state 30 <td></td> <td></td> <td>Coimbatore, Tamil Nadu State.</td> <td></td>			Coimbatore, Tamil Nadu State.	
A.K.Balakrishnan NairMechanical Engineering, Amrita Viswa Vidyapeetham, Coimbatore, Tamil Nadu State11Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathanamthitta., Kerala state4012Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering, NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, NSS College of E	10	Professor.	Chairman and HOD, Department of	35
Vidyapeetham, Coimbatore, Tamil Nadu State11Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathanamthitta., Kerala state4012Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering, NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30		A.K.Balakrishnan Nair	Mechanical Engineering, Amrita Viswa	
State11Dr.P.G.Bhaskaran NairDirector, Mount Zion Engg. Collge, Pathanamthitta., Kerala state4012Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30			Vidyapeetham, Coimbatore, Tamil Nadu	
11 Dr.P.G.Bhaskaran Nair Director, Mount Zion Engg. Collge, Pathanamthitta., Kerala state 40 12 Dr.V.Balakrishna Panicker Retired Pricipal, NSS College of Engineering, Palakkad, Kerala state 40 13 Professor.SitaLekshmi Amma. B Professor & Head, Instrumentation and Control engineering NSS College of Engineering, Palakkad, Kerala state 25 14 Dr.M.R.Vikraman Professor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state 25 15 Professor. V.Girija Devi Professor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state 25 16 Professor. P. Govindan Nair Retired Professor & Head, Department of Engineering,Palakkad, Kerala state 30 17 Dr.V.P. Sukumaran Nair Professor & Head, Department of Mechanical Engineering,Palakkad, Kerala state 30 18 Professor. Retired Principal, NSS College of Engineering,Palakkad, Kerala state 30		······································	State	
NairPathanamthitta., Kerala state12Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, NSS College of Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30	11	Dr.P.G.Bhaskaran	Director, Mount Zion Engg. Collge,	40
12Dr.V.Balakrishna PanickerRetired Pricipal, NSS College of Engineering, Palakkad, Kerala state4013Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and 		Nair	Pathanamthitta., Kerala state	
PanickerPalakkad, Kerala state13Professor.SitaLekshmi Amma. BProfessor & Head, Instrumentation and Control engineering NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, NSS College of Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30	12	Dr.V.Balakrishna	Retired Pricipal, NSS College of Engineering,	40
13Professor.SitaLekshmi Amma.BProfessor & Head, Instrumentation and Control engineering NSS College of Engineering, Palakkad, Kerala state2514Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3017Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30		Panicker	Palakkad, Kerala state	
Amma. BControl engineering NSS College of Engineering, Palakkad, Kerala state14Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state15Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state16Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state17Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state18Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state	13	Professor.SitaLekshmi	Professor & Head, Instrumentation and	25
NSS College of Engineering, Palakkad, Kerala state14Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3517Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30		Amma. B	Control engineering	
14Dr.M.R.VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3517Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30			NSS College of Engineering, Palakkad,	
14Dr.M.R. VikramanProfessor & Head, Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state2515Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state3517Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30			Kerala state	
and Communication Engineering, NSS College of Engineering, Palakkad, Kerala state15Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state16Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state16Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state17Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of S College of Engineering, NSS College of S College of Engineering, NSS College of Engineering, Palakkad, Kerala state3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30	14	Dr.M.R. Vikraman	Professor & Head, Department of Electronics	25
College of Engineering, Palakkad, Kerala state15Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state16Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, Palakkad, Kerala state16Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, NSS College of Engineering, NSS College of Engineering, Palakkad, Kerala state17Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of S College of Engineering, NSS College of Engineering, Palakkad, Kerala state18Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state	1		and Communication Engineering, NSS	
15Professor. V.Girija DeviProfessor & Head, Department of Electrical and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state2516Professor. P. Govindan NairRetired Professor & Head, Department of Engineering, NSS College of Source3517Dr.V.P. Sukumaran NairProfessor & Head, Department of Mechanical Engineering, NSS College of Engineering, NSS College of Engineering, NSS College of Source3018Professor.Retired Principal, NSS College of Engineering, Palakkad, Kerala state30	}		College of Engineering, Palakkad, Kerala	
15 Professor. V.Girija Professor & Head, Department of Electrical 25 Devi and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state 25 16 Professor. P. Govindan Retired Professor & Head, Department of 35 Nair Mechanical Engineering, NSS College of 35 17 Dr.V.P. Sukumaran Professor & Head, Department of Mechanical 30 Nair Engineering, Palakkad, Kerala state 30 18 Professor. Retired Principal, NSS College of 30			state	
Devi and Electonics Engineering, NSS College of Engineering, Palakkad, Kerala state 16 Professor. P. Govindan Nair Retired Professor & Head, Department of Engineering, Palakkad, Kerala state 17 Dr.V.P. Sukumaran Nair Professor & Head, Department of Mechanical Engineering, Palakkad, Kerala state 18 Professor. Retired Principal, NSS College of Engineering, Palakkad, Kerala state	15	Professor. V.Girija	Professor & Head, Department of Electrical	25
16 Professor. P. Govindan Retired Professor & Head, Department of 35 Nair Mechanical Engineering, NSS College of Engineering, Palakkad, Kerala state 17 Dr.V.P. Sukumaran Professor & Head, Department of Mechanical 30 Nair Engineering, Palakkad, Kerala state 30 18 Professor. Retired Principal, NSS College of 30 18 Professor. Retired Principal, NSS College of 30	i i	Devi	and Electonics Engineering, NSS College of	
16 Professor. P. Govindan Retired Professor & Head, Department of 35 Nair Mechanical Engineering, NSS College of Engineering,Palakkad, Kerala state 30 17 Dr.V.P. Sukumaran Nair Professor & Head, Department of Mechanical S0 30 18 Professor. Retired Principal, NSS College of Engineering, Palakkad, Kerala state 30 18 Professor. Retired Principal, NSS College of Engineering, Palakkad, Kerala state 30		Defense D. Caria I	Engineering, Palakkad, Kerala state	25
Nair Mechanical Engineering, NSS College of Engineering,Palakkad, Kerala state 17 Dr.V.P. Sukumaran Nair Professor & Head, Department of Mechanical Engineering, NSS College of Engineering,Palakkad, Kerala state 18 Professor. Retired Principal, NSS College of Engineering, Palakkad, Kerala state	10	Professor. P. Govindan	Kettred Professor & Head, Department of	35
17 Dr.V.P. Sukumaran Nair Professor & Head, Department of Mechanical Engineering, NSS College of Engineering, Palakkad, Kerala state 30 18 Professor. Retired Principal, NSS College of Engineering, Palakkad, Kerala state 30		INAIT	Engineering Delekhod, Kasala state	
17 Dr. v. P. Sukumaran Professor & Head, Department of Mechanical 30 Nair Engineering, NSS College of 50 18 Professor. Retired Principal, NSS College of 30 C Semeashbaran Engineering, Palakkad, Kerala state 30	17	Da V D. Culumanan	Benchanne & Hand Department of Manhanian	20
Nali Engineering, NSS Conege of Engineering, Palakkad, Kerala state 18 Professor. C Sameashkaran Engineering Palakkad, Kerala state	17	Dr. v.P. Sukumaran	Engineering NSS College of	30
18 Professor. Retired Principal, NSS College of 30 C Samaaakkaran Engineering Palakkat, Kerala state	I	11411	Engineering Palakkad Kerala state	
C Samaraldaran Engineering D-1-1-1-3 V1- 444	19	Professor	Retired Principal NSS College of	30
I I NOMASEKNATAN I ENDINEETING PAJAKKAO KIETAJA STATE I		C Somasekharan	Fnoincering Palakkad Kerala state	50
19 Professor Lecturer Department of Humanities PSG 15	10	Professor	Lecturer Department of Humanities PSG	15
R Ravichandran College of Technology Coimbatore Tamil		R Ravichandran	College of Technology Coimbatore Tamil	15
Nadu State			Nadu State	
20 Professor T Divakaran Professor & Head Department of Civil 30	20	Professor T Divakaran	Professor & Head Department of Civil	30
Engineering, NSS College of Engineering	1		Engineering, NSS College of Engineering	50
Palakkad. Kerala state	1	ł	Palakkad. Kerala state	
21 Kalpana N Lecturer, Department of Humanities, PSG 10	21	Kalpana.N	Lecturer, Department of Humanities, PSG	10
College of Technology. Coimbatore. Tamil]	F	College of Technology. Coimbatore. Tamil	
Nadu State			Nadu State	
22 Anonimous	22	Anonimous	· · · · · · · · · · · · · · · · · · ·	

Step number	Description and question	Yes Surely	Yes Partially	Yes feebly	Not Possible	No Response
1	MQFD experts have to convince the top management and the principal/ director of the engineering educational institution about the benefits that can be reaped by the implementation of MQFD. This exercise has to be carried out by organizing seminars and brainstorming sessions. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	13	8	1	0	0
2	Management and the principal have to announce the implementation of MQFD as a policy. They have to state the objectives such that it will reach all personnel in the institution. Different types of educational campaigns have to be conducted for personnel at different levels in order to make them fit to attain MQFD objectives. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	4	15	3	0	0
3	Form an MQFD team consisting of 7-8 members of different departments. They meet once in a week and draw out plans for the implementation. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	9	11	2	0	0

Table 10.6. Reactions of Engineering Educationalists

Table Contd.....

4	Identify the customer languages of education. For this purpose the feedback of parents, alumnis and the employers who have employed aluminis has to be rigorously and regularly gathered. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	7	10	5	0	0
5	Customer languages shall have to be ranked based upon their importance. This can be done either by using previous experience and the views of management and personnel. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	7	11	2	1	0
6	Construct the House of Quality (HoQ). To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	6	10	3	0	3.
7	Management and principal have to take strategic decision to choose the outputs of HoQ, which have to be passed through eight TPM pillars. The eight TPM pillars are 1.Autonomous maintenance 2.Individual improvement 3.Planned maintenance 4.Quality maintenance 5.Development Management 6.Education and Training 7. Office TPM 8.Safety, Health and Environment To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	5	15	1	1	0

	······································					
8	Send the chosen outputs of HoQ through eight pillars of TPM. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	6	11	3	0	2
9	Direct the results to the curriculum. To which extent do you believe that this exercise can be carried out given the prevailing engineering scenario?	9	11	0	1	1
10	Evaluate the results based on the parameters namely (Number of students placed, Percentage of students passed, Number of companies visited for campus interview, Overall performance quality of students, Number of students dropping the course and Availability of competent faculty and supporting staff). To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	14	7	1	0	0
11	Compare the results with the set targets. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	12	9	0	1	0
12	Identify the deviation of the results, if any. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	14	6	2	0	0
13	The tactical suggestions have to be exposed to the management and principal, who will take strategic decisions to implement them. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	11	8	3	0	0

Table Contd.....

14	Implement the recommended actions evolved after MQFD proceedings. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	7	12	3	0	0
15	After achieving the target, revise the target and HoQ matrix. If there is change in customers' languages, that also has to be considered while revising the matrix. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	9	9	2	0	2
16	Review the working of MQFD Program as a whole and incorporate the top management's and principal's views while experimenting the MQFD for enhancing continuously the maintenance quality of engineering education. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?	10	9	3	0	0
Total		143	162	34	4	9

Quality Improvement in Engineering Education through MQFD

Figure 10.3 Receptivity from experts

10.9. Major Reactions

The questionnaire based survey on MQFD helped to bring out the following interesting views, opinions and observations of Indian engineering educationalists.

- Many engineering educationalists expressed difficulty in convincing the top management about implementing MQFD in the engineering educational scenario.
- Refinement of curriculum is not foreseen as a difficult task by the engineering educationalists. Particularly with more and more engineering educational institutions being granted autonomy, the refinement of curriculum is fast becoming a reality in the engineering educational scenario.
- Some engineering educationalists opined that it is feasible to implement MQFD because many data requirements are fulfilled in the present job recruitment system. However, MQFD programme has to begin initially by involving a small-dedicated group.

- Some respondents felt that "resistance to change" and "reluctance to cooperate" due to lack of motivation would be the major challenges to be overcome for the successful implementation of MQFD.
- One of the respondents, who is a director, expressed doubt about gathering factual customer languages. An anonymous respondent also expressed the same view. Another respondent, who is a Principal, expressed the difficulty in gathering the large volume of data required for implementing MQFD.
- One of the respondents envisaged that All India Council of Technical education (AICTE), which is monitoring the engineering education, will have to set norms for the successful implementation of MQFD.
- Some respondents had claimed that top management attitude would determine the degree of success or failure of MQFD programme.
- Some respondents pointed out that the university affiliation system prevailing in most parts of India will make it difficult to effect the changes required for implementing MQFD.
- Some respondents pointed out the need for developing the environment conducive for engineering education before embarking on MQFD programme. They are particularly critical of some activities that take place in certain Indian engineering educational institutions with the support of political parties.
- Some respondents pointed out that the existing facilities like placement cell and parent teachers association, would be supportive of MQFD implementation in the engineering educational system.

On the whole, the reactions of the respondents led to an impression that MQFD could be successfully implemented in the engineering educational system with the help of the available facilities and by removing the loopholes and hindrances in the system.

10.10. Conclusion

The ever-increasing competition and changing tastes of customers have been forcing the companies to produce outputs whose characteristics would match that of the customers' desires. To cope with this trend, engineering education has to mesh with the requirements of the competitive market. Rapid changes are occurring in the industrial scenario. In the majority of societies, engineering educational institutions play key roles in molding products suitable for application in the industrial world (Gelfand, 2005). The companies in industrial world employ students trained and educated in this way. But the reality is that, the products of today's engineering educational systems are not directly usable in the industrial world. Rather, they need to be trained by their employers before they become contributors. This situation has compelled certain professionals to declare that engineering education has failed to deliver authentic products (Zairi, 1995). In this context, this chapter is brought out to deliberate on the feasibility of applying two world's proven principles namely, TPM and QFD in engineering education. In order to utilize the synergic power of these principles, the model MQFD has been proposed with reference to the engineering educational scenario. The feasibility of implementing MQFD in the engineering educational scenario is to be appraised by dissecting MQFD process into 16 steps.

In order to examine the feasibility of implementing MQFD in the engineering educational scenario, the reactions of engineering educationalists were surveyed using a questionnaire. Their reactions indicated the prevalence of favorable situations in the engineering educational scenario for the successful implementation of MQFD. These engineering educationlists hail from Indian engineering educational system. But this fact does not limit the scope of the interpretations of the questionnaire-based survey to Indian engineering educational system. This is due to the reason that Indian engineering educational system mimics the global engineering educational scenario and the scope of these interpretations shall be extended to the global engineering educational scenario. These favorable reactions and conditions enable us to believe that MQFD implementation in the engineering educational scenario would be a success. However, this belief has to be strengthened by practically implementing MQFD in the engineering educational scenario by plugging the loopholes and gathering the support of all stakeholders. It appears that some of such exercises can become a reality because of the increasing number of engineering educational institutions being granted autonomy in various societies of the world.

Chapter - 11

STRATEGIC RECEPTIVITY OF MAINTENANCE QUALITY FUNCTION DEPLOYMENT ACROSS HETEROGENEOUS ORGANIZATIONAL CULTURES

Content

11.1.	INTRODUCTION
11.2.	STRUCTURE OF THE QUESTIONNAIRE
11.3.	SURVEY
11.4.	BACKGROUND OF THE ORGANIZATIONS AND THE CULTURES PREVAILING IN THEM
11.5.	CUSTOMER VOICE ADOPTION
11.6.	IMPACT OF MQFD
11.7.	MQFD IMPLEMENTATION STEPS
11.8.	STRATEGIC RECEPTIVITY SCORECARD OF MQFD
11.9.	CONCLUSION

STRATEGIC RECEPTIVITY OF MQFD ACROSS HETEROGENEOUS ORGANIZATIONAL CULTURES

11.1. Introduction

The implementation of MQFD model is a never-ending continuous improvement process. A unique feature of MQFD model is that it is not necessary to change or dismantle the existing process of developing HoQ and TPM projects, which may be in practice in the company concerned. Thus MQFD model enables the tactical marriage of QFD and TPM. Since this process demands strategic changes, a strategic procedure is to be employed for its succesful implementation. The Strategic steps to be followed to implement MOFD are highlighted in Table 11.1 (Pramod et al., 2006a). A careful study of MQFD (Figure 4.2) and its strategic implementation steps (Table 11.1) would indicate that a concrete strategic change management approach is vital for their successful adoption in real time practice. In order to create such a strategic change management approach, the receptivity of MQFD among its prospective users has to be assessed. But this task will be challenging because MQFD has to be applied across heterogeneous cultures prevailing in inter and intra organization. Hence, the need of conducting a research on strategic receptivity of MQFD across heterogeneous organizational cultures becomes necessary. The module of the research work reported in this chapter was carried out to fulfill this imperative.

11.2. Structure of the questionnaire

The module of the research work being reported in this chapter was accomplished by conducting a questionnaire-based survey. The questionnaire used for carrying out the strategic receptivity analysis of MQFD and its implementation steps comprised three sections. The first section contained questions, which aimed to gather the background information about the company. The second section contained questions, which facilitated the respondents to foresee the outcome of MQFD. The third section contained questions, which aimed to asses the respondents' confidence over the succesful implementation of MQFD steps. Thus the questionnaire was systematically designed to estimate the receptivity of the strategic changes that are required to occur in organizations. These strategic changes are vital for successfully implementing and deploying MQFD and achieving business prosperity.

Step Number	Actions
Step 1	MQFD experts have to convince the top management about the benefits that
	can be reaped by the implementation of MQFD. This has to be done by
	conducting seminars and brainstorming sessions.
Step 2	Top management has to announce the implementation of MQFD as a
	decision. They have to state the objectives either in the company newsletter
	tures of educational comparisons have to be conducted for nemorial at
	different levels in order to make people fit to attaining objectives
Step 3	A MOFD team consisting of 7-8 members of different departments has to be
Step 5	formed. This team meets once in a week and plans for the implementation
Step 4	Customer languages have to be identified and enumerated.
Step 5	Customer languages have to be ranked. This can be done either by using
	Analytical Hierarchy Process (AHP) or any other similar techniques.
Step 6	HoQ has to be developed to translate customer languages into technical
	languages.
Step 7	Top Management has to take strategic decision to choose the outputs of
	HoQ, which have to be passed through eight pillars.
Step 8	The chosen outputs of HoQ have to be sent through eight pillars of TPM.
Step 9	The results of building eight pillars have to be directed to the production
	system.
Step 10	The results have to be evaluated based on the six parameters (OEE, MTBF,
0	MITR, Performance quality, MD1 and Availability).
Step 11	The results have to be compared with the set targets.
Step 12	The deviation of the results from the targets have to be enumerated
Step 13	I he factical suggestions have to be exposed to the top management, who
Stap 14	The results recommended through the conduct of MOED proceedings have
Siep 14	to be implemented
Step 15	After achieving the target, the same has to be revised. Followed by that, the
Stop 10	HoO has to be revised. If there are changes in the customers languages, that
	also have to be considered while revising the HoQ.
Step 16	The working of MQFD Programme has to be reviewed as a whole and the
-	top management's view has to be incorporated while experimenting the
	scope of MQFD in different directions of copmpany's strategic journey.

Table 11. 1. Strategic steps for MQFD implementation

11.3. Survey

This questionnaire was given to 50 managers of whom only 15 responded. The profiles of the respondents are given in Table 11.2. As hinted, these respondents are managers possessing different levels of experiences and
hailing from different types of organizations ranging from electronics to pharmaceutical industries. The responses of these respondents were useful in assessing the strategic receptivity of MQFD and its implementation procedure in heterogeneous cultures. The details of this analysis are presented in the following four section in stages. This aspect is depicted in Figure 11.1.

Serial Number	Name of the	Positions and	Approximate experience in	Turnoyer of the Company	
	Respondent	IUCATIONS IN THUIA	Years	INR	US Dollars approximate
1	Pious Mathew	Proprietor, Classic Art Lamps, Vazhappally,P.O, Changanachry, Kerala, India	40	20 lakhs	4000
2	K.O.Markose	Assistant manager (QMS), Transformers and Electricals Kerala Limited, Kerala, India	35	100 Crores	20 Millions
3	S. Rajendran	Factory Manager, BPL Limited, BPL Works, Chanrdra Nagar.P.O, Palakkad, Kerala, India	27	65 Crores	130 Millions
4	Raj Kumar.P	Manager, Steel and Industrial Forgings, Ahani, Thirssur, Kerala, India	15	50 Crores	100 Millions
5	A.Remesh	Manager(Mechanical), Arya Vidya sala, Kottkkal, Malappuram Dist, Kerala, India	12	90 Crores	180 Millions
6	D.Rejith	Hindustan Organic Chemicals, Ambalamugal, Ernakulam, Kerala, India	19	400 Crores	800 Millions
7	N.K.Sasidharan Pillai	Research coordinator, Parishath production Center, Muntoor, Palakkad, Kerala, India	5	10 Lakhs	0.2 Millions
8	Raj Mohan Nambiar	Ex.DGM, Instrumentation Ltd, Kanjikode, Palakkad Kerala India	28	45 crores	90 Millions

Fable	11 .2 .	Respondents	profile	and their	organization'	s turnover
--------------	----------------	-------------	---------	-----------	---------------	------------

Table Contd.....

9	D.Rajanayagam	Manager, Quality	10	14	28
1		Assurance, Salzer		Crores	Millions
		electonics Limited,			
		Samichetty			
		Palayam,			
		Coimbatore,			
		Tamilnadu, India			
10	P.Suresh Babu	Manager, Indian	19	235	470 Million
		Telephone		Crores	
1		Industries Ltd.			
1		Kaniikode, Palakkad			
		. Kerala. India			
	Sursh, P.K	Chief Research	16	5	10
		engineer. Fluid		crores	Millions
		Control Research			
1		Institute. Kaniikode.			
		Palakkad Kerala.			
]		India			
12	A.N.Balaji,	Technical Manager.	0.5	150	300
	, , ,	Texmo Indusries.		Crores	Millions
		Coimbatore.			-
ł		Tamilnadu.India			
13	G.Kannan	Manager, R&D.	20	325	650
		ELGI equipments		Crores	Millions
1		Ltd. Coimbatore			
		Tamilnadu, India			
14	E.K.Surendranath	PartnerKumar	25	4.5	9 Millions
		Industries, Edathara,		crores	
	ļ	Palakkad, Kerala,			
		India		ļ	
15	K.U.Baby	Manager(Design),	21	60	120
		Hindustan machine	ļ	Crores	Millions
1		tools Limited,			
		Kalamassery,			
1		Ernakulam, Kerala,			
	ł	India	ļ	ſ	

Figure 11.1. Research methodology

11.4. Background of the organizations and the cultures prevailing in them

As mentioned earlier, the first section of the questionnaire aimed to recognize the background of the organizations and the cultures prevailing in them. The responses gathered against these questions have been summarized in Tables 11.3, 11.4 and 11.5. As seen in Table 11.2, the annual turnover of the companies of the respondents varied from as less as INR 10 lakhs (US \$ 200) to as high as INR 325 crores (US \$ 650 million). This indicates the various volumes of business carried out in the respondents' organizations. As shown in Table 11.3, maximum number of the organizations were started during 1980s. Therefore the average age of the organizations represented by the managers was 20 years. As indicated in Table 11.4, many of them have been implementing TPM and TQM principles. Thus the cultures prevailing in them are conducive to applying world-class manufacturing strategies. This is a very encouraging scenario. However, the nature of responses against these questions are scattered and non-uniform, which indicate the heterogeneous cultures prevailing among them. This is depicted in Tables 11.5 and 11.6.

 Table 11.3. Year of inception of respondents organization.

Year of inception	Before	1950-	1961-	1971-	1981-	1991-
	1950	1960	1970	1980	1990	2000
Number of organization	1	2	4	2	5	1

 Table 11.4. Statistics on World-Class Management strategies applied in organization

Number of Organizations						
Exporting products/services to customers	Implementing TQM related activities	Implementing TPM related activities	Using customer feedback	Ranking customer languages	Ranking technical remedies	Correlating technical remedies
12	11	8	14	9	10	10

Name of the Respondent	Methods Employed foe collecting customer
	feedback
Pious Mathew,	Personnel contacts
Classic Art Lamps	
K.O.Markose,	During the visit of service personnel to customer
Transformers and Electricals Kerala Ltd.	sites/Customer representatives to the organization, By sending the prescribed format to the respective customers
S. Rajendran, BPL Ltd	Survey through questionnaire
Raj Kumar.P, Steel and Industrial Forgings	Customer Response report, Customer inspection reports
A.Remesh,	Discussion
Arya Vidya sala, Kottakkal	
D.Rejith,	Questionnaire
Hindustan Organic Chemicals	
N.K.Sasidharan Pillai,	Direct contact during get together
Parishath Production Centre	
Raj Mohan Nambiar, Instumentation Limited	Regular questionnaire sent to customer, Customers request the presence of inspectors at the time of commissioning
D.Rajanayagam , Salzer Electonics Ltd	Customer satisfaction analysis format sent to collect feedback. Few customers provide feedback in their own format and through letter, email etc.
P. Suresh Babu,	Through feedback forms
Indian Telephone Industries Ltd	
Suresh.P.K,	Direct interaction, Email
Fluid Control Research Institute	
K.U.Baby,	Field visits by the sales staff
Hindustan machine tools Limited	
E.K.Surendranath,	Direct feedback from the sales representatives
Kumar Industries	

Table 11.5. Methods employed for collecting customer feedback

Serial Number	Organization	Factors considered while ranking customer languages	Factors considered while ranking technical remedies	TQM related activities	TPM related activities
1	Classic Art Lamps	Severity, Frequency of occurrence, Financial Loss	Easiness of implementation, Cost, Customer attraction		
2	Transformers and Electricals Kerala	Functional, Performance, Reliability/ Durability/ serviceability, Physical appearance, Quality of service rendered, Experience gained during customer visits	As appropriate to meet the needs of the customers/ relevant to the business tasks.	Quality Circles, 5 S	
3	BPL Limited	Reliability of products, Functional use of products, Service provided, Features of product,Response, On time delivery, Price, Appearance.	Special requirements, Improvements, Corrective actions, Pricing.		
4	Steel and Industrial Forgings,	Metallurgy and Heat treatment, Chemistry of alloys, Dimensional accuracy, Physical properties of Row materials and forgings, Appearance	Improve reduction ratio, Job design, Heat treatment, Alloying elements are recalculated, Die design, tolerance and process improvement, Reheat treatment after re calibration, Avoid scaling and EDM engraving	ISO9001: 2000 certification + periodical audit, DGA certification + periodical audit, DGAA certification + periodical audit, Failure Mode Effect Analysis (FMEA)	Preventive maintenance, Quality reviews, Customer complaint analysis, Contract review, Calibration of equipment, Documentation, Quality audit

Table 11.6 Current practices influencing MOFD adoption

Table Contd.....

5	Arya Vidya sala, Kottakkal				Autonomous maintenance, Documentation of maintenance
6	Hindustan Organic Chemicals,	Quality, Delivery, Communication, Cost	Adherence of quality in container, Adherence of quality in customer, Response time, Timely delivery	ISO 9000 and 14000	
7	Parishath production Center,	Convincing the customers, Local production strengthening, Local economy strengthening, Reduction of manufacturing cost, Generation of local employment, Utilize local resources/ products for production	Quality improvement, New ingredients, New methodology, New appearance, Awareness creation Contacting the customers, Confidence buildup, Sharing experience, Interaction with successful producers	Quality assessment	
8	Instrumentation Ltd,	Adhere to timely supply,After sales service, Supply of free spare kits, Lifelong maintenance service, Supply of spares,Ready to supply any buried type	Schedule production and planned delivery, Better maintenance, Training some contractors, Regular customer training, Regular customer meeting	Quality Circles, Employee empowerment schemes, Employee involvement schemes, ISO 9001	Scheduled maintenance, Employee training, Quality maintenance, Subcontractor motivation/ Empowerment, Safety rules observed strictly, Periodic calibration of Gauges

Table Contd...

9	Salzer Electronics	Meeting Technical specification, Identification/ Labeling packaging, Accommodation of urgent requests, Restoring of customer complaints, Product range, Consistency of quality, On time delivery, Value for money, Response to special requests, Response to customer communication.	ISO 9000, Quality Circle, Value Engineering, 5S, TPM	Autonomous Maintenance, Individual improvement, Planned Maintenance, Quality maintenance, Initial control
10	Indian Telephone Industries Ltd,	Quality ,Delivery, Response from the technical department, Personnel when contacted, Cooperation from workforce,	ISO 9000, ISO 14000, Quality Circle, Six Sigma	Improvement, Process Validation
	Fluid Control Research Laboratories		NABL accreditation and related activities	Internal auditing, International inter comparison study of test results for a standard product which is also termed as round robin test, Assessment of customer feed back, Constant up gradation of equipments, Validation of test results through replicate testing, Quality improvement discussions, Sending employees through quality programmes

Table Contd.....

12	Texmo Industries,	Price, Competitiveness Functional and performance requirements, Delivery adherence, Appearance	ISO 9001	Performance related, Appearance related
13	ELGI equipments Ltd.		ISC 9000, Six Sigma, Quality Circles	Availability, Performance Quality, Product quality, Overall equipment efficiency, Planned maintenance
14	Hindustan machine tools Ltd.		Quality circles	

11.5. Customer voice adoption

As shown in Table 11.4, majority of the organizations are found to adopt customer voice adoption either explicitly or implicitly by gathering the customer feedback. As seen in this table, but for one, all respondents have responded to the questions related to the customer voice adoption. Thirteen of them could pinpoint the methods employed for collecting feedbacks. Their responses in this regard are presented in Table 11.5. Further the respondents were asked to indicate the current practices that are adopted in their organizations, which would influence MQFD adoption. The responses against these questions are shown in Table 11.6. Eleven of them implement TQM related activities. These activities range from 5S to six sigma. Seven of them have been implementing TPM related activities. The technique adopted in this direction ranged from conventional scheduled maintenance to modern TPM pillar like autonomous maintenance. All the seven of them implement TQM principles as well. This observation reinforces our earlier statement in which we have claimed that in parallel with TQM, organizations have started to implement TPM. The factors considered while ranking customer languages and technical remedies are also listed in Table 11.6. Most of the factors considered are related to money and quality. In this stage also, the observations indicate that heterogeneous natured cultures prevail in the respondents' organizations.

11.6. Impact of MQFD

As mentioned earlier, the second section of questionnaire facilitated the respondents to foresee the impacts of MQFD with reference to the maintenance quality parameters. The respondents were asked to quantify the impacts of MQFD with respect to the various maintenance quality parameters. The unique feature of the questions asked in this stage was that, it enabled the respondents to foresee the performance even in the negative direction. For this purpose, a Likert's scale of range -10 to +10 was utilized. For example, a respondent could expect the outcome of OEE as a result of MQFD implementation either to decline or improve. In case it seems to decline, the respondent could choose the negative value. In case it seems to improve, then respondent could choose the positive value. The number of respondents who chose negative and positive values are summarized in Table 11.7. The values entered by them were consolidated and shown pictorially in Figure 11.2. As shown, except in case of MDT, in the view of the respondents, the maintenance quality parameters and the business prosperity indicators are going to increase significantly. As shown in Figure 11.3, 67% of the opinions of the respondents indicate the confidence in achieving the targets through the implementation of MQFD. One of the questions asked was about the strategic decisions that have to be made to achieve the targets of MQFD. The eight respondents' responses are enumerated in Table 11.8. Another two open ended questions asked the respondents to write the expected favorable and unfavorable conditions. The responses are also enumerated in Table 11.8. As shown, these conditions varied from organization to organization.

Figure 11.2. Average ratings of MQFD's impact on maintenance Quality Parameters

	Number of respondents who choose			
Maintenance quality parar	Negative values	Positive values	No change/ Not responded	
OEE		0	9	4
MTTR		3	8	4
MTBF	ing and	3	8	4
Performance quality o organization	f the	equation and	13	2
MDT		6	5	4
Availability			12	3
Maintenance Quality			13	2
Core competence			13	2
Profit			13	2
Good will of the company			13	2

Table	11.7	Impact of	f MQFD	with reference	to maintenance	quality	parameters
1 9910		mipuer o	i mai b	with reference	to mannetonance	quanty	purameter

Serial Number	Name of the Respondent	Strategic decisions	Favorable conditions	Unfavorable conditions
1	Pious Mathew	Training People, Cost effective Machineries, Research and development of new decisions, Collect simple and attractive designs as much as possible	Good appreciation of the customers, Confidence of customers, Less Number of competitors, Easy to adopt new designs	Very fast fluctuation of customer taste, Ease of glass breakage, Difficult to cope with foreign items, Difficulty in storage.
2	S. Rajendran	Form team, Review in detail, Brainstorming, Action plan and implementation.	Skill and experience, Management support, Infra structure	Non willing ness , Inadequate resources
3	Raj Kumar.P	Modernizing Plant by installing forging press, Using CNC machines (Heavy duty) for die making, Supply value added finished components in place of forgings	Good market reputation, Monopoly in development of import substitution jobs, Good technical team and quality system, Company was making good profit since last twelve years	Political interference, Subsidiary of sick company, It is not an autonomous company, They have to take approval for major policy decision from Government.
	A.Remesh	Empowerment of personnel, Continuous training and improvement on all fronts, Continuous feedback, discussion and corrective action, Education and enlightment of people at all level	Minimum Down time of equipments, Zero breakdowns, Zero rejections, Increased application of company and increased morale of personnel	Time consuming and costly, Can be achieved only on graded and continuous basis, Market fluctuation and decreasing top line, Lack of awareness among top classes of organizations.

Table 11.8 Strategic decisions favorable and unfavorable conditions of MQFD implementation

Table Contd...

5	N.K.Sasidharan Pillai	Awareness creation, Campaigns to Monologue the idea, Leaflets, Advertisements	Local trust and acceptance, Avoiding the unnecessary marketing expenses	Customer performance to high quality advertisements, Taboos and believes, Lack of perception for local
6	Raj Mohan Nambiar	Company's' commercial department with inspectors are present at the time of commissioning, Necessary accessories and spares promptly supplied, All order delivered timely, After sales service is very prompt	Employee cooperation, Customer support, Project Consultant's support Nation wide, Past customers recommend to new customers	Attitudinal resistance, Price fluctuation, Emergence of new technology, Sudden change of duties (Government based)
7	D.Rajanayagam	Implementation of solution based remedies through team efforts, Employee Empowerment/ Involvement to produce results, Reviewing the results periodically and recording to motivate	Team work, Work culture, Conducive work environment, Employee satisfaction	Disturbance in routine task in very few situation, Extra documentation
8	K.U.Baby	Implement the suggestions stage by stage, Evaluate the improvement	High productivity, Better appearance, Better Profit, Increase sale	Lack of technical skill of employee, Lack of availability of material, Market acceptability Price

11. 7. MQFD implementation steps

The respondents were shown the 16-implementation steps of MQFD and asked to indicate their implementation feasibility. They were asked to quantify this aspect in the Likert's scales of range 0-10. The values entered by them are

consolidated and shown pictorially in Figure 11.4. As shown, on an average, the implementation feasibility of all steps are found to be more than 6 in the Likert's scale of range 0-10 and the range between the highest and the lowest values is also found to be narrow. This result indicates the feasibility of MQFD implementation steps among heterogeneous cultures prevailing in intra and inter organizations. In addition to this quantification, the respondents were asked to write their comments against each step. These responses were valuable in carrying out qualitative assessment of MQFD implementation steps.

The qualitative assessments enabled the respondents to freely express their opinions and judgments. Against each step, three to eight respondents reacted. The comments/remarks appeared in these questionnaires are reproduced in Tables 11.9 to 11.24. As in the previous responses, in the majority of cases, it was not possible to pinpoint any common findings. However, one commonality found was the emphasis on management support for implementing many of the MQFD steps. Subsequently, these qualitative assessments were converted using the measurement metrics used in QFD literature (Lu and Kuei, 1995) are shown in Table 11.25. The values derived using the matrices have been denoted in brackets in Tables 11.9 to 11.24. In each case, the values were consolidated into an average value and entered in the Likert's scale of range 0-10.

Figure 11.3 Ratings on achieving targets through MQFD

Figure 11.4 Average response score against MQFD implementation steps

can be reaped by th and brainstorming	perts have to convince the top manages he implementation of MQFD. This has sessions.	s to be done through seminars		
Respondent	Comments (Receptivity in Likert' indicated in bracket)	's scale of range 0-10 is		
Pius Mathew	In a self-owned company like classic lamps, this is possible to a large extent. Especially company is welcoming modern technologies. Provided company convinces that it will be profitable, it will think of implementing it (9)			
K.O.Marcose	In order to convince the top management, a consistent effort is required (3)			
A.Ramesh	The perfection in this step varies from industry to industry. Organizational factors play a major role for this, (3)			
N.K.Sasidharan Pillai	As it is a creative idea, companies will be willing to accept it and there will be vast feasibility of accepting this (9)			
R.M.Nambiar	The implementation can be enh consultant (3)	nanced by full time expert		
D.Rajanayagam and E.K.Surendranath	Through proper convincing only ma (3)	anagement will show interest		
K.U.Baby	Awareness of problem gives a motivation. Proper communication of the idea is also essential in this direction (3)			
Average Receptivi (9+3+3+9+3+3+3+	ty in Likert's scale of range 0-10 +3)/8 = 5	Assessment: Moderate receptivity		

Table	11.9	Respondents	comments	against	Step	1
-------	------	-------------	----------	---------	------	---

Table 11.10 Re	spondents comments	against Step 2
----------------	--------------------	----------------

Step 2: Top mana	agement has to announce the implementat	ion of MQFD as a decision.			
They have to sta	it will much all in the company ne	wsletter or through similar			
campaions have	to be conducted for personnel at different	ent levels in order to make			
people fit to attain	a objectives.				
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)				
Pius Mathew	In small companies mutual cooperation of management and employees is sufficient for improvement ideas. Therefore there is good feasibility of this step (9)				
S.Rajendran.	The success of this step depends upon commitment between top management and MQFD team. (3)				
A.Ramesh	For that enlightment at top levels is a mu	ist. (3)			
N.K.Sasidharan Pillai.	Company used to conduct some get together periodically. This step will help to communicate the ideas in a rational way. (9)				
R.M.Nambiar	This step has to be implemented only after motivation and training all employees to understand the importance of MQFD for profitability of the company and employees improved life condition. (3)				
D.Rajanayagam	As any policy or objective has to be discriminated to all the levels as the employee involvement is mandatory to implement a change and reap benefits out of it. (3)				
K.U.Baby Easy way of communication to lower levels is to conduct an awareness programme. Conducing an awareness programme is not an easy step(1)					
Average Receptiv	vity in Likert's scale of range 0-10	Assessment:			
(9+3+3+9+3+3+1)/7= 4 Poor receptivity					

Table 11.11 Respondents comments against Step 3

Step 3: A MQFD team consisting of 7-8 members of different departments has to be formed. They meet once in a week and plans for the implementation.					
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)				
Pius Mathew	Generally small organizations will be well disciplined. Forming of a team is feasible their. Every achievements can be made possible by mutual cooperation (3)				
K.O.Marcose	This needs a sincere and continuous appr	roach (3)			
R.M.Nambiar	Team members should collect before meeting sufficient data regarding the present problems and some ideas for how to solve it. In addition to that they should think to have better suggestions for further improvements (3)				
D.Rajanayagam	This is a nice idea. But the feasibility of meeting once in a week is difficult (9)				
K.U.Baby	This is very good step. Decisions can be enhanced further (9)				
Average Receptivity in Likert's scale of range 0-10 Assessment:					
(3+3+3+9+9)/5=5 Moderate receptive					

Step 4: Custome Likert's scale of r	Step 4: Customer language have to be Identified and enumerated. (Receptivity in Likert's scale of range 0-10 is indicated in bracket)				
Respondent	Comments				
Pius Mathew	Vast feasibility is there for this step. If the customers are in close contact, it is easy to get their feedback (9)				
K.O.Marcose	Customer languages are very important. It has be collected judiciously focusing company's future needs (3)				
A.Ramesh.	Even though it may take some extra time and effort, this step is of great importance. (9)				
N.K.Sasidharan Pillai.	We are doing accordingly (9)				
R.M.Nambiar	Questionnaires should be checked department also (3)	with customers operation			
(D.Rajanayagam	Identifying customer languages helps us to know what exactly he requires. It is a must also. Perfect identification has practical difficulties such as communication gap (3)				
K.U.Baby	Unfiltered customer languages and economic aspects also have to be considered (3)				
Average Receptiv	ity in Likert's scale of range 0-10	Assessment:			
(9+3+9+9+3+3+3)/7= 6 Moderate receptivity					

 Table 11.12
 Respondents comments against Step 4

Table 11.13 Respondents comments against Step 5

Step 5: Customer languages have to be ranked. This can be done either by using						
Analytical Hierar	Analytical Hierarchy Process (AHP) or other similar techniques.					
Respondent	Comments (Receptivity in Likert's scal	e of range 0-10 is indicated				
	in bracket)					
Pius Mathew	Ranking of customer languages can be d	one by experience (3)				
A.Ramesh	Ranking of customer languages is possib	ble but it will take time(3)				
N.K.Sasidharan	Previous experience helps a lot in	this regard. But periodic				
Pillai	assessment has to be done (3)					
R.M.Nambiar	Customer is to be judged properly. This judgment has to be done					
	according to their exact modes of operation is to be decided to					
	satisfy customer demands in all aspects	(3)				
D.Rajanayagam	Ranking/ Prioritizing customer language	ges is a must. But in actual				
	arena, it is too difficult to execute. A	company will have several				
	customers and their requirements may ne	ot be the same (1)				
K.U.Baby	Ranking of the customer languages is also very essential. This helps					
	to attack each customer related proble	ems on a priority basis by				
ĺ	technical means. By the support of top management it can be					
	implemented also (3)					
Average Receptiv	vity in Likert's scale of range 0-10	Assessment:				
(3+3+3+3+1+3)/6=2 Poor receptivity						

Step 6: HoQ h languages.	as to be developed to convert custor	ner languages in technical			
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)				
Pius Mathew	This helps to have a scientific basis for the analysis of customer needs and their solutions (3)				
K.O.Marcose.	Prior to this step support from the top management has to be checked (3)				
A.Ramesh.	The scope of this step is high (9)				
R.M.Nambiar	This requires proper coordination of production and marketing departments (3)				
D.Rajanayagam	Development of HoQ is very important as it has a lot of scope in				
	clarity or perfectly converting customer language into technical				
	language. It is essential to meet customer requirements (9)				
K.U.Baby	by This will help for root cause analysis of the problem (9)				
Average Receptiv	vity in Likert's scale of range 0-10	Assessment:			
(3+3+9+3+9+9)/6=6 Moderate receptivity					

 Table 11.14 Respondents' comments against Step 6

Table 11.15.	Respondents'	comments	against Step 7
Tubiç 11.15.	nespondents	comments	ugumat otep /

Step 7: Top Man which have to be	agement has to take strategic decision to c passed through eight pillars.	boose the outputs of HoQ,
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)	
A.Ramesh,	An intelligent approach is needed for this step. The easiness of	
R.M.Nambiar	implementation has also taken under consideration. Enlightment of	
	top management is prerequisite for this step (3)	
D.Rajanayagam	The possibility of passing the outputs through eight TPM pillars has some practical difficulty (1)	
K.U.Baby	This needs the role of an expert. Top management has greater role in	
	this regard (3)	
Average Recepti	vity in Likert's scale of range 0-10	Assessment:
(3+1)/2=2 Poor receptivity		

Table	11.16	Respondents'	comments	against St	ep 8
		•			

Step 8: The chosen outputs of HOQ have to be sent through eight pillars of TPM.			
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated		
Pius Mathew	Financial aspects have to be taken into account in this regard (3)		
A.Ramesh	This needs the wholehearted support of top management. Proper		
	convincing is essential (5)		
R.M.Nambiar	One member of the MQFD team has to take an active role for proper		
	coordination amongst all departments. (3)		
D.Rajanayagam	But practical feasibility of this step is very less (1)		
K.U.Baby	This requires the help of an expert for successfully sending the		
	output of HoQ through appropriate TPM pillars (3)		
Average Receptiv	Average Receptivity in Likert's scale of range 0-10 Assessment:		
(3+3+3+1+3)/5= 3 Poor receptivity		Poor receptivity	

Step 9: The results of building eight pillars are directed to the production system.			
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated		
	in bracket)		
Pius Mathew	These decisions evolving after TPM will be of high value (9)		
R.M.Nambiar	This shows the huge feasibility of this step. This step has to be		
	implemented and it is expected that result will be most satisfactory		
	(9)		
D.Rajanayagam	Directing the results to production system is partially possible. This		
	is due to the rigidity of Indian production system (3)		
E.K.Surendra	Cost effectiveness of production system has to be considered in this		
nath.	regard (3)		
Average Recepti	vity in Likert's scale of range 0-10	Assessment:	
(9+9+3+3)/4 =6	+3+3)/4 =6 Moderate receptivity		

Table 11.	17.	Respondents'	comments	against Ste	e qe
-----------	-----	---------------------	----------	-------------	------

Step 10: The resu MTTR, Performa	ilts have to be evaluated based on the nce quality, MDT and Availability).	six parameters (OEE, MTBF;	
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)		
Pius Mathew and E.K.Surendra nath.	Evey result can be evaluated on a quantified basis. Each parameter is a good indication of the quality of maintenance (3)		
A.Ramesh.	It can be improved further once it is essential (3)		
R.M.Nambiar	Success of any methodology will reflect the system parameter. By watching the changes in parameter, it is possible to asses the value of the methodology in the organizational environment (3)		
D.Rajanayag am	Evaluating the results based on 6 parameters is possible only to a less extent as man-machine-method linkages are not as strong as they are required (3)		
Average Receptivity in Likert's scale of range 0-10Assessment: $(3+3+3+3)/4=3$ Poor receptivity			

iaure i i.i.a. nesponaents comments against step i	Table 11.19.	Respondents'	comments	against	Step	11
--	--------------	---------------------	----------	---------	------	----

Step 11. The resu	Its have to be compared with the set targets	
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)	
Pius Mathew	It is always better to first fix a target. This can help the company to have an analysis of the total effectiveness and to remove the barriers for attaining the targets one by one (3)	
A.Ramesh	This can help the company to have a continuous evaluation and improvement (9)	
R.M.Nambiar	This step is of vital importance. The implementation can help the company to increase the productivity and target (9)	
D.Rajanayagam	It is always better to set a target first. Comparing the results with the set targets can help to locate the barriers for achievement .this will help the company to adopt better technologies and assurance of management commitment etc (9)	
Average Receptivity in Likert's scale of range 0-10Assessment: $(3+9+9+9)/4 = 8$ Good receptivity		Assessment: Good receptivity

Step 12: The deviation of the results from the targets has to be enumerated			
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)		
Pius Mathew	Deviations are clear indications are clear indications of barriers. They have to be analyzed carefully and preventive measures have to be taken accordingly (3)		
A.Ramesh	This will have long standing effects. Continuous effects in this direction will lead to good improvements (9)		
N.K.Sasidharan Pillai	This will be used as a tool to assure customer satisfaction. (9)		
R.M.Nambiar	If the deviations can be projected exactly, the barriers of achieving the targets can be found out and the results can be achieved by eliminating the barriers. (3)		
D.Rajanayagam	Identification of deviation is well possible if the results are clear and expressed in measurable terms (3)		
Average Recepti	vity in Likert's scale of range 0-10	Assessment:	
(3+ 9+9+3+ 3)/5= 5 Moderate receptivity			

Table 11.20. Respondents' comments against Step 12

Table 11.21 Respondents' comments against Step 13

Step 13: The tact take strategic dec	ical suggestions have to be exposed to th isions to implement them.	e top management, who will	
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)		
Pius Mathew	Top management support is required for implementing new methodologies (3)		
A.Ramesh	Once top management convinced, the implementation can be done easily (3)		
N.K.Sasidharan Pillai	Group discussion can help in convincing top management (3)		
R.M.Nambiar	Everybody has got some potential to suggest some good ideas. These ideas have to be scrutinized by top management. They have to take initiative to implement good ideas (3)		
D.Rajanayagam	Some times tactical suggestions will be out of policies and flexibility boundaries. Therefore decisions of the top management is very essential in this regard (3)		
Average Receptiv	vity in Likert's scale of range 0-10	Assessment:	
(3+3+3+3)/4 = 3 Poor receptivity		Poor receptivity	

Step 14: The rest be implemented.	ilts recommended through the conduct of I	MQFD proceedings have to
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)	
Pius Mathew	As the recommendations of the MQFD teams are of high value, they have to be implemented (9)	
A.Ramesh	Management has to take appropriate actions in this regard. The reliability of the ideas of MQFD teams ishigh. Therefore they have to be implemented at any cost (9)	
R.M.Nambiar	The implementation of the suggestions ultimately enhances productivity (9)	
D.Rajanayagam	Implementation of the recommended actions is possible where employee involvement and management commitment are clearly visible (3)	
Average Receptivity in Likert's scale of range 0-10Assessment: $9+9+9+3)/4 = 8$ Good receptivity		Assessment: Good receptivity

Table 11.22 Respondents' comments against Step 14

Tahle	11.23	Respondents'	comments	anainst	Step 15	
1 0010	11.23	nesponaents	CONTINUENCE	agamat	orch 10	

Step 15: After ac has to be revised considered while	hieving the target, the same has to be revis 4. If there are changes in customers langu revising the HoQ.	ed. Followed by that, HoQ ages, that also have to be		
Respondent	Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)			
Pius Mathew	Targets have to be varied frequently. Customer languages are dynamic. They have to be analyzed and changes have to be made accordingly (3)			
A.Ramesh.	PDCA cycle can help in this regard	PDCA cycle can help in this regard		
D.Rajanayagam	This is possible to some extent as change in customer need and pace of implementation of these changes may vary from case to case. (3)			
R.M.Nambiar	LM.Nambiar Continuous changes are occurring for customer languages. In such a scenario, this step has high value (9)			
K.O.Marcose	KO.Marcose This can help to have continual improvement (9)			
Average Receptivity in Likert's scale of range 0-10 Assessment:				
(3+3+9+9)/4=7		Good receptivity		

Table 11.24 Respondents' comments against Step 16

Step 16: The wor management's vi different direction	king of MQFD Programme has to be revie ew has to be incorporated while experimen ns of copmpany's strategic journey.	wed as a whole and the top ting the scope of MQFD in		
Respondent	Respondent Comments (Receptivity in Likert's scale of range 0-10 is indicated in bracket)			
D.Rajanayagam	MQFD results will have reflections in various dimensions. The totality has to be considered for the token of this achievement (9)			
R.M.Nambiar The aim of this step should be to achieve the ultimate goal of productivity (9)				
Average Receptivity in Likert's scale of range 0-10Assessment: $(9+9)/2 = 9$ Very good receptivity				

SI.No	Description	Score
1	Strong influence towards the implementation of the concerned steps	9
2	Moderate influence towards the implementation of the concerned steps	3
3	Weak influence towards the implementation of the concerned steps	1

Table 11.25 Matrices used for quantitative assessment

11.8. Strategic receptivity scorecard of MQFD

The questionnaire-based survey carried out in this research project was finally subjected to four stage evaluation pattern. These patterns are shown below.

- 1. Quantitative analysis of MQFD's strategic receptivity
- 2. Qualitative analysis of MQFD's strategic receptivity
- 3. Quantitative analysis of MQFD's implementation strategic receptivity
- 4. Qualitative analysis of MQFD's implementation strategic receptivity

These four patterns have been used to design the strategic receptivity scorecard of MQFD shown in Table 11.26. As shown, the overall strategic receptivity of MQFD model in the Likert's scale of range 0-10 is 6. As seen, the strategic receptivity of MQFD in the four patterns varies between moderate and good. The strategic receptivity of MQFD in Likert's scale of range 0-10 varies from 5 and 7. These scores indicate the feasibility of implementing MQFD in heterogeneous cultures. These scores can also be used to further explore ways of enhancing the strategic receptivity of MQFD concept.

11.9. Conclusion

Over the years, the scope of TPM and QFD have been enlarging and invading all fields and all types of applications, (Ahmed, et.al, 2005; chan and Wu, 2002) Hence, MQFD's application is also prone to cover all type and sizes of organizations. Therefore MQFD should be implementable across heterogeneous organizational cultures. In this context, the questionnaire-based research reported in this paper has considered the responses of managers hailing from heterogeneous inter and intra organizational cultures. After the responses

MQFD Model : Quantitative Analysais		MQFD Model: Qualitative Analysis
Consolidated scores		
MQFD's impact on OEE	7	Targets achievable through MQFD 67%
MQFD's impact on MTBF	2	
MQFD's impact on MTTR	3	
MQFD's impact on MDT	1	
MQFD's impact on Performance quality	7	
MQFD's impact on Availability	7	
MQFD's impact on Improved maintenance quality	1	Average rating in the7Likert's scale of range 0-10
MQFD's impact on Increased profit	7	
MQFD's impact on Upgraded core competence	7	
MQFD's impact on Enhanced goodwill	7	
Likert's scale of range 0-10 Scope for improvement MTTR Strategic Receptivity: Moderate		
MQFD implementation steps: Quant	titative	MQFD implementation steps:
Analysis		Qualitative Analysis
Average receptivity of steps in the Likert's scale of range 0-10]	Average opinion of the judgment of 4.6
Strategic Receptivity: Good		Average rating in the 5 Likert's scale of range 0-10
		Strategic Receptivity: Moderate
Overall strategic receptivity in Likert's scale of range	e 0-10 = 6	5
Overall strategic receptivity: Moderate		
Less than 4: Poor; Between 5 and 7: Moderate; Betw	ween 7 an	d 9: Good; Between 9 and 9.5: Very Good; Between
9.5 and 10: Excellent		

 Table 11.26. Strategic receptivity scorecard of MQFD

to the questions were gathered, they were subjected to analysis. Finally, an instrument called strategic receptivity scorecard was designed to assess the strategic receptivity of MQFD. This study revealed that the strategic receptivity of MQFD concept is found to be 6. The study has been conducted among the managers who were attached to the organizations, amidst various world class concepts like TQM, 5S, six sigma and TPM. Hence, the interpretations drawn from this research project can be generalized and claimed to be applicable to all types and sizes of healthy, organizations functioning in any part of the world. The questionnaire employed in this research would also enable the organizations to identify the required the change agents for improving the strategic receptivity MQFD concept in the society in which it will be implemented.

Chapter - 12

MULTI-CRITERIA DECISION MAKING IN MAINTENANCE QUALITY FUNCTION DEPLOYMENT THROUGH ANALYTICAL HIERARCHY PROCESS

Content

- 12.1. INTRODUCTION
- 12.2. OVERVIEW ON AHP
- 12.3. SAMPLE APPLICATION STUDY
- 12.4. RESULTS AND DISCUSSIONS
- 12.5. APPLICATION
- 12.6. CONCLUSION

MULTI-CRITERIA DECISION MAKING IN MAINTENANCE QUALITY FUNCTION DEPLOYMENT THROUGH ANALYTICAL HIERARCHY PROCESS

12.1. Introduction

As appraised in the previous chapter, one of the challenges of implementing MQFD is that it needs to fit into varied organizational cultures. For this purpose, the practicality of MQFD's components has to be studied. While implementing these components, numerous decision alternatives have to be considered. This will be a tedious task. In order to ease this task, the need for an appropriate tool is realized. In this context, the contribution of the tool 'analytical hierarchy process' (AHP) is noticed with interest. AHP has been used as a tool to solve crucial decision-making problems. (Chin, et al, 1999). During the module of the research work reported in this chapter, the method of making MQFD suitable for a typical organizational culture using AHP was examined.

12.2. Overview on AHP

AHP is a quantitative method devised by Saaty and adopted for ranking decision alternatives based on the sensitivity of the critical factors and sub-factors on the system under study (Chin et al, 2002,Taha. 2003, Haj ShirMohammadi and Wedly, 2004). The AHP methodology begins by decomposing the system under study into distinct components. Then the factors critical for successfully implementing these components are identified. If possible and necessary, these critical factors are divided into sub-factors. This structuring of decision alternatives ends in the decision hierarchy of the system under study. Followed by this, each factor and sub-factor are assigned values using numerical scores on the basis of their contribution towards achieving the sensitivity of each factor and sub-factor.

Based on the results of sensitivity analysis, the factors and sub-factors are ranked. This ranking enables the decision makers to prioritize their decisions for making the system under study a practically compatible one. The AHP is one of the most frequently addressed contemporary tools in literature. Table 12.1 shows the various natures of AHP applications, which are reported in the literature. Readers interested in acquiring deep knowledge on AHP are advised to refer Troutt and Tadisina, (1992), Pavlikakis, and Tsihrintzis, (2003), Ossadnik, and Lange, (1998),Drake, (1998), Chiang, and Lai, (2002), Yedla and Shrestha, (2003),and Karapetrovic,and Rosenbloom, (1999). Readers will also be able to understand the working of AHP by reading the sample application study presented in the next section of this chapter.

Serial Number	Nature of application	Researchers
1.	Measure for business excellence	Cheng and Li (2001)
2	Personal evaluation	Taylor III,et.al,(1998)
3	Determination correlation of product issues to profit	Muller and Fairlie-Clarke (2001)
4.	Prioritizing customers and other stakeholders	Jackson (2001)
5	Marketing	Davies, (2001)
6	Manufacturing	Rangone, (1996)
7	Cellular manufacturing	Chan.and Abhary, (1996)
8	Safety management	Chan et.al,(2004)
9	Multi-attribute analysisof ISO 9000 registration	Crowe ,et.al, (1998)
10	Evaluation of success factors for implementing ISO 14001-based EMS	Chin, et. al (1999)
11	Tourism	Ramos, et.al .(2000)
12	Higher education	Badri and Abdulla (2004)
13	Facility location selection	Yang and Lee, (1997)
14	Supplier selection	Kahraman, et.al, (2003)
15	Study of TQM benefits	Lewis, et al, (2005)
16	Environmental quality	Bender, et al, (2000,)
17	Pavement maintenance	Ramadhan, et al, (1999)
18	Centralization/Decentralization	HajShirmohammadi andWedley (2004)
20	Aircraft maintenance	Cheung, et.al, (2005)
21	Negotiation and resolution of conflict	Al-Tabtabai, and Thomas.,(2004)
22	Determining an appropriate equity risk premium	Palliam (2005)
23	Assessment of the ISO 14001 environmental management system	Pun, and Hui, (2001)
24	Selecting optimal order	Choi,et.al (2004),
25	Maintenance decision making	Triantaphyllou,et.al (1997)
26	Evaluation of airline service quality	Tsaur, et.al (2002)

 Table 12.1. Multifarious applications of AHP

Multi Criteria Decision Making in Maintenance Quality Function deployment through analytical hierarchy Process

Figure 12.1 Seven phase activities of AHP

The study was conducted in seven phases as per the following sequence. They are pictorially depicted in Figure.12.1.

- 1. Descritization of the model into factor
- 2. Splitting the factors in to critical and Sub-factors
- 3. Attributing numerical scores to each by collecting the opinion from experts and further data analysis.
- 4. Pair wise comparison
- 5. AHP matrix formulation
- 6. Estimation of priority.
- 7. Checking the consistency

12.3. Sample application study

In order to examine the practicality of applying AHP in MQFD, a sample application study was conducted in a maintenance intensive automobile service station. This service station is located in the city of Coimbatore, India. This service station is run by the Tamil Nadu state Government, India. This service station is required to cater to the maintenance requirements of Tamil Nadu state Government's vehicles.

12.3. 1. Survey

To begin with, the discretization hierarchy of MQFD shown in Figure 12.2 was developed. As shown, the MQFD was decomposed into its five components namely, House of Quality, Decision system, TPM, Maintenance parameters, and Quality parameters. Further, the factors critical to their implementation were identified. These factors have also been divided into sub-factors. The entire set of components, critical factors and sub-factors may be seen in Table 12.2. Followed by this discretization, it was found necessary to carryout paired comparisons among them. (Ramanathan,2001). The scores of comparisons are denoted using a 9-point scale (Yurdakul,M and Tansel.Y ,2003). The propositions recommended by the researchers for this purpose are shown in Table 12.2. As shown, this scale is known as Saaty's 1-9 scale. In the case study considered here, these scores should depict the practical experiences

of the competent personal. The competent personal refers to the employees of the company possessing significant knowledge. In order to meet these conditions, ten such employees were recognized as competent personal.

Figure 12.2 Descritization hierarchy of MOFD

Judgment	Explanation	Score
Equally	Two attributes contribute equally to the upper level criteria	1
Moderately	Judgment slightly favours one over other	3
Strongly	Judgment strongly favours one attribute to another	5
Very strongly	An attribute is very strongly favoured and its dominance demonstrated in practice	7
Extremely	The evidence of extremely favouring one attribute over another is of highest possible order of affirmation	9
	Intermediate values for finer resolution	2, 4, 6, 8

Table 12.2. Saatys 1-9 scale for multi-criteria decision making

In order to gather relevant data from them, a questionnaire as shown in Annexure was prepared. The practical knowledge gained by the author during an earlier MQFD study was exploited while preparing the questionnaire. As shown, Likerts scale 1-9 has been used. This questionnaire was distributed to those competent personal. After collecting the filled in questionnaires, the average values were computed against each factor and sub-factor. These values were converted into Saaty's scales by using the following equivalent ratio scale formula:

 $Y=1+[(x-x_{min}) X 8/(x_{max}-x_{min})]$

Where, Y- Equivalent score in Saaty's 1-9 scale. X- Average value specified by the respondents.

 \mathbf{x}_{\min} – Minimum value specified by the respondents.

 x_{max} – Maximum value specified by the respondents.

These scores computed are shown in Table 12.3.

As a sample, the computation of the method of computing the score in Saaty's scale for the sub factor 'Frequency of vehicle Breakedown' listed under the critical factor 'customer' is illustrated here. As shown in Table 12.3,

Component	Critical Sub-factors		Average	Score in
	Factors		value	Saaty's
			20	Scale
HoQ	Customer	1.9	9	
		Frequency of vehicle breakdown	64	4
		Cultural background	53	1
		Duration of maintenance	6	3
		Emergency/necessity	65	5
		Quality of spare parts	7.9	9
		Cost of spare parts	6.2	4
	Technology		7.3	5
		Infrastructure	7.7	7
		Skill of the personal	8.2	9
		Employer employee	7.3	5
		relationship	6.4	1
		Organizational climate	6.8	3
1		Maintenance methods		
	Competitors	6.5	1	
		Financial power	8	9
1		Performance of competitors.	7.4	8
		Customer relationship	7.7	8
		Strategies of competitors	5.7	5
		Change management scheme	3.9	1
		Quality parameters	7.4	8
		New technology	7.4	8
Decision system	Personnel Fact	tor	8.1	9
System		Authority of personal	7	1
		Responsibility of Personal	8.3	9
•		Initiatives of personal	7.4	3
ļ		Motivation of personal	8	7
	Value of Decis	6.3	1	
	Reliability of I	Decisions	7	4
TPM	Autonomous N	Maintenance	7.7	9
l		Attitude of workers	7.1	7
1		Attitude of management	7.1	7
		Motivation schemes	5.5	1
[Incentive of salary	7.8	9
		Financial benefits	7.2	7
		Lubrication management	6.3	4
		Daily maintenance of data	6.9	6
	Individual Imp	provement	7	5

Table 12.3. Weighatage of parameters in Saaty's scale.

Table Contd...

		Reputation of individual	7.3	4
		Kaizen's principle	8.5	9
		Employee's suggestion scheme	6.8	2
		Employee involvement scheme	7	3
		Daily maintenance of machinery	6.6	1
		Interpersonal relationship	7.3	4
		Employee's wish	7	3
	Planned Maint	enance	7.6	6
		Schedule of maintenance	7.5	8
		Frequency of breakdown	7.7	9
		Idleness of machine	6.3	2
		Repetition of same problem	6.8	5
	Quality Mainte	enance	7.5	8
		TQM tools	6.7	7
		Sampling	2.4	1
		Data management	7.9	9
	Education And	Training	7.5	8
		Feasibility for higher studies	6.3	1
		Training facility	7.4	7
		Employee's own interest	7.4	7
		Motivation for training	7.1	5
		Rewards for better performance	7.9	9
	Development r	nanagement	6.6	2
		Target setting	7.5	9
		Job scheduling	6.7	8
		Production planning	2.9	1
		Maintenance schedule	7.3	9
	Office TPM		5.4	1
		New technology	8.1	9
		Training	7.5	7
		Motivation	6.8	5
		Proximity of customer	5.2	1
		Proximity of supplier	5.8	3
		Data processing speed	7.7	8
	Safety Health	And Environment	7.5	8
		Hospital	5	1
1		Gymnasium	5.4	2
		Pollution	7.3	8
		Safety rules	7.8	9
		Green belt concepts	6.7	6
		Safety training	7.1	7
		Display for safety	7	7
		Periodic medical checkup	6.5	6
Maintenance	Overall equipn	nent effectiveness	7.3	7
Parameters	Mean time bet	ween failure	5.6	1
	Mean time to r	epair	6	2
	Performance e	theiencies	8	9
	Mean down tir	ne	7	6
	Availability		7.1	6

Multi Criteria Decision Making in Maintenance Quality Function deployment through analytical hierarchy Process

Quality	Improved Maintenance	8	9	
parameters	parameters Increased Profit		1	
	Upgraded Core Competence	5.5	5	
1	Enhanced goodwill	8	9	

the average values of the 'customer' are 6.4, 5.3, 6, 6.5. 7.9 and 6.2. Among them the minimum average value is 5.3, which is denoted as x_{min} in the above formula. The maximum average value is 7.9, which is denoated as x_{max} in the above equation. The average of the average value is 6.4. The substitution of these values in the above formula is presented below.

$Y=1+[(6.4-5.3) \times 8/(7.9-5.3)] = 4.385 =$ rounded off to 4

The conversion of values into scores of Saaty's scale is necessary for the purpose of pursuing AHP (Ramanathan, 2001, Yedla and Shrestha 2003, Karapetrovic and Rosenbloom, 1999, Chin, et al, 2002). The scores in Saaty's scale were later substituted in pairwise comparison matrices. These matrices are shown in Tables 12.4-12.8. Followed by that, normalization of critical factors has been carried out. Through this process, the normalized values and local sensitivity were calculated. Normalized values represent the fraction of pairwise contribution of critical factors against each

Critical factors of the component 'House of Quality'	Customer	Technology	Competitor
Customer	1	2	9
Technology	1/2	1	5
Competitor	1/9	1/5	1
Sum	$1^{3}/_{5}$	$3^{1}/_{5}$	15
	$\lambda_{\rm max} = 3.0$	012 CI=0.58	RI= 0.58 CR
Consistency Parameters	=0.00103	CR < 0.1	

 Table 12.4. Pairwise degree comparison matrix of critical factors of Critical factors of the component 'House of Quality'

Table 12.5 Pairwise degree comparison matrix of critical factors of Critical factors of the component 'Decision making'

Critical factors of the component 'Decision making'	Personnel	Value of decisions	Reliability of decisions
Personnel	1	7	2
Value of decisions	1/7	1	1/4
Reliability of decisions	1/2	4	1
Sum	$1^{2}/_{3}$	12	3 1/4
Consistency Parameters	$\lambda_{\rm max} = 3.000$.00172 CR <	2 CI=0.006	RI= 0.58 CR =

Table 12.6. Pairwise degree comparison matrix of Critical factors of the component 'TPM'

Critical factors of the component 'TPM'	Autonomous maintenance	Individual improvement	Planned maintenance	Quality maintenance	Education and Training	Development management	Office TPM	Safety Health Environment	
Autonomous	1	1	1	1	1	2	9	1	
Individual Improvement	1	1	1	1	1	1	7	1	
Planned maintenance	1	1	1	1	1	2	9	1	
Quality maintenance	1	1	1	1	1	2	8	1	
Education Training	1 weed	1 Care	1	1	1	2	8	1	
Development management	1/2	odunii 1	1/2	1/2	1/2	1	5	1/2	
Office TPM	1/9	1/7	1/9	1/8	1/8	1/5	1	1/9	
Safety Health			101	0.00518	CR 4 0.1				
Environment	1	1	1	1	1	2	9	1	
Sum	$6^{3}/_{5}$	7 1/7	6 3/5	6 5/8	6 5/8	12 1/5	56	6 3/5	
Consistency Parameters	$\lambda_{\text{max}} = 7.9971$ CI=0.041 RI= 1.141 CR =000293CR < 0.1								

Critical factors of the component 'Maintenance parameters'	OEE	MTBF	MTTR	Performance efficiency	MDT	Availability
OEE	1	7	4	1	1	1
MTBF	1/7	1	1/2	1/9	1/6	1/6
MTTR	1/4	2	1	1/5	1/3	1/3
Performance efficiency	1	9	5	1	1	2
MDT	1	6	3	1	1	1
Availability	1	6	3	1/2	1	1
Sum	4 ² / ₅	31	16 ¹ / ₂	3 4/5	4 1/2	5 ¹ / ₂
Consistency Parameters	$\lambda_{\rm max}$ CR <	= 6.0520 0.1) CI=0.04	1 RI= 1.24	С	R= 0.00838

Table 12.7. Pairwise degree comparison matrix of Critical factors of the component 'maintenance parameters'

Table 12.8. Pairwise degree comparison matrix of Critical factors of the component 'quality prameters'

Critical factors of the component 'quality parameters'	Improved maintenance	Increased profit	Upgraded core competence	Enhanced goodwill	
Improved maintenance	1	9	2	1	
Increased profit	1/9	1	1/5	1/9	
Upgraded Core Competence	1/2	5	1	1/2	
Enhanced goodwill	1	9	2	1	
Sum	2 ³ / ₅	24	5 1/5	2 3/5	
Consistency Parameters	$\lambda_{\text{max}} = 4.001$ CR = 0	4 CI= .00518 C	0.00046 RI= R < 0.1	0.9	

other. Local sensitivity refers to the average of normalized values of each critical factor. Normalization matrices of the MQFD components are shown in Tables 12.9-12.13.

Normalized values of the component 'House of Quality'	Customer	Technology	Competitor	Local sensitivity
Customer	0.621.	0.624	0.600	0.615
Technology	0.310	0.313	0.333	0.319
Competitor	0.069	0.063	0.067	0.066

Table 12.10. Normalized values of critical factors of the component 'Decision making'

Normalized values of the component 'Decision making'	Personnel	Value of decisions	Reliability of decisions	Local sensitivity
Personnel	0.609	0.583	0.615	0.602
Value of decisions	0.087	0.084	0.077	0.083
Reliability of				
decisions	0.304	0.333	0.308	0.315

Table 12.11. Normalized values of critical factors of the component 'TPM Pillars'

Normalized values of the component 'TPM Pillars'	Autono mous mainte nance	Indivi dual improv ement	Planned mainte nance	Quality maint enance	Educati and Training	Development management	office TPM	Safety Health and Environment	Local sensitivity
Autonomous maintenance	0.151	0.140	0.151	0.151	0.151	0.164	0.161	0.151	0.153
Individual improvement	0.151	0.140	0.151	0.151	0.151	0.082	0.124	0.151	0.137
Planned mainte nance	0.151	0.140	0.151	0.151	0.151	0.164	0.161	0.151	0.153
Quality maint enance	0.151	0.140	0.151	0.151	0.151	0.164	0.143	0.151	0.15
Education and Training	0.151	0.140	0.151	0.151	0.151	0.164	0.143	0.151	0.15
Development management	0.077	0.140	0.076	0.075	0.075	0.082	0.089	0.077	0.086
office TPM	0.017	0.020	0.018	0.019	0.019	0.016	0.018	0.017	0.018
Safety, Health and Environment	0.151	0.140	0.151	0.151	0.151	0.164	0.161	0.151	0.153
Normalized values of the component 'Maintenance parameters'	OEE	MTBF	MTTR	Performance efficiency	MDT	Availability	Local sensitivity		
---	-------	-------	-------	---------------------------	-------	--------------	----------------------		
OEE	0.228	0:225	0.242	0.262	0.222	0.182	0.227		
MTBF	0.032	0.032	0.030	0.030	0.038	0.030	0.032		
MTTR	0.056	0.065	0.061	0.053	0.074	0.060	0.062		
Performance efficiency	0.228	0.290	0.303	0.262	0.222	0.364	0.278		
MDT	0.228	0.194	0.182	0.262	0.222	0.182	0.212		
Availability	0.228	0.194	0.182	0.131	0.222	0.182	0.190		

Table 12.12. Normalized values of critical factors of the component 'maintenance parameters'

Table 12.13. Normalized values of critical factors of the component 'quality parameters'

Normalized values of the component 'Quality parameters'	Improved maintenance	Increased profit	Upgraded core competence	Enhanced goodwill	Local sensitivity
Improved maintenance	0.383	0.375	0.385	0.383	0.381
Increased profit	0.043	0.042	0.038	0.043	0.042
Upgraded Core	0.191	0.208	0.192	0.191	0.196
Enhanced goodwill	0.383	0.375	0.385	0.383	0.381

The method of computing the normalized values given in the customer column of Table 12.9 is illustrated here. The sum of these values in Table 12.4 under the customer column is $1^{3}/_{5}$. Each value in this column is divided by this sum. That is, in the customer row and column in Table 12.4, the value 1 is divided by the sum $1^{3}/_{5}$. This value is 0.621, which is posted in Table 12.9. Similarly, in the 'Technology' row and 'customer' column, the value $1/_{2}$ is

divided by $1^{3}/_{5}$ The value 0.310 is posted in Table 12.9 In the competitors raw and the customer's in Table 12.4, the score $1/_{9}$ is divided by $1^{3}/_{5}$ The resultant value 0.069 is posted in the representing cell in Table 12.9. In so me cases normalized values were slightly modified so that the sums under each column are equal to 1.

The term local sensitivity of critical factor or sub-factor refers to its influence over the system with respect to the immediate upper level entity, which may either be a component or critical factor. In the case of critical factors, the local sensitivities will directly influence only the associated components. However, in the case of sub factors, their sensitivities will affect their associated critical factors as well as components. Hence the sensitivities of critical factors will be globalized in the system under study. Therefore, in the case of sub-factors , their global sensitivities have to be computed. The global sensitivity of the sub-factor is the product of its local sensitivity and that of its parent critical sub-factor/factor. The global sensitivity of sub-factors computed during this simple application study is presented in Tables 12.38 to 12.49.

As a sample, the computation of the global sensitivity to the sub-factor 'frequency of vehicle breakdown' for the parent critical factor 'customer' is illustrated here. As shown in Table 12.25, its local sensitivity is 0.157. As shown in Table 12.9, the local sensitivity of its associated critical factor 'customer' is 0.615. These two values are multiplied together to obtain the global sensitivity of the sub-factor 'Frequency of vehicle breakdown'. This value 0.097 is posted in Table 12.38. This means that any changes in the functioning of this sub-factor will affect the working of MQFD to the extent of 9.7 % (0.097×100). After the computation of global sensitivities, their true representation of reality had to be checked by computing the consistency index (CI).

12.3. 2. Computation of consistency ratio

The CI for each pair-wise comparison matrix was calculated by using the following formula

$$CI = \frac{\lambda_{\max} - n}{n - 1}$$

where the λ_{max} stands for the principal eigen value of the matrix. *n* is the size of the matrix. λ_{max} was evaluated using the software 'MATLAB'. The parameter random index depends on the size of the matrix. It has to be found out from Saaty's Table given in Table 12.50 (Ramanathan et.al, 2001). The sample calculation of C.I is illustrated by choosing the Saaty's table. The λ_{max} value for the Table 12.4 depicting the pairwise degree comparison matrix of critical factors of House of Quality, using 'MATLAB' programme, was found out as 3.0012. As it was a 3 X 3 matrix, the value 3 was used for n. Using these values, the CI was computed as 0.58. From Saaty's table, the value of Random Index (RI) for 3 X 3 matrix was taken. It was 0.58. The ratio of C.I to the average R.I for the same order matrix is called consistency ratio (*C.R*). Using the values of CI and RI obtained in Table. 12.4, CR value of 0.00103 was obtained.

As a thumb rule, this value is to be less than 0.1 or 10%, This is considered as the criterion of consistency of the results. Rarely CRs are greater than 0.1. In these cases, decision makers have to reconsider their judgments. However, if they are satisfied with the results, they can accept the results even if the CR values are more than 0.1 (Muller and Fairlie-Clarke, 2001). The CR values of the pairwise comparison matrices developed during this sample application study are shown in the last row of the Tables 12.4 to12.8. Only in the matrix of pairwise degree matrix of sub-factors of the component 'Development management', the CR value is 0.229, which is more than the conventionally accepted value of 0.1. The limitation value 0.1 is only a guideline. As mentioned above, if the investigator of the system is satisfied with the consistency, then the consistency level can be accepted. Hence in our case, since the investigation was conducted systematically, it was concluded that the results were consistent.

'Customer'	Frequency of vehicle breakdown	Cultural background	Duration of maintenance	Emergency/ Necessity	Quality of spare parts	Cost of maintenance
Frequency of vehicle breakdown	1	4	1	1	1/2	1
Cultural background	1/4	1	1/3	1/5	1/9	1/4
Duration of maintenance	1	3	1	1/2	1/3	1
Emergency/ Necessity	1	5	2	1	1/2	1
Quality of spare parts	2	9	3	2	1	2
Cost of maintenance	1	4	1	1	1/2	1
Sum	6.250	26	8.33	5.7	2.944	6.250
Consistency Parameters	$\lambda_{\rm max} = 6.04$ $CR < 0.1$	479 CI=	0.00958 RI=	=1.24 CI	R = 0.0077	2

Table 12.14. Pairwise degree comparison matrix of Sub-factors of the critical factor 'customer'

Table 12.15. Pairwise degree comparison matrix of Sub-factors of the critical factor 'technology'

'Technology'	Infrastructure	Skill of the personnel	Employer employee relationship	Organizational climate	Maintenance methods
Infrastructure	1	1	1 .	7	2
Skill of the personnel	1	1	2	9	3
Employer employee relationship	1	1/2	1	5	5
Organizational climate	1/7	1/9	1/5	1	1/3
Maintenance methods	1/2	1/3	1/2	3	1
Sum	3 2/3	3	4 5/7	25	11 1/3
Consistency Parameters	$\lambda_{\rm max} = 5.3471$ CR < 0.1	CI=0.868	RI=1.12	CR = 0.077	-

Normalized values of the component 'Competitors'	Financial power	Performance of competitors	Customer relationship	Strategies of competitors	Management scheme	Quality policies	new technology
inancial ower	1	1	1	1	9	1	1
erformance f competitors	1	1	1	1	8	1	1
lustomer elationship	1	1	1	1	8	1	1
trategies of ompetitors	1	1	1	1	5	1	1/2
lanagement cheme	1/9	¹ / ₈	1/8	1/5	1	1/8	1/9
)uality olicies	1	1	1	1	8	1	1
vew echnology	1	1	1	2	9	1	1
SUM	6 ¹ / ₉	6 ¹ / ₈	6 ¹ / ₈	7 ¹ / ₅	48	6 ¹ / ₈	5 ³ / ₅
Consistency Darameters	$\lambda_{\rm max} = 7$ CR < 0.1	7.0626 CI=0.014	043 RI=1.3	2 CR =	0.0079	1 Jap Sar	

Table 12.16. Pairwise degree comparison matrix of Sub-factors of the critical factor 'competitors'

Table 12.17. Pairwise degree comparison matrix of Sub-factors of the critical factor 'personnel'

Pairwise degree comparison matrix of Sub- factors of 'Personnel'	Authority	Responsibility	Initiatives	Motivation
Authority	1	1/9	1/3	1/7
Responsibility	9	1	3	1
Initiatives	3	1/3	1	1/2
Motivation	7	1	2	1
Sum	20	2 4/9	6 ¹ / ₃	2 ² / ₃
Consistency Parameters	$\lambda_{\text{max}} = 4.0$ CR = 0.058	0157 CI=0.00523 1 CR < 0.1	RI=0.90	1.14

Muiti (riteria Decision Maring in Maintenance Quality Sunction aepisyment inrougn analytical hierarchy Process

Pairwise degree comparison matrix of Sub-factors of 'Autonomous maintenance'	Attitude of workers	Attitude of Management	Motivation Schemes	Incentive schemes	Financial benefits	Lubrication management	Daily maintenance of machinery data
Attitude of workers	1	1	7	1	1	2	1
Attitude of Management	1	1	7	1	1	2	1
Motivation Schemes	1/7	1/7	1	1/9	1/7	1/4	1/6
Incentive schemes	1	1	9	1	1	2	2
Financial benefits	1	1	7	1	1	2	1
Lubrication management	1/2	1/2	4	1/2	1/2	1	1/2
Daily maintenance of machinery data	1	1	6	1	1	2	1
Sum	5 ² / ₃	5 ² / ₃	41	5 ³ / ₅	5 ² / ₃	11 1/4	6 ² / ₃
Consistency Parameters	$\begin{vmatrix} \lambda_{\max} \\ CR < 0.1 \end{vmatrix}$	7.1445	CI= 0.0240	RI= 1.3	2 CR	. = 0.0182	

 Table 12.18. Pairwise degree comparison matrix of Sub-factors of the critical factor

 'autonomous maintenance'

Table 12.19. Pairwise degree comparison matrix of Sub-factors of the critical factor 'individual improvement'

Pairwise degree comparison matrix of Sub-factors of 'individual improvement'	Reputation	Kaizen	Suggestion box	Employee involvement scheme	Daily maintenance of machinery	Interpersonal relationship	Employee wish
Reputation	1	1/2	2	1	4	1	1
Kaizen	2	1	5	3	9	2	3
Suggestion box	1/2	1/5	1	1/2	2	1/2	1/2
Employee involvement scheme	1	1/3	2	1	3	1	1
Daily maintenance of machinery	1/4	1/9	1/2	1/3	1	1/4	1/3
Interpersonal relationship	1	1/2	2	1	4	1	1
Employee wish	1	1/3	2	1	3	1	1
Sum	6 3/4	3	14 1/2	7 5/6	26	6 3/4	7 5/6
Consistency Parameters	$\lambda_{\rm max}$ =70.	278 CI=	0.00463 R	I=1.32	CR = 0.00	351 CR < 0.1	

Table 12.20. Pairwise degree comparison matrix of Sub-factors of the critical factor 'planned maintenance'.

Pairwise degree comparison matrix of Sub-factors of 'Planned maintenance'	Schedule	Frequency	Idleness	Repetition
Schedule	1	9	2	5
Frequency	1/9	1	5	2
Idleness	1/2	1/5	1	1/3
Repetition	1/5	1/2	3	1
Sum	1 4/5	$10^{2}/_{3}$	11	8 1/3
Consistency Parameters	$\begin{array}{c} \lambda_{\text{max}} = 5.10\\ \text{CR} = 0.371 \text{ C} \end{array}$	02 CI=0.3341 CR < 0.1	RI=0.9	90

Table 12.21. Pairwise degree comparison matrix of Sub-factors of the critical factor 'quality maintenance'

Pairwise degree comparison matrix of Sub-factors of 'Quality maintenance'	TQM tools	Sampling	Data management
TQM tools	1	7	1
Sampling	1/7	1	1/9
Data management	1	9	1
Sum	2 ¹ / ₇	17	2 1/9
Consistency Parameters	$\lambda_{\rm max} = 3.00$ CR =	07 CI=0.0035 =0.006 CR <	RI=0.58

Table 12.22. Pairwise degree comparison matrix of Sub-factors of the critical factor 'Office TPM''

Pairwise degree comparison matrix of Sub-factors of 'Office TPM'	New technology	Training	Motivation	Proximity of customer	Proximity of Suppliers	Processing speed		
New								
technology	1	1	2	9	3	1		
Training	1	1	1	7	2	1		
Motivation	1/2	1	1	5	2			
Proximity of customer	1/9	1/7	1/5	1	1/3	1/8		
Proximity of Suppliers	1/3	1/2	1/2	3	1	1/3		
Processing speed	1	1	2	8	3	1		
Sum	4	$4^{2}/_{3}$	6 5/7	33	11 1/3	3 1/2		
Consistency Parameters	$\lambda_{\text{max}} = 6.05$ CR < 0.1	$\lambda_{\text{max}} = 6.0503 \text{ CI}=0.01006 \text{ RI}=1.24 \text{ CR}=0.00811 \text{ CR} < 0.1$						

Pairwise degree comparison matrix of Sub-factors of 'Education and Training'	Feasibility for higher studies	Facility	Employee interest	Motivation	Rewards
Feasibility for higher studies	1	7	7	5	9
Facility	1/7	1	1	1	1
Employee interest	1/7	1	1	1	1
Motivation	1/5	1	1	1	1/2
Rewards	1/9	1	1	2	1
Sum	1 3/5	11	11	10	12 ¹ / ₂
Consistency Parameters	$\lambda_{max} = 5.1$ 0.0272 CR < 0.1	220 CI=0.0	0305 RI	=1.12 (CR =

Table 12.23. Pairwise degree comparison matrix of Sub-factors of the critical factor 'Education and Training'

Table 12.24. Pairwise degree comparison matrix of Sub-factors of the critical factor 'Development Management'

Pairwise degree comparison matrix of Sub-factors of 'Development Management'	Target setting	Job scheduling	Production plan	Maintenance schedule
Target setting	1	1	9	1
Job scheduling	1	1	8	1
Production plan	1/9	1/8	1	1
Maintenance schedule	1	1	1	1
Sum	3 ¹ / ₉	3 ¹ / ₈	19	4
Consistency Parameters	λ_{\max} =	=4.6206 CI=0. CR = 0.229	206 RI= CR >0.	0.90 1

Pairwise degree comparison matrix of Sub-factors of 'Safety, health and Environment'	Hospital	Gymnasium	Pollution	Safety rule	Green belt	Safety training	Safety display	Medical Checkup
Hospital	1	1/2	1/8	1/9	1/6	1/7	1/7	1/6
Gymnasium	2	1	1/4	1/5	1/3	1/4	1/4	1/3
Pollution	8	4	1 0.00	1	1	1	1	1
Safety rule	9	5	1	1	2	1	1	2
Green belt	6	3	1	1/2	1	1	1	1
Safety training	7	4	1	1	1	1	1	1
Safety display	7	4	1	1	1	1	1	1
Medical checkup	6	3	1	1/2	1	1	1	1
Sum	46	24 1/2	$6^{3}/_{8}$	5 1/3	7 1/2	$6^{2}/_{5}$	$6^{2}/_{5}$	7 1/2
Consistency Parameters	$\lambda_{\text{max}} = 8$ CR < 0.1	3.070 CI=0.009	957 RI=1	.41	CR = 0	0.00678		

Table 12.25.	Pairwise degree comparison matrix of Sub-factors of the critical factor 'Safety,
	health and Environment'

Table 12.26. Normalized values of Sub-factors of the critical factor 'customer'

Normalized values of Sub-factors of ' Customer'	Frequency of vehicle breakdown	Cultural background	Duration of maintenance	Emergency/ necessity	Quality of spare parts	Cost of maintenance	Local sensitivity
Frequency of vehicle breakdown	0.160	0.154	0.120	0.175	0.170	0.160	0.157
Cultural background	0.040	0.039	0.040	0.035	0.038	0.040	0.039
Duration of maintenance	0.160	0.115	0.120	0.089	0.112	0.160	0.126
Emergency/ necessity	0.160	0.192	0.240	0.175	0.170	0.160	0.183
Quality of spare parts	0.320	0.346	0.360	0.351	0.340	0.320	0.339
Cost of maintenance	0.160	0.154	0.120	0.175	0.170	0.160	0.157

Normalized values of Sub-factors of 'Technology	Infrastructure	Skill of the personnel	Employer employee relationship	Organizational climate	Maintenance methods	Local sensitivity
Infrastructure	0.275	0.340	0.213	0.280	0.176	0.257
Skill of the personnel	0.275	0.340	0.425	0.360	0.265	0.333
Employer employee relationship	0.275	0.170	0.213	0.200	0.442	0.260
Organizational climate	0.039	0.037	0.043	0.040	0.029	0.038
Maintenance methods	0.136	0.113	0.106	0.120	0.088	0.113

Table 12.27. Normalized values of Sub-factors of the critical factor 'technology'

Table 12.28. Normalized values of Sub-factors of the critical factor 'competitors'

Normalized alues of Sub- factors of Competitors'	Financial power of competitors	Performance of competitors	Customer relationship	Strategies of competitors	Management scheme	Quality policies	New technology	Local sensitivity
nancial wer of ampetitors	0.164	0.163	0.163	0.139	0.188	0.163	0.178	0.165
formance competitors	0.164	0.163	0.163	0.139	0.167	0.163	0.178	0.162
istomer tationship	0.164	0.163	0.163	0.139	0.167	0.163	0.178	0.162
rategies of impetitors	0.164	0.163	0.163	0.139	0.103	0.163	0.089	0.141
lanagement deme	0.016	0.022	0.022	0.027	0.020	0.022	0.021	0.021
sality clicies	0.164	0.163	0.163	0.139	0.167	0.163	0.178	0.162
<w minology</w 	0.164	0.163	0.163	0.278	0.188	0.163	0.178	0.185

Table 12.29. Normalized values of Sub-factors of the critical factor 'personnel'

Normalized values of Sub- factors of 'Personnel'	Authority	Responsibility	Initiatives	Motivation	Local sensitivity
Authority	0.050	0.045	0.053	0.055	0.051
Responsibility	0.450	0.409	0.473	0.378	0.428
Initiatives	0.150	0.137	0.158	0.189	0.158
Motivation	0.350	0.409	0.316	0.378	0.363

Normalized values of Sub-factors of 'Autonomous maintenance'	Attitude of workers	Attitude of Management	Motivation schemes	Incentive schemes	Financial benefits	Lubrication	Daily maintenance of Machinery data	Local sensitivity
Attitude of workers	0.177	0.177	0.171	0.178	0.177	0.178	0.150	0.173
Attitude of Management	0.177	0.177	0.171	0.178	0.177	0.178	0.150	0.173
Motivation schemes	0.026	0.025	0.024	0.021	0.026	0.021	0.025	0.024
Incentive schemes	0.177	0.177	0.220	0.178	0.177	0.178	0.300	0.201
Financial benefits	0.177	0.177	0.170	0.178	0.177	0.178	0.150	0.173
Lubrication management	0.089	0.090	0.098	0.089	0.089	0.089	0.075	0.088
Daily maintenance of Machinery data	0.177	0.177	0.146	0.178	0.177	0.178	0.150	0.169

 Table 12.30. Normalized values of Sub-factors of the critical factor ' autonomous maintenance'

Table 12.31. Normalized values of Sub-factors of the critical factor 'individual improvement'

Normalized values of Sub-factors of ' Individual improvement'	Reputation	Kaizen	Suggestion box	Employee involvement scheme	Daily maintenance of Machinery	Interpersonal relationship	Employee's wish	Local sensitivity
Reputation	0.148	0.168	0.138	0.128	0.154	0.148	0.128	0.144
Kaizen	0.296	0.336	0.345	0.382	0.346	0.296	0.382	0.341
Suggestion box	0.075	0.067	0.069	0.063	0.078	0.074	0.063	0.070
Employee involvement scheme	0.148	0.112	0.138	0.128	0.115	0.148	0.128	0.131
Daily maintenance of Machinery	0.037	0.037	0.034	0.043	0.038	0.038	0.043	0.038
Interpersonal relationship	0.148	0.168	0.138	0.128	0.154	0.148	0.128	0.144
Employee's wish	0.148	0.112	0.138	0.128	0.115	0.148	0.128	0.131

Table 12.32. Normalized values of Sub-factors of the critical factor 'planned maintenance'

Normalized values of Sub-factors of 'Planned maintenance'	Schedule	Frequency	Idleness	Reputation	Local sensitivity
Schedule	0.553	0.841	0.181	0.600	0.544
Frequency	0.061	0.093	0.455	0.240	0.212
Idleness	0.276	0.019	0.091	0.040	0.106
Reputation	0.110	0.047	0.273	0.120	0.137

Multi Criteria Decision Making in Maintenance Quality Function deployment inrougn analysical hierarchy Process

Normalized values of Sub-factors of 'Quality maintenance'	TQM tools	Sampling	Data management	Local sensitivity
TQM tools	0.467	0.412	0.473	0.451
Sampling	0.066	0.059	0.053	0.059
Data management	0.467	0.529	0.474	0.490

Table 12.33. Normalized values of Sub-factors of the critical factor 'quality maintena
--

	Table	12.34.	Normalized	values of	Sub-factors	of the critic	al factor	'Education a	nd Training'
--	-------	--------	------------	-----------	-------------	---------------	-----------	--------------	--------------

Normalized values of Sub-factors of 'Education and Training'	Feasibility for higher studies	Training facility	Employee's own interest	Motivation for Training	Rewards for better performance	Local sensitivity
Feasibility for higher studies	0.627	0.636	0.636	0.500	0.720	0.624
Training Facility	0.089	0.091	0.091	0.100	0.080	0.090
Employee's own interest	0.089	0.091	0.091	0.100	0.080	0.090
Motivation for Training	0.125	0.091	0.091	0.100	0.040	0.089
Rewards for better performance	0.070	0.091	0.091	0.200	0.080	0.106

Table 12.35. Normalized values of Sub-factors of the critical factor 'Office TPM'

Normalized values of Sub-factors of 'Office TPM'	New technology	Training	Motivation	Proximity of customer	Proximity of Suppliers	Processing speed	Local sensitivity
New	(All all all all all all all all all all		Could P				
technology	0.254	0.215	0.299	0.273	0.265	0.289	0.266
Training	0.254	0.215	0.149	0.212	0.176	0.289	0.216
Motivation	0.126	0.215	0.149	0.152	0.176	0.000	0.137
Proximity of customer	0.027	0.032	0.030	0.030	0.029	0.037	0.031
Proximity of Suppliers	0.085	0.108	0.074	0.091	0.088	0.096	0.090
Processing speed	0.254	0.215	0.299	0.242	0.266	0.289	0.261

Normalized values of Sub-factors of 'Development Management'	Target	Job scheduling	Production plan	Maintenance schedule	Local sensitivity
Target	0.321	0.320	0.474	0.250	0.341
Job scheduling	0.321	0.320	0.422	0.250	0.328
Production plan	0.037	0.040	0.053	0.250	0.095
Maintenance schedule	0.321	0.320	0.053	0.250	0.236

Table 12.36. Normalized values of Sub-factors of the critical factor 'Development Management'

Table 12.37. Normalized values of Sub-factors of the critical factor 'Safety, health and environment'

Safety, health and environment	Hospital	Gymnasium	Pollution	Safety rule	Green belt	Safety training	Safety display	Medical Checkup	Local sensitivity
Hospital	0.023	0.022	0.019	0.021	0.022	0.022	0.022	0.022	0.021
Gymnasium	0.043	0.041	0.039	0.039	0.044	0.039	0.039	0.044	0.041
Pollution	0.174	0.163	0.157	0.188	0.135	0.156	0.157	0.134	0.158
Safety rule	0.196	0.204	0.157	0.188	0.267	0.156	0.157	0.268	0.199
Green belt	0.130	0.122	0.157	0.094	0.133	0.156	0.157	0.133	0.135
Safety training	0.152	0.163	0.157	0.188	0.133	0.157	0.156	0.133	0.155
Safety display	0.152	0.163	0.157	0.188	0.133	0.157	0.156	0.133	0.155
Medical checkup	0.130	0.122	0.157	0.094	0.133	0.157	0.156	0.133	0.135

Table 12.38. Global sensitivity of Sub-factors of the critical factor 'Customer'

Sub-factors of Customer	Local sensitivity	Global sensitivity= 0.615× Local sensitivity
Frequency of vehicle breakdown	0.157	0.097
Cultural background	0.039	0.024
Duration of maintenance	0.126	0.077
Emergency/ necessity	0.183	0.113
Quality of spare parts	0.339	0.208
Cost of maintenance	0.157	0.097

Table 12.39. Global sensitivity of Sub-factors of the critical factor 'Technology'

Sub-factors of Technology	Local sensitivity	Global sensitivity= 0.319× Local sensitivity
Infrastructure	0.257	0.082
Skill of the personal	0.333	0.106
Employer employee relationship	0.26	0.083
Organizational climate	0.038	0.012
Maintenance methods	0.113	0.036

Sub-factors of Competitors	Local sensitivity	Global sensitivity= 0.066× Local sensitivity
Financial power	0.165	0.033
Performance of competitors	0.162	0.032
Customer relationship	0.162	0.032
Strategies of competitors	0.141	0.028
Management scheme	0.021	0.004
Quality	0.165	0.033
New technology	0.185	0.037

Table 12.40. Global sensitivity of Sub-factors of the critical factor 'Com
--

Table 12.41. Global sensitivity of Sub-factors of the critical factor 'Personnel'

Sub-factors of Personnel	Local sensitivity	Global sensitivity= 0.602× Local sensitivity	
Authority	0.051	0.031	
Responsibility	0.428	0.258	
Initiatives	0.158	0.095	
Motivation	0.363	0.219	

Table 12.42. Global sensitivity of Sub-factors of the critical factor 'Autonomous maintenance'

Sub-factors of Autonomous maintenance	Local sensitivity	Global sensitivity= 0.153× Local sensitivity	
Attitude of workers	0.173	0.026	
Attitude of Management	0.173	0.026	
Motivation	0.024	0.004	
Incentive schemes	0.201	0.031	
Financial benefits	0.173	0.026	
Lubrication management	0.088	0.013	
Daily maintenance of Machinery data	0.169	0.026	

Table 12.43. Global sensitivity of Sub-factors of the critical factor 'Individual improvement'

Sub-factors of Individual improvement	Local sensitivity	Global sensitivity= 0.137× Local sensitivity
Reputation	0.144	0.002
Kaizen	0.341	0.047
Suggestion box	0.07	0.010
Employee involvement scheme	0.131	0.018
Daily maintenance of	0.028	0.005
Machinery	0.038	0.005
Interpersonal relationship	0.144	0.019
Employee wish	0.131	0.018

Multi Criteria Decision Making in Maintenance Quality Function deployment through analytical hierarchy Process

Sub-factors of Planned maintenance	Local sensitivity	Global sensitivity= 0.134× Local sensitivity
Schedule of maintenance	0.544	0.085
Frequency	0.212	0.032
Idleness of machine	0.106	0.016
Repetition of work	0.137	0.02

Table 12.44. Global sensitivity of Sub-factors of the critical factor 'Planned maintenance'

Table 12.45. Global sensitivity of Sub-factors of the critical factor 'Quality maintenance'

Sub-factors of Quality maintenance	Local sensitivity	Global sensitivity= 0.15 × Local sensitivity	
TQM tools	0.451	0.067	
Sampling	0.059	0.009	
Data management	0.49	0.074	

Table 12.46. Global sensitivity of Sub-factors of critical factor 'Education and training'

Sub-factors of Education and training	Local sensitivity	Global sensitivity= 0.15 × Local sensitivity
Feasibility for higher studies	0.624	0.094
Facility	0.09	0.013
Employee interest	0.09	0.013
Motivation	0.089	0.013
Rewards	0.106	0.016

Table 12.47. Global sensitivity of Sub-factors of the critical factor 'Development management'

Sub-factors of Development management	Local sensitivity	Global sensitivity= 0.086 × Local sensitivity
Target	0.341	0.029
Job scheduling	0.328	0.028
Production plan	0.095	0.009
Maintenance schedule	0.236	0.02

Table 12.48. Global sensitivity of Sub-factors of the critical factor 'Office TPM'

Sub-factors of Office TPM	Local sensitivity	Global sensitivity= 0.018× Local sensitivity
New technology	0.266	0.005
Training	0.216	0.004
Motivation	0.137	0.002
Proximity of customer	0.031	0.001
Proximity of Suppliers	0.09	0.002
Processing speed	0.261	0.004

Table 12.49. Global sensitivity of Sub-factors of the critical factor 'Safety, Health and Environment'

Sub-factors of Safety, Health and Environment	Local sensitivity	Global sensitivity= 0.153 × Local sensitivity	
Hospital	0.021	0.003	
Gymnasium	0.041	0.006	
Pollution	0.158	0.024	
Safety rule	0.199	0.03	
Green belt	0.135	0.021	
Safety training	0.155	0.024	
Safety Display	0.155	0.024	
Medical checkup	0.135	0.021	

Table 12.50	. Saaty's T	able for	Random	Index vs.	Size of	the Matrix
-------------	-------------	----------	--------	-----------	---------	------------

n	1	2	3	4	5	6	7	8	9	10
RI	0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49
n = :	size of th	e matrix		R.I –	Averag	e Rando	m Index		-	-

Critical Factors	Local sensitivities	Sub-factors	Global sensitivities
Customer	0.615	Frequency of vehicle breakdown	0.097
	1	Cultural background	0.024
	1	Duration of maintenance	0.077
		Emergency/necessity	0.113
	1	Ouality of spare parts	0.208
	(Cost of maintenance	0.097
Technology	0.319	Infrastructure	0.082
~		Skill of the personal	0.106
		Employer employee relationship	0.083
		Organizational climate	0.012
		Maintenance methods	0.036
Competitors	0.066	Financial power	0.033
м.		Performance of competitors	0.032
		Customer relationship	0.032
		Strategies of competitors	0.028
		Management scheme	0.004
ļ		Quality policies	0.033
		New technology	0.037
	0.602	Authority	0.031
		Responsibility	0.258
	1	Initiatives	0.095
Personnel		Motivation	0.219
Value of decision	0.083		
Reliability of decision	0.315		
Autonomous	0.153	Attitude of workers	0.026
maintenance		Attitude of Management	0.026
1		Motivation schemes	0.004
		Incentive schemes	0.031
		Financial benefits	0.026
		Lubrication management	0.013
		Daily maintenance	0.026
Individual	0.137	Reputation	0.02
improvement		Kaizen	0.047
-		Suggestion box	0.01
		Employee involvement scheme	0.018
		Daily maintenance	0.005
		Interpersonal relationship	0.019
		Employee wish	0.018
Planned maintenance	0.153	Schedule of maintenance	0.085
		Frequency	0.032
		Idleness of machine	0.016
		Repetition of work	0.02

Table 12.51. Global sensitivity and local sensitivities of critical factors and Sub-factors of MQFD

Table Contd.....

Multi Criteria Decision Making in Maintenance Quality Function deployment through analytical hierarchy Process

		and the second	
Quality maintenance	0.15	TQM tools	0.067
		Sampling	0.009
		Data management	0.074
Education and	0.15	Feasibility for higher studies	0.094
training		Facility	0.013
		Employee interest	0.013
		Motivation for training	0.013
		Rewards	0.016
Development	0.086	Target	0.029
management		Job scheduling	0.029
		Production plan	0.007
		Maintenance schedule	0.02
Office TPM	0.018	New technology	0.005
		Training	0.004
		Motivation	0.002
		Proximity of customer	0.001
		Proximity of Suppliers	0.002
		Processing speed	0.004
Safety, Health and	0.153	Hospital	0.003
Environment		Gymnasium	0.006
		Pollution	0.024
		Safety rule	0.03
		Green belt	0.021
		Safety training	0.024
		Display	0.024
		Medical checkup	0.021
OEE	0.227		
MTBF	0.032		
MTTR	0.062		
PE	0.278		
MDT	0.212		
Availability	0.190		
Improved	0.381		
maintenance			
Increased profit	0.042		
Upgraded	0.196		
Core competence			
Enhanced goodwill	0.381	·	

Sub-factors	Global sensitivities
Responsibility	0.258
Motivation	0.219
Quality of spare	0.208
Emergency/necessity	0.113
Skill of the personal	0.106
Frequency of vehicle breakdown	0.097
Cost of maintenance	0.097
Initiatives	0.095
Feasibility for higher studies	0.094
Schedule of maintenance	0.085
Employer employee relationship	0.083
Infrastructure	0.082
Duration of maintenance	0.077
Data management	0.074
TQM tools	0.067
Kaizen	0.047
New technology	0.037
Maintenance methods	0.036
Financial power	0.033
Quality parameters	0.033
Performance of competitors	0.032
Customer relationship	0.032
Frequency	0.032
Authority	0.031
Incentive schemes	0.031
Safety rule	0.03
Target	0.029
Strategies of competitors	0.028
Job scheduling	0.028
Attitude of workers	0.026
Attitude of Management	0.026
Financial benefits	0.026
Daily maintenance of machinery data	0.026
Cultural background	0.024
Pollution	0.024
Safety training	0.024
Safety display	0.024
Green belt	0.021
Medical checkup	0.021
Repetition of work	0.02
Maintenance schedule	0.02
Reputation	0.02
Interpersonal relationship	0.019
Employee involvement scheme	0.018

Table 12.52. Global sensitivity and Sub-factors in the descending order

Table Contd.....

Employee wish	0.018
Idleness of machine	0.016
Rewards	0.016
Lubrication management	0.013
Facility	0.013
Employee interest	0.013
Motivation for training	0.013
Organizational climate	0.012
Suggestion box	0.01
Sampling	0.009
Production plan	0.009
Gymnasium	0.006
Daily maintenance	0.005
New technology	0.005
Processing speed	0.005
Management scheme	0.004
Training	0.004
Motivation Schemes	0.003
Hospital	0.003
Motivation	0.002
Proximity of Suppliers	0.002
Proximity of customer	0.001

Table 12.53. Local sensitivity and critical factors in the descending order

Critical Factors	Local sensitivities
Customer	0.615
Personnel	0.602
Improved maintenance	0.381
Enhanced goodwill	0.381
Technology	0.319
Performance efficiency	0.278
OEE	0.227
MDT	0.212
Upgraded Core competence	0.196
Availability	0.190
Autonomous maintenance	0.153
Planned maintenance	0.153
Safety, Health and Environment	0.153
Quality maintenance	0.15
Individual improvement	0.137
Education and training	0.131
Development management	0.086
Competitors	0.066
MTTR	0.062
Increased profit	0.042
MTBF	0.032
Office TPM	0.018

12.4. Results and discussions

The final outcomes of AHP in MQFD in the company under study were the enumeration of local sensitivities of critical factors and global sensitivities of sub factors. The values of these sensitivities were useful in determining the priorities among the critical factors and sub factors. The company may show different levels of interest and care regarding these factors while implementing MQFD. In order to determine these priorities, the sensitivities computed during AHP studies were subjected to analysis. This process began by preparing the table containing the sensitivities. This is shown as Table 12.52. Further, the table showing the local sensitivities of critical factors in the descending order was prepared and shown in Table 12.53. Likewise the global sensitivities of all sub-factors have also been shown in Table 12.52 in the descending order. The bar chart depicting the local sensitivities of critical factors are shown in Figure 12.3. These tables and Figure 12.3 reveal the following observations which demarcate the environment prevailing in the company under study for implementing MQFD.

- As shown in Table 12.53 and Figure 12. 3, 'customer' possesses the highest value of local sensitivity. This indicates that the company has to make maximum investment in this critical factor for the succesful application of MQFD.
- As shown in Table 12.53 and Figure 12.3, the local sensitivity of the critical factor 'Office TPM' is the least among all. Hence the company has to spend minimum time and money on office TPM while implementing MQFD.
- As shown in Table 12.52, the sub-factor 'responsibility' has the highest global sensitivity. Hence the company has to show maximum interest and commitment towards this sub-factor while implementing MQFD.
- As shown in Table 12.52, the sub-factor 'proximity to customer' possesses the least global sensitivity. Hence, the company needs to spend very little resource and care on it.

• An analysis indicates that no critical factors and sub-factors have more than 75% local and global sensitivities. This indicates that these factors are inherently in progress in the company and do not require urgent care and abudent resource allocation for their deployment. In other wards, this finding indicates the existence of culture conducive to MQFD implementation in the company.

Figure 12.3. Hierarchy of sensitivity of critical factors

 The critical factors, whose global sensitivities fall between 50% and 75%, are customer and personnel. This indicates that extreme care has to be taken by the company towards customer related strategies and personal selection while implementing MQFD. 20 number of critical factors and 66 sub-factors have sensitivity less than 50%. This indicates that the company has to care to the minimum extent about these activities. This finding indicates that, MQFD implementation requires much less investment and care on the part of the company.

On the whole, the company may not face any difficulty in implementing MQFD, because the local and global sensitivities of its critical factors and sub factors are less than 50%. Since it is a general practice to accept favorably the implementation of any system, which is not sensitized by any critical factors and sub-factors to any extent more than 50%, it can be concluded that the company under study is vulnerable to the succesful application of MQFD technique.

12.5. Application

As mentioned in the previous section, AHP on MQFD conducted in the company revealed that feasibility of applying MQFD without any hurdles and extraordinary care and investment. However, the use of AHP on MQFD is not limited just to assess the feasibility of applying MQFD in the company. Rather, its real use lies in the multi criteria decision-making, which is a hallmark of strategic decision of MQFD model. Accordingly, a company has to adopt a strategic maintenance quality policy by using which the MQFD cycle has to be propelled. In our case, we think that the company may adopt the following strategic maintenance quality policy.

- Critical factors having sensitivities more than 20% may be processed through eight pillars of TPM. Others may be subjected to direct implementation.
- ii) The sub-factors with global sensitivities more than 10% may be diverted towards the eight pillars of TPM. Other sub-factors may be subjected to direct implementation.

According to the first policy, the critical factors MDT, OEE, Performance quality, Technology, enhanced goodwill, improved maintenance, personnel and customers have to be given maximum orientation while implementing eight pillars. Other critical factors may be subjected to implementation by spending minimum resources. For example, the supervisors may just orally educate the subordinates about those critical factors. In these cases, the formal conduct of training programmes spending considerable resources is not required.

According to the second policy, the company has to forward the subfactors, namely responsibility, motivation, initiatives, quality of spare parts and emergencies/ necessity towards eight pillars of TPM. Other sub-factors may be subjected to implementation by spending minimum resources on them.

Thus the AHP on MQFD is useful in recognizing the critical factors and sub-factors which will sensitize the MQFD programme. Subsequently it tilts MQFD implementation towards these critical factors and sub-factors by taking high care by investing significant resources in them.

12.6. Conclusion

The world has been experiencing global competition from the latter part of twentieth centaury. Right from this period, the intensity of this competition has been increasing exponentially (Chong and. Rundus, 2004). In order to cope with this unabated global competition, the human race has been witnessing the contribution of a number of models and techniques by researchers and practitioners. Some of them include TQM, BPR, TPM, QFD, Quality circle, and kaizen. An overall view of the literature would indicate that despite their contributions to face competitions, these revolutionary principles have time and again resulted in failures in certain organizations.(Al-Najjar and Alsyouf, 2003, Hansson and Klefsjo., 2003, Nwabueze, 2001). Researchers have been exploring the reasons and bringing out new methodologies to overcome these failures. The world has been witnessing this kind of detection-based approach for a little long time. This is not a desirable situation because implementing of all these principles in organizations requires a major investment and structural changes. Hence a sustainable tool is necessary to ensure that any revolutionary

technique or model that is developed is able to withstand the changes in the organizational scenario. In this context, the module of the research work reported in this chapter was carried out with the primary objective of fitting MQFD in organizations with varied levels of managerial and technological developments.

In the module of the research work reported in this chapter, AHP on MQFD was subjected to a sample implementation study in an Indian State-Government-run maintenance intensive unit. The final outcome of this study was the determination of the global and local sensitivities of critical factors and sub-factors. This process facilitates the identification of the critical factors influencing MQFD implementation and the quantification of the sensitivities. Using these quantified values, a company may tilt its decisions to concentrate on the most sensitive critical and sub-factors. This prevents the company from wasting the resources on considering the critical factors, which are least sensitive to the successful implementation of MQFD in the company. Accordingly, a company can tailor-make the MQFD implementation programme which would concentrate more on the sensitivities of critical factors and sub-factors. This action prevents the failure of MQFD in the company.

The results of undertaking the module of research work portrayed in this chapter the author indicated the existence of favorable situation for successful implementation of MQFD in the company. Further the factors and sub-factors with higher global and local sensitivities were enumerated. These findings coincided with the environment prevailing in the company, which is conducive to the implementation of MQFD implementation. Hence it is concluded that the application of AHP in MQFD is a good proposition to achieve the successful results of MQFD implementation. Though the sample implementation study proceeded without any hitches, it was found that the mathematical calculations dominate the application of AHP to MQFD. Thus there exists every possibility of an executive who is busy with routine activities adopting the AHP application study on MQFD. In this connection the utility of the executive support system (ESS) reported in the literatures requires recognition (Turban and Walls, 1995, Nord and Nord, 1995, Huang and Windsor, 1998, Watson and

Rainer, Jr, 1991, Rainer and Watson, 1995). At this juncture, this chapter is concluded by stating that an ESS would be adding strength to the successful adoption of AHP studies while implementing MQFD programme and the making of tailor-made implementation programme for its successful implementation in the concerned company.

Chapter - 13

CONCLUSION

Content

- 13.1. INTRODUCTION
- 13.2. RECEPTIVITY OF THE RESEARCH WORK
- 13.3. FUTURE SCOPE OF RESEARCH
- 13.4. CONCLUDING REMARKS

CONCLUSION

13.1. Introduction

This research work was started at the time when TPM concept has been established as a world-class manufacturing strategy. In India, where the author resides, during the past two decades, both theoreticians and practitioners had been nourishing the merits of TPM programmes. Many Indian companies have been actively implementing TPM concepts. In few cases, training programmes in TPM are being conducted by the experts drawn from Japan. Now, TPM concepts have spread across the world. However, it is reported that a considerable number of companies have failed to yield the expected results through TPM implementation. It is also observed that many of the TPM implementing companies are unable to implement it in full swing. The survey results conducted during the beginning phase of this research work corroborate this observation. One of the reasons for this situation is the absence of customer focus in TPM. In this contemporary business scenario, customer has become the center tenant of business. Hence, it is concerning that TPM is devoid of customer appraisal principles.

On studying, the author understood that the proponents of TPM have integrated TQM philosophy with maintenance engineering principles. In this context, the author realized that TPM programmes are not exhaustive for they have not been integrated with all the features of TQM. If the same techniques used in TQM are also used in TPM project, then it will not only result in savings but will also ensure higher success rate. In this context, the author believed that TPM concepts are imperative but should be subjected to improvement and modification to ensure focused application. Particularly, TQM researchers have enunciated the technique QFD as an ideal one to take care of the voice of customers. Thus the author proceded this research work with the proposition that if QFD principles are integrated in TPM by suitable means, it can overcome the lacunas of TPM. Subsequently, the author designed MQFD model, which formed the foundation of this work.

13.2. Receptivity of the Research work

In order the test the receptivity and practical validity of MQFD model, investigations were conducted. Although practical implementation could not achieved on full scales, the results of these investigations revealed that the elements of MQFD model could be successfully implemented in companies. Meanwhile, the author submitted the details of the research work to various podiums. Particularly, three peer-reviewed papers were published in three UK based international journals namely International journal of process management and benchmarking, International journal of management practice and 'journal of quality in maintenance engineering'. Some more papers have been communicated to the in International Journals, which are under review. These developments indicate the favorable receptivity of MQFD and its elements among academicians, researchers and practitioners.

In order to test the validity of MQFD model in total, an explorative study was conducted. The results of this study also indicated the possibility of successfully applying MQFD model in companies. Much more thrust is needed to effect the percolation of MQFD model in real time environment. The author has recommended the future researchers to work in this direction under the next section. In this background, the author believes that this research work has resulted in the evolution of practically compatible and useful MQFD model, which would be useful to both theoreticians and practitioners.

13.3. Future scope of research

This research work has created an avenue for carrying out further work in the some direction. In order to make the MQFD model a dent in practical arena, the author advises the future researchers to contact the professional bodies like Japanese Institute of Plant Maintenance and appraise the details of MQFD. These researchers may develop strong relationships with practitioners and implement MQFD in their working environments. Though the implementation studies proceeded without any hitches, it was found that the mathematical calculations dominate the application of MQFD. Thus there exists every possibility that an executive who is busy with routine activities will stay from involving the AHP application study on MQFD. In this direction the utility of executive support system (ESS) being reported in literature requires recognition (Turban and Walls, 1995, Nord and Nord, 1995, Huang and Windsor, 1998, Watson and Rainer, Jr, 1991, Rainer and Watson, 1995). At this juncture, the author appraises that an ESS would be adding strength to the successful adoption of AHP MQFD programme in companies. In literature, the author requests that the future researchers can develop ESS on MQFD by incorporating the latest IT devises. This will ensure that MQFD is implemented with the support of the chief executive officers and executives in companies in sustained manner to yield continuous maintenance quality improvement.

13.4. Concluding Remarks

The main contribution of this research work is the MQFD model. The receptivity of this model has been so good that the scholarly anonymous reviewers recommended the publication of five papers containing the features of MQFD model in four international

UK based Journals. Further, despite the week link existing between the engineering education and the industry, the author strived to test implement the MQFD model in typical companies. The author also employed the way of applying MQFD model in engineering educational scenario to enhance the quality of engineering education. Further the author has been seeing the failure reports of revolutionary principles and models like TQM, BPR and quality circles. In order to prevent the failure of MQFD model, the author has contributed the strategic receptivity scorecard approach. In order to fit MQFD in varied organizational cultures, the author has shown the way of applying AHP technique so as to ensure the successful implementation of MQFD. Thus the contributions of this research work are not only validated for their application feasibility, the derailment of their successful implementation is also prevented by using the two tools namely strategic receptivity scorecard and AHP. The fruitfulness of the contributions of these research work would be realized when MQFD is popularized among both researchers and practitioners and implemented in practical fields.

REFERENCES

- Abe, T. and Starr. P, (2003), 'Teaching the writing and role of specifications via a structured teardown process', *Design Studies*, vol.24,No.6, pp. 475–489.
- Adiano, C. and Roth, A.V.(1994) 'Beyond the House of Quality : Dynamic QFD', Benchmarking for Quality Management and Technology, Vol.1, No.1, pp.25-37.
- Ahmed, S., Hassan, M.HJ and Taha, Z, (2005), 'TPM can go beyond maintenance: except from a case implementation', *Journal of Quality in Maintenance Engineering*, Vol.11, No1, pp.19-42.
- Akao, Y and Mazur, G.H., (2003), 'The leading edge in QFD: past, present and future', *International Journal of Quality and Reliability Management*, Vol. 20, No.1, pp.20-35.
- Allen-gil,S., Walker,L and Elan,S., (2005) 'Forming a community partnership to enhance education in sustainability' *International Journal of Sustainability in Higher Education*, Vol. 6 No. 4, pp. 392-402.
- Al-Najjar, (1996) 'Total quality maintenance, Approach for continuous reduction in costs of quality products', *Journal of Quality in Maintenance Engineering*, Vol.2, No.3, pp.4-20.
- Al-Najjar, B and Alsyouf I, (2003), 'Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making', *Int. J. Production Economics* Vol,84 pp.85–100.
- Al-Tabtabai, H.M and Thomas. V.P. (2004) 'Negotiation and resolution of conflict using AHP: an application to project management', *Engineering, Construction and Architectural Management* Vol. 11 · No. 2, pp. 90–100.
- Andersen, A. (2004) 'Preparing engineering students to work in a global environment to co-operate, to communicate and to compete' *European Journal of Engineering Education*, Vol. 29, No. 4, pp. 549–558.
- Anjard, R.P. (1996), 'Reengineering basics: One of three new, special tools for management, quality and all other professionals', *Micro electron Reliability*, Vol.36, No.2, pp 213-222.
- Ashford,N.A, (2004). 'Major challenges to engineering education for sustainable development which has to change to make it creative, effective and

acceptable to the established disciplines', International Journal of sustainability in higher education, Vol.5, No.3, pp. 239-250.

- Atherton,K.T, (2002), 'Safety assessment of genetically modified crops', *Toxicology*, Vol.181_/182, pp. 421_426.
- Badri, M. A and Abdulla, M.H. (2004) 'Awards of excellence in institutions of highereducation: an AHP approach', *International Journal of Educational Management*. Vol. 18, No 4, pp. 224-242.
- Balthazard, P.A. and Gargeya, V.B, (1995) 'Reinforcing QFD with group support systems- Computer-supported collaboration for quality in design', *International Journal of Quality and Reliability Management*, Vol. 12,No.6, pp.43-62.
- Bamber, C.J, Sharp, J.M and Hides, M.T, (1999) 'Factors affecting successful implementation of total productive maintenance: A UK manufacturing case study perspective', *Journal of Quality in Maintenance Engineering*, Vol.5, No3, pp.162-181.
- Ben-Daya, M. and Duffuaa, S.O., (1995), 'Maintenance and quality: the missing link', Journal of Quality in Maintenance Engineering, Vol.11, No.1, pp. 20-26.
- Bendell,T., Penson, R., and Carr,s.,(1995) "The quality gurus- their approaches described and considered", *Managing Service Quality*, Vol.5 No.6, pp 44-48.
- Bender, A, Din, A, Hoesli, M and Brocher, (2000), 'Environmental preferences of Homeowners, Further evidence using the AHP method', Journal of Property Investment & Finance, Vol. 18 No. 4, pp. 445-455.
- Besterfield,D.H., Besterfield-Michna,C., Besterfield,G.H and Besterfield-Sacro,M., (2004), Total Quality Management, Pearson Education (Singapore) Pte.Ltd., India, First Indian Reprint.
- Blanchard, B.S., (1997) 'An enhanced approach for implementing total productive maintenance in the manufacturing environment', *Journal of Quality in Maintenance Engineering*, Vol.3, No 2, pp.69-80.
- Bouchereau, V and Rownalds, H.. (2000), 'Methods and Techniques to help Quality Function Deployment (QFD)', *Benchmarking: An international Journal*, Vol.7, No1, 2000 pp 8-19.
- Brown, P. (2003), 'Seeking success through strategic management development', Journal of European Industrial Training, Vol. 27, No. 6, pp.292-303.

- Bryce, P., Johnston, S and Yasukaw, A, K. (2004) 'Implementing a program in sustainability for engineers at University of Technology, Sydney: A story of intersecting agendas', *International Journal of Sustainability in Higher Education*, Vol. 5 No. 3, pp. 267-277.
- Certo, S.C., (2002), Modern Management, Prentice Hall of India Private Limited, India, Ninth edition.
- Chan, A. H.S. Kwok, W.Y. and Duffy ,V. G. (2004) 'Using AHP for determining priority in a safety management system', Industrial Management & Data Systems Vol. 104 · No 5 · pp. 430–445.
- Chan, F. T.S. and Abhary, K. (1996) "Design and evaluation of automated cellular manufacturing systems with simulation modeling and AHP approach: a case study", Integrated Manufacturing Systems, Vol.7/6, pp. 39–52.
- Chan, F.T.S., Lau,H.C.W., Ip,R.W.L., Chan, H.K. and Kong,S. (2005) 'Implementation of total productive maintenance: A case study', *International Journal of Production Economics*, Vol.95, pp.71-94.
- Chan, L.K. and Wu, M.L (2002), "Quality function deployment: A literature review", *European Journal of Operational research* Vol.143, pp.463-497.
- Chao, L.P. and Ishii, K. (2004) 'Project quality function deployment', International Journal of Quality and Reliability Management. Vol.21, No.9, pp.938-958.
- Charles.A, Floru.I, Azzaro-Pantel,C , Pibouleau,L and Domenech,S (2003),Optimization of preventive maintenance strategies in a multipurposebatch plant: application to semiconductor manufacturing, *Computers and Chemical Engineering*, Vol,27 pp.449/467.
- Chein, T. and ZU, C 2003 'Using the QFD concept to resolve customer satisfaction strategy decision', *International Journal of Quality and Reliability Management*, Vol.20, No.3, pp.345-359.
- Chin, K-S., Pun, K-F., Leung, W.M. and Lau, H. (2001) 'A quality function deployment approach for improving technical library and information services: a case study', *Library Management*, Vol.22, No.4/5. pp 195-204.
- Chin,K Chiu,S and Tummala V.M. R (1999) "An evaluation of success factors using the AHP to implement ISO 14001-based EMS" International Journal of Quality & Reliability Management, Vol. 16 No. 4, pp. 341-361.

- Chin, K.-S. Pun, K.-F., Xu Y,. and Chan J.S.F, (2002), "An AHP based study of critical factors for TQM implementation in Shanghai manufacturing industries" Technovation Vol. 22, pp.707-715.
- Cheng, W.L.E and Li, H (2001), "An approach to determine measure for business performance", Measuring business excellence, Vol.5, No.3, pp-30-36.
- Cheung, A, Ip, W.H.and Lu, D, (2005) "Methodology and theory: Expert system for aircraft maintenance services industry", Journal of Quality in MaintenanceEngineering, Vol. 11 No. 4, pp. 348-358.
- Chiang, C and Lai, C, (2002) "A study on the comprehensive indicator of indoor environment assessment for occupants' health in Taiwan", Building and Environment Vol.37 pp.387–392.
- Chein, T.K. and Su, C, T (2003), "Using the QFD concept to resolve customer satisfaction strategy decisions", *International Journal of quality and reliability management*. Vol.20, No.3, pp.345-359.
- Choi,H,R., Kim, H,S, Park,B,J., Park,Y,J, and Whinston,A.B (2004), "An agent for selecting optimal order set in EC marketplace", Decision Support Systems Vol.36 pp.371-383.
- Chong, V.K and Rundus, M.J. (2004) 'Total quality management, market competition and organizational performance', *The British Accounting Review* Vol.36, pp. 155–172.
- Cigolini, R. and Turco, F.(1997) 'Total productive maintenance practices: a survey in Italy', *Journal of Quality in Maintenance Engineering*, Vol.3, No.4, pp.259-272.
- Cooke, F.L. (2000) 'Implementing TPM in plant maintenance: some organizational barriers', *International Journal of Quality and Reliability Management*, Vol. 17, No.9, pp.1003-1016.
- Cooke,F.L. (2003), "Plant Maintenance strategy: evidence from four british manufacturing fitms", Journal of quality in Maintenance Engineering, Vol. 9, No.3, pp, 239-249.
- Cowing, M.M., Pate-cornell, M.E. and Glynn, P.W. (2004), 'Dynamic modeling of the tradeoff between productivity and safety in critical engineering systems' *Reliability Engineering and System Safety*, vol. 86, pp. 269–284.
- Cravens, K., Oliver, E.G. and Ramamoorti, S., (2003), 'The Reputation Index: Measuring and ManagingCorporate Reputation' *European Management Journal* Vol. 21, No. 2, pp. 201–212.

School of Engineering, CUSAT, Cochin-22

- Crowe ,T.J , Noble,J.S and Machimada,J.S, (1998)"Multi-attribute analysis of ISO 9000 registration using AHP, International Journal of Quality & Reliability Management, Vol. 15 No. 2, pp. 205-22.
- Cua, K.O., Mc Kone, K.E. and Schroeder, R.G. (2001), "Relationship between TQM, JIT, and TPM, and manufacturing performance", *Journal of operations management* 19, 675-694.
- Czinkota ,M.R and Ronkainen,I.A,2005, 'A forecast of globalization, international business and trade: report from a Delphi study', *Journal of World Business*, Vol.40, pp.111–123.
- Davies, M. (2001) "Adaptive AHP: a review of marketing applications with Extensions", European Journal of Marketing, Vol. 35 No. 7/8, , pp. 872-893.
- da Silva,F.L.R., Cavalca,K.L. and Dedni,F.G. (2004) 'Combined application of QFD and VA tools in the product design process', *International Journal o f Quality and Reliability Management*. Vol.21, No.2, pp.231-252.
- Dale, B.G., Elkjaer, MB.F., vander Weil, A. and Williams, A.R.T. (2000), "Fad, fashion and fit: An examination of quality circles, business process reengineering and statistical process control". *International Journal of* production economics: Vol. 73, pp, 137-152.
- Dale, B.G and Hayward, F.G. (1984), "Some of the reasons for quality circle failure: Part1" Leadership and organisatinal development Journal, Vol.5, No1 pp-11-16.
- Dar-El,E.M., (1997), "What we really need is TPQM", International Journal production Economics, Vol.,52,pp,5-13.
- de Graaff, E. and Christensen, H.P.2004, 'Editorial: Theme issue on active learning in engineering education' *European Journal of Engineering Education*, Vol. 29, No. 4, pp. 461–463.
- Dekker, R. (1996) 'Applications of maintenance optimization models: a review and analysis', *Reliability Engineering and System Safety*, Vol.51, pp.229-240.
- Deshpande, V.S.and Modak. J.P. (2002), 'Application of RCM for safety considerations in a steel plant', *Reliability Engineering and System Safety*, vol.78, pp.325-334.
- Dijkstra,L and van der Bij,H (2002) 'Quality function deployment in health care: Methods for meeting customer requirements in redesign and renewal'.

School of Engineering, CUSAT, Cochin-22

International Journal o f Quality and Reliability Management. Vol.19, No.1, pp.67-89.

- Drake, P. R.(1998) "Using the Analytic Hierarchy Process in Engineering Education", Int. J. Engineering Ed. Vol. 14, No. 3, p. 191-196.
- Duarte ,D. (2004), 'A performace overview about fire risk management in the Brazilian hydroelectric generating plants and transmission network', *Journal of Loss Prevention in the Process Industries*, vol.17, pp. 65–75.
- Emiliani, M.L.(2005) 'Using kaizen to improve graduate business school degree programs' *Quality Assurance in Education*. Vol. 13, No. 1, pp. 37-52.
- Eti, M., Ogagi, S.O.T., and Probert, S.D., 2004, "Implementing total productive maintenance in Nigerian manufacturing industries", *Applied Energy*, Vol. 79, pp. 385-401.
- Farrington-darby, T., Pickup, L. and Wilson, J.R. (2005) 'Safety culture in railway maintenance', *Safety Science*, vol. 43, pp. 39-60.
- Fenner, R.A., Ainger, C.M Cruickshank, H.J. AND Guthrie, P.M 2005, 'Embedding sustainable development at Cambridge University Engineering Department' *International Journal of Sustainability in Higher Education*, Vol. 6 No. 3, pp. 229-241.
- Ferrer-balas, D., Bruno, J., DE Mingo, M. and Sans,R.(2004) 'Advances in education transformation towards sustainable development at the Technical University of Catalonia, Barcelona'. *International Journal of Sustainability* in Higher Education, Vol. 5 No. 3, pp. 251-26.
- Finlow-Bates, T., Visser, B and Finlow-Bates, C, (2000) "An integrated approach to problem solving : linking K-T, TQM and RCA to TPM", The TQM magazine, Vol. 12, No. 4, pp. 284-289.
- Fung,R.Y.K., Law,D.S.T. and Ip,W.H. (1999) 'Design targets determination for inter-department product attributes in QFD using fuzzy inference', *Integrated Manufacturing Systems*, Vol.10,No.6, pp.376-383.
- Gelfand, J. 2005 'American society for engineering education, 2005 meeting annual report', *Library hi tech news*, No.7, pp.3-5.
- Ghobadian, A. and Terry, A.J.(1995) 'How Alitalia improves service quality through quality function deployment', *Managing Service Quality*, Vol.5, No.5, pp.25-30.
- Ginn, D.M., Jones, D.V., Rahnejat, H. and Zairi, M. (1998) 'The QFD/FMEA interface', *Europian Journal of Innovation Management*, Vol.1, No.1, pp.7-20.
- Graber, U, (2004), 'Advanced maintenance strategies for power plant operatorsintroducing inter-plant life cycle management', *International Journal of Pressure Vessels and Piping*, vol.81, pp.861–865.
- Grygoryev, K. and Karapetrovic, S (2005), TQM implementation An integrated system for educational performance measurement, modeling and management at the classroom level, *The TQM Magazine*, Vol. 17 No. 2, pp. 121-136.
- HajShirmohammadi, A and Wedley, W.C(· 2004) Maintenance management –an AHP application for centralization/decentralization, Journal of Quality in Maintenance Engineering, Vol. 10 · No.1 · pp. 16-25.
- Han,S.B, Chen,S.K., Ebrahimpour,M and Sodhi,M.S.,(2001), "A conceptual QFD planning model", International Journal of Quality and Reliability Management, Vol. 18,No.8, pp.796-812.
- Hansion, J. and Klefsjo, B., (2003), "A core value model for implementing Total Quality Management in small organizations". *The TQM Magazine*, Vol.5, No. 2,2003, pp-71-81.
- Hansson, J and Backlund, F (2003), "Management commitment :increasing the odds for successful implementation of TQM, TPM and RCM. *International Journal of Quality and Reliability management*, Vol.20, No.9, pp.993-1008.
- Hipkin, I.B. and De Cock, C., (2000), "TQM and BPR: Lessons for maintenance management". Omega, Vol. 28, 277-292.
- Hoque, Z (2003), 'Total quality management and the balanced scorecard approach: a critical analysis of their potential relationships and directions for research', *Critical Perspectives on Accounting*, Vol. 14, pp.553–566.
- Horvath ,I., Duhovnik,J. and Xirouchakis,P.,2003, "Learning the methods and skills of global product realization in an academic virtual enterprice, *European Journal of engineering education*, Vol. 28, No. 1, pp.83-102.
- Hum, S-H. and Sim,H-H., (1996), "time based competition: literature review and implications for modeling", *International Journal of Operations* management. Vol.16, No.1, pp.75-90.
- Huang, A.H and Windsor, J.C, (1998), "An empirical assessment of a multimedia executive support system", Information Management, Vol.33, pp-251-262.

- Hunt, R.A and Xavior, F.B, (2003), "The leading edge in strategic QFD" International Journal of Quality and Reliability management. Vol.20, No.1, pp.56-73.
- Hwarng, H,B and Teo,C. (2001), "Translating customers' voices into operations requirements: A QFD application in higher education", International Journal of Quality and Reliability Management, Vol. 18 No. 2, , pp. 195-225.
- Irandoust, S. and Sjoberg, J. (2001), 'International dimensions: a challenge for European engineering education', *European Journal of engineering education*, Vol. 26, No. 1, pp.69-75.
- Irani, Z., Beskese, A and Love, P.E.D.(2004), 'Total quality management and corporate culture: constructs of organisational excellence', *Technovation*, Vol.24, 643–650.
- Ireland, F. and Dale, B.G. (2001) 'A study of total productive maintenance implementation', Journal of Quality in Maintenance Engineering, Vol.7, No.3, pp.183-192.
- Jackson, J,(2001) "Prioritising customers and other stakeholders using the AHP", European Journal of Marketing, Vol. 35 No. 7/8, , pp. 858-871.
- Jaraiedi, M. and Ritz, D.(1994) 'Total Quality Management Applied to Engineering Education', *Quality Assurance in Education*, Vol. 2 No. 1, 1994, pp. 32-40.
- Johnston, S.F (2001) 'Towards culturally inclusive global engineering', European Journal of Engineering Education, vol.26, No.1, pp-77-89.
- Jonsson, P. and Lesshammar, M., (1999) "Evaluation and improvement of manufacturing performance measurement systems- the role of OEE" *International Journal of Operations & Production Management*, Vol. 19, No.1, pp.55-78.
- Jung, J. Y and Wang, Y. J. (2004), "Relationship between total quality management (TQM) and continuous improvement of international project management (CIIPM), *Technovation* xx (2004) 1–7.
- Juran, J.M and Gryna, F.M., (1997), Quality Planning and Analysis, Tata Mc Graw-Hill Edition, New Delhi, India, Fourth reprint.

- Kahraman, C, Cebeci, U and Ulukan, Z (2003) "Multi-criteria supplier selection using fuzzy AHP" Logistics Information Management, Vol.16 · No.6, pp. 382-394.
- Karapetrovic ,S,and Rosenbloom, E.S. (1999), "Theory and Methodology, A quality control approach to consistency paradoxes in AHP", European Journal of Operational Research Vol.119, pp. 704-718.
- Kathawala, Y. and Motwani, J. (1994), "Implementing Quality Function Deployment", *The TQM Magazine*, Vol.6 No. 6, pp.31-37.
- Kaye, M. and Andersen, R. (1999) 'Continuous improvement: the ten essential criteria', International Journal of Quality and Reliability Management, Vol.16. No.5, pp.485-506.
- Kaynak,H (2003), "The relationship between total quality management practices and their effects on firm performance", Journal of Operations Management, Vol.21, pp. 405–435.
- Ko and Cheng, (2004), 'Secure internet examination system based on video monitoring' *Internet research: electronic networking application and policy*, Vol.14, No.1, pp.48-61.
- Kruger, V., (1999) "Towards a European definition of TQM- a historical review", *TQM Magazine*, Vol. 11, Number 4 1999, pp. 257-263.
- Kruger, V., (2001) "Main schools of TQM: "the big five", *TQM Magazine*, Vol.13 No. 3, 2001, pp. 146-155.
- Kumar, R and Midha, P.S., (2001), A QFD based methodology for evaluating a company's PDM requirements for collaborative product development", Industrial Management of data systems. Vol 101No3, pp. 126-137.
- Kwon,O and Lee,H (2004), Calculation methodology for contributive managerial effect by OEE as a result of TPM activities, *Journal of Quality in maintenance Engineering*, Vol,10, No.4 pp.263-272.
- Lagrosen, S., (2004), "Quality management in global firms" TQM Magazine, Vol. 16, No. 6, 2004, pp. 396-402.

School of Engineering, CUSAT, Cochin-22

Page 322of 370

- Lam,K and Zhao,X. (1998), 'An application of quality function deployment to improve the quality of teaching', *International Journal of Quality & Reliability Management*, Vol. 15 No. 4, pp. 389-413.
- Lawrence, J.J. (1999) "Use mathematical modeling to give your TPM implementation effort an extra boost", *Journal of Quality in maintenance Engineering*, Vol, 5, No.1, pp.62-69.
- Lewis, W.G. Pun K.F. and Lalla, T.R.M. (2005)"An AHP-based study of TQM benefits inISO 9001 certified SMEs in Trinidad and Tobago" *The TQM Magazine*, Vol. 17 No. 6, pp. 558-572.
- Logothetis, N. (1997) Managing for total quality, Prentice Hall of India Private Limited, India.
- Lokamy III A. and Khurana, A.,(1995) "Quality function deployment: total quality management for new product design" *International Journal of Quality and Reliability Management*, Vol.12, No6, pp73-84.
- Lourdel, N., Gondran, N., Laforest, V. and Brodhag, C. 2005 'Introduction of sustainable development in engineers' curricula Problematic and evaluation methods, *International Journal of Sustainability in Higher Education* Vol. 6 No. 3, pp. 254-264.
- Lu, M-H. and Kuei, C-H.(1998), 'Strategic marketing planning quality function deployment approach' *International Journal of Quality and Reliability Management*. Vol.12 No.6, pp.85-96.
- Lundhol M,C, (2005), 'Learning about environmental issues Postgraduate and undergraduate students' interpretations of environmental contents in education, *International Journal of Sustainabilityin Higher Education*, Vol. 6 No. 3, pp. 242-253.
- Madu, C.N. (2000) 'Competing through maintenance strategies', International Journal of Quality and Reliability Management, Vol.17, No.9, pp.937-948.
- Malina, M.A and Selto, F.H. 2004 'Choice and change of measures in performance measurement models', *Management Accounting Research*, Vol. 15 pp. 441–469.
 management at the classroom level, *The TQM Magazine*, Vol. 17 No. 2,pp. 121-136.
- Masui, K, Sakao, T., Kobayashi, M., and Inaba, A., (2003), "Applying Quality Function Deployment to environmentally conscious design." *International Journal of quality and reliability management*. Vol. 20.No1, pp 90-106.

- Mc Kone, K.E., Schroeder, R.G. and Cua, K.O. (1999), "Total productive maintenance: a contextual view", *Journal of operations management* Vol.19, pp, 123-144.
- Mc Kone, K.E., Schroeder, R.G. and Cua, K.O. (2001), "The impact of total productive maintenance practices on manufacturing performance", *Journal of Operations Management* Vol.19, pp.39-58.
- Mitchel, E., Robson, A., and Prabu, V.B. (2002) "The impact of maintenance practices on operational and business performance". *Managerial Auditing Journal*, Vol. 17, No.5, pp.234-240.
- Miyake, D.I. and Enkawa, T. (1999) 'Matching the promotion of Total quality control and total productive maintenance : An emerging pattern for the nurturing of well-balanced manufacturers'. *Total Quality Management*, Vol.10, No.2, pp.243-269.
- Montes, F.L, Jover, a.V and Fernandez, L.M.M, (2003), 'Factors affecting the relationship between total quality management and organizational performance', *International Journal of Quality & Reliability Management*, Vol. 20 No. 2, pp. 189-209.
- Muller, M.H and Fairlie-Clarke, A.C. (2001) "Using the AHP to determine the correlation of product issues to profit", *European Journal of Marketing*, Vol. 35 No. 7/8, , pp. 843-857.
- Murthy, D.N.P., Atrens, A. and Eceleson, J.A. (2002) 'Strategic maintenance management', *Journal of Quality in Maintenance Engineering*, Vol.8, No.4, pp.287-305.
- Nakaajima,S.(1993), "Introduction to TPM", Productivity Press, Chennai, India.
- NCB Expertise-Log dispersion Technique used for analyzing down time of mining equipment. NCB News letter June 2004.
- Negri, L. and Galli, M.(1997) 'Quality policies and value creation strategies in Italian manufacturing industry', *Technovation*, Vol.17,No.6, pp.321-328.
- Nord, J.H and Nord, G.D (1995), "Executive information system: A study and comparative analysis", *Information Management*, Vol.29, pp-95-106.
- Nwabueze,U.,(2001a), "How the mighty have fallen: the naked truth about TQM", Managerial Auditing Journal, Vol.16 No.9, pp.504-513.
- Nwabueze,U.,(2001b). "An industry betrayed: the case of total quality management in manufacturing", *The TQM Magazine*, vol13, No.6,pp.400-408.

- Olhager, J. and West, B. M. (2002) 'The house of flexibility: using the QFD approach to deploy manufacturing flexibility', *International Journal of Operations and Production Management*, Vol. 22, No.1, pp.50-79.
- Ollero, A., Morel, G., Bernus, P., Nof, S.Y., Sasiadek, J., Boverie, S., Erbe, H. and Goodall. R. (2002) 'Milestone report of the manufacturing and instrumentation coordinating committee: From mems to enterprise systems', *Annual Reviews in Control*, Vol.26, pp.151-162.
- Ossadnik, W and Lange, O, (1998), "Theory and Methodology AHP-based evaluation of AHP-Software" European Journal of Operational Research, Vol.118 pp. 578-588.
- Paiste, M.S. (2003), 'Defining and achieving quality in cataloging in academic libraries: a literature review', Library Collections, Acquisitions, & Technical Services Vol. 27, pp. 327–338.
- Palliam, R, (2005) Application of a multi-criteria model for determining riskpremium, The Journal of Risk Finance Vol. 6 No. 4, pp. 341-348.
- Park,S.H,(2003), Six sigma-for quality and productivity promotion, Asian Productivity organization.
- Pavlikakis,G,E and Tsihrintzis,V.A (2003), "A quantitative method for accounting human opinion, preferences and perceptions in ecosystem management", Journal of Environmental Management 68 (2003) 193-205.
- Paten, C.K.J, Palousis, N, Hargroves, K and Smith, M. (2005), 'Engineering sustainable solutions program: Critical literacies for engineers portfolio' International Journal of Sustainability in Higher Education, Vol. 6 No. 3, pp. 265-277.
- Patra,N.K., Tripathy,J.K. and Choudhery,S.K. (2005) 'Implementing the office total productive maintenance ("Office TPM") program: a library case study', *Library Review*, Vol.54, No.7, pp.415-434.
- Perez-foguet, A, Oliete-josa, S and Saz-carranza, A. (2005) 'Development education and engineering: A framework for incorporating reality of developing countries into engineering studies'. *International Journal of Sustainability in Higher Education*, Vol. 6, No. 3, pp. 278-303.
- Perkins, J. (2002), 'Education in process systems engineering: past, present and future', *Computers and Chemical Engineering*, Vol. 26, pp.283-293.
- Prendergast, J, Saleh, M, Lynch, K and Murphy, J, (2001) 'A revolutionary style at third level education towards TQM.' *Journal of Material processing technology*, Vol.118, pp.362-367.

- Pun, K.F., Chin, K.S. and Lau, H. (2000) 'A QFD/hoshin approach for service quality development : a case study', *Managing Service Quality*, Vol.10, No.3, pp. 156-169.
- Pun, K.F. and Hui, I.K. (2001) "An analytical hierarchy process assessment of the ISO 14001 environmental management system" Integrated Manufacturing Systems, Vol.12, No.5, pp. 333-345.
- Rahim, A.R.A and Beksh, M.S.N., (2003), "Application of quality function deployment (QFD) method for pultrusion machine design planning", *Industrial Management & Data System*, Vol. 1003, No.6, pp.373-387.
- Rahim, A.R.A. and Baksh, M.S.N. (2003) 'Application of quality function deployment (QFD) method for pultrusion machine design planning', *Industrial Management & Data Systems*, Vol. 103, No.6, pp.373-387.
- Rajan,N.S., (2005), 'Counseling contributes to academic excellence', The Hindu, December-25,2005, (an Indian English Daily news paper)
- Rho, B-H., Paark, K., and Yu, Y-N. (2001), "An international comparison of the effect of manufacuring strategy implementation gap on business performance", *International Journal of Production Economics* Vol. 70, pp 89-77.
- Rho, B-H., Park, K. and Yu, Y-M. (2001) 'An international comparison of the effect of manufacturing strategy – implementation gap on business performance', *International Journal of Production Economics*, Vol. 70, pp. 89-77.
- Rho, B-H., Park, K., and Yu, Y-M. (2001), "An international comparison of the effect of manufacturing strategy implementation gap on business performance", *International Journal of production economics*, Vol. 70, pp. 89-77.
- Rainer R.K and Watson, H.J, (1995), "Why does it take for successful executive information system", Decision Support systems, vol.14. pp. 147-156.
- Ramanathan, R,(2001), "A note on the use of Analytic Hierarchy Process for environmental assessment", Journal of Environmental Management Vol.63,pp 27-35.
- Ramadhan, R H., Hamad I. Wahhab, A and Duffuaa, S,O (1999) "The use of an analytical hierarchy process in pavement maintenance priority ranking", Journal of Quality in Maintenance Engineering, Vol. 5 No. 1, pp. 25-39.

- Ramos, P, Salazar, A and Gomes, J (2000) "Trends in Portuguese tourism: a content analysis of association and trade representative perspectives", International Journal of Contemporary Hospitality Management Vol.12, No.7 pp.409-416.
- Rangone, A (1996) "An analytical hierarchy process framework for comparing the overall performance of manufacturing departments" International Journal of Operations& Production Management, Vol. 16, No. 8, pp. 104-119.
- Rose-ackerman,S (2002) "Grand" corruption and the ethics of global business', Journal of Banking & Finance, Vol.26, pp. 1889–1918.
- Sahney,S., Banwet,D.K . and Karunes,S., (2004), 'A SERVQUAL and QFD approach to total quality education-A student perspective', *International Journal of Productivity and Performance Management*, Vol. 53,No.2, pp.143-166.
- Sahney, S., Banwet, D.K. and Karunes, S., (2003), 'Enhancing quality in education: application of quality function deployment an industry perspective', Work Study, Vol.52, No.6, pp.297-309.
- Sahney,S., Banwet, D.K. and Karunes, S.(2004), 'Research Concepts: Conceptualizing total quality management in higher education' *The TQM Magazine*, Vol 16. No 2. pp. 145-159.
- Sardana,H.K., and. Arya, P. P (2003), 'Training effectiveness of engineering students: a case study', European Journal of engineering education, Vol. 28, No. 1, pp.59–69.
- Schneider, W.E., (2000), 'Why good management ideas fail: the neglected power of organizational culture', *Strategy &Leadership*, Vol.28, No.1, pp.24-29.
- Seth, D. and Tripathi, D. (2005) 'Relationship between TQM and TPM implementation factors and business performance of manufacturing industry in Indian context', *International Journal of Quality and Reliability Management*, Vol. 22, No.3, pp.256-277.
- Shen,J (2004) 'International performance appraisals Policies, practices and determinants in the case of Chinese multinational companies', *International Journal of Manpower*, Vol. 25 No. 6, pp. 547-563.
- Sherwin, D., (2000) 'A review of overall models for maintenance management', Journal of Quality in Maintenance Engineering, Vol.6, No3, pp.138-164.
- Sortrakul, N. Nachtmann, H.L. Cassady, C.R. (2005), 'Genetic algorithms for integrated preventive maintenanceplanning and production scheduling for a single machine', Computers in Industry Vol.56, pp.161–168.

School of Engineering, CUSAT, Cochin-22

- Soudien, C, (2002) 'Education in the network age: globalisation, development and the World Bank', *International Journal of Educational Development*, Vol .22, pp. 439–450.
- Swift, J.A, 1996 'Using TQM to Identify Education Improvement Opportunities in the College of Engineering at the University of Miami', *Computers in& Engng*, Vol. 31, No. 1/2. pp. 13 - 16, 1996
- T Sang, A.H.C. and Chan, P.K. 2000 'TPM implementation in China : a case study', *International Journal of Quality and Reliability Management*, Vol.17, No.2, pp 144-157.
- Tan, K.C. and Pawitra, T.A. (2001), 'Integrating SERQUAL and Kano'S model in to QFD for service excellence development', *Managing Service Quality*, Vol. 11 No. 6, pp.418-430.
- Tennant, C. and Wu, Y-C., (2005), 'The application of business process reengineering in the UK', The TQM Magazine, Vol 17. No 6. pp. 537-545.
- Terziovski, M.(2002), 'Achieving performance excellence through an integrated strategy of radical innovation and continuous improvements', *Measuring business excellance*, Vol.6, No.2, pp.5-14.
- Terziovski, M. and Sohal, A.S. (2000) 'The adoption of continuous improvement and innovation strategies in Australian manufacturing firms', *Technovation*, Vol.20, pp.539-550.
- Tsaur,S, Changb,T, Yena,C (2002), 'The evaluation of airline service quality by fuzzy MCDM', Tourism Management, Vol.23 ,pp. 107-115
- Taha.H.A, (2003), Operations Research: An Introduction, Seventh Edition, Prentice-Hall Of India Pvt. Ltd.
- Taylor III, F.A, Ketcham, A.F. and Hoffman, D, (1998) 'Personnel evaluation with AHP', Management Decision, 36/10, 679–685.
- Troutt, M.D and Tadisina, S.K (1992), "The analytic hierarchy process as a model base for a merit salary recommendation system" *Mathl. Comput. Modelling* Vol. 16, No. 5, pp. 99-105.
- Triantaphyllou, E, Kovalerchuk, B, Jr , L.M and Knapp, G.M (1997), 'Determining the most important criteria in maintenance decision making', *Journal of Quality in Maintenance Engineering*, Vol. 3 No. 1, pp. 16-28.

- Tsang, A.H.C. (1998) 'A strategic approach to managing maintenance performance', *Journal ofQuality in Maintenance Engineering*, Vol. 4, No. 2, pp.87–94.
- Tsang,A.H.C. and Chan, P.K.(2000) 'TPM implementation in China : a case study', *International Journal of Quality and Reliability Management*, Vol.17, No.2, pp 144-157.
- Turban and Walls, (1995), 'Executive information system- a special issue' Decision support system, Vol.14, pp-85-88.
- Tsang,A.H.C,(1998) 'A strategic approach to managing maintenance performance' Journal of Quality in Maintenance Engineering, Vol.4, No.2,pp.87-94.
- Tsang, A.H.C and Chen, P.K; (2000), 'TPM implementation in China: A case study International Journal Quality and Reliability Management. Vol.17, No.2, pp.144-157.
- van der Wall, R.W.E and Lynn, D. (2002) 'Total productive maintenance in a south African pulp and paper company: a case study', *The TQM Magazine*, Vol.14, No.6, pp.359-366.
- Veltz.P, (2001) 'City and university in the knowledge age', European Journal of Engineering Education, Vol. 26, No. 1, pp.53-62.
- Voss, C. and Blackmon, K. (1998) 'Differences in manufacturing strategy decisions between Japanese and Western manufacturing plants: the role of strategic time orientation', *Journal of Operations Management*, Vol. 16, pp.147-158.
- WatsonH.J and Rainer,R.K, Jr, (1991), 'A manager's guide to executive support system', Business horizons", March April, pp 44-50.
- Waller, M.A., and Ahire, S., (1996), 'Management perception of link between product quality and customers' view of product quality', *International Journal of Operations and Production Management*, Vol.16 No9, pp.23-33.
- Wang,C-H. and Hwang,S-L. (2004) 'A stochastic maintenance management model with recovery factor', *Journal of Quality in Maintenance Engineering*, Vol.10, No.2, pp. 154-164.
- Wei, J.2005 'Engineering education for a post-industrial world', *Technology in Society*, Vol.27, pp. 123-132.

School of Engineering, CUSAT, Cochin-22

- Witter, J., Clausing, D., laufenberg, L and de Andrade., R.S., (1995), 'Reusability the key to corporate agility: its integration with enhanced quality function deployment', *World class Design to Manufacture*, Vol.2 No11, pp.25-33..
- Yamashina,H.(2000) 'Challenge to world-class manufacturing', International Journal of Quality and Reliability Management, Vol. 17, No.2, pp.132-143.
- Yang, J and Lee, H, (1997) 'An AHP decision model for facility location selection', Facilities Vol.15 · No, 9/10 · pp. 241-254.
- Yedla,S and Shrestha,R.M (2003), 'Multi-criteria approach for the selection of alternative options for environmentally sustainable transport system in Delhi', Transportation Research Part A, Vol. 37 pp.717–729.
- Zairi, M. and Youssef, M.A. (1995) 'Quality function deployment A main pillar for successful total quality management and product development', *International Journal of Quality and Reliability Management*, Vol. 12 No. 6, pp. 9-23.
- Zairi,M (1992) Total quality management for engineers, Adithya books private limited, New Delhi, India.
- Zhu,G., Gelders.L. and Pintelon,L.(2002) 'Object/Objective oriented maintenance management', Journal of Quality in Maintenance Engineering, Vol.8, No.4, pp.306-318.
- Zomerdijk, L.G and Vries, J.de. (2003) 'An organizational perspective on inventory control: Theory and a case study' *International Journal of Production Economics*, Vol. 81-82, pp.173–183.

ANNEXURE

ANNEXURE A

Questionnaire for assessing the level of implementation of TPM and QFD

A I. Has TPM been implemented in your company? Yes/No

If the answer is Yes, please answer A II to X. Other wise please proceed to section B

A II. What is the level of implementation of the first pillar (titled as JISHU – HOZEN meaning AUTONOMOUS MAINTENANCE) in your company?

A III. What is the level of implementation of the second pillar (titled as KOBETSU KAIZEN meaning INDIVIDUAL IMPROVEMENTS) in your company?

A IV. What is the level of implementation of the third pillar (titled as PLANNED MAINTENANCE) in your company?

	0	1	2	3	4	5	6	7	8	9	10
1											

4 5 6

7 8 9

89

10

10

2 3

0 1 2 3

4 5 6 7

1

A V. What is the level of implementation of the fourth pillar (titled as QUALITY MAINTENANCE) in your company?

A VI. What is the level of implementation of the fifth pillar (titled as OFFICE TPM meaning TPM IN NON- SHOP FLOOR AREAS) in your company?

0	1	2	3	4	5	6	7	8	9	10

A VII. What is the level of implementation of the sixth pillar (titled as EDUCATION & TRAINING) in your company?

0	1	2	3	4	5	6	7	8	9	10

A VIII. What is the level of implementation of the seventh pillar (titled as SAFETY / HEALTH & ENVIRONMENT) in your company?

	0	1	2	3	4	5	6	7	8	9	10
ghth nillar (t	itle	d	as	ĪŃ	IT	ĪĀ	L				

A IX. What is the level of implementation of the eighth pillar (titled as INITIAI CONTROL meaning DEVELOPMENT MANAGEMENT) in your company?

1				<u> </u>		<u> </u>					
	0		2	3	4	5	6	7	8	9	10
	Ŭ	-	- 1		· ·		Ĩ,	,	, ×	-	- °

A X. Have your company ever used internal and external customers concept while implementing TPM?

0	1 2	3	4	5	6	7	8	9	10

5 6

7 8 9

10

1 2 3 4

0

B I. Has your company ever implemented quality function deployment (QFD)? Yes/No

If your answer is Yes, please proceed to respond to the following questions.

B II To which extent QFD has been implemented in your company?

Top Management Personnel	Middle Level Management Personnel	Bottom Level Management Personnel	Transaction Processors Operators	Others please specify
Managing Director	General Manager	Supervisors	Clerical Personnel	
President	Works Manager	Office Superintendents	Data entry operators	
Vice- President			Typists	

B III. Who are the personnel involved while implementing QFD? Please tick

B IV. What are the benefits that your company has derived by implementing QFD?

Please tick the appropriate boxes	
Reduced design changes	
Shorter Product development cycles	
Lowered costs and enhanced productivity	
Improved product quality and reliability	
Increased market share	
Increased attention to customer's perspectives	
Any other, please specify	

ANNEXURE B

Survey for Better Maintenance Government Vehicle workshop, Coimbatore

Instructions

Kindly Answer the following

Please do not reveal your name or identity

You are supported to discuss with your colleagues.

Answer should be done individually.

Please mark ($\sqrt{}$) to the respective grade against each question

E -	Excellent	Α	-	Average	G -	Good	В	-	Bad
-----	-----------	---	---	---------	-----	------	---	---	-----

Z - Excellent bad

Q No	Description	E	G	A	B	Ζ
1	Condition of Drivers seat		ļ			
2	Condition of raer view mirrors					
3	Condition of front light					
4	Engine condition					
5	Condition of Gear box					
6	Condition of Transmission					
7	Condition of suspension/Springs					
8	Condition of Tyres					
9	Condition of Steering					
10	Condition of Breaks					
11	Condition of Clutches					
12	Ride Comfort					
13	Handling characteristics					
14	Oil leak if any					
15	Mileage					
16	Periodical maintenance					
17	Response from maintenance department against problems					i
18	Control of repeated breakdowns					
19	Consideration of drivers suggestion by maintenance people					
20	Skill of maintenance people					

The following questions may be answered in 3 or 4 sentences

- 21. According to you what are the major complaints of the vehicle
- 22. What are the wrong maintenance practices exists in your knowledge
- 23. List your five strong points as a driver
- 24. List your five weaknesses as a driver
- 25. List any five strong points of the maintenance stream
- 26. List any five week points of maintenance stream

ANNEXURE C

Survey for Better Maintenance.

Instructions

Kindly answer the following

Please do not reveal your name or identity.

You are supported to discuss with your colleagues.

Answer should be done individually.

Please mark ($\sqrt{}$) to the respective grade against each question

E ·	- Excellent. G - Good	Α	-	Avera	ıge		
<u> </u>	- Bad Z - Extrem	ely	bad				
		E	G	Α	В	Z	Remarks
1	Condition of operators' Cabin						
2	Condition of operators' seat						
3	Condition of lighting & ventilation						
4	Condition of wind shield						
5	Condition of control panel						
6	Engine condition						
7	Condition of transmission/ hydraulic						1
	pump						
8	Cleanliness of equipment						
9	Condition of Final Drive / under	<u>├</u> ──					
	carriage						
10	Load taking characteristics						
11	Handling characteristics						
12	Maintenance of lubrication system of						
	equipment						
13	Periodical Maintenance	<u> </u>					
14	Face / Bench/ Road Condition						
15	Availability of loose material (Lime						
	stone/Black rock)	<u> </u>					
16	Response from maintenance						
	department against problem						
17	Control of repeated break down	<u> </u>					<u> </u>
18	Condition of operators suggestion	<u> </u>	Ļ				
19	Skill of the operators						
20	Skill of maintenance people	l	}]		

Page 335of 370

The following question may be answered in 3 or 4 sentences

- 21. According to you where are all the majors complaints of the equipment.
 - a. Operators' comfort
 - b. Condition of equipment
 - c. Working condition
- 22. What are all the wrong operating practices exists in your knowledge?
- 23. List your five strings point as an operator.
- 24. List your five weaknesses as an operator.
- 25. List any 5 strong point of maintenance stream.
- 26. List any 5 weak points of maintenance stream

ANNEXURE D

Questionnaire

A Questionnaire for Implementation of MQFD in RUBCO, Kottayam

Kindly answer the following questions on the product HEAVEN

(0 = Not at all satisfied, 5 = Somewhat satisfied, 9 = Fully satisfied)

Essential Product Features:

- 1. How much are you satisfied with
- i) Cushioning effect of mattress
- ii) Colour of clothes
- iii) Corner cutting
- iv) <u>Finish</u>
 - a. Smoothness
 - b. Appearance
- v) Thickness
- vi) Stitching
- vii) Durability

School of Engineering, CUSAT, Cochin-22

Page 337of 370

Design Parameters

i) Handling feasibility

a) Weight

b) Folding feasibility

ii) Structural Features

a) Shape of Quilting Patterns

b) Stitching of Pattern

c) Pattern Size

Dealer Relationship

i) Complaint residual system

ii) Credit facility

iii) Emergency order fulfillment

iv) Effectiveness of sales promotion

<u>Cost</u>

Price of the product

	_								
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
<u> </u>		i	L	L				L	L
0	1	2	3	4	5	6	7	8	9
د ا		<u> </u>	1	I	I	<u> </u>	<u> </u>	<u> </u>	L
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
		L				<u></u>			<u> </u>
0	1	2	3	4	5	6	7	8	9
		l	L	<u> </u>]	[L		L
0	1	2	3	4	5	6	7	8	9
		L _	L	I		I	<u> </u>	L	l
0	1	2	3	4	5	6	7	8	9
1 -	-	1	1 -	1 -	I –	1	1	1	1

School of Engineering, CUSAT, Cochin-22

Page 338of 370

7

7

6

4 5 6

8

8

9

9

Packaging

- i) Attractiveness
- ii) Durability
- ii) User friendliness

Supply Chain

i) Responsiveness

ii) Transportation

iii) Ability to meet the order

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
					E			0	0
0		2	3	4	5	0	/	8	9
0	1	2	3	4	5	6	7	8	9

0

0 1 2 3

1

2 3 4 5

<u>General</u>

1. Any other suggestions regarding the product

2. How will you rate the product ``**HEAVEN**`` with the competitors product on:

a. Quality

b. Cost

c. Customer preference

0 1	2	3	4	5	6	7	8	9
0 1	2	3	4	5	6	7	8	9

5

6 7

3 4

			_
	0	1	2
1			

8

9

3. Can you specify the nature of recurring complaint, if any

Your Name:

Official Address:

Period of Dealership

Signature

.....Thank you for your co-operation.

ANNEXURE E

Dear Sir,

Please find enclosed here with the following questionnaire, your valuable responses will be very helpful for my research work. I request you to be kind enough to fill up the questionnaire and send back.

Thanking you Yours sincerely

> Pramod.V.R Lecturer Department of Mechanical Engineering N.S.S.College of Engineering Palakkad Kerala 678008

QUESTIONNAIRE ON MQFD IMPLEMENTATION IN ENGINEERING EDUCATIONAL INSITUTION

Name:

Designation:

Official Address:

Your brief bio data showing previous positions held

Note: Tick Your Choice

Yes- Surely (If the step is definitely possible to execute)

Yes- Partially (If the step is possible to execute to the extent between 50 and 80%)

Yes-Feebly (If the step is possible to execute to the extent below 50 %)

Not Possible (If the step is not possible to execute)

Step 1

MQFD experts have to convince the top management and the principal/ director of the engineering educational institution about the benefits that can be reaped by the implementation of MQFD. This exercise has to be carried out by organizing seminars and brainstorming sessions. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Yes-Surely

Yes- Partially

Yes-Feebly

Not Possible

School of Engineering, CUSAT, Cochin-22

Page 342of 370

Please write your comment

Step 2

Management and the principal have to announce the implementation of MQFD as a policy. They have to state the objectives such that it will reach all personnel in the institution. Different types of educational campaigns have to be conducted for personnel at different levels in order to make them fit to attain MQFD objectives. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Please write your comment

Step 3

Form an MQFD team consisting of 7-8 members of different departments. They meet once in a week and draw out plans for the implementation. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Please write your comment

Step 4

Identify the customer languages of education. For this purpose the feedback of parents, alumnis and the employers who have employed aluminis has to be rigorously and regularly gathered. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Yes- Surely	Yes- Partially	Yes-Feebly	Not Possible
-------------	----------------	------------	--------------

School of Engineering, CUSAT, Cochin-22

Page 343of 370

Please write your comment

Step 5

Customer languages shall have to be ranked based upon their importance. This can be done either by using previous experience and the views of management and personnel. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Please write your comment

Step 6

The format of HoQ is given below.

To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Please write your comment

Step 7

Management and principal have to take strategic decision to choose the outputs of HoQ which have to be passed through eight TPM pillars.

The eight TPM pillars are

1. Autonomous maintenance 2. Individual improvement 3. Planned maintenance

4. Quality maintenance 5. Development Management 6. Education and Training

7. Office TPM 8. Safety, Health and environment

To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

School of Engineering, CUSAT, Cochin-22

Page 345of 370

Please write your comment

Step 8

Send the chosen outputs of HoQ through eight pillars of TPM. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Please write your comment

Step 9

Direct the results to the curriculum. To which extent do you believe that this exercise can be carried out given the prevailing engineering scenario?

Yes-Surely

Yes- Partially

Yes-Feebly

Not Possible

Please write your comment

Step 10

Evaluate the results based on the parameters namely

(Number of students placed, Percentage of students passed, Number of companies visited for campus interview, Overall performance quality of students, Number of students dropping the course and Availability of competent faculty and supporting staff). To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Yes-Feebly

Not Possible

School of Engineering, CUSAT, Cochin-22

Page 346of 370

Please write your comment

Step 11

Compare the results with the set targets. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Yes- Surely	Yes- Partially	Yes-Feebly	Not Possible
-------------	----------------	------------	--------------

Please write your comment

Step 12

Identify the deviation of the results, if any. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Yes- Surely

Yes- Partially

Yes-Feebly

Not Possible

Please write your comment

Step 13

The tactical suggestions have to be exposed to the management and principal, who will take strategic decisions to implement them. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Yes-	Surely

Yes- Partially

Yes-Feebly

Not Possible

Please write your comment

Step 14

Implement the recommended actions evolved after MQFD proceedings. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Please write your comment

After achieving the target, revise the target and HoQ matrix. If there is change in customers' languages, that also has to be considered while revising the matrix. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Please write your comment

Step 16

Review the working of MQFD Program as a whole and incorporate the top management's and principal's views while experimenting the MQFD for enhancing continuously the maintenance quality of engineering education. To which extent do you believe that this exercise can be carried out given the prevailing engineering educational scenario?

Please write your comment

ANNEXURE F Questionnaire

Name and address of the company :

Your name and designation

Your experience in the company

- 1. When was the company started?
- 2. What are the main products manufactured?
- 3. What is the turnover of the company?

4.Name the countries to which the products are exported?

5. Please list the TQM related activities that are being conducted? Please also indicate the year of starting of the activity in brackets eg.Quality circle (year)

6. Please list the TPM related activities that are being conducted? Please also indicate the year of starting of the activity in brackets

7. Any othjer majour significant activities that are being carried out

ANNEXURE G

Questionnaire for constructing MQFD

Phase I	
Name your customers	
1	
2	
3	
Are you able to get feedback from external customers?	Yes/No
If yes,	
a. What are the methods used to collect feedback	from customers?

b. Are the external customers feedback ranked? Yes/No

If yes, What are the factors considered while ranking?

Factors	Rank
	1
	2
	3
	4

What are the technical remedies that you are generally suggesting against customer feedback?

a. Are these technical remedies ranked? Yes/No

If Yes,

b. What are the factors considered while ranking]

Technical remedies	Rank
	1
	2
	3
	4

School of Engineering, CUSAT, Cochin-22

Are you taking efforts to correlate technical matters among them? Yes/No

If Yes, how is it carried out in practice?

Phase II

Please refer to the "HOUSE OF QUALITY" part of MQFD model.

If used in your company, what will be the outputs of the above "HOUSE OF QUALITY"

5

Complete the following table to identify TPM pillars through which strategic decisions are to be passed.

utputs of the "House Of at Quality"	tegic decisions that may be taken	ersonnel responsible for Strategic decisions
	······	

Phase III

After implementing MQFD model, indicate the expected results by quantifying the following parameters using Likert's scale

OEE - Will improve/ Will retard

-10	-8	-6	-4	-2	0	2	4	6	8	10	
-----	----	----	----	----	---	---	---	---	---	----	--

MTTR -

Will decrease/ Will increase

-10 -8 -6 -4 -2 0 2 4 6 8 10

MTBF -

Will improve/ Will retard

-10	-8	-6	-4	-2	0	2	4	6	8	10	
											_

Performance quality of the organization

Will improve/ Will retard

|--|

School of Engineering, CUSAT, Cochin-22

Page 351of 370

MDT - Will decrease/ Will increase

Availability - Will decrease/ Will increase

-10	-8	-6	-4	-2	0	2	4	6	8	10
-----	----	----	----	----	---	---	---	---	---	----

Maintenance Quality - Will improve/ Will retard

	0 2 4 6 8 10	2	0	-2	-4	-6	-8	-10
--	--------------	---	---	----	----	----	----	-----

Core competence -

e - Will upgrade/ Will degrade

-10	-8	-6.	-4	-2	0	2	4	6	8	10
				L						

Profit - Will decrease/ Will increase

-10	-8	-6	-4	-2	0	2	4	6	8	10
L			1			L			-	

Good will of the company- Will enhance/ Will retard

-10 -8 -6 -4 -2 0 2 4 6 8	10
---------------------------	----

Do you find it necessary to again go to HoQ with Customer feedback? Yes/No Spell out the reasons

To which extent you think that the targets are achievable through MQFD implementation?

	0	1	2	3	4	5	6	7	8	9	10
socihla	10-E	.11 12.			_					_	

0=Not at all possible, 10=Full Extent

What are your technical suggestions for improving the targets to achieve the output by MQFD?

School of Engineering, CUSAT, Cochin-22

Page 352of 370

What are the strategic decisions that may be made in this regard?

1 2

3

4

What are the favorable and unfavorable conditions that you expect while implementing strategic decisions?

favorable conditions

```
1
2
3
4
unfavorable conditions
1
2
3
4
```

Do you think that MQFD can be successfully implemented in real time situation? Yes/No

If your response is No, please suggest modification and refinements to the MQFD model so that it is made practically compatible.

ANNEXURE H

Questionnaire on MQFD

The following steps are essential in implementing MQFD in your esteemed company. Please rate the extent to which steps can be practically implemented in your esteemed organization.

Step 1

MQFD experts have to convince the top management about the benefits that can be reaped by the implementation of MQFD. This has to be done through seminars and brainstorming sessions.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0 1 2 3 4 5 6 7 8 9 10

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 2

Top management has to announce the implementation of MQFD as a decision. They have to state the objectives either in company news letter or through similar media such that it will reach all in the company. Different types of educational campaigns have to be conducted for personnel at different levels in order to make them fit people fit to attaining objectives.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0	1	2	3	4	5	6	7	8	9	10	
---	---	---	---	---	---	---	---	---	---	----	--

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 3

Form an MQFD team consisting of 7-8 members of different departments . They meet once in a week and plans for the implementation.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0	1	2	3	4	5	6	7	8	9	10	
0	= N	ot a	it al	l po	ssil	ole l	0=	= Co	mp	letel	y possible

School of Engineering, CUSAT, Cochin-22

Page 354of 370

Please write your comments in this regard

Step 4

Identify the customer language

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0	1	2	3	4	5	6	7	8	9	10
---	---	---	---	---	---	---	---	---	---	----

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 5

Rank customer language. This can be done either by using Analytical Hierarchy Process (AHP) or other similar techniques.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 6

Develop HoQ to convert customer languages in technical languages.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0	1_	2	3	4	5	6	7_	8	9_	10	
			11 1 10			~					

0 =Not at all possible 10 =Completely possible

Please write your comments in this regard

Step 7

Top Management has to take strategic decision to choose the outputs of HoQ which have to be passed through eight pillars

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

School of Engineering, CUSAT, Cochin-22

Page 355of 370
Please write your comments in this regard

Step 8

Send the chosen output of HOQ through eight pillars of TPM.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0	2	2	4	6		2	0	0	10	i
U	2	5	4	3	0	/	Ν	9	10	

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 9

Direct the results to the production system.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0 1 2 3 4 5 6 7 8 9 10

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 10

Evaluate the results based on six parameters (OEE, MTBF, MTTR, Performance quality, MDT and Availability).

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0 1 2 3 4 5 6 7 8 9 10

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 11

Compare the results with the set targets.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0	1	2	3	4	5	6	7	8	9	10	
---	---	---	---	---	---	---	---	---	---	----	--

0 =Not at all possible 10 =Completely possible

Please write your comments in this regard

School of Engineering, CUSAT, Cochin-22

Page 356of 370

Step 12

The deviation of the results

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0 1 2	3 4	5 6	7 8	9	10
-------	-----	-----	-----	---	----

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 13

The tactical suggestions have to exposed to the top management, who will take strategic decisions to implement them.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0 1 2 3 4 5 6 7 8 9 10

0 =Not at all possible 10 =Completely possible

Please write your comments in this regard

Step 14

Implement the results of the recommended MQFD proceedings.

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0	1	2	3	4	5	6	7	8	9	10	ļ
---	---	---	---	---	---	---	---	---	---	----	---

0 = Not at all possible 10 = Completely possible

Please write your comments in this regard

Step 15

After achieving the target, revise the target and revise the matrix. If there is change in customers languages, that also has to be considered while revising the matrix. Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

0 1 2 3 4 5 6 7 8 9 10

0 = Not at all possible 10 = Completely possiblePlease write your comments in this regard

School of Engineering, CUSAT, Cochin-22

Page 357of 370

Step 16

Review the working of MQFD Programme as a whole and incorporate the top management's view while experimenting the scope of MQFD in different directions of copmpany's performance

Please use the following in Likert's scale of range 0-10 to rate the implementation feasibility.

|--|

0 = Not at all possible 10 = Completely possible

Please write your comments in these regard,

ANNEXURE I QUESTIONNAIRE

KINDLY ANSWER THE FOLLOWING QUESTIONS.

1. As per your judgment how much CUSTOMER'S (Driver's) voice influences the organizational prospects

1 2 3 4 5 6 7 8 9

(a).To which extent the **frequency of vehicle breakdown** influences customer behavior I

1 2 3 4 5 6 7 8 9

(b).To which extent cultural background influences customer behavior

10 20 30 40 50 60 70 80 90

(c).To which extent the duration of maintenance influences customer behavior

10 20 30 40 50 60 70 80 90

(d).To which extent **necessities/emergencies** influence customer behavior

10 20 30 40 50 60 70 80 90

(e).To which extent the quality of spare parts influences customer behavior

10 20 30 40 50 60 70 80 90

(f).To which extent cost of maintenance influences customer behavior

10 20 30 40 50 60 70 80 90

2. As per your judgment how much **Technology** influences organizational prospects

10 20 30 40 50 60 70 80 90

(a).To which extent **infrastructure** influences maintenance efficiencies

1 2 3 4 5 6 7 8 9

(b).To which extent skill of the personnel influences maintenance Efficiencies

1 2 3 4 5 6 7 8 9

(c).To which extent employer employee relationship influences maintenance efficiencies

1 2 3 4 5 6 7 8 9

(d). To which extent **organizational climate** influences maintenance efficiencies

10 20 30 40 50 60 70 80 90

(e). To which extent **maintenance methods** influence maintenance efficiencies

1 2 3 4 5 6 7 8 9

3. As per your judgment how much **COMPETITORS** influences organizational prospects

10 20 30 40 50 60 70 80 90

(a). To which extent **financial power** of competitors influences future prospects of the organization

1 2 3 4 5 6 7 8 9

(b).To which extent **performance of competitors** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(c).To which extent **customer relationship** influences future prospects of the organization.

10 20 30 40 50 60 70 80 90

(d).To which extent strategies of competitors influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(e).To which extent change management scheme influences future prospects of the organizations

10 20 30 40 50 60 70 80 90

(f).To which extent **quality parameters** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(g). To which extent **new technology** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

I. As per your judgment how much **Personnel factor** influences organizational prospects?

10 20 30 40 50 60 70 80 90

(a) To which extent **authority** of personnel influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(b) To which extent **responsibility** of personnel influences future prospects of the organization

1 2 3 4 5 6 7 8 9

(c) To which extent **initiatives** of personnel influences future prospects of the organization

1 2 3 4 5 6 7 8 9

(d) To which extent **motivation** of personnel influences future prospects of the organization

1 2 3 4 5 6 7 8 9

- II. As per your judgment how much value of decisions influences organizational prospects?
 1□ 2□ 3□ 4□ 5□ 6□ 7□ 8□ 9□
- III. As per your judgment how much reliability of decisions influences organizational prospects?

1 2 3 4 5 6 7 8 9

A. As per your judgment how much AUTONOMOUS MAINTENANCE influences organizational prospects?

10 20 30 40 50 60 70 80 90

(a) To which extent **attitude** of worker influences autonomous maintenance of the organization

1 2 3 4 5 6 7 8 9

(b) To which extent **attitude** of management influences autonomous maintenance of the organization

1□ 2□ 3□ 4□ 5□ 6□ 7□ 8□ 9□ (c) To which extent motivation schemes influences autonomous maintenance of the organization

10 20 30 40 50 60 70 80 90

(d) To which extent **incentive** of salary influences autonomous maintenance of the organization

10 20 30 40 50 60 70 80 90

(e) To which extent **financial benefits** influences autonomous maintenance of the organization

10 20 30 40 50 60 70 80 90

(f) To which extent **lubrication** management influences autonomous maintenance of the organization

10 20 30 40 50 60 70 80 90

(g) To which extent **daily maintenance** influences autonomous maintenance of the organization

1 2 3 4 5 6 7 8 9

B. As per your judgment how much **INDIVIDUAL** improvement influences organizational prospects?

1 2 3 4 5 6 7 8 9

(a) To which extent **reputation of individual** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(b) To which extent **kaizen's principles** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(c) To which extent **employee** suggestion scheme influences future prospects of the organization

1 2 3 4 5 6 7 8 9

(d) To which extent **employee involvement scheme** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(e) To which extent **daily maintenance** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(f) To which extent interpersonal relationship influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(g) To which extent **employee's wish** influences future prospects of the organization

1 2 3 4 5 6 7 8 9

C. As per your judgment how much **PLANNED MAINTENANCE** influences organizational prospects?

1 2 3 4 5 6 7 8 9

(a) To which extent schedule of maintenance influences planned maintenance of the organization

10 20 30 40 50 60 70 80 90

(b) To which extent **frequency of breakdown** influences planned maintenance of the organization

10 20 30 40 50 60 70 80 90

(c) To which extent **idleness of machine** influences planned maintenance of organization

10 20 30 40 50 60 70 80 90

(d) To which extent schedule of maintenance influences planned maintenance of the organization

10 20 30 40 50 60 70 80 90

(e) To which extent **repetition of same problem** influences planned maintenance of the organization

	1 2 3 4 5 6 7 8 9
D.	As per your judgment how much QUALITY MAINTENANCE
	influences organizational prospects?
	(a) To which extent TQM tools influences quality maintenance of
	the organization
	(b) To which extent sampling influences quality maintenance of
	the organization
	(c) To which extent data management influences quality
	maintenance of the organization
T	
<u></u> ይ.	As per your judgment how much EDUCATION and TRAINING
	influences organizational prospects?
	$1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9 \cup $
	(a) 10 which extent leasibility for higher studies influences
	(b) To which extent training facility influences education and
	(b) To which extent training facinity influences education and
	$1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 \square 9 \square 9 \square$
	(c) To which extent omnlovae's own interest influences
	education and training
	(d) To which extent motivation for training influences education
	and training
	(e) To which extent rewards for better performance motivates
	people for education and training
F.	As per your judgment how much DEVELOPMENT
	MANAGEMENT influences organizational prospects?
	(a) To which extent target setting influences development
	management
	10 20 30 40 50 60 70 80 90
	(b) To which extent job scheduling influences development
	management
Scho	pol of Engineering, CUSAT, Cochin-22 Page 363of 370

10 20 30 40 50 60 70 80 90 (c) To which extent production planning influences development management 10 20 30 40 50 60 70 80 90 To which extent maintenance schedule influences (d)development management 10 20 30 40 50 60 70 80 90 As per your judgment how much OFFICE TPM influences G. organizational prospects? 10 20 30 40 50 60 70 80 90 (a) To which extent new technology influences office TPM 10 20 30 40 50 60 70 80 90 (b) To which extent training influences office TPM 10 20 30 40 50 60 70 80 90 (c) To which extent motivation influences office TPM 10 20 30 40 50 60 70 80 90 (d) To which extent proximity of customer influences office TPM 10 20 30 40 50 60 70 80 90 (e) To which extent proximity of suppliers influences office TPM 1 2 3 4 5 6 7 8 9 (f) To which extent data processing speed influences office TPM 10 20 30 40 50 60 70 80 90 As per your judgment how much SAFETY, HEALTH and H. **ENVIRONMENT** influences organizational prospects? 10 20 30 40 50 60 70 80 90 (a) To which extent hospital influences future prospects of the organization 10 20 30 40 50 60 70 80 90 (b) To which extent gymnasium influences future prospects of the organization 10 20 30 40 50 60 70 80 90 (c) To which extent pollution influences future prospects of the organization 10 20 30 40 50 60 70 80 90 (d) To which extent safety rules influences future prospects of the organization 10 20 30 40 50 60 70 80 90

(e) To which extent green belt concepts influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(f) To which extent safety training influences future prospects of the organization

1 2 3 4 5 6 7 8 9

(g) To which extent **displays for safety** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

(h) To which extent **periodic medical check up** influences future prospects of the organization

10 20 30 40 50 60 70 80 90

1. As per your judgment how much OVERALL EQUIPMENT EFFICIENCY influences organizational prospects?

10 20 30 40 50 60 70 80 90

2. As per your judgment how much **MEAN TIME BETWEEN FAILURE** influences organizational prospects?

1 2 3 4 5 6 7 8 9

3. As per your judgment how much **MEAN TIME TO REPAIR** influences organizational prospects?

4. As per your judgment how much **PERFORMANCE EFFICIENCIES** influences organizational prospects?

1 2 3 4 5 6 7 8 90

5. As per your judgment how much MEAN DOWN TIME influences organizational prospects?

10 20 30 40 50 60 70 80 90

6. As per your judgment how much AVAILABILITY influences organizational prospects?

1 2 3 4 5 6 7 8 9

(i). As per your judgment how much **IMPROVED MAINTENANCE** influences organizational prospects?

10 20 30 40 50 60 70 80 90

(ii).As per your judgment how much INCREASED PROFIT influences organizational prospects?

1 2 3 4 5 6 7 8 9

(iii).As per your judgment how much UPGRADED CORE COMPETENCE influences organizational prospects?

10 20 30 40 50 60 70 80 90

School of Engineering, CUSAT, Cochin-22

Page 365of 370

(iv).As per your judgment how much ENHANCED GOODWILL influences organizational prospects?
1□ 2□ 3□ 4□ 5□ 6□ 7□ 8□ 9□

School of Engineering, CUSAT, Cochin-22

Page 3660f 370

PAPERS PUBLISHED BASED ON THIS RESEARCH WORK

I. International Journals

Published

- 1. Pramod, V.R. Devadasan, S.R. and Jagathy Raj, V.P.(2006) "Customer voice adoption for maintenance quality improvement through MQFD and its receptivity analysis".*Int. J. Management Practice*, Vol. 2, No. 2, pp.83-108.
- 2. Pramod, V.R. Devadasan, S.R., Muthu, S. and Jagathy Raj, V.P.(2006), "MQFD: a model for synergising TPM and QFD", Int. J. Process Management and Benchmarking, Vol. 1, No. 2, pp.176-200.
- 3. Pramod V.R, Sampath, K. Devadasan, S.R. Jagathy Raj, V.P. and Dakshinamurthy, G., .(2006), "Integrating TPM and QFD for improving quality in maintenance engineering, Journal of quality in Maintenance Engineering". Vol. 12, No. 2, pp. 150-171.
- 4. Pramod V.R, Devadasan, S.R. Jagathyraj. V.P, and Murugesh, R. .(2006) "MQFD and its receptivity analysis in an Indian electronic switches manufacturing company", International Journal of Management Practice.
- Pramod V.R, Sampath, K. Devadasan, S.R. Jagathy Raj, V.P. and Dakshinamurthy, G., .(2007) "Multi Criteria Decision Making in Maintenance Quality Function deployment through analytical hierarchy Process", International Journal of Industrial and system Engineering. Vol. 2, No. 4, pp. 454-478.

Under review

- 1. Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P, "Quality Improvement in Engineering Education through the synergy of TPM and QFD", International Journal of Continuing Engineering Education and Life-Long Learning.
- 2. Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P, "Strategic receptivity of Maintenance Quality Function Deployment across heterogeneous organizational cultures", International Journal of strategic change Management.
- 3. Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P, "Implementation of MQFD in Tyre Manufacturing", International Journal of Process management and Bench marking.

- 4. Pramod V.R, Devadasan, S.R. and Jagathy Raj.V.P, "MQFD: A means to implement quality assurance in maintenance engineering", International Journal of Quality and Operations Management.
- 6. Pramod V.R, Devadasan, S.R. and Jagathy Raj.V.P, "Evaluation of Maintenance Quality parameters: A case study in a mine", International Journal of manufacturing research.
- 7. Pramod V.R, Devadasan, S.R. and Jagathy Raj.V .P, "Failure analysis of critical equipments in the Mines of a Cement Plant", International Journal of Technology, Policy and management
- 8. Pramod V.R, Devadasan, S.R. and Jagathy Raj.V .P, "Implementation of MQFD in mattress Manufacturing" International Journal of strategies and Operations management

II. National Journals

Published

- 1. Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P "Receptivity Analysis Of MQFD", Organizational management, Journal of Management education foundation of Palakkad management association.
- Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P "MQFD a new episode in maintenance engineering", Manufacturing technology and management, Quarterly Journal of Institution of Production Engineers. Vol.2, No1, pp. 14-23.
- 3. Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P Leveraging of TPM through MQFD: A receptivity analysis, Manufacturing technology and management, Quarterly Journal of Institution of Production Engineers. Vol.2, No1, pp.24-30.

III. International Conferences

- 1. Pramod V.R, Devadasan, S.R. and Muthu, S. "Implementation of QFD in six TPM implementing companies: A survey report", International Conference on Responsive supply chain and organizational competitiveness, organized by Coimbatore Institute of Technology and University of Masschusetts, Coimbatore Institute of Technology, Coimbatore, Tamilnadu state, India., Jan 5-7,2004.
- 2. Pramod V.R, Devadasan, S.R. and Muthu, S. "Trends of TPM and QFD: past, present and future", International Conference on Responsive supply chain and organizational competitiveness, organized by Coimbatore Institute

of Technology and University of Masschusetts, Coimbatore Institute of Technology, Coimbatore, Tamilnadu state, India., Jan 5-7,2004.

- 3. Pramod V.R, Devadasan, S.R. and Muthu, S. "MQFD: A Model For Integrating Customer's Reaction In Maintenance Engineering" Global conference on Maintenance management, Vellore Institute of Technology, Vellore, Tamilnadu state, India. December, 8-10, 2004.
- Pramod V.R, Devadasan, S.R. and Muthu, S. "A coceptual model for MQFD", 9th International symposium on Logistics, Indian Institute of Management, Bangalore.,pp 215-219, July 11-14, 2004
- 5. Pramod V.R, Devadasan, S.R. Muthu, S. and Jagathy Raj. V.P, "The need of MQFD in the era of globalization", Emerging Technologies in Intelligent System and Control, (EISSCO-2005), Organized by Kumaraguru College of Technology in Collberation with Centre for intelligent Product and manufacturing system(CIPMAS), National University of Singapore, Singapore,Product development and manufacturing Centre, Okland University, USA, Kumaraguru College of Technology, Coimbatore, Tamilnadu state, India.pp-765-770, Jan 5-7, 2005.
- 6. Pramod V.R, Sampath, K. Devadasan, S.R. and Jagathy Raj, V.P. "Implementation of MQFD through AHP", Team Tech, 2006,Indian Institute of Science, Bangalore, India.

IV. National Conferences

- 1. Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P "Integrating TPM and QFD in Indian Industry: A Case Study" National Conference on Advances in manufacturing Technology, NSS Collge of Engineering, Palakkad, Kerala state, India.
- Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P "Innovation in engineering education through MQFD", National Conference on Innovated TQM, PSG College of Technology, Coimbatore, Tamilnadu state, India. February 25-26,2005
- 3. Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P "Receptivity Analysis Of the innovated TPM model", National Conference on Innovated TQM, PSG College of Technology, Coimbatore, Tamilnadu state, India. February 25-26,2005
- 4. Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P "Innovation from TPM to MQFD: A feasibility analysis", National Conference on Innovated TQM, PSG College of Technology, Coimbatore, Tamilnadu state, India. February 25-26,2005.

- Pramod V.R, Devadasan, S.R. and Jagathy Raj. V.P, "Innovations in maintenance: A survey report", National Conference on Innovated TQM, PSG College of Technology, Coimbatore, Tamilnadu state, India. February 25-26,2005
- Pramod V.R, Vinoth,S., Devadasan, S.R. and Jagathy Raj. V.P "Maintenance quality Function Deployment (MQFD): A Way for Excellence in Engineering Education", National Conference on Integrating Humanisic values and social concerns with technical education, Department of Humanities, PSG College of Technology, Coimbatore, Tamilnadu state, India. 24-25 February, 2006.
- 7. Pramod V.R, Devadasan, S.R. Jagathy Raj. V.P and Murugesh R "MQFD in Engineering Education", ISTE convention 2006, held at Bennari Amman institute of technology, Sathyamangalam, Tamilnadu state, India. December 14-16,2006.

Lectures delivered by the author in Professional bodies based on this doctoral work

- 1. The author delivered a lecture titled "TPM", in the Monthly meeting of Institution of Engineers, Plakkad Chapter, on 19th February 2004.
- 2. The author delivered a lecture titled "TPM in Manufacturing" in ISTE winter school held at NSS College of Engineering, Palakkad on 19th November 2004.
- 3. The author delivered a lecture titled "MQFD, A Solution for Managerial problems", in the Monthly Meeting of Palakkad Management association on 10th August, 2005.
- 4. The author delivered a lecture titled "MQFD", Institution of Engineers, Palakkad Chapter, on 23rd March, 2006.
- 5. The author delivered a lecture titled "QFD" in ISTE, Palakkad chapter, on 20th February, 2004.
- 6. The author delivered a lecture titled "TPM" in ISTE winter school held at NSS College of Engineering, Palakkad on 21st December 2006.