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Abstract 

 

To ensure quality of machined products at minimum machining costs and maximum machining 

effectiveness, it is very important to select optimum parameters when metal cutting machine 

tools are employed. Traditionally, the experience of the operator plays a major role in the 

selection of optimum metal cutting conditions. However, attaining optimum values each time by 

even a skilled operator is difficult. The non-linear nature of the machining process has compelled 

engineers to search for more effective methods to attain optimization. The design objective 

preceding most engineering design activities is simply to minimize the cost of production or to 

maximize the production efficiency. The main aim of research work reported here is to build 

robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and 

using it to solve real world optimization problems in manufacturing processes.  

In this thesis, after conducting an exhaustive literature review, several optimization techniques 

used in various manufacturing processes have been identified. The selection of optimal cutting 

parameters, like depth of cut, feed and speed is a very important issue for every machining 

process. Experiments have been designed using Taguchi technique and dry turning of SS420 has 

been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were 

performed to find the optimum level and percentage of contribution of each parameter. By using 

S/N analysis the optimum machining parameters from the experimentation is obtained. 

Optimization algorithms begin with one or more design solutions supplied by the user and then 

iteratively check new design solutions, relative search spaces in order to achieve the true 

optimum solution. A mathematical model has been developed using response surface analysis for 

surface roughness and the model was validated using published results from literature.  

 Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization 

(PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are 
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applied to optimize machining parameters while dry turning of SS420 material. All the above 

algorithms were tested for their efficiency, robustness and accuracy and observe how they often 

outperform conventional optimization method applied to difficult real world problems. The SA, 

PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic 

method, optimum cutting conditions are provided to achieve better surface finish.  

The computational results using SA clearly demonstrated that the proposed solution procedure is 

quite capable in solving such complicated problems effectively and efficiently. Particle Swarm 

Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired 

by the swarming or collaborative behavior of biological populations. From the results it has been 

observed that PSO provides better results and also more computationally efficient. 

Based on the results obtained using CGA and IGA for the optimization of machining process, the 

proposed IGA  provides better results than the conventional GA. The improved genetic algorithm 

incorporating a stochastic crossover technique and an artificial initial population scheme is 

developed to provide a faster search mechanism.    

Finally, a comparison among these algorithms were made for the specific example of dry turning 

of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth 

of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the 

research work fills in conspicuous gaps between research prototypes and industry requirements, 

by simulating evolutionary procedures seen in nature that optimize its own systems. 
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Chapter 1 - Introduction 

 

The cost of machining amounts to more than 20% of the value of manufactured products in 

industrialized countries. It is therefore imperative to investigate the machinability behavior of 

different materials by changing the machining parameters to obtain optimal results. The 

machinability of a material provides an indication of its adaptability to manufacturing by a 

machining process. Good machinability is defined as an optimal combination of factors such as 

low cutting force, good surface finish, low tool tip temperature, and low power consumption. 

 

Process modeling and optimization are the two important issues in manufacturing products. The 

selection of optimal cutting parameters, like depth of cut, feed and speed, is a very important 

issue for every machining process. In workshop practice, cutting parameters are selected from 

machining databases or specialized handbooks, but the range given in these sources are actually 

starting values, and are not the optimal values. Optimization of machining parameters not only 

increases the utility for machining economics, but also the product quality to a great extent. 

 

In today‘s manufacturing environment, many industries have attempted to introduce flexible 

manufacturing systems (FMS) as their strategy to adapt to the ever changing competitive market 

requirements. To ensure quality of machined products to reduce the machining costs and to 

increase the machining effectiveness, it is very important to select appropriate machining 

parameters when machine tools are selected for machining.  

 

 

 

1.1. Optimization 

The design objective preceding most engineering design activities is simply to minimize the cost 

of production or to maximize the production efficiency. An optimization algorithm is a 
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procedure which is executed iteratively by comparing various solutions till the optimum or 

satisfactory solution is found. Accepting the best solution after comparing a few design solutions 

is the indirect way of achieving optimization in many industrial design activities. There is no 

way of guaranteeing an optimal solution with this simplistic approach. Optimization algorithms 

on the contrary, begin with one or more design solutions supplied by the user and then iteratively 

check new design solutions, relative search spaces in order to achieve the true optimum solution. 

 

In optimizing the economics of machining operations, the role of cutting conditions such as feed 

rate, cutting speed and depth of cut have long been recognized. F.W.Taylor (1907) showed that 

an optimum or economic cutting speed exists which would maximize material removal rate. 

 

Gilbert (1950) studied the optimization of machining parameters in turning taking maximum 

production rate and minimum production cost as criteria. Armarego & Brown(1969) investigated 

unconstrained machine-parameter optimization using differential calculus. Brewer & Rueda 

(1963) carried out simplified optimum analysis for non-ferrous materials. For Cast Iron (CI) and 

steels, they employed the criterion minimum machining cost. 

 

Some of the widely used techniques in optimization are conventional Genetic Algorithm, , 

Particle Swarm Optimization and Simulated Annealing which will be illustrated in the 

forthcoming chapters  

 

1.2. Surface roughness 

Surface finish is an essential requirement in determining the surface quality of a product. Surface 

roughness in metal cutting is defined as irregularities on any material resulting from a machining 

operation. Average roughness Ra is the arithmetic average of departure of the profile from the 

mean line along a sampling length. Surface finish has a great influence on the reliable 

functioning of two mating parts.  In this work optimum machining parameters for minimum 
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surface roughness on the machining of SS420 material is investigated. It has a large number of 

applications in industries such as the aerospace, petrochemicals, forging, medical, dental and 

surgical equipment industries, electrical and electronic components, food industries, tractor and 

tool production and automotive industries, where surface quality is an important factor. 

 

During the initial period of the past century, tactual standards were used to measure the surface 

roughness; this involved the use of a series of specimens that had different finishes. The man in 

the shop used these specimens by running his fingernail first across standard tactual surface and 

then across the surface he was producing. The work piece was considered to be smooth enough 

when the two surfaces were felt to have the same roughness. In the modern times however stylus 

instruments are used with a diamond stylus which traverses a surface. These utilize transducers 

to convert the vertical and horizontal motions of the diamond stylus into recorded traces.   

 

Surface roughness is usually measured in characteristic peak-to-valley roughness (Rt) or 

arithmetic average roughness (Ra). Arithmetical average (AA) roughness (Ra) or centerline 

average (CLA) is obtained by measuring the mean deviation of the peaks from the centerline of a 

trace, the centerline being established as the line above and below which, there is an equal area 

between the centerline and the surface trace. 

 

 

1.3. Thesis Outline 

The thesis is organized in nine chapters.  

Chapter 1 gives an introduction to the Thesis.  

Chapter 2 contains literature survey, motivation and objectives of the thesis. 

Chapter 3 contains the experimental setup, Design of Experiments and analysis using Signal to    

               Noise ratio (S/N) and Analysis Of Variance (ANOVA). 
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Chapter 4 contains the formulation of mathematical model using Response Surface     

               Methodology (RSM) and its analysis 

Chapter 5 presents the Simulated Annealing based optimization of machining process. 

Chapter 6 presents the Particle Swarm based machining process Optimization. 

Chapter 7 presents the Genetic and Improved genetic algorithm based optimization of machining   

               process. 

Chapter 8 Results and Discussions 

Chapter 9 presents conclusions.  
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Chapter 2 - Literature Review 

This chapter sets the background for up-coming sections. It is basically an assessment of the 

present state of art of the wide and complex field of evolutionary algorithms and its application. 

Also this chapter separately reviews what has been done in the past in the area of application of 

evolutionary algorithms in machining process.  

Tarng. Y.S , S.C. Juang and C.H. Chang [1] proposes the use of grey-based Taguchi methods for 

the optimization of the Submerged Arc Welding (SAW) process parameters in hard facing with 

considerations of multiple weld qualities. In this new approach, the grey relational analysis is 

adopted to solve the SAW process with multiple weld qualities. A grey relational grade obtained 

from the grey relational analysis is used as the performance characteristic in the Taguchi method. 

They found that a grey relational analysis of the S/N ratios can convert the optimization of the 

multiple performance characteristics into the optimization of a single performance characteristic 

called the grey relational grade. As a result, the optimization of the complicated multiple 

performance characteristics can be greatly simplified through this approach. Their study showed 

that the performance characteristics of the SAW process such as deposition rate, dilution, and 

hardness are improved together by using the method proposed. 

  Vijayan. P  and V. P. Arunachalam  [2] reported research in their  work Taguchi‘s off-line 

quality control method applied for determines the optimal process parameters which maximize 

the mechanical properties of squeeze cast LM24 aluminum alloy. For this purpose, concepts like 

orthogonal array, S/N ratio and ANOVA were employed. 

Nihat Tosun Cogun and Gul Tosun [3] investigated the effect and optimization of machining 

parameters on the kerf (cutting width) and material removal rate (MRR) in wire electrical 

discharge machining (WEDM) operations. The experimental studies were conducted under 

varying pulse duration, open circuit voltage, wire speed and dielectric flushing pressure. The 
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settings of machining parameters were determined by using Taguchi experimental design 

method. The level of importance of the machining parameters on the cutting kerf and MRR was 

determined by using analysis of variance (ANOVA). The optimum machining parameter 

combination was obtained by using the analysis of signal-to-noise (S/N) ratio. The variation of 

kerf and MRR with machining parameters is mathematically modeled by using regression 

analysis method.  

The purpose of optimization of a process is that we need a solution which is as close as possible 

to the target and as robust as possible, i.e. with minimum variation. Dual response methodology 

has been successfully used for optimization in various cases [4–7].  

The study of Baek et al. [8] presented a surface roughness model for face-milling operations 

considering the profile and the run out error of each insert in the cutter body. It was stated that 

because of manufacturing errors in making the cutters, axial (affecting the depth of cut) and 

radial (affecting the surface roughness) run out errors exist. The feed rate was also taken into 

account so as to formulate a geometric model. After the model validation with experimental 

cutting data, the material removal rate was maximized through optimization of the feed rate with 

the surface roughness as a constraint by means of a bisection optimization algorithm. 

Tzeng. Y.-F and N.-H. Chiu [9] presents the application of a Taguchi dynamic experiment in 

developing a robust high-speed and high-quality electrical-discharge machining (EDM) process. 

In their study, a two-phase parameter design strategy coupled with a double- signal ideal 

function methodology is proposed. In the first phase, the ideal function of the EDM process is 

designed as a linear relationship between the main input signal (machining time) and the first 

output (material removal rate). This model seeks to develop a robust machining process that 

leads to a high material removal rate. In the second phase, the ideal function is particularly 

designed as a linear relationship between the adjustment signal (electrode dimension) and the 

second output (product dimension). The purpose is to adjust machined product dimension of the 
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EDM through optimized process parameters obtained in the first phase, to the desired dimension 

to provide an allowance for subsequent fine- polishing. 

For solving an optimization problem need to have estimates of S/N ratio and the average out of 

roundness error. Lucas [10] has suggested that an equation for predicting S/N ratio can be used 

for direct minimization of variance. To obtain the estimates of S/N ratio and the average 

response, analysis was performed on the responses for each run of the experiment. 

Kim and Chu [11] stated that the surface roughness could be determined by the maximum height 

of the effective scallop including the effects of cutter marks and conventional scallops. Through 

a texture superposition procedure, 3D surface texture, according to the given cutting conditions 

and cutter types, could be formed. The run out effect (classified as geometric runout caused by 

the eccentricity of the cutter axis and the irregularity of the cutting edges and as dynamic runout 

caused by vibration, chatter and the tool deflection) was included to make the predicted surface 

closer to the actual machined surface. 

Jianxin Roger Jiao and Petri T. Helo [12] propose an algorithm for the optimal design of a 

CUSUM control chart detecting process shifts in the mean value. The algorithm optimizes the 

sample size, sampling interval, control limit and reference parameter of the CUSUM chart 

through minimizing the overall mean value of a Taguchi‘s loss function over the probability 

distribution of the random process mean shift. 

Hasan Oktem ,Tuncay Erzurumlu and Mustafa C [13] developed a Taguchi optimization method 

for low surface roughness in terms of process parameters when milling the mold surfaces of 

7075-T6 aluminum. Considering the process parameters of feed, cutting speed, axial and radial 

depth of cut, and machining tolerance, they performed a series of milling experiments to measure 

the roughness data. Regression analysis was performed to identify whether the experimental 

measurements represent a fitness characteristic for the optimization process. For this purpose, a 

Taguchi orthogonal array, the S/N ratio, and an ANOVA were used. 
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A new method was introduced by Ehmann and Hong [14] to represent the surface generation 

process. Their system basically consisted of two parts, one that modeled the machine tool 

kinematics and another that modeled the cutting tool geometry. Specific interest for the latter 

was given in the area of the cutting edge that was described as the intersection of the tool‘s face 

and flank surfaces along with the respective angles.  

Palanikumar. K [15]  discusses  the  use  of  Taguchi  and response surface methodologies for 

minimizing the surface roughness   in   machining   glass   fiber   reinforced   (GFRP) plastics  

with  a  polycrystalline  diamond  (PCD)  tool.  The experiments were conducted using Taguchi‘s 

experimental design technique.    He concluded that for achieving good surface finish on the 

GFRP work piece, high cutting speed, high depth of cut and lower feeds are preferred. 

George. P.M, B.K. Raghunath, L.M. Manocha and Ashish M. Warrier [16] determined the 

optimal setting of the process parameters on the electro-discharge machining (EDM) machine 

while machining carbon–carbon composites. The parameters considered were pulse current, gap 

voltage and pulse-on-time; whereas the responses were electrode wear rate (EWR) and material 

removal rate (MRR). The optimal setting of the parameters are determined through experiments 

planned, conducted and analyzed using the Taguchi method. It was found that the electrode wear 

rate reduces substantially, within the region of experimentation, if the parameters are set at their 

lowest values, while the parameters set at their highest values increase the MRR drastically. 

Mahapatra. S. S and Amar Patnaik [17] attempted to determine the important machining 

parameters for performance measures like MRR, SF, and kerf separately in the WEDM process. 

Taguchi‘s experimental design method was used to obtain optimum parameter combination for 

maximization of MRR, SF as well as minimization of kerf. The optimal levels of the factors for 

all the objectives were shown to differ widely. In order to optimize for all the three objectives, 

mathematical models were developed using the non-linear regression method. 

Beggan. C et al. employed acoustic emission analysis [18] to predict surface quality. Acoustic 

emission (AE) is defined as the class of phenomena whereby transient elastic waves are 
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generated by the rapid release of energy from localized sources within a material. In the case of 

turning such sources can be found in the primary (due to chip formation), secondary (due to 

friction between cutting tool and chip) and tertiary (due to friction between cutting tool flank and 

workpiece) cutting zones. Instead of using the RMS value of the AE measured signals; a new 

quantity called AERMS20 was introduced in the paper and correlated with surface roughness. 

Sahin. Y [19] developed weight loss model of aluminium alloy composites with 10wt.% SiC 

particles by molten metal mixing method in terms of abrasive grain size, reinforcement size used 

in the composite, applied load and sliding distance using the Taguchi method. The two-body 

abrasive wear behavior of the specimen was investigated using pin-on-disc method where the 

samples slid against various size of SiC abrasive grits under different conditions. The orthogonal 

array, signal-to-noise ratio and analysis of variance were employed to study the optimal testing 

parameters on composites with 50µm and 100µm particle sizes. The experimental results 

demonstrate that the abrasive grain size was the major parameter on abrasive wear, followed by 

reinforcement size. 

Implementations of the RSM can be found in the works of M. Alauddin et al. [20] where a 

surface roughness model is developed for end milling of 190 BHN steel and Inconel 718. It was 

found that first- and second-order models constructed along with contour plots, easily enable the 

selection of the proper combination of cutting speed and feed to increase the metal removal rate 

without sacrificing surface quality. 

Lung Kwang Pana, Che ChungWangb, Ying Ching Hsiaoc and Kye Chyn Ho [21] optimized the 

use of an Nd:YAG laser for thin plate magnesium alloy butt welding using the Taguchi 

analytical methodology. The welding parameters governing the laser beam in thin plate butt 

welding were evaluated by measuring of the ultimate tensile stress. The effectiveness of the 

Taguchi method lies in clarifying the factor that dominates complex interactions in laser welding. 

The factors can be the shielding gas, laser energy, convey speed of work piece, point at which 

the laser is focused, pulse frequency, and pulse shape. Furthermore, 18 combinations of these six 
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essential welding parameters were set and Taguchi‘s method followed exactly. The optimal 

result was confirmed with a superior ultimate tensile stress of 169 MPa, 2.5 times larger to that 

from original set for laser welding. 

An approach that used a criterion for determining a network‘s architecture automatically can be 

found by W.S. Lin et al [22]. A prediction model was developed prior to the implementation of 

the actual machining process to determine certain cutting conditions (cutting speed, feed rate and 

depth of cut) in order to obtain a desired surface roughness value and cutting force value.  

Suresh et al. [23] adopted a two stage approach towards optimizing for surface roughness. 

Experimental results were used to build two mathematical models for surface roughness by a 

regression method according to RSM. The second-order mathematical model obtained was then 

taken as an objective function and optimized with a GA to obtain the machining conditions for a 

desired surface finish.  

Suresh Kumar Reddy. N and P. Venkateswara Rao [24] discuss the advantages of dry machining 

over wet machining by selecting proper cutting tools and tool geometry. The optimization, 

carried out in their work, gives an opportunity for the user to select the best tool geometry and 

cutting condition so as to get the required surface quality. Their work emphasizes that proper 

selection of parameters eliminates the use of cutting fluids during machining and hence makes 

machining more environmentall friendly. 

Jeyapaul. R, P. Shahabudeen and K. Krishnaiah [25] presented the use of genetic algorithm and 

ANOVA for the optimization of the gear hobbing process with multiple performance 

characteristics. They demonstrated that a multiple response optimization problem can be 

effectively tackled by using genetic algorithm to generate a single weighted SN ratio (WSN)  as 

a performance indicator. 

Rajesh Krishnan and Carla C. Purdy [26] applied both simulated annealing and a genetic 

algorithm to optimize the output of the TNF α -mediated NF-kB pathway and compared the 
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results. They found that the algorithms had similar execution time. The genetic algorithm out-

performs simulated annealing in both the constrained and the unconstrained experiments. In both 

cases, the output is maintained at a much higher level than was achieved by the method of Cho et 

al (2003). Future work includes application of both the algorithms to additional biological 

pathways such as glycolysis and HIV-1 protease pathways and comparison of the optimizations 

produced by both the algorithms. They concluded that if the genetic algorithm performs better 

than simulated annealing in all these cases, we will have good evidence that the genetic 

algorithm is preferable to simulated annealing for the Box algorithm, and it will then be used as 

the default optimization algorithm in Box. 

Heikki Orsila, Tero Kangas, Erno Salminen and Timo D. H¨am¨al¨ainen [27] discuss a way to 

minimize optimization effort and application execution time  in mapping an application on 

Multiprocessor System-on-Chip (MPSoC) using simulated annealing which is a versatile 

algorithm for hard optimization problems, such as task distribution on MPSoCs. The proposed 

new method of automatically selecting parameters for a modied simulated annealing algorithm to 

save optimization effort. The method determines a proper annealing schedule and transition 

probabilities for simulated annealing, which makes the algorithm scalable with respect to 

application and platform size. Applications are modeled as static acyclic task graphs which are 

mapped to an MPSoC. 

 

Vincent A. Cicirello [28], in his work illustrates the ease in which an adaptive simulated 

annealing algorithm can be designed.  He uses the adaptive annealing schedule known as the 

modified Lam schedule to apply simulated annealing to the weighted tardiness scheduling 

problem with sequence-dependent setups. The modified Lam annealing schedule adjusts the 

temperature to track the theoretical optimal rate of accepted moves. Employing the modified 

Lam schedule allows to avoid the often tedious tuning of the annealing schedule; as the 

algorithm tunes itself for each instance during problem solving. He discovered that for short 

searches, the adaptive SA outperforms the current best metaheuristic for this NP-Hard 
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scheduling problem; while for slightly longer searches, the highly-tuned GA is still better 

although  SA is competitive.  

Abido. M. A [29], presents the robust design of multi-machine Power System Stabilizers using 

Simulated Annealing (SA) optimization technique. This approach employs SA to search for 

optimal parameter settings of a widely used conventional fixed-structure lead-lag PSS (CPSS). 

The parameters of the proposed simulated annealing based power system stabilizer are optimized 

in order to shift the system electromechanical modes at different loading conditions and system 

configurations simultaneously to the left in the s-plane. Incorporation of SA as a derivative-free 

optimization technique in PSS design significantly reduces the computational burden. One of the 

main advantages of this approach is its robustness to the initial parameter settings. 

Andreas Efstratiadis and Demetris Koutsoyiannis [30] proposed evolutionary annealing-simplex 

algorithm (EAS) to try to couple the robustness of SA in rough problems, with the efficiency of 

the downhill simplex method in simple search spaces. By enhancing the typical Nelder-Mead 

procedure with new movements such as climbing and mutation, and by introducing to the 

original movements a stochastic component, it not only makes possible to easily escape from 

local optima but also to accelerate the searching procedure, especially in high-dimensional 

applications. After extended analysis, the algorithm was proved at least as effective and efficient 

as the SCE method, which is now widely used in the region of water resources systems 

optimisation. 

Anshuman Sahu and Rudrajit Tapadar [31] attempts to  solve  the  generalized ―Assignment 

problem‖ through genetic algorithm and simulated annealing. The generalized assignment 

problem is  basically  the ―N men- N jobs‖ problem where a single job can be assigned  to only 

one person in such a way that the overall cost of assignment is minimized. While solving this 

problem through genetic algorithm (GA), a unique encoding scheme is used  together with 

Partially Matched Crossover (PMX). 
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Ruhul  SARKER and Xin YAO [32],developed a general cost model model for a two-stage batch 

environment considering both raw materials and finished products which in turn was used to 

develop a simulated annealing approach to determining an optimal ordering policy for 

procurement of raw materials and also for the manufacturing batch size to minimize the total cost 

for meeting customer demands in time. The solutions obtained were compared with those of 

traditional approaches. 

Farhad Kolahan, and Mahdi Abachizadeh [33] developed a simulated annealing algorithm to 

optimize machining parameters in turning operation on cylindrical workpieces. The 

computational results clearly showed that the proposed optimization procedure has considerably 

reduced total operation cost by optimally determining machining parameters and also 

demonstrated that the proposed solution procedure was quite capable in solving such 

complicated problems effectively and efficiently. 

Janaki Ram. D, T. H. Sreenivas, and K. Ganapathy Subramaniam [34] present two general 

algorithms for SA in their work. The algorithms have been applied to job shop scheduling 

problem (JSS) and the traveling salesman problem (TSP) and it has been observed that it is 

possible to achieve super linear speedups using the algorithm. 

William L. Goffe ,Gary D. Ferrier and John Rogers [35] tested a simulated annealing, on four 

econometric problems and compare it to three common conventional algorithms. Not only can 

simulated annealing find the global optimum, it is also less likely to fail on difficult functions 

because it is a very robust algorithm. The promise of simulated annealing is demonstrated on the 

four econometric problems. They found that SA could be used as a diagnostic tool to understand 

how conventional algorithms fail. They also found that, it could "step around" regions in the 

parameter space for which the function does not exist. And most importantly, it could optimize 

functions that conventional algorithms have extreme difficulty with or simply cannot optimize at 

all. 
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Yee-Ming Chen & Chun-Ta Lin [36] through their work presents an adaptive particle swarm 

optimization (APSO) approach to optimize the sequence of component placements on a PCB and 

the assignment of component types to feeders simultaneously for a pick-and-place machine with 

multiple heads. APSO proposed in the paper incorporates three heuristics, namely, head 

assignment algorithm, reel grouping optimization and adaptive particle swarm optimization. 

Comparing with the results obtained by other research, they concluded that performance of 

APSO is not worse than the performance of genetic algorithms (GA) in terms of the distance 

traveled by the placement head. Their results lead to minimize the total assembly time of 

assignment sequencing time of the placements of component on the PCB board. Considering 

other applications, they suggest it is easy to modify the APSO approach for the different 

applications in practice and the other research, for example, a further consideration of component 

placement for multiple printed circuit boards operation simultaneously and with the time 

limitation of operation. 

The basic PSO algorithm that is described in the works of Venter. G. and Sobieski, J (37). The 

basic algorithm is first described, followed by a discussion on side and functional constraint 

handling, and finally, a discrete version of the algorithm is presented. 

Hong Zhang, Member IAENG and Masumi Ishikawa [38] proposes a new method to prevent 

premature convergence  and for managing the exploration-exploitation trade-off in PSO search, 

Particle Swarm Optimization with Diversive Curiosity (PSO/DC). They applied PSO/DC to a 2-

dimensional multimodal optimization problem to well demonstrate its effectiveness. The ratio of 

success in finding the optimal solution to the given optimization problem is significantly 

improved, which reaches 100% with the estimated appropriate values of parameters in the 

internal indicator. 

Arvind Mohais, Alexander Nikov, Ashok  Sahai, and Selahattin Nesil [39] suggested an 

optimization approach for product design parameters based on emotive responses by combining 

Kansei techniques and particle swarm optimization algorithm (PSO). The approach involves 
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designing a Kansei survey for collecting data on customers‘ affective responses to various 

aspects of a product, using several exemplars of the product. After information gathering, the 

PSO algorithm is employed to build a prediction binary linear model that aggregates the survey 

data. Subsequently, another binary linear model links product design. Parameters to the outputs 

of the first model to establish mathematical connections between the subjective impression of a 

product (Kansei) and its properties. 

ZHAO Bo and CAO Yi-jia [40] proposes a multi-objective particle swarm optimization 

(MOPSO) approach for multi-objective economic load dispatch problem in power system.  The 

proposed MOPSO approach handles the problem as a multi-objective problem with competing 

and non-commensurable fuel cost, emission and system loss objectives and has a diversity-

preserving mechanism using an external memory (call ―repository‖) and a geographically-based 

approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is 

employed to extract the best compromise solution. Several optimization runs of the proposed 

MOPSO approach were carried out on the standard IEEE 30-bus test system. The results 

revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto 

optimal non-dominated solutions of multi-objective economic load dispatch. They also found 

that the non-dominated solutions in the obtained Pareto-optimal set are well distributed and have 

satisfactory diversity characteristics.   

Jialin Zhou, Zhengcheng Duan, Yong Li, Jianchun Deng  and Daoyuan Yu [41] presented 

particle swarm optimization (PSO) technique in training a multi-layer feed-forward neural 

network (MFNN) which is used for a prediction model of diameter error in a boring machining. 

Experimentally they established that compared to the back propagation (BP) algorithm, the 

present algorithm achieved better machining precision with a fewer number of iterations. Their 

work showed that the networks for diameter error prediction trained by the PSO algorithm or by 

the BP algorithm both improve the precision of the boring machining, but the neural networks 

trained by the PSO algorithm perform better than those trained by the BP algorithm. 
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Abido. M. A [42], a novel evolutionary algorithm-based approach to optimal design of multi-

machine power-system stabilizers. The designed approach employs a particle-swarm-

optimization (PSO) technique to search for optimal settings of PSS parameters. Two Eigen 

value-based objective functions to enhance system damping of electromechanical modes are 

considered. The robustness of the proposed approach to the initial guess is demonstrated. 

Jong-Bae Park, Ki-Song Lee, Joong-Rin Shin, and Kwang Y. Lee  [43] proposed a new approach 

to economic dispatch (ED) problems with non-smooth cost functions using a particle swarm 

optimization (PSO) technique. In their work, a modified PSO (MPSO) mechanism is suggested 

to deal with the equality and inequality constraints in the ED problems. A constraint treatment 

mechanism is devised in such a way that the dynamic process inherent in the conventional PSO 

is preserved. Moreover, a dynamic search-space reduction strategy is devised to accelerate the 

optimization process. To show its efficiency and effectiveness, the proposed MPSO is applied to 

test ED problems, one with smooth cost functions and others with non-smooth cost functions 

considering valve-point effects and multi-fuel problems. A position adjustment strategy is 

incorporated in the PSO framework in order to provide the solutions satisfying the inequality 

constraints. The equality constraint in the ED problem is resolved by reducing the degree of 

freedom by one at random. The strategies for handling constraints are devised while preserving 

the dynamic process of the PSO algorithm. Additionally, the dynamic search-space reduction 

strategy is applied to accelerate the convergence speed.  

Cui-Ru Wang, He-Jin Yuan, Zhi-Qiang Huang, Jiang-Wei zhang and Chen-Jun Sun [44] 

presented in their work a modified particle swarm optimization algorithm and a new application 

of it for solving the OPF problem in power system. As a representative method of swarm 

intelligence, MPSO supplies a novel thought and solution for nonlinear, non-differential and 

multi-modal problem. For solving the OPF problem, numerical results on the 5-bus system 

demonstrated the feasibility and effectiveness of the proposed MPSO method, and the 

comparison showed its validity and superiority over EP and HEP.   



17 

 

Rania Hassan,  Babak Cohanim  and Olivier de Weck [45] discussed the comparison between the 

computational effectiveness and efficiency of the GA and PSO using a formal hypothesis testing 

approach. The motivation was to validate or refute the widely speculated hypothesis that PSO 

has the same effectiveness as the GA (same rate of success in finding true global optimal 

solutions) but with better computational efficiency. The results of this test could prove to be 

significant for the future development of PSO. It appeared that PSO outperformed the GA with a 

larger differential in computational efficiency when used to solve unconstrained nonlinear 

problems with continuous design variables and less efficiency differential when applied to 

constrained nonlinear problems with continuous or discrete design variables. 

Jong-Bae Park, Young-Moon Park, Jong-Ryul Won, and Kwang Y. Lee [46] developed an 

improved genetic algorithm(IGA) for a long-term least-cost generation expansion planning 

(GEP) problem. The proposed IGA includes several improvements such as the incorporation of 

an artificial initial population scheme, a stochastic crossover technique, elitism and scaled fitness 

function. The IGA has been successfully applied to long-term GEP problems. It provided better 

solutions than the conventional SGA. Moreover, by incorporating all the improvements (IGA3), 

it was found to be robust in providing quasi-optimums within a reasonable computation time and 

yield better solutions compared to the TCDP employed in WASP. Contrary to the DP, 

computation time of the proposed IGA is linearly proportional to the number of stages. The 

developed IGA method can simultaneously overcome the ―curse of dimensionality‖ and a local 

optimum trap inherent in GEP problems. The proposed IGA approach can be used as a practical 

planning tool for a real-system scale long-term generation expansion planning. 

Yiğit Karpat and Tuğrul Özel [47] introduces a procedure to formulate and solve optimization 

problems for multiple and conflicting objectives that may exist in finish hard turning processes 

using neural network modeling together with dynamic neighborhood particle swarm optimization 

technique. They indicated through their results that the proposed swarm intelligent approach for 

solving the multi-objective optimization problem with conflicting objectives is both effective and 
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efficient, and can provide intelligence in production planning for multi-parameter turning 

processes. 

Williams, E. A., and Crossley, W. A. (48), ―Empirically-Derived Population Size and Mutation 

Rate Guidelines for a Genetic Algorithm with Uniform Crossover,‖ Soft Computing in 

Engineering Design and Manufacturing, P. K. Chawdhry, R. Roy and R. K. Pant (editors), 

Springer-Verlag, 1998, pp. 163-172. 

Hassan  R.  and Crossley, W.(49,50) defines the problem involving designing the payload and 

bus subsystems of a commercial communication Geosynchronous satellite with given payload 

requirements. The design objective is to minimize the spacecraft overall launch mass, which is a 

surrogate for cost, given design constraints on payload as well as overall system reliability. The 

problem also involves geometrical constraints imposed by the choice of the launch vehicle. The 

problem includes six functional constraints and 27 discrete design variables representing the 

technology choices and redundancy levels of the satellite payload and bus subsystems.  

Ramón Quiza Sardiñas, Marcelino Rivas Santana, Eleno Alfonso Brindis [51] suggested that a 

posteriori multi -objective optimization offers greatest amount of information in order to make a 

decision on selecting cutting parameters in turning. By means of Pareto frontier graphics, several 

different situations may be considered, facilitating the choice of right parameters for any 

condition. They proposed a micro-GA that was  shown to obtain several, uniformly distributed 

points, in order to arrange the Pareto front, at a reasonably low computational cost. Aspects like 

diversity maintenance and constraints handling have been successfully sorted for their studied 

problem in turning operation. Cost analysis can complement the Pareto front information, and it 

helps the decision-making process. The proposed model must be enlarged to include more 

constraints, such as cutting surface temperature. 

Paulo Davim. J and C. A. Conceicao Antonio [52] proposed a methodology aiming at the 

selection of the optimized values for cutting conditions in machining process, as turning and 

drilling aluminium matrix composites is proposed. An hybrid technique based on an evolutionary 
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search over a design space obtained by experimental way is considered. The machining forces, 

the surface finish and the tool wear are experimentally measured considering the feed and the 

cutting velocity as predefined parameters. The optimization based on genetic algorithms has 

proved to be useful dealing with discrete variables defined on a population of cutting condition 

values obtained from time scale dependent experiments. The obtained results show that 

machining (turning and drilling) of composite material made of metal matrices with PCD tool is  

perfectly compatible with the cutting conditions for cutting time of industrial interest and in 

agreement with the optimal machining parameters ( cutting forces , work piece surface finish and 

tool wear ).They cited the importance  of optimisation of machining parameters using numerical 

and experimental models based on genetic algorithms in matters of scientific interest and large 

industrial applications. 

Abdel-Magid. Y. L, M. A. Abido, et.al, [53], demonstrates the use of genetic algorithms for the 

simultaneous stabilization of multi-machine power systems over a wide range of operating 

conditions via single-setting power system stabilizers. The power system operating at various 

conditions is treated as a finite set of plants. The problem of selecting the parameters of power 

system stabilizers which simultaneously stabilize this set of plants is converted to a simple 

optimization problem which is solved by a genetic algorithm with an Eigen-value based 

objective function. Two Objective functions are presented, allowing the selection of the stabilizer 

parameters to shift some of the closed-loop Eigen values to the left-hand side of a vertical line in 

the complex s-plane, or to a wedge-shape sector in the complex s-plane. 

Mahapatra. S. S & Amar Patnaik [54],in their work, attempted to determine the important 

machining parameters for performance measures like MRR, SF, and kerf separately in the 

WEDM process. Factors like discharge current, pulse duration, and dielectric flow rate and their 

interactions have been found to play a significant role in rough cutting operations for 

maximizations of MRR, minimization of surface roughness and minimization of cutting 

width.Taguchi‘s experimental design method was used to obtain optimum parameter 

combination for maximization of MRR, SF as well as minimization of kerf. Interestingly, the 
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optimal levels of the factors for all the objectives differed widely. In order to optimize for all the 

three objectives, mathematical models were developed using the non-linear regression method. 

Chiuh-Cheng Chyu & Wei-Shung Chang [55] presents a genetic-based algorithm to determine 

the feeder arrangement and CPS for a chip shooter type machine with the objective of 

minimizing the cycle time per board. The algorithm has considered several factors in real 

situations: different machine velocity settings for component types, X–Y table movement time is 

nonlinear and concave, and feeder duplications. Such a study is very helpful when a 

manufacturer is requested to produce thousands of PCBs of identical design. The performance of 

the proposed algorithm, including the effect of feeder duplications, is presented and analyzed in 

their study. The results indicate that the algorithm produces promising solutions evaluated on the 

basis of a lower bound on cycle time per board, which is computed by a conservative formula. 

An estimate of average cycle time per board based. 

Kuriakose. S, M.S. Shunmugam [56] suggests use of Non-Dominated Sorting Genetic   

Algorithm in optimizing the Wire-EDM process parameters to obtain a non  dominated solution 

set . The sorting procedure employs a fitness assignment scheme which prefers non-dominated 

solutions and uses a sharing strategy which preserves diversity among the solutions. Also, none 

of the solution in the Pareto-optimal set is better than any other solution in the set. The process 

engineer can select optimal combination of parameters from the Pareto optimal solution set, 

depending on the requirements. They implemented the NSGA algorithm using TurboC and  ran 

on Pentium IV PC. 

Several efforts were made by various researchers to design a suitable model for grinding process 

such as, using parameter optimisations [57,58], analytical and numerical approaches. 

Noorul Haq, K. Balasubramanian , Sashidharan & R. B. Karthick [59] solves the problem of 

parallel line job shop scheduling problem using the genetic algorithm optimization technique. It 

arrives at the optimal allocation and schedule of given jobs for each of the given processing 

lines. The C program code is written in LINUX platform and is user friendly. It can be executed 



21 

 

for any number of lines, jobs, and machines per line. It also gives the minimum make span for a 

given problem. Their work may be further extended for varying set up times in each line and also 

for unequal number of machines in each line. Also the randomization algorithm for the initial 

population can be made less complicated without sacrificing its accuracy. 

Chao-Lung Chiang [60] presents an improved genetic algorithm with multiplier updating 

(IGA_MU) to solve power economic dispatch (PED) problems of units with valve-point effects 

and multiple fuels. The proposed IGA_MU integrates the improved genetic algorithm (IGA) and 

the multiplier updating (MU). The IGA equipped with an improved evolutionary direction 

operator and a migration operation can efficiently search and actively explore solutions, and the 

MU is employed to handle the equality and inequality constraints of the PED problem. Few PED 

problem-related studies have seldom addressed both valve-point loadings and change fuels. 

proposed algorithm is highly promising for the large-scale system of the actual PED operation. 

 

2.1. Motivation 

  Based on the literature survey performed, venture into this research was amply motivated by the 

fact that a little research has been conducted to obtain the optimal levels of machining 

parameters that yield the best machining quality in machining of SS 420. Most of the researchers 

have investigated influence of a limited number of process parameters on the performance 

measures of turning process. In this work, tool nose radius (one of the tool geometry) has been 

incorporated to enhance the effectiveness of the machining process, which is one of the most 

influential parameter in machining.  A suitable optimization technique or algorithm can be 

chosen based on the output performance of the optimization technique and the best one can be 

selected to maximize the production efficiency. This is possible only by evaluating the 

performance of different algorithm. No such performance evaluation is conducted throughout the 

literature. Majority of the works are concentrating only on particular method or technique. This 

has been rectified by employing different set of algorithms in this work. More over no study has 
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been performed in turning process using Improved Genetic Algorithm (IGA). The study, it is 

hoped will lead to theorising efficient monitoring and diagnostics in cutting processes. 

  

The non-linear nature of the machining process has compelled engineers to search for more 

effective methods to attain optimization. Researchers have found efficient optimized processes in 

nature itself. Biological systems provide ample insight into their workings; each when applied to 

mechanical systems help in converging towards the optimum value more accurately. 

 

The studies indicate the importance in analyzing the problem and efforts done to improve the 

performance of the production or design system even under disturbed conditions. Researchers 

are responsible to conceive new and improved analytical tools to solve a problem. When a new 

tool is available the problem should be re-examined to find better and more economical 

solutions. 

 

In recent years evolutionary algorithms have been gaining more importance and giving 

promising results in industrial applications. These issues motivate in applying such paradigms 

for analyzing and improving the performance of machining process system for enhancing quality 

and economy.  

2.2. Objective of the Thesis 

 To conduct experiments in dry turning process using Taguchi method. 

 

 To perform statistical analysis using S/N and ANOVA technique. 

 

 To develop a mathematical model using Response Surface Methodology. 
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 To determine the optimum machining parameters using evolutionary algorithms. 

 

 To identify the best optimization method in finding the optimum machining parameters 

based on the minimum surface roughness. 

 

 Make use of other published work in the literature in order to prove the effectiveness of 

the proposed algorithms. 
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Chapter 3 - Experimental details 

 

Experiments are performed by investigators in virtually all fields of inquiry, usually to discover 

something about a particular process or system. More formally experiment is a test or series of 

tests in which purposeful changes are made to the input variables of a process or system so that 

one can observe or identify the reasons for changes that may be observed in the output response. 

In this work to test the various algorithms actual experimental data should be available. In order 

to do that experiments in dry turning of SS 420 have been performed. 

When developing models on the basis of experimental data, careful planning of experimentation 

is essential. Experiment helps us in understanding the behavior of mechanical system. Data 

collected by systematic variation of influencing factors helps us to quantitatively describe the 

underlying phenomena. The factors considered for experimentation and analysis were cutting 

speed, feed rate, depth of cut and cutting tool nose radius. A large number of experiments have to 

be carried out when the number of process parameters increases. To solve this problem Taguchi 

method has been implemented in this context. 

3.1. Overview of the Taguchi method 

Taguchi‘s comprehensive system of quality engineering is one of the greatest engineering 

achievements of the 20
th
 century. His methods focus on the effective application of engineering 

strategies rather than advanced statistical techniques. It includes both upstream and shop-floor 

quality engineering. Upstream methods efficiently use small-scale experiments to reduce 

variability and remain cost-effective, and robust designs for large-scale production and market 

place. Shop-floor techniques provide cost based real time methods for monitoring and 

maintaining quality in production. The farther upstream a quality method is applied, the greater 

leverages it produces on the improvement, and the more it reduces the cost and time. Taguchi 
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proposes an ―off-line‖ strategy for quality improvement as an alternative to an attempt to inspect 

quality into a product on the production line. He observes that poor quality cannot be improved 

by the process of inspection, screening and salvaging. No amount of inspection can put quality 

back into the product. In the present work Taguchi‘s parameter design approach is used to  study 

the effect of process parameters on the various responses of the dry turning of  SS 420. 

Quality improvement programmers are very much part of the strategic planning process of 

successful companies (McKeown, [61]). Alongside the strategic planning issues are the 

importance of design and the idea of designing quality into products and processes. 

The Taguchi philosophy and its associated experimental design method has been extensively 

used in the manufacturing environment to improve production processes, for example a metal 

injection molding process (Fox and Lee, [62]) and a plasma deposition process in device 

fabrication (Logothetis et al. [63]). In such environments, careful planning of the experiment is 

important if the full benefits of the experimental methods are to be realized (Coleman and 

Montgomery [64]). Other examples of manufacturing related applications of the Taguchi method 

include scheduling (Dooley and Mahmoodi [65]) and optimization of a robot's performance 

capability for continuous path operation (Wu et al. [66]). Despite the successful applications of 

the Taguchi method, a wider use of the approach and its associated techniques is only possible 

by gaining a better understanding of the method and its analysis. The success and failure of the 

Taguchi approach to parameter design have been widely discussed ,Nair [67]; Lochner [68]; 

Pignatiello and Ramberg [69]; Antony [70]. In summary, Taguchi's main success have been to 

emphasize the importance of quality in design and to simplify the use of experimental design as a 

general purpose tool for quality engineers. Amongst the many criticisms of the Taguchi method 

is the use of the signal-to- noise (S/N) ratio as a performance measure statistic. S/N ratio 

measures the functional robustness of products and processes. The S/ N ratios have been 

criticized as providing misleading results in certain cases. Although the classical experimental 

design has a much wider appeal than the Taguchi method, the Taguchi method does provide the 

practical engineer with an useful starting point for quality improvement. This is fundamentally 
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because the former is more focused on the statistical aspects whereas the latter is primarily 

focused on the engineering aspects of quality. The beauty of Taguchi method lies in the fact that 

it integrates statistical methods into the powerful engineering process. 

3.2. Design of Experiments   

In this process four factors at three levels are chosen which is given in Table 1. The fractional 

factorial design used is a standard L27 (3
13

) orthogonal array [71]. This orthogonal array is 

chosen due to its capability to check the interactions among factors. Each row of the matrix 

represents one trial.  

The basic principle in using any design of experiment (DOE) technique is to first identify the key 

variables in the process and then actively probe those variables to determine their effects on the 

process output. A typical DOE process consists of three distinct phases, screening, 

characterization and optimization, although not all three phases are used in every study. 

Orthogonal designs are particularly useful because the estimate of the effect of a factor is 

unaffected by which other factors are under consideration. Factorial designs, which involve all 

possible combinations of levels of all the factors, can be investigated simultaneously. This 

technique also saves time and money because large number of factors can be investigated 

simultaneously.  

One type of complete factorial experiment is 2
k
 factorial designs; k is the number of factors 

investigated at two levels. In order to calculate the number of runs, e.g. if k=7 then the number of 

runs is 2
7
 =128 experimental runs. The number of run increases as the k value increases. In order 

to reduce the number of experimental runs, fractional factorial was introduced which use only a 

fraction of the total possible combinations of levels. The number of run is given by 2 
k-1

, e.g. if 

k=7, 2
(7-1)

 =2
6
 =64 experimental runs. By using the fractional factorial the number of run has 

been reduced by half. Taguchi‘s method adopts the fundamental idea of DOE but simplifies and 

standardized the factorial and fractional factorial designs so that experiments conducted will 

produce more consistent results.  
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3.2.1 Parameter Design Based on the Taguchi method 

The Taguchi philosophy proposes that the task of assuring quality must begin with the 

engineering of quality-product and process design optimization for performance quality and cost. 

Quality engineering must be completed before the product reaches its production stage. 

‗Quality‘, defined by Taguchi as the deviation from on-target performance appears at first to be a 

paradox. According to him the quality of a manufactured system is the total loss generated by 

that product to society from the time it is shipped. The robust design method which is the key 

QA procedure put forth by Taguchi is a systematic method for keeping the producer‘s costs low 

while delivering the highest quality to the consumer. Taguchi‘s robust design experiments for 

most part use only orthogonal arrays rather than full factorial design. 

Modeling provides reliable equations obtained from the data of properly designed experiments. 

Therefore, it is essential to have a well-designed set of experiments. A well-designed experiment 

can substantially reduce the number of experiments required. Several types of experimental 

results have been reported. In this research, the design suggested by Taguchi is used. 

 3.2.2 Orthogonal Array Experiment 

 Classical experimental design methods are too complex and are not easy to use. A large number 

of experiments have to be carried out when the number of process parameters increases. To solve 

this problem, the Taguchi method uses a special design of orthogonal arrays to study the entire 

parameter space with only a small number of experiments. According to the Taguchi method, a 

robust design and an L27 orthogonal array are employed for the experimentation. Four machining 

parameters are considered as controlling factors – namely, cutting speed, feed rate, depth of cut 

and nose radius and each parameter has three levels – namely low, medium and high, denoted by 

1,2 and 3, respectively. Table 3.1 shows the cutting parameters and their levels considered for 

the experimentation. The experimental design considered for the investigation to achieve an 

optimal surface finish during the turning of SS 420 steel is based on the L27 orthogonal array 
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shown in Table 3.2. Based on this, a total number of 27 experiments in dry machining condition 

is done, each having a different combination of levels of factors as shown in Table 3.1 were 

carried out. 

Orthogonal arrays are special standard experimental design that requires only a small number of 

experimental trials to find the main factor effects on output. Before selecting an orthogonal array, 

the minimum number of experiments to be conducted shall be fixed which is given by: 

N Taguchi     = 1+ NV ( L – 1 ) 

N Taguchi        = Number of experiments to be conducted 

NV            = Number of variables 

L               = Number of levels 

In this work 

NV  = 4  and L = 3 , Hence  

N Taguchi   = 1+ 4 (3-1)  = 9 

Hence at least 9 experiments are to be conducted. Based on this orthogonal  array ( OA) is to be 

selected  which has at least 9 rows  i.e.,9 experimental runs. Standard OAs available are L4, L8, 

L9, L12, L16, L18, L27, etc.  In this work L9 is sufficient, but since interaction effects are also to 

be considered, L27 array is selected. 

Based on main factor, interaction effects between variables, the variables are assigned at 

columns, as stipulated by orthogonal array. Some columns can be kept dummy, but no row 

should be left out. 

Once the orthogonal array is selected, the experiments are selected as per the level combinations. 

It is important that all experiments are conducted. The interaction effect columns can be kept 
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dummy while conducting experiments, but to be considered for analysis. The performance 

parameter (out put ) is noted for each experimental run for analysis. 

 

Table 3.1 – Cutting parameters and levels 

Levels              Feed                  Cutting velocity                    Depth of cut        Nose radius 

                       F in  mm/rev                 V in m/min                      D in mm            R in mm 

      

  1               0.059                    39.269                               0.4                           0.4 

  2              0.159                    60.475                               0.8                           0.8 

  3               0.26                    94.247                               1.2                           1.2 
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Table 3.2- L27  Orthogonal array 

 

Runs F  D*F    D F*V 

  

F*R  V*R   V  D*V  D*R   R 
 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 2 2 2 2 2 2 2 2 2 

3 1 1 1 1 3 3 3 3 3 3 3 3 3 

4 1 2 2 2 1 1 1 2 2 2 3 3 3 

5 1 2 2 2 2 2 2 3 3 3 1 1 1 

6 1 2 2 2 3 3 3 1 1 1 2 2 2 

7 1 3 3 3 1 1 1 3 3 3 2 2 2 

8 1 3 3 3 2 2 2 1 1 1 3 3 3 

9 1 3 3 3 3 3 3 2 2 2 1 1 1 

10 2 1 2 3 1 2 3 1 2 3 1 2 3 

11 2 1 2 3 2 3 1 2 3 1 2 3 1 

12 2 1 2 3 3 1 2 3 1 2 3 1 2 

13 2 2 3 1 1 2 3 2 3 1 3 1 2 

14 2 2 3 1 2 3 1 3 1 2 1 2 3 

15 2 2 3 1 3 1 2 1 2 3 2 3 1 

16 2 3 1 2 1 2 3 3 1 2 2 3 1 

17 2 3 1 2 2 3 1 1 2 3 3 1 2 

18 2 3 1 2 3 1 2 2 3 1 1 2 3 

19 3 1 3 2 1 3 2 1 3 2 1 3 2 

20 3 1 3 2 2 1 3 2 1 3 2 1 3 

21 3 1 3 2 3 2 1 3 2 1 3 2 1 

22 3 2 1 3 1 3 2 2 1 3 3 2 1 

23 3 2 1 3 2 1 3 3 2 1 1 3 2 

24 3 2 1 3 3 2 1 1 3 2 2 1 3 

25 3 3 2 1 1 3 2 3 2 1 2 1 3 

26 3 3 2 1 2 1 3 1 3 2 3 2 1 

27 3 3 2 1 3 2 1 2 1 3 1 3 2 
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3.3. Experimental details 

 The experiment is performed on SS 420 of size 25 mm diameters which contains 12% of 

chromium sufficient enough to give corrosion resistance property and good ductility. Its 

chemical composition is given as 0.15% C, 12.0-14.0% Cr , < 1.0% Si , <0.04% P ,<1.0%  Mn, 

<0.03% S and remaining as Fe . The physical and mechanical properties of the SS420 are given 

in Table 3.3. The cutting tool for turning with rhombic tooling system is uncoated tungsten 

carbide having zero rake angle,7
o
 clearance angle and 55

o
 cutting edge angle and of nose radii 

0.4,0.8 and 1.2 have been used for experiment. The different sets of dry turning experiments are 

performed using a Kirlosker centre lathe. The machined surface is measured at three different 

positions and the average values are taken using a RUGOSURF 10G surface texture measuring 

instrument, which has diamond stylus tip with accuracy of 0.005μm and resolution of 0.05 μm 

and having a maximum measuring range of 300 μm. The photograph of the experimental set-up 

is shown in fig.3.1. 

 

 

Table 3.3 – Physical and Mechanical properties of specimen SS420 

 

Grade 

 

 
 

Density 

(kg/m^3) 

 
 

Elastic 

Modulus 

(GPa) 
 

Mean Coefficient of 

Thermal Expansion 

(µm/m/°C) 

Thermal 

Conductivity 

(W/m.K) 
 

Specific 

Heat 0-

100°C 
(J/kg.K) 

Electrical    

Resistance 

(nΩ.m) 
 

   0 to 

100°C 

0 to 

315°C 

0 to 

538°C 

        At                                  

      100°C 

          

    

 

   

420 

    

7750 

     

200 

  

10.3 

  

10.8 

  

11.7 

  

        24.9 

    

 

      

    460 

      

      550 
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(a) 

 

(b) 

 Fig.3.1. Experimental Setup (a) Machining Trial (b) Roughness 

Measurement 
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3.4. S/N Analysis 

The S/N ratio is a concurrent quality metric linked to the loss function  (Barker, 1990). By 

maximizing the S/N ratio, the loss associated can be minimized. The S/N ratio determines the 

most robust set of operating conditions from variation within the results. The S/N ratio is treated 

as a response (transform of raw data) of the experiment. In the present investigation, the S/N data 

analysis have been performed. The effects of the selected turning process parameters on the 

selected quality characteristics have been investigated through the plots of the main effects based 

on raw data. The optimum condition for each of the quality characteristics has been established  

through S/N data analysis aided by the raw data analysis. 

Taguchi recommends the use of the loss function to measure the performance characteristic 

deviating from the desired value. The value of the loss function is further transformed into a 

signal-to-noise (S/N) ratio. The rationale for this switch over to S/N ratios instead of working 

directly with the quality characteristic measurement is, the S/N ratio is a concurrent statistic –a 

special kind of data summery. A concurrent statistic is able to look at two or more characteristics 

of distribution and roll these characteristic into a single number or figure of merit. Usually, there 

are three categories of performance characteristic in the analysis of the S/N ratio. The loss 

function for the lower gives better performance characteristic and can be expressed as  

                                            

n

k
ijk

ij y
n

L
1

21

                                         (3.1) 

where Lij is the loss function of the i
th

 performance characteristic in the j
th

 experiment, yijk the 

experimental value of the i
th

 performance characteristic in the j
th
 experiment at the k

th
 trial, and n 

the number of trials. 

The loss function is further transformed into an S/N ratio. In the Taguchi method, the S/N ratio is 

used to determine the deviation of the performance characteristic from the desired value. The 

S/N ratio Lij for the i
th

 performance characteristic in the j
th 

experiment can be expressed as 
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)log(10 ijij L

                                                       (3.2) 

In contrast, the S/N ratio is a predictor of quality loss that isolates the sensitivity of the products 

function to noise factors. In robust design one minimizes the sensitivity of noise by seeking 

combinations of the design parameters setting that maximize the S/N ratio.  

The evaluation of surface roughness performed using signal to noise ratio analysis is to 

determine, which settings of the controllable factors results in the mean as close as possible to 

the desired target and a maximum value of the signal- to - noise (S/N) ratio. An analysis of 

variance (ANOVA) is used to estimate the variance of independent factors. Moreover the 

response surface methodology (RSM) and residual analysis is used to validate the robustness of 

the experiment.  

 

3.5. Influence of the Cutting Parameters on the Surface Roughness (Ra) 

Since each experiment is the combination of different factor levels, it is essential to segregate the 

individual effect of independent variables. This is done by summing up the performance values 

for corresponding level setting and then mean is found. Then sum of squares of   deviation of 

each of mean value from grand mean value is calculated. 

This sum of squares of deviation of a particular variable indicates whether the performance 

parameter is sensitive to the change of level setting. If  the sum of square deviation is close to  

zero or insignificant , one may conclude that design variable is not influencing the performance 

process ( i.e.) by performing ANOVA, one can conclude which factor is dominating over other 

and the percentage contribution of that particular independent variable can be found. 
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The S/N ratio for each parameter level is calculated by averaging the S/N ratios obtained when 

the parameter is maintained at that level. The experimental results for surface roughness and its 

S/N ratio are shown in Table 3.4.  

The average S/N ratios using smaller the better characteristics to find arithmetic average 

roughness (Ra) and significant interactions are shown in Fig.3.2. Study of Fig.3.2 suggests that 

feed rate (F), nose radius (R) and interaction between depth of cut and feed rate (DF) are more 

significant. Cutting velocity (V) and depth of cut (D) are marginally significant. The lowest feed 

rate of level 1 (F1=0.059) and highest nose radius of level 3 (R3= 1.2 mm) appear to be the best 

choice to get low value of surface roughness or high value of surface finish and thus making the 

process robust to the feed rate in particular. The cutting velocity and depth of cut are 

insignificant on the average S/N response. Table 3.5 shows Response table for S/N analysis of 

surface roughness. 

Table 3.6 shows the optimum level of process parameters to achieve high surface finish or low 

surface roughness. Therefore, the optimal combination to get low value of surface roughness 

(Ra) is 1-2-1-3 (F1-V2-D1-R3) within the tested range. 
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Table 3.5 Response table for S/N analysis of  

surface roughness 

Parameters Level 1 Level 2 Level 3 

Feed,F -0.88763 -1.38287 -3.3934 

cutting 
velocity,V 

-2.00476 -1.64315 -2.016 

Depth of 

cut,D 
-1.68882 -1.75278 -2.22231 

Nose 

radius,R -2.74422 -1.93117 -0.98851 

FV -1.4462 -1.51301 -2.7047 

FR -1.76797 -1.65702 -2.19096 

VR -2.37449 -1.78716 -1.50226 

DF -1.28822 -1.7973 -2.69269 

DV -1.84679 -1.69797 -2.11915 

DR -2.21652 -1.85558 -1.54791 

 

 

 

 

Table 3.6.The optimum level for the surface roughness Ra 

 

 

 

 

 

 

Parameters 

Optimum Level 

of cutting 

parameters 

                S/N Response 

                   value for Ra              

Feed- mm/rev      1 -0.88763 

cutting velocity-m/min      2 -1.64315 

Depth of cut-mm     1 -1.68882 

Nose radius     3 -0.98851 
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Fig.3.2. S/N ratio for surface roughness, Ra. 

 

Fig.3.3 represents the percentage of contribution of process parameters and the interactions 

among them. This   reveals that the feed factor (F = 54.863%)   and   the   nose     radius (R= 

24.051%) have statistical and physical significance on the surface roughness, Ra. The 

interactions of feed/cutting velocity    (FV= 15.62%)    and   depth of cut /feed (DF= 22.541%) 

have statistical and physical significance on arithmetic average roughness (Ra) in work piece. 

The interaction of velocity /nose radius (VR= 6.162%) presents percentage of marginal physical 

significance. The interactions of feed/nose radius (FR= -0.335%), depth of cut/cutting velocity 

(DV=1.421%) and depth of cut/nose radius (DR=0.917%) do not present percentages of physical 

significance of contribution on arithmetic average roughness (Ra) in work piece. 
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The main purpose of the analysis of variance (ANOVA) is the application of a statistical method 

to identify the effect of individual factors. Results from ANOVA can determine very clearly the 

impact of each factor on the process results [77].Table 3.7 shows the analysis of variance with 

arithmetic average roughness (Ra). This analysis is carried out for a 5% significance level, i.e. 

for a 95% confidence level. From table 3.7, it is clear that F calculated value for feed rate is 5.62, 

which is the most significant parameter and also nose radius have considerable influence on 

surface roughness. F calculated value is more than the table value; F0.05, 2, 20= 3.49) at 95%  

 

 

 

 

 

               

Figure 3.3. Pie- chart showing percentage contribution of surface roughness, Ra 

Feed,F, 54.863

cutting 
velocity,V 

, 1.40146

Depth of 
cut,D  

, 2.64369

Nose Radius 
,R, 24.051
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FR, 0.33543

VR, 6.16289
DF, 22.54177

DV, 1.421286 DR, 0.91715
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Table 3.7 – Results of ANOVA for S/N ratio of Ra 

Parameters 

Sum of 

squares 

Degrees 

of 

freedom 

Varian

ce 
F-Test F,5% 

% 

Contribution 

Feed, F 
31.69       2 15.849 5.620 3.36 54.86 

cutting 
velocity, V 0.809       2 0.4048 0.144 3.36 1.40 

Depth of 
cut, D  1.527       2 0.7637 0.271 3.36 2.643 

Nose 
Radius ,R 13.89       2 6.9482 2.464 3.36 24.05 

FV 9.0252       4 2.2563 0.800 2.74 15.62 

FR 0.1938       4 0.0484 0.017 2.74 0.335 

VR 3.560783       4 0.8901 0.316 2.74 6.162 

DF 13.02414       4 3.2560 1.154 2.74 22.54 

DV 0.821188       4 0.2052 0.072 2.74 1.421 

DR 0.529911       4 0.1324 0.046 2.74 0.917 

Error -16.9225      -6 2.8204     -29.28 

total 57.77779       26       100 

 

 

3.6 Analysis of Data for Interaction Effects (S/N Ratio) 

Interaction effects represent the synergetic effect of two or more factors in the OA experiment. 

The effect of one factor depends on the other factor. 

Interaction effect between variables F and D (FD), F and V (FV) ,F and R (FR) , V and R (VR) , 

D and V (DV) and D and R (DR) on the output surface roughness ( Ra) are analyzed from Table 

3.4. The following table shows the results of the interactions (FV), (FD), (FR),(DV),(DR) and 

(VR) on the surface roughness (Ra) and  S/N values of Ra. 
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Table 3.8- Interaction effects of (FV) on the surface roughness (Ra) and S/N values of Ra. 

PARAMETERS  AND 

ITS LEVELS 

 

INTERACTION RESULTS 

 

(FV) 

F V Ra Ra (S/N) 

1 1 1.669556 -1.1835 

1 2 1.070444 -0.14995 

1 3 1.599778 -1.32944 

2 2 1.689222 -1.47982 

2 3 1.552778 -1.14599 

2 1 1.733111 -1.52281 

3 3 3.655 -3.57257 

3 1 3.518444 -3.30797 

3 2 3.346778 -3.29967 

 

Table 3.9- Interaction effects of (FD) on the surface roughness (Ra) and S/N values of Ra. 

PARAMETERS  AND 

ITS LEVELS 

 

INTERACTION RESULTS 

(FD) 

 

F D Ra Ra (S/N) 

1 1 1.219778 -0.44656 

1 2 1.239 -0.51333 

1 3 1.881 -1.703 

2 2 1.742778 -1.52541 

2 3 1.727222 -1.53299 

2 1 1.505111 -1.09021 

3 3 3.433333 -3.43093 

3 1 3.637333 -3.4629 

3 2 3.449556 -3.28638 
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Table 3.10- Interaction effects of (FR) on the surface roughness (Ra) and S/N values of Ra. 

PARAMETERS  AND 

ITS LEVELS 

 

INTERACTION RESULTS 

(FR) 

 

F R Ra Ra (S/N) 

1 1 1.559778 -1.25808 

1 2 1.652333 -1.18247 

1 3 1.127667 -0.22235 

2 2 1.606333 -1.29934 

2 3 1.288333 -0.73206 

2 1 2.080444 -2.11721 

3 3 2.016667 -2.01112 

3 1 5.364222 -4.85738 

3 2 3.139333 -3.31171 

 

Table 3.11- Interaction effects of (DV) on the surface roughness (Ra) and S/N values of Ra. 

PARAMETERS  AND 

ITS LEVELS 

 

INTERACTION RESULTS 

(DV) 

 

D V Ra Ra (S/N) 

1 1 1.669556 -1.1835 

1 2 1.286667 -0.61313 

1 3 1.880889 -1.50306 

2 2 1.967444 -1.63462 

2 3 3.177222 -3.0106 

2 1 1.396556 -0.81807 

3 3 1.749444 -1.53433 

3 1 2.549667 -2.65584 

3 2 2.742444 -2.47675 
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Table 3.12- Interaction effects of (DR) on the surface roughness (Ra) and S/N values of Ra. 

 

 

 

 

 

 

 

 

 

 

Table 3.13- Interaction effects of (VR) on the surface roughness (Ra) and S/N values of Ra. 

PARAMETERS  AND 

ITS LEVELS 

 

INTERACTION RESULTS 

(VR) 

 

V R Ra Ra (S/N) 

1 1 3.084778 -2.74531502 

1 2 2.549667 -2.65583858 

1 3 1.396556 -0.81806959 

2 2 1.967444 -1.63461904 

2 3 1.286667 -0.61313308 

2 1 2.742444 -2.47675086 

3 3 1.749444 -1.53433133 

3 1 3.177222 -3.01060076 

3 2 1.880889 -1.84717705 

PARAMETERS  AND 

ITS LEVELS 

 

INTERACTION RESULTS 

(DR) 

D R Ra Ra (S/N) 

1 1 3.084778 -2.74531502 

1 2 1.880889 -1.50306399 

1 3 1.286667 -0.61313308 

2 2 1.967444 -1.63461904 

2 3 1.396556 -0.81806959 

2 1 3.177222 -3.01060076 

3 3 1.749444 -1.53433133 

3 1 2.742444 -2.47675086 

3 2 2.549667 -2.65583858 
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3.6.1 DISCUSSION ON INTERACTION EFFECT 

Surface finish is one of the main aspects of machinability. In this work , the effect of various 

main machining parameters  viz.,  Feed (F), Cutting velocity (V), Depth of cut (D) , Tool nose 

radius  (R) and Interaction effect between variables F and D (FD) , F and V (FV) ,F and R (FR) , 

V and R (VR) , D and V (DV) and D and R (DR) on the output surface roughness ( Ra) and S/N 

values of Ra are analyzed.  

High surface finish or low surface roughness is obtained at low levels of Feed and Depth of cut 

and high level of Tool nose radius and at medium Cutting velocity (Table 3.5 and Fig. 3.2). 

Feed and Tool nose radius influencing more in the surface roughness and interaction DF an FV is 

contributing more in the surface roughness (Table 3.6 and Fig. 3.3). 

INTERACTION EFFECTS 

Considering the interaction effect FV, when F is at level 1 and V is at level 2 minimum surface 

roughness value of 1.070444 is obtained among all other combinations (Table 3.7). 

For interaction FD when F is at level 1 and D is at level 1 minimum surface roughness value of 

1.219778 is obtained among all other combinations (Table 3.8). 

Lowest surface roughness value of 1.127667 occurs when F is at level 1 and R is at level 3 for 

interaction FR obtained among all other combinations (Table 3.9). 

For interaction DV when D is at level 1 and V is at level 2 minimum surface roughness value of  

1.286667 is obtained among all other combinations (Table 3.10). 

For interaction DR when D is at level 1 and R is at level 3 minimum surface roughness value of 

1.286667 is obtained among all other combinations (Table 3.11). 

For interaction VR when V is at level 2 and R is at level 3 minimum surface roughness value of 

1.286667 is obtained among all other combinations (Table 3.12). 
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Considering the Interaction effect between variables F and D (FD), F and V (FV) ,F and R (FR) , 

V and R (VR) , D and V (DV) and D and R (DR) on the S/N values of Ra, it is found that the 

levels obtained are same as that of surface roughness. This shows the noise has lesser effects at 

these levels. 

3.7. Summary 

 Experiments have been designed using Taguchi technique and dry turning of SS420 has been 

performed on Kirloskar turn master 35 lathe. Analysis using S/N and ANOVA were performed 

to find the optimum level and percentage of contribution of each parameter. By using S/N 

analysis the optimum machining parameters from the experimentation is obtained. To find out 

the optimum machining parameter, which were not used for experimentation but within the 

limits (lower and upper levels) effective optimization technique is required. In order to this 

evolutionary algorithms are used for further analysis. 
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Chapter 4 - Mathematical model 

 

For high quality demands of production process in the micro range, the modeling of machining 

parameters is necessary. Non linear regression as mathematical modeling tool is found 

economical to well detect the functional non linearity and interaction features involved in the 

experimental data. 

The various methods for doing mathematical models are Power equation, Exponential, 

logarithmic, Linear, Regression, Polynomial etc. 

In this work, the experimental results were used for modeling using response surface 

methodology. The purpose of developing mathematical models was to relate the machining 

responses to the parameters and thereby to facilitate the optimization of the machining process. 

With these mathematical models, the objective function and process constraints can be 

formulated, and the optimization problem can then be solved by using Evolutionary algorithms. 

In the constructed optimization problem, four decision variables are considered: cutting speed 

(V), feed (F), cutting depth (D) and cutting tool nose radius (R). These are the important cutting 

parameters of the process. 

 4.1 Mathematical Formulation 

4.1.1. Response Surface Methodology (RSM) 

 Experimentation and making inferences are the twin features of general scientific methodology. 

Statistics as a scientific discipline is mainly designed to achieve these objectives. Planning of 

experiments is particularly very useful in deriving clear and accurate conclusions from the 

experimental observations, on the basis of which inferences can be made in the best possible 

manner. The methodology for making inferences has three main aspects. First, it establishes 
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methods for drawing inferences from observations, when these are not exact but subject to 

variation, because inferences are not exact but probabilistic in nature. Second, it specifies 

methods for collection of data appropriately, so that assumptions for the application of 

appropriate statistical methods to them are satisfied. Lastly, techniques for proper interpretation 

of results are devised.  

The RSM is an empirical modeling approach for determining the relationship between various 

processing parameters and responses with the various desired criteria and searches for the 

significance of these process parameters in the coupled responses [78]. It is a sequential 

experimentation strategy for building and optimizing the empirical model. The objective of the 

response surface methodology is to develop the mathematical link between the responses and 

predominant machining parameters. Cochran & Cox [79] proposed response surface 

methodology for the optimization of experiments. In many experimental situations, it is possible 

to represent independent factors in quantitative form. Then these factors can be thought of as 

having a functional relationship or response:  

  
,).......,,( ,21 rk eXXXY
                                                                                 (4.1)                  

 between the response Y and X1,X2, . . . Xk of k quantitative factors. The function  is called 

response surface or response function. The residual er measures the experimental error. For a 

given set of independent variables, a characteristic surface responds. When the mathematical 

form of  is not known, it can be approximated satisfactorily within the experimental region by 

a polynomial. The higher the degree of the polynomial the better is the correlation, though at the 

same time the costs of experimentation become higher. 

The methodology may be applied for developing the mathematical models in the form of 

multiple regression equations correlating the dependent parameters such as cutting force, power 

consumption, surface roughness, tool life etc. with more than two  independent  parameters, viz. 

cutting speed, feed rate, depth of cut and tool nose radius, in a turning process. In applying the 

response surface methodology, the dependent parameter is viewed as a surface to which a 

mathematical model is fitted. For the development of regression equations related to various 

quality characteristics of turned parts, the second-order response surface may be assumed as: 
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This assumed surface Yu contains linear, squared and cross-product terms of  variables Xi ‘s. 

where Yu represents the corresponding response, the surface roughness Ra in the present 

research. The code values of i
th

 machining parameters for u
th
 experiment are represented by xiu. 

The values of n indicate the number of machining parameters. The terms β i, βii and βij are the 

second order regression co-efficient. The second term under the summation sign of this 

polynomial equation attributes to linear effects, whereas the third term of the above equation 

corresponds to the higher order effects and lastly the fourth term of the equation includes the 

interactive effects of the parameters. 

Response Surface Methodology (RSM) combines mathematical and statistical techniques for 

empirical model building and optimization. By conducting experiments and applying regression 

analysis, a model of the response to certain independent input variables can be obtained. The 

mathematical models commonly used are represented by: 

                               Y = ϕ( V,F, D, R )+∈                                                                  (4.3) 

Where Y is the machining response (surface finish), φ is the response function and V,F , D, R  

are turning variables and ∈ is the error that is normally distributed about the observed   response 

Y with a zero mean.  The general second-order polynomial response is as given below: 

                      
k
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k

i i j

juiuijiuiiiui xxxxu
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0

                                  (4.4)

 

where Yu represents the corresponding response, the surface roughness Ra in the present 

research. The code values of 
thi  machining parameters for 

thu  experiments are represented by 

iux
.The values of k  indicate the number of machining parameters. The terms iii ,  and ij  are 

the second order regression co-efficient. The second term under the summation sign of this 

polynomial equation attributes to linear effects, whereas the third term of the above equation 

corresponds to the higher order effects and lastly the fourth term of the equation includes the 

interactive effects of the parameters. 
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It also confirms that this model provides an excellent explanation of the relationship between the 

independent factors and the response arithmetic average roughness (Ra). The second order 

response surface representing the surface roughness, Ra can be expressed as a function of cutting 

parameters such as feed (F), cutting speed (V), depth of cut (D) and nose radius (R). The 

relationship between the surface roughness and machining parameters has been expressed as 

follows [71]. 

       
)()()()()()()()( 876543210 DVFRFVFDRVDFRa                      

)()()()()()( 2

14

2

13

2

12

2

11109 RVDFVRDR                                       (4.5) 

To obtain practical predictive quantitative relationships, it is necessary to model the turning 

responses and the process variables. In the present work, the mathematical models were 

developed on the basis of dry machining experimental results as shown in Table 3.4. The 

experimental results were used to model the response using response surface methodology. From 

the observed data for surface roughness, the response function has been determined   using RSM 

is, 

RFVFDFRVDFRa *2.18*0140.0*38.527.3599.00.3849.289.4      

          222 00318.05.165.80*232.0*8.15*0097.0 VDFRVRDVD               (4.6) 

 

From the relation developed for surface roughness using RSM (equation-4.6), the term R
2
 is 

highly correlated with depth of cut (D
2
) and hence  R

2
 has been removed from the equation. R-Sq 

values of RSM model for first order, second order with only interaction and second order with 

interaction and quadratic terms are 66.3%, 82.6% and 93.4% respectively. This shows the second 

order RSM model contains both quadratic and interaction terms and thus is more accurate.     

Result of ANOVA for the RSM model is represented in Table 4.1. This analysis is carried out for 

a level of significance of 5%, i.e., for a level of confidence of 95%. From the analysis of Table 

4.1, it is apparent that, the calculated F value is greater than the table F value (F0.05, 13,13=2.575) 

and hence the second order response function developed is quite adequate. 



50 

 

 

 

The comparison of the predicted and experimental values of surface roughness as per the 

Taguchi array is shown in Table 4.2 and Fig. 4.1.  

 

             

                               Fig 4.1 RSM Predicted and Experimental values of Ra 
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Table 4.1  Results of ANOVA for response function of Ra 

Source                            DF                     SS             Variance            F-Test 

Regression                      13                  42.0678          3.2360         14.24 

 Residual Error               13                  2.9545            0.2273 

 Total                              26                   45.0223 
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Table 4.2.    Experimental and Predicted values of Ra 

  Experimental               Actual Predicted 

         Run            value,Ra value,Ra 

 

1 1.460 1.415914 

2 0.973 1.201805 

3 1.619 1.847592 

4 0.891 1.112467 

5 1.872 1.648305 

6 2.676 2.060945 

7 1.308 0.821878 

8 0.872 1.269779 

9 1.347 1.515143 

10 1.331 0.801833 

11 2.225 2.625752 

12 1.915 2.018223 

13 1.134 1.286525 

14 1.234 0.714256 

15 1.966 2.230109 

16 2.050 2.531592 

17 1.770 1.403971 

18 1.300 1.153839 

19 3.201 3.390049 

20 1.754 1.78741 

21 4.914 4.586455 

22 5.744 5.292657 

23 3.160 3.242389 

24 2.329 2.087378 

25 1.967 2.122323 

26 5.435 5.247204 

27 3.057 3.609304 
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4.2. Analysis of the model developed 

4.2.1 Residual analysis 

 The analysis of variance assumes that the model errors are normally and independently 

distributed with the same variance in each factor level. These assumptions can be checked by 

examining the residuals. Residual is the difference between the actual observation and the value 

that would be obtained from the analysis of variance model to the experimental data.  

By constructing a normal probability plot of the residuals, the normality assumptions can be 

checked. To check the assumption of equal variances at each factor level residual against factor 

levels can be plotted and spread in the residuals may be compared. 

The independence plotting can be checked by plotting the residuals against the run order in 

which the experiment was performed. Simply the residuals from a design of experiment play an 

important role in assessing model adequacy. The analysis was made using the popular software, 

specifically used for design of experiment applications, known as MINITAB 14. 

 It is also necessary that residuals be normally distributed in order that the regression analysis to 

be valid [80].Residuals are the best estimates of error. The individual deviations of the 

observations Yi from their fitted values are known as residuals. Residual plots can also help to 

examine the assumptions about the regression model .The analysis of variance assumes that the 

model errors are normally and independently distributed. These assumptions can be checked by 

residuals. In this paper normal probability plot of the residuals ,residuals versus fits, residuals 

versus experimental run, residuals versus the variables and four-in-one residual plot for first 

order and second order response models are discussed.  

The first and second order response surface model representing the surface roughness, Ra can be 

expressed as a function of cutting parameters such as feed (F), cutting speed (V), depth of cut 

(D) and nose radius (R). The relationship between the surface roughness and machining 

parameters has been expressed as follows [81]. 
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Ra =   βo + β1(F) + β2(D) + β3(V) + β4(R) + Є        ( first order RSM model )              (4.7) 

Ra =   βo + β1(F) + β2(D) + β3(V) + β4(R) + β5(FD) + β6(FV) + β7(FR) + β8(DV) + β9(DR)  

          + β10(VR) + Є        (second order RSM model with only interaction)                 (4.8) 

Ra =   βo + β1(F) + β2(D) + β3(V) + β4(R) + β5(FD) + β6(FV) + β7(FR) + β8(DV) + β9(DR)  

          + β10(VR) + β11(F
2
) + β12(D

2
) + β13(V

2
) + β14(R

2
) + Є (second order RSM model    

                                                                               with quadratic)                                (4.9) 

The corresponding RSM models of the experimental values are as follows 

Ra = 1.87 + 10.3 F + 0.283 D + 0.00001 V - 1.90 R    (first order RSM model)          (4.10) 

Ra = - 0.21 + 28.2 F - 0.05 D - 0.0040 V + 0.40 R - 5.38 f*d + 0.0140 f*v - 18.2 f*r +    

         0.0056 d*v + 1.04 d*r - 0.0040 v*r (second order RSM model with only interaction)  

                                                                                                                                        (4.11) 

Ra = - 4.89 + 2.49 F - 38.0 D + 0.599 V + 3.27 R - 5.38 F*D +0.0140 F*V - 18.2 

          F*R + 0.0097 D*V + 15.8 D*R - 0.232 V*R + 80.5 F
2
 + 16.5 D

2
 - 0.00318 V

2
     

                                    (second order RSM model with quadratic)                              (4.12) 

 R-Sq values of RSM model for first order , second order with only interaction and second order 

with interaction and quadratic terms are 66.3%, 82.6% and 93.4% respectively. This shows the 

second order RSM model contains both quadratic and interaction terms are more accurate      

The normal probability plots of the response; Ra is depicted in Figs. 4.2. The graph shows that 

the data closely follow the straight lines, denoting a normal distribution. 
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Fig.4.2 Normal probability plot of residuals  

 

Figures 4.3(a), 4.3(b), 4.3(c) and 4.3(d) plot the residual versus the levels of feed, depth of cut, 

cutting velocity and tool nose radius respectively. There are some indications that levels of 1, 1, 

2 and 3 of feed, depth of cut, cutting velocity and tool nose radius have slightly lower variability 

in response, than other levels of the cutting parameters.  
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(a) 

                 

 

(b) 

                                  

 

(c) 

                           

 

(d) 

Fig.4.3. Plots of residuals versus (a) feed (b)depth of cut (c) cutting velocity (d) tool nose radius       
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4.2.2 Response surface analysis for Ra  

The interactions between controllable and noise factors are the key to a process robustness study. 

Therefore, it is logical to utilize a model for the response that includes both controllable and 

noise factors and also their interactions. Once we are in the region of optimum by S/N analysis a 

very precise estimate of the optimum operating condition is attained using RSM methodology. It 

also confirms that this model provides an excellent explanation of the relationship between the 

independent factors and the response arithmetic average roughness (Ra). The fitness of the model 

is ascertained by comparing linear and non-linear response equations.  

Based on the analysis conducted, Fig.4.4 gives the contour plots of the response model and 

Fig.4.5 is the three dimensional response surface plot for the model (equation 4.6).The curvature 

to the response surface is due to the interaction effect; in effect the plane is twisted. The rising 

ridge shape of surface plot is due to quadratic effect. The plots are created by considering the 

middle level values as the hold values of the independent variables such as feed, speed, depth of 

cut and nose radius. From the contour plot, it is observed that, at lower values of the cutting feed 

and depth of cut, and mid-value of cutting velocity and for maximum value of tool nose radius, 

minimum surface roughness can be obtained. The response surface plot reveals the interaction 

and quadratic effect of the model .Each contour corresponds to particular height of the response 

surface. The contour plot is helpful in analyzing the levels of independent variables that result in 

changes in the shape or height of the response surface. Also these plots are helpful in validating 

the S/N and ANOVA analysis. In this analysis the above plots satisfy the analysis. 
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4.3. Determining the model accuracy 

The model accuracy percentage for all data sets can be found by [82]                  

n

i predi

prediti

y

yy

n 1 ,

,exp,100

                                                                    (4.13)

 

                      

where yi,expt measured response corresponding to data set i, yi,pred predicted response 

corresponding to data set  i and n the number of data sets = 27. Equation (The average error rate 

of this model (equation-4.4) with the experimental data is within 4.7%. The mathematical model 

is applied to various evolutionary algorithms as explained in the succeeding chapters. 

 

4.4. Validation of mathematical model 

The developed mathematical model has been validated with the experimental results of  Paulo 

Davim. J [123], Ersan Aslan , Necip Camuscu , Burak Birgo¨ren [124] and J. Paulo Davim, V. 

N. Gaitonde and S. R. Karnik [125]. The percentage error obtained is 4.7% as such in table 4.3, 

which shows that the developed model will yield reasonably good result with percentage error 

less than 5%. 
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Table 4.3 Validation of the proposed mathematical model 

 

Sl.No. 

 

Name of the author 

Reported error 

(%) 

Error obtained from the 

proposed mathematical model 

(%) 

1 Paulo Davim. J,2003,[123] 10 4.7 

2 Ersan Aslan , Necip Camuscu , 

Burak Birgo¨ren,2007[124] 

28 4.7 

3 J. Paulo Davim, V. N. Gaitonde and 

S. R. Karnik,2008,[125] 

12 4.7 

 

4.5. Summary 

A mathematical model has been developed using response surface methodology and the analysis 

of the model was carried out. The model accuracy is determined and validation of the 

mathematical model has been carried out with the experimental results of various research work 

published in international journals. In forth-coming sections the developed mathematical model 

is used for further analysis in the optimization of machining parameters to achieve minimum 

surface roughness in the evolutionary algorithms. 
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 ( The values shown on the contour lines indicates surface roughness) 
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Chapter 5 - Simulated Annealing Based Optimization of Machining  

Process 

In simulated annealing (SA) method, an exponential cooling schedule based on Newtonian 

cooling process is employed and experimentation is done on choosing the number of iterations 

(m) at each step. The SA approach is applied to predict the influence of tool geometry (nose 

radius) and cutting parameters (feed, speed and depth of cut) on surface roughness in dry turning 

of SS 420 materials conditions based on Taguchi‘s orthogonal array method.  

5.1. Simulated Annealing method (SA)  

Simulated annealing was developed in 1983 to deal with highly nonlinear problems. SA appears 

rapidly to be becoming an algorithm of choice when dealing with financial instruments 

[83].Standard nested regression and local-search methods usually are applied to develop hybrid 

securities, e.g. combining markets in interest rates, foreign exchange, equities and commodities 

by linking them via options, futures, forwards, and swaps, to increase profits and reduce risks in 

investments as well as in trading [84].However, simulated annealing has been reasonably 

successfully used in the solution of a complex portfolio selection model [85,86]. The algorithm 

was able to handle more classes of constraints than most other techniques. One study has used 

SA on a set of several econometric problems [87], including cost functions arising in the 

monetary theory of exchange rate determination, a study of firm production efficiency, and a 

neural net model which generates chaos reputed to mirror some economic and financial series.  

 SA approaches the global maximization problem similar to using a bouncing ball that can 

bounce over mountains from valley to valley. It begins at a high "temperature" which enables the 

ball to make very high bounces, which helps it to bounce over any mountain to access any 

valley, given enough bounces. As the temperature declines the ball cannot bounce so high and it 

can also settle to become trapped in relatively small ranges of valleys. A generating distribution 

generates possible valleys or states to be explored. An acceptance distribution is also defined, 

which depends on the difference between the function value of the present generated valley to be 
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explored and the last saved lowest valley. The acceptance distribution decides probabilistically 

whether to stay in a new lower valley or to bounce out of it. All the generating and acceptance 

distributions depend on the temperature. It has been proved that by carefully controlling the rate 

of cooling of the temperature, SA can find the global optimum. SA's major advantage over other 

methods is an ability to avoid becoming trapped in local minima. 

The general SA algorithm involves the following three steps. First, the objective function   

corresponding to the energy function must be identified. Second, one must select a proper 

annealing scheme consisting of decreasing temperature with increasing of iterations. Third, a 

method of generating a neighbor near the current search position is needed. In single objective 

optimization problems, the transition probability scheme is generally selected by the Metropolis 

and logistic algorithms [88, 89,90]. Simulated annealing (SA) is based on an analogy with the 

homonymous thermo dynamical process. For slowly cooled thermo dynamical systems (e.g., 

metals), nature is able to find the minimum state of energy, while the system may end in an 

amorphous state of higher energy if it is cooled quickly. This principle is expressed by the 

Boltzmann probability distribution. 

The energy of a system in thermal equilibrium at a given temperature T is probabilistically 

distributed among all different states E. The parameter K is the Boltzmann constant and the 

exponential term is the Boltzmann coefficient. With the decrease of temperature, the Boltzmann 

distribution focuses on a state with lowest energy and finally as the temperature comes close to 

zero, this becomes the only possible state (see Fig.5.1).The system may switch to a new energy 

state with probability p, irrespective of whether it is higher or lower. Therefore, nature‘s 

minimization strategy is to allow the system sometimes to go uphill as well as downhill, so that it 

has a chance to escape from a local energy minimum in favor of finding a better, more global 

minimum. However, the lower the temperature, the less likely is a significant uphill step. 

 

                                              

Fig. 5.1 Distribution of probability for three different temperatures 
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Simulated annealing presents an optimization technique that can: (a) process cost functions 

possessing quite arbitrary degrees of nonlinearities, discontinuities, and stochasticity; (b) process 

quite arbitrary boundary conditions and constraints imposed on these cost functions; (c) be 

implemented quite easily with the degree of coding quite minimal relative to other nonlinear 

optimization algorithms; (d) statistically guarantee finding an optimal solution. Simulated 

annealing combines a downhill search with a random search. In order not to be trapped in a 

locally optimum region, this procedure sometimes accepts movements in directions other than 

steepest ascend or descend. The acceptance of an uphill rather that a downhill direction is 

controlled by a sequence of random variables with a controlled probability. Simulated annealing 

(SA) is a powerful stochastic search method applicable to a wide range of problems for which 

little prior knowledge is available. It can produce high-quality solutions for hard combinatorial 

optimization. 

 

The process of slow cooling is known as annealing in metallurgical process. The simulated 

annealing procedure simulates this process of slow cooling of molten metal to achieve the 

minimum function value of surface roughness in the problem of minimization. It is a point-by-

point method. The algorithm begins with an initial point and a high temperature T. A second 

point is taken at random in the vicinity of the initial point and the difference in the function 

values (ΔE) at these two points is calculated. Suppose that initially we have a point xk in the 

search space and that the cost at that point is ƒ(xk). A new point xk+1 is randomly generated that 

is "nearby" in some sense; we will call this a "trial point". The cost there is ƒ(x
 
k+1). Next we 

decide whether to move to xk+1, that is whether to replace xk by xk+1 as the current 

approximation. If ƒ(x
 
k+1) < ƒ (xk) then the move is definitely accepted. If ƒ(x

 
k+1) ≥ ƒ (xk) 

then also the move is accepted with a probability of  

T

xfxf kk

acceptedmoverP
)()(

exp 1

)_(
                             (5.1) 
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This completes an iteration of this simulated annealing procedure. In the next generation another 

point is created at random in the neighborhood of the current point and the Metropolis algorithm 

is used to accept or reject it. In order to simulate the thermal equilibrium at every temperature the 

number of points (n) is usually tested at a particular temperature before reducing the temperature. 

The algorithm is terminated when a sufficiently small temperature is obtained are a small enough 

change in function value is obtained. The structure of the proposed simulated annealing 

algorithm (SA) is as follows and is shown in figure 5.2. 

 

Step-1: Initialization 

Choose a start point (x) and set a high starting temperature (T), number of iterations to be 

performed at a particular temperature K; (K=1 to n) 

Step-2: Generation of neighborhood seed and evaluation (Evaluate objective function E= ƒ(x)) 

Step-3: Find new point )(
minmax)()1( XXXX iiikiki                      (5.2)

 

        
)1,1(

i  

       1)11(*)5.0(
12 iU

i
iii TTsign

                                           (5.3)

   

             Ui = random variable between 0 and 1 

Select x  with probability determined by 
),( Tg

x . Set the new point X new = X+∆X 

T
TTg xn

x 2
exp2),(

2

2/

                                                       (5.4)

 

    n = dimension of space under exploration. The new point should be between the maximum 

and minimum limit.  
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Step-4: Calculate the new value of the objective function using fitness equation. 

                      
)( newnew

XfE                                                               (5.5)
 

Step-5: Calculation of uphill and downhill move acceptance parameter ΔE 

Set X to X new and E to E new with probability determined by acceptance function , h (∆E, T) 

TE
TEh

/exp1

1
,                                                    (5.6) 

           T= Current temperature,  ∆E= E new - E 

Step-6:Increment the iteration count K, if K reaches the maximum stop iteration; otherwise go 

back to STEP-3. 

Step-6: Reduce the temperature according to annealing schedule =T0 *α, α=cooling rate [91], 

usually between 0 and 1 and when T is small, terminate; Else go to step 2. 

The cooling schedule is an important feature of this algorithm, in the generalized approach, α 

may vary with respect to the temperature which is as follows: 

 

                              0

min
.max

1

T

T
iterationofno

                                       (5.7)           

 

 

 

 

 

 

 

 

 



66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                           No 

 

                                                                                Yes 

 

 

 

 

 

 

                            No 

 

                                                                                 

                                                                                Yes 

 

 

Fig.5.2  Simulated Annealing Structure 

 

Input and Asses Initial Solution 

Assess new solution 

Generate new solution 

Update Stores 

Estimate Initial Temperature Ti 

Accept New Solution 

Stop 

Adjust Temperature 

T < Tfinal 

 



67 

 

 

In order to optimize the present problem using simulated Annealing algorithms (SAs), the 

constrained optimization problem is stated as follows: 

            From the observed data for surface roughness, the response function has been determined   

using RSM and fitness function, defined as  

Minimize, 

RFVFDFRVDFRa *2.18*0140.0*38.527.3599.00.3849.289.4
   

222 00318.05.165.80*232.0*8.15*0097.0 VDFRVRDVD                    (5.8) 

subject to 

39.269 m/min ≤ V ≤ 94.247 m/min 

0.059 mm/rev ≤ F ≤ 0.26 mm/rev 

0.4 mm ≤ D ≤ 1.2 mm 

0.4mm≤ R ≤ 1.2mm    

xil ≤ xi ≤ xiu 

where xil and xiu are the upper and lower bounds of process variables xi . x1, x2, x3, x4 are the 

cutting speed, feed, depth of cut and nose radius respectively. In order to optimize the present 

problem using IGAs, the following parameters have been selected to obtain optimal solutions 

with less computational effort. 

Initial Temperature Ti= 1
o
C 

Final Temperature Ti= 1*10
-20 o

C 

Maximum no. of iterations  =  10000 
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5.2. Simulation Studies and Performance Evaluation 

 The SA code was developed using MATLAB. The input machining parameter levels 

were fed to the SA program. Table 5.1 shows the minimum values of surface roughness with 

respect to input machining parameters SA. It is possible to determine the conditions at which the 

turning operation has to be carried out in order to get the optimum surface finish. Fig.5.3 shows 

the  Performance of SAA and Fig.5.4 shows the Cooling diagram of SAA. Hence, it can be 

concluded from the optimization results of the SA program that it is possible to select a 

combination of cutting speed, feed, depth of cut and nose radius to achieve the better surface 

finish.  

Table 5.1 Output values of simulated annealing algorithms with respect to input machining 

parameters 

                         

                                                                                             Method 

             Machining Parameters                                               SAA    

                               

            Feed,F(mm/rev)                                                      0.12722 

 

           Depth of cut,D(mm)                                                1.19947 

 

           Cutting Velocity,(m/min)                                        47.4072 

 

           Nose Radius,R(mm)                                                0.45422 

 

           Min. Surface Roughnes,Ra(microns)                     4.94068*10
-7
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Fig.5.3. Performance of SAA 

 

                         

Fig.5.4. Cooling diagram of SAA 
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5.3. Summary 

In this part, the problem of minimizing the surface roughness in turning operation has been 

investigated. To model the machining process, several important operational constraints have 

been considered. These constraints were taken into account in order to make the model more 

realistic. To optimally determine machining parameters (cutting speed, feed rate, depth of cut 

and tool nose radius), a simulated annealing method has been employed. The computational 

results clearly demonstrated that the proposed solution procedure is quite capable in solving such 

complicated problems effectively and efficiently. A major advantage of SA is its flexibility and 

robustness as a global search method and good performance will be obtained when the size of 

problem is small. It can deal with highly nonlinear problems and non-differentiable functions as 

well as functions with multiple local optima. Even though SA gives good result, for better 

performance different algorithm named PSO is applied, which is discussed in the next chapter. 
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Chapter 6 - Particle Swarm based machining porcess optimization 

Eberhart and Kennedy [92] suggested a particle swarm optimization (PSO) based on the analogy 

of swarm of bird and school of fish. The PSO mimics the behavior of individuals in a swarm to 

maximize the survival of the species. In PSO, each individual makes his decision using his own 

experience together with other individuals‘ experiences [93]. The algorithm, which is based on a 

metaphor of social interaction, searches a space by adjusting the trajectories of moving points in 

a multidimensional space. The individual particles are drawn stochastically toward the position 

of present velocity of each individual, their own previous best performance, and the best 

previous performance of their neighbors [94]. The main advantages of the PSO algorithm are 

summarized as: simple concept, easy implementation, robustness to control parameters, and 

computational efficiency when compared with mathematical algorithm and other heuristic 

optimization techniques. 

 PSO have been successfully applied to various fields of power system optimization [95], 

reactive power and voltage control [96, 97, 98, 99]. The original PSO mechanism is directly 

applicable to the problems with continuous domain and without any constraints. Therefore, it is 

necessary to revise the original PSO to reflect the equality/inequality constraints of the variables 

in the process of modifying each individual‘s search. Yoshida et al. [100] suggested a modified 

PSO to control reactive power and voltage considering voltage security assessment. Since the 

problem was a mixed-integer nonlinear optimization problem with inequality constraints, they 

applied the classical penalty method to reflect the constraint- violating variables. Abido [94] 

developed a revised PSO for determining the optimal values of lag-lead design parameters of 

multi-machine power system stabilizers. In this study, the velocity of each parameter is limited to 

a certain value to reflect the inequality constraint problem in the dynamic process. 
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6.1. PSO in Machining Parameter Optimization  

Particle Swarm Intelligent technique combines social psychology principles in socio-cognition 

human agents and evolutionary computations. PSO has been motivated by the behavior of 

organisms, such as fish schooling and bird flocking. Generally, PSO is characterized as a simple 

concept, easy to implement, and computationally efficient. Unlike the other heuristic techniques, 

PSO has a flexible and well-balanced mechanism to enhance the global and local exploration 

abilities. Thus, a PSO algorithm can be employed to solve an optimization problem. 

 The PSO coding scheme is to be defined and the initial population is produced. The 

computation with particle swarm intelligent operators is used to evaluate fitness with respect to 

the objective function. Fig 6.1 shows the PSO based optimization procedure.  

The Swarm Intelligent is designed for optimization of four inputs, the feed (F), speed (V) depth 

of cut (D) and tool nose radius (R) and surface roughness (Ra) as output. 

Accordingly in the proposed approach each particle (agent) represents a possible solution to the 

optimization task at hand. Initially a random set of 20 population is created for the particles to be 

optimized (i.e. feed, speed, depth of cut and nose radius). Each particle accelerates in the 

direction of its own personal best solution found so far during each iteration cycle, as well as in 

the direction of the global best position discovered so far by any of the particles in the swarm. If 

a particle discovers a promising new solution, all the other particles will move closer to it, 

exploring the region more thoroughly in the process. From this grouped population equal 

numbers of new populations are generated.  
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Fig. 6.1  PSO Optimisation Algorithm 

   

6.2. Swarm Intelligent Optimization  

From a view of social cognition, each individual in PSO can benefit from both its own 

experience and group findings. In its theoretical base, some factors [101,102]
   

are included: i) 

evaluation of stimulation; ii) influence to its behavior hereafter by its own experience; iii) 

influence to its behavior by other particles‘ experience. The principle of PSO algorithm is as 

Start 

Initialization of PSO 

Variables 

Fitness Evaluation 

Termination Criteria Satisfied 

Stop 

Swarm Operations, Velocity 

Updating , Calculation Of Pbest 
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follows [103]. Let X and V denote the particle‘s position and its corresponding velocity in search 

space respectively. The PSO algorithm models the exploration of a problem space by a 

population of individuals; individual‘s successes influence their searches and those of their peers. 

The PSO algorithm searches in parallel using a group of individuals similar to other AI-based 

heuristic optimization techniques. An individual in a swarm approaches to the optimum or a 

quasi-optimum through its present velocity, previous experience, and the experience of its 

neighbors. In a physical n-dimensional search space, the position and velocity of individual i are 

represented as the vectors Xi=(xi1,……xin),and Vi=(vi1,……vin), respectively, in the PSO 

algorithm. Let 
),......,( 1

Pbest

in

Pbest

ii xxPbest
 and 

),......,( 1

Gbest

in

Gbest

ii xxGbest
, respectively, be the 

best position of individual and its neighbors‘ best position so far. Using the information, the 

updated velocity of individual i is modified under the following equation in the PSO algorithm: 

)(*)(* 22111

i

k

best

k

i

k

besti

k

i

k

i

k XrandcXrandcwVV GP                     (6.1)
 

where 

i

kV : velocity of individual at iteration ; 

w
: weight parameter; 

1c
, 2c

: weight factors; 

1rand
, 2rand

: random numbers between 0 and 1; 

i

kX : Position of individual at iteration k; 

P
besti

k : Best position of individual until iteration k; 
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  G
besti

k  or   P
g

k   : Best position of the group until iteration k . 

 

The steps involved in PSO algorithms are: 

1. Initialize an array of particles with random positions and velocities on D dimensions 

(parameters to be optimized i.e F,D,V,R). 

Set constants kmax, C1, C2. 

 

Initialize particle position X
i

0
 )(

minmaxmin0 XXXX rand
i

       (6.2)
 

          Initialize particle velocity V
i

0
 

          )(
minmaxmin0 XXXV rand

i
                                                       (6.3) 

          Set k=1 

2. Evaluate the desired minimization function )(F
i

k
. 
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thenIf ,                          (6.4)    

 (b)  XPFFFF
i

k

g

k

i

k

g
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g

best

i

k
thenIf ,                           (6.5) 

 (c)   If stopping condition is satisfied then go to 3. 

3. Update particle velocities   V
i

k 1
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k XrandcXrandcwVV GP                     (6.6)         

 4. Update particle positions X
i

k 1
 

       VXX
i

k

i

k

i

k 11                                                                                (6.7)
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     5. Evaluate the objective function )(F
i

k
. 

              

 (a)    XPFFFF
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k
thenIf ,

                         (6.8)
     

 (b)  XPFFFF
i

k

g

k

i
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g

best

g

best

i

k
thenIf ,                            (6.9)  

 (c)   If stopping condition is satisfied then go to 7, otherwise go to 5. 

    6. Increment K 

    7. Go to next iteration. 

    8. Terminate. 
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The search mechanism of the PSO using the modified velocity and position of individual based 

on (6.2), (6.3) ,(6.6) and (6.7) is illustrated in Fig. 6.2. 

 

 

 

 

                       

 

 

                                                                                                                                                     

Fig. 6.2 The search mechanism of the particle swarm optimization. 

(X and Y axis represents direction of motion of particle) 

 

 

Stopping criteria 

There are many number of stopping criteria reported such as Maximum number of functional 

evaluation, Convergence criteria, computation time etc. In this work, Maximum number of 

functional evaluations has been used as stopping criteria. The detailed flow chart of the proposed 

PSO design is shown in Fig. 6.3. 
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  Fig 6.3. Flowchart of the PSO design. 
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In order to optimize the present problem using PSO, the following parameters have been selected 

to obtain optimal solutions with less computational effort. 

 No.of iterations-1000 

 c1=2 

 c2=2 

 w=0.5 

 From the observed data for surface roughness, the response function has  been 

determined   using RSM and fitness function , defined as Minimize, 

RFVFDFRVDFRa *2.18*0140.0*38.527.3599.00.3849.289.4  

          222 00318.05.165.80*232.0*8.15*0097.0 VDFRVRDVD        (6.10) 

subject to 

39.269 m/min ≤ V ≤ 94.247 m/min 

0.059 mm/rev ≤ F ≤ 0.26 mm/rev 

0.4 mm ≤ D ≤ 1.2 mm 

0.4mm≤ R ≤ 1.2mm 

  

6.3. Simulation Studies and Performance Evaluation 

 The PSO code was developed using MATLAB. The input machining parameter levels 

were fed to the PSO program. It is possible to determine the conditions at which the turning 

operation has to be carried out in order to get the optimum surface finish. The fitness evaluation 

is described in figure 6.4. Table 6.1 shows the performance of surface roughness with respect to 

input machining parameters for PSO.  
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Table 6.1. Output values of the PSO with respect to input machining parameters 

                    

                                                                                             Method 

             Machining Parameters                                            PSO    

                               

                        Feed,F(mm/rev)                                         0.127395  

 

                        Depth of cut,D(mm)                                  0.718475   

     

                        Cutting Velocity,(m/min)                            43.8783       

                   

                        Nose Radius,R(mm)                                    0.941211  

                   

                        Min. Surface Roughnes,Ra(microns)            1.9938*10
-7

 

 

 

 

Fig.6.4. Performance of PSO 
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6.4. Summary 

Based on this PSO algorithm the following conclusions may be drawn from the optimization 

results of the PSO program. Particle Swarm Optimization (PSO) is a relatively recent heuristic 

search method whose mechanics are inspired by the swarming or collaborative behavior of 

biological populations. PSO is more computationally efficient (uses less number of function 

evaluations).The basic PSO algorithm consists of three steps, namely, generating particles‘ 

positions and velocities, velocity update, and finally, position update. Here, a particle refers to a 

point in the design space namely feed, speed, depth of cut and nose radius, that changes its 

position from one move (iteration) to another based on velocity updates. Even though PSO gives 

better result than SA, for improving the output results different algorithms named CGA and IGA 

is applied, which is discussed in the coming chapter. 
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Chapter 7 - Genetic algorithm based optimization of machining 

process 

GA is a search algorithm based on the hypothesis of natural selections and natural genetics also 

the GA is a parallel and global search technique that emulates natural genetic operations [104]. 

GA can find a global solution after sufficient iterations, but has a high computational burden. 

Recently, a global optimization technique using GA has been successfully applied to various 

areas of power system such as economic dispatch [105,106], unit commitment [107,108], 

reactive power planning [109-111], and power plant control [112,113]. GA-based approaches for 

optimization of machining parameters have several advantages. Naturally, they can not only treat 

the discrete variables but also overcome the dimensionality problem. In addition, they have the 

capability to search for the global optimum or quasi optimums within a reasonable computation 

time. To enhance GA‘s computational efficiency, an improved evolutionary direction operator 

(IEDO) modified from [114] and a migration operator [115] are embedded in GA to form the 

IGA. On the contrary, studies on evolutionary algorithms have shown that these methods can be 

efficiently used to eliminate most of the above-mentioned difficulties of classical methods [116]. 

The selection of optimal cutting parameters, like depth of cut, feed and speed, is a very important 

issue for every machining process. In workshop practice, cutting parameters are selected from 

machining databases or specialized handbooks, but the range given in these sources are actually 

starting values, and are not the optimal values [106]. In any optimization procedure, it is a crucial 

aspect to identify the output of chief importance, the so-called optimization objective or 

optimization criterion. 

In this section, an improved genetic algorithm (IGA), which can overcome the aforesaid 

problems of the conventional GA to some extent, is developed to obtain the optimal parameters 

in turning processes. The proposed IGA incorporates the following two main features. First, an 

artificial creation scheme for an initial population is devised, which also takes the random 

creation scheme of the conventional GA into account. Second, a stochastic crossover strategy is 

developed. In this scheme, one of the three different crossover methods is randomly selected  
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from a biased roulette wheel where the weight of each crossover method is determined through 

pre-performed experiments. The stochastic crossover scheme is similar to the stochastic selection 

of reproduction candidates from a mating pool. The IGA requires only a small population, and it 

is more efficient than GA. The results of the IGA are compared with those of the conventional 

simple genetic algorithm. 

 Genetic algorithms are very different from most of the traditional optimization methods. Genetic 

algorithms need design space to be converted into genetic space. So, genetic algorithms work 

with a coding of variables. The advantage of working with a coding of variable space is that 

coding discretizes the search space even though the function may be continuous. A more striking 

difference between genetic algorithms and most of the traditional optimization methods is that 

GA uses a population of points at one time in contrast to the single point approach by traditional 

optimization methods. This means that GA processes a number of designs at the same time. As 

we have seen earlier, to improve the search direction in traditional optimization methods, 

transition rules are used and they are deterministic in nature but GA uses randomized operators. 

Random operators improve the search space in an adaptive manner. 

             Three most important aspects of using GA are: 

1. definition of objective function 

2. definition and implementation of genetic representation 

3. definition and implementation of genetic operators. 

Once these three have been defined, the GA should work fairy well beyond doubt. We can, by 

different variations, improve the performance, find multiple optima (species if they exist) or 

parallelize the algorithms. 

Genetic algorithms are computerized search and optimization algorithms based on the mechanics 

of natural genetics and natural selection: Prof. Holland of University of Michigan, Ann Arbor, 

envisaged the concept of these algorithms in the mid-sixties and published his work [117]. 
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Thereafter, a number of students and other researchers have contributed to the development of 

this field. 

To date, most of the GA studies are available by Davis [118], Goldberg  [119], Michalewicz 

[120] and Deb  [121] and through a number of conference proceedings. The first application 

towards structural engineering was carried by Goldberg. He applied genetic algorithms to the 

optimization of a ten-member plane truss. P. Ju [122] applied genetic algorithm for the design of 

Static Compensator in an integrated power system. Apart from structural engineering there are 

many other fields in which GA‘s have been applied successfully. It includes biology, computer 

science, image processing and pattern recognition, physical science, social sciences and neural 

networks. In this chapter, we will discuss the basic concepts, representatives of chromosomes, 

fitness functions, and genetic inheritance operators with example and how this will be adopted 

for the power system stability low frequency damping problem. 

7.1. Genetic Algorithm Based Optimization 

First, coding scheme is to be defined and the initial population is produced. The computation 

with genetic operators is used to evaluate fitness with respect to the objective function [79]. Fig 

7.1 shows the GA based optimization procedure.  

The genetic algorithm (GA) has gained momentum in its application to optimization problems. 

Unlike strict mathematical methods, the GA does not require the condition that the variables in 

the optimization problem be continuous and different; it only requires that the problem to be 

solved can be computed. So, the GA has an apparent benefit to adapt to irregular search space of 

an optimization problem [79]. Therefore, in this approach, the GA has been used for 

optimization of surface roughness for the machining process. The basic operators in the GA 

include reproduction, crossover, and mutation. The input gains and output gain are taken as 

individuals in GA, and are represented by a binary string of length 200 with 50 bit for each 

individual. 
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Fig. 7.1. GA Optimisation Algorithm 
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Steps in Genetic Algorithm 

 Create the initial population. 

 Evaluate the fitness of each individual. 

 Select the best individuals and perform recombination. 

 Mutate the new generation. 

 If termination condition is not reached, go back to step 2. 

The calculation can be terminated for example when a certain fitness level is reached or after a 

certain number of iterations is performed. Also, if it seems that the solutions will not get any 

better for a long time, it can be deduced that it is best to stop the calculation. 

Selection 

The main idea behind the selection mechanism is better individuals get higher chance. There are 

many methods reported such as Roulette Wheel selection, Stochastic Universal sampling and 

Tournament selection, etc. In this approach, Tournament selection method which is one of the 

most widely used selection schemes. In tournament selection a specified number of individuals 

are  selected from the current population size. The best individuals out of the best individuals get 

copy in a mating pool. The selection of  individuals can be performed either with replacement or 

without replacement. In selection with replacement the individuals selected for the current 

tournament are candidate for other tournaments. On the other hand, if selected without 

replacement the individuals once selected are not candidates for other tournaments. Tournament 

selection can be implemented very efficiently as no sorting of the population is required. The 

advantages of Tournament selection are No premature convergence, No stagnation, No global 

reordering is required and explicit fitness is not needed. 
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Crossover 

Crossover is a mechanism, which creates new individuals by combining parts from two 

individuals. Crossover is explorative; it makes a big jump to an area somewhere ―in between‖ 

two (parents) areas. Single point, multi point and uniform crossovers are available. In this work, 

simulated binary crossover (SBX) proposed by Deb and his students has been used. SBX 

crossover creates children solutions in proportion to the difference in parent solutions. 

Mutation 

Mutation is a mechanism, which creates new individual by making changes in a single 

individual. Mutation is explorative, it creates random small deviations, thereby staying near (in 

the area of) the parent. Only mutation can introduce new information. In this work polynomial 

mutation has been applied. 

Stopping criteria 

There are many no of stopping criteria are reported such as Maximum number of generation, 

Maximum number of functional evaluation, Convergence criteria, computation time etc. In this 

work, Maximum number of generations has been used as stopping criteria. 

In order to optimize the present problem using genetic algorithms (GAs), The fitness function for 

the surface roughness is taken as  the constrained optimization problem is stated as follows: 
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 From the observed data for surface roughness, the response function has  been determined   

using RSM and fitness function , defined as Minimize, 

RFVFDFRVDFRa *2.18*0140.0*38.527.3599.00.3849.289.4  

          222 00318.05.165.80*232.0*8.15*0097.0 VDFRVRDVD          (7.1) 

 

subject to 

39.269 m/min ≤ V ≤ 94.247 m/min 

0.059 mm/rev ≤ F ≤ 0.26 mm/rev 

0.4 mm ≤ D ≤ 1.2 mm 

0.4mm≤ R ≤ 1.2mm 

xil ≤ xi ≤ xiu 

where xil and xiu are the upper and lower bounds of process variables xi . x1, x2, x3, x4 are the 

cutting speed, feed, depth of cut and nose radius respectively. In order to optimize the present 

problem using GAs, the following parameters have been selected to obtain optimal solutions 

with less computational effort. 

Population size          =   50 

Maximum number of generations = 1000 

Total string length = 50 

Crossover probability (Pc) = 0.9 

Mutation probability (Pm) = 0.01 

Initially, a set of 50 random pairs of the coefficients are created, discarding the unstable cases. 

These 50 pairs of coefficients are converted into binary codes to construct the initial population 

termed as ―old  pop.‖ From this grouped population and by using the usual GA operators, equal 

numbers of new populations are generated. A specific probability of each operator is fixed, 

keeping the ―mutation‖ probability sufficiently small. The crossover and mutation probabilities 

are taken as 0.9 and 0.01, respectively [79]. To select two strings of population for either 

mutation or crossover, the roulette wheel technique is used [79]. The technique specified that for 

selection, a random number between 0 and 1 is multiplied with the sum of fitness of all the ―old  
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pop‖ strings. When this value is greater than or equal to the cumulative fitness of the i
th

 string, 

this string is selected from the ―old-pop.‖ In this manner, two strings (mate-1 and mate-2) are 

selected to the mating pool. Using the GA operators, two new strings (child-1 and child-2) are 

created out of these mates. This process is continued until 50 new strings of population are 

generated. Out of the original 50 strings and newly created 50 strings (a total of 100 strings), the 

most-fit 50 population strings are retained. These strings are replaced into the ―old-pop‖ to 

represent the second generation ―old- pop.‖ In this manner, 1000 generations are continued, 

before the algorithm converges into the fit unique solution. The binary data in the solution are 

decoded to provide the optimized machining parameters. The detailed flow chart is shown in Fig. 

7.2.  
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7.1.1. Simulation Studies and Performance Evaluation 

The CGA code was developed using MATLAB. The input machining parameter levels were fed 

to the CGA program. The CGA program uses different types of crossover and mutation operators 

to predict the values of tool geometry and cutting conditions for minimization of surface 

roughness. Table 7.1 shows the minimum value of surface roughness with respect to input 

machining parameters for CGA. It is possible to determine the conditions at which the turning 

operation has to be carried out in order to get the optimum surface finish. The genetic evolution 

history is described in figure 7.3 for CGA. The given problem is converted to a maximization 

problem and solved using CGA.  

 

 

Table 7.1 – Output values of the genetic algorithm with respect to input machining parameters 

                         

          Machining Parameters                                               CGA  Method                                 

            Feed,F(mm/rev)                                                      0.161564                      

            Depth of cut,D(mm)                                               0.583087                      

            Cutting Velocity,V(m/min)                                     39.985                         

            Nose Radius,R(mm)                                               0.967974                      

            Min. Surface Roughnes,Ra(microns)                       1.62085*10
-10
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Fig.7.3 Genetic evolution of CGA 

 

7.2. Improved Genetic Algorithm (IGA)  

 The main advantage of the IGA approach is that the ―curse of dimensionality‖ and a local 

optimal trap inherent in mathematical programming methods can be simultaneously overcome. 

This section describes the proposed IGA. First, a brief overview of the IGA is provided then the 

solution procedures of the proposed IGA are stated.  

       The IGA is a parallel direct search algorithm that uses PN  vectors of variables in the 

nonlinear programming problem, namely, X
G 

= {Xi
G
, i = 1,........, Np} as a population in 

generation G . For convenience, the decision vector (chromosome) ix
, is represented as 

)......( 1
ci

xxx
njii

 . Here, the decision variable (gene), jix
is directly coded as a real value within its 

bounds. 
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7.2.1. Improved Evolutionary Direction Operator (IEDO)  

The main shortcoming of the evolutionary direction operator (EDO) [114] is that it creates a new 

chromosome from three arbitrary chromosomes in each generation, making this search operator 

blind. The improvement of the IEDO is to choose three best solutions in each generation to 

implement the improved evolutionary direction operation, and then obtain a new solution that is 

superior to the original best solution. The IEDO is introduced below. 

A chromosome which carries a set of solutions with nc optimizing parameters may be expressed 

as ncPj CCCCx ,....,,...,, 21 . Each PC  represents a continuous decision variable, and is limited 

by its lower and upper bounds (
MIN

PC and 
MAX

PC ). Three sets of optimal chromosomes are 

obtained after a generation. These three preferred chromosomes are ascended according to their 

fitness and called the ―low,‖ ―medium,‖ and ―high‖ chromosomes, respectively. 

Three inputs (preferred) and the output (created) chromosomes are denoted below. 

Inputs: 

 ―low‖ chromosome,
},...,{ 21 c

CCCz
inlll

 , with Fitness lF
                                       

 ―medium‖ chromosome,   
},,...,,{ 21 mncmmm CCCz

 , with fitness mF  

―high‖ chromosome, 
},,...,,{ 21 hnchhh CCCz

with fitness hF
 

Output chromosome, 
},...,,{ 21 c

CCC
onoo

, with fitness, newF
 

The IEDO can significantly reduce the effort in searching for the optimal solution because it 

enhances the local searching capability for GA. Fig. 7.4 shows the flowchart of  the minimum 

optimization for IEDO. 
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Fig.7.4 Flow chart of operation for the improved evolutionary direction operator 

Start of the IEDO 

Ts=1, D1=D2=1, NL=4 

Choose three preferred fitness, and 

obtained Clp, Cmp and Chp  

Compute pC  by employing 

).(.( 21 hplpmplplpp CCDCCDCC
 

c

MIN

p

MAX

ppop npCCCC ,...,1],),,max[min(  

Evaluate the new fitness, newF  

?hnew FF  

?mlnew FFF   

Replace lpC   by copC , if 
lnew FF  

Replace mpC by opC , if mnewl FFF  

Replace hpC by opC , if 
hnewm FFF  

 

?Ls NT  

End of the IEDO 

D1=D1x(-0.5) 

D2=D2x(-0.5) 

Ts =Ts  + 1 
rpp NCC  
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Step 1. The magnitudes of the two evolution directions is set to 1 (i.e., D1 = 1, D2 = 1). Then, set 

the initial index of the IEDO to 1 (Ts = 1), and set the number of the IEDO loop to 4 (i.e., NL = 

4). 

Step 2. Choose three preferred fitness values (Fl ,Fm and Fh ) and find their associated 

chromosomes (Zl,Zm and Zh). Then, obtain three preferred decision variables (Clp , Cmp , and 

Chp , p = 1; . . . ; nc ) from these three preferred chromosomes. 

Step 3. Compute pC
   by                  

).(.( 21 hplpmplplpp CCDCCDCC
 

Starting from the base point C lp
 and using two difference vectors, ).(1 mplp CCD  and

).(2 hplp CCD , the next evolutionary direction and the next evolutionary step-size can be 

determined by this parallelogram. The point pC  can be then created along the evolutionary 

direction with the evolutionary step-size. 

Step 4. .,...,1],),,max[min( c

MIN

p

MAX

ppop npCCCC .The value of Cop
 must be kept 

within its set bounds. 

Step 5. Evaluate the new fitness F new
 of the newly created output chromosome. 

Step 6. If hnew FF  ,then go to next step; otherwise, go to Step 8. 

Step 7. If mlnew FFF , add a random number ]1,0[N r
 to pC  and go to Step 4, then 

recomputed F new
 ; otherwise, go to Step 9. 

A random number is added to prevent the algorithm from falling into a local optimum. 

Step 8. Let D1=D1*(-0.5), D2=D2*(-0.5), then go to Step 10. 

Use the opposite direction and reduce the half step-size to search the new solution. 



96 

 

 

Step 9. Replace lpC  by copC , if lnew FF  ,Replace mpC
 by opC

 , if mnewl FFF
  Replace 

hpC  by opC
 , if hnewm FFF

, and go to Step 10. 

To search a minimum extreme, use three cases of replacements mentioned above to choose the 

best three individuals, given as zz ml
,

 and zh  for the IEDO operation. 

Step 10. If the last iterative loop of the IEDO is reached, then go to Step 11; otherwise, Ts =Ts + 

1, and go to Step 2. 

Step 11. Terminate the IEDO operation. 

7.2.2. Reproduction, Crossover, and Mutation 

Three preferred individuals generated by the IEDO are selected for reproduction. Reproduction 

probabilities of the three chosen individuals are set as follows: the first preferred unit 35%; the 

second preferred unit 25%, and the third preferred unit 15%. The remainder 25% of population is 

generated using the randomly created feasible individual. A binomial mutual crossover is 

adopted to raise the local diversity of individuals. For a small population (e.g. 50PN ), the 

crossover probability is set to 0.9 which is enough to create new individuals and to avoid high 

diversity resulting in divergence of the population. The purpose of mutation is to introduce a 

slight perturbation to increase the diversity of trial individuals after crossover, preventing trial 

individuals from clustering and causing premature convergence of solution. The probability of 

mutation is set to 0.01. 

7.2.3. Migration 

 A migration is included in the IGA to regenerate a newly diverse population, which prevents 

individuals from gradually clustering and thus greatly increases the amount of search space 

explored for a small population. The migrant individuals are generated based on the best ind 
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                                    (7.2)                  

Where ,1,,...,1;,...,1 rNink PC  and  are random numbers in the range of [0,1]. The migration 

may be performed if only the best fitness has not been improved for over 500 generations 

running, and the migrant population will not only become a set of newly promising solutions but 

also easily escape the local extreme value trap. 

The procedure used in the optimization using improved genetic algorithm is shown in Fig.7.5. 

The problem of optimization of the turning process can be described as minimizing the surface 

roughness subject to a set of constraints as shown in equation (7.3). 

 In order to optimize the present problem using improved genetic algorithms (IGAs), the 

constrained optimization problem is stated as follows: 

            From the observed data for surface roughness, the response function has been determined   

using RSM and fitness function, defined as  

Minimize, 

RFVFDFRVDFRa *2.18*0140.0*38.527.3599.00.3849.289.4
 

          
222 00318.05.165.80*232.0*8.15*0097.0 VDFRVRDVD             (7.3) 
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subject to 

39.269 m/min ≤ V ≤ 94.247 m/min 

0.059 mm/rev ≤ F ≤ 0.26 mm/rev 

0.4 mm ≤ D ≤ 1.2 mm 

0.4mm≤ R ≤ 1.2mm 

xil ≤ xi ≤ xiu 

where xil and xiu are the upper and lower bounds of process variables xi . x1, x2, x3, x4 are the 

cutting speed, feed, depth of cut and nose radius respectively. In order to optimize the present 

problem using IGAs, the following parameters have been selected to obtain optimal solutions 

with less computational effort. 

Maximum number of generations = 1000 

Total string length = 50 

Crossover probability (Pc) = 0.9 

Mutation probability (Pm) = 0.01 
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                         **Ni: Maximum number of iterations of inner loop 

Fig.7.5  Flowchart of the Improved Genetic Algorithm (IGA) 

 

7.3. Simulation Studies and Performance Evaluation 

The possibility of a SS 420 machining optimization procedure using genetic algorithm is 

investigated in this work. The optimisation based on genetic algorithm has proved to be very 

Initialization of IGA  

J=0 

  

 ?** iNJ  

Objective function 

evaluation 

IEDO 

Reproduction, crossover, 

Mutation 

 

 
Migration 

Elitism 

J=J+1 
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useful in dealing with discrete variables defined on a population of cutting condition obtained 

from the experiment. The search for the optimum was based on the minimization of an objective 

function. It was found that the GA can be a powerful tool in experimental machining 

optimization of scientific interest and large industrial applications. However, the optimization by 

GA technique requires a good setting of its own parameters, such as population size, number of 

generations, etc.  

An improved evolutionary direction operator (IEDO) is embedded in GA to form the IGA so as 

to enhance GA‘s computational efficiency. The IEDO can significantly reduce the effort in 

searching for the optimal solution because it enhances the local searching capability for GA. IGA 

is the algorithm based on mechanics of natural selection and natural genetics, which are more 

robust and more likely to locate global optimum and a local optimal trap inherent in 

mathematical programming methods can be overcome. The IGA code was developed using 

MATLAB. The genetic evolution histories are described in figure 7.6 for IGA and table 7.2 

shows the minimum values of surface roughness with respect to input machining parameters. 

Moreover, the proposed IGA approach has the following merits: simple concept; easy 

implementation; greater effectiveness than previous methods; better efficiency than the 

conventional genetic algorithm (CGA); robustness of algorithm; applicable to the larger-scale 

system; and the requirement for only a small population to prevent the dimensionality problem. 

The comparative results demonstrate that the proposed algorithm has the advantages mentioned 

above for solving the optimization problem. 

7.4. Summary 

Both CGA and IGA is applied for the optimization of machining problem. The proposed IGA  

provides better solutions than the conventional GA. The improved genetic algorithm 

incorporating a stochastic crossover technique and an artificial initial population scheme is 

developed to provide a faster search mechanism. The main advantage of the IGA approach is that 

the ―curse of dimensionality‖ and a local optimal trap inherent in mathematical programming 

methods can be simultaneously overcome. The IGA equipped with an improved evolutionary 

direction operator and a migration operation can efficiently search and actively explore solutions. 
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Moreover, by incorporating all the improvements, it was found to be robust in providing 

optimum solution within a reasonable computation time and yield better solutions. Contrary to 

the dynamic programming, computation time of the proposed IGA is linearly proportional to the 

number of stages. 

 

Table 7.2 – Output values of Improved genetic algorithm with respect to input machining    

                    parameters 

                         

                                                                                             Method 

             Machining Parameters                                                IGA 

        

            Feed,F(mm/rev)                                                    0.0755067  

            Depth of cut,D(mm)                                             0.564062 

            Cutting Velocity,V(m/min)                                   42.7725 

            Nose Radius,R(mm)                                              0.649459 

            Min. Surface Roughnes,Ra(microns)                             4.88498* 10
-14
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Fig.7.6 Genetic evolution of IGA 
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Chapter 8 – Results and Discussion 

Determination of optimal cutting parameters is one of the most important elements in any 

process planning of metal parts. This work presents a development of an improved genetic 

algorithm (IGA) and its application to optimize the cutting parameters for predicting the surface 

roughness is proposed. 

Before that experimentation is done and statistical analysis such as S/N and ANOVA has been 

performed. Mathematical model is developed using RSM and which has been applied in further 

analysis. 

The SA, PSO, CGA and IGA codes were developed using MATLAB. The input machining 

parameter levels were fed to the respective programs. Each program used their own specific 

types of operators to predict the optimized values of tool geometry and cutting conditions for 

minimization of surface roughness. Table 8.1 shows the comparison of minimum values of 

surface roughness with respect to input machining parameters for SA, PSO, CGA and IGA. It is 

possible to determine the conditions at which the turning operation should be carried out in order 

to get the optimum surface finish. Hence, it can be concluded from the optimization results of 

each program that it is possible to select a proper combination of cutting speed, feed, depth of cut 

and nose radius to achieve better surface finish.  
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Table 8.1. Comparison of Results  

 

Parameter 

                                         Evolutionary Methods 

Simulated 

Annealing  (SA) 

Particle Swarm 

Optimization (PSO) 

Genetic Algorithm 

(GA) 

Improved genetic 

Algorithm (IGA) 

Feed(mm/rev) 0.12722 0.127395 0.161564 0.0755067 

Depth of cut 

(mm) 

1.19947 0.718475   0.583087 0.564062 

Speed (mm/min) 47.4072 43.8783       39.985 42.7725 

Nose radius 

(mm) 

0.45422 0.941211 0.967974 0.649459 

Surface 

roughness, Ra 

(micro meter) 

 

4.94068*10
-7

 

 

1.9938*10
-7

 

 

1.62085*10
-10

 

 

4.88498* 10
-14

 

 

Table 8.1 shows the comparison of surface roughness values obtained by the various 

evolutionary methods investigated in this work. From the results it can be observed that SA and 

PSO give almost the same values for the surface roughness. GA method gives a better value for 

Ra than SA and PSO. Out of the different methods analyzed IGA method has been observed to 

give the best results. 

It appears that IGA outperforms the CGA, PSO and SA with a larger differential in 

computational efficiency when used to solve constrained nonlinear problems with continuous or 

discrete design variables.  

 

8.1 Validation of Evolutionary Algorithms 

The algorithms has been validated with the experimental results and mathematical model 

developed of  Paulo Davim. J [123] and Ersan Aslan , Necip Camuscu , Burak Birgo¨ren [124]. 
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The surface roughness obtained in IGA method is minimum than CGA is shown in table 8.2, 

which shows that the proposed IGA method will yield reasonably good result and it can be 

applied to any process. 

 

Table 8.2 Validation of the algorithms 

Paulo Davim. J,2003,[123] 

 

 

Parameter 

Genetic 

Algorithm (GA) 

Improved genetic 

Algorithm (IGA) 

Feed(mm/rev) 0.0555742 0.0628178 

Time(sec) 1.59365 1.42633 

Velcity (mm/min) 472.427 482.971 

Surface roughness, Ra (micro meter)  

1.22621*10
-9

 

 

1.9762*10
-13

 

Ersan Aslan , Necip Camuscu , Burak Birgo¨ren,2007[124] 

Feed(mm/rev) 0.129632 0.105255 

Depth of cut(mm) 0.564215 0.742634 

Velocity (mm/min) 197.201 222.167 

Surface roughness, Ra (micro meter) 1.0125*10
-8

 2.93043*10
-12
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 Chapter 9 - Conclusions  

Based on the experimental results, S/N and  ANOVA analysis performed, RSM based 

mathematical model developed and application of evolutionary algorithms such as SA, PSO, 

CGA and IGA for the optimization of machining of SS 420, the following conclusions have been 

arrived to obtain optimal machining parameter to achieve better surface finish characteristics 

during turning: 

The surface roughness in the turning process has been measured for machining of SS 420 under 

different cutting conditions with a rhombic tooling system having uncoated tungsten carbide tool 

using Taguchi‘s orthogonal array. Comparison of the experimental and analytical results has 

been carried out. 

By incorporating the tool geometry in the model, the validity of the model has been enhanced.  

The accuracy of mathematical model developed using response surface methodology shows the 

effectiveness of the model.  

The optimization, carried out in this work, gives an opportunity for the user to select the best tool 

geometry and cutting condition so as to get the optimum surface quality. 

The proposed IGA includes several improvements such as the incorporation of an artificial initial 

population scheme, a stochastic crossover technique, elitism and scaled fitness function. The 

IGA has been successfully applied to machining problems. It provided better solutions than the 

conventional GA.  

 

Moreover, by incorporating all the improvements, it was found to be robust in providing quasi-

optimum within a reasonable computation time and yield better solutions. Contrary to the 

dynamic programming, computation time of the proposed IGA is linearly proportional to the 

number of stages. The developed IGA method can simultaneously overcome the ―curse of 
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dimensionality‖ and a local optimum trap inherent non -linear problem. The IGA helps the 

proposed algorithm to efficiently search and actively explore the solution. Therefore, the 

proposed IGA approach can be used as a practical planning tool for a real problem like 

machining process. Moreover, the proposed approach has the following merits: simple concept; 

easy implementation; better effectiveness than previous methods; better efficiency than the CGA. 

This research presents an improved genetic algorithm optimization approach for solving the 

machining operations problem with turning of SS 420. The results obtained from comparing the 

proposed genetic algorithm optimization approach with those taken from recent literature prove 

its effectiveness. The results of the proposed approach are compared with results of simulated 

annealing, particle swarm optimization and conventional genetic algorithm. The implication of 

the encouraging results obtained from the present approach is that such approach can be 

integrated on-line, with an intelligent manufacturing system for automated process planning. 

Since the genetic algorithm-based approach can obtain near-optimal solution, it can be used for 

machining parameter selection of complex machined parts that require many machining 

constraints. Integration of the proposed approach with an intelligent manufacturing system will 

lead to reduction in production cost, reduction in production time, flexibility in machining 

parameter selection, and improvement of product quality. 

The application of each approach to obtain optimal machining conditions will be quite useful at 

the computer-aided process planning (CAPP) stage in the production of high-quality goods with 

tight tolerances by a variety of automated machining operations, and in adaptive control based 

machine tools. With the known boundaries of surface roughness and machining conditions, 

machining can be performed with a relatively high rate of success with the selected machining 

conditions. 

 This research definitely indicates some directions for future work. The application of the 

improved genetic algorithm-based approach in complex as well as flexible machining systems 

and automated process planning-systems is one of the directions for future research work.  
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