ON FINITE MIXTURE OF PARETO AND BETA DISTRIBUTIONS

Thesis submitted to the COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

for the award of the degree of

DOCTOR OF PHILOSOPHY

Under the Faculty of Science
$6 y$

MAYA T. NAIR

(4) certificate

Certified that the thesis entitled 'On Finite Mixture of Pareto and Beta Distributions' is a bona fide record of work done by Mrs. Maya T. Nair under my guidance, in the Department of Statistics, Cochin University of Science and Technology and that no part of it has been included in anywhere previously for the award of any degree or title.

Cochin-22
19-02-2007

Dr.P.G.Sankaran
Research Guide.

DECLARATION

This thesis contains no material which has been accepted for the award of any other Degree or Diploma in any University and to the best of my knowledge and belief, it contains no material previously published by any other person, except where due references are made in the text of the thesis.

ACKNOWLEDGEMENTS

I express my deep and profound gratitude to my guide Dr.P.G. Sankaran, Reader, Department of Statistics, CUSAT for fis invaluable help, support, encouragement and guidance all throughout the period of research, which made this work possible.

I am thankful to Dr. \mathcal{N}. Unnikrisfinan $\mathcal{N a i r}$, Professor and former ViceChancellor, CUS.SAT for his support as well as encouragement. I should also express my sincere thanks to $\mathcal{D r}$. K,RMurafeedfaran $\mathcal{N a i r}$, Professor and Head, and to Dr.V.K.Ramachandran Nair, Professor and former Head, Department of Statistics, CUSAT for their valuable advice and suggestions. The support received from $\operatorname{Dr} \mathcal{N}$. Balakrishna, Dr. S.M. Sunoj, Sri. K.C. James and Dr. Asha Gopalakrisfnan is also acknowtedged with thanks.

I am grateful to Dr.E.S. Jeevanand, Lecturer, U.C. College, Aluva, and Dr.T.M.Jaco6, Lecturer, Nirmala College \mathcal{M} uvattupuzha, for their valuable suggestions.

I express my deep gratitude to all my fellow research scholars for their friendly hefp and support.

My thanks are due to all the members of office staff and the library of the Department of Statistics for their co-operation and support during my research.

The financial assistance extended from Cocfin University of Science and Technology to pursue my research is duly acknowledged.

I am deeply indebted to my husband, my son as well as to our parents for their whole-fearted support amidst several hardsfips.

Finally, but above all I thank $\operatorname{Almighty}$ for everyt fing.

CONTENTS

Page No.

Chapter 1 INTRODUCTION AND REVIEW OF LITERATURE

1.1 Introduction 1
1.2 Definition 2
1.3 Identifiability 3
1.3.1 Definition 4
1.4 Estimation of parameters 5
1.5 Estimation of number of components 6
1.6 Fields of applications 6
1.7 Mixture distributions in reliabiiity analysis 8
1.8 Basic concepts in reliability 9
1.8.1 Reliability function 10
1.8.2 Hazard rate 10
1.8.3 Mean residual life 11
1.9 Reliability and hazard based on finite mixture models 13
1.10 Censoring 14
1.10.1 Type I censoring 14
1.10.2 Type Il censoring 15
1.10.3 Other types of censoring 15
1.11 Stress-strength models 15
1.11.1 Estimation of system reliability 16
1.12 Mixture models in income analysis 17
1.13 Basic economic concepts 18
1.13.1 Lorenz curve 19
1.14 Present study 20

Chapter 2 FINITE MIXTURE OF PARETO II DISTRIBUTIONS

2.1 Introduction 23
2.2 Definition and properties 24
2.3 Reliability characteristics 25
2.4 Identifiability 29
2.5 Estimation of parameters 30
2.6 Complete sample set up 30
2.6.1 Estimation of parameters when the observations belonging to each subpopulation are known 30
2.6.2 Estimation of parameters when the observations belonging to each subpopulation are unknown 36
2.7 Censored set up 41
2.7.1 Estimation based on type I censored samples when the observations belonging to each subpopulation are known 42
2.7.2 Estimation based on type I censored samples when the observations belonging to each subpopulation are unknown 47
2.7.3 Estimation based on type II censored samples 51
2.8 Simulation study 55
2.9 Data analysis 61
2.10 Conclusion 63
Chapter 3 FINITE MIXTURE OF BETA DISTRIBUTIONS
3.1 Introduction 64
3.2 Definition and properties 65
3.3 Reliability characteristics 66
3.4 Identifiability 70
3.5 Estimation of parameters 71
3.6 Complete sample set up 71
Page No.
3.6.1 Estimation of parameters when the observations belonging to each subpopulation are known 71
3.6.2 Estimation of parameters when the observations belonging to each subpopulation are unknown 78
3.7 Censored set up 83
3.7.1 Estimation based on type I censored samples when the observations belonging to each subpopulation are known 83
3.7.2 Estimation based on type I censored samples when the observations belonging to each subpopulation are unknown 88
3.7.3 Estimation based on type II censored samples 92
3.8 Simulation study 96
3.9 Data analysis 102
3.10 Conclusion 104
Chapter 4 BAYESIAN PREDICTIVE DISTRIBUTION
4.1 Introduction 105
4.2 Definition 106
4.3 Predictive distribution and reliability estimation 108
4.4 Bayesian two-sample prediction for finite mixture of Pareto II distributions 108
4.5 Data analysis 120
4.6 Bayesian two-sample prediction for finite mixture of beta distributions 120
4.7 Data analysis 131
4.8 Conclusion 131

Chapter 5 ESTIMATION OF RELIABILITY UNDER STRESS-STRENGTH MODEL

5.1 Introduction 132
5.2 Definition 133
5.3 Finite mixture of Pareto II distributions 133
5.3.1 The stress Y follows exponential distribution 134
5.3.2 The stress Y follows Pareto II distribution 134
5.3.3 The stress Y follows finite mixture of Pareto II distribution 135
5.4 Estimation of parameters 136
5.4.1 Exponential distribution 136
5.4.2 Pareto II distribution 138
5.4.3 Finite mixture of Pareto II distributions 139
5.5 Estimation of stress-strength reliability 139
5.6 Simułation study 141
5.7 Data analysis 148
5.8 Finite mixture of beta distributions 148
5.8.1 The stress Y follows exponential distribution 149
5.8.2 The stress Y follows beta distribution 149
5.8.3 The stress Y follows finite mixture of beta distributions 150
5.9 Estimation of parameters 151
5.9.1 Exponential distribution 151
5.9.2 Beta distribution 151
5.9.3 Finite mixture of beta distributions 153
5.10 Estimation of stress-strength reliability 153
5.11 Simulation study 154
5.12 Conclusion 158

Chapter 6 ESTIMATION OF THE LORENZ CURVE

6.1 Introduction 159
6.2 Definition 160
6.3 Finite mixture of Pareto II distribution 160
6.4 Estimation of Lorenz curve 161
6.5 Simulation study 161
6.6 Data analysis 168
6.7 Finite mixture of beta distribution 174
6.8 Estimation of Lorenz curve 174
6.9 Simulation study 175
6.10 Conclusion 178
Chapter 7 CONCLUSION
7.1 Introduction 179
7.2 Future works 180
BIBILIOGRAPHY 182

Chapter 1

INTRODUCTION AND REVIEW OF LITERATURE

1.1 Introduction

Finite mixtures of distributions provide an important tool in modelling a wide range of observed phenomena, which do not normally yield to modelling through classical distributions like normal, gamma, Poisson, binomial, etc., on account of their heterogeneous nature and inherent complexity. In a finite mixture model, the distribution of random quantity of interest is modelled as a mixture of a finite number of component distributions in varying proportions. A mixture model is, thus, able to model quite complex situations through an appropriate choice of its components to represent accurately the local areas of support of the true distribution. It can handle situations where a single parametric family is unable to provide a satisfactory model for local variation in the observed data. The flexibility and high degree of accuracy of finite mixture models have been the main reason for their successful applications in a wide range of fields in the biological. physical and social sciences.

The concept of finite mixture distribution was pioneered by Newcomb (1886) as a model for outliers. However, the credit for the introduction of statistical modelling using finite mixtures of distributions goes to Pearson (1894) while applying the technique in an analysis of crab morphometry data provided by Weldon (1892, 1893). The data was a set of measurements on the ratio of forehead to body length for 1000 crabs. A plot of the data showed that they were skewed to the right. Weldon (1893) suggested that the reason for this skewness might be that the sample contained representatives of two types of crab but when the data were collected no such differentiation had been recorded. Thus. Pearson (1894) proposed that the distribution of the measurements might be modelled by a weighted sum of
two normal distributions, with the two weights being the proportion of the crabs of each type. Mathematically, Pearson suggested the distribution for the measurement on the crabs was of the form

$$
\begin{equation*}
f(x)=p N\left(x ; \mu_{1}, \sigma_{1}\right)+(1-p) N\left(x ; \mu_{2}, \sigma_{2}\right), \tag{1.1}
\end{equation*}
$$

where p is the proportion of a type of crab for which the ratio of forehead to body length has mean μ_{1} and standard deviation σ_{1} and $(1-p)$ is the proportion of a type of crab for which the ratio of forehead to body length has mean μ_{2} and standard deviation σ_{2}. In (1.1). $N\left(x ; \mu_{i}, \sigma_{i}\right)$ is the normal density given by

$$
\begin{gathered}
f_{i}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{i}} \exp \left[-\frac{1}{2 \sigma_{i}^{2}}\left(x-\mu_{i}\right)^{2}\right], \quad-\infty<x<\infty, \\
-\infty<\mu_{i}<\infty, \quad \sigma_{i}>0, \quad i=1,2 .
\end{gathered}
$$

The density (1.1) will be bimodal if the two component distributions are widely separated or will simply display a degree of skewness when the separation of the components is not so great. To model the distribution (1.1) to a set of data, the parameters $p, \mu_{1}, \mu_{2}, \sigma_{1}$ and σ_{2} has to be estimated. Pearson (1894) obtained the moments-based estimates of the five parameters of the mixture of normal distribution as a solution of a ninth degree polynomial which was a task, at the time so computationally demanding. Various attempts were made over the ensüing years to simplify Pearson's (1894) moments based approach to fitting of a normal mixture model. The use of mixture of normal distributions (1.1) to model the different species of crab motivated extensive use of finite mixture distributions in other applied sciences.

1.2 Definition

Let X be a random variable with a family of probability distributions $\{g(\boldsymbol{x} ; \underline{\theta}) ; \underline{\theta} \in \Theta\}$, where the parameter space Θ is a subset of R^{m}, the $m^{\text {th }}$ dimensional Eucledian space. Let $G(\underline{\theta})$ be a cumulative distribution function of $\underline{\theta}$. Then the probability density function $f(x)$ defined by

$$
\begin{equation*}
f(x)=\int_{\theta} g(x: \underline{\theta}) d G(\underline{\theta}), \tag{1.2}
\end{equation*}
$$

is called a general mixture density function. In (1.2), $G($.$) is called the mixing$ distribution.

When $G($.$) is discrete and assigns positive probability to only a$ finite number of points $\theta_{i}(i=1,2, \ldots, k)$, the density (1.2) can be written in the form

$$
\begin{equation*}
f(x, \theta)=p_{1} f_{1}(x, \theta)+p_{2} f_{2}(x, \theta)+\ldots+p_{k} f_{k}(x, \theta) \tag{1.3}
\end{equation*}
$$

where

$$
f_{i}(x, \theta) \geq 0, \quad \int f_{i}(x, \theta) d x=1, \quad p_{i} \geq 0(i=1,2, \ldots, k) \text { and } p_{1}+p_{2}+\ldots+p_{k}=1 .
$$

Then (1.3) is called a finite mixture of densities. The constants p_{i} 's are called mixing weights and f_{i} s are called component densities.

1.3 Identifiability

The concept of identifiability plays a vital role in the analysis of the finite mixture models. A mixture is identifiable if there exists a one-to-one correspondence between the mixing distribution and the resulting mixture. Mixtures that are not identifiable cannot be expressed uniquely as functions of component and mixing distributions. For example, the finite mixture of uniform distributions is not identifiable, since the mixture density $f(x)$ can be represented in two different forms

$$
f(x)=\frac{1}{3} U(-1,1)+\frac{2}{3} U(-2,2)
$$

and

$$
f(x)=\frac{1}{2} U(-2,1)+\frac{1}{2} U(-1,2) .
$$

where $U(a, b)$ is a uniform distribution over the interval (a, b).

1.3.1 Definition

Consider the mixture density function given in (1.2). Let Λ be the class of all mixing distributions G and ζ be the corresponding class of mixtures. Define $Q: \Lambda \rightarrow \zeta$ by $Q(G)=f$. The class Λ and equivalently the family ζ is said to be identifiable with respect to the family $\{f(x ; \underline{\theta}) ; \underline{\theta} \in \Theta\}$ of probability distributions if the napping Q is a one-to-one mapping between Λ and ζ. That is, for each element in one class we can identify one corresponding element in the other class. A class ζ of finite mixtures of densities is said to be identifiable if and only if, for all $f(x, \theta)$ belonging to ζ, the equality of two representations

$$
\sum_{i=1}^{k} p_{1} f_{i}\left(x, \theta_{i}\right)=\sum_{i=1}^{k} p_{i} f_{i}\left(x, \theta_{i}^{\prime}\right)
$$

implies that $k=k^{\prime}, p_{i}=p_{i}^{\prime}$ and $\theta_{i}=\theta_{i}^{\prime}, i=1,2, \ldots, k$.

The importance of identifiability is whether or not the distribution G can be uniquely determined from observations. The inference procedures on the mixture distributions can be meaningfully discussed only if the family of mixture distributions is identifiable.

Teicher (1960, 1961, 1963, and 1967) introduced the concept of identifiability and developed a theory to identify mixtures. Teicher (1960) showed that a finite mixture of Poisson distributions is identifiable, where as mixtures of binomial distributions are not identifiable if

$$
N<2 k-1,
$$

where N is the common number of trials in the component binomial distributions and k is the number of components in the mixture. Yakowitz and Spragins (1968) showed that finite mixtures of negative binomial component distributions are identifiable. Titterington et.al. (1985) has given a lucid account of the concept of identifiability of mixtures. They pointed out that most of the finite mixtures of continuous densities are identifiable; an exception is a mixture of uniform densities. Some discussion on identifiability of finite mixtures is given in Patil and Bildikar (1966), McLachlan and

Basford (1988) and Maritz and Levin (1989). Prakasa Rao (1992) and Lindsay (1995) have given a nice review on this topic. Recently, Al-Hussaini et.al. (2000) showed that a finite mixture of Gompertz densities is identifiable.

1.4 Estimation of parameters

Over the years, a number of methods have been suggested for estimating the parameters in a finite mixture model. Pearson (1894), for example, applied the method of moments, which needs to find the roots of a ninth degree polynomial to derive the estimates of the five parameters involved in the model (1.1). Cohen (1967) subsequently developed an iterative method for solving the same problem that only requires solving cubic polynomials.

The method of moments was shown to be inferior to maximum likelihood estimation (M.L.E) in a mixture of two normal distributions by Fryer and Robertson (1972) and Tan and Chang (1972). Indeed, the method of moments does not guarantee any sort of optimality of solutions but was initially useful in certain situations where the M.L.E solutions were intractable. However, M.L.E became popular for general mixture problems with the availability of digital computers and the development of the expectation maximization (E.M) algorithm by Dempster et.al. (1977).

Redner and Waiker (1984) pointed out some difficulties with M.L.E for finite mixtures. First, the likelihood function cannot be assumed generally to have an upper bound, creating the possibility of divergence. Second, there are often many sub-optimal local minima of the likelihood function. McLachlan and Basford (1988) pointed out that these difficulties make the performance of the E.M algorithm very sensitive to the starting value of the model parameters. The E.M algorithm does not have the ability to escape sub-optimal local minima and can diverge if initialized close to a singularity in the likelihood function. Furthermore, the convergence is generally slow and this is exacerbated by a poor initialization.

Another method for the estimation of parameters of the mixture models is Bayes estimation, where the likelihood of the data is combined with prior belief about the parameters to draw an inference. Use of prior information gives an advantage for Bayes method over M.L.E since an inference can be made even with a
small number of data points. M.L.E solutions, especially for models with many parameters, become ill-posed when the data set is small. However, in certain situations, Bayes estimation of parameters of mixture distributions currently suffers from the lengthy computations required to perform the inference, as integrals must be performed over a potentially unbounded multidimensional space. Further, the posterior inference can rarely be sampled directly, simplifying conjugate priors rarely exist, and in many situations there are no sufficient statistics to simplify the analysis.

1.5 Estimation of number of components

In the analysis of finite mixture models, a question that remains is how to estimate k, the number of components in the mixture. A likelihood ratio test is a natural candidate for testing, say $k=k_{0}$ against $k=k_{1}\left(k_{1}>k_{0}\right)$, but this is well known to have problems in the context of finite mixture densities (sec Everitt (1996)); nevertheless, the test can still often be useful as an informal indicator of number of components.

A variety of other techniques to estimate the number of components in a mixture is described in McLachlan and Peel (2000). The problem is essentially equivalent to that of determining the number of clusters in the samples. (see Everitt et. al. (2001)).

1.6 Fields of applications

Finite mixture models are being used extensively for statistical analysis in many real life situations. For example, in the study of the distribution of length of fish, the sample of measurements consist of obscrvations either from more than one species or from more than one age group of one species. The biologist, however, would have no way of classifying the items of the sample according to different age group. Thus the situation becomes a mixture distribution, the mixing being over a parameter depending on the unobservable variate age. The graph on measurements on length of fish will show multimodality if the fish stock contains populations from different years's spawning.

In reliability theory, the mixture distributions are used for the analysis of the failure times of a sample of items of coherent laser used in
telecommunication network. In an experiment, one hundred and three laser devices were operated at a temperature of 70 degree Celsius until all had failed. The experiment was run longer than one year before all the devices had failed, because most of the devices were extremely reliable. The sample thus consists of two distinct populations, one with a very short mean life and one with a much longer mean life. This can be considered as an example of a mixture of two exponential distributions with probability density function of the form

$$
f\left(x ; \lambda_{1}, \lambda_{2}\right)=\frac{p}{\lambda_{1}} \exp \left[\frac{-x}{\lambda_{1}}\right]+\frac{(1-p)}{\lambda_{2}} \exp \left[\frac{-x}{\lambda_{2}}\right] \quad, 0<x<\infty
$$

where $0<p<1$ and $\lambda_{i}>0, i=1,2$.

The above model will be useful to predict how long all manufactured lasers should be life tested to assure that the final product contained no device from the infant mortality population.

There are several areas in which mixture distributions are being applied more frequently. Chronologically, a representative cross-section of the field of applications include the study on distributions of evening temperatures (Charlier and Wicksell, 1924), mice death times (Muench, 1936), comet frequencies (Schilling, 1947), chromosome association (Skellam, 1948), lifetime of valves (Davis, 1952; Everitt and Hand, 1981), plankton frequencies (Cassie, 1962), plant heights (Tanaka, 1962). response times (Cox,1966), death notice frequencies (Hasselblad, 1969), pike lengths (Macdonald, 1971), gaps in traffic (Ashton, 1971), Pollen grains (Usinger, 1975), crop concentrations (Peters and Coberly, 1976), clinical test scores (Symons, 1981), crime frequencies (Harris, 1983), mixed stock fishery composition (Miller, 1987), philatelic mixtures (Izenmann and Sommer,1988), and task completion (Desmond and Chapman, 1993). Apart from these applications, mixture models are useful in robustness studies (Hyrenius, 1950; Tan, 1980), cluster analysis and latent structure models (Fielding, 1977; Symons, 1981 and McLachlan and Basford, 1988). approximating other distributions (Dalal, 1978), random variate generation (Peterson and Kronmal, 1982). kernel based density estimation (Titterington, 1983), analyzing outliers (Barnett and Lewis, 1984), modelling prior densities (Diaconis and Ylvisaker, 1985) and artificial neural networks (Ripley, 1994). Finite mixture densities are also
useful in medical research to model age of onset of schizophrenia (Levine, 1981; McLachlan, 1987; McLachlan and Peel, 2000 and Everitt, 2003). Finite mixture distributions are useful to model variation of mortality rates between geographical areas (Betemps and Buncher, 1993), to model survival data (McGiffin et.al., 1993; McLachlan and McGiffin, 1994 and McLachian and Peel, 2000) and to identify regions of brain activation in functional magnetic resonance imaging (Bullmore et.al., 1996; Everitt and Bullmore, 1999 and Everitt, 1998).

In the present study, the role of finite mixture of Pareto and finite mixture of beta distributions in the context of reliability and income analysis is examined.

1.7 Mixture distributions in reliability analysis

Various parametric models are used in the analysis of lifetime data and in problems related to the modelling of ageing or failure processes. Among univariate models, a few particular distributions occupy a central role because of their demonstrated usefulness in a wide range of situations. The exponential distribution appeared suitable for modelling the lifetimes of various types of manufactured items (see Davis, 1952; Epstein and Sobel, 1953). Later, Weibull and lognormal distributions were employed as popular models for lifetimes of manufactured items (see Kao, 1959; Nelson, 1972; Nelson and Hahn, 1972; Whittemore and Altschuler, 1976).

In lifetime data analysis, the population of lifetimes can be decomposed into subpopulations, based on lifetimes of units in different production periods, with differences in designs, made up of different raw materials etc. In such situations, it is usual to model the data using a finite mixture of distributions. Accordingly, Mendenhall and Hader (1958), considered the finite mixture of two exponential distributions for the analysis of failure times for ARC-1 VHF communication transmitter-receivers of a single commercial airline. Cox (1959) has analyzed the data on failure times using a mixture of exponential models by classifying the data on failure times into two subpopulations depending on whether the cause of failure was identified or not. Kao (1959) used finite mixture of two Weibull components for life testing of electron tubes. The finite mixtures of inverse

Gaussian distributions in the context of reliability were studied by Ahmad (1982), Amoh (1983) and Al-Hussaini and Ahmad (1984). Characterizations using reliability concepts of finite mixture models are discussed in Ahmad (1996). Al-Hussaini and Osman (1997) obtained the median of finite mixture of k components. Al-Hussaini (1999) used the Bayesian method to predict observations under a mixture of two exponential components model. Later, Al-Hussaini et.al. (2000) studied the finite mixture of two-component Gompertz densities as a lifetime model. Bayesian predictive densities for finite mixture models based on order statistics have been discussed by Al-Hussaini (2001). Block et.al. (2003) studied the monotonic behaviour of the hazard rate of finite mixture of distributions. Jaheen (2003) obtained Bayesian prediction under a mixture of two-component Gompertz lifetime model. Recently, Cross (2004) has developed efficient tools for reliability analysis using finite mixture distributions. The finite mixture of distributions can also play a useful role in modelling time to failure of a system in the competing risk situations (see Crowder, 2001). For more properties and applications of finite mixture models in reliability theory, one could refer to Al-Hussaini and Sultan (2001).

1.8 Basic concepts in reliability

The term reliability is used to denote the probability of a device, component, material or structure, performing its intended function satisfactorily, for a given length of time in an environment for which it is designed. Even though the above definition of reliability is explained with reference to the failure behaviour or length of life of equipment, it is equally applicable in the analysis of any duration variable that describes a well defined population subject to decrementation due to the operation of forces of attrition over time. Accordingly, the concepts and tools in reliability have found applications in many areas of study such as biology, medicine, engineering, economics, epidemology and demography. It is evident that most of the difficulties in reliability modelling can be substantially reduced by understanding certain concepts associated with the failure process. In the present section, we discuss such basic concepts that are useful to model lifetime data.

1.8.1 Reliability function

Let X be a non-negative random variable defined on a probability space ($\Omega, \mathrm{A}, \mathrm{P}$) with distribution function $F(x)=P(X \leq x)$. In the reiiability analysis, X generally represents the length of life of a device, measured in units of time and the function,

$$
\begin{equation*}
S(x)=P(X>x), \tag{1.4}
\end{equation*}
$$

is called the reliability (survival) function. $S(x)$ gives the probability that the device will operate without failure for a time x.

1.8.2 Hazard rate

Let $L=\inf \{x ; F(x)=1\}$. Then for $x<L$, the hazard rate $h(x)$ of X, is defined as

$$
\begin{equation*}
h(x)=\lim _{\delta_{x \rightarrow 0^{+}}} \frac{P\{x<X \leq x+\delta x \mid X>x\}}{\delta x} \tag{1.5}
\end{equation*}
$$

When $f(x)$ is the probability density function of $X,(1.5)$ reduces to

$$
\begin{align*}
& h(x)=\frac{f(x)}{S(x)} \\
& =\frac{d}{d x}(-\log S(x)) \tag{1.6}
\end{align*}
$$

$h(x)$ measures instantaneous rate of failure or death at time x, given that an individual survives up to time x. In extreme-value theory, $h(x)$ is known as the intensity rate and its reciprocal is termed as Mills ratio in economics. For various applications of the hazard rate, one could refer to Mann et.al. (1974), Kalbfleisch and Prentice (1980), Elandt-Johnson and Johnson (1980), Nelson (1982) and Lawless (2003).

When X is non-negative and has absolutely continuous distribution function, (1.6) provides that

$$
\begin{equation*}
S(x)=\operatorname{expl}\left[-\int_{0}^{x} h(t) d t\right] \tag{1.7}
\end{equation*}
$$

Examination of (1.7) indicates that $h(x)$ is a non-negative function with $\int_{0}^{1} h(t) d t<\infty$, for some $u>0$ and $\int_{0}^{\infty} h(t) d t=\infty$.

In view of (1.7), $h(x)$ determines the distribution uniquely. It is shown that the constancy of $h(x)$ is a characteristic property of the exponential model (Galambos and Kotz (1978). Mukherjee and Roy (1986) has established that for a non-negative random variable X in the support of the set of non-negative real numbers, hazard rate of the form

$$
\begin{equation*}
h(x)=\frac{1}{a x+b} \tag{1,8}
\end{equation*}
$$

characterizes
(i) the exponential distribution with survival function

$$
\begin{equation*}
S(x)=\exp [-\lambda x], x \geq 0, \lambda>0 . \tag{1.9}
\end{equation*}
$$

(ii) the Pareto II distribution with survival function

$$
\begin{equation*}
S(x)=\left(\frac{\alpha}{x+\alpha}\right)^{\beta}, x \geq 0, \beta>1,0<\alpha<\infty . \tag{1.10}
\end{equation*}
$$

(iii) the beta distribution with survival function

$$
\begin{equation*}
S(x)=\left(1-\frac{x}{R}\right)^{x}, 0<x<R, c>1 . \tag{1.11}
\end{equation*}
$$

according as $a=0, a>0$ and $a<0$.

1.8.3 Mean residual life

The mean residual life (M.R.L), known as expectation of life in actuarial studies, was reintroduced in the reliability context by Knight in 1959 (see, Kupka and Loo, 1989). When X is defined on the real line with $E\left(X^{+}\right)<\infty$. the Borel-measurable function $r(x)$ given by

$$
\begin{equation*}
r(x)=E|X-x| X \geq x], \tag{1.12}
\end{equation*}
$$

for all x such that $P[X \geq x]>0$, is called the M.R.L function of $\mathrm{X} . r(x)$ represents the average lifetime remaining to a component, which has already survived up to time x. When X is non-negative with $E(X)<\infty$ and $F(x)$ is absolutely continuous with respect to Lebesgue measure, (1.12) becomes

$$
\begin{equation*}
r(x)=\frac{1}{S(x)} \int_{x}^{\infty} S(t) d t \tag{1.13}
\end{equation*}
$$

Further, for every x in $(0, \mathrm{~L})$,

$$
\begin{equation*}
h(x)=\frac{1+r^{\prime}(x)}{r(x)} \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
S(x)=\frac{r(0)}{r(x)} \exp \left[-\int_{0}^{x} \frac{d t}{r(t)}\right] \tag{1.15}
\end{equation*}
$$

From equation (1.15), it follows that a M.R.L function uniquely determine a distribution and therefore, modelling can be done through an appropriate functional form for $r(x)$. A set of necessary and sufficient conditions for $r(x)$ to be an M.R.L, given by Swartz (1973) is that
(i) $r(x) \geq 0$,
(ii) $r(0)=E(X)$,
(iii) $r^{\prime}(x) \geq-1$
and
(iv) $\int_{0}^{\infty} \frac{d x}{r(x)}$ diverges.

Cox (1972) has established that the M.R.L function is a constant for the exponential distribution. Mukherjee and Roy (1986) observed that a relation of the form

$$
\begin{equation*}
r(x) h(x)=k \tag{1.16}
\end{equation*}
$$

where k is a constant, holds if and only if X follows the exponential distribution (1.9) when $k=1$, the Pareto II distribution (1.10) when $k>1$ and the beta distribution (1.11) when $0<k<1$. In view of (1.15), Hitha (1991) has observed that a linear M.R.L of the form

$$
\begin{equation*}
r(x)=a x+b \tag{1.17}
\end{equation*}
$$

characterizes the exponential distribution (1.9) if $a=0$, the Pareto II distribution (1.10) if $a>0$ and the beta distribution (1.11) if $a<0$.

1.9 Reliability and hazard rate for finite mixture models

Let X be a non-negative random variable with probability density function (p.d.f), $f(x)$ given by (1.3).The reliability function $S(x)$ corresponding to the finite mixture of k components (1.3) is given by

$$
\begin{equation*}
S(x)=p_{1} S_{1}(x)+p_{2} S_{2}(x)+\ldots+p_{k} S_{k}(x) . \tag{1.18}
\end{equation*}
$$

where $S_{j}(x)$ is the reliability function corresponding to the $j^{\text {t/ }}$ component in the mixture, $j=1,2, \ldots, k$. For simplicity, we consider the case of finite mixture model (1.3) with two components. The hazard rate function and mean residual life function of a mixture may be written in terms of the hazard rate functions and mean residual life functions of the two components as follows.

$$
\begin{equation*}
h(x)=A(x) h_{1}(x)+(1-A(x)) h_{2}(x), \tag{1.19}
\end{equation*}
$$

and

$$
\begin{equation*}
r(x)=A(x) r_{1}(x)+(1-A(x)) r_{2}(x) \tag{1.20}
\end{equation*}
$$

where $h_{j}(x)$ and $r_{j}(x)$ are hazard rate functions and M.R.L functions of $j^{\text {th }}$ component, $j=1,2$; and $h(x)$ and $r(x)$ are hazard rate function and M.R.L function of the mixture and

$$
A(x)=-\frac{p S_{1}(x)}{p S_{1}(x)+(1-p) S_{2}(x)}
$$

with $S_{j}(x)$ is the reliability function of the $j^{\prime \prime \prime}$ component, $j=1,2$.

On differentiation, the identities (1.19) and (1.20) give
$h^{\prime}(x)=A(x) h_{1}^{\prime}(x)+(1-A(x)) h_{2}^{\prime}(x)-A(x)\left(1-A(x)\left(h_{1}(x)-h_{2}(x)\right)^{2}\right.$
and
$\dot{r}(x)=A(x) r_{1}(x)+(1-A(x)) r_{2}^{\prime}(x)-A(x)\left(1-A(x)\left(r_{1}(x)-r_{2}(x)\right)^{2}\right.$.
where prime denote the derivative with respect to x.
From (1.21), it follows that if $h_{j}(x)<0$, for all $x,(j=1,2)$, then $h^{\prime}(x)<0$, for all x. Therefore, a mixture with decreasing hazard rate components has decreasing hazard rate. However, if the components have increasing hazard rates, their mixture need not have increasing hazard rate. For more details, one could refer to Al-Hussaini and Sultan (2001).

1.10 Censoring

In reliability studies, censored data often occurs due to many reasons. In many practical situations, it is desirable to discontinue the study prior to failure of all items in the sample, the resulting data are called incomplete data. The data are incomplete in the sense that we do not know the exact time to failure of the unfailed items, but only known that their failure times are greater than the recorded study time. Then we have two types of observations in the sample, actual failure times and bounds on faiiure times. Data of this type are called censored data. Various types of censoring are possible in life testing experiments and the type which depends on the criterion used to determine when to conclude experimentation.

1.10.1 Type I censoring

Censoring that occurs as a function of time is called type 1 censoring. In this case, the period of study terminated at a particular point of time and the data recorded are lifetimes of items that failed prior to that time. More specifically, data of this type are called right censored. If all items are put on test or put in service at the same time and the observation period is the same for all items (that is, observation stops at a fixed time T), the data are singly censored. (more precisely, singly right censored). Data for which unfailed items have been operating for variable amounts of time are called multiply censored (multiply right censored).

Data may also be censored on the left. Left censored data result when it is only known that failures have occurred prior to some time. In lifetime data analysis, right censoring is very common, but left censoring is fairly rare.

1.10.2 Type II censoring

Type I censoring may provide limited amount of information if the study period is too short. An alternative is to continue observation until a predetermined number $r(<n)$ of failures have occurred. This also results incomplete data, since the lifetimes of the remaining $n-r$ items are not observed. This type of censoring is called type II censoring. An extension of this type of censoring is progressive type II censoring. Under this censoring scheme, batches of items are removed from test as in type II censoring in two or more stages, as follows: n items are initially put on test. After r_{1} failures have occurred, an additional $n_{1}-r_{1}$ items are removed from test. Testing is continued on the remaining $n-n_{1}$ until an additional r_{2} failures are observed, at which time an additional $n_{2}-r_{2}$ items are removed, with testing continuing on the remaining $n-n_{1}-n_{2}$ items, and so on, through k stages $(k>1)$.

1.10.3 Other types of censoring

Various other combinations of censoring mechanisms are sometimes used. For example, it may be desirable to observe a reasonable number of failures and limited test time. In this case, a combination of type I and II censoring may be used; that is testing continues until either r failures occur or test duration T is reached, whichever comes first.

1.11 Stress-strength models

The word "stress" has acquired a special meaning to a modern world, as all of us are continuously under stress and not always have the strength to over come it. The stress-strength relationship is nowadays studied in many branches of sciences and social sciences such as psychology, medicine, pedagogy, pharmaceutics and engineering.

In the context of reliability, the stress- strength model describes the life of the component, which is having a random strength X that is subjected to a random stress Y. The component fails at the instant the stress applied to it exceeds the strength and the component works properly if there is no other cause of failure whenever $Y<X$.

Thus the system reliability for stress-strength model

$$
\begin{align*}
R & =P(Y<X) \\
& =\int_{0}^{\infty} \int_{0}^{x} g(y) f(x) d y d x \tag{1.23}
\end{align*}
$$

is an important measure of component reliability, where $f(x)$ and $g(x)$ are the probability density functions of X and Y respectively. For example, if Y represents the maximum chamber pressure generated by ignition of a solid propellant and X represents the strength of the rocket chamber, then R is the probability of the successful firing of the rocket. The receptor in the human eye operates only if it is stimulated by a source where magnitude X is greater than a random lower threshold Y for the eye. In this case, R is the probability that the receptor operates. For more details on stress-strength models, see Kotz, et.al. (2003).

1.11.1 Estimation of system reliability

One of the major problems in the analysis of stress-strength models is the estimation of the stress-strength reliability $R=P[Y<X]$. The point and interval estimation of R in the non parametric setup was considered by Birnbaum (1956), Birnbaum and McCarty (1958). Owen et.al. (1964) and Govindarajulu (1967, 1968). The problem of estimation of R, with different parametric models for X and Y was discussed in Kelly et.al. (1976), Tong (1974), Church and Harris (1970), Downton (1973), Woodward and Keliey (1977), Beg and Singh (1979), Tong (1977), Enis and Geissel (1971), Ferguson (1973). Hollander and Korwar (1976) and Bhattacharyya and Johnson (1974).

The estimation problem when X and Y have joint bivariate exponential distribution was considered by Awad et.al. (1981). Jana (1994), Jana and

Roy (1994) and Hanagal (1995, 1997b). Jeevanand (1997) and Hanagal (1997a) studied the estimation of reliability under bivariate Pareto stress-strength model. Jeevanand and Nair (1994) considered the estimation of stress-strength reliability from exponential samples containing spurious observations. Al-Hussaini et.al. (1997) studied the role of finite mixture of lognormal components in a stress-strength model. The estimation of R when the stress and strength follows finite mixture of inverse Gaussian distributions was developed by Akman et.al. (1999). Inference for stressstrength models based on Wienman multivariate exponential samples were obtained by Cramer (2001).Stress-strength model for skew-normal distributions was obtained by Gupta and Brown (2001). For more details, we refer to Johnson (1988) and Kotz et.al. (2003). Recently, Nadarajah (2004) considered a class of Laplace distributions and derive the stress-strength reliability for this class of distributions.

1.12 Mixture models in income analysis

Modelling of income data for studying the patterns and causes of prevalent distributional inequalities is of vital importance in socio-economic policymaking. This has been a very live area of research since the variegation and dynamism of income distributions allow as well as demand experimenting with new models and theories for purpose of increasing accuracy and interpretational capabilities. Statistical analysis of personal income distributions originated with the formulation of the famous Pareto's income law in 1897 which states that the number of persons in a population whose incomes exceed ' x ' can be approximated by a curve of the form $k r^{-\alpha}$, where k is any real number and α is a positive real number. Accordingly, this distribution is known as Pareto type I (classical Pareto) and it is widely accepted as an income model. The law proposed by Pareto holds good only for the upper tail of the income distribution. Gibrat (1931) suggested the two-parameter lognormal distribution, further examined by Aitchinson and Brown (1969), for the size distribution of income. Champernowne (1953) proposed a Markov chain model for income distribution. Lomax (1954) introduced Pareto type II distribution that has come to stay as a very viable model in income studies. The beta distribution of first kind was used for modelling income data by Thurow (1970). Salem and Mount (1974) proposed gamma distribution and Bartels and van Metelel (1975) suggested Weibull to model the
income data. For various models useful in income analysis, one could refer to Kleiber and Kotz (2003).

In income analysis, population of income of individuals can be divided into income from different sources. Further, any set of income data with earners in different categories will be well described as a finite mixture of distributions. Accordingly, Flachaire and Nunez (2004) proposed an explanatory model to study the structure of the income distribution based on mixture models. Reed and Jorgensen (2004) suggested a mixture of lognormal and Pareto distributions for modelling size distributions. However, this mixture function is still unimodal and cannot catch bi-modality. Paap and van Dijk (1998) considered a mixture of two distributions to model the world income distribution. They used different choices of distributions-truncated normal, lognormal, gamma and Weibull- and they selected the best mixture model based on a criterion of goodness -of- fit tests.

1.13 Basic economic concepts

The problem of modelling income data as well as that of measurement of income inequality has a history of about two hundred years and has been attracting a lot of researchers in economics, statistics, and sociology etc. As is customary in most statistical analysis, the extend of variation in incomes is represented in terms of certain summary measures. Thus a measure of income inequality is designed to provide an index that can abridge the variations prevailing among the individuals in a group. For a detailed study on various measures of income inequality, we refer to Kakwani (1980), Anand (1983) and Arnold (1987).

Recently concepts and ideas in reliability theory have been extensively used to study measures of income inequality. Chandra and Singpurwalla (1981) established certain relationships among concepts in reliability theory and in economics. These aspects were further investigated by Klefsjo (1984). Later Bhattacharjee (1988, 1993) investigated the role of anti-ageing distributions in reliability theory as reflecting certain features of skewness and heavy tails, typical for income data. One of the fundamental concepts in the measurement of income inequality is Lorenz curve.

1.13.1 Lorenz curve

The Lorenz curve is an important tool for the measurement of income inequality. Lorenz (1905) defined this concept for finite populations as a function $L(p)$ on $[0,1]$, such that for fixed $p, L(p)$ represents the proportion of the total income in the population accounted for by the $100 p \%$ poorest individuals in the population.

For a non-negative random variable X with distribution function $F(x)$ and finite mean μ, the Lorenz curve $L(p)$ is then defined in terms of the following two parametric equations in x (see Kendall and Stuart (1958)) namely

$$
\begin{equation*}
p=F(x)=\int_{0}^{x} f(t) d t \tag{1.24}
\end{equation*}
$$

and

$$
\begin{equation*}
L(p)=\frac{1}{\mu} \int_{0}^{x} t f(t) d t \tag{1.25}
\end{equation*}
$$

where $f(t)$ is the p.d.f of $X . L(p)$ determined by (1.25) is called 'the standard Lorenz curve'. $L(p)$ can be viewed as the proportional share of the total income of the population receiving an income less than or equal to x. It follows from (1.25) that the Lorenz curve is the first moment distribution function of $F(x)$. One can easily see that
(i) $L(0)=0, L(1)=1, L(p)$ is continuous and strictly increasing on (0,1), as

$$
L^{\prime}(p)=\frac{1}{\mu} x, \text { which is greater than zero. }
$$

(ii) $L(p)$ is twice differentiable and is strictly convex on $(0,1)$ as

$$
L^{\prime \prime}(p)=\frac{1}{\mu f(x)}>0
$$

Gastwirth (1971) relaxed the assumption that the distribution function $F(x)$ is absolutely continuous and defined the Lorenz curve $L(p)$ by

$$
\begin{equation*}
L(p)=\frac{1}{\mu} \int_{0}^{p} Q(t) d t, \quad 0 \leq p \leq 1 \tag{1.26}
\end{equation*}
$$

where

$$
Q(x)=\inf \{x: F(x) \geq x\}
$$

is the quantile function. When $F(x)$ is absolutely continuous, $Q(x)$ is the inverse function of $F(x)$ and (1.26) is the solution for $L(p)$ obtained from (1.24) and (1.25).

Chakrabarthy (1982) pointed out that the analysis and criticism of Lorenz curve constitute a major part of the growing literature on inequality, its measurement and interpretation and stated that Lorenz curve has remained the most popular and powerful tool in the analysis of size distribution of income, both empirical and theoretical. For various applications of the Lorenz curve, one may refer to Chatterjee and Bhattacharya (1974). Gastwirth (1972), Kakwani and Podder (1976), Goldie (1977) and Moothathu (1985a, 1985b and 1990).

1.14 Present study

The generalized Pareto family, constituting the three distributions, namely, exponential, Pareto II, and beta are extensively employed in modelling of lifetime data as it possess linear mean residual life functions. For the exponential distribution, the mean residual life function is constant. The mean residual life function is increasing (decreasing) for Pareto II (beta) distributions. These three distributions are widely employed in life testing situations and in income analysis.

As mentioned carlier, the situation of heterogeneity is inherent in most of the observed data in reliability and income analysis. For example, in reliability analysis, the population of lifetimes can be decomposed into subpopulations, based on lifetimes of units in different production periods, with differences in designs, made up of different raw materials etc. In the case of income data with earners in different categories or of different sizes makes the data heterogeneous. The heterogeneity prevents modelling the data using standard univariate distributions. As finite mixture models are typically used in describing heterogeneous populations, they have become very popular models in such situations and they offer realistic interpretations of the mechanisms that generated the data.

Accordingly, finite mixture of distributions becomes useful tools for the modelling and analysis of data in the context of reliability and income analysis.

In literature, considerable work has been devoted to study the properties and applications of finite mixture of exponential distribution in the context of reliability analysis (see Mendenhall and Hader, 1958; Nassar, 1988; Nassar and Mahmoud, 1985 and Al-Hussaini, 1999). Despite the importance and flexibility of Pareto II distribution in modelling and analysis of life time and income data, a comprehensive study on finite mixture of Pareto II distribution has not been considered so far. In many practical situations, the observed lifetimes of an item varies over only a finite range. Further, beta distribution is employed for modelling lifetime data of systems having increasing hazard rate pattern. Accordingly, beta distribution is considered to be useful model in the context of reliability analysis. However, a systematic study on finite mixture of beta distributions in the context of reliability and income analysis is not yet carried out.

Motivated by these facts, the present work aims to study the role of finite mixture of Pareto II and finite mixture of beta distributions in the context of reliability and income analysis.

The present work is organized into seven chapters. After this introductory chapter, in Chapter 2, we study the properties of finite mixture of Pareto II distributions in the context of reliability analysis. We develop estimation of parameters of the finite mixture of Pareto II distributions using different methods for complete as well as censored samples. Simulation studies are carried out to assess the performance of the estimators. We, then, illustrate the method with a real life data on survival times of icukemia patients.

In Chapter 3, we study various properties of the finite mixture of beta distributions in the context of reliability analysis. We discuss estimation of parameters of the finite mixture of beta distributions using different methods such as maximum likelihood. Bayes, method of moments and maximum product of spacing. We carried out a simulation study to observe finite sample propertics of the estimates and their robustness. We, then, apply the procedure to a real life data on survival times of cancer patients.

Chapter 4 discusses the Bayesian predictive densities when the underlying distribution is assumed to have a finite mixture of Pareto II distribuiions. Based on type I censored samples, prediction bounds for the k-th future order statistics and survival functions are obtained. The prior belief of the experimenter is measured by Jeffrey's invariant prior and also by a proper conjugate prior which was suggested by Al-Hussaini (1999). We then consider the real life data on survival times of leukemia patients and we estimate the reliability and prediction bounds using Bayesian predictive density function. The last part of this chapter deals with the Bayesian predictive density function of finite mixture of beta distributions. We illustrate the procedure for a real life data on survival times of cancer patients.

The analysis of stress-strength models using finite mixture of distributions is discussed in Chapter 5. The maximum likelihood estimation of the stress-strength reliability for complete as well as censored samples are obtained in which we assume the distribution of strength as finite mixture of Pareto II and the distribution of stress as different models such as exponential, Pareto II and finite mixture of Pareto II. Simulation studies are carried out to assess the performance of the estimators. The method of estimation of stress-strength reliability is illustrated using a real life data. Chapter 5 concludes with the discussion of the same for the finite mixture of beta distributions.

The role of finite mixture of Pareto II distributions and finite mixture of beta distributions in income analysis is studied in Chapter 6. We derive the maximum likelihood estimate of the Lorenz curve based on complete as well as type I censored samples of finite mixture of Pareto II distributions. We, also, develop the maximum likelihood estimate of Lorenz curve for the finite mixture of beta distributions. We carried out a simulation study to assess the performance of the estimates. Finally, we illustrate the method for a real data on household expenditures of men and women on four commodity groups.

Finally. Chapter 7 summarizes the major conclusions of the present study.

Chapter 2

FINITE MIXTURE OF PARETO II DISTRIBUTIONS

2.1 Introduction

In literature, considerable work has been devoted to study the properties and applications of Pareto distribution, in the context of reliability analysis. Mixture models, as discussed in Chapter 1, provide additional flexibility in modelling and analysis of lifetime from a heterogeneous population. Despite its importance and flexibility in modelling and analysis of lifetime data, a comprehensive study on finite mixture of Pareto II distributions has not been considered so far. Motivated by these facts, in the present chapter, we discuss the statistical analysis of finite mixture of Pareto II distributions in the context of reliability theory.

We give the definition and properties of the finite mixture of Pareto distributions in Section 2.2. In Section 2.3, we study the reliability characteristics of the model. We show that a finite mixture of two Pareto II densities is identifiable in Section 2.4. Sections 2.5 to 2.7, discuss various estimation procedures for complete as well as for censored data. In Section 2.8, simulation studies are carried out to assess the performance of the estimators. In Section 2.9, we illustrate the method for a real data on survival times of leukacmia patients and finally, in Section 2.10, we give the conclusion of the chapter.

2.2 Definition and properties

Let X be a non-negative random variable admitting an absolutely continuous distribution function $F(x)$ with respect to a Lebesgue measure in the support R^{+}. Assume that the probability density function (p.d.f.) of $X, f(x)$ exists. A finite mixture of Pareto II distribution with k components can be represented in the form

$$
\begin{equation*}
f(x)=p_{1} f_{1}(x)+p_{2} f_{2}(x)+\ldots+p_{k} f_{k}(x) \tag{2.1}
\end{equation*}
$$

where

$$
p_{i}>0, i=1,2, \ldots, k ; \sum_{i=1}^{k} p_{i}=1
$$

and

$$
f_{i}(x)=a_{i} b_{i}\left(1+a_{i} x\right)^{-\left(b_{i}+1\right)}, x>0, a_{i}>0, b_{i}>0,(i=1,2, \ldots, k) .
$$

As a special case of (2.1) with $k=2$, we have,

$$
\begin{align*}
& f(x)=p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}, \tag{2.2}\\
& x>0, a_{i}>0, b_{i}>0,(i=1,2) .
\end{align*}
$$

Throughout this chapter, we consider a finite mixture of two Pareto II distributions. The results can easily be extended to the general set up.

The $r^{\text {th }}$ moment of the distribution (2.2) is given by

$$
\begin{align*}
E_{f}\left(X^{\prime}\right) & =\int_{0}^{\infty} x^{\prime}\left[p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{3}+1\right)}+\left(1-p_{1}\right) a_{2} \dot{b}_{2}\left(1+a_{2} x\right)^{\left(b_{2}+l^{\prime}\right]}\right] d x \\
& =\frac{p_{1} \Gamma(r+1) \Gamma\left(b_{1}-r\right)}{a_{1} \Gamma b_{1}}+\frac{\left(1-p_{1}\right) \Gamma(r+1) \Gamma\left(b_{2}-r\right)}{a_{2} \Gamma b_{2}} \tag{2.3}
\end{align*}
$$

where $\Gamma p=\int_{0}^{\infty} e^{x} x^{p-1} d x$, is the gamma function.

When $r=1$. (2.3) reduces to the mean of X, which is equal to

$$
\begin{equation*}
E_{f}(X)=\frac{p_{1}}{a_{1}\left(b_{1}-1\right)}+\frac{\left(1-p_{1}\right)}{a_{2}\left(b_{2}-1\right)}, 0<p_{1}<1, b_{i}>1, a_{i}>0, i=1,2 \tag{2.4}
\end{equation*}
$$

When $r=2$, (2.3) becomes

$$
E_{f}\left(X^{2}\right)=\frac{2 p_{1}}{a_{1}^{2}\left(b_{1}-1\right)\left(b_{1}-2\right)}+\frac{2\left(1-p_{1}\right)}{a_{2}^{2}\left(b_{2}-1\right)\left(b_{2}-2\right)}
$$

Thus the variance of (2.2) is given by

$$
\begin{equation*}
V_{f}(x)=\frac{p_{1}\left(-2+2 b_{1}+2 p_{1}-b_{1} p_{1}\right)}{a_{1}^{2}\left(b_{1}-1\right)^{2}\left(b_{1}-2\right)}+\frac{\left(1-p_{1}\right)\left(b_{2}+\left(b_{2}-2\right) p_{1}\right)}{a_{2}^{2}\left(b_{2}-1\right)^{2}\left(b_{2}-2\right)}-\frac{2 p_{1}\left(1-p_{1}\right)}{a_{1} a_{2}\left(b_{1}-1\right)\left(b_{2}-1\right)} . \tag{2.5}
\end{equation*}
$$

2.3 Reliability characteristics

Let X represents the lifetime of a component with survival function $S(x)$. Then the survival function of the model (2.2) is obtained as

$$
S(x)=p_{1}\left(1+a_{1} x\right)^{-1 / 4}+\left(1-p_{1}\right)\left(1+a_{2} x\right)^{-b_{2}}, x>0, \quad a_{i}>0, b_{i}>0, \quad(i=1,2), 0<p_{1}<1 .
$$

For the model (2.2), the hazard rate $h(x)$ and the mean residual life function $r(x)$ are given by

$$
\begin{equation*}
h(x)=\frac{p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}}{p_{1}\left(1+a_{1} x\right)^{-k_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x\right)^{-b_{2}}} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
r(x)=\frac{p_{1} a_{2}\left(b_{2}-1\right)\left(1+a_{1} x\right)^{-\left(b_{1}-1\right)}+\left(1-p_{1}\right) a_{1}\left(b_{1}-1\right)\left(1+a_{2} x\right)^{-\left(b_{2}-1\right)}}{a_{1} a_{2}\left[p_{1}\left(1+a_{1} x\right)^{-h_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x\right)^{-b_{2}}\right]\left(b_{1}-1\right)\left(b_{2}-1\right)} . \tag{2.8}
\end{equation*}
$$

From (2.7) and (2.8), we obtain an identity connecting $r(x)$ and $h(x)$ as

$$
\begin{align*}
r(x) & -\frac{h(x)\left(1+a_{1} x\right)\left(1+a_{2} x\right)}{a_{1} a_{2}\left(b_{1}-1\right)\left(b_{2}-1\right)}\left[\frac{a_{2}\left(b_{2}-1\right)-a_{1}\left(b_{1}-1\right)+a_{1} a_{2}\left(b_{2}-\dot{b}_{1}\right) x}{a_{1} b_{1}-a_{2} b_{2}-a_{1} a_{2}\left(b_{2}-b_{1}\right) x}\right] \\
& =\frac{a_{1}^{2} b_{1}\left(b_{1}-1\right)\left(1+a_{2} x\right)^{2}-a_{2}^{2} b_{2}\left(b_{2}-1\right)\left(1+a_{1} x\right)^{2}}{a_{1} a_{2}\left(b_{1}-1\right)\left(b_{2}-1\right)\left[a_{1} b_{1}-a_{2} b_{2}-a_{1} a_{2}\left(b_{2}-b_{1}\right) x\right]} . \tag{2.9}
\end{align*}
$$

Figures 2.1 to 2.8 show the behaviour of hazard rate and the mean residual life function for different parameters of the model (2.2). From the figures, it follows that $h(x)$ is decreasing in x while $r(x)$ is increasing in x.

Fig. 2.5
Mean residual life function for $a_{1}=2, a_{2}=3, b_{1}=5, b_{2}=7 p=.5$

Fig. 2.6

Fig. 2.7
Mean residual life function for
$a_{1}=2, a_{2}=4, b_{1}=3, b_{2}=5 p=3$

Fig. 2.8
Mean residual life function for

The distribution (2.2) and the identity (2.9) involve five parameters. Reduction of one parameter can be achieved if we take either $a_{1}=a_{2}$ or $b_{1}=b_{2}$ without sacrificing much of the flexibility of the model. This motivation leads to consider the following;

When $b_{1}=b_{2}=b$, the identity (2.9) reduces to

$$
\begin{equation*}
a_{1} a_{2} b(b-1) r(x)+h(x)\left(1+a_{1} x\right)\left(1+a_{2} x\right)=b\left\{a_{i}\left(1+a_{2} x\right)+a_{2}\left(1+a_{1} x\right)\right] \tag{2.10}
\end{equation*}
$$

and
for $a_{1}=a_{2}=a$, (2.9) becomes

$$
\begin{equation*}
a^{2}\left(b_{1}-1\right)\left(b_{2}-1\right) r(x)+h(x)(1+a x)^{2}=a\left[\left(b_{1}+b_{2}-1\right)(1+a x)\right] . \tag{2.11}
\end{equation*}
$$

It is well known that $h(x)(r(x))$ uniquely determines the distribution. But in many situations $h(x)(r(x))$ is not in a simple closed form and hence cannot be used for characterizing the distributions. In such situations, one may explore simple relationships among $h(x)$ and $r(x)$ to characterize the distributions (see Nair and Sankaran, 1991). Motivated by this, we prove a characterization result for the mixture of Pareto II distributions.

Theorem 2.3.1

A continuous random variable X in the support of positive reals with $E(X)<\infty$, has survival function

$$
\begin{equation*}
S(x)=p_{1}\left(1+a_{1} x\right)^{-b}+\left(1-p_{1}\right)\left(1+a_{2} x\right)^{-b}, x>0, a_{i}>0(i=1,2), b>0,0<p_{1}<1 . \tag{2.12}
\end{equation*}
$$

if and only if the relationship (2.10) holds.

Proof.

Suppose that the identity (2.10) holds. Then we have

$$
\begin{equation*}
\left.a_{1} a_{2} b(b-1) \int_{x}^{\infty} S(t) d t+f(x)\left(1+a_{1} x\right)\left(1+a_{2} x\right)=b \mid a_{1}+a_{2}+2 a_{1} a_{2} x\right] S(x) . \tag{2.13}
\end{equation*}
$$

Differentiating (2.13) twice with respect to x, we get

$$
a_{1} a_{2}(b+1)(b+2) f(x)+(b+2) f^{\prime}(x)\left[a_{1}\left(1+a_{2} x\right)+a_{2}\left(1+a_{1} x\right)\right]+f^{\prime \prime}(x)\left(1+a_{1} x\right)\left(1+a_{2} x\right)=0
$$

where $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ respectively denote the first and the second derivatives of $f(x)$ with respect to x. The solution of the differential equation (2.14) is obtained as

$$
\begin{equation*}
S(x)=c_{1}\left(1+a_{1} x\right)^{b}+c_{2}\left(1+a_{2} x\right)^{-b} . \tag{2.15}
\end{equation*}
$$

Since $S(0)=1$, we have $c_{2}=1-c_{1}$. which gives (2.15) as required in (2.12). The proof of the converse part is direct.

Theorem 2.3.2

The relationship (2.11) characterizes a mixture of Pareto II distribution with survival function

$$
S(x)=p_{1}(1+a x)^{-t_{1}}+\left(1-p_{1}\right)(1+a x)^{-b_{2}}
$$

For the proof, see Abraham and Nair (2001).

2.4 Identifiability

As mentioned in Chapter I, lack of identifiability is common even for finite mixtures. In the following, we show that a finite mixture of two Pareto II densities is identifiable.

Theorem 2.4.1

Finite mixture of Pareto II densities is identifiable.

Proof:

From Teicher (1961), it follows that a finite mixture of k exponentias component densities is identifiable. If Z follows exponential with parameter λ and $Y=\frac{e^{z}-1}{a}$, then Y follows Pareto II with density

$$
g(y)=a \lambda(1+a y)^{-(\lambda+1)} .
$$

Since the transformation $Y=\frac{e^{-}-1}{a}$ is one to one and onto, a finite mixture of Pareto II with component densities $g_{i}(y)=a_{1} \lambda_{i}\left(1+a_{i} y\right)^{-\left(\lambda_{i}+1\right)}, i=1,2$ is identifiable. The rest of the proof is similar to the one given for finite mixture of Gompertz densities (see Al-Hussaini et.al. 2000).

2.5 Estimation of parameters

In this section, we discuss the estimation of parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} of the model (2.2), using different methods for the complete as well as censored samples.

2.6 Complete sample set up

2.6.1 Estimation of parameters when the observations belonging to each subpopulation are known

We consider the situation when there are only two subpopulations with mixing proportions p_{1} and $\left(1-p_{1}\right)$ and $f_{1}(x)$ and $f_{2}(x)$ are Pareto II densities with parameters (a_{1}, b_{1}) and (a_{2}, b_{2}) respectively. We consider the case when items that fail can be classified and can be attributed to the appropriate subpopulations.

Then the likelihood of the sample is given by (see Sinha (1986))

$$
L\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right)
$$

$=\frac{n!}{n_{1}!, n_{2}!} p_{1}^{n_{1}}\left(1-p_{1}\right)^{n_{2}} a_{1}^{\mu_{1}} b_{1}^{n_{1}} a_{2}^{n_{2}} b_{2}{ }_{2} \prod_{j=1}^{n_{1}}\left(1+a_{1} x_{1 j}\right)^{-\left(n_{3}+1\right)} \prod_{j=1}^{n_{3}}\left(1+a_{2} x_{2 j}\right)^{-\left(b_{2}+1\right)}$.
where $x_{i j}$ denote the failure time of the j-th unit belonging to the i-th subpopulation, $j=1,2, \ldots, n_{i} . \quad i=1,2$ and the observed data $\underline{x}=\left\{x_{11}, x_{12}, \ldots, x_{1 m_{1}} ; x_{21}, x_{22}, \ldots, x_{2 n}\right\}$.

(a) Maximum likelihood estimation (M.L.E).

Maximization of log-likelihood function of (2.16) with respect to the parameters yields the following equations.
$\frac{n_{1}}{a_{1}}-\frac{\left(b_{1}+1\right)}{a_{1}} \sum_{j=1}^{n_{1}}\left(1+\frac{1}{a_{1} x_{1 j}}\right)^{-1}=0$,
$\frac{n_{2}}{a_{2}}-\frac{\left(b_{2}+1\right)}{a_{2}} \sum_{j=1}^{n_{3}}\left(1+\frac{1}{a_{2} x_{2 j}}\right)^{-1}=0$,
$\frac{n_{1}}{b_{1}}-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1, j}\right)=0$,
$\frac{n_{2}}{b_{2}}-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)=0$,
and
$\frac{n_{1}}{p_{1}}-\frac{n_{2}}{\left(1-p_{1}\right)}=0$.

The equation (2.21) implies
$\hat{p}_{1}=\frac{n_{1}}{n_{1}+n_{2}}$.
The solution of the equations (2.17) to (2.20) provides the estimates of the parameters a_{1}, a_{2}, b_{1} and b_{2}. Standard numerical methods like Newton-Raphson method can be used to solve above equations.

To obtain variance of the estimates, we need to compute the observed information matrix $I\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right)$.

The second derivative of $\log L\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right)$ leads to the following
$\frac{\partial^{2} \log L}{\partial a_{1}{ }^{2}}=-\left[\frac{n_{1}}{a_{1}{ }^{2}}+\frac{\left(b_{1}+1\right)}{a_{1}} \sum_{j=1}^{n_{1}} \frac{1}{x_{1 j} a_{1}{ }^{2}}\left(1+\frac{1}{a_{1} x_{1 j}}\right)^{-2}-\frac{\left(b_{1}+1\right)}{a_{1}{ }^{2}} \sum_{j=1}^{n_{1}}\left(1+\frac{1}{a_{1} x_{1 j}}\right)^{-1}\right]$,
$\frac{\partial^{2} \log L}{\partial a_{1} \partial b_{1}}=\frac{\partial^{2} \log L}{\partial b_{1} \partial a_{1}}=-\left[\frac{1}{a_{1}} \sum_{j=1}^{n_{i}}\left(1+\frac{1}{a_{1} x_{1 j}}\right)^{-1}\right]$,
$\frac{\partial^{2} \log L}{\partial a_{2}{ }^{2}}=-\left[\frac{n_{2}}{a_{2}{ }^{2}}+\frac{\left(b_{2}+1\right)}{a_{2}} \sum_{j=1}^{n_{2}} \frac{1}{x_{2 j} a_{2}{ }^{2}}\left(1+\frac{1}{a_{2} x_{2 j}}\right)^{-2}-\frac{\left(b_{2}+1\right)}{a_{2}{ }^{2}} \sum_{i=1}^{n_{2}}\left(1+\frac{1}{a_{2} r_{2 j}}\right)^{-1}\right]$,
$\frac{\partial^{2} \log L}{\partial a_{2} \partial b_{2}}=\frac{\partial^{2} \log L}{\partial b_{2} \partial a_{2}}=-\left[\frac{1}{a_{2}} \sum_{j=1}^{n_{2},}\left(1+\frac{1}{a_{2} x_{2 j}}\right)^{-1}\right]$,
$\frac{\partial^{2} \log L}{\partial b_{1}^{2}}=-\frac{n_{1}}{b_{1}^{2}}$,
$\frac{\partial^{2} \log L}{\partial b_{2}{ }^{2}}=-\frac{n_{2}}{b_{2}{ }^{2}}$,
$\frac{\partial^{2} \log L}{\partial p_{1}{ }^{2}}=-\frac{\left(n_{1}+n_{2}\right)}{p_{i}^{2}}$,
and all other second derivatives are zero.
The observed information matrix is thus
$I\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right)=\left(\begin{array}{ccc}-\frac{\partial^{2} \log L}{\partial a_{1}^{2}} & -\frac{\partial^{2} \log L}{\partial a_{1} \partial a_{2}}-\frac{\partial^{2} \log L}{\partial a_{1} \partial b_{1}}-\frac{\partial^{2} \log L}{\partial a_{1} \partial b_{2}} & -\frac{\partial^{2} \log L}{\partial a_{1} \partial p_{1}} \\ -\frac{\partial^{2} \log L}{\partial p_{1} \partial a_{1}} & -\frac{\partial^{2} \log L}{\partial p_{1} \partial a_{2}}-\frac{\partial^{2} \log L}{\partial p_{1} \partial b_{1}}-\frac{\partial^{2} \log L}{\partial p_{1} \partial b_{2}} & -\frac{\partial^{2} \log L}{\partial p_{1}^{2}}\end{array}\right)$
For large n. the joint distribution of the estimates $\hat{a}_{1}, \hat{a}_{2}, \hat{b}_{1}, \hat{b}_{2}$ and \hat{p}_{1} is approximately multivariate normal with mean $\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right)$ and covariance matrix $I^{-1}\left(\hat{a}_{1}, \hat{a}_{2}, \hat{b}_{1}, \hat{b}_{2}, \hat{p}_{1}\right)$, which is the inverse of $l\left(\hat{a}_{1}, \hat{a}_{2}, \hat{b}_{1}, \hat{b}_{2}, \hat{p}_{1}\right)$

(b) Bayes estimation.

We assume that the parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} are independent. Using Jeffrey's invariant prior for a_{1}, a_{2}, b_{1} and b_{2} and uniform prior in the interval (0,1) for p_{1}, the joint prior distribution of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} is given by

$$
\begin{equation*}
g\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right) \quad \alpha \frac{1}{a_{1} a_{2} b_{1} b_{2}} . \tag{2.22}
\end{equation*}
$$

From (2.16) and (2.22), the joint posterior distribution of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} is given by

$$
\begin{align*}
& \Pi\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right) \quad \alpha \quad p_{1}^{n_{1}}\left(1-p_{1}\right)^{n_{2}} a_{1}^{n_{1}-1} a_{2}^{n_{2}-1} b_{1}^{n_{1}-1} b_{2}^{n_{2}-1} \\
& \tag{2.23}\\
& \quad \exp \left[-\left(b_{1}+1\right) \sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right] \exp \left[-\left(b_{2}+1\right) \sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2},\right)\right] .
\end{align*}
$$

From (2.23), we obtain the marginal posterior distributions of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} as

$$
\begin{align*}
& \Pi_{1}\left(a_{1} \mid \underline{x}\right)=C \frac{a_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]_{\infty}}{\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]} \int_{0}^{n_{1}} \frac{a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]} d a_{2}^{n_{2}} \tag{2.24}\\
& \Pi_{2}\left(a_{2} \mid \underline{x}\right)=C-\frac{a_{2}^{n_{2}, i} \exp \left[-\sum_{j=1}^{n_{i}} \log \left(1+a_{2} x_{2 j}\right)\right]_{w_{x}} a_{1}^{n_{i}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]} \int_{0}^{n_{2}} \tag{2.25}\\
& {\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]}
\end{align*}
$$

$\Pi_{3}\left(b_{1} \mid \underline{x}\right)=\frac{C}{\Gamma\left(n_{1}\right)} b_{1}^{n_{i}-1} \int_{0}^{\infty} a_{1}^{n_{1}-1} \exp \left[-\left(b_{1}+1\right)\left(\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right) d a_{1}\right.$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j-1}^{n_{i}} \log \left(1+a_{2} x_{2 j}\right)\right]} d a_{2}, \tag{2.26}
\end{equation*}
$$

$$
\begin{align*}
& \prod_{4}\left(b_{2} \mid \underline{x}\right)=\frac{C}{\Gamma\left(n_{2}\right)} b_{2}^{n_{z}-1} \int_{a}^{\infty} a_{2}^{n_{2}-1} \exp \left[-\left(b_{2}+1\right)\left(\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right) d a_{2}\right. \\
& \int_{0}^{\infty} \frac{a_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{j}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{n_{i}} \log \left(1+a_{1} x_{1 j}\right)\right]} d a_{1}, \tag{2.27}
\end{align*}
$$

and

$$
\left.\begin{array}{rl}
\Pi_{5}\left(p_{1} \mid \underline{x}\right)=\frac{C}{B\left(n_{1}+1+n_{2}+1\right)}-p_{1}^{n_{1}}\left(1-p_{1}\right)^{n_{2}} \int_{0}^{\infty} \frac{a_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]} d a_{1} \\
\int_{0}^{n_{1}} & a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{2} x_{2 j}\right)\right] \tag{2.28}\\
{\left[\sum_{j=1}^{m_{2}} \log \left(1+a_{2} x_{2, j}\right)\right]}
\end{array}\right]^{n_{2}} d a_{2} .
$$

where
$C^{-1}=\int_{0}^{\infty} \frac{a_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{m_{1}} \log \left(1+a_{1} x_{1 j}\right)^{n_{1}}\right.} d a_{1} \int_{0}^{\infty} \frac{a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{3}} \log \left(1+a_{2} x_{2 j}\right)^{r_{2}}\right]} d a_{2}$
and
$B(p, q)$ is the beta function of the first kind.
Under squared crror loss function, we obtain the Bayes estimators of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} as

$$
\begin{equation*}
a_{1}^{*}=C \int_{0}^{\infty} \frac{a_{1}^{n_{j}} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)^{n_{1}}\right.} d a_{1} \int_{j}^{\infty} \frac{a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]^{n_{2}}} d a_{2}, \tag{2.30}
\end{equation*}
$$

$$
\begin{align*}
& a_{2}{ }^{\prime}=C \int_{0}^{\infty} \frac{a_{2}^{n_{2}} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]^{n_{2}}} d a_{2} \int_{0}^{\infty} \frac{a_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]^{n_{1}}} d a_{1}, \tag{2.31}\\
& b_{1}^{*}=C n_{1} \int_{0}^{\infty} \frac{a_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{i}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]} d a_{1} \int_{0}^{n_{1}+1} \frac{a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{3}} \log \left(1+a_{2} x_{2 j}\right)\right]^{n_{2}}} d a_{2}, \tag{2.32}\\
& \left.b_{2}^{*}=C n_{2} \int_{0}^{\infty} \frac{a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{3}} \log \left(1+a_{2} x_{2 j}\right)\right]} d a_{2} \int_{0}^{\infty} \frac{a_{1}^{n_{2}+1}}{\left[\sum_{j=1}^{n_{1}-1} \log \left(1+a_{1} x_{1 j}\right)\right]}\right]^{n_{1}}\left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right], \tag{2.33}
\end{align*}
$$

and

$$
\begin{align*}
p_{1}^{*}= & \frac{B\left(n_{1}+2, n_{2}+1\right)}{B\left(n_{1}+1, n_{2}+1\right)} \\
& =\frac{n_{1}+1}{n_{1}+n_{2}+2} \tag{2.34}
\end{align*}
$$

Bayes estimators of a_{1}, a_{2}, b_{1} and b_{2} will be obtained by numerical integration procedure.

To obtain the performance of the estimators, we calculate the posterior variance of the estimates. We first compute

$$
\begin{aligned}
& E\left(a_{1}^{2} \mid \underline{x}\right)=C \int_{0}^{\infty} \frac{a_{1}^{n_{1}+1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]} d a_{1} \int_{0}^{\infty} \frac{a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{3}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{i}} \log \left(1+a_{2} x_{2 j}\right)\right]} d a_{2},(2.35) \\
& E\left(a_{2}{ }^{2} \mid \underline{x}\right)=C \int_{0}^{\infty} \frac{a_{2}^{n_{1}+1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{3}} \log \left(1+a_{2} x_{2 j}\right)\right]} d a_{2} \int_{0}^{\infty} \frac{a_{1}^{n_{1}-1}}{\exp \left[-\sum_{j=1}^{n_{i}} \log \left(1+a_{1} x_{1 j}\right)\right]}\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)^{n_{1}}\right.
\end{aligned} d a_{1},(2.36),
$$

$$
\begin{align*}
& E\left(b_{1}^{2} \mid \underline{x}\right)=C n_{1}\left(n_{1}+1\right) \int_{0}^{\infty} \frac{a_{1}^{n_{1}-1}}{} \frac{\exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]}{\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]} d a_{1} \int_{0}^{\infty} \frac{a_{2}^{n_{1}-1} \frac{\exp \left[-\sum_{j=1}^{n_{3}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]} d a_{2},}{n_{2}} \tag{2.37}\\
& E\left(b_{2}^{2} \mid \underline{x}\right)=C n_{2}\left(n_{2}+1 \int_{0}^{\infty} \frac{a_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]}{\left[\sum_{j=1}^{n_{2}} \log \left(1+a_{2} x_{2 j}\right)\right]} d a_{2} \int_{0}^{\infty} \frac{a_{1}^{n_{2}+2}}{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{1 j}\right)\right]\right. \tag{2.38}\\
& {\left[\sum_{j=1}^{n_{1}} \log \left(1+a_{1} x_{i j}\right)\right]}
\end{align*} a_{1}^{n_{1}},
$$

and

$$
\begin{equation*}
E\left(p_{1}^{2} \mid \underline{x}\right)=\frac{B\left(n_{1}+3, n_{2}+1\right)}{B\left(n_{1}+1, n_{2}+1\right)} . \tag{2.39}
\end{equation*}
$$

Then, the posterior variance of a_{1} is obtained from (2.30) and (2.35) as,
$V\left(a_{1} \mid \underline{x}\right)=E\left(a_{1}^{2} \mid \underline{x}\right)-\left[E\left(a_{1} \mid \underline{x}\right)\right]^{2}$.

Similarly, we obtain the posterior variances $V\left(a_{2} \mid \underline{x}\right), V\left(b_{1} \mid \underline{x}\right), V\left(b_{2} \mid \underline{x}\right)$ and $V\left(p_{1} \mid \underline{x}\right)$ from (2.31), (2.32), (2.33), (2.34), (2.36), (2.37), (2.38) and (2.39).

Remark 2.1

One can use other types of priors for the analysis. However, when we use conjugate priors for $p_{1}, a_{1}, a_{2}, b_{1}$ and b_{2}, the estimation procedure will become more complex.

2.6.2 Estimation of parameters when the observations belonging to each subpopulation are unknown

We consider the situation when there are only two subpopulations with mixing proportions p_{1} and $\left(1-p_{1}\right)$ and $f_{1}(x)$ and $f_{2}(x)$ are Pareto II densities with parameters $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ respectively. In this case, we cannot assign a unit to a particular subpopulation and bence the likelibood of the sample is given by

$$
\begin{equation*}
L\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right)=\prod_{j=1}^{n}\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{j}\right)^{-b_{1}+1}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+1\right)}\right] \tag{2.40}
\end{equation*}
$$

where x_{j} denote the failure time of the j-th unit in a sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of size n.

(a) Maximum likelihood estimation (M.L.E).

Maximization of log-likelihood function of (2.40) with respect to the parameters yields the following equations,

$$
\begin{align*}
& \sum_{j=1}^{n} \frac{p_{1} b_{1}\left(1-a a_{1} b_{1} x_{j}\right)\left(1+a_{1} x_{j}\right)^{-\left(b_{1}+2\right)}}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{j}\right)^{-\left(b_{2}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+1\right)}}=0, \tag{2.41}\\
& \sum_{j=1}^{n} \frac{\left(1-p_{1}\right) b_{2}\left(1-a_{2} b_{2} x_{j}\right)\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+2\right)}}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{j}\right)^{-\left(b_{j}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+1\right)}}=0, \tag{2.42}\\
& \sum_{j=1}^{n} \frac{p_{1} a_{1}\left(1-b_{1} \log \left(1+a_{1} x_{j}\right)\left(1+a_{1} x_{j}\right)^{-\left(b_{1}+1\right)}\right.}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{j}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+1\right)}}=0, \tag{2.43}\\
& \sum_{j=1}^{n} \frac{\left(1-p_{1}\right) a_{2}\left(1-b_{2} \log \left(1+a_{2} x_{j}\right)\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+1\right)}\right.}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{j}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+1\right)}}=0, \tag{2.44}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{1} b_{1}\left(1+a_{1} x_{j}\right)^{-\left(b_{1}+1\right)}-a_{2} b_{2}\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+1\right)}}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{j}\right)^{-\left(h_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{j}\right)^{-\left(b_{2}+1\right)}}=0 . \tag{2.45}
\end{equation*}
$$

The solutions of above equations provide the estimates of the parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1}. Standard numerical methods like Newton Raphson method can be used to solve above equations.

(b) Bayes estimation.

We assume that the joint prior density of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} is (2.22). From (2.22) and (2.40), the joint posterior distribution of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} is obtained as

$$
\begin{gather*}
\prod\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right) \alpha\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(k_{i}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \\
\frac{1}{a_{1} a_{2} b_{1} b_{2}} \tag{2.46}
\end{gather*}
$$

We, then, obtain the marginal posterior distributions of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} as

$$
\begin{gather*}
\Pi_{1}\left(a_{1} \mid \underline{x}\right)=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(l_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \\
\frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{2}, \tag{2.47}\\
\Pi_{2}\left(a_{2} \mid \underline{x}\right)=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \\
\frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{1},
\end{gather*}
$$

$$
\begin{gather*}
\frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{1}, \\
\Pi_{3}\left(b_{1} \mid \underline{x}\right)=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(k_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+11\right.}\right]\right. \\
\frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{2} d a_{2} d a_{1}, \tag{2.49}\\
\Pi_{4}\left(b_{2} \mid \underline{x}\right)=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{4}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \\
\frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d a_{2} d a_{1}, \tag{2.50}
\end{gather*}
$$

and

$$
\begin{array}{r}
\Pi_{5}\left(p_{1} \mid x\right)=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{i}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \\
\frac{\frac{1}{a_{1} a_{2} b_{1} b_{2}} d b_{1} d b_{2} d a_{2} d a_{1}}{} \tag{2.51}
\end{array}
$$

where

$$
\begin{align*}
& D^{-1}=\int_{0}^{1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(a_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \\
& \frac{1}{a_{1} a_{2} b_{1} b_{2}} d b_{1} d b_{2} d a_{2} d a_{1} d p_{1} \tag{2.52}
\end{align*}
$$

Then the Bayes estimates of the parameters, under squared error loss function, are given as

$$
\begin{gather*}
a_{1}^{*}=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \\
\frac{1}{a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{2} d a_{1}, \tag{2.53}\\
a_{2}^{*}=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(l_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \\
\frac{1}{a_{1} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{1} d a_{2}, \tag{2.54}\\
b_{1}^{*}=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{i}+1\right)}\right]\right. \\
a_{1} a_{2} b_{2} \tag{2.55}\\
d p_{1} d b_{2} d a_{2} d a_{1} d b_{1}, \\
b_{2}^{*}=D \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]\right. \tag{2.56}\\
\frac{1}{a_{1} a_{2} b_{1}} d p_{1} d b_{1} d a_{2} d a_{1} d b_{2},
\end{gather*}
$$

and

$$
\begin{gather*}
p_{1}^{*}=D \int_{0}^{1} \int_{0}^{\infty \infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} p_{1} \mid \prod_{i=1}^{n}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(i b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right\} \\
\frac{1}{a_{1} a_{2} b_{1} b_{2}} d b_{1} d b_{2} d a_{2} d a_{1} d p_{1} \tag{2.57}
\end{gather*}
$$

(c) Method of moments.

Of the classical methods, one that is simple for the estimation of parameters is the method of moments.

Let $X_{1}, X_{2} \ldots, X_{n}$ be a random sample from the model (2.2). Let $m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime} m_{4}^{\prime}$ and m_{5}^{\prime} denote the sample raw moments. Now we equate the sample moments to the population moments, which provide the following equations,

$$
\begin{align*}
& \frac{p_{1}}{a_{1}\left(b_{1}-1\right)}+\frac{\left(1-p_{1}\right)}{a_{2}\left(b_{2}-1\right)}=m_{1}, \tag{2.58}\\
& \frac{2 p_{1}}{a_{1}^{2}\left(b_{1}-1\right)\left(b_{1}-2\right)}+\frac{2\left(1-p_{1}\right)}{a_{2}^{2}\left(b_{2}-1\right)\left(b_{2}-2\right)}=m_{2}, \tag{2.59}\\
& \frac{6 p_{1}}{a_{1}^{3}\left(b_{1}-1\right)\left(b_{1}-2\right)\left(b_{1}-3\right)}+\frac{6\left(1-p_{1}\right)}{a_{2}^{3}\left(b_{2}-1\right)\left(b_{2}-2\right)\left(b_{2}-3\right)}=m_{3}, \tag{2.60}\\
& \frac{24 p_{1}}{a_{1}^{4}\left(b_{1}-1\right)\left(b_{1}-2\right)\left(b_{1}-3\right)\left(b_{1}-4\right)}+\frac{24\left(1-p_{1}\right)}{a_{2}^{4}\left(b_{2}-1\right)\left(b_{2}-2\right)\left(b_{2}-3\right)\left(b_{2}-4\right)}=m_{4}^{\prime}, \tag{2.61}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{120 p_{1}}{a_{1}^{5}\left(b_{1}-1\right)\left(b_{1}-2\right)\left(b_{1}-3\right)\left(b_{1}-4\right)\left(b_{1}-5\right)}+\frac{120\left(1-p_{1}\right)}{a_{2}^{5}\left(b_{2}-1\right)\left(b_{2}-2\right)\left(b_{2}-3\right)\left(b_{2}-4\right)\left(b_{2}-5\right)}=m_{5} \tag{2.62}
\end{equation*}
$$

The estimates of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} can be obtained by solving the above five equations. An important difficulty which may arise in this process is the multiple solutions of (2.58), (2.59), (2.60), (2.61) and (2.62). In such situations we choose those values, which minimize the standard error. Pearson (1894) has recommended choosing the set of estimates which is in closest agreement to the actual value. This is not possible in the real world situation since we do not know the actual values.

(d) Maximum product of spacing.

In most applications, the parameters in the mixture model are estimated by the method of maximum likelihood (M,L.E). It is well known, however, that the maximum likelihood estimation can be very sensitive to outliers in the data. In such situations, we obtain the estimate of parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} using the maximum product of spacing method introduced by Cheng and Amin (1983). In the presence of outliers, this approach is superior in comparison with the M.L.E. The
estimates by this method are obtained by maximizing the geometric mean of the spacing

$$
G=\frac{1}{n} \sum_{i=1}^{n} \log \left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right] .
$$

For the model (2.2), G will be equal to

$$
\begin{equation*}
G=\frac{1}{n} \sum_{i=1}^{n} \log \left\{p_{1}\left[\left(1+a_{1} x_{i-1}\right)^{-h_{1}}-\left(1+a_{1} x_{i}\right)^{-b_{1}}\right]+\left(1-p_{1}\right)\left[\left(1+a_{2} x_{i-1}\right)^{-b_{2}}-\left(1+a_{2} x_{i}\right)^{-b_{i}}\right]\right\} \tag{2.63}
\end{equation*}
$$

where x_{i} and x_{i-1} denote the failure times of the i-th and ($i-1$)-th unit in a sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of size n.

Differentiating (2.63) with respect to $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} and equating to zero, we have $\frac{1}{n} \sum_{i=1}^{n} \frac{p_{1} b_{1}\left[\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)} x_{i}-\left(1+a_{1} x_{i-1}\right)^{-\left(k_{i}+1\right)} x_{i-1}\right]}{p_{1}\left[\left(1+a_{1} x_{i-1}\right)^{-k_{1}}-\left(1+a_{1} x_{i}\right)^{-b_{1}}\right]+\left(1-p_{1}\right)\left[\left(1+a_{2} x_{i-1}\right)^{-b_{2}}-\left(1+a_{2} x_{i}\right)^{-b_{i}}\right]}=0$,
$\frac{1}{n} \sum_{i=1}^{n} \frac{\left(1-p_{1}\right) b_{2}\left[\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)} x_{i}-\left(1+a_{2} x_{i-1}\right)^{-\left(b_{2}+1\right)} x_{i-1}\right]}{\left.p_{1}\left[\left(1+a_{1} x_{i-1}\right)^{-h}-\left(1+a_{1} x_{i}\right)^{-b_{k}}\right]+\left(1-p_{1}\right) \tilde{1}\left(1+a_{2} x_{i-1}\right)^{-b_{2}}-\left(1+a_{2} x_{i}\right)^{-b_{2}}\right]}=0$,
$\frac{1}{n} \sum_{i=1}^{n} \frac{p_{1}\left[\left(1+a_{1} x_{i}\right)^{-b_{2}} \log \left(1+a_{1} x_{i}\right)-\left(1+a_{1} x_{i-1}\right)^{-k_{2}} \log \left(1+a_{1} x_{i-1}\right)\right]}{p_{1}\left[\left(1+a_{1} x_{i-1}\right)^{-k_{1}}-\left(1+a_{1} x_{i}\right)^{-k}\right]+\left(1-p_{1}\right)\left[\left(1+a_{2} x_{i-1}\right)^{-b_{2}}-\left(1+a_{2} x_{i}\right)^{-b_{2}}\right]}=0$,
$\frac{1}{n} \sum_{i=1}^{n} \frac{\left(1-p_{1}\right)\left[\left(1+a_{2} x_{i}\right)^{-b_{2}} \log \left(1+a_{2} x_{i}\right)-\left(1+a_{2} x_{i-1}\right)^{-b_{2}} \log \left(1+a_{2} x_{i-1}\right)\right]}{p_{1}\left[\left(1+a_{1} x_{i-1}\right)^{-k_{1}}-\left(1+a_{1} x_{i}\right)^{-k_{i}}\right]+\left(1-p_{1}\right)\left[\left(1+a_{2} x_{i-1}\right)^{-b_{2}}-\left(1+a_{2} x_{i}\right)^{-b_{2}}\right]}=0$,
and

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \frac{\left[\left(1+a_{1} x_{i-1}\right)^{-b_{3}}-\left(1+a_{1} x_{i}\right)^{-h_{1}}+\left(1+a_{2} x_{i}\right)^{-b_{i}}-\left(1+a_{2} x_{i-1}\right)^{-k_{2}}\right]}{p_{1}\left[\left(1+a_{1} x_{i-1}\right)^{-k_{2}}-\left(1+a_{1} x_{i}\right)^{-k_{1}}\right]+\left(1-p_{1}\right)\left[\left(1+a_{2} x_{i-1}\right)^{-b_{2}}-\left(1+a_{2} x_{i}\right)^{-b_{2}}\right]}=0 . \tag{2.68}
\end{equation*}
$$

The solution of above equations provides the estimates of the parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1}.

2.7 Censored set up

In this situation, we discuss the estimation of parameters of mixture of Pareto Il model (2.2) for the censored data.

2.7.1 Estimation based on type I censored samples when the observations belonging to each subpopulation are known

Consider the situation, when there are only two subpopulations with mixing proportions p_{1} and $\left(1-p_{1}\right)$ and $f_{1}(x)$ and $f_{2}(x)$ are respective Pareto II densities with parameters (a_{1}, b_{1}) and (a_{2}, b_{2}). Consider a life testing experiment with n items and the experiment is terminated after a preassigned time T hours have elapsed. Suppose that r units have failed during the interval $(0, T)$ of which r_{1} units from the first subpopulation and r_{2} units from the second subpopulation with $r=r_{1}+r_{2}$ and ($n-r$) units are still functioning. Let $t_{i j}$ denote the failure time of the $j^{\text {th }}$ unit belonging to the $i^{\text {th }}$ subpopulation, $t_{i j} \leq T, j=1,2, \ldots, r_{i} ; i=1,2$ and let $\beta_{i}=a_{i} T$ and $x_{i j}=\frac{t_{i j}}{T}$ and observed data $\underline{x}=\left\{x_{11}, x_{12}, \ldots, x_{1 r_{i}} ; x_{21}, x_{22}, \ldots, x_{2 r_{2}}\right\}$. Now we discuss the estimation of parameters using M.L.E. and Bayes technique.

(a) Maximum likelihood estimation (M.L.E).

The likelihood function based on a type I censored sample (see Mendenhall and Hader (1958), Sinha (1986)) is given by,

$$
\begin{equation*}
L\left(\beta_{1}, \beta_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right)=\frac{n!}{r_{1}!r_{2}!(n-r)!} p_{1}^{r_{1}}\left(1-p_{1}\right)^{r_{2}} \prod_{j=1}^{r_{1}} f_{1}\left(x_{1 j}\right) \prod_{j=1}^{r_{2}} f_{2}\left(x_{2 j}\right)[S(T)]^{(n-r)} \tag{2.69}
\end{equation*}
$$

For the model (2.2), (2.69) becomes

$$
\begin{gather*}
L\left(\beta_{1}, \beta_{2}, b_{1}, b_{2} p_{1} \mid \underline{x}\right)=\frac{n!}{r_{1}!r_{2}!(n-r)!} \frac{p_{1}^{r_{1}^{\prime}}\left(1-p_{1}\right)^{r}}{T^{r}} \prod_{j=1}^{r_{1}}\left\{b_{1} \beta_{1}\left(1+\beta_{1} x_{1 j}\right)^{-\left(b_{1}+1\right)}\right\} \\
\prod_{j=1}^{\hat{\Pi}}\left\{b_{2} \beta_{2}\left(1+\beta_{2} x_{2 j}\right)^{-\left(b_{2}+1\right)}\right\}\left\{p_{1}\left(1+\beta_{1}\right)^{-k_{2}}+\left(1-p_{1}\right)\left(1+\beta_{2}\right)^{-b_{2}}\right\}^{(n-r)} \tag{2.70}
\end{gather*}
$$

Maximization of log-likelihood function of (2.70) with respect to the model parameters yields the following equations.
$\frac{r_{1}}{\beta_{1}}-\frac{\left(b_{1}+1\right)}{\beta_{1}} \sum_{i=1}^{r_{1}}\left(1+\frac{1}{\beta_{1} x_{1} ;}\right)^{-1}-\frac{(n-r) p_{1} b_{1}\left(1+\beta_{1}\right)^{-t_{1}+11}}{\left[p_{1}\left(1+\beta_{1}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+\beta_{2}\right)^{-k_{2}}\right]}=0$.

$$
\begin{align*}
& \frac{r_{2}}{\beta_{2}}-\frac{\left(b_{2}+1\right)}{\beta_{2}} \sum_{j=1}^{r_{2}}\left(1+\frac{1}{\beta_{2} x_{2 j}}\right)^{-1}-\frac{(n-r)\left(1-p_{1}\right) b_{2}\left(1+\beta_{2}\right)^{-\left(b_{2}+1\right)}}{\left[p_{1}\left(1+\beta_{1}\right)^{-b_{2}}+\left(1-p_{1}\right)\left(1+\beta_{2}\right)^{-k_{2}}\right]}=0, \tag{2.72}\\
& \frac{r_{1}}{b_{1}}-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)-\frac{(n-r) p_{1}\left(1+\beta_{1}\right)^{--k_{2}} \log \left(1+\beta_{1}\right)}{\left[p_{1}\left(1+\beta_{1}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+\beta_{2}\right)^{-b_{2}}\right]}=0, \tag{2.73}\\
& \frac{r_{2}}{b_{2}}-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)-\frac{(n-r)\left(1-p_{1}\right)\left(1+\beta_{2}\right)^{-b_{2}} \log \left(1+\beta_{2}\right)}{\left[p_{1}\left(1+\beta_{1}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+\beta_{2}\right)^{-b_{2}}\right]}=0, \tag{2.74}
\end{align*}
$$

and
$\frac{r_{1}}{p_{1}}-\frac{r_{2}}{\left(1-p_{1}\right)}+\frac{(n-r)\left[\left(1+\beta_{1}\right)^{-b_{1}}-\left(1+\beta_{2}\right)^{b_{2}}\right]}{\left[p_{1}\left(1+\beta_{1}\right)^{-h_{1}}+\left(1-p_{1}\right)\left(1+\beta_{2}\right)^{-b_{2}}\right]}=0$.

The solution of the five equations (2.71) to (2.75), using numerical iteration method, yields the maximum likelihood estimate (M.L.E) of $\beta_{1}, \beta_{2}, b_{1}, b_{2}$ and p_{1} and thus we obtain the maximum likelihood estimate of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1}.

(b) Bayes estimation.

The method of Bayes estimation provides accurate estimates in many censored situations (see Sinha, 1998). To discuss the method of Bayes estimation for the model (2.2) based on type I censored data, we assume that $\beta_{1}, \beta_{2}, b_{1}, b_{2}$ and p_{1} are independent. Using Jeffrey's invariant prior for $\beta_{1} \beta_{2}, b_{1}$ and b_{2} and uniform prior in the interval (0,1) for p_{1}, the joint prior distribution of $\beta_{1}, \beta_{2}, b_{1}, b_{2}$ and p_{1} is given by

$$
\begin{equation*}
g\left(\beta_{1}, \beta_{2}, b_{1}, b_{2}, p_{1}\right) \alpha \frac{1}{\beta_{1} \beta_{2} b_{1} b_{2}} \tag{2.76}
\end{equation*}
$$

From (2.70) and (2.76), the joint posterior distribution of $\beta_{1}, \beta_{2}, b_{1}, b_{2}$ and p_{1} is obtained as
$\Pi\left(\beta_{1}, \beta_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right) \alpha \sum_{k=0}^{n-r}\left(\begin{array}{c}n-r\end{array}\right) p_{1}^{n-r_{2}-k}\left(1-p_{1}\right)^{r^{2}+k} \beta_{1}^{r_{1}-1} \beta_{2}^{r_{-}^{-1}} b_{1}^{r_{1}^{-1}} b_{2}^{r_{2}^{2-1}}$
$\exp \left[-\left(b_{1}+1\right) \sum_{j=1}^{k_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right] \exp \left[-\left(b_{2}+1\right) \sum_{j=1}^{n_{j}} \log \left(1+\beta_{2} x_{2 j}\right)\right]\left(1+\beta_{1}\right)^{-n_{i} n \cdots \cdots k}\left(1+\beta_{2}\right)^{-b_{2} k}$.

From equation (2.77), we obtain the marginal posterior distributions of $\beta_{1}, \beta_{2}, b_{1}, b_{2}$ and p_{1} as

$$
\begin{align*}
& \Pi_{1}\left(\beta_{1} \mid \underline{x}\right)=E \sum_{k=0}^{n-r}\left(_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \frac{\beta_{1}^{r_{1}-1} \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{i}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{\top}} \\
& \int_{0}^{\infty} \frac{\beta_{2}^{r_{2}-1} \exp \left[-\sum_{j=!}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{r_{2}}} d \beta_{2}, \\
& \Pi_{2}\left(\beta_{2} \mid \underline{x}\right)=E \sum_{k=0}^{n-r}\left(k_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \frac{\beta_{2}^{r_{2}-1} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{r}} \\
& \int_{0}^{\infty} \frac{\beta_{1}^{r_{1}^{\prime-1}} \exp \left[-\sum_{j=1}^{\eta_{i}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left.\sum_{j=1}^{r_{1}} \log \left(1+\beta_{\mathrm{i}} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{n^{i}}} d \beta_{1}, \tag{2.79}\\
& \Pi_{3}\left(b_{1} \mid \underline{x}\right)=\frac{E}{\Gamma r_{1}} \sum_{k=0}^{n-r}\binom{n-r}{k} B\left(n-r_{2}-k+1, r_{2}+k+1\right) b_{1}^{r_{1}-1} \\
& \left.\int_{0}^{\infty} \beta_{1}^{r_{1}-1} \operatorname{expl}-b_{1}\left(\sum_{j=1}^{i_{i}} \log \left(1+\beta_{1} x_{1 j}\right)+(n-r-k) \log \left(1+\beta_{1}\right)\right)\right] \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right] d \beta_{1} \\
& \int_{0}^{\infty} \frac{\beta_{2}^{r_{2}-1} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left.\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{2}} d \beta_{2}, \tag{2.80}
\end{align*}
$$

$$
\begin{align*}
& \Pi_{4}\left(b_{2} \mid \underline{x}\right)=\frac{E}{\Gamma r_{2}} \sum_{k=0}^{n-r}\left(l_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) b_{2}^{r_{2}-1} \\
& \int_{0}^{\infty} \beta_{2}^{r_{2}-1} \exp \left[-b_{2}\left(\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)+k \log \left(1+\beta_{2}\right)\right)\right] \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right) d \beta_{2} \\
& \int_{{ }^{2}}^{\infty} \frac{\beta_{1}^{r_{i}-1} \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left.\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{r}} d \beta_{1} \tag{2.81}
\end{align*}
$$

and

$$
\begin{gather*}
\Pi_{5}\left(p_{1} \mid \underline{x}\right)=E \sum_{k=0}^{n-r}\left(c_{k}^{n-r}\right) p_{1}^{n-r_{2}-k}\left(1-p_{1}\right)^{r_{2}+k} \int_{0}^{\infty} \frac{\beta_{1}^{r_{1}-1} \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left.\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{r^{r}}} d \beta_{1} \\
\left.\int_{0}^{\infty}\left[\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{r} \tag{2.82}
\end{gather*}
$$

where

$$
\begin{gather*}
E^{-1}=\sum_{k=0}^{n-r}\left(\begin{array}{l}
n-r
\end{array}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \int_{0}^{\infty} \frac{\beta_{2}^{r_{2}-1} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{5}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{\gamma_{2}}} d \beta_{2} \\
\int_{0}^{\infty} \frac{\beta_{1}^{r_{1}-1} \exp \left[-\sum_{j=1}^{r_{i}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left.\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{l}\right)\right]^{r^{\prime}}} d \beta_{1} . \tag{2.83}
\end{gather*}
$$

with $B(p, q)$ is the beta function of the first kind.
Under squared error loss function, we obtain the Bayes estimators of $\beta_{1}, \beta_{2}, b_{1}, b_{2}$ and p_{1} as

$$
\begin{align*}
& \beta_{1}^{*}=E \sum_{k=0}^{n-r}\left(k_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \int_{0}^{\infty} \frac{\beta_{1}^{r_{1}} \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{i}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{T^{r}}} d \beta_{1} \\
& \int_{0}^{\infty} \frac{\beta_{2}^{r_{2}-1} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{r_{2}}} d \beta_{2} \text {, } \\
& \beta_{2}{ }^{*}=E \sum_{k=0}^{n-r}\left({ }_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \int_{0}^{\infty} \frac{\beta_{2}^{r_{2}} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{r_{2}}} d \beta_{2} \\
& \int_{0}^{\infty} \frac{\beta_{1}^{r_{1}-1} \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{i}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{r_{i}}} d \beta_{1}, \\
& b_{1}^{*}=E r_{1} \sum_{k=0}^{n-r}\left({ }_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \int_{0}^{\infty} \frac{\beta_{1}^{r_{1}-1} \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{i}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{r_{1}+1}} d \beta_{1} \\
& \int_{0}^{\infty} \frac{\beta_{2}^{r^{2-1}} \exp \left(-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{r_{2}}} d \beta_{2}, \tag{2.86}\\
& b_{2}^{*}=E r_{2} \sum_{k=0}^{n-r}\left({ }_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \int_{{ }^{0}}^{\infty}\left[\frac{\beta_{2}^{r_{2}-1} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left.r_{j}^{2} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{r_{2}+1}} d \beta_{2}\right. \\
& \int_{0}^{\infty} \frac{\beta_{1}^{r_{1}^{-1}} \exp \left[-\sum_{j=1}^{r_{i}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{i}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{i_{i}}} d \beta_{1}, \tag{2.87}
\end{align*}
$$

and

$$
\begin{gather*}
p_{1}^{*}=E \sum_{k=1}^{n-r}\left(c_{k}^{n-r}\right) B\left(n-r_{2}-k+2, r_{2}+k+1\right) \int_{0}^{\infty} \frac{\beta_{2}^{r_{2}-1} \exp \left[-\sum_{j=1}^{n} \log \left(1+\beta_{2} x_{2 j}\right)\right]}{\left.\left[\sum_{j=1}^{r_{2}} \log \left(1+\beta_{2} x_{2 j}\right)\right]+k \log \left(1+\beta_{2}\right)\right]^{r_{2}^{2}}} d \beta_{2} \\
\int_{0}^{\infty} \frac{\beta_{1}^{r_{1}-1} \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]}{\left.\left.\sum_{j=1}^{r_{1}} \log \left(1+\beta_{1} x_{1 j}\right)\right]+(n-r-k) \log \left(1+\beta_{1}\right)\right]^{r_{1}}} d \beta_{1} . \tag{2.88}
\end{gather*}
$$

Bayes estimators of $\beta_{1}, \beta_{2}, b_{1}, b_{2}$ and p_{1} and hence that of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} will obtained by numerical integration procedure.

Remark 2.2

As mentioned earlier, one can use other types of priors for the analysis, which may yield complex situations.

2.7.2 Estimation based on type I censored samples when the observations

 belonging to each subpopulation are unknown
(a) Maximum likelihood estimation (M.L.E)

In this section, we develop maximum likelihood estimator of parameters under type I censoring. Suppose there are n sample units ($x_{1}, x_{2}, \ldots, x_{n}$) from the mixture model (2.2) and the lifetime of the units is censored by the time T and x_{i} denote the failure time of the i-th unit in a sample of size n. The likelihood function based on a type I censored sample (see Lawless, 2003) is given by

$$
\begin{equation*}
L=\prod_{i=1}^{n}\left\{f\left(x_{i}\right)^{\delta^{\prime}} S(T)^{1 \cdot \delta}\right\} \tag{2.89}
\end{equation*}
$$

where $\delta_{i}=1$ if $x_{i} \leq T$ and $\delta_{i}=0$ if $x_{i}>T$.

For the model (2.2), (2.89) becomes,

$$
L\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right)=
$$

$$
\begin{equation*}
\prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left.\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right|^{s} \mid p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{1-\delta_{1}}\right\} . \tag{2.90}
\end{equation*}
$$

Maximization of log-likelihood function of (2.90) with respect to the model parameters yields the following equations,

$$
\begin{align*}
& \sum_{i=1}^{n}: \frac{\delta_{i}\left[p_{i} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}-p_{1} b_{1} a_{1}\left(b_{1}+1\right)\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+2\right)} x_{i}\right]}{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]} \\
& \left.\quad-\frac{\left(1-\delta_{i}\right) p_{1} b_{1}\left(1+a_{1} T\right)^{-\left(b_{1}+1\right)} T}{\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]}\right]=0, \tag{2.91}
\end{align*}
$$

$$
\begin{array}{r}
\sum_{i=1}^{n}\left[\frac{\delta_{i}\left[\left(1-p_{1}\right) b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}-\left(1-p_{1}\right) b_{2} a_{2}\left(b_{2}+1\right)\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+2\right)} x_{i}\right]}{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(p_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]}\right. \\
\left.-\frac{\left(1-\delta_{i}\right)\left(1-p_{1}\right) b_{2}\left(1+a_{2} T\right)^{-\left(b_{2}+1\right)} T}{\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]}\right]=0, \tag{2.92}
\end{array}
$$

$$
\sum_{i=1}^{n}\left[\left\{\frac{\delta_{i}\left\{p_{1} a_{1}\left(1+a_{1} x_{i}\right)^{-1}\left[\left(1+a_{1} x_{i}\right)^{-b_{1}}-b_{1}\left(1+a_{1} x_{i}\right)^{-b_{1}} \log \left(1+a_{1} x_{i}\right)\right]\right.}{\left[p_{1} a_{i} b_{1}\left(1+a_{i} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]}\right\}\right.
$$

$$
\begin{equation*}
\left.+\frac{\left(1-\delta_{1}\right)\left[-p_{1}\left(1+a_{1} T\right)^{-b_{1}} \log \left(1+a_{1} T\right)\right.}{\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{1}}\right]}\right]=0, \tag{2.93}
\end{equation*}
$$

$$
\sum_{i=1}^{n}\left\{\left\{\frac{\delta_{i}\left\{\left(1-p_{1}\right) a_{2}\left(1+a_{2} x_{i}\right)^{-1}\left[\left(1+a_{2} x_{i}\right)^{-b_{2}}-b_{2}\left(1+a_{2} x_{i}\right)^{-b_{2}} \log \left(1+a_{2} x_{i}\right)\right]\right.}{\left[p_{1} a_{1} b_{1}\left(1+a_{i} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]}\right\}\right.
$$

$$
\begin{equation*}
\left.+\frac{\left(1-\delta_{i}\right)\left[-\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}} \log \left(1+a_{2} T\right)\right.}{\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]}\right]=0 \tag{2.94}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{i=1}^{n} & {\left[\frac{\delta_{i}\left[a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}-a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]}{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+11\right.}\right]}\right.} \\
& \left.+\frac{\left(1-\delta_{i}\right)\left[\left(1+a_{1} T\right)^{-b_{1}}-\left(1+a_{2} T\right)^{-b_{2}}\right]}{\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]}\right]=0 \tag{2.95}
\end{align*}
$$

The solution of the five equations (2.91) to (2.95), using numerical iteration scheme, yields the maximum likelihood estimate (M.L.E) of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1}.

(b) Bayes estimation.

To estimate the parameters, consider the joint prior distribution (2.22). Using (2.90), we then obtain the joint posterior distribution of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} as

$$
\begin{gather*}
\prod\left(a_{1}, a_{2}, b_{i}, b_{2}, p_{1} \mid \underline{x}\right) \alpha \prod_{i=1}^{n}\left\{\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right]^{\delta_{1}}\right. \\
\left.\left\lceil p_{3}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{\left(1-\delta_{i}\right)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} \tag{2.96}
\end{gather*}
$$

We then obtain the marginal posterior distributions as

$$
\begin{align*}
& \Pi_{1}\left(a_{1} \mid \underline{x}\right)=K \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \prod_{i=1}^{i n}\left(\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(p_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{i}+1\right)}\right]^{\delta_{i}}\right. \\
& \left.\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{\left(1-\delta_{1}\right)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{2}, \tag{2.97}\\
& \Pi_{2}\left(a_{2} \mid \underline{x}\right)=K \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]^{\delta}\right. \\
& \left.\left[p_{1}\left(1+a_{1} T\right)^{-h_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{11-\delta_{1}}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{1}, \tag{2.98}\\
& \Pi_{3}\left(b_{1} \mid \underline{x}\right)=K \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{i}^{1} \int \prod_{i=1}^{\pi}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1 i\right.}\right]^{\delta_{i}}\right. \\
& \left.\mid p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-k_{2}} 1^{1-\delta_{1}}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d a_{2} d a_{1} d b_{2}, \tag{2.99}\\
& \Pi_{4}\left(b_{2} \mid \underline{x}\right)=K \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(p_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]^{\delta,}\right. \\
& \left\{p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}} 7^{1-\delta_{1}}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d a_{2} d a_{1} d b_{1}, \tag{2.100}
\end{align*}
$$

$$
\begin{align*}
\Pi_{5}\left(p_{1} \mid \underline{x}\right)= & K \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]^{\delta_{1}}\right. \\
& {\left.\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{i}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{\left(1-\delta_{i}\right.}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d b_{2} d b_{1} d a_{2} d a_{1} . } \tag{2.101}
\end{align*}
$$

where

$$
\begin{align*}
K^{-1}= & \int_{0}^{1} \int_{0}^{\infty}
\end{align*} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]^{\delta_{i}} .\right.
$$

Then the Bayes estimates of the parameters, under squared error loss function, are given as

$$
\begin{align*}
a_{1}^{*}=K & \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{\left.-i b_{2}+1\right)}\right]^{\delta_{i}}\right. \\
& {\left.\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{\left(1-\delta_{1}\right.}\right\} \frac{1}{a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{2} d a_{1} } \tag{2.103}
\end{align*}
$$

$$
\begin{align*}
a_{2}^{*}=K & \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int \prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(p_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]^{\delta_{1}}\right. \\
& {\left.\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{\left(1-\delta_{1}\right)}\right\} \frac{1}{a_{1} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{1} d a_{2}, } \tag{2.104}
\end{align*}
$$

$$
\begin{align*}
b_{1}^{*}=K & \int_{0}^{\infty} \int_{0}^{\infty} \iint_{0}^{\infty} \int_{0}^{1} \int_{0}^{1} \prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]^{\delta_{1}}\right. \\
& {\left.\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{\left(1-\delta_{1}\right)}\right\} \frac{1}{a_{1} a_{2} b_{2}} d p_{1} d a_{2} d a_{1} d b_{2} d b_{1}, } \tag{2.105}
\end{align*}
$$

$$
\begin{align*}
b_{2}^{*}=K & \int_{0}^{\infty} \int_{0}^{\infty} \iint_{0}^{\infty} \int_{0}^{1} \int_{0}^{1} \prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]^{\delta_{1}}\right. \\
& {\left.\left[p_{1}\left(1+a_{1} T\right)^{-k_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{\left(1-\delta_{1}\right)}\right\} \frac{1}{a_{1} a_{2} b_{1}} d p_{1} d a_{2} d a_{1} d b_{1} d b_{2} } \tag{2.106}
\end{align*}
$$

and

$$
\begin{align*}
p_{1}^{*}=K & \iint_{0}^{1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} p_{1} \prod_{i=1}^{n}\left\{\left[p_{1} a_{1} b_{1}\left(1+a_{1} x_{i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i}\right)^{-\left(b_{2}+1\right)}\right]^{\delta,}\right. \\
& {\left.\left[p_{1}\left(1+a_{1} T\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} T\right)^{-b_{2}}\right]^{\left.11-\delta_{i}\right)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d b_{2} d b_{1} d a_{2} d a_{1} d p_{1} } \tag{2.107}
\end{align*}
$$

Bayes estimators of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} will obtained by numerical integration procedure.

Remark 2.3

One can use other types of priors for the analysis, which may yield complex situations as in the previous case.

2.7.3 Estimation based on type II censored samples

In type II censoring, we observe r smallest lifetimes, $x_{(1)}, x_{(2)}, \ldots, x_{(r)}$ of n units ($1 \leq r \leq n$).

(a) Maximum Likelihood estimation (M.L.E).

The likelihood function based on a type II censored sample (see Lawless, 2003) is given by

$$
\begin{equation*}
L\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right)=\frac{n!}{(n-r)!}\left[\prod_{i=1}^{r} f\left(x_{(i,}\right)\right]\left[S\left(x_{(r)}\right)\right]^{(n-r)} \tag{2.108}
\end{equation*}
$$

For the model (2.2), (2.108) becomes,

$$
\begin{align*}
L\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid x\right)=\frac{n!}{(n-r)!}[& {\left[\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i i}\right)^{-\left(b_{2}+1\right)}\right)\right] } \\
& {\left[p_{1}\left(1+a_{1} x_{i r}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right]^{i n-r)} } \tag{2.109}
\end{align*}
$$

Maximization of \log-likelihood function of (2.109) with respect to the parameters yields the following equations.

$$
\begin{align*}
\sum_{i=1}^{r}\left\{\frac{p_{1} b_{1}\left(1-a_{1} b_{1} x_{(i)}\right)\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+2\right)}}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(k_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}}\right\} \\
-\frac{p_{1} b_{1}(n-r) x_{(r)}\left(1+a_{1} x_{(r i}\right)^{-\left(h_{1}+1\right)}}{p_{1}\left(1+a_{1} x_{(r)}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-\left(-s_{2}\right.}}=0 \tag{2.110}
\end{align*}
$$

$$
\left.\begin{array}{rl}
\sum_{i=1}^{r}\left\{\frac{\left(1-p_{1}\right) b_{2}\left(1-a_{2} b_{2} x_{(i)}\right)\left(1+a_{2} x_{i j}\right)^{-\left(b_{2}+2\right)}}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}}\right.
\end{array}\right\}, \begin{aligned}
& -\frac{\left(1-p_{1}\right) b_{2}(n-r) x_{i r)}\left(1+a_{2} x_{(r)}\right)^{-\left(b_{2}+1\right)}}{p_{1}\left(1+a_{1} x_{(r)}\right)^{-k_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b b_{2}}}=0,
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i=1}^{r}\left\{\frac{p_{1} a_{1}\left(1-b_{1} \log \left(1+a_{1} x_{i j}\right)\right)\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i i}\right)^{\left.-i b_{2}+1\right)}}\right\} \\
-\frac{(n-r) p_{1}\left(1+a_{1} x_{(r)}\right)^{-b_{1}} \log \left(1+a_{1} x_{(r r}\right)}{p_{1}\left(1+a_{1} x_{(r i}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}}=0
\end{aligned}
$$

$$
\sum_{i=1}^{r}\left\{\frac{\left(1-p_{1}\right) a_{2}\left(1-b_{2} \log \left(1+a_{2} x_{(i)}\right)\right)\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i j}\right)^{-\left(b_{2}+1\right)}}\right\}
$$

$$
\begin{equation*}
-\frac{(n-r)\left(1-p_{1}\right)\left(1+a_{2} x_{(r,}\right)^{-b_{2}} \log \left(1+a_{2} x_{i r}\right)}{p_{1}\left(1+a_{1} x_{(r)}\right)^{-l_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}}=0 \tag{2.113}
\end{equation*}
$$

and

$$
\begin{gather*}
\sum_{i=1}^{r}\left\{\frac{a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}-a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}}{p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(p_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}}\right\} \\
+\frac{(n-r)\left[\left(1+a_{1} x_{(r)}\right)^{-b_{1}}-\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right]}{p_{1}\left(1+a_{1} x_{(r r}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}}=0 \tag{2.114}
\end{gather*}
$$

Solving the equations (2.110) to (2.114) we obtain the M.L.E s of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1}.

(b) Bayes estimation.

From (2.22) and (2.109), we obtain the joint posterior distribution of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} as

$$
\begin{gather*}
\prod\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{x}\right) \alpha\left\{\prod_{i=1}^{\prime}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i j}\right)^{-\left(a_{1}+11\right.}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i i}\right)^{-\left(b_{2}+1\right)}\right)\right\} \\
\left\{\left(p_{1}\left(1+a_{1} x_{(1)}\right)^{-h_{1}}+\left(1-p_{i}\right)\left(1+a_{2} x_{(r)}\right)^{\left.\left.-b_{2}\right)^{(n-r)}\right\}} \frac{1}{a_{1} a_{2} b_{1} b_{2}}\right.\right. \tag{2.115}
\end{gather*}
$$

We then obtain the marginal posterior distributions as,

$$
\begin{align*}
& \Pi_{1}\left(a_{1} \mid \underline{x}\right)=Q \int_{0}^{\infty}\left\{\int_{0}^{\infty} \int_{0}^{1}\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right)\right\}\right. \\
& \left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-t_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n-r)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{2}, \tag{2.116}\\
& \Pi_{2}\left(a_{2} \mid \underline{x}\right)=Q \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right)\right\} \\
& \left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-k_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n-r)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{1}, \tag{2.117}\\
& \Pi_{3}\left(b_{1} \mid \underline{x}\right)=Q \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{i i}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right)\right\} \\
& \left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n r)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{2} d a_{2} d a_{1}, \tag{2.118}\\
& \Pi_{4}\left(b_{2} \mid \underline{x}\right)=Q \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right\}\right. \\
& \left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-h_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n-r)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d a_{2} d a_{1}, \tag{2.119}
\end{align*}
$$

and

$$
\begin{align*}
\Pi_{5}\left(p_{1} \mid \underline{x}\right)= & Q \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{\left.-b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right)\right\} \\
& \left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n \cdot-r)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d b_{1} d b_{2} d a_{2} d a_{1} . \tag{2.120}
\end{align*}
$$

where

$$
\begin{align*}
Q^{-1}= & \int_{0}^{\infty} \int_{i=0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1}\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{i i}\right)^{-\left(b_{2}+1\right)}\right\}\right. \\
& \left\{\left(p_{1}\left(1+a_{1} x_{(r i}\right)^{-h_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n \cdot r)}\right\} \frac{1}{a_{1} a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{2} d a_{1} . \tag{2.121}
\end{align*}
$$

Then the Bayes estimates of the parameters, under squared error loss function, are given as

$$
\begin{gather*}
a_{1}^{*}=Q \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right)\right\} \\
\left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n-r)}\right\} \frac{1}{a_{2} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{2} d a_{1},(2 \tag{2.122}\\
a_{2}^{*}=Q \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left\{\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right)\right\}\right. \\
\left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n-r)}\right\} \frac{1}{a_{1} b_{1} b_{2}} d p_{1} d b_{1} d b_{2} d a_{1} d a_{2},(2 \tag{2.123}\\
b_{1}^{*}=Q \int_{0}^{*} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1}\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(l_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right\}\right. \\
\left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-k_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n-r)}\right\} \frac{1}{a_{1} a_{2} b_{2}} d p_{1} d b_{2} d a_{2} d a_{1} d b_{1},(\tag{2.124}\\
b_{2}^{*}=Q \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right\}\right. \\
{\left[p_{1}\left(1+a_{1} x_{(r)}\right)^{-a_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right]^{(n-r)} \frac{1}{a_{1} a_{2} b_{1}} d p_{1} d b_{1} d a_{2} d a_{1} d b_{2},()} \tag{2.125}
\end{gather*}
$$

and

$$
\begin{align*}
p_{1}^{*}= & Q \int_{0}^{1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0} p_{1}\left\{\prod_{i=1}^{r}\left(p_{1} a_{1} b_{1}\left(1+a_{1} x_{(i)}\right)^{-\left(k_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x_{(i)}\right)^{-\left(b_{2}+1\right)}\right)\right\} \\
& \left\{\left(p_{1}\left(1+a_{1} x_{(r)}\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} x_{(r)}\right)^{-b_{2}}\right)^{(n-r)}\right\}-\frac{1}{a_{1} a_{2} b_{1} b_{2}} d b_{1} d b_{9} d a_{2} d a_{1} d p_{1} \tag{2.126}
\end{align*}
$$

Bayes estimators of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} will obtained by numerical integration procedure.

Remark 2.4

One can use other types of priors for the analysis, which may yield complex situations

Remark 2.5

When $r=n$, the estimators obtained under type II censoring situation reduces to those under complete sample set up.

2.8 Simulation Study

In Section 2.5, we have described different methods for estimation of parameters of the model (2.2) for the complete as well as for type I and type II censored samples. In this section, we carried out simulation studies to assess the performance of the estimates.

For the type I censoring, in which observations belonging to each subpopulation are known, we generate two sets of samples, one from a Pareto II distribution with parameters a_{1} and b_{1} and the second from a Pareto II distribution with parameters a_{2} and b_{2}.

For the type I censoring, in which observations belonging to each subpopulation are unknown and for type II censoring, first we generate two sets of samples, one from a Pareto II distribution with parameters a_{1} and b_{1} and the second from a Pareto II distribution with parameters a_{2} and b_{2} and then, we obtain samples from a finite mixture of Pareto Il distributions using Bernoulli probability $p_{\mathrm{I}}\left(0<p_{\mathrm{I}}<1\right)$.

The estimates of parameters by the method of maximum likelihood, Bayes technique, method of moments and method of maximum product of spacing under complete sample set up are developed for various combinations of $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1}. Table 2.1 presents the estimates for $a_{1}=0.05, a_{2}=2, b_{1}=b_{2}=5$ and $p_{1}=0.5$. Here, we take $b_{1}=b_{2}=b$ for the simplicity of calculation of moment estimates and we choose $b=5$, since in method of moments b should be greater than 4 .

The estimates of parameters by the method of maximum likelihood and Bayes technique under type I censoring, in which observations belonging to each subpopulation are known, for $a_{1}=.03, a_{2}=3, b_{1}=1, b_{2}=2$ and $p_{1}=0.5$ with various combinations of n (sample size) and T (censoring time) are given in Table 2.2. In Table 2.3, we give the estimates of parameters by maximum likelihood and Bayes technique under type 1 censoring, in which observations belonging to each subpopulation are unknown, with various combinations of n and T for the same set of parameters. Table 2.4 provide estimators by the maximum likeiihood and Bayes
under type II censoring for the same set of parameters with various combinations of n and r.

The values in brackets provide the variance of the estimates. . In the case of Bayes estimate, we calculate posterior risk. The result obtained under type Il censoring is extended to the complete sample by taking $r=n$. Simulation study reported here and other simulations that are not given here, shows that M.L.E. and Bayes methods provide estimates with small bias.. The variance (posterior risk) of the estimates decreases as n increases.

Now, we compare the different estimates to measure the efficiency. For that we define risks improvement (RI) factor, as

$$
R I(\%)=\frac{\operatorname{Var}\left(\delta_{0}\right)-\operatorname{Var}(\delta)}{\operatorname{Var}\left(\delta_{0}\right)} \times 100
$$

where δ is the new estimate and δ_{0} is the existing estimate (see Jin and Pal, 1992) and $\operatorname{Var}(\delta)$ denotes the variance of δ. The results are presented in Table 2.5

We used the software, Mathematica, to evaluate integrals involved in the expressions. It may be noted that the efficiency of the maximum likelihood estimates depends on starting values in the iterative procedure.

Table 2.1 Estimates of parameters under complete sample for
$a_{1}=.05, a_{2}=2, b=5$ and $p_{1}=0.5$

Estimate	M.L.E	Bayes	Method of moments	Maximum product of spacing
$\mathrm{n}=30$	$\begin{aligned} & \hat{a}_{1}=.050104 \\ & (2.34 \mathrm{E}-05) \end{aligned}$	$\begin{aligned} & a_{1}=.048875 \\ & (2.371 \mathrm{E}-05) \end{aligned}$	$\begin{gathered} \tilde{a}_{1}=.05178 \\ (.0198) \\ \hline \end{gathered}$	$\begin{gathered} \bar{a}_{1}=.04912 \\ (.00351) \end{gathered}$
	$\begin{aligned} & \hat{a}_{2}=2.1498 \\ & (8.47 \mathrm{E}-06) \end{aligned}$	$\begin{aligned} & a_{2}^{\prime}=2.102 \\ & (8.83 \mathrm{E}-06) \end{aligned}$	$\begin{gathered} \tilde{a}_{2}=1.791 \\ (.0476) \end{gathered}$	$\begin{gathered} \hline \bar{a}_{2}=2.0923 \\ (.0346) \\ \hline \end{gathered}$
	$\begin{gathered} \hat{b}=4.829962 \\ (.025288) \end{gathered}$	$\begin{gathered} b^{*}=4.9426 \\ (.0408) \end{gathered}$	$\begin{gathered} \tilde{b}=5.2075 \\ (.1209) \end{gathered}$	$\begin{gathered} b=4.9231 \\ (.21052) \\ \hline \end{gathered}$
	$\begin{gathered} \hat{p}_{1}=.518161 \\ (.000518) \\ \hline \end{gathered}$	$\begin{gathered} p_{1}^{*}=.51815 \\ (.000518) \end{gathered}$	$\begin{aligned} & \tilde{p}_{1}=.4876 \\ & (.00178) \end{aligned}$	$\begin{aligned} & \bar{p}_{1}=.49942 \\ & (1.9 \mathrm{E}-10) \end{aligned}$
$\mathrm{n}=50$	$\begin{gathered} \hat{a}_{1}=.0491342 \\ (1.88 \mathrm{E}-05) \end{gathered}$	$\begin{aligned} & a_{1}^{*}=.049001 \\ & (1.892 \mathrm{E}-05) \end{aligned}$	$\begin{gathered} \tilde{a}_{1}=.05156 \\ (.0132) \end{gathered}$	$\begin{gathered} \hline \bar{a}_{1}=.04989 \\ (.00218) \end{gathered}$
	$\begin{aligned} & \hat{a}_{2}=2.02265 \\ & (5.05 \mathrm{E}-06) \end{aligned}$	$\begin{aligned} & a_{2}{ }^{*}=2.0208 \\ & (5.72 \mathrm{E}-06) \end{aligned}$	$\begin{aligned} & \tilde{a}_{2}=1.89 \\ & (.0219) \end{aligned}$	$\begin{aligned} & \bar{a}_{2}=1.9976 \\ & (.001753) \end{aligned}$
	$\begin{gathered} \hat{b}=4.918252 \\ (.01636) \end{gathered}$	$\begin{aligned} & b^{*}=4.9474 \\ & (.044573) \\ & \hline \end{aligned}$	$\begin{gathered} \tilde{b}=5.176 \\ (.1138) \\ \hline \end{gathered}$	$\begin{gathered} \check{b}=5.017 \\ (.1208) \\ \hline \end{gathered}$
	$\begin{aligned} & \hat{p}_{1}=.5271 \\ & (.000354) \end{aligned}$	$\begin{gathered} p_{1}^{*}=.513624 \\ (.000857) \\ \hline \end{gathered}$	$\begin{aligned} & \tilde{p}_{1}=.4894 \\ & (.00112) \end{aligned}$	$\begin{aligned} & \bar{p}_{1}=.50173 \\ & (1.3 \mathrm{E}-12) \end{aligned}$
$\mathrm{n}=100$	$\begin{aligned} & \hat{a}_{1}=.0491522 \\ & (1.387 \mathrm{E}-05) \end{aligned}$	$\begin{gathered} a_{1}^{*}=.5101 \\ (1.882 \mathrm{E}-05) \end{gathered}$	$\begin{aligned} & \tilde{a}_{1}=.0511 \\ & (.00987) \end{aligned}$	$\begin{aligned} & \stackrel{a}{a}_{1}=.0508 \\ & (1.1 \mathrm{E}-03) \end{aligned}$
	$\begin{aligned} & \hat{a}_{2}=2.022 \\ & (3.8 \mathrm{E}-06) \end{aligned}$	$\begin{aligned} & a_{2}{ }^{*}=2.0202 \\ & (4.98 \mathrm{E}-06) \end{aligned}$	$\begin{gathered} \tilde{a}_{2}=1.9037 \\ (.0187) \end{gathered}$	$\begin{aligned} & \check{a}_{2}=2.0013 \\ & (.000521) \end{aligned}$
	$\begin{aligned} & \hat{b}=4.929 \\ & (.008508) \end{aligned}$	$\begin{aligned} & b^{*}=4.858 \\ & (.007085) \end{aligned}$	$\begin{gathered} \tilde{b}=5.1257 \\ (.0732) \\ \hline \end{gathered}$	$\begin{gathered} \check{b}=5.0078 \\ (.02371) \\ \hline \end{gathered}$
	$\begin{aligned} & \hat{p}_{1}=.5136 \\ & (.000227) \end{aligned}$	$\begin{aligned} & p_{1}^{*}=.5255 \\ & (.000318) \end{aligned}$	$\begin{aligned} & \tilde{p}_{1}=.50238 \\ & (.000179) \end{aligned}$	$\begin{gathered} \bar{p}_{1}=.500012 \\ (1.1 \mathrm{E}-13) \end{gathered}$

Table 2.2 Estimates of parameters under type I censoring for $a_{1}=.03, a_{2}=3, b_{1}=1, b_{2}=2$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are known.

Censoring time	Estimate	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$T=30$	M.L.E	$\begin{gathered} \hat{a}_{i}=.0321006 \\ (3.7 \mathrm{E}-03) \\ \hline \end{gathered}$	$\begin{gathered} \hat{a}_{1}=.0310114 \\ (2.8 \mathrm{E}-03) \\ \hline \end{gathered}$	$\begin{gathered} \hat{a}_{1}=.0299031 \\ (2.1 \mathrm{E}-03) \end{gathered}$
		$\begin{gathered} \hat{a}_{2}=2.87634 \\ (.09324) \\ \hline \end{gathered}$	$\begin{gathered} \hat{a}_{2}=2.90125 \\ (.03352) \\ \hline \end{gathered}$	$\begin{gathered} \hat{a}_{2}=3.09768 \\ (.01127) \\ \hline \end{gathered}$
		$\begin{gathered} \hat{b}_{1}=1.21304 \\ (.1128) \end{gathered}$	$\begin{gathered} \hat{b}_{1}=1.10124 \\ (.0156) \end{gathered}$	$\begin{gathered} \hat{b}_{1}=1.01098 \\ (.01376) \\ \hline \end{gathered}$
		$\begin{gathered} \hat{b}_{2}=2.11321 \\ (.15712) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{b}_{2}=1.973 \\ & (.08741) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=1.99243 \\ & .0127) \end{aligned}$
		$\hat{p}_{1}=.49967$ (3.08E-10)	$\hat{p}_{1}=.49989$ (2.9E-10)	$\hat{p}_{1}=.49991$ (1.1E-10)
	Bayes estimate	$\begin{gathered} a_{1}^{*}=.0312301 \\ (2.87 \mathrm{E} .03) \end{gathered}$	$\begin{gathered} a_{1}^{*}=.0309141 \\ (1.9 \mathrm{E}-03) \\ \hline \end{gathered}$	$\begin{gathered} a_{1}^{*}=.0302004 \\ (1.27 \mathrm{E}-(04) \end{gathered}$
		$\begin{gathered} a_{2}^{*}=2.89137 \\ (.027648) \\ \hline \end{gathered}$	$\begin{gathered} a_{2}^{*}=3.10642 \\ (.01139) \\ \hline \end{gathered}$	$\begin{gathered} a_{2}^{*}=2.99104 \\ (.01038) \\ \hline \end{gathered}$
		$\begin{gathered} b_{1}^{*}=1.13203 \\ (.1428) \end{gathered}$	$\begin{gathered} b_{1}^{*}=.9890 \\ (.1014) \\ \hline \end{gathered}$	$\begin{gathered} b_{1}^{*}=.99124 \\ (.10014) \\ \hline \end{gathered}$
		$\begin{gathered} b_{2}^{*}=2.09913 \\ (.10519) \end{gathered}$	$\begin{gathered} b_{2}^{*}=2.01897 \\ (.08431) \end{gathered}$	$\begin{gathered} b_{2}^{*}=1.99884 \\ (.0653) \end{gathered}$
		$\begin{aligned} & p_{1}^{*}=.490578 \\ & (2.08 \mathrm{E}-11) \end{aligned}$	$p_{1}^{*}=.49952$ (1.99E-11)	$\begin{aligned} & p_{1}^{*}=.500124 \\ & (1.08 \mathrm{E}-11) \end{aligned}$
$\mathrm{T}=100$	M.L.E	$\begin{gathered} a_{1}=031198 \\ (2.1 \mathrm{E}-03) \end{gathered}$	$\begin{aligned} & \hat{a}_{1}=.030987 \\ & (1.97 \mathrm{E}-03) \end{aligned}$	$\begin{gathered} \hat{a}_{1}=.0300321 \\ (1.9 \mathrm{E}-04) \\ \hline \end{gathered}$
		$\hat{a}_{2}=2.9124$ (.057894)	$\begin{aligned} & \hat{a}_{2}=2.975 \\ & (.016809) \end{aligned}$	$\begin{gathered} \hat{a}_{2}=3.0432 \\ (.00178) \end{gathered}$
		$\begin{aligned} & \hat{b}_{1}=1.1096 \\ & (.10742) \\ & \hline \end{aligned}$	$\begin{gathered} \hat{b}_{\mathrm{t}}=1.0864 \\ (.09656) \end{gathered}$	$\begin{aligned} & \hat{b_{1}}=1.00031 \\ & (.02376) \end{aligned}$
		$\hat{b}_{2}=2.1087$ (.1043)	$\begin{gathered} \hat{b}_{2}=2.0965 \\ (.03650) \end{gathered}$	$\begin{gathered} \hat{b}_{2}=2.0432 \\ (.01368) \end{gathered}$
		$\begin{gathered} \hat{p}_{1}=.49998 \\ (2.076 \mathrm{E}-12) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.49999 \\ & (1.98 \mathrm{E}-12) \end{aligned}$	$\begin{gathered} \hat{p}_{1}=5002 \\ (1.34 \mathrm{E}-12) \end{gathered}$
	Bayes estimate	$\begin{aligned} & a_{1}^{*}=.03109 \\ & (2.01 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & a_{1}^{*}=.03098 \\ & (1.8 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & a_{1}^{*}=.030024 \\ & (1.01 \mathrm{E}-04) \end{aligned}$
		$\begin{aligned} & a_{2}^{*}=2.9521 \\ & (.017094) \end{aligned}$	$\begin{gathered} a_{2}^{*}=3.10032 \\ (.003456) \\ \hline \end{gathered}$	$\begin{gathered} a_{2}{ }^{*}=2.9998 \\ (.001127) \end{gathered}$
		$\begin{gathered} b_{1}^{*}=1.0543 \\ (.1021) \\ \hline \end{gathered}$	$\begin{gathered} b_{1}^{*}=1.0412 \\ (.0357) \\ \hline \end{gathered}$	$\begin{aligned} & b_{1}^{*}=1.003 \\ & (.009986) \end{aligned}$
		$\begin{gathered} b_{2}{ }^{\times}=2.0657 \\ (.10042) \end{gathered}$	$\begin{gathered} b_{2}^{*}=2.023 \\ (.02341) \end{gathered}$	$\begin{gathered} b_{2}{ }^{*}=1.9991 \\ (.0032) \\ \hline \end{gathered}$
		$\begin{aligned} & p_{1}^{*}=.49999 \\ & (2.79 \mathrm{E}-14) \end{aligned}$	$\begin{aligned} & p_{1}^{*}=.49999 \\ & (1.20 \mathrm{E}-14) \end{aligned}$	$\begin{aligned} & p_{1}^{*}=.5001 \\ & 1.1 . \mathrm{E}-14) \end{aligned}$

Table 2.3 Estimates of parameters under type I censoring for $a_{1}=.03, a_{2}=3 . b_{1}=1, b_{2}=2$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are unknown.

Censoring time	Estimate	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{T}=30$	M.L.E	$\begin{aligned} & \hat{a}_{1}=.02789 \\ & (2.8 \mathrm{E}-04) \end{aligned}$	$\begin{gathered} \hat{a}_{1}=.030932 \\ (2 . \mathrm{iE}-04) \\ \hline \end{gathered}$	$\begin{gathered} \hat{a}_{1}=.0299987 \\ (1.7 \mathrm{E}-04) \end{gathered}$
		$\begin{gathered} \hat{a}_{2}=2.91132 \\ (5.4 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} \hat{a}_{2}=2.92786 \\ (2.9 \mathrm{E}-03) \end{gathered}$	$\begin{aligned} & \hat{a}_{2}=3.09764 \\ & (2.8 \mathrm{E}-03) \end{aligned}$
		$\begin{aligned} & \hat{b}_{1}=1.1043 \\ & (.00279) \end{aligned}$	$\begin{gathered} \hat{b}_{1}=1.10213 \\ (.001247) \end{gathered}$	$\begin{aligned} & \hat{b}_{1}=1.012 \\ & (1.5 \mathrm{E}-03) \end{aligned}$
		$\begin{gathered} \hat{b}_{2}=2.0918 \\ (.00176) \\ \hline \end{gathered}$	$\begin{gathered} \hat{b}_{2}=2.07521 \\ (2.7 \mathrm{E}-03) \\ \hline \end{gathered}$	$\begin{gathered} \hat{b}_{2}=2.009 \\ (1.5 \mathrm{E}-03) \end{gathered}$
		$\begin{gathered} \hat{p}_{1}=4998 \\ (3.01 \mathrm{E}-12) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.49999 \\ & (2.7 \mathrm{E}-12) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=5001 \\ & (2.2 \mathrm{E}-12) \end{aligned}$
	Bayes estimate	$\begin{gathered} a_{1}^{*}=.02917 \\ (1.9 \mathrm{E}-04) \end{gathered}$	$\begin{aligned} & a_{1}^{*}=.03009 \\ & (1.6 \mathrm{E}-04) \end{aligned}$	$\begin{gathered} a_{1}^{*}=.03002 \\ (1.3 \mathrm{E}-04) \end{gathered}$
		$\begin{gathered} a_{2}^{*}=3.1164 \\ (4.7 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} a_{2}^{*}=2.9429 \\ (2.2 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} a_{2}^{*}=3.0917 \\ (1.9 \mathrm{E}-03) \end{gathered}$
		$\begin{aligned} & b_{1}^{*}=9426 \\ & (.0017) \end{aligned}$	$\begin{aligned} & b_{1}^{*}=1.0975 \\ & (2.3 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & b_{1}^{*}=1.0013 \\ & (1.1 \mathrm{E}-03) \end{aligned}$
		$\begin{gathered} b_{2}{ }^{*}=1.9543 \\ (4.1 \mathrm{E}-03) \end{gathered}$	$\begin{aligned} & b_{2}{ }^{*}=1.985 \\ & (3.7 \mathrm{E}-04) \end{aligned}$	$\begin{gathered} b_{2}^{*}=2.0019 \\ (2.4 \mathrm{E}-04) \end{gathered}$
		$\begin{aligned} & p_{1}^{*}=4999 \\ & (1.8 \mathrm{E}-13) \end{aligned}$	$\begin{gathered} p_{1}^{*}=.500112 \\ (1.5 \mathrm{E}-13) \end{gathered}$	$\begin{aligned} & p_{1}^{*}=.5001 \\ & (1.3 \mathrm{E}-13) \end{aligned}$
$\mathrm{T}=100$	M.L.E	$\begin{aligned} & \hat{a}_{1}=.03098 \\ & (2.4 \mathrm{E}-04) \end{aligned}$	$\hat{a}_{1}=.03074$ (1.98E-04)	$\begin{aligned} & \hat{a}_{1}=.03003 \\ & 1.5 \mathrm{E}-04) \end{aligned}$
		$\begin{aligned} & \hat{a}_{2}=2.9469 \\ & 3.6 \mathrm{E}-03) \end{aligned}$	$\begin{gathered} \hat{a}_{2}=2.98 \\ (2.7 \mathrm{E}-0.03) \end{gathered}$	$\begin{aligned} & \hat{a}_{2}=3.0031 \\ & (1.9 \mathrm{E}-03) \end{aligned}$
		$\begin{aligned} & \hat{b}_{1}=0.9912 \\ & (2.3 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=0.9936 \\ & (1.3 \mathrm{E}-03) \end{aligned}$	$\hat{b}_{1}=1.00021$
		$\begin{aligned} & \hat{b}_{2}=2.1087 \\ & (3.4 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.0965 \\ & (2.1 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.0432 \\ & (1.1 \mathrm{E}-03) \end{aligned}$
		$\begin{aligned} & \hat{p}_{1}=5017 \\ & (2.6 \mathrm{E}-12) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.50076 \\ & (1.9 \mathrm{E}-12) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.5001 \\ & (1.7 \mathrm{E}-12) \end{aligned}$
	Bayes estimate	$\begin{gathered} a_{1}^{*}=.03003 \\ (1.9 \mathrm{E}-04) \\ \hline \end{gathered}$	$\begin{aligned} & a_{1}^{*}=.0299 \\ & (1.4 \mathrm{E}-(44) \\ & \hline \end{aligned}$	$\begin{aligned} & a_{1}^{*}=.03001 \\ & (1.3 \mathrm{E}-(04) \end{aligned}$
		$\begin{aligned} & a_{2}^{*}=3.096 \\ & (3.2 \mathrm{E}-03) \end{aligned}$	$\begin{gathered} a_{2}{ }^{*}=3.0863 \\ (2.5 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} a_{2}^{*}=3.0056 \\ (1.2 \mathrm{E}-(03) \end{gathered}$
		$\begin{aligned} & b_{1}^{*}=1.0023 \\ & (7.8 \mathrm{E}-(44) \end{aligned}$	$\begin{aligned} & b_{1}^{*}=.9989 \\ & (5.6 \mathrm{E}-(44) \end{aligned}$	$\begin{aligned} & b_{1}^{*}=1.0001 \\ & (2.1 \mathrm{E}-04) \end{aligned}$
		$\begin{gathered} b_{2}^{*}=2.0657 \\ (2.9 \mathrm{E}-03) \end{gathered}$	$\begin{aligned} & b_{2}^{*}=2.023 \\ & (1.8 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & b_{2}^{*}=1.9991 \\ & (1.02 \mathrm{E}-03) \end{aligned}$
		$\begin{aligned} & p_{1}^{*}=4999 \\ & (2.2 \mathrm{E}-13) \end{aligned}$	$\begin{aligned} & p_{1}^{*}=.50007 \\ & (1.5 \mathrm{E}-13) \end{aligned}$	$\begin{aligned} & p_{1}^{*}=.50001 \\ & (1.2 \mathrm{E}-13) \end{aligned}$

Table 2.4 Estimates of parameters under type II censoring for
$a_{1}=.03, a_{2}=3, b_{1}=1, b_{2}=2$ and $p_{1}=0.5$

Estimate	$\mathrm{n}=30$		$\mathrm{n}=50$		$\mathrm{n}=100$	
	$\mathrm{r}=10$	$r=30$	$\mathrm{r}=30$	$\mathrm{r}=50$	$\mathrm{r}=60$	$r=100$
M.L.E	$\begin{aligned} & \hat{a}_{1}=.03113 \\ & (.000913) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.0301 \\ & (.000804) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.0305 \\ & (.000691) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.03021 \\ & (.0006780) \end{aligned}$	$\begin{gathered} \hat{a}_{1}=.0301 \\ (.0005478) \end{gathered}$	$\begin{aligned} & \hat{a}_{1}=.02999 \\ & (.0000780) \end{aligned}$
	$\begin{aligned} & \hat{a}_{2}=3.125 \\ & (.09453) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=3.098 \\ & (.05417) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=3.097 \\ & (.00571) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=3.003 \\ & (.002168) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=2.999 \\ & (.00106) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=3.001 \\ & (.00087) \end{aligned}$
	$\begin{aligned} & \hat{b}_{1}=1.1103 \\ & (.0090037) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=1.093 \\ & (.007396) \end{aligned}$	$\begin{gathered} \hat{b}_{1}=1.091 \\ (.0020381) \end{gathered}$	$\begin{aligned} & \hat{b}_{1}=1.082 \\ & (.002000) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=1.002 \\ & (.001600) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=1.001 \\ & (.0002600) \end{aligned}$
	$\begin{gathered} \hat{b}_{2}=2.135 \\ (.00883956) \end{gathered}$	$\begin{aligned} & \hat{b}_{2}=2.091 \\ & (.007023) \end{aligned}$	$\begin{gathered} \hat{b}_{2}=2.065 \\ (.0065277) \end{gathered}$	$\begin{gathered} \hat{b}_{2}=2.049 \\ (.0048) \end{gathered}$	$\begin{aligned} & \hat{b}_{2}=1.998 \\ & (.001821) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=1.999 \\ & (.000980) \end{aligned}$
	$\begin{gathered} \hat{p}_{1}=.4981 \\ (2.43 \mathrm{E}-12) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.4989 \\ (1.01 \mathrm{E}-12) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.4998 \\ (2.63 \mathrm{E}-16) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.5005 \\ (2.11 \mathrm{E}-16) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.5002 \\ (3.11 \mathrm{E}-18) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.5001 \\ (1.01 \mathrm{E}-18) \end{gathered}$
Bayesestimate	$\begin{gathered} a_{1}^{*}=.03123 \\ (1.38 \mathrm{E}-5) \end{gathered}$	$\begin{aligned} & a_{1}^{*}=.0304 \\ & (1.22 \mathrm{E}-5) \end{aligned}$	$\begin{aligned} & a_{1}^{*}=.0287 \\ & (1.03 \mathrm{E}-5) \end{aligned}$	$\begin{aligned} & a_{1}^{*}=.0298 \\ & (1.01 \mathrm{E}-5) \end{aligned}$	$\begin{gathered} a_{1}^{*}=.031 \\ (2.22 \mathrm{E}-6) \end{gathered}$	$\begin{aligned} & a_{1}^{*}=.0302 \\ & (1.98 \mathrm{E}-6) \end{aligned}$
	$\begin{gathered} a_{2}{ }^{*}=3.10! \\ (.09743) \end{gathered}$	$\begin{gathered} a_{2}{ }^{*}=3.087 \\ (.0532) \end{gathered}$	$\begin{gathered} a_{2}{ }^{*}=3.054 \\ (.0247) \end{gathered}$	$\begin{gathered} a_{2}^{*}=2.995 \\ (.02187) \end{gathered}$	$\begin{gathered} a_{2}^{*}=2.998 \\ (.00590) \end{gathered}$	$\begin{gathered} a_{2}{ }^{*}=2.999 \\ (.00210) \end{gathered}$
	$\begin{gathered} b_{1}^{*}=1.125 \\ (.0016) \end{gathered}$	$\begin{gathered} b_{1}^{*}=1.0987 \\ (.0032) \end{gathered}$	$\begin{gathered} b_{1}^{*}=1.085 \\ (.0023) \end{gathered}$	$\begin{gathered} b_{\mathrm{t}}^{*}=1.0043 \\ (.00191) \end{gathered}$	$\begin{gathered} b_{1}^{*}=1.0021 \\ (.00086) \end{gathered}$	$\begin{gathered} b_{1}^{*}=1.001 \\ (.00012) \end{gathered}$
	$\begin{gathered} b_{2}^{*}=2.1054 \\ (.10490) \end{gathered}$	$\begin{gathered} b_{2}^{*}=2.045 \\ (.0978) \end{gathered}$	$\begin{aligned} & b_{2}^{\prime}=2.014 \\ & (.01752) \end{aligned}$	$\begin{gathered} b_{2}^{*}=1.997 \\ (.00951) \end{gathered}$	$\begin{gathered} b_{2}^{*}=2.004 \\ (.00219) \end{gathered}$	$\begin{gathered} b_{2}^{*}=2.001 \\ (.00019) \end{gathered}$
	$\begin{aligned} & p_{1}^{*}=.4976 \\ & (2.13 \mathrm{E}-13) \end{aligned}$	$\begin{gathered} p_{1}^{*}=.4987 \\ (1.09 \mathrm{E}-13) \end{gathered}$	$\begin{gathered} \overline{p_{1}^{*}=.4998} \\ (1.87 \mathrm{E}-15) \end{gathered}$	$\begin{aligned} & p_{1}^{*}=.4999 \\ & (1.1 \mathrm{E}-15) \end{aligned}$	$\begin{gathered} p_{1}^{*}=.50021 \\ (2.9 \mathrm{E}-19) \end{gathered}$	$\begin{aligned} & p_{1}^{*}=.5001 \\ & (2.0 \mathrm{E}-19) \end{aligned}$

Table 2.5 Risk improvement of the Bayes estimator over the different estimators for the set of parameters $a_{1}=.05, a_{2}=2 . b=5$ and $p_{1}=0.5$ in the complete sample set up.

Estimate	M.L.E. (\%)	Method of moments (\%)	Maximum product of spacing (\%)
$\mathrm{n}=30$	84	98	98
	89	99	93
	87	95	96
	88	99	95
$\mathrm{n}=50$	89	96	90
	85	97	94
	84	98	98
	87	96	92
$\mathrm{n}=100$	80	97	95
	87	99	94
	85	94	96
	86	98	97

2.9 Data analysis

For the illustration of the estimation procedure, we consider a data on time to death of two groups of lcukacmia patients (see Feigl and Zelen, 1965), which is given in Table 2.6. We then estimate the parameters using M.L.E and Bayes technique. Table 2.7 provides the values of the estimates by M.L.E and Bayes method. We then used the Kolmogorov-Smirnov statistic to test the goodness of fit. The values of the test statistic D_{n} is given in Table 2.8. The table value at 5% significance level is 0.233 . From the analysis, it concludes that the model (2.2) is a plausible model for the data with parameters given in Table 2.7. Table 2.9 provides the maximum likelihood estimate of survival function at various time points.

Table 2.6 Survival times of leukaemia patients

AG positive patients	AG negative patients
65	56
156	65
100	17
134	7
16	16
108	22
121	3
4	4
39	2
143	3
56	4
26	3
22	43
1	43
1	
5	65

Table 2.7 Estimates of parameters of survival times of leukaemia patients.

M.L.E	Bayes method
$\hat{a}_{1}=0.0213968$	$a_{1}{ }^{*}=0.0194$
$\hat{a}_{7}=0.0387068$	$a_{2}{ }^{*}=0.0280742$
$\hat{b}_{1}=1.14671$	$b_{1}^{*}=2.8557$
$\hat{b}_{2}=2.02603$	$b_{2}^{*}=2.70599$
$\hat{p}_{1}=0.50137$	$p_{1}^{*}=0.509715$

Table 2.8 Kolmogorov-Smirnov test statistic

$\operatorname{Max~}_{\mathrm{n}}$ (M.L.E)	Max D_{n} (Bayes)
0.1019749	0.052931

Table 2.9 Maximum likelihood estimate of survival probability at various time points

x	1	10	50	75	100	120	140
$\hat{S}(x)$.951048	.658389	.273978	.198853	.155183	.131571	.113936

2.10 Conclusion

The role of finite mixture of Pareto II distributions in reliability analysis is studied. We proved that finite mixture of two Pareto II distributions is identifiable. In the present chapter, we developed estimates of parameters using different approaches for both complete and censored samples. Maximum likelihood and Bayes methods provide estimates with small bias and less variance (in the case of Bayes, we cakculate posterior risk) and the variance of the estimates decreases as n increases. The results derived under type II censoring can be specialized to the complete sample case by taking $r=n$. As expected, the method of moments was shown to be inferior to maximum likelihood estimation (M.L.E), Bayes method and maximum product of spacing (M.P.S). The role of finite mixture of Pareto Il distributions is illustrated using a real life data on time to death of two groups of leukaemia patients. The part of this chapter has appeared in Sankaran and Maya (2005).

Chapter 3

FINITE MIXTURE OF BETA DISTRIBUTIONS

3.1 Introduction

In practical situations, the observed lifetimes of an item varies over only a finite range. Accordingly, Mukherjec and Islam (1983) studied the properties of finite range (beta) model in the context of reliability analysis. The finite mixture of beta distributions is widely used as a lifetime model due to the property that beta distribution has flexible skewed density function over the finite range. Further, beta distribution is widely employed for modelling lifetime data of systems as it has increasing failure rate pattern.

The finite mixtures of beta distributions arise frequently in Bayesian conjugate prior analysis. An example introduced by Diaconis and Ylvisaker (1985) uses finite mixture of beta distributions as a prior for a binomial parameter. They noticed that there is a big difference between spinning a coin on a table and tossing it in the air. The tossing often leads to about an even proportion of heads and tails, while spinning gives an uneven proportion of heads and tails. They justified that the shape of the edge would be a strong determining factor for this bias and used a finite mixture of beta distributions as a reasonable prior.

A systematic study on finite mixture of beta distributions in the context of reliability is not yet carried out. Motivated by this, in the present chapter, we study the properties of finite mixture of finite range (beta) distributions in the context of reliability. Throughout this chapter, we consider a finite mixture of two beta distributions.

In Section 3.2, we give definition and properties of finite mixture of beta distributions. Section 3.3 discusses the important reliability characteristics of the model. Identifiability of finite mixture of beta distribution is discussed in Section 3.4. Estimation of paramcters of the model for complete as well as censored case by
different techniques is studied in Sections 3.5 to 3.7. Section 3.8 deals with simulation study to investigate the finite sample properties of the estimators. In Section 3.9, we illustrate the role of finite mixture of beta distributions using a real life data. Finally, in Section 3.10, we give the conclusion of the chapter.

3.2 Definition and properties

Let X be a non-negative random variable admitting an absolutely continuous distribution function $F(x)$ with respect to a Lebesgue measure. Assume that the probability density function (p.d.f.) of $X, f(x)$ exists. A two-component mixture of beta distribution is given by

$$
\begin{gather*}
f(x)=p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{d_{1}-1}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{d_{2}-1} \tag{3.1}\\
0<x<1 / c_{1}, 0<p_{1}<1 .
\end{gather*}
$$

where $c_{2} \geq c_{1}>0$ and $d_{1}, d_{2}>0$. Notice that the support of the component densities need not be same. For (3.1), the support of the first component is $0<x<1 / c_{1}$ and that of the second is $0<x<1 / c_{2}$, where $c_{2} \geq c_{1}$ is assumed, without loss of generality. When $d_{1}=d_{2}=1$, (3.1) reduces to a mixture of two uniform distributions.

The $r^{\text {th }}$ moment of the distribution (3.1) is given by

$$
\begin{equation*}
E_{f}\left(X^{r}\right)=\frac{p_{1} \Gamma(r+1) \Gamma\left(\dot{d}_{1}+1\right)}{c_{1}^{r} \Gamma\left(d_{1}+r+1\right)}+\frac{\left(1-p_{1}\right) \Gamma(r+1) \Gamma\left(d_{2}+1\right)}{c_{2}^{r} \Gamma\left(d_{2}+r+1\right)} . \tag{3.2}
\end{equation*}
$$

where $\Gamma p=\int_{0}^{\infty} e^{-x} x^{\nu-1} d x$, is the gamma function.

When $r=1$, (3.2) reduces to the mean. which is equal to

$$
\begin{equation*}
E_{f}(X)=\frac{p_{1}}{c_{1}\left(d_{1}+1\right)}+\frac{\left(1-p_{1}\right)}{c_{2}\left(d_{2}+1\right)} \tag{3.3}
\end{equation*}
$$

When $r=2$, (3.2) becomes

$$
E_{f}\left(X^{2}\right)=\frac{2 p_{1}}{c_{1}^{2}\left(d_{1}+1\right)\left(d_{1}+2\right)}+\frac{2\left(1-p_{1}\right)}{c_{2}^{2}\left(d_{2}+1\right)\left(d_{2}+2\right)} .
$$

Thus the variance of (3.1) is given by

$$
\begin{equation*}
V(x)=\frac{p_{1}\left(2+2 d_{1}-2 p_{1}-d_{1} p_{1}\right)}{c_{1}^{2}\left(d_{1}+1\right)^{2}\left(d_{1}+2\right)}+\frac{\left(1-p_{1}\right)\left(d_{2}-\left(d_{2}-2\right) p_{1}\right)}{c_{2}^{2}\left(d_{2}+1\right)^{2}\left(d_{2}+2\right)}-\frac{2 p_{1}\left(1-p_{1}\right)}{c_{1} c_{2}\left(d_{1}+1\right)\left(d_{2}+1\right)} . \tag{3.4}
\end{equation*}
$$

3.3 Reliability characteristics

The survival function for the model (3.1) is given by

$$
\begin{equation*}
S(x)=p_{1}\left(1-c_{1} x\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x\right)^{d_{2}}, 0<x<1 / c_{1}, 0<p_{1}<1 . \tag{3.5}
\end{equation*}
$$

For the model (3.1), the hazard rate $h(x)$ and the mean residual life function $r(x)$ are given by

$$
\begin{equation*}
h(x)=\frac{p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{d_{1}-1}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{d_{2}-1}}{p_{1}\left(1-c_{1} x\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x\right)^{d_{2}}} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
r(x)=\frac{p_{1} c_{2}\left(d_{2}+1\right)\left(1-c_{1} x\right)^{d_{1}+1}+\left(1-p_{1}\right) c_{1}\left(d_{1}+1\right)\left(1-c_{2} x\right)^{d_{2}+1}}{c_{1} c_{2}\left[p_{1}\left(1-c_{1} x\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x\right)^{d_{2}}\right]\left(d_{1}+1\right)\left(d_{2}+1\right)} . \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we obtain an identity connecting $r(x)$ and $h(x)$ as

$$
\begin{align*}
r(x) & =\frac{h(x)\left(1-c_{1} x\right)\left(1-c_{2} x\right)}{c_{1} c_{2}\left(d_{1}+1\right)\left(d_{2}+1\right)}\left[\frac{c_{2}\left(d_{2}+1\right)-c_{1}\left(d_{1}+1\right)+c_{1} c_{2}\left(d_{1}-d_{2}\right) x}{c_{1} d_{1}-c_{2} d_{2}-c_{1} c_{2}\left(d_{1}-d_{2}\right) x}\right] \\
& =\frac{c_{1}^{2} d_{1}\left(d_{1}+1\right)\left(1-c_{2} x\right)^{2}-c_{2}^{2} d_{2}\left(d_{2}+1\right)\left(1-c_{1} x\right)^{2}}{c_{1} c_{2}\left(d_{1}+1\right)\left(d_{2}+1\right)\left[c_{1} d_{1}-c_{2} d_{2}-c_{1} c_{2}\left(d_{1}-d_{2}\right) x\right]} . \tag{3.8}
\end{align*}
$$

Figures 3.1 to 3.16 show the behaviour of hazard rate and the mean residual life function for different parameters of the model (3.1). From the graphs, it is easy to see that the behaviour of $h(x)$ and $r(x)$ are depending on the parameters of the model.

Fig, 3.1
Hazard rate for

Fig. 3.3
Hazard rate for

Fig. 3.5
Hazard rate for
$c_{1}=.1, c_{2}=.2, d_{1}=50, d_{2}=100, p=.5$

Fig. 3.7
Hazard rate for

Fig. 3.2
Hazard rate for

Fig. 3.6

Hazard rate for

$h(x) 8$
$0.5 \times 1.5 \quad 2.5$

Fig. 3.8
Hazard rate for

Fig. 3.9
Mean residual life function for

$$
c_{1}=.1, c_{2}=.2, d_{1}=5, d_{2}=10, p=.5
$$

Fig. 3.11
Mean residual life function for

Fig. 3.13
Mean residual life function for

Fig. 3.15

Fig. 3.10
Mean residual life function for

Fig. 3.12
Mean residual life function for

Fig. 3.14
Mean residual life function for
$c_{1}=.1, c_{2}=2, d_{1}=100, d_{2}=500, p=.5$
$\rightarrow+\infty$
 $\begin{array}{llllll}0 & 0.5 & 1 & \mathbf{x}^{1.5} \quad 2 & 2.5\end{array}$

Fig. 3.16
Mean residual life function for
$r(x) \quad 60$ 40 20
$c_{1}=.001, c_{2}=.002, d_{1}=7, d_{2}=10, p=.5$ 00 80

$$
2.5
$$

The situations where the model can be used to represent lifetime data will be made clear only if we know the ageing behavior of the system represented by the model (3.1). Obviously, the component density of (3.1) possesses the increasing failure rate (IFR) at all time points. However, the mixture model (3.1) can possess decreasing failure rate (DFR) behaviour. The hazard rate $h(x)$ is DFR in Figures 3.1 and 3.2. A bathtub model for $\mathrm{h}(\mathrm{x})$ is obtained for a different set of parameters (see Figures 3.3 to 3.5). In Figures 3.6 and 3.7, the hazard rate $h(x)$ is $I F R$ and it is constant in Figure 3.8.

As discussed earlier in Chapter 2, the distribution (3.1) and the identity (3.8) also involves five parameters. Reduction of one parameter can be achieved if we take either $c_{1}=c_{2}$ or $d_{1}=d_{2}$ without sacrificing much of the flexibility of the model. This motivation leads to consider the following,
when $d_{1}=d_{2}=d$, the identity (3.8) reduces to
$c_{1} c_{2} d(d+1) r(x)+h(x)\left(1-c_{1} x\right)\left(1-c_{2} x\right)=d\left[c_{1}\left(1-c_{2} x\right)+c_{2}\left(1-c_{1} x\right)\right]$
and
for $c_{1}=c_{2}=c$, the identity (3.8) becomes
$c^{2}\left(d_{1}+1\right)\left(d_{2}+1\right) r(x)+h(x)(1-c x)^{2}=c\left[\left(d_{1}+d_{2}+1\right)(1-c x)\right]$.
In the following, we prove a characterization result for the finite mixture of beta distributions through simple relationship between $h(x)$ and $r(x)$.

Theorem 3.3.1

A continuous random variable X in the support of positive reals with $E(X)<\infty$, has survival function $S(x)=p_{1}\left(1-c_{1} x\right)^{d}+\left(1-p_{1}\right)\left(1-c_{2} x\right)^{d}, 0<x<1 / c_{1}, c_{2} \geq c_{1}>0, d>0,0<p_{1}<1$.
if and only if the relationship (3.9) holds.

Proof.

Suppose that the identity (3.9) holds, and then we have,

$$
\begin{equation*}
c_{1} c_{2} d(d+1) \int_{x}^{\infty} S(t) d t+f(x)\left(1-c_{1} x\right)\left(1-c_{2} x\right)=d\left[c_{1}+c_{2}-2 c_{1} c_{2} x\right] S(x) \tag{3.12}
\end{equation*}
$$

Differentiating (3.12) twice with respect to x, we get,

$$
c_{1} c_{2}(d-1)(d-2) f(x)+(d-2) f^{\prime}(x)\left[c_{1}\left(1-c_{2} x\right)+c_{2}\left(1-c_{1} x\right)\right]+f^{\prime \prime}(x)\left(1-c_{1} x\right)\left(1-c_{2} x\right)=0
$$

where $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ respectively denotes the first and the second derivatives of $f(x)$ with respect to x. The solution of the differential equation (3.13) is obtained as

$$
\begin{equation*}
S(x)=e_{1}\left(1-c_{1} x\right)^{d}+e_{2}\left(1-c_{2} x\right)^{d} \tag{3.14}
\end{equation*}
$$

Since $S(0)=1$, we have $e_{2}=1-e_{1}$, which gives (3.14) as required in (3.11). The proof of the converse part is direct.

Theorem 3.3.2

The relationship (3.10) characterizes a mixture model with survival function

$$
S(x)=p_{1}(1-c x)^{d_{1}}+\left(1-p_{1}\right)(1-c x)^{-d_{2}} .
$$

For the proof, see Abraham and Nair (2001).

3.4 Identifiability

In the following, we show that a finite mixture of two beta densities is identifiable.

Theorem 3.4.1

Finite mixture of beta densities is identifiable.

Proof:

From Teicher (1961), it follows that a finite inixture of k exponential component densities is identifiable. If Z follows exponential with parameter λ and $Y=\frac{1-e^{-s}}{c}$, then Y follows beta distribution with density

$$
g(y)=c \lambda(1-c y)^{\lambda-1}, 0<y<1 / c .
$$

Since the transformation $Y=\frac{1-e^{-z}}{c}$ is one to one and onto, a finite mixture of beta with component densities $g_{i}(y)=c_{i} \lambda_{i}\left(1-c_{i} y\right)^{i_{i}-1}, i=1,2$ is identifiable. The rest of the proof is analogues to that of Al-Hussaini et.al. (2000).

3.5 Estimation of parameters

In this section, we discuss the estimation of parameters $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} of the model (3.1), using different methods under the complete as well as censored sample set up.

3.6 Complete sample set up

3.6.1 Estimation of parameters when the observations belonging to each subpopulation are known

We consider the situation, when there are only two subpopulations with mixing proportions p_{1} and $\left(1-p_{1}\right)$ and $f_{1}(x)$ and $f_{2}(x)$ are beta densities with parameters $\left(c_{1}, d_{1}\right)$ and $\left(c_{2}, d_{2}\right)$. Assuming that items that fail can be classified and can be attributed to the appropriate subpopulations so that the data would consist of the n lifetimes grouped according to the subpopulations $\left\{\left(x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right),\left(x_{21}, x_{22}, \ldots, x_{2 n_{2}}\right)\right\}$, where it is assumed that n_{1} and n_{2} are the observed frequencies in the sample of the units belonging to respective subpopulations .

Then the likelihood of the complete sample is given by
$L\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right)=$.

$$
\begin{equation*}
\frac{n!}{n_{1}!, n_{2}!} p_{1}^{n_{1}}\left(1-p_{1}\right)^{n_{2}} c_{1}^{n_{1}} d_{1}^{n_{1}} c_{2}^{n_{2}} d_{2}^{n_{2}} \prod_{j=1}^{n_{1}}\left(1-c_{1} x_{1 j}\right)^{d_{1}-1} \prod_{j=1}^{n_{2}}\left(1-c_{2} x_{2 j}\right)^{d_{2}-1} \tag{3.15}
\end{equation*}
$$

which can be written as

$$
\begin{align*}
& L\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right) \\
& \quad=-\frac{n!}{n_{1}!, n_{2}!} p_{1}^{n_{1}}\left(1-p_{1}\right)^{n_{2}} c_{1}^{n_{1}} d_{1}^{n_{1}} c_{2}^{n_{2}} d_{2}^{n_{2}} \exp \left[\left(d_{1}-1\right) \sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right. \\
& \exp \left[\left(d_{2}-1\right) \sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right. \tag{3.16}
\end{align*}
$$

(a) Maximum likelihood estimation (M.L.E).

To estimate parameters, we consider the logarithm of (3.16), which provides $\log L=\log C+n_{1} \log p_{1}+n_{2} \log \left(1-p_{1}\right)+n_{1} \log c_{1}+n_{1} \log d_{1}+n_{2} \log c_{2}+n_{2} \log d_{2}$

$$
\begin{equation*}
+\left(d_{1}-1\right) \sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)+\left(d_{2}-1\right) \sum_{j=1}^{n_{3}} \log \left(1-c_{2} x_{2 j}\right) \tag{3.17}
\end{equation*}
$$

where $C=\frac{n!}{n_{1}!n_{2}!}$.

Maximization of (3.17) with respect to the model parameters yields the following likelihood equations,
$\frac{n_{1}}{c_{1}}+\frac{\left(d_{1}-1\right)}{c_{1}} \sum_{j=1}^{n_{1}}\left(1-\frac{1}{c_{1} x_{1 j}}\right)^{-1}=0$,
$\frac{n_{2}}{c_{2}}+\frac{\left(d_{2}-1\right)}{c_{2}} \sum_{i=1}^{n_{2}}\left(1-\frac{1}{c_{2}-x_{2 j}}\right)^{-1}=0$,
$\frac{n_{1}}{d_{1}}+\sum_{j=1}^{n_{1}} \log \left(1-c_{1}, x_{1 j}\right)=0$,
$\frac{n_{2}}{d_{2}}+\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)=0$,
and
$\frac{n_{1}}{p_{1}}-\frac{n_{2}}{\left(1-p_{1}\right)}=0$.
The equation (3.22) provides,

$$
\hat{p}_{1}=\frac{n_{1}}{n_{1}+n_{2}} .
$$

The solution of the equations (3.18), (3.19), (3.20) and (3.21) by Newton-Raphson iterative procedure yields the M.L.E.'s of c_{1}, c_{2}, d_{1} and d_{2}.

For obtaining variance of the estimates, we need to compute the observed information matrix $I\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1}\right)$.

The second derivative of $\log L\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right)$ leads to the following
$\frac{\partial^{2} \log L}{\partial c_{1}^{2}}=-\left[\frac{n_{1}}{c_{1}^{2}}-\frac{\left(d_{1}-1\right)}{c_{i}} \sum_{j=1}^{n_{1}}-\frac{1}{x_{1} c_{1}^{2}}\left(1-\frac{1}{c_{i} x_{1 j}}\right)^{-2}+\frac{\left(d_{1}-1\right)}{c_{1}^{2}} \sum_{j=1}^{m_{1}}\left(1-\frac{1}{c_{i} x_{1 j}}\right)^{-1}\right]$,
$\frac{\partial^{2} \log L}{\partial c_{1} \partial d_{1}}=\frac{\partial^{2} \log L}{\partial d_{1} \partial c_{1}}=\frac{1}{c_{1}} \sum_{j=1}^{n_{1}}\left(1-\frac{1}{c_{1} x_{1 j}}\right)^{-1}$,
$\frac{\partial^{2} \log L}{\partial c_{2}{ }^{2}}=-\left[\frac{n_{2}}{c_{2}{ }^{2}}-\frac{\left(d_{2}-1\right)}{c_{2}} \sum_{j=1}^{n_{2}}-\frac{1}{x_{2 j} c_{2}{ }^{2}}\left(1-\frac{1}{c_{2} x_{2 j}}\right)^{-2}+\frac{\left(d_{2}-1\right)}{c_{2}{ }^{2}} \sum_{j=1}^{n_{3}}\left(1-\frac{1}{c_{2} x_{2 j}}\right)^{-1}\right]$,
$\frac{\partial^{2} \log L}{\partial c_{2} \partial d_{2}}=\frac{\partial^{2} \log L}{\partial d_{2} \partial c_{2}}=\frac{1}{c_{2}} \sum_{j=1}^{n_{3}}\left(1-\frac{1}{c_{2} x_{2 j}}\right)^{-1}$,
$\frac{\partial^{2} \log L}{\partial d_{1}^{2}}=-\frac{n_{1}}{d_{1}^{2}}$,
$\frac{\partial^{2} \log L}{\partial d_{2}{ }^{2}}=-\frac{n_{2}}{d_{2}{ }^{2}}$,
and
$\frac{\partial^{2} \log L}{\partial p_{1}^{2}}=-\frac{\left(n_{1}+n_{2}\right)}{p_{1}^{2}}$.
and all other second derivatives are zero.
The observed information matrix is thus
$I\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1}\right)=\left(\begin{array}{cccc}-\frac{\partial^{2} \log L}{\partial c_{1}^{2}} & -\frac{\partial^{2} \log L}{\partial c_{1} \partial c_{2}}-\frac{\partial^{2} \log L}{\partial c_{1} \partial d_{1}}-\frac{\partial^{2} \log L}{\partial c_{1} \partial d_{2}} & -\frac{\partial^{2} \log L}{\partial c_{1} \partial p_{1}} \\ -\frac{\partial^{2} \log L}{\partial p_{1} \partial c_{1}} & -\frac{\partial^{2} \log L}{\partial p_{1} \partial c_{2}}-\frac{\partial^{2} \log L}{\partial p_{1} \partial d_{1}}-\frac{\partial^{2} \log L}{\partial p_{1} \partial d_{2}} & -\frac{\partial^{2} \log L}{\partial p_{1}^{2}}\end{array}\right)$
For large n, the joint distribution of the estimates $\hat{c}_{1}, \hat{c}_{2}, \hat{d}_{1}, \hat{d}_{2}$ and \hat{p}_{1} is approximately multivariate normal with mean $\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1}\right)$ and covariance matrix $I^{-1}\left(\hat{c}_{1}, \hat{c}_{2}, \hat{d}_{1}, \hat{d}_{2}, \hat{p}_{1}\right)$, which is the inverse of $I\left(\hat{c}_{1}, \hat{c}_{2}, \hat{d}_{1}, \hat{d}_{2}, \hat{p}_{1}\right)$.

(b) Bayes estimation.

Using Jeffrey's invariant prior for $c_{1} \cdot c_{2}, d_{1}$ and d_{2} and uniform prior over $(0,1)$ for p_{1}, the joint prior distribution of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} is given by

$$
\begin{equation*}
g\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1}\right) \quad \alpha \frac{1}{c_{1} c_{2} d_{1} d_{2}} . \tag{3.23}
\end{equation*}
$$

where we assume that $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} are independent.
From (3.16) and (3.23), the joint posterior distribution of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} is given by

$$
\begin{align*}
& \Pi\left(c_{1}, c_{z}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right) \propto p_{1}^{n_{1}}\left(1-p_{1}\right)^{n_{2}} c_{1}^{n_{1}-1} c_{2}^{n_{2}-1} d_{1}^{n_{1}-1} d_{2}^{n_{2}-1} \\
& \quad \exp \left[\left(d_{1}-1\right) \sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1}\right)\right] \exp \left[\left(d_{2}-1\right) \sum_{j=1}^{n_{i}} \log \left(1-c_{2} x_{2 j}\right)\right] . \tag{3.24}
\end{align*}
$$

From equation (3.24), we obtain the marginal posterior distributions of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} as

$$
\begin{equation*}
\Pi_{1}\left(c_{1} \mid \underline{x}\right)=K_{1} \frac{c_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}{\left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1}\right)\right]^{n_{1}}} \int_{c_{i}}^{c_{2}^{n_{2}-1} \exp \left[-\sum_{i=1}^{n_{3}} \log \left(1-c_{2} x_{2 j}\right)\right]}\left[-\sum_{j=1}^{n_{i}} \log \left(1-c_{2} x_{2 j}\right)^{n_{2}}\right] d c_{2}, \tag{3.25}
\end{equation*}
$$

$$
\begin{equation*}
\Pi_{2}\left(c_{2} \mid \underline{x}\right)=K_{2} \frac{c_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]_{c_{2}}^{n_{2}}}{\left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]} \frac{c_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{3}} \log \left(1-c_{1} x_{1 j}\right)\right]}{\left[-\sum_{j=1}^{n_{i}} \log \left(1-c_{1} x_{1 j}\right)\right]} d c_{1}^{n_{1}} \tag{3.26}
\end{equation*}
$$

$\Pi_{3}\left(d_{1} \mid \underline{x}\right)=K_{3} d_{1}^{n_{1}-1}\left\{\int_{0}^{\infty} d_{2}^{n_{2}-1}\left[\int_{0}^{\infty} c_{2}^{n_{2}-1} e^{\left(d_{2}-1\right) \sum_{i-1}^{n} \log \left(1-c_{2} x_{2}\right)}\left(\int_{0}^{c_{2}} c_{1}^{n_{1}-1} e^{\left(d_{1}-1\right) \sum_{i-1}^{n+\log \left(1-c_{1} \lambda_{2}\right)}} d c_{1}\right) d c_{2}\right] d d_{2}\right\}$,
$\Pi_{4}\left(d_{2} \mid \underline{x}\right)=K_{4} d_{2}^{n_{2}-1}\left\{\int_{0}^{\infty} d_{1}^{n_{-1}-1}\left[\int_{0}^{\infty} c_{2}^{n_{2}-1} e^{\left(d_{2}\right), \sum_{i-1}^{\infty} \log \left(1-c_{2} x_{2}\right)}\left(\int_{0}^{c_{1}} c_{1}^{n_{1}-1} e^{\left(d_{1}-1\right) \sum_{i=1}^{n+1} \log \left(1-c_{1} x_{1}\right)} d c_{1}\right) d c_{2}\right] d d_{1}\right\}$,
and

$$
\begin{equation*}
\Pi_{5}\left(p_{1} \mid \underline{x}\right)=K_{5} p_{1}^{n_{1}}\left(1-p_{1}\right)^{n_{2}}, \tag{3.29}
\end{equation*}
$$

where

$$
\begin{align*}
& K_{1}^{-1}=\left\{\int_{0}^{\infty} \frac{c_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}{\left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}\left[\int_{c_{1}}^{\infty} \frac{c_{2}^{n_{1}}{ }^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]}{\left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]} d c_{2}^{n_{2}}\right] d c_{1}\right\}, \tag{3.30}\\
& K_{2}^{-1}=\left\{\int_{0}^{\infty} \frac{c_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]}{\left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]}\left[\int_{0}^{n_{i}} \frac{c_{1}^{n_{1}-1} \exp \left[-\sum_{i=1}^{n_{i}} \log \left(1-c_{1} x_{1 j}\right)\right]}{\left[-\sum_{j=1}^{n_{i}} \log \left(1-c_{1} x_{1 j}\right)\right]} d c_{1}^{n_{i}}\right] d c_{2}\right\}, \tag{3.31}\\
& K_{3}^{-1}=\int_{0}^{\infty} d_{1}^{n_{1}-1}\left\{\int_{0}^{\infty} d_{2}^{n_{2}-1}\left[\int_{1}^{\infty} c_{2}^{n_{2}-1} e^{\left.\left(d_{2}-1\right)_{j=1}^{n_{2}} \log \mid-c_{2} t_{2}\right)}\left(\int_{1} c_{1}^{n_{1}-1} e^{\left.\left(d_{1}-1\right) \sum_{1,1}^{\left.n\left|\log _{2}\right|-c_{1} x_{1}\right)}\right)} d c_{1}\right) d c_{2}\right] d d_{2}\right\} d d_{1}, \tag{3.32}
\end{align*}
$$

$K_{4}^{-1}=\int_{0}^{\infty} d_{2}^{n_{2}-1}\left\{\int_{0}^{\infty} d_{1}^{n_{1}-1}\left[\int_{0}^{\infty} c_{2}^{n_{2}-1} e^{\left(d_{2}-1\right) \sum_{i=1}^{n} \log \left(1-c_{2} x_{2}\right)}\left(\int_{0}^{c_{2}} c_{1}^{n_{1}-1} e^{\left(d_{1}-1\right) \sum_{k=1}^{n \mid} \log \left(1-c_{1} x_{1}\right)} d c_{1}\right) d c_{2}\right] d d_{1}\right\} d d_{2}$,
and
$K_{5}{ }^{-1}=B\left(n_{1}+1, n_{2}+1\right)$.
Under squared error loss function, we obtain the Bayes estimators of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} as

$$
\begin{equation*}
c_{1}^{*}=K_{1}\left\{\int_{0}^{\infty} \frac{c_{1}^{n_{1}} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}{\left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}\left[\int_{c_{1}}^{c_{1}} \frac{c_{2}^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]}{\left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]} d c_{2}^{m_{2}}\right] d c_{1}\right\}, \tag{3.35}
\end{equation*}
$$

$c_{2}{ }^{*}=K_{2}\left\{\int_{0}^{\infty} \frac{c_{2}^{n_{2}}}{\frac{\exp \left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]}{\left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)\right]}{ }^{n_{2}}}\left[\int_{0}^{c_{2}} \frac{c_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}{\left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]} d c_{1}^{n_{1}}\right] d c_{2}\right\}$,
$d_{1}^{*}=K_{3} \int_{0}^{\infty} d_{1}^{n_{1}}\left\{\int_{0}^{\infty} d_{2}^{n_{2}-1}\left[\int_{0}^{\infty} c_{2}^{n_{2}-1} e^{\left(d_{2}-1\right) \sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2}\right)}\left(\int_{0}^{c_{2}} c_{1}^{n_{1}-1} e^{\left(d_{1}-1\right)} \sum_{k=1}^{m_{1} \log \left(1-c_{1} x_{1}\right)} d c_{1}\right) d c_{2}\right] d d_{2}\right\} d d_{1}$,
$d_{2}^{*}=K_{4} \int_{0}^{\infty} d_{2}^{n_{2}}\left\{\int_{0}^{\infty} d_{1}^{n_{1}-1}\left[\int_{0}^{\infty} c_{2}^{n_{2}-1} e^{\left(d_{2}-1\left|\sum_{i=1}^{m=1} \log \right|-c_{1}, x_{2}, 1\right.}\left(\int_{0}^{c_{2}} c_{1}^{n_{1}-1} e^{\left.\mid d_{1}-1\right) \sum_{j-1}^{\left.n_{1}|\log | 1-c_{1} x_{1}\right)}} d c_{1}\right) d c_{2}\right] d d_{1}\right\} d d_{2}$,
and

$$
\begin{equation*}
p_{1}^{*}=K_{5} B\left(n_{1}+2, n_{2}+1\right), \tag{3.39}
\end{equation*}
$$

where $B(p, q)$ is the beta function of the first kind.
Bayes estimators of c_{1}, c_{2}, d_{1} and d_{2} will obtained by numerical integration procedure.

The posterior variance of c_{1} is obtained as,
$V\left(c_{1} \mid \underline{x}\right)=E\left(c_{1}^{2} \mid \underline{x}\right)-E\left(c_{1} \mid \underline{x}\right)$,
where
$E\left(c_{1}^{2} \mid \underline{x}\right)=K_{1}\left\{\int_{0}^{\infty} \frac{c_{1}^{n_{1}+1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}{\left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}\left[\int_{c_{1}}^{\infty} \frac{c_{2}^{n_{2}}{ }^{n_{2}-1} \exp \left[-\sum_{j=1}^{n_{3}} \log \left(1-c_{2} x_{2 j}\right)\right]}{\left[-\sum_{j=1}^{n_{2}} \log \left(1-c_{2} x_{2 j}\right)^{n_{2}}\right.} d c_{2}\right] d c_{1}\right\}$.
and $E(c, \mid \underline{x})$ is given by (3.35).

Similarly, we obtain the posterior variances of c_{2}, d_{1}, d_{2} and p_{1} using the following identities,
$E\left(c_{2}{ }^{2} \mid \underline{x}\right)=K_{2}\left\{\int_{0}^{\infty} \frac{c_{2}^{n_{2}+1} \exp \left[-\sum_{j=1}^{n_{3}} \log \left(1-c_{2} x_{2 j}\right)\right]}{\left[-\sum_{j=1}^{n_{3}} \log \left(1-c_{2} x_{2 j}\right)\right]}\left[\int_{0}^{n_{2}} \frac{c_{1}^{n_{1}-1} \exp \left[-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]}{\left.1-\sum_{j=1}^{n_{1}} \log \left(1-c_{1} x_{1 j}\right)\right]^{n_{1}}} d c_{1}\right] d c_{2}\right\}$,
$E\left(d_{1}^{2} \mid \underline{x}\right)=K_{亏} \int_{0}^{\infty} d_{1}^{n_{1}+1}\left\{\int_{0}^{\infty} d_{2}^{n_{2}-1}\left[\int_{0}^{\infty} c_{2}^{n_{z}-1} e^{\left(d_{2}-1\right) \sum_{i=1}^{\prime 2} \log \left(1-c_{2} x_{i}\right)}\left(\int_{0}^{c_{2}} c_{1}^{n_{1}-1} e^{\left(d_{1}-1\right) \sum_{i=1}^{\left.m m_{k}(1)-c_{i} x_{1}\right)}} d c_{1}\right) d c_{2}\right] d d_{2}\right\} d d_{1}$,
$E\left(d_{2}^{2} \mid \underline{x}\right)=K_{4} \int_{0}^{\infty} d_{2}^{n_{2}+1}\left\{\int_{0}^{\infty} d_{1}^{n_{1}-1}\left[\int_{0}^{\infty} c_{2}^{n_{2}-1} e^{\left(d_{2}-1\right) \sum_{i=1}^{n_{2}} \operatorname{wog}\left(1-c_{2} x_{2},\right)}\left(\int_{0}^{c_{2}} c_{1}^{n_{1}-1} e^{\left(d_{1}-1\right) \sum_{i-1}^{n_{1} \log \left(1-c_{1} x_{1}\right)}} d c_{1}\right) d c_{2}\right] d d_{1}\right\} d d_{2}$,
and
$E\left(p_{1}^{2} \mid \underline{x}\right)=K_{5} B\left(n_{1}+3, n_{2}+1\right)$.

Remark 3.1

One can use various types of priors depending on the situation for the Bayesian analysis. However, when we employ conjugate priors for $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} the estimation procedure will become complex.
3.6.2 Estimation of parameters when the observations belonging to each subpopulation are unknown

We now consider the case when there are only two subpopulations, with mixing proportions p_{1} and $\left(1-p_{1}\right)$ and $f_{1}(x)$ and $f_{2}(x)$ are beta densities with parameters $\left(c_{1}, d_{1}\right)$ and $\left(c_{2}, d_{2}\right)$ respectively. The likclihood based on sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is given by $L\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right)=\prod_{j=1}^{n}\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{j}\right)^{\left(d_{2}-1\right)}\right]$.

(a) Maximum likelihood estimation (M.L.E).

Maximization of log-likelihood function (3.41) with respect to the model parameters yields the following likelihood equations,

$$
\begin{align*}
& \sum_{j=1}^{n} \frac{p_{1} d_{1}\left(1-c_{1} d_{1} x_{j}\right)\left(1-c_{1} x_{j}\right)^{\left(d_{1}-2\right)}}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{j}\right)^{\left(d_{2}-1\right)}}=0, \tag{3.42}\\
& \sum_{j=1}^{n} \frac{\left(1-p_{1}\right) d_{2}\left(1-c_{2} d_{2} x_{j}\right)\left(1-c_{2} x_{j}\right)^{\left(d_{2}-2\right)}}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{j}\right)^{\left(d_{2}-1\right)}}=0, \tag{3.43}\\
& \sum_{j=1}^{n} \frac{p_{1} c_{1}\left(1+d_{1} \log \left(1-c_{1} x_{j}\right)\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}\right.}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{j}\right)^{\left(d_{2}-1\right)}}=0, \tag{3.44}\\
& \sum_{j=1}^{n} \frac{\left(1-p_{1}\right) c_{2}\left(1+d_{2} \log \left(1-c_{2} x_{j}\right)\left(1-c_{2} x_{j}\right)^{\left(d_{2}-1\right)}\right.}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{j}\right)^{\left(d_{2}-1\right)}}=0, \tag{3.45}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{c_{1} d_{1}\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}-c_{2} d_{2}\left(1-c_{2} x_{j}\right)^{\left(d_{2}-1\right)}}{c_{1} d_{1}\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{j}\right)^{\left(d_{2}-1\right)}}=0 \tag{3.46}
\end{equation*}
$$

The solution of the above equations provides the M.L.E.'s of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1}.

(b) Bayes estimation.

From (3.23) and (3.41), we have the joint posterior distribution of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} is obtained as

$$
\prod\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right) \alpha\left\lfloor\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \frac{1}{c_{1} c_{2} d_{1} d_{2}}
$$

From (3.47), we obtain the marginal posterior distributions as,

$$
\begin{gathered}
\Pi_{1}\left(c_{1} \mid \underline{x}\right)=M_{1} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
\frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{2} d d_{1} d c_{2} \\
\Pi_{2}\left(c_{2} \mid \underline{x}\right)=M_{2} \int_{0}^{c_{2}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{i}-1\right)}\right)\right] \\
\frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{2} d d_{1} d c_{1}
\end{gathered}
$$

$$
\left.\Pi_{3}\left(d_{1} \mid \underline{x}\right)=M_{3} \int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \iint_{0}^{1} \prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right]
$$

$$
\begin{equation*}
\frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d c_{2} d c_{1} d d_{2} \tag{3.50}
\end{equation*}
$$

$$
\begin{gather*}
\Pi_{4}\left(d_{2} \mid \underline{x}\right)=M_{4} \int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \int\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
\frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d c_{2} d c_{1} d d_{1} \tag{3.51}
\end{gather*}
$$

and

$$
\begin{gather*}
\Pi_{5}\left(p_{1} \mid \underline{x}\right)=M_{5} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \iint_{0}^{\infty} \int_{0}^{\infty}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
\frac{1}{c_{1} c_{2} d_{1} d_{2}} d d_{2} d d_{1} d c_{2} d c_{1}, \tag{3.52}
\end{gather*}
$$

where

$$
\begin{align*}
& M_{1}^{-1}=\int_{0}^{\infty} \iint_{c_{1}}^{\infty} \iint_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
& \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{2} d d_{1} d c_{2} d c_{2} . \\
& M_{2}^{-1}=\int_{0}^{\infty} \int_{0}^{r} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
& \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{2} d d_{1} d c_{1} d c_{2} . \tag{3.54}\\
& M_{3}^{-1}=\int_{1}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{1}}^{1} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{1}\right)^{\left(d_{2}-1\right)}\right)\right] \\
& \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d c_{2} d c_{1} d d_{2} d d_{1} . \tag{3.55}\\
& \left.M_{4}^{-1}=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{j}}^{\infty} \int_{0}^{1} \prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
& \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d c_{2} d c_{1} d d_{1} d d_{2} . \tag{3.56}\\
& M_{5}^{-1}=\int_{0}^{1} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
& \frac{1}{c_{1} c_{2} d d_{2}} d d_{2} d d_{1} d c_{2} d c_{1} d p_{1} . \tag{3.57}
\end{align*}
$$

Then Bayes estimates of the parameters, under squared error loss function, are given as,

$$
\begin{array}{r}
\left.c_{1}^{*}=M_{1} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \prod_{i=i}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{2}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
\frac{1}{c_{2} d_{1} d_{2}}-d p_{1} d d_{2} d d_{1} d c_{2} d c_{2} \\
c_{2}^{*}=M_{2} \int_{0}^{\infty} \int_{0}^{r_{2}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1} \cdot b_{2}\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1--c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
\frac{1}{c_{1} d_{1} d_{2}} d p_{1} d d_{2} d d_{1} d c_{1} d c_{2} \tag{3.59}
\end{array}
$$

$$
\begin{array}{r}
d_{1}^{*}=M_{3} \int_{0}^{\infty} \int_{0}^{\infty} \int_{1}^{\infty} \int_{c_{i}}^{1}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
\frac{1}{c_{1} c_{2} d_{2}} d p_{1} d c_{2} d c_{1} d d_{2} d d_{1}, \\
d_{2}^{*}=M_{4} \iint_{0}^{\infty} \iint_{0}^{\infty} \int_{c_{1}}^{\infty} \int\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
\frac{1}{c_{1} c_{2} d_{1}} d p_{1} d c_{2} d c_{1} d d_{1} d d_{2}, \tag{3.61}
\end{array}
$$

and

$$
\begin{align*}
p_{1}^{*}=M_{5} \int_{0}^{1} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \iint_{0}^{\infty} \int\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right)\right] \\
\frac{1}{c_{1} c_{2} d_{1} d_{2}} d d_{2} d d_{1} d c_{2} d c_{1} d p_{1} \tag{3.62}
\end{align*}
$$

Bayes estimates of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} will obtain by numerical integration procedure.

(c) Method of moments.

As discussed earlier in Chapter 2, let $m_{1}, m_{2}^{\prime}, m_{3} m_{4}^{\prime}$ and m_{5} denotes the sample raw moments. Now we equate the sample moments to the population moments, which provide the following equations,

$$
\begin{align*}
& \frac{p_{1}}{c_{1}\left(d_{1}+1\right)}+\frac{\left(1-p_{1}\right)}{c_{2}\left(d_{2}+1\right)}=m_{1}^{\prime} \tag{3.63}\\
& \frac{2 p_{1}}{c_{1}^{2}\left(d_{1}+1\right)\left(d_{1}+2\right)}+\frac{2\left(1-p_{1}\right)}{c_{2}^{2}\left(d_{2}+1\right)\left(d_{2}+2\right)}=m_{2} \tag{3.64}\\
& \frac{6 p_{1}}{c_{1}^{3}\left(d_{1}+1\right)\left(d_{1}+2\right)\left(d_{1}+3\right)}+\frac{6\left(1-p_{1}\right)}{c_{2}^{3}\left(d_{2}+1\right)\left(d_{2}+2\right)\left(d_{2}+3\right)}=m_{3}^{\prime} \tag{3.65}\\
& \frac{24 p_{1}}{c_{1}^{4}\left(d_{1}+1\right)\left(d_{1}+2\right)\left(d_{1}+3\right)\left(d_{1}+4\right)}+\frac{24\left(1-p_{1}\right)}{c_{2}^{4}\left(d_{2}+1\right)\left(d_{2}+2\right)\left(d_{2}+3\right)\left(d_{2}+4\right)}=m_{4}^{\prime} \tag{3.66}
\end{align*}
$$

$\frac{120 p_{1}}{c_{1}^{5}\left(d_{1}+1\right)\left(d_{1}+2\right)\left(d_{1}+3\right)\left(d_{1}+4\right)\left(d_{1}+5\right)}+\frac{120\left(1-p_{1}\right)}{c_{2}^{5}\left(d_{2}+1\right)\left(d_{2}+2\right)\left(d_{2}+3\right)\left(d_{2}+4\right)\left(d_{2}+5\right)}=m_{5}^{\prime}$.

The moment estimates of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} can be obtained by solving the equations (3.63), (3.64), (3.65), (3.66) and (3.67).

(d) Maximum product of spacing.

In this section, we obtain the estimate of parameters $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} using the maximum product of spacing method introduced by Cheng and Amin (1983). The estimates by this method are obtained by maximizing the geometric mean of the spacing based on a sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

$$
\begin{equation*}
G=\frac{1}{n} \sum_{i=1}^{n} \log \left\{p_{1}\left[\left(1-c_{1} x_{i-1}\right)^{d_{1}}-\left(1-c_{1} x_{i}\right)^{d_{1}}\right]+\left(1-p_{1}\right)\left[\left(1-c_{2} x_{i-1}\right)^{d_{2}}-\left(1-c_{2} x_{i}\right)^{d_{2}}\right]\right\} \tag{3.68}
\end{equation*}
$$

Differentiating G with respect to $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} and equating to zero we have,
$\frac{1}{n} \sum_{i=1}^{n} \frac{p_{1} d_{1}\left[\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)} x_{i}-\left(1-c_{1} x_{i-1}\right)^{\left(d_{1}-1\right)} x_{i-1}\right]}{p_{1}\left[\left(1-c_{1} x_{i-1}\right)^{d_{1}}-\left(1-c_{1} x_{i}\right)^{d_{1}}\right]+\left(1-p_{1}\right)\left[\left(1-c_{2} x_{i-1}\right)^{d_{2}}-\left(1-c_{2} x_{i}\right)^{d_{2}}\right]}=0$,
$\frac{1}{n} \sum_{i=1}^{n} \frac{\left(1-p_{1}\right) c_{2}\left[\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)} x_{i}-\left(1-c_{2} x_{i-1}\right)^{\left(d_{2}-t\right)} x_{i-1}\right]}{p_{!}\left[\left(1-c_{1} x_{i-1}\right)^{d_{1}}-\left(1-c_{1} x_{i}\right)^{d_{1}}\right]+\left(1-p_{1}\right)\left[\left(1-c_{2} x_{i-1}\right)^{d_{2}}-\left(1-c_{2} x_{i}\right)^{d_{2}}\right]}=0$,
$\frac{1}{n} \sum_{i=1}^{n} \frac{p_{1}\left[\left(1-c_{1} x_{i-1}\right)^{d_{1}} \log \left(1-c_{1} x_{i-1}\right)-\left(1-c_{1} x_{i}\right)^{d_{1}} \log \left(1-c_{1} x_{j}\right)\right]}{p_{1}\left[\left(1-c_{1} x_{i-1}\right)^{d_{1}}-\left(1-c_{1} x_{i}\right)^{d_{1}}\right]+\left(1-p_{1}\right)\left[\left(1-c_{2} x_{i-1}\right)^{d_{2}}-\left(1-c_{2} x_{i}\right)^{d_{2}}\right]}=0$,
$\frac{1}{n} \sum_{i=1}^{n} \frac{\left(1-p_{1}\right)\left[\left(1-c_{2} x_{i-1}\right)^{d_{2}} \log \left(1-c_{2} x_{i-1}\right)-\left(1-c_{2} x_{i}\right)^{d_{2}} \operatorname{iog}\left(1-c_{2} x_{i}\right)\right]}{p_{1}\left[\left(1-c_{i} x_{i-1}\right)^{d_{1}}-\left(1-c_{1} x_{i}\right)^{d_{1}}\right]+\left(1-p_{1}\right)\left[\left(1-c_{2} x_{i-1}\right)^{d_{2}}-\left(1-c_{2} x_{i}\right)^{d_{2}}\right]}=0$,
and
$\frac{1}{n} \sum_{i=1}^{n} \frac{\left[\left(1-c_{1} x_{i-1}\right)^{d_{1}}-\left(1-c_{1} x_{i}\right)^{d_{i}}+\left(1-c_{2} x_{i}\right)^{d_{2}}-\left(1-c_{2} x_{i-1}\right)^{d_{2}}\right]}{p_{1}\left[\left(1-c_{1} x_{i-1}\right)^{d_{i}}-\left(1-c_{1} x_{i}\right)^{d_{1}}\right]+\left(1-p_{1}\right)\left[\left(1-c_{2} x_{i-1}\right)^{d_{2}}-\left(1-c_{2} x_{i}\right)^{d_{2}}\right]}=0$.
Solving the above equations by Newton-Raphson iterative procedure, we obtain the estimates of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1}

3.7 Censored set up

3.7.1 Estimation based on type 1 censored samples when the observations belonging to each subpopulation are known

Consider the situation, when there are only two subpopulations with mixing proportions p_{1} and $\left(1-p_{1}\right)$ and $f_{1}(x)$ and $f_{2}(x)$ are respective beta densities with parameters $\left(c_{1}, d_{1}\right)$ and $\left(c_{i}, d_{2}\right)$. Let $t_{i j}$ denote the failure time of the $j^{\text {th }}$ unit belonging to the $i^{\text {ih }}$ subpopulation, $t_{i j} \leq T, j=1,2, \ldots, r_{i} ; i=1,2$ and let $\gamma_{i}=c_{i} T$, $i=1,2$ and $x_{i j}=\frac{t_{i j}}{T}$ and observed $\underline{x}=\left\{x_{11}, x_{12}, \ldots, x_{11} ; x_{21}, x_{22}, \ldots, x_{2 r_{2}}\right\}$. Now we discuss the estimation of parameters.

(a) Maximum likelihood Estimation (M.L.E).

The likelihood function based on a type I censored sample is given by (see Mendenhall and Hader (1958) and Sinha (1986))

$$
\begin{gather*}
L\left(\gamma_{1}, \gamma_{2}, d_{1}, d_{2,} p_{1} \mid \underline{x}\right)=\frac{n!}{r_{1}!r_{2}!(n-r)!} \frac{p_{1}^{r_{1}}\left(1-p_{1}\right)^{r_{2}}}{T^{r}} \prod_{j=1}^{r_{1}}\left\{d_{1} \gamma_{1}\left(1-\gamma_{1} x_{1 j}\right)^{\left(d_{1}-1\right)}\right\} \\
\prod_{j=1}^{n}\left\{d_{2} \gamma_{2}\left(1-\gamma_{2} x_{2 j}\right)^{\left(d_{2}-1\right)}\right\}\left(p_{1}\left(1-\gamma_{1}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-\gamma_{2}\right)^{d_{2}}\right\}^{(n-r)} . \tag{3.74}
\end{gather*}
$$

Maximization of log-likelihood function with respect to the model parameters yields the following likelihood equations,
$\frac{r_{1}}{\gamma_{1}}+\frac{\left(d_{1}-1\right)}{\gamma_{1}} \sum_{j=1}^{n_{i}}\left(\mathbf{i}-\frac{1}{\gamma_{1} x_{1}}\right)^{-1}-\frac{(n-r) p_{1} d_{1}\left(1-\gamma_{1}\right)^{\left(d_{1}-1\right)}}{\left[p_{1}\left(1-\gamma_{1}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-\gamma_{2}\right)^{d_{2}}\right]}=0$,
$\frac{r_{2}}{\gamma_{2}}+\frac{\left(d_{2}-1\right)}{\gamma_{2}} \sum_{j=1}^{r_{2}}\left(1-\frac{1}{\gamma_{2} x_{2 j}}\right)^{-1}-\frac{(n-r)\left(1-p_{1}\right) d_{2}\left(1-\gamma_{2}\right)^{\left(d_{2}-1\right)}}{\left[p_{1}\left(1-\gamma_{1}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-\gamma_{2}\right)^{d_{2}}\right]}=0$,
$\frac{r_{1}}{d_{1}}+\sum_{j=1}^{r_{1}} \log \left(1-\gamma_{1} x_{1 j}\right)+\frac{(n-r) p_{1}\left(1-\gamma_{1}\right)^{d_{1}} \log \left(1-\gamma_{1}\right)}{\left[p_{1}\left(1-\gamma_{1}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-\gamma_{2}\right)^{d_{2}}\right]}=0$,
$\frac{r_{2}}{d_{2}}+\sum_{j=1}^{l_{2}} \log \left(1-\gamma_{2} x_{2 i}\right)+\frac{(n-r)\left(1-p_{1}\right)\left(1-\gamma_{2}\right)^{d_{2}} \log \left(1-\gamma_{2}\right)}{\left[p_{1}\left(1-\gamma_{1}\right)^{d_{i}}+\left(1-p_{1}\right)\left(1-\gamma_{2}\right)^{d_{2}}\right]}=0$,
and

$$
\begin{equation*}
\frac{r_{1}}{p_{1}}-\frac{r_{2}}{\left(1-p_{1}\right)}+\frac{(n-r)\left[\left(1-\gamma_{1}\right)^{d_{1}}-\left(1-\gamma_{2}\right)^{d_{2}}\right]}{\left[p_{1}\left(1-\lambda_{1}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-\gamma_{2}\right)^{d_{2}}\right]}=0 . \tag{3.79}
\end{equation*}
$$

The solution of the above five equations, using numerical iteration method, yields the maximum likelihood estimate (M.L.E) of $\gamma_{1}, \gamma_{2}, d_{1}, d_{2}$ and p_{1} and thus we obtain the maximum likelihood estimate of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1}.

(b) Bayes estimation.

We assume that $\gamma_{1}, \gamma_{2}, d_{1}, d_{2}$ and p_{1} are independent. Using Jeffrey's invariant prior for $\gamma_{1} \gamma_{2}, d_{1}$ and d_{2} and uniform prior over (0,1) for p_{1}, then joint prior distribution of $\gamma_{1}, \gamma_{2}, d_{1}, d_{2}$ and p_{1} is given by

$$
\begin{equation*}
g\left(\gamma_{1}, \gamma_{2}, d_{1}, d_{2}, p_{1}\right) \quad \alpha \frac{1}{\gamma_{1} \gamma_{2} d_{1} d_{2}} \tag{3.80}
\end{equation*}
$$

From (3.74) and (3.80), the joint posterior distribution of $\gamma_{1} \gamma_{2} d_{\mathrm{t}}, d_{2}$ and p_{1} is given by $\Pi\left(\gamma_{1}, \gamma_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right) \alpha \sum_{k=0}^{n-r}\left(k_{k}^{n-r}\right) p_{1}^{n-r_{2}-k}\left(1-p_{1}\right)^{r_{2}+k} \gamma_{1}^{r_{1}-1} \gamma_{2}^{{ }^{n}-1} d_{1}^{r-1} d_{2}^{{ }^{2-1}}$
$\exp \left[\left(d_{1}-1\right) \sum_{j=1}^{\gamma_{1}} \log \left(1-\gamma_{1} x_{1 j}\right)\right] \exp \left[\left(d_{2}-1\right) \sum_{j=1}^{K_{n}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]\left(1-\gamma_{1}\right)^{d_{1}(n-1-k)}\left(1-\gamma_{2}\right)^{d_{2}, k}$.
From equation (3.81), we obtain the marginal posterior distributions of $\gamma_{1}, \gamma_{2}, d_{1}, d_{2}$ and p_{1} as,

$$
\Pi_{1}\left(\gamma_{1} \mid \underline{x}\right)=A_{1} \sum_{k=0}^{n-r}\left({ }_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \frac{\gamma_{1}^{r_{1}^{-1}} \exp \left[-\sum_{j=1}^{r_{i}} \log \left(1-\gamma_{1} x_{1 j}\right)\right]}{\left.\left[-\sum_{j=1}^{r_{i}} \log \left(1-\gamma_{1} x_{1 j}\right)\right]-(n-r-k) \log \left(1-\gamma_{1}\right)\right]^{r}}
$$

$$
\begin{equation*}
\int_{\gamma_{1}}^{\infty} \frac{\left.\gamma_{2}^{n_{2}^{\prime-1}} \exp \left[-\sum_{j=1}^{n_{j}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]-k \log \left(1-\gamma_{2}\right)\right]^{n_{2}}}{\left.\log \left(1-\gamma_{2} x_{2 j}\right)\right]} \gamma_{2}, \tag{3.82}
\end{equation*}
$$

$$
\begin{gather*}
\Pi_{2}\left(\gamma_{2} \mid \underline{x}\right)=A_{2} \sum_{k=0}^{n-r}\left({ }_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \frac{\gamma_{2}^{r_{-}-1} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]}{\left.\left[-\sum_{j=1}^{r_{2}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]-k \log \left(1-\gamma_{2}\right)\right]^{r_{2}}} \\
\left.\left.\int_{0}^{\gamma} \frac{\gamma_{1}^{r_{1}-1} \exp \left[-\sum_{j=1}^{r_{j}}\right.}{\left.\log \left(1-\gamma_{1} x_{1 j}\right)\right]} \log \left(1-\gamma_{1} x_{1 j}\right)\right]-(n-r-k) \log \left(1-\gamma_{1}\right)\right]^{r} \tag{3.83}
\end{gather*} d \gamma_{1},
$$

$\Pi_{3}\left(d_{1} \mid \underline{x}\right)=A_{3} \sum_{k=0}^{n-r}\left(\begin{array}{l}n-r\end{array}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) d_{1}^{\mathrm{T}^{i-1}}$
$\prod_{4}\left(d_{2} \mid \underline{x}\right)=A_{4} \sum_{k=0}^{n-r}\binom{n-r}{k} B\left(n-r_{2}-k+1, r_{2}+k+1\right) d_{2}^{r_{2}-1}$
and
$\Pi_{s}\left(p_{1} \mid \underline{x}\right)=A_{5} \sum_{k=0}^{n-r}(n-r) p_{1}^{n-r_{2}-k}\left(1-p_{1}\right)^{r_{2}+k}$
$\left\{\int_{0}^{\infty} \frac{\gamma_{1}^{r_{1}^{\prime 1}} \exp \left[-\sum_{j=1}^{r_{1}} \log \left(1-\gamma_{1} x_{1 j}\right)\right]}{\left.\left[-\sum_{j=1}^{r_{1}} \log \left(1-\gamma_{1} x_{1 j}\right)\right]-(n-r-k) \log \left(1-\gamma_{1}\right)\right]^{r_{1}}}\left[\int_{\gamma_{1}}^{\infty} \frac{\gamma_{2}^{r_{2}-1} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]}{\left.\left[-\sum_{j=1}^{r_{2}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]-k \log \left(1-\gamma_{2}\right)\right]^{r_{2}}} d \gamma_{2}\right] d \gamma_{1}\right\}$.
where

$$
\begin{align*}
& A_{1}^{-1}=\sum_{k=0}^{n-r}\binom{(1-r}{k} B\left(n-r_{2}-k+1, r_{2}+k+1\right) \tag{3.87}
\end{align*}
$$

$$
\begin{aligned}
& A_{2}^{-1}=\sum_{k=1)}^{n-r}\binom{n-r}{k} B\left(n-r_{2}-k+1, r_{2}+k+1\right)
\end{aligned}
$$

$A_{3}^{-1}=\sum_{k=0}^{n-r}\left({ }_{k}^{n r}\right) B\left(n-r_{2}-k+1, r_{2}+k+\mathbf{i}\right)$

$A_{4}^{-1}=\sum_{k=0}^{n-r}\left(n_{k}^{n-r}\right) B\left(n-r_{2}-\cdots+1, r_{2}+k+1\right)$

$$
\begin{equation*}
\left\{\int_{0}^{\infty} d_{2}^{r=-1}\left[\int_{0}^{\infty} \gamma_{2}^{\prime,-1} e^{-d_{2}\left(-\sum_{i=1}^{n} \log \left(1-\gamma_{2} x_{2},-k \log \left(1-\gamma_{2}\right)\right.\right.} e^{-\sum_{j=1}^{n} \log \left(1-\gamma_{2} x_{2}, \prime\right.}\left(\int_{0}^{\gamma_{2}} \frac{\gamma_{1}^{r,-1} e^{-\sum_{i=1}^{n} \log \left(1-\gamma_{1} x_{1}\right)}}{\left[-\sum_{i=1}^{2} \log \left(1-\gamma_{i} x_{1},-(n-r-k) \log \left(1-\gamma_{1}\right)\right]^{n}\right.} d \gamma_{2}\right) d \gamma_{1}\right] d d_{2}\right\}, \tag{3.90}
\end{equation*}
$$

and
$A_{5}^{-1}=\sum_{k=0}^{n-r}\left({ }_{k}^{\prime \prime-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right)$
$\left\{\int_{0}^{\infty} \frac{\gamma_{1}^{n-1} \exp \left[-\sum_{j=1}^{n} \log \left(\mathrm{~J}-\gamma_{1} x_{1 j}\right)\right]}{\left.\left.{ }^{n}-\sum_{j=1}^{r_{i}} \log \left(1-\gamma_{1} x_{1 ;}\right)\right]-(n-r-k) \log \left(1-\gamma_{1}\right)\right]^{r_{i}}}\left[\int_{\gamma_{1}}^{\infty} \frac{\gamma_{2}^{\prime 2-1} \exp \left[-\sum_{j=1}^{n} \log \left(1-\gamma_{2} x_{2 j}\right)\right]}{\left.\left[\sum_{j=1}^{n_{2}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]-k \log \left(1-\gamma_{2}\right)\right]^{r_{2}}} d \gamma_{2}\right] d \gamma_{1}\right\}$.
with
$B(p, q)$ is the beta function of the first kind.

Under squared error loss function, we obtain the Bayes estimators of $\gamma_{1}, \gamma_{2}, d_{1}, d_{2}$ and p_{1} as,

$$
\begin{equation*}
\gamma_{1}^{*}=A_{1} \sum_{k=0}^{n-r}\left({ }_{k}^{n-r}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right) \tag{3.92}
\end{equation*}
$$

$\gamma_{2}^{*}=A_{2} \sum_{k=0}^{n-r}\binom{n-r}{k} B\left(n-r_{2}-k+1, r_{2}+k+1\right)$

$$
\begin{equation*}
\left\{\int_{0}^{\infty} \frac{\gamma_{2}^{r_{2}} \exp \left[-\sum_{j=1}^{r_{2}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]}{\left.\left[-\sum_{j=1}^{r_{2}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]-k \log \left(1-\gamma_{2}\right)\right]^{\frac{2}{2}}}\left[\int_{0}^{\gamma_{2}} \frac{\gamma_{1}^{r_{1}^{-1}} \exp \left[-\sum_{j=1}^{r_{i}} \log \left(1-\gamma_{1} x_{1 j}\right)\right]}{\left.\left[-\sum_{j=1}^{r_{1}} \log \left(1-\gamma_{1} x_{1 j}\right)\right]-(n-r-k) \log \left(1-\gamma_{1}\right)\right]^{\beta_{i}}} d \gamma_{1}\right] d \gamma_{2}\right\}, \tag{3.93}
\end{equation*}
$$

$d_{1}^{*}=A_{3} \sum_{k=0}^{n-r}\binom{n-r}{k} B\left(n-r_{2}-k+1, r_{2}+k+1\right)$

$d_{2}^{*}=A_{4} \sum_{k=0}^{n-r}\left(\begin{array}{c}n-r\end{array}\right) B\left(n-r_{2}-k+1, r_{2}+k+1\right)$
and

$$
\begin{align*}
& p_{1}^{*}=A_{5} \sum_{k=0}^{n-r}\left({ }_{k}^{n-r}\right) B\left(n-r_{2}-k+2, r_{2}+k+1\right) \\
& \left\{\int_{0}^{\infty} \frac{\gamma_{1}^{r_{1}-1} \exp \left[-\sum_{j=1}^{r} \log \left(1-\gamma_{1} x_{1 j}\right)\right]}{\left.\left[-\sum_{i=1}^{r} \log \left(1-\gamma_{1} x_{1 j}\right)\right]-(n-r-k) \log \left(1-\gamma_{1}\right)\right)^{\gamma^{\prime}}}\left[\int_{\gamma_{1}}^{\infty} \frac{\gamma_{2}^{r-1} \exp \left[-\sum_{j=1}^{r_{3}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]}{\left.\left.r_{j=1}^{r_{2}} \log \left(1-\gamma_{2} x_{2 j}\right)\right]-k \log \left(1-\gamma_{2}\right)\right]^{r}} d \gamma_{2}\right] d \gamma_{1}\right\} . \tag{3.96}
\end{align*}
$$

Bayes estimators of $\gamma_{1}, \gamma_{2}, d_{1}, d_{2}$ and p_{1} and hence that of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} will obtained by numerical integration procedure.

Remark 3.2

One can use different types of priors for the analysis. However, when we use conjugate priors for $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1}, the estimation procedure will become complex.

3.7.2 Estimation based on type I censored samples when the observations belonging to each subpopulation are unknown

(a) Maximum likelihood Estimation (M.L.E)

In this Section, we develop maximum likelihood estimators of parameters under type I censoring. The likelihood function based on a sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from the model (3.1) is given by

$$
\begin{gather*}
L\left(c_{i}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right)=\prod_{i=1}^{n}\left\{p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right\}^{\delta_{i}} \\
\left\{p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right\}^{1-\delta_{1}} . \tag{3.97}
\end{gather*}
$$

where $\delta_{i}=1$ if $x_{i} \leq T$ and $\delta_{i}=0$ if $x_{i}>T$.

Maximization of log-likelihood function with respect to the model parameters yields the following likelihood equations,

$$
\begin{align*}
& \sum_{i=1}^{n}\left[\frac{\delta_{i}\left[p_{1} d_{1}\left(1-c_{1} x_{j}\right)^{\left(d_{1}-1\right)}-p_{1} d_{1} c_{1}\left(d_{1}-1\right)\left(1-c_{1} x_{i}\right)^{\left(d_{1}-2\right)} \cdot x_{i}\right]}{\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]}\right. \\
& \left.-\frac{\left(1-\delta_{i}\right) p_{1} d_{1}\left(1-c_{1} T\right)^{\left(d_{1}-1\right)} T}{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]}\right]=0, \tag{3.98}\\
& \sum_{i=1}^{n}\left[\frac{\delta_{i}\left[\left(1-p_{1}\right) d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}-\left(1-p_{1}\right) d_{2} c_{2}\left(d_{2}-1\right)\left(1-c_{2} x_{i}\right)^{\left(d_{2}-2\right)} x_{i}\right]}{\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]}\right. \\
& \left.-\frac{\left(1-\delta_{i}\right)\left(1-p_{1}\right) d_{2}\left(1-c_{2} T\right)^{\left(d_{2}-1\right)} T}{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]}\right]=0, \tag{3.99}\\
& \sum_{i=1}^{n}\left[\left\{\frac{\delta_{i}\left(p_{1} c_{1}\left(1-c_{1} x_{i}\right)^{-1}\left[\left(1-c_{1} x_{i}\right)^{d_{1}}+d_{1}\left(1-c_{1} x_{i}\right)^{d_{i}} \log \left(1-c_{1} x_{i}\right)\right]\right.}{\left[p_{i} c_{1} d_{1}\left(1-c_{1} x_{i} x^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]\right.}\right\}\right. \\
& \left.+\frac{\left(1-\delta_{i}\right)\left[p_{1}\left(1-c_{1} T\right)^{d_{1}} \log \left(1-c_{1} T\right)\right.}{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]}\right]=0, \tag{3.100}\\
& \sum_{i=1}^{n}\left[\left(\frac{\delta_{i} t\left(1-p_{1}\right) c_{2}\left(1-c_{2} x_{i}\right)^{-1}\left[\left(1-c_{2} x_{j}\right)^{d_{2}}+d_{2}\left(1-c_{2} x_{i}\right)^{d_{2}} \log \left(1-c_{2} x_{j}\right)\right]}{\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]}\right\}\right. \\
& \left.+\frac{\left(1-\delta_{i}\right)\left[\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}} \log \left(1-c_{2} T\right)\right.}{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]}\right]=0, \tag{3.101}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{i=1}^{n}\left[\frac{\delta_{i}\left[c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}-c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]}{\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]}\right. \\
&\left.+\frac{\left(1-\delta_{i}\right)\left[\left(1-c_{1} T\right)^{d_{1}}-\left(1-c_{2} T\right)^{d_{2}}\right]}{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]}\right]=0 . \tag{3.102}
\end{align*}
$$

The solution of the above equations using numerical iteration scheme, yields the maximum likelihood estimate (M.L.E) of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1}.

(b) Bayes estimation.

From (3.23) and (3.97), we obtain the joint posterior distribution of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} as

$$
\begin{align*}
\prod\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right) \alpha & {\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{1}}\right.} \\
& {\left[p_{i}\left(1-c_{1} T\right)^{d_{i}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{i}}\right]^{\left(1-\delta_{i}\right)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} . } \tag{3.103}
\end{align*}
$$

Then, we obtain the marginal posterior distributions as,

$$
\begin{gather*}
\Pi_{1}\left(c_{1} \mid \underline{x}\right)=B_{1} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int \prod_{i=1}^{n}\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{i}} \\
{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{1}\right)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{2},} \tag{3.104}\\
\Pi_{2}\left(c_{2} \mid \underline{x}\right)=B_{2} \int_{0}^{\int_{0}^{\infty}} \iint_{0}^{\infty} \int_{0}^{1} \prod_{0}^{n}\left[p_{i} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{1}} \\
\quad\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{i}\right)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{1}, \tag{3.105}\\
\Pi_{3}\left(d_{1} \mid \underline{x}\right)=B_{3} \int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \int \prod_{0}^{n}\left[p_{i=1}^{n} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{1}} \\
\quad\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{1}\right)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d c_{2} d c_{1} d d_{2},
\end{gather*}
$$

$$
\Pi_{4}\left(d_{2} \mid \underline{x}\right)=B_{4} \int_{0}^{\infty \infty} \int_{0}^{\infty} \int_{c_{1}}^{1} \int_{0}^{1} \prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{i}-1!\right.}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{i}-1\right.}\right]^{\delta_{i}}
$$

$$
\begin{equation*}
\left[p_{1}\left(1-c_{1} T\right)^{d_{i}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{i}}\right]^{(1-\delta)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d c_{2} d c_{1} d d_{1} \tag{3.107}
\end{equation*}
$$

and

$$
\begin{align*}
\Pi_{5}\left(p_{1} \mid \underline{x}\right)= & \left.B_{5} \iint_{0}^{\infty} \iint_{0}^{\infty} \iint_{01}^{\infty} \prod_{i=1}^{n} \mid p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta,} \\
& {\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{i}}\right]^{\left(1-\delta_{1}\right)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d d_{2} d d_{1} d c_{2} d c_{1} . } \tag{3.108}
\end{align*}
$$

where

$$
\begin{gather*}
B_{1}^{-1}=\int_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{1}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{i}}\right. \\
{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{1}\right)} \frac{1}{c_{2}} \frac{1}{d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{2} d c_{1},} \tag{3.109}\\
B_{2}^{-1}=\int_{0}^{\infty} \int_{0}^{c_{2}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\left[\prod_{i=1}^{n}\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{i}}\right.\right. \\
 \tag{3.110}\\
{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{1}\right)} \frac{1}{c_{1} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{1} d c_{2},} \\
B_{3}^{-1}=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{1}}^{1} \int_{0}\left[\prod_{i=1}^{n}\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{i}}\right. \tag{3.111}\\
\quad\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{1}\right)} \frac{1}{c_{1} c_{2} d_{2}} d p_{1} d c_{2} d c_{1} d d_{2} d d_{1}, \\
B_{4}^{-1}=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{1}}^{1} \int_{0}^{1}\left[\prod_{i=1}^{n}\left[p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{1}}\right. \tag{3.112}\\
\\
{\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{i}\right)} \frac{1}{c_{1} c_{2} d_{1}} d p_{1} d c_{2} d c_{1} d d_{1} d d_{2},}
\end{gather*}
$$

and

$$
\begin{align*}
B_{5}^{-!}= & \int_{0}^{1} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} p_{1}\left[\prod_{i=1}^{n}\left[p_{i} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta_{1}}\right. \\
\quad & {\left[p_{1}\left(1-c_{1} T\right)^{d_{i}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{1}\right.} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d d_{2} d d_{1} d c_{2} d c_{1} d p_{1} } \tag{3.113}
\end{align*}
$$

Then Bayes estimates of the parameters, under squared error loss function, are given as,

$$
\begin{align*}
c_{1}^{*}=B_{1} & \int_{0}^{\infty} \int_{1}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{n}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i}\right)^{\left(d_{2}-1\right)}\right]^{\delta}\right. \\
& {\left[p_{1}\left(1-c_{1} T\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} T\right)^{d_{2}}\right]^{\left(1-\delta_{1}\right)} \frac{1}{c_{2} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{2} d c_{1} . } \tag{3.114}
\end{align*}
$$

$$
\sum_{i=1}^{r} \frac{p_{1} d_{1}\left(1-c_{1} d_{1} x_{i i}\right)\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-2\right)}}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}}-\frac{p_{1} d_{1}(n-r) x_{(r)}\left(1-c_{1} x_{(r)}\right)^{\left(d_{1}-1\right)}}{p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}}=0
$$

$$
\begin{equation*}
\sum_{i=1}^{r} \frac{\left(1-p_{1}\right) d_{2}\left(1-c_{2} d_{2} x_{i(i)}\right)\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-2\right)}}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left.\left(d_{2}\right)\right)}}-\frac{\left(1-p_{1}\right) d_{2}(n-r) x_{(r)}\left(1-c_{2} x_{(r)}\right)^{\left(d_{2}-1\right)}}{p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{2}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}}=0, \tag{3.120}
\end{equation*}
$$

$$
\sum_{i=1}^{r} \frac{p_{1} c_{1}\left(1+d_{1} \log \left(1-c_{1} x_{i j}\right)\left(1-c_{1} x_{i i}\right)^{\left(d_{1}-1\right)}\right.}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i i)}\right)^{\left(d_{2}-1\right)}}+\frac{(n-r) p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}} \log \left(1-c_{1} x_{(r)}\right)}{p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}}=0,
$$

$\sum_{i=1}^{r} \frac{\left(1-p_{1}\right) c_{2}\left(1+d_{2} \log \left(1-c_{2} x_{i(i)}\right)\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}\right.}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}}+\frac{(n-r)\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}} \log \left(1-c_{2} x_{i r}\right)}{p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}}=0$,
and

$$
\sum_{i=1}^{r} \frac{c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}-c_{2} d_{2}\left(1-c_{2} x_{1 i}\right)^{\left(d_{2}-1\right)}}{p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}}+\frac{(n-r)\left[\left(1-c_{1} x_{(r)}\right)^{d_{1}}-\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]}{p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}}=0 .
$$

Solving the above equations we obtain the M.L.E s of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1}.

(b) Bayes estimation.

From (3.23) and (3.119), we obtain the joint posterior distribution of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} as,

$$
\begin{gather*}
\prod\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{x}\right) \alpha\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}\right]\right. \\
{\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-r)} \frac{1}{c_{1} c_{2} d_{1} d_{2}}} \tag{3.125}
\end{gather*}
$$

From (3.125), we obtain the marginal posterior distributions,

$$
\begin{align*}
& \Pi_{1}\left(c_{1} \mid \underline{x}\right)=H_{1} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{r}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i i}\right)^{\left(d_{-}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i(i)}\right)^{\left(d_{2}-1\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-r)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{2},} \tag{3.126}\\
& \Pi_{2}\left(c_{2} \mid \underline{x}\right)=H_{2} \int_{0}^{2} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{x}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{i}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{|n-r|} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{1},} \tag{3.127}\\
& \Pi_{3}\left(d_{1} \mid \underline{x}\right)=H_{3} \iint_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{i}^{1}\left[\prod_{i=1}^{f}\left(p_{1} c_{1} d_{i}\left(1-c_{1} x_{i j}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i(1}\right)^{\left[d_{2}-1\right]}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d^{2}}\right]^{(n-r)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{2} d c_{2} d c_{1},} \tag{3.128}\\
& \Pi_{4}\left(d_{2} \mid \underline{x}\right)=H_{4} \int_{0}^{\infty} \int_{r_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i,}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i i}\right)^{\left(d_{2}-1\right)}\right]\right. \\
& \left\{p_{1}\left(1-c_{1} x_{(r,}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{i n}\right)^{d_{2}}\right]^{(n \cdot \cdot)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d p_{1} d d_{1} d c_{2} d c_{1}, \tag{3.129}
\end{align*}
$$

and

$$
\begin{align*}
\Pi_{5}\left(p_{1} \mid \underline{x}\right)= & H_{5} \iint_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i i}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i i}\right)^{\left(d_{2}-i\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(i-r)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d_{1}^{\prime} d d_{2} d c_{2} d c_{1} . } \tag{3.130}
\end{align*}
$$

where

$$
\begin{align*}
& H_{1}^{-1}=\int_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \iint_{0}^{\infty}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i i}\right)^{\left(d_{i}-1\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-r)} \frac{1}{c_{2} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{2} d c_{1},} \tag{3.131}\\
& H_{2}{ }^{-1}=\int_{0}^{\infty} \int_{0}^{c_{2}} \int_{0}^{\infty} \int_{0}^{\infty} \iint_{0}^{1}\left[\prod _ { i = 1 } ^ { r } \left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)} \mathrm{J}\right.\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-r)} \frac{1}{c_{1} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{1} d c_{2} .} \tag{3.132}\\
& H_{3}^{-1}=\int_{0}^{\infty} \int_{i=1}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{1} \int_{0}^{r}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d,}\right]^{(n-r)} \frac{1}{c_{1} c_{2} d_{2}} d p_{1} d d_{2} d c_{2} d c_{1} d d_{1},} \tag{3.133}\\
& H_{4}{ }^{-1}=\int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{\infty} \int\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i(i)}\right)^{\left(d_{2}-1 ;\right.}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-1)} \frac{1}{c_{1} c_{2} d_{1}} d p_{1} d d_{1} d c_{2} d c_{1} d d_{2},} \tag{3.134}
\end{align*}
$$

and

$$
\begin{align*}
& H_{s}^{-1}=\int_{0}^{1} \int_{0}^{\infty} \int_{r_{i}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} p_{1}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i ;}\right)^{\left(d_{1}-1\right)}+\left(1-p_{i}\right) c_{2} d_{2}\left(1-c_{2} x_{i i 1}\right)^{\left(d_{i}-1\right)}\right\}\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-r)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d d_{1} d d_{2} d c_{2} d c_{1} a p_{3} .} \tag{3.135}
\end{align*}
$$

Then Bayes estimates of the parameters, under squared error loss function, are given as,

$$
\begin{align*}
& c_{1}^{*}=H_{1} \int_{0}^{\infty} \iint_{c_{1}}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i j}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-r)} \frac{1}{c_{2} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{2} d c_{1},} \tag{3.136}\\
& c_{2}^{*}=H_{2} \int_{0}^{\infty} \int_{0}^{c_{2}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} l \prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}\right] \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-r)} \frac{1}{c_{1} d_{1} d_{2}} d p_{1} d d_{1} d d_{2} d c_{1} d c_{2},} \tag{3.137}\\
& d_{1}^{*}=H_{3} \int_{0}^{\infty} \int_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{1} \int\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{i}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{i i}\right)^{\left(d_{2}-1\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right\}^{(n-r)} \frac{1}{c_{1} c_{2} d_{2}} d p_{1} d d_{2} d c_{2} d c_{i} d d_{1},} \tag{3.138}\\
& d_{2}^{*}=H_{4} \int_{0}^{\infty} \iint_{0}^{\infty} \int_{c_{1}}^{\infty} \int_{0}^{1}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{i(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{1 n-r)} \frac{1}{c_{1} c_{2} d_{1}} d p_{1} d d_{1} d c_{2} d c_{1} d d_{2},} \tag{3.139}
\end{align*}
$$

and

$$
\begin{align*}
p_{1}^{*}=H_{5} & \iint_{0}^{\infty} \int_{0}^{\infty} \iint_{c_{1}}^{\infty} \int_{0}^{\infty} p_{1}\left[\prod_{i=1}^{r}\left(p_{1} c_{1} d_{1}\left(1-c_{1} x_{(i)}\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x_{(i)}\right)^{\left(d_{2}-1\right)}\right]\right. \\
& {\left[p_{1}\left(1-c_{1} x_{(r)}\right)^{d_{i}}+\left(1-p_{1}\right)\left(1-c_{2} x_{(r)}\right)^{d_{2}}\right]^{(n-r)} \frac{1}{c_{1} c_{2} d_{1} d_{2}} d d_{1} d d_{2} d c_{2} d c_{1} d p_{1} . } \tag{3.140}
\end{align*}
$$

Remark 3.3

When $r=n$, the results obtained under type II censoring becomes complete sample case.

3.8 Simulation study.

We have described four methods for estimation of parameters of the model (3.1). Now, we illustrate these procedures using simulated data. We generate observations from two beta densities with various combinations of parameters $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1}. The samples from the finite mixture of beta distributions are generated using Bernoulli probability $p_{1}\left(0<p_{1}<1\right)$. Then, the estimates of parameters for complete as well as censored cases are computed. The estimates for one set of parameters are given in

Tables 3.1 to 3.4. The variances of the estimates are presented in brackets. For Bayes estimates, the posterior risks are given in brackets. We compared the estimates using risk improvement factor as mentioned in Chapter 2. We use the software 'Mathematica' for numerical calculations. The bias and variances (posterior risks) of the estimates decreases as sample size increases. Table 3.5 gives the risk improvement of the estimator by Bayesian over the different estimators in the complete sample case.

Table 3.1 Estimates of parameters under complete sample for $c_{1}=.1, c_{2}=.6, d_{1}=2, d_{2}=3$ and $p_{1}=0.5$

Estimate	M.L.E.	Bayes	Method of moments	Maximum product of spacing
$\mathrm{n}=30$	$\begin{aligned} & \hat{c}_{1}=0.098544 \\ & (.0079187) \end{aligned}$	$\begin{aligned} & c_{1}^{*}=.102 \\ & (.0002 ; 4) \end{aligned}$	$\begin{gathered} \tilde{c}_{1}=.150339 \\ (.00017) \end{gathered}$	$\begin{gathered} \bar{c}_{1}=1012 \\ (2.34 \mathrm{E}-05) \end{gathered}$
	$\begin{aligned} & \hat{c}_{2}=.606886 \\ & (.0012954) \end{aligned}$	$\begin{gathered} c_{2}^{*}=.600364 \\ (.00214) \end{gathered}$	$\begin{gathered} \tilde{c}_{2}=6190161 \\ (.465196) \end{gathered}$	$\begin{gathered} \breve{c}_{2}=.602212 \\ (1.7 \mathrm{E}-05) \end{gathered}$
	$\begin{gathered} \hat{d}_{1}=1.93653 \\ (.0053) \end{gathered}$	$\begin{gathered} d_{1}^{*}=1.96168 \\ (.005195) \end{gathered}$	$\begin{gathered} \tilde{d}_{1}=2.34851 \\ (.075758) \end{gathered}$	$\begin{gathered} \breve{d}_{1}=1.829962 \\ (.008508) \end{gathered}$
	$\begin{aligned} & \hat{d}_{2}=2.987 \\ & (.00059) \end{aligned}$	$\begin{aligned} & d_{2}{ }^{*}=3.01 \\ & (.00054) \end{aligned}$	$\begin{gathered} \tilde{d}_{2}=3.0911 \\ (.03348) \end{gathered}$	$\begin{aligned} & \breve{d}_{2}=3.1201 \\ & (4.98 \mathrm{E}-05) \end{aligned}$
	$\begin{gathered} \hat{p}_{1}=.500693 \\ (.000409) \end{gathered}$	$\begin{gathered} \hline p_{1}^{*}=.500816 \\ (.00022) \end{gathered}$	$\begin{aligned} & \tilde{p}_{1}=.5071 \\ & (.005623) \end{aligned}$	$\begin{aligned} & p_{1}=.5028 \\ & (.000762) \end{aligned}$
$\mathrm{n}=50$	$\begin{aligned} & \hat{c}_{1}=.089 \\ & (.000153 \end{aligned}$	$\begin{gathered} c_{\mathrm{t}}^{*}=.09949 \\ (.000237) \end{gathered}$	$\begin{gathered} \tilde{c}_{1}=.1764 \\ (.0005368) \end{gathered}$	$\begin{gathered} \ddot{c}_{1}=.091 \\ (1.887 \mathrm{E}-05) \end{gathered}$
	$\begin{gathered} \hat{c}_{2}=.600474 \\ (8.05 \mathrm{E}-05) \end{gathered}$	$\begin{gathered} c_{2}{ }^{*}=.6033154 \\ (.00125) \end{gathered}$	$\begin{gathered} \tilde{c}_{2}=.554747 \\ (.04244) \end{gathered}$	$\begin{aligned} & \bar{c}_{2}=.60214 \\ & (3.8 \mathrm{E}-06) \end{aligned}$
	$\begin{aligned} & \hat{d}_{1}=2.01248 \\ & (.000237) \end{aligned}$	$\begin{gathered} d_{1}^{*}=2.039314 \\ (.00508) \end{gathered}$	$\begin{gathered} \tilde{d}_{1}=1.83284 \\ (.04841) \end{gathered}$	$\begin{gathered} \bar{d}_{1}=1.918252 \\ (.00252) \end{gathered}$
	$\hat{d}_{2}=3.0042$ (.0013)	$\begin{gathered} d_{2}^{*}=3.001 \\ (.0023) \end{gathered}$	$\begin{gathered} \tilde{d}_{2}=2.60939 \\ (.00184) \end{gathered}$	$\begin{gathered} \bar{d}_{2}=3.020872 \\ (5.72 \mathrm{E}-06) \end{gathered}$
	$\begin{aligned} & \hat{p}_{1}=.49894 \\ & (5.17 \mathrm{E}-06) \end{aligned}$	$\begin{gathered} \hline p_{1}^{*}=.499592 \\ (8.65 \mathrm{E}-05) \end{gathered}$	$\begin{aligned} & \tilde{p}_{1}=.50089 \\ & (.000171) \end{aligned}$	$\begin{aligned} & \breve{p}_{1}=.50181 \\ & (.000518) \end{aligned}$
$\mathrm{n}=100$	$\begin{gathered} \hat{c}_{1}=.1034 \\ (.0009316) \end{gathered}$	$\begin{gathered} c_{1}^{*}=.102 \\ (.0002136) \end{gathered}$	$\begin{aligned} & \tilde{c}_{1}=.1142 \\ & (.00027) \end{aligned}$	$\begin{gathered} \bar{c}_{1}=.0915 \\ (1.38 \mathrm{E}-05) \end{gathered}$
	$\begin{gathered} \hat{\mathcal{C}}_{2}=.600758 \\ (.000197) \end{gathered}$	$\begin{aligned} & c_{2}^{*}=.601 \\ & (.(0) 0002) \end{aligned}$	$\begin{gathered} \tilde{c}_{2}=.5807978 \\ (.06039) \end{gathered}$	$\begin{aligned} & \bar{c}_{2}=.60022 \\ & (1.4 \mathrm{E}-06) \end{aligned}$
	$\begin{gathered} \hat{d}_{1}=1.989 \\ (.0023) \end{gathered}$	$\begin{gathered} d_{1}^{*}=2.0009 \\ (.00041) \end{gathered}$	$\begin{gathered} \bar{d}_{1}=1.9011 \\ (.03013) \end{gathered}$	$\begin{aligned} & \bar{d}_{1}=1.967 \\ & (.001636) \end{aligned}$
	$\begin{aligned} & \hat{d}_{2}=3.0032 \\ & (.000098) \end{aligned}$	$\begin{gathered} d_{2}^{\prime}=3.00362 \\ (2.7 \mathrm{E}-05) \end{gathered}$	$\begin{gathered} \tilde{d}_{2}=2.89221 \\ (.03 .396) \end{gathered}$	$\begin{gathered} \bar{d}_{2}=3.022694 \\ (2.6 \mathrm{E}-06) \end{gathered}$
	$\begin{gathered} \hat{p}_{1}=.49961 \\ (.00011) \end{gathered}$	$\begin{gathered} p_{1}^{*}=.50224 \\ (.00016) \end{gathered}$	$\begin{aligned} & \tilde{p}_{1}=.49979 \\ & (.000231) \end{aligned}$	$\begin{aligned} & \check{p}_{1}=.50032 \\ & (.000227) \end{aligned}$

Table 3.2 Estimates of parameters under type I censoring for $c_{1}=.1, c_{2}=.6, d_{1}=2, d_{2}=3$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are known.

Censoring time	Estimate	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{T}=15$	M.L.E	$\begin{aligned} & \hline \hat{c}_{1}=10377 \\ & (.000101) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{c}_{i}=.10289 \\ & (.0002714) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{c}_{1}=1025556 \\ & (1.254 \mathrm{E}-05) \\ & \hline \end{aligned}$
		$\begin{aligned} & \hat{c}_{2}=.5765176 \\ & (.002683) \\ & \hline \end{aligned}$	$\begin{gathered} \hat{c}_{2}=.5815027 \\ (.00069) \end{gathered}$	$\begin{gathered} \hat{c}_{2}=.60581409 \\ (.00001859) \\ \hline \end{gathered}$
		$\begin{gathered} \hat{d}_{1}=2.089226 \\ (.085652) \\ \hline \end{gathered}$	$\begin{gathered} \hat{d}_{1}=2.083178 \\ (.011878) \\ \hline \end{gathered}$	$\begin{gathered} \hat{d}_{1}=1.988662 \\ (.00814) \\ \hline \end{gathered}$
		$\begin{gathered} \hat{d}_{2}=2.954112 \\ (.005939) \\ \hline \end{gathered}$	$\begin{gathered} \hat{d}_{2}=3.030418 \\ (.002761) \\ \hline \end{gathered}$	$\begin{gathered} \hat{d}_{2}=3.00084 \\ (8.28 \mathrm{E}-05) \end{gathered}$
		$\begin{gathered} \hat{p}_{1}=511808 \\ (.000628) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.49159 \\ & (.000182) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.501296 \\ & (1.13 \mathrm{E}-05) \end{aligned}$
	Bayes estimate	$\begin{aligned} & c_{1}^{*}=103922 \\ & (.000121) \end{aligned}$	$\begin{gathered} c_{1}^{*}=.103746 \\ (.0001) \end{gathered}$	$\begin{gathered} c_{1}^{*}=.1036792 \\ (.0000134) \end{gathered}$
		$\begin{gathered} c_{2}^{*}=.58208 \\ (.000445) \\ \hline \end{gathered}$	$\begin{gathered} c_{2}{ }_{2}^{*}=.59124005 \\ (.0002638) \end{gathered}$	$\begin{gathered} c_{2}^{*}=.595432 \\ (.0000938) \\ \hline \end{gathered}$
		$\begin{gathered} d_{1}^{*}=1.973064 \\ (.051677) \\ \hline \end{gathered}$	$\begin{gathered} d_{1}^{*}=2.026086 \\ (.00608) \end{gathered}$	$\begin{gathered} d_{1}^{*}=2.009246 \\ (.005297) \end{gathered}$
		$\begin{gathered} d_{2}^{*}=3.104115 \\ (.051996) \end{gathered}$	$\begin{gathered} d_{2}^{*}=3.019295 \\ (.048365) \end{gathered}$	$\begin{gathered} d_{2}^{*}=3.003463 \\ (.004104) \\ \hline \end{gathered}$
		$\begin{aligned} & p_{1}^{*}=.519985 \\ & (.000618) \end{aligned}$	$\begin{gathered} p_{1}^{*}=.507185 \\ (.000546) \\ \hline \end{gathered}$	$\begin{gathered} p_{1}^{*}=.5019385 \\ (.000442) \\ \hline \end{gathered}$
$\mathrm{T}=19$	M.L.E	$\begin{aligned} & \hat{c}_{1}=.11822 \\ & (.0032826) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{c}_{1}=.1106404 \\ & (.0001595) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{c}_{1}=.107364 \\ & (1.89 \mathrm{E}-05) \end{aligned}$
		$\begin{gathered} \hat{c}_{2}=.5840347 \\ (.002485) \\ \hline \end{gathered}$	$\begin{gathered} \hat{c}_{2}=.5890734 \\ (.000215) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{c}_{2}=.595951 \\ & (7.63 \mathrm{E}-05) \end{aligned}$
		$\begin{gathered} \hat{d}_{1}=1.908292 \\ (.032296) \end{gathered}$	$\begin{gathered} \hat{d}_{1}=1.947618 \\ (.02298) \\ \hline \end{gathered}$	$\begin{gathered} \hat{d}_{1}=1.981732 \\ (.0001372) \end{gathered}$
		$\begin{gathered} \hat{d}_{2}=2.838636 \\ (.026488) \end{gathered}$	$\begin{gathered} \hat{d}_{2}=3.05251 \\ (.005917) \end{gathered}$	$\begin{aligned} & \hat{d}_{2}=2.97 \mathrm{~J} \\ & (.004022) \end{aligned}$
		$\begin{gathered} \hat{p}_{1}=520284 \\ (.000415) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.518547 \\ (.000477) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.50048 \\ & (.000032) \end{aligned}$
	Bayes estimate	$\begin{aligned} & c_{1}^{*}=106812 \\ & (.0001538) \\ & \hline \end{aligned}$	$c_{1}^{*}=10529$ (.000128)	$\begin{aligned} & c_{i}^{*}=10464 \\ & (.0001232) \end{aligned}$
		$\begin{gathered} c_{2}{ }^{*}=5829069 \\ (.000648) \end{gathered}$	$\begin{gathered} c_{2}{ }^{*}=.5919147 \\ (.000818) \end{gathered}$	$\begin{gathered} c_{2}^{*}=.595122 \\ (.000485) \\ \hline \end{gathered}$
		$\begin{gathered} d_{1}^{*}=1.970258 \\ (.003023) \\ \hline \end{gathered}$	$\begin{gathered} d_{1}^{*}=1.989864 \\ (.001013) \\ \hline \end{gathered}$	$\begin{gathered} d_{1}^{*}=2.0104686 \\ (.00042186) \end{gathered}$
		$\begin{gathered} d_{2}^{*}=3.1078 \\ (.05431) \\ \hline \end{gathered}$	$\begin{gathered} d_{2}^{*}=3.06085 \\ (.037744) \end{gathered}$	$\begin{gathered} d_{2}{ }^{*}=3.01443 \\ (.004233 \mathrm{I}) \end{gathered}$
		$\begin{gathered} p_{1}^{*}=.500481 \\ (.00028) \end{gathered}$	$\begin{aligned} & p_{1}^{*}=.499283 \\ & (1.97 \mathrm{E}-05) \end{aligned}$	$\begin{aligned} & p_{1}^{*}=.499421 \\ & (3.97 \mathrm{E}-06) \end{aligned}$

Table 3.3 Estimates of parameters under type I censoring for $c_{1}=.1, c_{2}=.6, d_{\mathrm{I}}=2, d_{2}=3$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are unknown.

Censoring time	Estimate	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{T}=15$	M.L.E	$\begin{gathered} \hat{c}_{1}=.120847 \\ (8.84167 \mathrm{E}-6) \end{gathered}$	$\begin{aligned} & \hat{c}_{1}=.11535 \\ & (2.093 \mathrm{E}-7) \end{aligned}$	$\begin{gathered} \hat{c}_{1}=.105021 \\ (1.61564 \mathrm{E}-7) \\ \hline \end{gathered}$
		$\begin{aligned} & \hat{c}_{2}=.623705 \\ & (3.7157 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hat{c}_{2}=.58986 \\ & (4.524 \mathrm{E}-8) \end{aligned}$	$\begin{gathered} \hat{c}_{2}=.5899636 \\ (8.37 \mathrm{E}-9) \\ \hline \end{gathered}$
		$\begin{aligned} & \hat{d}_{1}=1.6995 \\ & (.0389693) \end{aligned}$	$\begin{aligned} & \hat{d}_{1}=2.05192 \\ & (.0216674) \end{aligned}$	$\begin{aligned} & \hat{d}_{1}=2.04821 \\ & (.0158107) \end{aligned}$
		$\begin{aligned} & \hat{d}_{2}=2.7917 \\ & (.387985) \end{aligned}$	$\begin{gathered} \hat{d}_{2}=3.07168 \\ (.25694) \\ \hline \end{gathered}$	$\begin{gathered} \hat{d}_{2}=3.03136 \\ (.14817) \\ \hline \end{gathered}$
		$\begin{aligned} & \hat{p}_{1}=.50592 \\ & (5.55 \mathrm{E}-5) \end{aligned}$	$\begin{gathered} \hat{p}_{1}=.4956 \\ (1.0356 \mathrm{E}-6) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=5009347 \\ (1.01 \mathrm{E}-7) \\ \hline \end{gathered}$
	Bayes estimate	$\begin{aligned} & c_{t}^{2}=.098265 \\ & (.00002027) \end{aligned}$	$\begin{aligned} & c_{1}^{*}=10593 \\ & (5.485 \mathrm{E}-5) \end{aligned}$	$\begin{aligned} & c_{1}^{*}=.09989 \\ & (4.387 \mathrm{E}-6) \end{aligned}$
		$\begin{aligned} & c_{2}^{*}=.660765 \\ & (3.103 \mathrm{E}-4) \\ & \hline \end{aligned}$	$\begin{aligned} & c_{2}^{*}=.610666 \\ & (1.5481 \mathrm{E}-5) \end{aligned}$	$\begin{aligned} & c_{2}{ }^{*}=606123 \\ & (3.7448 \mathrm{E}-8) \\ & \hline \end{aligned}$
		$\begin{gathered} d_{1}^{*}=1.944494 \\ (.462066) \end{gathered}$	$\begin{gathered} d_{1}^{*}=1.98061 \\ (.240225) \\ \hline \end{gathered}$	$\begin{gathered} d_{1}=1.998 \\ (.10416) \end{gathered}$
		$\begin{gathered} d_{2}^{*}=2.88663 \\ (.244156) \\ \hline \end{gathered}$	$\begin{gathered} d_{2}^{*}=3.011622 \\ (.1255) \end{gathered}$	$\begin{gathered} d_{2}^{*}=3.05533 \\ (.11254) \\ \hline \end{gathered}$
		$\begin{gathered} p_{1}^{*}=502641 \\ (8.34 \mathrm{E}-5) \end{gathered}$	$\begin{aligned} & p_{1}^{*}=.505561 \\ & (2.087 \mathrm{E}-6) \end{aligned}$	$\begin{gathered} p_{1}^{*}=.50569 \\ (4.50117 \mathrm{E}-7) \end{gathered}$
T=19	M.L.E	$\begin{gathered} \hat{c}_{1}=.0958657 \\ (1.877 \mathrm{E}-6) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{c}_{1}=.0990615 \\ & (8.7407 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hat{c}_{1}=.1094232 \\ & (9.8030 \mathrm{E}-8) \end{aligned}$
		$\begin{aligned} & \hat{c}_{2}=.65287 \\ & (7.37 \mathrm{E}-6) \end{aligned}$	$\begin{gathered} \hat{c}_{2}=.5979633 \\ (1.574 \mathrm{E}-7) \\ \hline \end{gathered}$	$\begin{gathered} \hat{c}_{2}=.60624 \\ (2.8456 \mathrm{E}-9) \\ \hline \end{gathered}$
		$\begin{aligned} & \hat{d}_{1}=1.8689 \\ & (.297627) \end{aligned}$	$\begin{gathered} \hat{d}_{1}=2.11241 \\ (.008808) \end{gathered}$	$\begin{aligned} & \hat{d}_{1}=2.02673 \\ & (.000259) \end{aligned}$
		$\begin{aligned} & \hat{d}_{2}=2.9735 \\ & (.911787) \end{aligned}$	$\begin{gathered} \hat{d}_{2}=2.89674 \\ (.232003) \end{gathered}$	$\begin{aligned} & \hat{d}_{2}=2.90433 \\ & (.0013144) \end{aligned}$
		$\begin{gathered} \hat{p}_{1}=.502694 \\ (1.38 \mathrm{E}-6) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=501733 \\ & (3.19135 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.500493 \\ & (4.98 \mathrm{E}-10) \end{aligned}$
	Baycs estimate	$\begin{aligned} & c_{1}^{*}=.123137 \\ & (.00003422) \end{aligned}$	$\begin{gathered} c_{1}^{*}=1209 \\ (1.53073 \mathrm{E}-6) \end{gathered}$	$\begin{aligned} & c_{1}^{*}=.110868 \\ & (2.67083 \mathrm{E}-7) \end{aligned}$
		$\begin{aligned} & c_{2}{ }^{2}=6170304 \\ & (.00001157) \end{aligned}$	$\begin{aligned} & c_{2}^{*}=6103 \\ & (3.225 \mathrm{E}-6) \end{aligned}$	$\begin{gathered} c_{2}^{*}=60163 \\ (5.76747 \mathrm{E}-8) \end{gathered}$
		$\begin{gathered} d_{1}^{*}=2.10241 \\ (.374128) \\ \hline \end{gathered}$	$\begin{gathered} d_{1}^{*}=2.05645 \\ (.0127) \end{gathered}$	$\begin{aligned} & d_{1}^{*}=1.96753 \\ & (.00564882) \\ & \hline \end{aligned}$
		$\begin{gathered} d_{2}^{*}=2.82344 \\ (.168282) \end{gathered}$	$\begin{gathered} d_{2}^{*}=2.93161 \\ (.034698) \\ \hline \end{gathered}$	$\begin{aligned} & d_{2}^{*}=2.989 \\ & (.001055) \end{aligned}$
		$\begin{gathered} p_{1}^{*}=.501724 \\ (1.01612 \mathrm{E}-6) \end{gathered}$	$\begin{aligned} & p_{\mathrm{i}}^{*}=503564 \\ & (2.5009 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & p_{1}^{*}=.501262 \\ & (6.57077 \mathrm{E}-8) \end{aligned}$

Table 3.4 Estimates of parameters under type II censoring for $c_{1}=.1, c_{2}=.6, d_{1}=2, d_{2}=3$ and $p_{1}=0.5$

Estimate	$\mathrm{n}=30$		$\mathrm{n}=50$		$\mathrm{n}=100$	
	$\mathrm{r}=10$	$\mathrm{r}=30$	$r=30$	r=50	r=60	$r=100$
M.L.E	$\begin{aligned} & \hat{c}_{1}=0.09764 \\ & (.008179) \end{aligned}$	$\begin{aligned} & \hat{c}_{1}=.098544 \\ & (.0079187) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{c}_{1}=.108 \\ & (.002353) \end{aligned}$	$\begin{gathered} \hat{c}_{1}=.089 \\ (.000153) \end{gathered}$	$\begin{aligned} & \hat{c}_{1}=09865 \\ & (.003364) \end{aligned}$	$\begin{aligned} & \hat{c}_{1}=.1034 \\ & (.0009316) \end{aligned}$
	$\begin{aligned} & \hat{c}_{2}=601734 \\ & (.013239) \end{aligned}$	$\begin{aligned} & \hat{c}_{2}=.60688 \\ & (.0012954) \end{aligned}$	$\begin{gathered} \hat{c}_{2}=.600654 \\ (.000243) \end{gathered}$	$\hat{c}_{2}=.600474$ (8.05E-05)	$\begin{aligned} & \hat{c}_{2}=.59328 \\ & (.019827) \end{aligned}$	$\begin{aligned} & \hat{c}_{2}=.60075 \\ & (.000197) \end{aligned}$
	$\hat{d}_{1}=1.91236$ (.014286)	$\begin{gathered} \hat{d}_{1}=1.93653 \\ (.0053) \end{gathered}$	$\begin{aligned} & \hat{d}_{1}=2.9167 \\ & (.028538) \end{aligned}$	$\begin{aligned} & \hat{d}_{1}=2.01248 \\ & (.000237) \end{aligned}$	$\begin{aligned} & \hat{d}_{1}=2.03508 \\ & (.009212) \end{aligned}$	$\begin{gathered} \hat{d}_{1}=1.989 \\ (.0023) \end{gathered}$
	$\begin{gathered} \hat{d}_{2}=2.94572 \\ (.004187) \end{gathered}$	$\begin{aligned} & \hat{d}_{2}=2.987 \\ & (.00059) \end{aligned}$	$\begin{gathered} \hat{d}_{2}=3.08145 \\ (.009609) \end{gathered}$	$\hat{d}_{2}=3.0042$ (.0013)	$\begin{gathered} \hat{d}_{2}=2.98562 \\ (.000534) \end{gathered}$	$\begin{aligned} & \hat{d}_{2}=3.0032 \\ & (.000098) \end{aligned}$
	$\begin{aligned} & \hat{p}_{1}=.5092 \\ & (.000757) \end{aligned}$	$\begin{gathered} \hat{p}_{1}=500693 \\ (.000409) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.4991 \\ & (.0001293) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=49894 \\ & (5.17 \mathrm{E}-06) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.48852 \\ & (.000323) \end{aligned}$	$\begin{gathered} \hline \hat{p}_{1}=.49961 \\ (.00011) \end{gathered}$
Baycs estimate	$\begin{aligned} & \hline c_{1}^{*}=.098246 \\ & (.0006511) \end{aligned}$	$\begin{aligned} & c_{1}^{*}=102 \\ & (.000214) \end{aligned}$	$\begin{aligned} & c_{1}^{*}=1066 \\ & (.00247) \end{aligned}$	$\begin{aligned} & c_{1}^{*}=.9949 \\ & (.0802377) \end{aligned}$	$\begin{gathered} c_{1}^{*}=.097432 \\ (.001504) \end{gathered}$	$\begin{aligned} & c_{1}^{*}=102 \\ & (.0602 \sharp 36) \end{aligned}$
	$\begin{gathered} c_{2}^{*}=59829 \\ (.005643) \end{gathered}$	$\begin{gathered} c_{2}^{*}=60036 \\ (.00214) \end{gathered}$	$\begin{gathered} c_{2}^{*}=.606782 \\ (.009528) \end{gathered}$	$\begin{gathered} c_{2}^{*}=.603315 \\ (.00125) \end{gathered}$	$c_{2}{ }^{*}=.5992 .5$ (.000249)	$\begin{aligned} & c_{2}^{*}=.601 \\ & (.00002) \end{aligned}$
	$\begin{gathered} d_{1}^{*}=1.93876 \\ (.006492) \end{gathered}$	$\begin{gathered} d_{1}^{*}=1.96168 \\ (.005195) \end{gathered}$	$\begin{gathered} d_{1}^{*}=2.04128 \\ (.049616) \end{gathered}$	$\begin{gathered} d_{1}^{*}=2.039314 \\ (.00508) \\ \hline \end{gathered}$	$\begin{aligned} & d_{1}^{*}=2.0601 \\ & (.0006274) \end{aligned}$	$\begin{gathered} d_{1}^{*}=2.0009 \\ (.0004 \mathrm{i}) \end{gathered}$
	$\begin{gathered} d_{2}^{*}=2.9607 \\ (.002012) \end{gathered}$	$\begin{aligned} & d_{2}^{*}=3.01 \\ & (.00054) \end{aligned}$	$\begin{gathered} d_{2}^{*}=3.05456 \\ (.014672) \end{gathered}$	$\begin{gathered} d_{2}^{*}=3.001 \\ (.0023) \end{gathered}$	$\begin{aligned} & d_{2}^{*}=3.02 \\ & (1.7 \mathrm{E}-04) \end{aligned}$	$\begin{gathered} d_{2}^{*}=3.00362 \\ (2.7 \mathrm{E}-05) \end{gathered}$
	$\begin{aligned} & p_{1}^{*}=.50324 \\ & (.000372) \end{aligned}$	$\begin{gathered} p_{1}^{*}=.50081 \\ (.00022) \end{gathered}$	$p_{1}^{*}=.49978$ (.000103)	$\begin{aligned} & p_{1}^{*}=.499592 \\ & (8.65 \mathrm{E}-05) \end{aligned}$	$\overline{p_{1}^{*}}=.49965$ (.000451)	$\begin{gathered} p_{1}^{*}=.50224 \\ (.00016) \end{gathered}$

Table 3.5 Risk improvement of the estimator by Bayesian over the different estimators for the set of parameters $c_{1}=.1, c_{2}=.6, d_{1}=2, d_{2}=3$ and $p_{1}=0.5$ in the complete sample set up.

Estimate	M.L.E. (\%)	Method of moments (\%)	Maximum product of spacing (\%)
$n=30$	91	98	96
	87	95	99
	90	97	95
	91	94	94
	92	95	93
$\mathrm{n}=50$	90	97	94
	91	96	95
	92	95	96
	89	98	93
	87	96	92
$\mathrm{n}=100$	91	99	95
	89	98	94
	86	97	97
	87	94	95
	89	97	93

3.9 Data analysis

For the illustration of the role of finite mixture of beta distributions in practical situations, we consider a data on survival times of cancer patients with advanced cancer of the bronchus or colon were treated with ascorbate (see Cameron and Pauling, 1978). The data is given in Table 3.6. We estimate the parameters using the method of M.L.E and Bayes technique. Table 3.7 provides the values of the estimates by M.L.E and Bayes. We then used the Kolmogorov-Smirnov statistic to test the goodness of fit. The values of the test statistic D_{n} are given in Table 3.8. The table value at 5% significance level is 0.224 . From the analysis, it concludes that the model (3.1) is a plausible model for the data with parameters given in Table 3.7. Table 3.9 gives the maximum likelihood estimate of the survival function at various time points.

Table 3.6 Survival times of cancer patients

Bronchus	Colon
81	248
461	377
20	189
450	1843
246	180
166	537
63	519
64	455
155	406
859	365
151	942
166	776
37	372
223	163
138	101
72	20
245	283

Table 3.7 Estimates of parameters of survival times of cancer patients.

M.L.E	Bayes method
$\hat{c}_{1}=0.0001758$	$c_{1}{ }^{*}=0.000231$
$\hat{c}_{2}=0.00164$	$c_{2}{ }^{*}=0.00172$
$\hat{d}_{1}=25.8821$	$d_{1}^{*}=28.93$
$\hat{d}_{2}=12.2915$	$d_{2}^{*}=14.537$
$\hat{p}_{1}=0.5$	$p_{1}^{*}=0.5$

Table 3.8 Kolmogorov-Smirnov test statistic

Max D_{n} (M.L.E)	Max D_{n} (Bayes)
0.063211	0.1067

Table 3.9 Maximum likelihoud estimate of survival probability at various time points

x	20	100	500	1000
$\hat{S}(x)$.847882	.457781	.05028	.00402

3.10 Conclusion

The role of finite mixture of beta distributions in reliability analysis was extensively studied. We derived some important reliability characteristics of the model. Obviously, the component density of finite mixture of two beta distributions possesses increasing failure rate pattern at all time points. However, the finite mixture of beta distributions can possess decreasing failure rate behaviour, which will be useful in many practical situations. We then proved that finite mixture of two beta distributions is identifiable. The estimation of the parameters by different tectniques for the complete as well as censored samples was discussed. Simulation studies were carried out to assess the performance of the estimators. Both M.L.E and Bayes estimates provide estimates with small bias and the variance of the estimates decreases as n increases. The result developed under type Il censoring can be specialized to the complete sample situation by taking $r=n$. We illustrated the use of finite mixture of beta distributions based on a real data on survival times of cancer patients. The part of the work in this chapter has appeared in Sankaran and Maya (2004).

Chapter 4

BAYESIAN PREDICTIVE DISTRIBUTION

4.1 Introduction

Statistical prediction is the problem of inferring the values of unknown future variables or functions of such variables from current available informative observations. Whitmore (1986), Nelson (1982) and Dudewicz (1976) have illustrated the application of prediction limits in government industry and quality assurance. For example, the government may wish to predict the total revenue income for the next fiscal year from a historical record of revenue accumulation to formulate the taxation policy or allocation of resources for various projects. A wide range of potential applications of statistical prediction includes density function estimation, calibration, classification, regulation, model comparison and model criticism. For more applications and references, see, Bernardo and Smith (1994), Johnson et.al. (1995).

As in estimation, a predictor can be either a point or an interval predictor. Parametric and nonparametric prediction has been considered in literature. Frequentist and Bayesian approaches have been used to obtain predictors and study their properties. Reviews on parametric point and interval predictors may be found in Patel (1989), Kaminsky and Nelson (1998) and Al-Hussaini (2001).The problem of prediction can be solved fully within the Bayes franiework (Geisser, 1993). Several researchers have studied Bayesian prediction based on homogeneous populations. Among others are Dunsmore (1983), Lingappaiah (1989), Howlader and Hossain (1995).

Recently, many authors have investigated the Bayesian prediction based on heterogeneous populations. Al-Hussaini (1999) obtained Bayesian
prediction for a mixture of two exponential distributions based on type I censored sample. Bayesian prediction bounds based on type I censoring for a finite mixture of Lomax components were obtained by Al-Hussaini et.al. (2001). Al-Hussaini (2001) provided Bayesian predictive density of finite mixture models based on order statistics. Recently, Jaheen (2003) obtained Bayesian prediction for a mixture of twocomponent Gompertz lifetime modei.

In this chapter, we develop Bayesian predictive distribution for the future observations based on type I censored samples from a finite mixture of Pareto Il as well as beta distributions. The rest of the chapter is organized as follows. We give the definition of the Bayesian predictive distribution in Section 4.2. Section 4.3 discusses the reliability function of the Bayesian predictive distribution. The Bayesian two sample predictive distribution when the underlying distribution is finite mixture of Pareto II is given in Section 4.4. Section 4.5 illustrates the procedure using the real data given in Chapter 2. In Section 4.6, we discuss the Bayesian predictive distribution when the underlying distribution is finite mixture of beta. In Section 4.7, we give the conclusion of the chapter.

4.2 Definition

Suppose n units have been subjected to a life testing experiment. Let the failure times $\underline{t}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be a random sample from the distribution with probability density function $f(t \mid \theta)$. Suppose m units of the same kind are to be put into future use and let the future failure times $\underline{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ be the second independent sample from the same distribution. In life testing and quality control problems, it is often important to make prediction about some function of $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ on the basis of the available data $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$. Then, the Bayesian predictive distribution of a future observation Y is defined as the posterior expectation of $f(y \mid \theta)$. and is given by

$$
\begin{equation*}
h(y \mid \underline{l})=C \int_{\Theta} f(y \mid \theta) \Pi(\theta \mid \underline{t}) d \theta \tag{4.1}
\end{equation*}
$$

where C is the normalizing constant and $\Pi\left(\left.\theta\right|_{t}\right)$ is the posterior distribution of θ with Θ is the range space of θ.

Then $100 \tau \%$ prediction interval (L, U) of a future observation Y is defined by

$$
\begin{aligned}
\tau & =P[L<Y<U] \\
& =\int_{L}^{U} h(y \mid \underline{t}) d y .
\end{aligned}
$$

One can usually take

$$
\int_{i}^{\infty} h(y \mid \underline{t}) d y=\frac{1+\tau}{2}
$$

and

$$
\begin{equation*}
\int_{U}^{\infty} h(y \mid \underline{t}) d y=\frac{1-\tau}{2} \tag{4.2}
\end{equation*}
$$

Let $\left\{t_{(1)}, t_{(2)}, \ldots, t_{(n)}\right\}$ be the ordered failure times of n components of a system and let $\left\{y_{(1)}, y_{(2)}, \ldots, y_{(m)}\right\}$ be the ordered failure times of a future sample of m similar components. Given $\left\{t_{(1)}, t_{\{2,}, \ldots, t_{\{n\}}\right\}$, we are interested in the predictive distribution and the prediction interval of the $k^{\text {th }}$ failure time $Y_{(k)}$. Let $\underline{t}^{*}=\left(t_{(1)}, t_{(2)}, \ldots, t_{(n)}\right)$ and $\underline{y}^{*}=\left(y_{(1)}, y_{(2)}, \ldots, y_{(m)}\right)$. Then, we have, the Bayesian predictive distribution of $Y_{(k)}$ as

$$
\begin{equation*}
h_{r_{t, 1}}\left(y \mid \underline{t}^{*}\right)=C \int_{\Theta} f_{Y_{4},}(y \mid \theta) \Pi\left(\theta \mid \underline{t}^{*}\right) d \theta \tag{4.3}
\end{equation*}
$$

Then, the $100 \tau \%$ prediction limits (L, U) of $Y_{i h}$, are solutions of

$$
\int_{L}^{\infty} h_{Y_{14}}\left(y \mid \underline{t}^{*}\right) d y=\frac{1+\tau}{2}
$$

and

$$
\begin{equation*}
\int_{U}^{\infty} h_{\gamma_{1,}}\left(y \mid \underline{t}^{*}\right) d y=\frac{1-\tau}{2} \tag{4.4}
\end{equation*}
$$

4.3 Predictive distribution and reliability estimation

Let X be a random variable representing the life of an item or a component with probability density function $f(x \mid \theta)$. The reliability function at any time t is defined by

$$
\begin{aligned}
S(t) & =P(X \geq t) \\
& =\int_{1}^{\infty} f(x \mid \theta) d x .
\end{aligned}
$$

Under squared-error loss function Bayes estimate of $S(t)$ is given by

$$
\begin{aligned}
S^{*}(t) & =E_{\theta}(S(t) \mid \underline{x}) \\
& =E_{\theta}[P(Y \geq t \mid \underline{x}] \\
& =E_{\theta}\left[\int_{i}^{\infty} f(\underline{y} \mid \theta) d \underline{y} \mid \underline{x}\right] \\
& =\int_{\Omega} \Pi(\theta \mid \underline{x})\left[\int_{t}^{\infty} f(y \mid \theta) d y\right] d \theta \\
& =\int_{,}^{\infty}\left[\int_{\Omega} f(y \mid \theta) \Pi(\theta \mid \underline{x}) d \theta\right] d y .
\end{aligned}
$$

From (4.1), we get

$$
\begin{equation*}
S^{*}(t)=\int_{1}^{\infty} h(y \mid \underline{x}) d y . \tag{4.5}
\end{equation*}
$$

which is the reliability function of the predictive distribution.
Thus, under squared-error loss function, Bayes estimator of the reliability function of a distribution is the reliability function of the predictive distribution.

4.4 Bayesian two sample prediction for finite mixture of Pareto II distributions

In this section, Bayesian prediction bounds for the k-th future observation from a heterogeneous population represented by a finite mixture of two component Pareto II life time distribution under type I censoring are obtained.

Suppose that n units from a population with probability density function (2.2) are subjected to a life testing experiment and the test is terminated after a predetermined time T. It is assumed that an item can be attributed to the appropriate subpopulation after it had failed. Suppose that r units have failed during the interval $(0, T)$ with r_{1} from the first and r_{2} from the second subpopulation, such that $r=r_{1}+r_{2}$. The remaining $n-r$ units cannot be identified, which are still functioning. Naturally, neither r_{1} nor r_{2} (and consequently r) is fixed, but they are rather determined by knowing T. Let $t_{i j}$ denote the failure time of the $j^{j h}$ unit that belongs to the $i^{\text {th }}$ subpopulation and that $t_{i j} \leq T, j=1,2, \ldots, r_{i}$ and $i=1,2$. Such scheme of sampling was suggested by Mendenhall and Hader (1958).

4.4.1 The scale parameters a_{1} and a_{2} are known.

In this section, we compute Bayesian predictive density function of finite mixture of Pareto II components based on order statistics when the prior distribution is Jeffrey's invariant prior when a_{1} and a_{2} are known. Al-Hussaini et.al. (2001) obtained the Bayesian predictive density of finite mixture of Lomax components based on order statistics using natural conjugate prior when a_{1} and a_{2} are known.

Rewriting (2.70), the likelihood function is given by
$L\left(b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{i_{1}=0}^{n-r}\left({ }_{j}^{n-r}\right) p_{1}^{n-r_{2}-j_{1}}\left(1-p_{1}\right)^{j_{2}+j} b_{1}{ }^{\prime} b_{2}^{\prime}$
$\exp \left[-b_{1} \sum_{j=1}^{i} \log \left(1+a_{1} t_{1 j}\right)\right] \exp \left[-b_{2} \sum_{j=1}^{n} \log \left(1+a_{2} t_{2 j}\right)\right]\left(1+a_{1} T\right)^{-b_{1}\left(n-r-j_{1}\right)}\left(1+a_{2} T\right)^{-b_{2} h_{1}}$.
where $\underline{t}^{*}=\left(t_{11}, t_{12}, \ldots, t_{1 ;}, t_{21}, t_{22}, \ldots, t_{2 r_{i}}\right), t_{i j}$ denotes the failure time of the $j^{j / t}$ unit belonging to the $i^{\text {th }}$ subpopulation, $t_{i j} \leq T, j=1,2 \ldots, r_{i}, i=1,2$ and $r_{1}+r_{2}=r$.

Rearranging (4.6), we have
$L\left(b_{1}, b_{2}, p_{1} \mid \underline{1}^{*}\right) \propto \sum_{j_{1}=0}^{n-r}\left(\dot{i}_{1}^{n-r}\right) p_{1}^{n-r_{2}-j_{1}}\left(1-p_{1}\right)^{r_{2}+j_{1}} b_{1}^{{ }^{\prime}} b_{2}{ }^{\kappa}$
$\exp \left[-b_{1}\left\{\sum_{j=1}^{t_{i}} \log \left(1+a_{1} t_{1 i}\right)+\left(n-r-j_{1}\right) \log \left(1+a_{1} T\right)\right\}-b_{2}\left\{\sum_{i=1}^{c_{=}} \log \left(1+a_{2} t_{2}\right)+j_{1} \log \left(1+a_{2} T\right)\right\}\right.$.
which can be written as
$L\left(b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{j_{1}=0}^{n-r}\binom{n-r}{j_{i}} p_{1}^{n-r_{2}-j_{1}}\left(1-p_{1}\right)^{r_{2}+j_{1}} b_{1}^{r_{1}} b_{2}^{r_{2}} \exp \left[-A_{i, j} b_{1}-A_{2 j_{j}} b_{2}\right]$.
with

$$
A_{i j}=\sum_{j=1}^{r_{i}} \log \left(1+a_{i} t_{i j}\right)+\left[(n-r)(2-i)-(-1)^{(i-1)} j_{1}\right] \log \left(1+a_{i} T\right), i=1,2 .
$$

Now, suppose that p_{1}, b_{1} and b_{2} are independent such that p_{1} follows $U(0, \mathrm{I})$ and for $i=1,2, b_{i}$ follows Jeffrey's invariant prior. Then the joint prior density is given by

$$
\begin{equation*}
g\left(b_{1}, b_{2}, p_{i}\right) \propto \frac{1}{b_{1} b_{2}}, 0<p_{1}<1, b_{i}>0 . \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8), the joint posterior density function of p_{1}, b_{1} and b_{2} is given by

$$
\begin{equation*}
\prod\left(b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{j_{i}=0}^{n-r}\binom{n-r}{i_{1}} p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} b_{1}^{r_{1}-1} b_{2}^{r_{2}-1} \exp \left[-A_{1 j_{1}} b_{1}-A_{2_{j}} b_{2}\right] . \tag{4.9}
\end{equation*}
$$

where

$$
\delta_{1}=n-r_{2}-j_{1}
$$

and

$$
\delta_{2}=r_{2}+j_{1} .
$$

A future sample of size m is assumed to be independent of the past (informative) sample of size n and is obtained from the same population with probability density function (2.2). Let $Y_{(k)}$ be the ordered lifetime of the k-th components to fail in a future sample of size $m, 1 \leq k \leq m$. The k-th order statistic in a sample of size m represents the life length of an $(m-k+1)$ out of m system which is an important technical structure in reliability theory. The density function of $Y_{(k)}$ is then given by

$$
\begin{align*}
f_{Y_{4},}\left(y \mid b_{1}, b_{2}, p_{1}\right) & =[1-S(y)]^{k-1}[S(y)]^{m-k} f(y) \\
& =\sum_{j_{2}=0}^{k-1}(-1)^{j_{2}}\left(\begin{array}{c}
k_{2}-1
\end{array}\right)[S(y)]^{m i-k+j_{2}} \tag{4.10}
\end{align*} f(y),
$$

where $S(y)$ and $f(y)$ are the reliability function and probability density function of the finite mixture model (2.2). For the model (2.2), (4.10) becomes,

$$
\begin{align*}
& f_{r_{k}}\left(y \mid b_{1}, b_{2}, p_{1}\right)=\left.\sum_{j_{2}=0}^{k-1}(-1)^{j_{1}}\binom{k-1}{j_{2}}\left[p_{1}\left(1+a_{1} y\right)^{-b_{1}}+\left(1-p_{1}\right)\left(1+a_{2} y\right)^{-b_{2}}\right)\right]^{m-k+j_{2}} f(y) \\
&= \sum_{j_{2}=0}^{k-1} \sum_{j_{i}=0}^{m-k+2}(-1)^{k_{2}}\binom{k-1}{j_{2}}\left(\begin{array}{c}
m-k+j_{3}
\end{array}\right) p_{1}^{m-k+j_{2}-h_{1}}\left(1-p_{1}\right)^{j_{1}} \\
&\left.\quad \exp \left[-b_{1}\left(m-k+j_{2}-j_{3}\right) \log \left(1+a_{1} y\right)-b_{2} j_{3} \log \left(1+a_{2} y\right)\right)\right] f(y) \\
&\left.=\sum C_{1} p_{1}^{\delta_{3}-1}\left(1-p_{1}\right)^{h_{3}} \exp \left[-b_{1}\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)-b_{2} j_{3} \log \left(1+a_{2} y\right)\right)\right] f(y) \tag{4.11}
\end{align*}
$$

where
$\sum=\sum_{j=0}^{k-1} \sum_{j_{i}=0}^{m-k+j}, \quad C_{1}=(-1)^{j_{2}}\left(j_{j_{2}}^{(k-1}\right)\left({ }_{i_{3}}^{m-k+j_{2}}\right)$ and $\delta_{3}=m-k+j_{2}-j_{3}+1$.
The product of (4.9) and (4.11), then yields
$f_{Y_{k_{1}}}\left(y \mid b_{1}, b_{2}, p_{1}\right) \Pi\left(b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto$

$$
\begin{align*}
& \left.\sum C_{1} p_{1}^{\delta_{2-1}}\left(1-p_{1}\right)^{j_{i}} \exp \left[-b_{1}\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)-b_{2} j_{3} \log \left(1+a_{2} y\right)\right)\right] \\
& \sum_{j_{1}=0}^{n-r}\left({ }_{j}^{n-r}\right) p_{1}^{\delta_{i}}\left(1-p_{1}\right)^{\delta_{2}} b_{1}^{i_{1}-1} b_{2}^{r_{2}^{2-1}} \exp \left[-A_{1 j_{j}} b_{1}-A_{2 j_{1}} b_{2}\right] \\
& {\left[p_{1} a_{1} b_{1}\left(1+a_{1} y\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} y^{-\left(b_{2}+1\right)}\right] .\right.} \\
& \propto \sum^{*}\left({ }_{j_{1}}^{n-r}\right) C_{1}\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{3}}\left(1-p_{1}\right)^{\delta^{\delta_{+}}+j_{3}} b_{1}^{{ }^{r}} b_{2}{ }^{r_{2}-1} \exp \left[-\eta_{1} b_{1}-\eta_{2} b_{2}\right]\right. \\
& \left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{1}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{2}+1} b_{1}^{r_{1}-1} b_{2}{ }^{\kappa}=\exp \left[-\eta_{1} b_{1}-\eta_{22} b_{2}\right]\right\} . \tag{4.12}
\end{align*}
$$

where
$\sum^{*}=\sum_{i=0}^{n-r} \sum, \quad \varepsilon_{i}(y)=\left(a_{i}\left(1+a_{i} y\right)^{-1}\right), \quad i=1,2$,
$\eta_{1}=A_{1, j_{1}}+\delta_{3} \log \left(1+a_{1} y\right)$,
$\eta_{2}=A_{2 j_{1}}+j_{3} \log \left(1+a_{2} y\right)$.
$\eta_{11}=A_{1 ; 1}+\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)$,
and
$\eta_{22}=A_{2 j_{1}}+\left(j_{3}+1\right) \log \left(1+a_{2} y\right)$.
Substituting (4.12) in (4.3), we have
$h_{Y_{t+1}}\left(y \mid \underline{t}^{*}\right)=C \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} f_{Y_{1+t}}\left(y \mid b_{1}, b_{2}, p_{1}\right) \Pi\left(b_{1}, b_{2}, p_{1} \mid t^{*}\right) d p_{1} d b_{1} d b_{2}$.
On simplifying (4.13), we get the predictive distribution as

$$
\begin{align*}
& h_{r_{1},}\left(y \mid \underline{t}^{*}\right)=C \sum^{*}\binom{n-r}{j_{1}} C_{1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}+j_{1}} b_{1}^{{ }^{\prime}} b_{2}^{r_{2}-1} \exp \left[-\eta_{1} b_{1}-\eta_{2} b_{2}\right]\right. \\
& \left.\quad+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{3}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{1}+1} b_{1}^{r_{1}-1} b_{2}^{r_{2}} \exp \left[-\eta_{11} b_{1}-\eta_{22} b_{2}\right]\right\} p_{1} d b_{1} d b_{2} \\
& =C \sum^{*}\left({ }_{h_{1}-r}^{n-r}\right) C_{1}\left\{\varepsilon_{1}(y) B\left(\delta_{1}+\delta_{3}+1, \delta_{2}+j_{3}+1\right) \frac{\Gamma\left(r_{1}+1\right)}{\left(\eta_{1}\right)^{\left(r_{1}+1\right)} \frac{\Gamma\left(r_{2}\right)}{\left(\eta_{2}\right)^{\left(r_{2}\right)}}}\right. \\
& \quad+\varepsilon_{2}(y) B\left(\delta_{1}+\delta_{3}, \delta_{2}+j_{3}+2\right) \frac{\Gamma\left(r_{1}\right)}{\left.\left(\eta_{11}\right)^{\left(r_{1}\right)} \frac{\Gamma\left(r_{2}+1\right)}{\left(\eta_{22}\right)^{\left(r_{2}+1\right)}}\right\}} \tag{4.14}
\end{align*}
$$

$=C \sum{ }^{*} C_{1}^{*}\left[\phi_{1}(y)+\phi_{2}(y)\right]$,
where C is the normalizing constant satisfying $\left.\int_{0}^{\infty} h_{\gamma_{1},}, y \mid t^{*}\right) d y=1$,
$C_{1}^{*}=C_{1}\left({ }_{j_{1}}^{n-r}\right)\left[\frac{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right) \Gamma\left(\delta_{1}+\delta_{3}\right) \Gamma\left(\delta_{2}+j_{3}+1\right)}{\Gamma\left(\delta_{1}+\delta_{2}+\delta_{3}+j_{3}+2\right)}\right]$,
$\phi_{1}(y)=\varepsilon_{1}(y) \frac{r_{1}\left(\delta_{1}+\delta_{3}\right)}{\left(\eta_{1}\right)^{r_{1}+1}\left(\eta_{2}\right)^{\left(r_{2}\right)}}$,
and
$\phi_{2}(y)=\varepsilon_{2}(y) \frac{r_{2}\left(\delta_{2}+j_{3}+1\right)}{\left(\eta_{11}\right)^{k_{1}(1)}\left(\eta_{22}\right)^{(x+1)}}$.

Remark 4.1

Al-Hussaini et.al. (2001) obtained the Bayesian predictive density of finite mixture of Lomax components based on order statistics using natural conjugate prior when a_{1} and a_{2} are known. They have considered the joint prier density as
$g\left(b_{1}, b_{2}, p_{1}\right) \propto p_{1}^{b-1}\left(1-p_{1}\right)^{d-1} b_{1}^{\beta_{1}-1} b_{2}^{p_{2}-1} \exp \left[-\gamma_{1} b_{1}-\gamma_{2} b_{2}\right], \quad 0<p_{1}<1, b_{i}>0$.
From (4.7) and (4.15), the joint posterior density function of p_{1}, b_{1} and b_{2} is given by $\prod\left(b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{j_{1}-0}^{n-r}\left({ }_{j}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} b_{1}^{\omega_{1}-1} b_{2}^{\omega_{2}-1} \exp \left[-\psi_{1} b_{1}-\psi_{2} b_{2}\right]$.
where
$\delta_{1}=n-r_{2}-j_{1}+b-1, \quad \delta_{2}=r_{2}+j_{1}+d-1$ and for $i=1,2, \quad \omega_{i}=r_{i}+\beta_{i}, \quad \psi_{i}=A_{i j}+\gamma_{i}$.

From (4.11) and (4.16), we have,
$f_{Y_{x_{2}}}\left(y \mid b_{1}, b_{2}, p_{1}\right) \Pi\left(b_{1}, b_{2}, p_{1} \mid t^{*}\right) \propto$

$$
\left.\sum D_{1} p_{1}^{\delta_{1}-1}\left(1-p_{1}\right)^{j_{3}} \exp \left[-b_{1}\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)-b_{2} j_{3} \log \left(1+a_{2} y\right)\right)\right]
$$

$\sum_{j_{1}=0}^{n-r}\left(n_{i}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} b_{1}^{\alpha_{1}{ }_{1}^{\prime}} b_{2}^{c_{2}-1} \exp \left[-\psi_{1} b_{1}-\psi_{2} b_{2}\right]$

$$
\left[p_{1} a_{1} b_{1}\left(1+a_{1} y\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} y\right)^{-\left(b_{2}+1\right)}\right] .
$$

where
$\sum=\sum_{j_{2}=0}^{k-1} \sum_{j_{1}=0}^{m-k+j_{2}}, \quad D_{1}=(-1)^{j_{2}}\binom{k-1}{i_{2}}\binom{m-k+j_{2}}{j_{3}}$ and $\delta_{3}=m-k+j_{2}-j_{3}+1$.
After simplification, the above product becomes,

$$
\begin{align*}
& \propto \sum\left({ }_{j}^{n-r}\right) D_{1}\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}+j_{2}} b_{1}^{\omega_{1}} b_{2}^{\alpha_{2}-1} \exp \left[-\eta_{1} b_{1}-\eta_{2} b_{2}\right]\right. \\
&\left.+\varepsilon_{2}(y) p_{1}^{\delta_{1} \delta_{1}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{2}+1} b_{1}^{\alpha_{1}-1} b_{2}^{\omega_{2}} \exp \left[-\eta_{11} b_{1}-\eta_{22} b_{2}\right]\right\} \tag{4.17}
\end{align*}
$$

where
$\sum^{*}=\sum_{i=0}^{n-r} \sum$, for $i=1,2, \varepsilon_{i}(y)=\left(a_{i}\left(1+a_{i} y\right)^{-1}\right)$,
$\eta_{1}=\psi_{1}+\delta_{3} \log \left(1+a_{1} y\right)$,
$\eta_{2}=\psi_{2}+j_{3} \log \left(1+a_{2} v\right)$,
$\eta_{11}=\psi_{1}+\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)$,
$\eta_{22}=\psi_{2}+\left(j_{3}+1\right) \log \left(1+a_{2} y\right)$.
Then, the predictive density is obtained as

$$
\begin{aligned}
& h_{\gamma_{1+}+}\left(y \mid \underline{t}^{*}\right)=C \sum^{*}\left({ }_{i}^{n-r}\right) D_{1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}+j_{1}} b_{1}^{c_{1}} b_{2}^{\omega_{2}-1} \exp \left[-\eta_{1} b_{1}-\eta_{2} b_{2}\right]\right. \\
&\left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{1}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{2}+1} b_{1}^{\omega_{1}-1} b_{2}^{\alpha_{2}} \exp \left[-\eta_{11} b_{1}-\eta_{22} b_{2}\right]\right\} d p_{1} d b_{1} d b_{2}
\end{aligned}
$$

$$
=C \sum{ }^{*}\binom{n-r}{j_{1}} D_{1}\left\{\varepsilon_{1}(y) B\left(\delta_{1}+\delta_{3}+1, \delta_{2}+j_{3}+1\right) \frac{\Gamma\left(\omega_{1}+1\right)}{\left(\eta_{1}\right)^{\left(\omega_{3}+1\right)}} \frac{\Gamma\left(\omega_{2}\right)}{\left(\eta_{2}\right)^{\left(\omega_{2}\right)}}\right.
$$

$$
\begin{equation*}
\left.+\varepsilon_{2}(y) B\left(\delta_{1}+\delta_{3}, \delta_{2}+j_{3}+2\right) \frac{\Gamma\left(\omega_{1}\right)}{\left(\eta_{11}\right)^{\left(q_{1}\right)}} \frac{\Gamma\left(\omega_{2}+1\right)}{\left(\eta_{22}\right)^{\left(\omega_{2}+1\right)}}\right\} \tag{4.18}
\end{equation*}
$$

$=C \sum{ }^{*} D_{1}{ }^{*}\left[\phi_{1}(y)+\phi_{2}(y)\right]$,
where C is the normalizing constant satisfying $\int_{0}^{\infty} \mid h_{\gamma_{1, ~}}\left(y \mid t^{*}\right) d y=1$,
$D_{1}^{*}=D_{1}\left({ }_{j_{1}}^{n-r}\right)\left[\frac{\Gamma\left(\omega_{1}\right) \Gamma\left(\omega_{2}\right) \Gamma\left(\delta_{1}+\delta_{3}\right) \Gamma\left(\delta_{2}+j_{3}+1\right)}{\Gamma\left(\delta_{1}+\delta_{2}+\delta_{3}+j_{3}+2\right)}\right]$,
$\phi_{1}(y)=\varepsilon_{1}(y) \frac{\omega_{1}\left(\delta_{1}+\delta_{3}\right)}{\left(\eta_{1}\right)^{\left(\omega_{1}+1\right)}\left(\eta_{2}\right)^{\left(\omega_{2}\right)}}$,
and
$\phi_{2}(y)=\varepsilon_{2}(y) \frac{\omega_{2}\left(\delta_{2}+j_{3}+1\right)}{\left(\eta_{11}\right)^{\left(y_{1}\right)}\left(\eta_{22}\right)^{\left(\omega_{2}+1\right)}}$.
4.4.2 Parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and $p_{\text {! }}$ are unknown

In this section, we compute Bayesian predictive density function of finite mixture of Pareto II distributions based on order statistics when prior distribution is Jeffrey's invariant as well as natural conjugate prior when $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} are unknown.

From (2.70), the likelihood function is given by,

$$
\begin{align*}
& L\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{j_{1}=0}^{n-r}\left({ }_{j}^{n-r}\right) p_{1}^{n-r_{2}-j_{1}}\left(1-p_{1}\right)^{r_{2}+j_{1}} a_{1} a^{r_{1}} a_{2}^{r^{r}} b_{1}^{r} b_{2}^{{ }^{r}} \\
& \exp \left[-b_{1} \sum_{j=1}^{r_{i}} \log \left(1+a_{1} t_{1 j}\right)\right] \exp \left[-b_{2} \sum_{j=1}^{r_{2}} \log \left(1+a_{2} t_{2}\right)\right]\left(1+a_{1} T\right)^{-b_{1}\left(n-r-j_{1}\right)}\left(1+a_{2} T\right)^{-t_{2} j_{1}} \\
& \exp \left[-\left\{\sum_{j=1}^{\sum_{j}} \log \left(1+a_{1} t_{1 j}\right)+\sum_{j=1}^{r_{i}} \log \left(1+a_{2} t_{2 j}\right)\right]\right\} \tag{4.19}
\end{align*}
$$

which leads to

$$
\begin{align*}
& L\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \\
& \sum_{j_{1}=0}^{n-r}\left(j_{j}^{n-r}\right) p_{1}^{n-r_{2}-\jmath_{1}}\left(1-p_{1}\right)^{r_{2}+j_{1}} a_{1} a^{r_{2}} a_{2}{ }^{{ }^{2}} b_{1}{ }^{r} b_{2}^{r_{2}} \exp \left[-A_{1 j_{1}} b_{1}-A_{2 j_{1}} b_{2}\right] \exp \left[-B_{1}-B_{2}\right], \tag{4.20}
\end{align*}
$$

where, for $i=1.2, \quad A_{i j}$ is given in (4.7) and $\left.B_{i}=\sum_{j=1}^{r_{i}} \log \left(1+a_{i} t_{i j}\right)\right]$.
Now, assume that $p_{1}, a_{1}, a_{2}, b_{1}$ and b_{2} are independent such that p_{1} follows $U(0,1)$ and for $i=1,2, a_{i}$ and b_{i} follows jeffrey's invariant prior. Then, the joint prior density is given by

$$
\begin{equation*}
g\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right) \propto \frac{1}{a_{1} a_{2} b_{1} b_{2}}, 0<p_{1}<1, a_{i}>0, b_{i}>0 . \tag{4.21}
\end{equation*}
$$

The posterior density function of $p_{1}, a_{1}, a_{2}, b_{1}$ and b_{2} is given by

$$
\begin{align*}
& \Pi\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid t^{*}\right) \propto \\
& \sum_{j_{1}=0}^{n-r}\left(\left(_{1}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{\delta}} a_{1}^{r_{1}-1} a_{2}^{r_{2}-1} b_{1}^{r_{1}-1} b_{2}^{r_{2}-1} \exp \left[-A_{1 j_{1}} b_{1}-A_{2 j_{1}} b_{2}\right] \exp \left[-B_{1}-B_{2}\right] .\right. \tag{4.22}
\end{align*}
$$

where $\delta_{1}=n-r_{2}-j_{1}$ and $\delta_{2}=r_{2}+j_{1}$.

The density function of k-th order statistic $Y_{(k)}$ is given in (4.11).
The product of (4.11) and (4.22) then yields
$f_{Y_{\mid+\prime}}\left(y \mid a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right) \Pi\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto$

$$
\begin{array}{r}
\left.\sum M_{1} p_{1}^{\delta_{4}-1}\left(1-p_{1}\right)^{j_{3}} \exp \left[-b_{1}\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)-b_{2} j_{3} \log \left(1+a_{2} y\right)\right)\right] \\
\sum_{j_{1}=0}^{n-r}\left(j_{1}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} a_{1}^{r_{1}-1} a_{2}^{r_{2}-1} b_{1}^{r_{1}-1} b_{2}^{r_{2}-1} \exp \left[-A_{1 j_{1}} b_{1}-A_{2 j_{1}} b_{2}\right] \exp \left[-B_{1}-B_{2}\right] \\
{\left[p_{1} a_{1} b_{1}\left(1+a_{1} y\right)^{-\left(h_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} y\right)^{-\left(b_{2}+1\right)}\right]}
\end{array}
$$

where

$$
\begin{align*}
\sum=\sum_{j_{2}=0}^{k-1} \sum_{j_{3}=0}^{m-k+j_{3}} & =M_{1}=(-1)^{j_{2}}\left(j_{j_{2}}^{k-1}\right)\left(\begin{array}{l}
m-k+j_{2}
\end{array}\right) \text { and } \delta_{3}=m-k+j_{2}-j_{3}+1 \\
& \propto \sum^{*}\binom{n-r}{j_{1}} M_{1} \exp \left[-B_{1}-B_{2}\right] \\
& \left(\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{3}}\left(1-p_{1}\right)^{\delta_{2}+j_{2}} a_{1}^{r_{1} a_{2}{ }_{2}^{r_{2}-1} b_{1}^{r_{1}} b_{2}^{r_{2}-1} \exp \left[-\eta_{1} b_{1}-\eta_{2} b_{2}\right]}\right. \\
& \left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{3}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{2}+1} a_{1}^{r_{1}-1} a_{2}{ }^{r_{2}} b_{1}^{r_{1}-1} b_{2}^{r_{2}} \exp \left[-\eta_{11} b_{1}-\eta_{22} b_{2}\right]\right\} \tag{4.23}
\end{align*}
$$

where
$\left.\sum *=\sum_{i=0}^{n-r} \sum, \quad \varepsilon_{i}(y)=\left(1+a_{i} y\right)^{-1}\right), i=1,2$,
$\eta_{1}=A_{1 j_{1}}+\delta_{3} \log \left(1+a_{1} y\right)$,
$\eta_{2}=A_{2 j_{1}}+j_{3} \log \left(1+a_{2} y\right)$,
$\eta_{11}=A_{1, j}+\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)$,
and
$\eta_{22}=A_{2, j}+\left(j_{3}+1\right) \log \left(1+a_{2} y\right)$.
Substituting (4.23) in (4.3), we have

$$
\begin{aligned}
& h_{Y_{1}, 1}\left(y \mid \underline{i}^{*}\right)=C \sum{ }^{*}\binom{n-r}{j_{1}} M_{1} \int_{11}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{!} \exp \left[-B_{1}-B_{2}\right] \\
& \left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}+j_{\delta}} a_{1}^{{ }_{1}} c_{2}{ }^{\gamma^{2}-1} b_{1}{ }_{1} b_{2}{ }^{\gamma^{r-1}} \exp \left[-\eta_{1} b_{1}-\eta_{2} b_{2}\right]\right.
\end{aligned}
$$

$\left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{1}-1}\left(1-p_{1}\right)^{\delta_{+}+j_{i}+1} a_{1}^{\gamma_{1}-1} a_{2}^{\prime} b_{1}^{r_{1}-1} b_{2}^{\prime}=\exp \left[-\eta_{11} b_{1}-\eta_{22} b_{2}\right]\right] d p_{1} d b_{1} d b_{2} d a_{1} d a_{2}$.
$=C \sum{ }^{*}\binom{n-r}{j_{1}} M_{1}\left[\left\{B\left(\delta_{1}+\delta_{3}+1, \delta_{2}+j_{3}+1\right) \Gamma\left(r_{1}+1\right) \Gamma\left(r_{2}\right)\right.\right.$

$$
\int_{0}^{\infty} \frac{a_{1}^{{ }_{1}^{1}} \varepsilon_{1}(y) \exp \left[-B_{1}\right]}{\left(\eta_{1}\right)^{\left.r_{1}+1\right)}} d a_{1} \int_{0}^{\infty} \frac{a_{2}^{r_{2}-1} \exp \left[-B_{2}\right]}{\left(\eta_{2}\right)^{\left(r_{1}\right)}} d a_{2}+B\left(\delta_{1}+\delta_{3}, \delta_{2}+j_{3}+2\right) \Gamma\left(r_{1}\right) \Gamma\left(r_{2}+1\right)
$$

$$
\begin{equation*}
\left.\int_{0}^{\infty} \frac{a_{2}{ }_{2}{ }^{2} \varepsilon_{2}(y) \exp \left[-B_{2}\right]}{\left(\eta_{22}\right)^{\left(r_{2}+1 i\right.}} d a_{2} \int_{0}^{\infty} \frac{a_{1}^{r^{\prime-1}} \varepsilon_{2}(y) \exp \left[-B_{1}\right]}{\left(\eta_{11}\right)^{\left.r_{1}\right)}} d a_{1}\right] \tag{4.24}
\end{equation*}
$$

$=C \sum{ }^{*} M_{1}{ }^{*}\left[\phi_{1}(y)+\phi_{2}(y)\right]$,
where C is the normalizing constant satisfying $\int_{0}^{\infty} h_{r_{1}, 1}\left(y \mid \underline{t}^{*}\right) d y=1$,

$$
\begin{aligned}
& M_{1}^{*}=M_{1}\left(\left(_{j_{1}}^{n-r}\right)\left[\frac{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right) \Gamma\left(\delta_{1}+\delta_{3}\right) \Gamma\left(\delta_{2}+j_{3}+1\right)}{\Gamma\left(\delta_{1}+\delta_{2}+\delta_{3}+j_{3}+2\right)}\right],\right. \\
& \phi_{1}(y)=r_{1}\left(\delta_{1}+\delta_{3}\right) \int_{0}^{\infty} \frac{\left.a_{1}^{\gamma_{1}} \varepsilon_{1}(y) \operatorname{expl}-B_{1}\right]}{\left(\eta_{3}\right)^{\left(r_{1}+1\right)}} d a_{1} \int_{0}^{\infty} \frac{a_{2}^{n-1} \exp \left[-B_{2}\right]}{\left(\eta_{2}\right)^{\left(r_{2}\right)}} d a_{2},
\end{aligned}
$$

and

$$
\phi_{2}(y)=r_{2}\left(\delta_{2}+j_{3}+1\right) \int_{0}^{\infty} \frac{a_{2}{ }^{r_{2}} \varepsilon_{2}(y) \exp \left[-B_{2}\right]}{\left(\eta_{22}\right)^{\left.r_{2}+1\right)}} d a_{2} \int_{0}^{\infty} \frac{a_{1}^{r_{1}-1} \varepsilon_{2}(y) \exp \left[-B_{1}\right]}{\left(\eta_{11}\right)^{\left.()_{1}\right)}} d a_{1} .
$$

Now, we consider that $p_{1}, a_{1}, a_{2}, b_{1}$ and b_{2} are independent random variables such that p_{1} follows beta (b, d), for $i=1,2, a_{i}$ follows gamma $\left(\mu_{i}, v_{i}\right)$ and for $i=1,2, h_{i}$ follows gamma (β_{i}, γ_{i}). Then the joint prior density is given by

$$
\begin{align*}
& g\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right) \propto \\
& \begin{array}{l}
p_{1}^{b-1}\left(1-p_{1}\right)^{d-1} a_{1}^{u_{1}-1} a_{2}^{u_{2}-1} b_{1}^{\beta_{1}-1} b_{2}^{\beta_{2}-1} \exp \left[-\nu_{1} a_{1}-\nu_{2} c_{2}\right] \exp \left[-\gamma_{1} b_{1}-\gamma_{2} b_{2}\right], \\
\\
0<p_{1}<1, b_{1}>0, a_{i}>0 .
\end{array}
\end{align*}
$$

From (4.20) and (4.25), the joint posterior density function of $a_{1} . a_{2}, b_{1}, b_{2}$ and p_{1} given t^{*} is given by
$\Pi\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto$
where
$\delta_{1}=n-r_{2}-j_{1}+b-1, \delta_{2}=r_{2}+j_{1}+d-1$
and for $i=1,2, \omega_{i}=r_{i}+\beta_{i}, \quad \sigma_{i}=r_{i}+\mu_{i}, \psi_{i}=A_{i j}+\gamma_{i}$ and $\chi_{i}=B_{i}+v_{i} a_{i}$.
The product of (4.11) and (4.26) is given by

$$
\begin{aligned}
& f_{Y_{(i,}}\left(y \mid a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right) \Pi\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \\
& \left.\sum Q_{1} p_{1}^{\delta_{i}-1}\left(1-p_{1}\right)^{j_{1}} \exp \left[-b_{1}\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)-b_{2} j_{3} \log \left(1+a_{2} y\right)\right)\right] f(y) \\
& \quad \sum_{j_{1}=0}^{n-r}\left(\left(_{1}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} a_{1}^{\sigma_{1}-1} a_{2}^{\sigma_{2}-t} b_{1}^{\alpha_{3}-1} b_{2}^{\alpha_{2}-1} \exp \left[-\psi_{1} b_{1}-\psi_{2} b_{2}\right] \exp \left[-\chi_{1}-\chi_{2}\right]\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& \sum=\sum_{i_{2}=0}^{k-1} \sum_{i_{1}=0}^{m-k+j_{2}}, Q_{1}=(-1)^{j_{i}}\binom{k-1}{j_{2}}\binom{m-k+j_{2}}{j_{3}} \text { and } \delta_{3}=m-k+j_{2}-j_{3}+1 \\
& \propto \sum^{*}\binom{n-r}{i_{1}} Q_{1} \exp \left[-\chi_{1}-\chi_{2}\right]\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{3}}\left(1-p_{1}\right)^{\delta_{2}+j_{j}} a_{1}^{\sigma_{1}} a_{2}^{\sigma_{2}-1} b_{1}^{\omega_{1}} b_{2}^{\omega_{2}-1} \exp \left[-\eta_{1} b_{1}-\eta_{2} b_{2}\right]\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{2}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{2}+1} a_{1}^{\sigma_{1}-1} a_{2}^{\sigma_{2}} b_{1}^{\omega_{2}-1} b_{2}^{\alpha_{2}} \exp \left[-\eta_{1} b_{1}-\eta_{22} b_{2}\right]\right\} \tag{4.27}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sum^{*}=\sum_{i_{1}-1}^{n-1} \sum, \quad \varepsilon_{i}(y)=\left(1+a_{i} y\right)^{-1}, \quad i=1,2 \\
& \eta_{1}=\psi_{1}+\delta_{3} \log \left(1+a_{1} y\right) \\
& \eta_{2}=\psi_{2}+j_{3} \log \left(1+a_{2} y\right)
\end{aligned}
$$

$$
\begin{align*}
& p_{1}^{b-1}\left(1-p_{1}\right)^{d-1} a_{1}^{\mu_{1}-1} a_{2}^{\mu_{2}-1} b_{1}^{\beta_{1}-1} b_{2}^{\beta_{2}-1} \exp \left[-\nu_{1} a_{1}-v_{2} a_{2}\right] \exp \left[-\gamma_{1} b_{1}-\gamma_{2} b_{2}\right] \\
& \propto \sum_{j_{1}=0}^{n-r}\left(j_{j_{1}}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} a_{1}^{\sigma_{1}-1} a_{2}^{\sigma_{2}-1} b_{1}^{(\mu-1} b_{2}^{\alpha_{2}-1} \exp \left[-\psi_{1} b_{1}-\psi_{2} b_{2}\right] \exp \left[-\chi_{1}-\chi_{2}\right] . \tag{4.26}
\end{align*}
$$

$\eta_{11}=\psi_{1}+\left(\delta_{3}-1\right) \log \left(1+a_{1} y\right)$,
and
$\eta_{22}=\psi_{2}+\left(j_{3}+1\right) \log \left(1+a_{2} y\right)$.

By substituting (4.27) in (4.3), the predictive density function is given by
$h_{Y_{1+\prime}}\left(y \mid \underline{t}^{*}\right)=C \sum^{*}\binom{n-r}{j_{1}} Q_{1}$

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1} \exp \left[-\chi_{1}-\chi_{2}\right]\left(\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}+j_{2}} a_{1}^{\sigma_{1}} a_{2}^{\sigma_{2}-i} b_{1}^{\omega_{1}} b_{2}^{\omega_{2}-1} \exp \left[-\eta_{1} b_{1}-\eta_{2} b_{2}\right]\right. \\
& \left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{1}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{2}+1} a_{1}^{\sigma_{1}-1} a_{2}^{\sigma_{2}} b_{1}^{\omega_{1}-1} b_{2}^{\alpha_{2}} \exp \left[-\eta_{11} b_{1}-\eta_{22} b_{2}\right]\right\} d p_{1} d b_{1} d b_{2} d a_{1} d a_{2}
\end{aligned}
$$

$=C \sum^{*}\left({ }_{j}^{n-r}\right) Q_{1}\left\{\varepsilon_{1}(y) B\left(\delta_{1}+\delta_{3}+1, \delta_{2}+j_{3}+1\right) \Gamma\left(\omega_{1}+1\right) \Gamma\left(\omega_{2}\right)\right.$
$\int_{0}^{\infty} \frac{a_{1}^{\sigma_{1}} \varepsilon_{1}(y) \exp \left[-\chi_{1}\right]}{\left(\eta_{1}\right)^{\left(\omega_{1}+1\right)}} d a_{1} \int_{0}^{\infty} \frac{a_{2}^{\sigma_{2}-1} \exp \left[-\chi_{2}\right]}{\left(\eta_{2}\right)^{\left(\omega_{2}\right)}} d a_{2}+B\left(\delta_{1}+\delta_{3}, \delta_{2}+j_{3}+2\right) \Gamma\left(\omega_{1}\right) \Gamma\left(\omega_{2}+1\right)$
$\int_{0}^{\infty} \frac{a_{2}{ }^{\sigma_{2}} \varepsilon_{2}(y) \exp \left[-\chi_{2}\right]}{\left(\eta_{22}\right)^{\left(\omega_{2}+1\right)}} d a_{2} \int_{0}^{\infty} \frac{a_{1}^{\sigma_{1}-1} \varepsilon_{2}(y) \exp \left[-\chi_{1}\right]}{\left(\eta_{11}\right)^{\left(\alpha_{1}\right)}} d a_{1}$.
$=C \sum{ }^{*} Q_{1}{ }^{*}\left[\phi_{1}(y)+\phi_{2}(y)\right]$,
where C is the normalizing constant satisfying $\int_{v}^{\infty} h_{\gamma_{1, t}}\left(y \mid \underline{t}^{*}\right) d y=1$,
$\left.Q_{1}{ }^{\mathrm{A}}=Q_{1}{ }_{h_{1}}^{n-r}\right)\left[\frac{\Gamma\left(\omega_{1}\right) \Gamma\left(\omega_{2}\right) \Gamma\left(\delta_{1}+\delta_{3}\right) \Gamma\left(\delta_{2}+j_{3}+1\right)}{\Gamma\left(\delta_{1}+\delta_{2}+\delta_{3}+j_{3}+2\right)}\right]$,
$\phi_{1}(y)=\omega_{1}\left(\delta_{1}+\delta_{3}\right) \int_{0}^{\infty} \frac{a_{1}^{\sigma_{1}} \varepsilon_{1}(y) \exp \left[-\chi_{1}\right]}{\left(\eta_{1}\right)^{\left(a_{1}+1\right)}} d a_{1} \int_{0}^{\infty} \frac{a_{2}^{\sigma_{2} \cdot 1} \exp \left[-\chi_{2}\right]}{\left(\eta_{2}\right)^{\left(\omega_{2}\right)}} d a_{2}$,
and
$\phi_{2}(y)=\omega_{2}\left(\delta_{2}+j_{3}+1\right) \int_{0}^{\infty} \frac{a_{2}^{\sigma_{2}} \varepsilon_{2}(y) \exp \left[-\chi_{2}\right]}{\left(\eta_{22}\right)^{\left(a_{2}+1\right)}} d a_{2} \int_{0}^{\infty} \frac{a_{1}^{\sigma_{1}-1} \varepsilon_{2}(y) \exp \left[-\chi_{1}\right]}{\left(\eta_{\mathrm{i}}\right)^{(a, a)}} d a_{1}$.

4.5 Data analysis

In this section, we illustrate the procedure given in Section 4.4.2 using the data given in Chapter 2. We, here, estimate the reliability function using predictive density function. We obtained the lower and upper prediction bounds for $Y_{(1)}$ and $Y_{(m)}$, the first and last failure times in a future sample of size $m=10$. The failure times are assumed to follow finite mixture of Pareto II distribution with density function given in (2.2). Table 4.1 provides the Bayes estimate of parameters when the data is censored at the point T and r_{1} and r_{2} are the number of observations belonging to the respective subpopulations. Using our results in (4.4) and (4.24) with $\tau=0.95$, the lower and upper 95% prediction bounds for $Y_{(1)}$, the first failure time, are 7 and 12 respectively. Whereas the 95% prediction bounds for $Y_{(0)}$, the last failure times are given by 89 and 97 respectively. The reliability $S^{*}(t)$ at $t=25$ is obtained as 0.4231 by putting $k=1$ in (4.24) and using (4.5).

Table 4.1 Bayes estimates of parameters of survival times of leukaemia patients.

$T=80$					
$\left(r_{1}=13, r_{2}=16\right)$	$a_{1}{ }^{*}=.0336$	$a_{2}^{*}=.0662$	$b_{1}^{*}=.9743$	$b_{2}^{*}=1.138$	$p_{1}^{*}=.4519$

4.6 Bayesian two sample prediction for finite mixture of beta distributions

In this section, we consider finite mixture of two-component beta model and two-sample prediction using Bayesian technique is employed.

Suppose that n units from a population with probability density function (3.1) are subjected to a life testing experiment and the test is terminated after a predetermined time T. It is assumed that an item can be attributed to the appropriate subpopulation after it had failed. Suppose that r units have failed during the interval $(0, T)$ with r_{1} from the first and r_{2} from the second subpopulation, such that $r=r_{1}+r_{2}$. The remaining $n-r$ units which cannot be identified as to subpopulation are still functioning. Naturally, neither r_{1} nor r_{2} (and consequently r) is fixed, but
they are rather determined by knowing T. Let $t_{i j}$ denote the failure time of the $j^{\text {th }}$ unit that belongs to the $i^{\text {h }}$ subpopulation and that $t_{i j} \leq T, j=1,2, \ldots, r_{i}, i=1,2$.

4.6.1 The scale parameters c_{1} and c_{2} are known

In this section, we compute Bayesian predictive distribution when the prior distribution is Jeffrey's invariant as well as natural conjugate prior when c_{1} and c_{2} are known.

Rewriting (3.74), the likelihood function is given by,

$$
\begin{align*}
& L\left(d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{i_{1}=0}^{n-r}\left({ }_{i}^{n-r}\right) p_{1}^{n-r_{2}-j_{1}}\left(1-p_{1}\right)^{r_{2}+j_{1}} d_{1}^{r_{1}} d_{2}^{r_{2}} \\
& \exp \left[d_{1} \sum_{j=1}^{r_{1}} \log \left(1-c_{1} t_{1}\right)\right] \exp \left[d_{2} \sum_{j=1}^{n} \log \left(1-c_{2} t_{2}\right)\right]\left(1-c_{1} T\right)^{d_{1}\left(n-r-j_{1}\right)}\left(1-c_{2} T\right)^{d_{2} j_{1}} . \tag{4.29}
\end{align*}
$$

Rearranging (4.29), we have

$$
\begin{align*}
& L\left(d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{j_{1}=0}^{n-r}\left(\begin{array}{l}
n-r
\end{array}\right) p_{1}^{n-r_{2}-j_{1}}\left(1-p_{1}\right)^{r_{2}+j_{1}} d_{1}^{r} d_{2}^{r_{2}} \\
& \exp \left[-d_{1}\left\{-\sum_{j=1}^{r_{1}} \log \left(1-c_{1} t_{j}\right)-\left(n-r-j_{1}\right) \log \left(1-c_{1} T\right)\right\}-d_{2}\left\{-\sum_{j=1}^{r} \log \left(1-c_{2} t_{2 j}\right)-j_{1} \log \left(1-c_{2} T\right)\right\} .\right. \\
& L\left(d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{j_{1}=0}^{n r r}\left(i_{1}^{n-r}\right) p_{1}^{n-r_{2}-j_{1}}\left(1-p_{1}\right)^{r_{2}+j_{1}} d_{1}^{r} d_{2}^{r *} \exp \left[-A_{1 j_{1}} d_{1}-A_{2 j_{1}} d_{2}\right] \tag{4.30}
\end{align*}
$$

with

$$
A_{i_{1}}=-\sum_{j=1}^{r_{1}} \log \left(1-c_{i} t_{i j}\right)-\left[(n-r)(2-i)-(-1)^{(i-1)} j_{1}\right] \log \left(1-c_{i} T\right), i=1,2
$$

Now, assume that p_{1}, d_{1} and d_{2} are independent such that p_{1} follows $U(0,1)$ and for $i=1,2, b_{i}$ follows Jeffrey's invariant prior. Accordingly, the joint prior density is given by

$$
\begin{equation*}
g\left(d_{1}, d_{2}, p_{1}\right) \propto \frac{1}{d_{1} d_{2}}, 0<p_{1}<1, d_{i}>0 \tag{4.31}
\end{equation*}
$$

The joint posterior density function of p_{1}, d_{1} and d_{2} is given by

$$
\begin{equation*}
\Pi\left(d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \sum_{j_{j}=0}^{n-r}\left(n_{j_{1}}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} d_{1}^{r_{1}-1} d_{2}^{r_{2}-1} \exp \left[-A_{1 j_{1}} d_{1}-A_{2 j_{1}} d_{2}\right] \tag{4.32}
\end{equation*}
$$

where $\delta_{1}=n-r_{2}-j_{1}$ and $\delta_{2}=r_{2}+j_{1}$.
The density function of k-th order statistic $Y_{(k)}$ is given in (4.10), where $S(y)$ and $f(y)$ are the reliability function and probability density function of the finite mixture model (3.1). For the finite mixture of beta distributions (3.1), (4.10) becomes,
where

$$
\sum=\sum_{j_{3}=0}^{k-1} \sum_{j_{3}=0}^{m-k+j_{2}}, \quad N_{1}=(-1)^{j_{1}}\binom{k-1}{j_{2}}\binom{m-k+j_{2}}{j_{3}} \text { and } \delta_{3}=m-k+j_{2}-j_{3}+1 \text {. }
$$

The product of (4.32) and (4.33), then yields

$$
\begin{aligned}
& f_{Y_{1}, 1}\left(y \mid d_{1}, d_{2}, p_{1}\right) \Pi\left(d_{1}, d_{2}, p_{1} \mid \underline{x}^{*}\right) \propto \\
& \sum N_{1} p_{1}^{\delta_{1}-1}\left(1-p_{1}\right)^{j_{3}} \exp \left[d_{1}\left(\delta_{3}-1\right) \log \left(1-c_{1} y\right)+d_{2} j_{3} \log \left(1-c_{2} y\right)\right] \\
& \sum_{i_{1}=0}^{n-r}\left(\frac{n-r}{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} d_{1}^{r_{1}-1} d_{2}^{r_{2}-1} \exp \left[-A_{1 j_{1}} d_{1}-A_{2 j_{1}} d_{2}\right] \\
& \quad\left[p_{1} c_{1} d_{1}\left(1-c_{1} y\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} y\right)^{\left(d_{i}-1\right)}\right] .
\end{aligned}
$$

$$
\left.\propto \sum \sum^{*}\binom{n-r}{h_{1}} N_{1} \right\rvert\, \varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{2}}\left(1-p_{1}\right)^{\delta_{2}+j_{2}} d_{1}^{\gamma_{1}} d_{2}^{r_{2}-1} \exp \left[-\eta_{1} d_{1}-\eta_{2} d_{2}\right]
$$

$$
\begin{equation*}
\left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{1}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{4}+1} d_{1}^{\prime_{1}-1} d_{2}^{r_{2}} \exp \left[-\eta_{11} d_{1}-\eta_{22} d_{2}\right]\right\} \tag{4.34}
\end{equation*}
$$

$$
\begin{aligned}
& \left.f_{Y_{(k}}\left(y \mid d_{1}, d_{2}, p_{1}\right) \propto \sum_{j_{2}=0}^{k-1}(-1)^{j_{2}}\binom{k-1}{j_{2}}\left[p_{1}\left(1-c_{1} y\right)^{d_{1}}+\left(1-p_{1}\right)\left(1-c_{2} y\right)^{d_{2}}\right)\right]^{m-k+j_{2}} f(y)
\end{aligned}
$$

$$
\begin{align*}
& \left.\exp \left[d_{r}\left(m-k+j_{2}-j_{3}\right) \log \left(1-c_{1} y\right)+d_{2} j_{3} \log \left(1-c_{2} y\right)\right)\right] f(y) \\
& =\sum N_{1} p_{1}^{\delta_{1}-1}\left(1-p_{1}\right)^{h_{2}} \exp \left[d_{1}\left(\delta_{3}-1\right) \log \left(1-c_{1} y\right)+d_{2} j_{3} \log \left(1-c_{2} y\right)\right] f(y) . \tag{4.33}
\end{align*}
$$

where
$\sum *=\sum_{i=0}^{n-1} \sum, \quad \varepsilon_{i}(y)=\left(c_{i}\left(1-c_{i} y\right)^{-1}\right), \quad i=1,2$,
$\eta_{1}=A_{1 j_{1}}-\delta_{3} \log \left(1-c_{1} y\right)$,
$\eta_{2}=A_{j_{1}}-j_{3} \log \left(1-c_{2} y\right)$,
$\eta_{11}=A_{1_{j}}-\left(\delta_{3}-1\right) \log \left(1-c_{1} y\right)$,
and
$\eta_{22}=A_{2 j_{1}}-\left(j_{3}+1\right) \log \left(1-c_{2} y\right)$.

Substituting (4.34) in (4.3), we have
$h_{\left.r_{t}\right)}\left(y \mid \underline{t}^{*}\right)=C \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} f_{Y_{(t)}}\left(y \mid d_{1}, d_{2}, p_{1}\right) \Pi\left(d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) d p_{1} d d_{1} d d_{2}$.
On simplifying (4.35), we get the predictive distribution as
$h_{\gamma_{\gamma_{1},}}\left(y \mid \underline{t}^{*}\right)=C \sum \sum^{*}\binom{n-r}{h_{1}} N_{1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1}\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{3}}\left(1-p_{1}\right)^{\delta_{2}+j_{3}} d_{1}^{r_{1}} d_{2}^{r_{2}-1} \exp \left[-\eta_{1} d_{1}-\eta_{2} d_{2}\right]\right.$
$\left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{3}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{3}+1} d_{1}^{r_{1}-1} d_{2}^{r_{2}} \exp \left[-\eta_{11} d_{1}-\eta_{22} d_{2}\right]\right\} d p_{1} d d_{1} d d_{2}$
$=C \sum{ }^{*} \begin{gathered}\binom{n-r}{h_{1}} N_{1}\left\{\varepsilon_{1}(y) B\left(\delta_{1}+\delta_{3}+1, \delta_{2}+j_{3}+1\right) \frac{\Gamma\left(r_{1}+1\right)}{\left(\eta_{1}\right)^{\left(r_{1}+1\right)}} \frac{\Gamma\left(r_{2}\right)}{\left(\eta_{2}\right)^{\left(r_{3}\right\}}}\right)\end{gathered}$
$\left.+\varepsilon_{2}(y) B\left(\delta_{1}+\delta_{3}, \delta_{2}+j_{3}+2\right) \frac{\Gamma\left(r_{1}\right)}{\left(\eta_{11}\right)^{\left(r_{3}\right)}} \frac{\Gamma\left(r_{2}+1\right)}{\left(\eta_{22}\right)^{\left(2_{2}+1\right)}}\right\}$
$=C \sum^{*} N_{1}^{*}\left[\phi_{1}(y)+\phi_{2}(y)\right]$,
where C is the normalizing constant satisfying $\int_{0}^{\infty} h_{Y_{1},}\left(y \mid t^{*}\right) d y=1$,
$N_{1}^{*}=N_{1}\left(_{1}^{n-r}\right)\left[\frac{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right) \Gamma\left(\delta_{1}+\delta_{3}\right) \Gamma\left(\delta_{2}+j_{3}+1\right)}{\Gamma\left(\delta_{1}+\delta_{2}+\delta_{3}+j_{3}+2\right)}\right]$,
$\phi_{1}(y)=\varepsilon_{1}(y) \frac{r_{1}\left(\delta_{1}+\delta_{3}\right)}{\left(\eta_{1}\right)^{\left.r_{1}+1\right)}\left(\eta_{2}\right)^{\left(r_{2}\right)}}$,
and
$\phi_{2}(y)=\varepsilon_{2}(y) \frac{r_{2}\left(\delta_{2}+j_{3}+1\right)}{\left(\eta_{13}\right)^{\left.()^{\prime}\right)}\left(\eta_{22}\right)^{\left(r_{2}+1\right)}}$.

Now, consider the Bayesian analysis when the prior distribution is conjugate prior. Suppose that p_{1}, d_{1} and d_{2} are independent such that p_{1} follows beta (b, d) and for $i=1,2, d_{i}$ follows gamma (β_{i}, γ_{i}).

A joint prior density is then given by

$$
\begin{equation*}
g\left(d_{1}, d_{2}, p_{1}\right) \propto p_{1}^{h-1}\left(1-p_{1}\right)^{d-1} d_{1}^{\beta_{1}-1} d_{2}^{\beta_{2}-1} \exp \left[-\gamma_{1} d_{1}-\gamma_{2} d_{2}\right] .0<p_{1}<1, d_{i}>0 . \tag{4.37}
\end{equation*}
$$

From (4.30) and (4.37), the joint posterior density of d_{1}, d_{2} and p_{1} given \underline{t}^{*} is given by

$$
\begin{equation*}
\prod\left(d_{1}, d_{2}, p_{1} \mid \underline{t}^{2}\right) \propto \sum_{j_{1}=0}^{n-r}\left(n_{i}^{n-r}\right) p_{1}^{\delta_{1}}\left(\underline{1}-p_{1}\right)^{\delta_{i}} \cdot d_{1}^{(\mu-1} d_{2}^{\omega_{2}-1} \exp \left[-\psi_{1} d_{1}-\psi_{2} d_{2}\right] \tag{4.38}
\end{equation*}
$$

where
$\delta_{1}=n-r_{2}-j_{1}+b-1, \quad \delta_{2}=r_{2}+j_{1}+d-1$ and for $i=1,2, \quad \omega_{i}=r_{i}+\beta_{i}, \quad \psi_{i}=A_{i j_{1}}+\gamma_{i}$

The product of (4.33) and (4.38), we obtain,

$$
f_{r_{14} \mid}\left(y \mid d_{1}, d_{2}, p_{1}\right) \Pi\left(d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) \propto
$$

$$
\left.\sum R_{1} p_{1}^{\delta_{3} \cdot 1}\left(1-p_{1}\right)^{j_{1}} \exp !d_{1}\left(\delta_{3}-1\right) \log \left(1-c_{1} y\right)+d_{2} j_{3} \log \left(1-c_{2} y\right)\right] f(y)
$$

$$
\sum_{j_{1}=0}^{n-r}\binom{n-r}{h_{1}} p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{3}} d_{1}^{(\alpha-1} d_{2}^{\omega_{2}-1} \exp \left[-\psi_{1} d_{1}-\psi_{2} d_{2}\right]
$$

where

$$
\sum=\sum_{j_{2}=0}^{k-1} \sum_{j==0}^{m-k+j_{3}}, \quad R_{1}=(-1)^{j_{2}}\binom{k-1}{j_{2}}\binom{m-k+j_{2}}{j_{3}} \text { and } \delta_{3}=m-k+j_{2}-j_{3}+1 .
$$

which can be reduced to

$$
\begin{align*}
&\left.\propto \sum{ }_{(}^{*}{ }_{h}^{n} r\right) R_{1}\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{2}}\left(1-p_{1}\right)^{\delta_{2}+h_{1}} d_{1}^{(u)} d_{2}^{\left(\alpha_{3}-1\right.} \exp \left[-\eta_{1} d_{1}-\eta_{2} d_{2}\right]\right. \\
&\left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{1}-1}\left(1-p_{1}\right)^{\delta_{2}+n+1} d_{1}^{\left(\omega_{1}-1\right.} d_{2}^{\omega_{2}} \exp \left[-\eta_{11} d_{1}-\eta_{22} d_{2}\right]\right\} \tag{4.39}
\end{align*}
$$

where
$\sum^{*}=\sum_{i=0}^{n-r} \sum$, for $i=1,2, \varepsilon_{i}(y)=\left(c_{i}\left(1-c_{i} y\right)^{-1}\right)$,
$\eta_{1}=\psi_{1}-\delta_{3} \log \left(1-c_{1} y\right)$,
$\eta_{2}=\psi_{2}^{\prime}-j_{3} \log \left(1-c_{2} y\right)$,
$\eta_{11}=\psi_{1}-\left(\delta_{3}-1\right) \log \left(1-c_{1} y\right)$,
$\eta_{22}=\psi_{2}-\left(j_{3}+1\right) \log \left(1-c_{2} y\right)$.
Then, the predictive density is obtained as
$h_{Y_{1 k},}\left(y \mid \underline{t}^{*}\right)=C \sum^{*}\binom{n-r}{j_{k}} N_{1} \int_{0}^{\infty} \int_{0}^{\infty} \int\left(\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}+j_{h}} d_{1}^{\omega_{1}} d_{2}^{\omega_{2}-1} \exp \left[-\eta_{1} d_{1}-\eta_{2} d_{2}\right]\right.$
$\left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{1}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{1}+1} d_{1}^{\omega_{1}-1} d_{2}^{\omega_{2}} \exp \left[-\eta_{11} d_{1}-\eta_{22} d_{2}\right]\right] d p_{1} d d_{1} d d_{2}$
$=C \sum{ }^{\circ}\binom{n \sim r}{j_{1}} N_{1}\left\{\varepsilon_{1}(y) B\left(\delta_{1}+\delta_{3}+1, \delta_{2}+j_{3}+1\right) \frac{\Gamma\left(\omega_{1}+1\right)}{\left(\eta_{1}\right)^{\left(\omega_{3}+1\right)}} \frac{\Gamma\left(\omega_{2}\right)}{\left(\eta_{2}\right)^{\left(\omega_{3}\right)}}\right.$
$\left.+\varepsilon_{2}(y) B\left(\delta_{1}+\delta_{3}, \delta_{2}+j_{3}+2\right) \frac{\Gamma\left(\omega_{1}\right)}{\left(\eta_{11}\right)^{\left(\omega_{1}\right)}} \frac{\Gamma\left(\omega_{2}+1\right)}{\left(\eta_{22}\right)^{\left(\omega_{2}+1\right\rangle}}\right\}$
$=C \sum{ }^{*} N_{1}^{*}\left[\phi_{1}(y)+\phi_{2}(y)\right]$,
where C is the normalizing constant satisfying $\int_{0}^{\infty} h_{Y_{Y_{4}},}\left(y \mid t^{*}\right) d y=1$,
$N_{\mathrm{i}}^{*}=N_{1}{ }_{\left({ }_{j}{ }_{j}^{n-r}\right)}\left[\frac{\Gamma\left(\omega_{1}\right) \Gamma\left(\omega_{2}\right) \Gamma\left(\delta_{1}+\delta_{3}\right) \Gamma\left(\delta_{2}+j_{3}+1\right)}{\Gamma\left(\delta_{1}+\delta_{2}+\delta_{3}+j_{3}+2\right)}\right]$,
$\phi_{1}(y)=\varepsilon_{1}(y) \frac{\omega_{1}\left(\delta_{1}+\delta_{3}\right)}{\left(\eta_{1}\right)^{1\left(a_{2}+1\right)}\left(\eta_{2}\right)^{i\left(\alpha_{2}\right)}}$,
and
$\phi_{2}(y)=\varepsilon_{2}(y) \frac{\omega_{2}\left(\delta_{2}+j_{3}+1\right)}{\left(\eta_{11}\right)^{\left(a_{2}\right)}\left(\eta_{22}\right)^{\left(\omega_{2}+1\right)}}$.
4.6.2 The parameters $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} are unknown

In this section, we obtain Bayesian predictive distribution function when the prior distribution is Jeffrey's invariant as well as natural conjugate prior when $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} are unknown.

From (3.74), the likelihood function is given by,

$$
\begin{align*}
& \left.\dot{L}\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1}\right\rfloor \underline{t}^{*}\right) \propto \sum_{j_{1}=0}^{n-r}\binom{n-r}{1_{1}} p_{1}^{n-r_{2}-j_{n}}\left(1-p_{1}\right)^{r_{2}+j_{j}} c_{1}^{r_{i}} c_{2}^{r_{2}} d_{1}^{r^{r}} d_{2}^{r} \\
& \exp \left[d_{1} \sum_{j=1}^{r_{i}} \log \left(1-c_{3} t_{1}\right)\right] \exp \left[d_{2} \sum_{j=1}^{r_{n}} \log \left(1-c_{2} t_{2 j}\right)\right]\left(1-c_{1} T\right)^{d_{1}\left(n-r-i_{1}\right)}\left(1-c_{2} T\right)^{d_{2} j_{1}} . \\
& \exp \left[-\left\{\sum_{j=1}^{r} \log \left(1-c_{1} t_{1 j}\right)+\sum_{j=1}^{n} \log \left(1-c_{2} t_{2 j}\right)\right]\right\} . \tag{4.41}
\end{align*}
$$

Rearranging (4.41), we have

$$
\begin{align*}
& L\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \backslash \underline{t}^{*}\right) \propto \\
& \sum_{j_{1}=0}^{n-r}\left(n_{j}^{n-r}\right) p_{1}^{n-r_{2}-j_{1}}\left(1-p_{1}\right)^{r_{+}+j_{1}} c_{1}^{{ }_{1}^{\prime}} c_{2}^{{ }^{r}} d_{1}^{\gamma_{1}} d_{2}^{r_{2}} \exp \left[-A_{1, j_{1}} d_{1}-A_{2, j} d_{2}\right] \exp \left[-B_{1}-B_{2}\right] \tag{4.42}
\end{align*}
$$

where, for $i=1,2, \quad A_{i j}$ is given in (4.30) and $\left.B_{i}=\sum_{j=1}^{r_{i}} \log \left(1-c_{i} t_{i j}\right)\right]$,
Now, consider that $p_{1}, c_{1}, c_{2}, d_{1}$ and d_{2} are independent such that p_{1} follows $U(0,1)$ and for $i=1,2, c_{i}$ and d_{i} follows jeffrey's invariant prior.

A joint prior density is then given by

$$
\begin{equation*}
g\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1}\right) \propto \frac{1}{c_{1} c_{2} d_{1} d_{2}}, 0<p_{1}<1, d_{i}>0 . \tag{4.43}
\end{equation*}
$$

The joint posterior density function of $p_{1}, c_{1}, c_{2}, d_{1}$ and d_{2} is given by

$$
\begin{align*}
& \Pi\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) \propto \\
& \sum_{i=0}^{n-r}\binom{n-r}{j_{1}} p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} c_{1}^{r_{1}} c_{2}^{r_{2}} d_{1}^{r_{1}} d_{2}^{r_{2}} \exp \left[-A_{1_{1}} d_{1}-A_{2_{1}} d_{2}\right] \exp \left[-B_{1}-B_{2}\right] . \tag{4.44}
\end{align*}
$$

where $\delta_{1}=n-r_{2}-j_{1}$ and $\delta_{2}=r_{2}+j_{1}$.
The density function of k-th order statistic $Y_{(k)}$, is given in (4.33).
The product of (4.33) and (4.44) gives
$f_{r_{1},}\left(y \mid c_{1}, c_{2}, d_{1}, d_{2}, p_{1}\right) \Pi\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) \propto$
$\sum K_{1} p_{1}^{\delta_{3}-1}\left(1-p_{1}\right)^{j_{3}} \exp \left[d_{1}\left(\delta_{3}-1\right) \log \left(1-c_{1} y\right)+d_{2} j_{3} \log \left(1-c_{2} y\right)\right] f(y)$
$\sum_{j_{1}=0}^{n-r}\left(\left(_{j_{2}}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} c_{1}^{r_{1}} c_{2}^{{ }^{2}} d_{1}^{{ }^{\gamma}} d_{2}^{r_{2}} \exp \left[-A_{1 j_{1}} d_{1}-A_{2 h_{h}} d_{2}\right] \exp \left[-B_{1}-B_{2}\right]\right.$
where

$$
\begin{align*}
& \sum=\sum_{j_{2}=0}^{k-1} \sum_{j_{1}=0}^{m-k+j_{2}}, \quad K_{1}=(-1)^{j_{2}}\binom{(-1}{j_{2}}\binom{m-k+j_{2}}{j_{3}} \text { and } \delta_{3}=m-k+j_{2}-j_{3}+1 . \\
& \left.\propto \sum{ }^{*}\binom{n-r}{j_{1}} K_{1} \operatorname{expl}-B_{1}-B_{2}\right] \\
& \left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{3}}\left(1-p_{1}\right)^{\delta_{2}+j_{3}} c_{1}^{\gamma_{1}} c_{2}^{r_{2}-1} d_{1}^{r_{1}} d_{2}^{r_{2}-1} \exp \left[-\eta_{1} d_{1}-\eta_{2} d_{2}\right]\right. \\
& \left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{1}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{2}+1} c_{1}^{r_{1}-1} c_{2}^{\gamma_{2}} d_{1}^{r_{1}-1} d_{2}^{\prime 2} \exp \left[-\eta_{11} d_{1}-\eta_{22} d_{2}\right]\right\} . \tag{4.45}
\end{align*}
$$

where
$\sum *=\sum_{j=0}^{n-r} \sum, \quad \varepsilon_{i}(y)=\left(1-c_{i}, y^{-1}\right), i=1,2$,
$\eta_{1}=\dot{A}_{i_{i}}-\delta_{;} \log \left(1-c_{1}, y\right)$,
$\eta_{2}=A_{2_{1}}-j_{3} \log \left(1-c_{2} y\right)$,
$\eta_{11}=A_{1,1}-\left(\delta_{3}-1\right) \log \left(1-c_{1} y^{\prime}\right)$,
and
$\eta_{22}=A_{2 j_{1}}-\left(j_{3}+1\right) \log \left(1-c_{2} y\right)$.
Substituting (4.45) in (4.3), we have

$$
\begin{aligned}
& h_{\gamma_{1,1}}\left(y \mid \underline{t}^{*}\right)=C \sum\binom{n-r}{j_{1}} K_{1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \exp \left[-B_{1}-B_{2}\right] \\
& \left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{j}}\left(1-p_{1}\right)^{\delta_{2}+\xi_{h}} c_{1}^{\gamma_{1}^{\prime}} c_{2}^{r_{2}-1} d_{1}^{\gamma_{1}} d_{2}^{r_{2} \cdot t} \exp \left[-\eta_{1} d_{1}-\eta_{2} d_{2}\right]\right. \\
& \left.+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{2}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{1}+1} c_{1}^{r_{1}^{-1}} c_{2}^{\prime 2} d_{1}^{r_{1}-1} d_{2}^{r_{2}} \exp \left[-\eta_{11} d_{1}-\eta_{22} d_{2}\right]\right\} d p_{1} d d_{1} d d_{2} d c_{1} d c_{2} .
\end{aligned}
$$

$=C \sum^{*}\binom{n-r}{j_{1}} K_{1}\left[\left\{B\left(\delta_{1}+\delta_{3}+1, \delta_{2}+j_{3}+1\right) \Gamma\left(r_{1}+1\right) \Gamma\left(r_{2}\right)\right.\right.$

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{c_{2}^{r_{2}-1} \exp \left[-B_{2}\right]^{c_{2}}}{\left(\eta_{2}\right)^{\left(r_{2}\right)}} \int_{0}^{c_{1}^{r_{1}} \varepsilon_{1}(y) \exp \left[-B_{1}\right]}\left(\eta_{1}\right)^{\left(r_{1}+1\right)} d c_{1} d c_{2}+B\left(\delta_{1}+\delta_{3}, \delta_{2}+j_{3}+2\right) \Gamma\left(r_{1}\right) \Gamma\left(r_{2}+1\right) \\
& \left.\int_{0}^{\infty} \frac{c_{2}{ }^{{ }^{2}} \varepsilon_{2}(y) \exp \left[-B_{2}\right]}{\left(\eta_{22}\right)^{\left(r^{2}+1\right)}} \int_{0}^{c_{1}^{r_{1}-1} \varepsilon_{2}(y) \exp \left[-B_{1}\right]}\left(\eta_{11}\right)^{\left(r_{1}\right)} d c_{1} d c_{2}\right]
\end{aligned}
$$

$$
\begin{equation*}
=C \sum^{*} K_{1}^{*}\left[\phi_{1}(y)+\phi_{2}(y)\right] \tag{4.46}
\end{equation*}
$$

where C is the normalizing constant satisfying $\int_{0}^{\infty} h_{r_{t},}\left(y \mid t^{*}\right) d y=1$,
$K_{1}^{*}=K_{1}\left({ }_{j_{1}}^{n-r}\right)\left[\frac{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right) \Gamma\left(\delta_{1}+\delta_{3}\right) \Gamma\left(\delta_{2}+j_{3}+1\right)}{\Gamma\left(\delta_{1}+\delta_{2}+\delta_{3}+j_{3}+2\right)}\right]$,

and
$\phi_{2}(y)=r_{2}\left(\delta_{2}+j_{3}+1\right) \int_{0}^{\infty} c_{2}^{c_{2}{ }^{r} \varepsilon_{2}(y) \exp \left[-B_{2}\right]^{c_{2}}} \int_{0}^{\left(\eta_{22}\right)^{\left(r_{2}+1\right)}} \frac{c_{1}^{r_{i}-1} \varepsilon_{2}(y) \exp \left[-B_{1}\right]}{\left(\eta_{11}\right)^{\left(r_{1}\right)}} d c_{1} d c_{2}$.

Consider the situation of conjugate prior. Now, assume that $p_{1}, c_{1}, c_{2}, d_{1}$ and d_{2} are independent such that p_{1} follows beta (b, d), for $i=1,2, c_{i}$ follows gamma (μ_{i}, v_{i}) and for $i=1,2, d_{i}$ follows gamma $\left(\beta_{i}, \gamma_{i}\right)$.

A joint prior density is then given by

$$
\begin{array}{r}
g\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1}\right) \propto p_{1}^{h-1}\left(1-p_{1}\right)^{d-1} c_{1}^{\mu_{1}-1} c_{2}^{\mu_{2}-1} d_{1}^{\beta_{i}-1} d_{2}^{\beta_{2}-1} \exp \left[-v_{1} c_{1}-v_{2} c_{2}\right] \exp \left[-\gamma_{1} d_{1}-\gamma_{2} d_{2}\right] \\
0<p_{1}<1, d_{i}>0, c_{i}>0 \tag{4.47}
\end{array}
$$

From (4.42) and (4.47), the joint posterior density function of $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} given $t{ }^{*}$ is given by

$$
\begin{aligned}
& \Pi\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{\underline{t}}^{*}\right) \propto
\end{aligned}
$$

$$
\begin{align*}
& p_{1}^{b-1}\left(1-p_{1}\right)^{d-1} c_{1}^{\mu_{1}-1} c_{2}^{\mu_{2}-1} d_{1}^{\beta_{1}-1} d_{2}^{\beta_{2}-1} \exp \left[-v_{1} c_{1}-v_{2} c_{2}\right] \exp \left[-\gamma_{1} d_{1}-\gamma_{2} d_{2}\right] \\
& \propto \sum_{j_{1}=0}^{n-r}\left(j_{i}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} c_{1}^{\sigma_{1}-1} c_{2}^{\sigma_{2}-1} d_{i}^{\left(\alpha_{i}-1\right.} d_{2}^{\alpha_{2}-1} \exp \left[-\psi_{1} d_{1}-\psi_{2} d_{2}\right] \exp \left[-\chi_{1}-\chi_{2}\right] . \tag{4.48}
\end{align*}
$$

where
$\delta_{1}=n-r_{2}-j_{1}+b-1, \delta_{2}=r_{2}+j_{1}+d-1$
and for $i=1,2, \omega_{i}=r_{i}+\beta_{i}, \quad \sigma_{i}=r_{i}+\mu_{i}, \psi_{i}=A_{i i_{1}}+\gamma_{i}$ and $\chi_{i}=B_{i}+\nu_{i} a_{i}$.
From (4.33) and (4.48), we get,
$f_{r_{1+1}}\left(y \mid c_{1}, c_{2}, d_{1}, d_{2}, p_{\mathrm{t}}\right) \Pi\left(c_{1}, c_{2}, d_{1}, d_{2}, p_{1} \mid \underline{t}^{*}\right) \propto$
$\left.\sum L_{1} p_{1}^{\delta_{1}-1}\left(1-p_{1}\right)^{j_{3}} \exp \left[d_{1}\left(\delta_{3}-1\right) \log \left(1-c_{i} y\right)+d_{2} j_{3} \log \left(1-c_{2} y\right)\right)\right] f(y)$

$$
\sum_{j_{1}=0}^{n-r}\left(n_{j}^{n-r}\right) p_{1}^{\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}} c_{1}^{\sigma_{1}-1} c_{2}^{\sigma_{2}-1} d_{1}^{\alpha_{y}-1} d_{2}^{\omega_{2}-1} \exp \left[-\psi_{1} d_{1}-\psi_{2} d_{2}\right] \exp \left[-\chi_{1}-\chi_{2}\right]
$$

where

$$
\begin{align*}
& \sum=\sum_{i_{2}=0}^{k-1} \sum_{i_{3}=0}^{m-k+j_{2}}, L_{1}=(-1)^{i_{2}}\binom{k-1}{j_{2}}\left(\begin{array}{c}
m-k+j_{2}
\end{array}\right) \text { and } \delta_{3}=m-k+j_{2}-j_{3}+1 . \\
& \propto \sum^{*}\binom{n-r}{j_{1}} L_{1} \exp \left[-\chi_{1}-\hat{x}_{2}\right]\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{1}}\left(1-p_{1}\right)^{\delta_{2}+h_{1}} c_{1}^{\sigma_{1}} c_{2}^{\sigma_{2}-1} d_{1}^{\omega} d_{2}^{\omega_{2}-1} \exp \left[-\eta_{1} d_{1}-\eta_{2} d_{2}\right]\right. \\
& \left.\quad+\varepsilon_{2}(y) p_{1}^{\delta_{1}+\delta_{2}-1}\left(1-p_{1}\right)^{\delta_{2}+j_{i}+1} c_{1}^{\sigma_{1}-1} c_{2}^{\sigma_{2}} d_{1}^{\omega_{2}-1} d_{2}^{\omega_{2}} \exp \left[-\eta_{11} d_{1}-\eta_{22} d_{2}\right]\right\} . \tag{4.49}
\end{align*}
$$

where
$\sum,=\sum_{i=0}^{n-r} \sum, \varepsilon_{i}(y)=\left(1-c_{i}, y\right)^{-1}, \quad i=1,2$,
$\eta_{1}=\psi_{1}-\delta_{3} \log \left(1-c_{1} y\right)$,
$\eta_{2}=\psi_{2}-j_{3} \log \left(1-c_{2} y\right)$.
$\eta_{11}=\psi_{1}-\left(\delta_{3}-1\right) \log \left(1-c_{1} y\right)$,
and
$\eta_{22}=\psi_{2}-\left(j_{3}+1\right) \log \left(1-c_{2} y\right)$.
Substituting (4.49) in (4.3), we have the predictive distribution as
$h_{r_{1,1}}\left(y \mid \underline{t}^{*}\right)=C \sum{ }^{*}\binom{n-r}{j_{i}} L_{1}$
$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \exp \left[-\chi_{1}-\chi_{2}\right]\left\{\varepsilon_{1}(y) p_{1}^{\delta_{1}+\delta_{3}}\left(1-p_{1}\right)^{\delta_{2}+\delta_{3}} c_{1}^{\sigma_{1}} c_{2}^{\sigma_{2}-1} d_{1}^{\left(\omega_{1}\right.} d_{2}^{\omega_{2}-1} \exp \left[-\eta_{1} d_{1}-\eta_{2} d_{2}\right]\right.$ $\left.+\varepsilon_{2}(y) p_{1}^{\delta_{+}+\delta_{2}-1}\left(1-p_{1}\right)^{\delta_{2}+\xi_{\xi}+1} c_{1}^{\sigma_{1}-1} c_{2}^{\sigma_{2}} d_{1}^{\alpha_{1}-1} d_{2}^{\alpha_{2}} \exp \left[-\eta_{11} d_{1}-\eta_{22} d_{2}\right]\right\} d p_{1} d d_{1} d d_{2} d c_{1} d c_{2}$
$=C \sum^{*}\binom{n-r}{j_{1}} L_{1}\left\{\varepsilon_{1}(y) B\left(\delta_{1}+\delta_{3}+1, \delta_{2}+j_{3}+1\right) \Gamma\left(\omega_{1}+1\right) \Gamma\left(\omega_{2}\right)\right.$
$\int_{0}^{\infty} \frac{c_{2}^{\sigma_{2}-1} \exp \left[-\chi_{2}\right]}{\left(\eta_{2}\right)^{\left(\sigma_{2}\right)}} \int_{0}^{c_{1}} \frac{\left.c_{1}^{\sigma_{1}} \varepsilon_{1}(y) \operatorname{expl}-\chi_{1}\right]}{\left(\eta_{1}\right)^{\left(c_{4}+1\right)}} d c_{1} d c_{2}+B\left(\delta_{1}+\delta_{3}, \delta_{2}+j_{3}+2\right) \Gamma\left(\omega_{1}\right) \Gamma\left(\omega_{2}+1\right)$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{c_{2}^{c_{2}} \varepsilon_{2}(y) \exp \left[-\chi_{2}\right]}{\left(\eta_{22}\right)^{\left(c_{2}+1\right)}} \int_{0}^{\frac{c_{1}^{\sigma_{1}-1} \varepsilon_{2}(y) \exp \left[-\chi_{1}\right]}{\left(\eta_{11}\right)^{((4)}} d c_{1} d c_{2}} \tag{4.50}
\end{equation*}
$$

$=C \sum{ }^{*} L_{1}{ }^{*}\left[\phi_{1}(y)+\phi_{2}(y)\right]$,
where C is the normalizing constant satisfying $\int_{0}^{\infty} h_{Y_{1, ~}}\left(y \mid \underline{t}^{*}\right) d y=1$,
$L_{1}^{*}=L_{1}\left({ }_{j_{1}}^{n-r}\right)\left[\frac{\Gamma\left(\omega_{1}\right) \Gamma\left(\omega_{2}\right) \Gamma\left(\delta_{1}+\delta_{3}\right) \Gamma\left(\delta_{2}+j_{3}+1\right)}{\Gamma\left(\delta_{1}+\delta_{2}+\delta_{3}+j_{3}+2\right)}\right]$,
$\phi_{1}(y)=\omega_{1}\left(\delta_{1}+\delta_{3}\right)_{0}^{\infty} \int_{0}^{c_{2}^{\sigma_{2}-1} \exp \left[-\chi_{2}\right]} \frac{\left.\eta_{2}\right)^{\left(c_{2}\right)}}{c_{0}} \frac{c_{1}^{\sigma_{1}} \varepsilon_{1}(y) \exp \left[-\chi_{1}\right]}{\left(\eta_{1}\right)^{\left(y_{3}+1\right)}} d c_{1} d c_{2}$,
and
$\phi_{2}(y)=\omega_{2}\left(\delta_{2}+j_{3}+1\right) \int_{0}^{\infty} \frac{c_{2}^{\sigma_{2}}{ }_{2}\left(\varepsilon_{2}(y) \exp \left[-\chi_{2}\right]\right.}{\left(\eta_{22}\right)^{c_{2}}{ }^{c} \omega_{2}+1} \int_{0}^{c_{1}^{c_{1}-1} \varepsilon_{2}(y) \exp \left[-\chi_{1}\right]}\left(\eta_{11}\right)^{\left(c_{1}\right)} d c_{1} d c_{2}$.

4.7 Data analysis

For the illustration of the role of finite mixture of beta distributions for predicting future observations, we consider a data given in Chapter 3, on survival times of cancer patients with advanced cancer of the bronchus or colon were treated with ascorbate. We, here, estimate the reliability function using predictive density function. We obtained the lower and upper prediction bounds for $Y_{(1)}$ and $Y_{(m, 1}$, the first and last failure times in a future sample of size $m=15$. The failure times are assumed to follow finite mixture of beta distribution with density function given in (3.1). Table 4.2 provides the Bayes estimate of parameters when the data is censored at the point T and r_{1} and r_{2} are the number of observations belonging to the respective subpopulations. Using our results in (4.4) and (4.46) with $\tau=0.95$, the lower and upper 95% prediction bounds for $Y_{\{1]}$, the first failure time, are 21 and 26 respectively. Whereas the 95% prediction bounds for $Y_{(15)}$, the last failure times are given by 542 and 551 respectively. The reliability $S^{*}(t)$ at $t=250$ is obtained as .00147 by putting $k=1$ in (4.46) and using (4.5).

Table 4.2 Bayes estimate of parameters of survival times of cancer patients.

$T=800$					
$\left(r_{1}=16, r_{2}=15\right)$	$c_{1}^{*}=.00017$	$c_{2}^{*}=.0012$	$d_{1}^{*}=15.77$	$d_{2}^{*}=1.45$	$p_{1}^{*}=.5516$

4.8 Conclusion.

In this chapter, the role of finite mixture of Pareto II and finite mixture of beta distributions on prediction of future observations are explored using Bayesian approach. The role of finite mixture of Pareto II distributions is illustrated using a real life data on time to death of two groups of leukaemia patients. We, also here, illustrated the use of tinite mixture of beta distributions based on a real data on survival times of cancer patients

Chapter 5

ESTIMATION OF RELIABILITY UNDER STRESS-STRENGTH MODEL

5.1 Introduction

In reliability theory, stress- strength models describe the life of a component, which is having a random strength X that is subjected to a random stress Y. The component fails at the instant the stress applied to it exceeds the strength. Thus $R=P(Y<X)$ measures the component reliability. It has many applications especially in engineering concepts such as structures, deterioration of rocket motors, static fatigue of ceramic components, fatigue failure of aircraft structures, and the ageing of concrete pressure vessels. Accordingly, in practical applications, the estimation of $R=P(Y<X)$ is important. The estimation of reliability R when the distribution of X and Y have exponential, Weibull, lognormal etc. has already been done in the literature.

However, the estimation of R when the distributions of X and Y have mixture form is not seen widely discussed in literature. The estimation of reliability based on finite mixture of inverse Gaussian distributions was studied by Akman et.al. (1999). Al-Hussaini et.al. (1997) considered finite mixture of lognormal components for the estimation of $R=P(Y<X)$. As mentioned in Chapter I, censored data are commonly encountered in reliability analysis. So it is worthwhile to estimate the reliability R for type I and type II censored data. Accordingly in the present chapter, we consider the estimation problem of R when the distribution of X is finite mixture of Pareto II. We consider different distributions for Y such as exponential,

Pareto Il and a finite mixture of Pareto II. We develop the maximum likelihood estimation of the system reliability for complete as well as censored samples.

The rest of the chapter is organized as follows. The definition of stress-strength reliability is given in Section 5.2. In Section 5.3, we derive the reliability, when the strength X follows finite mixture of Pareto II, and the stress Y takes different distributions such as exponential, Pareto II or finite mixture of Pareto II. The maximum likelihood estimation of parameters for the different models under type I and type II censoring is discussed in Section 5.4. In Section 5.5, we develop the maximum likelihood estimate of reliability in various situations. A simulation study is conducted to assess the performance of the estimator in Section 5.6. We apply the method to a real data in Section 5.7. In Sections 5.8, 5.9 and 5.10, we discuss the estimation of reliability, when the strength X follows finite mixture of beta, and the stress Y takes different distributions such as exponential, beta and finite mixture of beta. Section 5.11 provides the simulation studies to assess the performance of the estimates. Finally, Section 5.12 gives the conclusion of the chapter.

5.2 Definition

Let X and Y be two non-negative random variables having absolutely continuous distribution functions $F(x)$ and $G(y)$. Let $f(x)$ and $g(y)$ respectively denote the probability density functions of X and Y. If X and Y are independent, then the stress-strength reliability R is given by

$$
\begin{aligned}
R & =P(Y<X) \\
& =\int_{0}^{\infty} \int_{0}^{x} g(y) f(x) d y d x,
\end{aligned}
$$

which is already mentioned in Chapter I.

5.3 Finite mixture of Pareto II distributions

In this section, we assume that the strength X follows finite mixture of Pareto II distribution with p.d.f (2.2). Lindley and Singpurwalla (1986) pointed out that if the distribution of life times measured in a laboratory environment is exponential, then the distribution of life lengths in a different environment is Pareto II. Accordingly in this Section, we consider various distributions such as exponential
and Pareto II for the stresses. We also consider the situations, where the stress has finite mixture of Pareto II distribution.

5.3.1 The stress Y follows exponential distribution

When the stress Y follows exponential with p.d.f

$$
\begin{equation*}
g(y)=\lambda e^{-\lambda y} ; \quad y>0, \lambda>0 . \tag{5.1}
\end{equation*}
$$

and if X and Y are independent we obtain the reliability R as

$$
\begin{align*}
R & =\int_{0}^{\infty} \int_{0}^{\lambda}\left(\lambda e^{-\lambda \lambda_{5}}\right)\left[p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}\right] d y d x \\
& =\int_{0}^{\infty}\left(1-e^{-i x}\right)\left[p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}\right] d x \\
& =1-p_{1} a_{1} b_{1} \int_{0}^{\infty} e^{-\lambda x_{x}}\left(1+a_{1} x\right)^{-\left(b_{3}+1\right)} d x-\left(1-p_{1}\right) a_{2} b_{2} \int_{0}^{\infty} e^{-\lambda x^{x}}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)} d x \\
& =1-p_{1} a_{1} b_{1}\left[(\lambda)^{k_{2}} e^{\left(\lambda / a_{1}\right)} \Gamma\left(-b_{1}, \frac{\lambda}{a_{1}}\right) a_{1}^{-1 \cdot b_{1}}\right]-\left(1-p_{1}\right) a_{2} b_{2}\left[(\lambda)^{b_{2}} e^{\left(\lambda / a_{2}\right)} \Gamma\left(-b_{2}, \frac{\lambda}{a_{2}}\right) a_{2}^{-1-b_{2}}\right] \\
& =1-p_{1} b_{1}\left(\lambda / a_{1}\right)^{b_{1}} e^{\left(\lambda / a_{1}\right)} \Gamma\left(-b_{1}, \frac{\lambda}{a_{1}}\right)-\left(1-p_{1}\right) b_{2}\left(\lambda / a_{2}\right)^{t_{2},} e^{\left(\lambda / a_{2}\right)} \Gamma\left(-b_{2}, \frac{\lambda}{a_{2}}\right), \tag{5.2}
\end{align*}
$$

where $\Gamma\left(-b_{i}, \frac{\lambda}{a_{i}}\right), i=1,2$ is the incomplete gamma function.

5.3.2 The stress Y follows Pareto II distribution

Suppose that the stress Y follows Pareto II with p.d.f.

$$
\begin{equation*}
g(y)=a b(1+a y)^{-(b+1)} ; \quad a>0, b>0 . \tag{5.3}
\end{equation*}
$$

When X and Y are independent, the reliability R is obtained as

$$
R=\int_{0}^{\infty} \int_{0}^{x}\left(a b(1+a y)^{-(b+1)}\right)\left[p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{2}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}\right] d y d x
$$

$$
\begin{align*}
& =\int_{0}^{\infty}\left[1-(1+a x)^{-b}\right]\left[p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}\right] d x \\
& =1-p_{1} a_{1} b_{1} \int_{0}^{\infty}(1+a x)^{-b}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)} d x-\left(1-p_{1}\right) a_{2} b_{2} \int_{1}^{\infty}(1+a x)^{-b}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)} d x \\
& =1-p_{1} b_{1}\left\{-\pi \csc \left[\pi b_{1}\right] \frac{\Gamma\left(b_{1}+b\right)}{\Gamma \Gamma\left(1+b_{1}\right)} a_{1}^{-b_{1}}\left[1-\frac{a}{a_{1}}\right]^{-\left(b_{1}+b\right)} a^{b_{1}}+\frac{H y 2 F_{1}\left[1, b, 1-b_{1}, \frac{a}{\left.a_{1}-\right]}\right.}{b_{1}}\right\} \\
& -\left(1-p_{1}\right) b_{2}\left\{-\pi \csc \left[\pi b_{2}\right] \frac{\Gamma\left(b_{2}+b\right)}{\Gamma b \Gamma\left(1+b_{2}\right)} a_{2}^{-b_{2}}\left[1-\frac{a}{a_{2}}\right]^{-\left(b_{2}+(b)\right.} a^{b_{2}}+\frac{H y 2 F_{1}\left[1, b, 1-b_{2}, \frac{a}{a_{2}}\right]}{b_{2}}\right\}, \tag{5.4}
\end{align*}
$$

where $H y 2 F_{\mathrm{t}}\left[1, b, 1-b_{i}, \frac{a}{a_{i}}\right],(i=1,2)$ is the hypergeometric function and $\csc [\pi b]$ is the cosecant of πb

5.3.3 The stress Y follows finite mixture of Pareto II distributions

When the stress Y follows finite mixture of Pareto II with p.d.f

$$
\begin{equation*}
g(y)=p_{3} a_{3} b_{3}\left(1+a_{3} y\right)^{-\left(b_{3}+1\right)}+\left(1-p_{3}\right)\left(1+a_{4} y\right)^{-\left(b_{4}+1\right)} ; \quad a_{3}, a_{4}, b_{3} \quad \text { and } \quad b_{4}>0 \tag{5.5}
\end{equation*}
$$

and if X and Y are independent, we obtain the reliability R as

$$
\begin{aligned}
& R=\int_{0}^{\infty} \int_{0}^{x}\left[p_{3} a_{3} b_{3}\left(1+a_{3} y\right)^{-\left(b_{3}+1\right)}+\left(1-p_{3}\right)\left(1+a_{4} y\right)^{-\left(b_{1}+1\right)}\right] \\
& \qquad \quad\left[p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}\right] d y d x \\
& =\int_{0}^{\infty}\left[1-p_{3}\left(1+a_{3} x\right)^{-b_{3}}-\left(1-p_{3}\right)\left(1+a_{4} x\right)^{-b_{4}}\right]\left[p_{1} a_{i} b_{1}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}\right) d x
\end{aligned}
$$

$$
\begin{align*}
& =1-\int_{0}^{\infty} p_{3}\left(1+a_{3} x\right)^{-b_{3}}\left[p_{1} a_{1} b_{3}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{1}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}\right] d x \\
& -\int_{0}^{\infty}\left(1-p_{3}\right)\left(1+a_{4} x\right)^{-b_{0}}\left[p_{1} a_{1} b_{1}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)}+\left(1-p_{i}\right) a_{2} b_{2}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)}\right] d x \\
& =1-p_{3} p_{1} a_{1} b_{1} \int_{0}^{\infty}\left(1+a_{3} x\right)^{-b_{3}}\left(1+a_{1} x\right)^{-\left(b_{1}+1\right)} d x-p_{3}\left(1-p_{1}\right) a_{2} b_{2} \int_{0}^{\infty}\left(1+a_{3} x\right)^{-b_{2}}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)} d x \\
& -\left(1-p_{3}\right) p_{1} a_{1} b_{1} \int_{0}^{\infty}\left(1+a_{4} x\right)^{-b_{4}}\left(1+a_{1} x\right)^{-\left(b_{4}+1\right)} d x-\left(1-p_{3}\right)\left(1-p_{1}\right) a_{2} b_{2} \int_{0}^{\infty}\left(1+a_{4} x\right)^{-b_{4}}\left(1+a_{2} x\right)^{-\left(b_{2}+1\right)} d x \\
& =1-p_{3} p_{1} a_{1} b_{1}\left\{\pi \csc \left[\pi b_{3}\right] \frac{\Gamma\left(b_{1}+b_{3}\right)}{\Gamma b_{3} \Gamma\left(1+b_{1}\right)} a_{1}^{-1+b_{1}}\left[1-\frac{a_{1}}{a_{3}}\right]^{-\left(b_{1}+b_{1}, 1\right.} a_{3}^{-b_{3}}+\frac{H y 2 F_{1}\left[1,1+b_{1}, 2-b_{3}, \frac{a_{1}}{a_{3}}\right.}{a_{3}\left(-1+b_{3}\right)}\right\} \\
& -p_{3}\left(1-p_{1}\right) a_{2} b_{2}\left\{\pi \csc \left[\pi b_{3}\right] \frac{\Gamma\left(b_{2}+b_{3}\right)}{\Gamma b_{3} \Gamma\left(1+b_{2}\right)} a_{2}^{-1+b_{2}}\left[1-\frac{a_{2}}{a_{3}}\right\rceil^{-\left(b_{2}+b_{3}\right)} a_{3}^{-b_{3}}+\frac{H y 2 F_{1}\left[1,1+b_{2}, 2-b_{3}, \frac{a_{2}}{a_{3}}\right]}{a_{3}\left(-1+b_{3}\right)}\right\} \\
& -\left(1-p_{3}\right) p_{1} a_{1} b_{1}\left\{\pi \csc \left[\pi b_{4} 1 \frac{\Gamma\left(b_{1}+b_{4}\right)}{\Gamma b_{4} \Gamma\left(1+b_{1}\right)} a_{1}^{-1+b_{4}}\left[1-\frac{a_{1}}{a_{4}}\right]^{-\left(b_{4}+b_{4}\right)} a_{4}^{-b_{4}}+\frac{H y 2 F_{1}\left[1,1+b_{1}, 2-b_{4}, \frac{a_{1}}{a_{4}}\right]}{a_{4}\left(-1+b_{4}\right)}\right\}\right. \\
& -\left(1-p_{3}\right)\left(1-p_{1}\right) a_{2} b_{2}\left\{\pi \csc \left[\pi b_{4}\right] \frac{\Gamma\left(b_{2}+b_{4}\right)}{\Gamma b_{4} \Gamma\left(1+b_{2}\right)} a_{2}^{-1+b_{4}}\left[1-\frac{a_{2}}{a_{4}}\right\}^{\left(b_{4}+b_{4}\right)} a_{4}^{-b_{4}}+\frac{H y 2 F_{1}\left[1,1+b_{2}, 2-b_{4}, \frac{a_{2}}{a_{4}}\right]}{a_{4}\left(-1+b_{4}\right)}\right\}, \tag{5.6}
\end{align*}
$$

5.4 Estimation of parameters

In this section, we estimate the parameters of the models by the method of maximum likelihood, for the complete as well as censored samples.

5.4.1 Exponential distribution

Suppose the stress Y is a non-negative random variable which follows an exponential distribution with probability density function (5.1).

(a) Estimation of parameter based on type I censored samples.

In this section, we develop maximum likelihood estimators of parameters under type I censoring. Suppose there is a random sample of n units with lifetimes $Y_{1}, Y_{2}, \ldots, Y_{n}$ having distribution (5.1). We observe Y_{i} only if $Y_{i} \leq T$, where T is a fixed censoring time. The observed data therefore consists of pairs ($\tilde{y}_{i}, \delta_{i}$), $i=1,2, \ldots, n$ where $\tilde{y}_{i}=\min \left(Y_{i}, T\right)$ and

$$
\begin{aligned}
\delta_{i}= & 1 \text { if } Y_{i} \leq T \\
& =0 \text { if } Y_{i}>T .
\end{aligned}
$$

The general form of the likelihood function for type I censored sample is given by (2.89) and for the exponential model (5.1), (2.89) becomes

$$
\begin{equation*}
L(\lambda \mid \underline{y})=\prod_{i=1}^{n}\left(\lambda e^{-\lambda v_{i}}\right)^{\delta} e^{-\lambda T\left(1-\delta_{i}\right)} \tag{5.7}
\end{equation*}
$$

where $\underline{y}=\left(\tilde{y}_{1}, \tilde{y}_{2}, \ldots, \tilde{y}_{n}\right)$.

Maximization of log-likelihood function with respect to the parameter yields the estimate of λ as

$$
\begin{equation*}
\hat{\lambda}=\frac{r}{\sum_{i=1}^{n}\left[\tilde{y}_{i} \delta_{i}+T\left(1-\delta_{i}\right)\right]}, \tag{5.8}
\end{equation*}
$$

where $r=\sum_{i=1}^{n} \delta_{i}$ is the observed number of lifetimes.

(b) Estimation of parameter based on type II censored samples.

Suppose that only the first r smallest observations $y_{(1)} \leq y_{(2)} \leq \ldots \leq y_{(r)}$ are available in a total sample of size n. From (2.108), the likelihood function for type II censored sample is given by

$$
\begin{equation*}
L(\lambda \mid \underline{y})=\frac{n!}{(n-r)!}\left[\prod_{i=1}^{r}\left(\lambda e^{-\lambda y_{i, n}}\right] e^{-\lambda_{1,,(n-r)}}\right. \tag{5.9}
\end{equation*}
$$

By maximizing the log-likelihood function with respect to the parameter, the maximum likelihood estimate of λ can be obtained as

$$
\begin{equation*}
\hat{\lambda}=\frac{r}{\sum_{i=1}^{r} y_{(i)}+(n-r) y_{(r)}} . \tag{5.10}
\end{equation*}
$$

Remark 5.1

When $r=n$, the results obtained under type II censoring becomes complete sample case.

5.4.2 Pareto II distribution

The stress Y follows Pareto II distribution with probability density function given in (5.3).
(a) Estimation of parameters based on type I censored samples.

For the model (5.3), the likelihood function (2.89) based on a sample $\left(\tilde{y}_{1}, \tilde{y}_{2}, \ldots, \tilde{y}_{n}\right)$ becomes
$L(a, b \mid \underline{y})=\prod_{i=1}^{n}\left\{\left(a b\left(1+a \underline{y}_{i}\right)^{-(h+1)}\right)^{\delta_{i}}(1+a T)^{-b\left(1-\delta_{i}\right)}\right\}$
Maximization of log-likelihood function with respect to the model parameters yields the following likelihood equations,

$$
\begin{equation*}
\frac{r}{a}=(b+1) \sum_{i=1}^{n} \frac{\delta_{i} \tilde{y}_{i}}{\left(1+a \tilde{y}_{i}\right)}+b \frac{\sum_{i=1}^{n}\left(1-\delta_{i}\right) T}{(1+a T)} \tag{5.12}
\end{equation*}
$$

$\frac{r}{b}=\sum_{i=1}^{n} \delta_{i} \log \left(1+a \tilde{y}_{i}\right)+\sum_{i=1}^{n}\left(1-\delta_{i}\right) \log (1+a T)$.
where $r=\sum_{i=1}^{n} \delta_{i}$ is the observed number of lifetimes.
Solving the equations (5.12) and (5.13) numerically, we obtain M.L.E. s of a and b

(b) Estimation of parameters based on type II censored samples.

Based on a sample of size n, we observe only r smallest lifetimes $y_{(1)} \leq y_{(2)} \leq \ldots \leq y_{(r)}$, then, for the modei (5.3), the likelihood function (2.108) becomes
$L(a, b \mid \underline{y})=\frac{n!}{(n-r)!}\left[\prod_{i=1}^{r} a b\left(1+a y_{(i)}\right)^{-(b+1)}\right]\left(1+a y_{(r)}\right)^{-b(n-r)}$

Maximization of log-likelihood function with respect to the model parameters yields the following likelihood equations,

$$
\begin{equation*}
\frac{r}{a}=(b+1) \sum_{i=1}^{r} \frac{y_{(i)}}{\left(1+a y_{(i)}\right)} \div \frac{b(n-r) y_{(r)}}{1+a y_{(r)}} \tag{5.15}
\end{equation*}
$$

$\frac{r}{b}=\sum_{i=1}^{r} \log \left(1+a y_{(i)}\right)+(n-r) \log \left(1+a y_{(r)}\right)$.
The estimates of a and b can be obtained by solving the equations (5.15) and (5.16) by Newton- Raphson iterative method.

Remark 5.2

When $r=n$, the results obtained under type II censoring becomes complete sample case.

5.4.3 Finite mixture of Pareto II distribution

Estimation of parameters of finite mixture of Pareto II is already discussed in Chapter 2.

5.5 Estimation of stress-strength reliability

When the strength X follows finite mixture of Pareto Il with parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} and the stress Y follows exponential distribution with parameter λ, then the maximum likelihood estimate of R is given as
$\hat{R}=1-\hat{p}_{1} \hat{b}_{1}\left(\hat{\lambda} / \hat{a}_{1}\right)^{\dot{b}_{1}} e^{\left(\hat{\lambda} \hat{a}_{1}\right)} \Gamma\left(-\hat{b}_{1}, \frac{\hat{\lambda}}{\hat{a}_{1}}\right)-\left(1-\hat{p}_{1}\right) \hat{b}_{2}\left(\hat{\lambda} / \hat{a}_{2}\right)^{\hat{b}_{2}} e^{\left(\hat{\lambda}_{1}\right)} \Gamma\left(-\hat{b}_{2}, \frac{\hat{\lambda}}{\hat{a}_{2}}\right)$.

Then from appendix B of Lawless (2003), the asymptotic variance of \hat{R} is given by

$$
\begin{aligned}
& \operatorname{Var}(\hat{R})=\left(\frac{\partial R}{\partial a_{1}}\right)^{2} \operatorname{Var}\left(\hat{a}_{1}\right)+\left(\frac{\partial R}{\partial a_{2}}\right)^{2} \operatorname{Var}\left(\hat{a}_{2}\right)+\ldots+\left(\frac{\partial R}{\partial p_{1}}\right)^{2} \operatorname{Var}\left(\hat{p}_{1}\right) \\
& +\frac{\partial R}{\partial a_{1}} \frac{\partial R}{\partial a_{2}} \operatorname{Cov}\left(\hat{a}_{1}, \hat{a}_{2}\right)+\frac{\partial R}{\partial a_{1}} \frac{\partial R}{\partial b_{1}} \operatorname{Cov}\left(\hat{a}_{1}, \hat{b}_{1}\right)+\ldots+\frac{\partial R}{\partial b_{2}} \frac{\partial R}{\partial p_{1}} \operatorname{Cov}\left(\hat{b}_{2}, \hat{p}_{1}\right) .
\end{aligned}
$$

where variances and covariances are directly obtained from the inverse of the matrix $I\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right)$ with
$I\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right)=\left(\begin{array}{ccc}-\frac{\partial^{2} \log R}{\partial a_{1}{ }^{2}} & -\frac{\partial^{2} \log R}{\partial a_{1} \partial a_{2}}-\frac{\partial^{2} \log R}{\partial a_{1} \partial b_{1}}-\frac{\partial^{2} \log R}{\partial a_{1} \partial b_{2}} & -\frac{\partial^{2} \log R}{\partial a_{1} \partial p_{1}} \\ -\frac{\partial^{2} \log R}{\partial p_{1} \partial a_{1}} & -\frac{\partial^{2} \log R}{\partial p_{1} \partial a_{2}}-\frac{\partial^{2} \log R}{\partial p_{1} \partial b_{1}}-\frac{\partial^{2} \log R}{\partial p_{1} \partial b_{2}} & -\frac{\partial^{2} \log R}{\partial p_{1}{ }^{2}}\end{array}\right)$

When the strength X follows finite mixture of Pareto II with parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} and the stress Y follows Pareto II distribution with parameters a and b, then the maximum likelihood estimate of R is obtained as

$$
\begin{aligned}
& \hat{R}=1-\hat{p}_{1} \hat{b}_{1}\left\{-\pi \csc \left[\pi \hat{b}_{1}\right] \frac{\Gamma\left(\hat{b}_{1}+\hat{b}^{\prime}\right)}{\Gamma \hat{b} \Gamma\left(1+\hat{b}_{1}\right)} \hat{a}_{1}^{-\hat{t}_{1}}\left[1-\frac{\hat{a}}{\hat{a}_{1}}\right]^{-\left(\hat{b}_{+}+b_{1}\right)} \hat{a}^{\hat{b}_{h}}+\frac{H y 2 F_{1}\left[1, \hat{b}, 1-\hat{b}_{1}, \frac{\hat{a}}{\hat{a}_{1}}\right]}{\hat{b}_{1}}\right\} \\
& -\left(1-\hat{p}_{1}\right) \hat{b}_{2}\left\{-\pi \csc \left[\pi \hat{b}_{2}\right] \frac{\Gamma\left(\hat{b}_{2}+\hat{b}\right)}{\Gamma \hat{b} \Gamma\left(1+\hat{b}_{2}\right)} \hat{a}_{2}{ }^{-\hat{b}_{2}}\left[1-\frac{\hat{a}}{\hat{a}_{2}}\right]^{-\left(\hat{b_{2}}+\hat{b}_{1}\right)} \hat{a}^{\hat{b}_{2}}+\frac{\left.H y 2 F_{1} \mid 1, \hat{b}, 1-\hat{b}_{2}, \frac{\hat{a}}{\hat{a}_{2}}\right]}{\hat{b}_{2}}\right\} .
\end{aligned}
$$

When the strength X follows finite mixture of Pareto II with parameters $a_{1}, a_{2}, b_{1}, b_{2}$ and p_{1} and the stress Y follows finite mixture of Pareto II distribution with parameters $a_{3}, a_{4}, b_{3}, b_{+}$and p_{3}, then the maximum likelihood estimate of R is given as

$$
\begin{aligned}
& \hat{R}=1-\hat{p}_{3} \hat{p}_{1} \hat{a}_{1} \hat{b}_{1}\left\{\pi \csc \left[\pi \hat{b}_{3}\right] \frac{\Gamma\left(\hat{b}_{1}+\hat{b}_{3}\right)}{\Gamma \hat{b}_{3} \Gamma\left(1+\hat{b}_{1}\right)} \hat{a}_{1}^{-1+\hat{b}_{3}}\left[1-\frac{\hat{a}_{1}}{\hat{a}_{3}}\right]^{-\left(\hat{b}_{1}+\hat{b}_{3}\right)} \hat{a}_{3}^{-\hat{b}_{3}}+\frac{H y 2 F_{1}\left[1,1+\hat{b}_{1}, 2-\hat{b}_{3}, \frac{\hat{a}_{1}}{\hat{a}_{3}}\right]}{\hat{a}_{3}\left(-1+\hat{b}_{3}\right)}\right\} \\
& -\hat{p}_{3}\left(1-\hat{p}_{1}\right) \hat{a}_{2} \hat{b}_{2}\left\{\pi \csc \left[\pi \hat{b}_{3}\right] \frac{\Gamma\left(\hat{b}_{2}+\hat{b}_{3}\right)}{\Gamma \hat{b}_{3} \Gamma\left(1+\hat{b}_{2}\right)} \hat{a}_{2}^{-1+\hat{b}_{3}}\left[1-\frac{\hat{a}_{2}}{\hat{a}_{3}}\right]^{-\left(\hat{b}_{3}+\hat{b}_{3}\right)} \hat{a}_{3}^{-\hat{b}_{3}}+\frac{H y 2 F_{1}\left[1,1+\hat{b}_{2}, 2-\hat{b}_{3}, \frac{\hat{a}_{2}}{\hat{a}_{3}}\right]}{\hat{a}_{3}\left(-1+\hat{b}_{3}\right)}\right\} \\
& -\left(1-\hat{p}_{3}\right) \hat{p}_{1} \hat{a}_{1} \hat{b}_{1}\left\{\pi \csc \left[\pi \hat{b}_{4}\right] \frac{\Gamma\left(\hat{b}_{1}+\hat{b}_{4}\right)}{\Gamma \hat{b}_{4} \Gamma\left(1+\hat{b}_{1}\right)} \hat{a}_{1}^{-1+\hat{b}_{4}}\left[1-\frac{\hat{a}_{1}}{\hat{a}_{4}}\right]^{-\left(\hat{b}_{1}+\hat{b}_{4}\right)} \hat{a}_{4} \dot{b}_{4}+\frac{H y 2 F_{1}\left[1,1+\hat{b}_{1}, 2-\hat{b}_{4}, \frac{\hat{a}_{1}}{\hat{a}_{4}}\right]}{\hat{a}_{4}\left(-1+\hat{b}_{4}\right)}\right\} \\
& -\left(1-\hat{p}_{3}\right)\left(1-\hat{p}_{1}\right) \hat{a}_{2} \hat{b}_{2}\left\{\pi \csc \left[\pi \hat{b}_{4}\right] \frac{\Gamma\left(\hat{b}_{2}+\hat{b}_{4}\right)}{\Gamma \hat{b}_{4} \Gamma\left(1+\hat{b}_{2}\right)} \hat{a}_{2}^{-1+\hat{b}_{4}}\left[1-\frac{\hat{a}_{2}}{\hat{a}_{4}}\right]^{-\left(\hat{b}_{2}+\dot{b}_{4}\right)} \hat{a}_{4}^{-\hat{b}_{4}}+\frac{H y 2 F_{1}\left[1,1+\hat{b}_{2}, 2-\hat{b}_{4}, \frac{\hat{a}_{2}}{\hat{a}_{4}}\right]}{\hat{a}_{4}\left(-1+\hat{b}_{4}\right)}\right\} .
\end{aligned}
$$

5.6 Simulation Study

In this section, we carry out simulation studies to observe the finite sample properties of the estimates and their robustness.

(a) Exponential distribution

We generate observations from exponential distribution with parameter $\lambda=0.7$. Table 5.1 and 5.2 provides maximum likelihood estimates of parameters under complete as well as censored situations with various combinations of n (sample size), T (censoring time) and r (number of failures). The variances of the estimates are given in brackets.

(b) Pareto II distribution

We generate samples from Pareto II distribution with parameters $a=\mathrm{I}, b=4$. The estimates under complete as well as type I and type Il censoring set up are given in Tables 5.3 and 5.4 for various combinations of n, T and r

(c) Finite mixture of Pareto II distribution

For the type I censoring, in which observations belonging to each subpopulation are known, we generate two sets of samples, one from a Pareto II distribution with parameters a_{1} and b_{1} and the second from a Pareto II distribution with parameters a_{2} and b_{2}.

For the type I censoring (in which observations bclonging to each subpopulation are unknown) and type II censoring, first we generate two sets of samples, one from a Pareto II distribution with parameters a_{1} and b_{1} and the second from a Pareto II distribution with parameters a_{2} and b_{2} and then, we obtained finite mixture of Pareto II distributions using Bemoulli probability $p_{1}\left(0<p_{1}<1\right)$.

The estimates of parameters by the method of maximum likelihood under type I censoring and type II censoring for the set of parameters $a_{1}=.03, a_{2}=3, b_{1}=1, b_{2}=2$ and $p_{1}=0.5$ with various combinations of n (sample size) and T (censoring time) are given in Chapter 2. The result obtained under type II censoring is extended to the complete sample by taking $r=n$.

Tables 5.5 to 5.7 give the maximum likelihood estimates for another set of parameters $a_{3}=.005, a_{4}=2, b_{3}=3, b_{4}=5$ and $p_{3}=0.6$ under complete as well as censoring for same combinations of n, T and r, where p_{3} is the mixing Bernoulli probability ($0<p_{3}<1$).

Stress strength reliability when strengih is finite mixture of Pareto II and stress is exponential is given in Table 5.8. Table 5.9 provides the Stress strength reliability when strength is finite mixture of Pareto II and stress is Pareto II. When stress and strength are finite mixture of Pareto II, the reliability is given in Table 5.10. The variances of the estimates are given in brackets.

We use the software 'Mathematica' to evaluate the integrals numerically.

Table 5.1 Maximum likelihood estimates of parameters under type I censoring for $\lambda=0.7$ (exponential)

Censoring time	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{~T}=30$	$\hat{\lambda}=0.670027$		
	(0.001320)	(0.000271)	(0.000050)
	$\hat{\lambda}=0.6827$	$\hat{\lambda}=0.70022$	
$\mathrm{~T}=100$	$\hat{\lambda}=0.71027$	$\hat{\lambda}=0.6987$	$\hat{\lambda}=0.70001$
	(0.000871)	(0.000154)	(0.000011)

Table 5.2 Maximum likelihood estimates of parameters under type II censoring for $\lambda=0.7$ (exponential)

$\mathrm{n}=30$		$\mathrm{n}=50$		$\mathrm{n}=100$	
$\mathrm{r}=10$	$\mathrm{r}=30$	$\mathrm{r}=30$	r=50	$\mathrm{r}=60$	$r=100$
$\hat{\lambda}=0.68175$	$\hat{\lambda}_{=0.68886}$	$\hat{\lambda}=0.68892$	$\hat{\lambda}=0.7019$	$\hat{\lambda}=0.68899$	$\hat{\lambda}=.7012$
(0.002764)	(0.001159)	(0.001042)	(0.000987)	(0.000125)	(.0000654)

Table 5.3 Maximum likelihood estimates of parameters under type I censoring for $a=1, b=4$ (Pareto II)

Censoring time	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$T=30$	$\begin{aligned} & \hat{a}=1.13372 \\ & (2.7 \mathrm{E}-2) \end{aligned}$	$\begin{aligned} & \hat{a}=1.05943 \\ & (1.08 \mathrm{E}-4) \end{aligned}$	$\begin{aligned} & \hat{a}=1.00058 \\ & (1.01 \mathrm{E}-6) \end{aligned}$
	$\begin{aligned} & \hat{b}=3.78796 \\ & (.00821) \end{aligned}$	$\begin{aligned} & \hat{b}=3.87436 \\ & (.000275) \end{aligned}$	$\hat{b}=4.01902$ (2.7E-7)
$\mathrm{T}=100$	$\begin{aligned} & \hat{a}=1.1164 \\ & (1.2 \mathrm{E}-2) \end{aligned}$	$\begin{aligned} & \hat{a}=1.02179 \\ & (1.01 \mathrm{E}-4) \end{aligned}$	$\begin{aligned} & \hat{a}=1.00012 \\ & (1.01 \mathrm{E}-7) \end{aligned}$
	$\begin{aligned} & \hat{b}=3.864 \\ & (3.4 \mathrm{E}-3) \end{aligned}$	$\begin{aligned} & \hat{b}=3.9019 \\ & (2.9 \mathrm{E}-5) \end{aligned}$	$\begin{aligned} & \hat{b}=4.0017 \\ & (1.3 \mathrm{E}-7) \end{aligned}$

Table 5.4 Maximum likelihood estimates of parameters under type II censoring for $a=1, b=4$ (Pareto II)

$\mathrm{n}=30$		$\mathrm{n}=50$		$\mathrm{n}=100$	
$\mathrm{r}=10$	$\mathrm{r}=30$	$\mathrm{r}=30$	$\mathrm{r}=50$	$\mathrm{r}=60$	$\mathrm{r}=100$
$\hat{a}=0.9764$	$\hat{a}=0.9889$	$\hat{a}=0.9899$	$\hat{a}=1.015$	$\hat{a}=1.011$	$\hat{a}=1.007$
$(.000453)$	(0.000124)	$(2.6 \mathrm{E}-4)$	$(2.56 \mathrm{E}-5)$	$(1.2 \mathrm{E}-5)$	$(1.1 \mathrm{E}-6)$
$\hat{b}=3.8643$	$\hat{b}=3.9117$	$\hat{b}=3.9547$	$\hat{b}=4.0743$	$\hat{b}=3.998$	$\hat{b}=4.0012$
$(.0001975)$	$(.000124)$	$(1.8 \mathrm{E}-4)$	$(1.01 \mathrm{E}-5)$	$(1.1 \mathrm{E}-5)$	$(1.02 \mathrm{E}-6)$

Table 5.5 Maximum likelihood estimates of parameters under type I censoring for $a_{3}=.005, a_{4}=2, b_{3}=3, b_{4}=5$ and $p_{3}=0.6$ in which observations belonging to each subpopulation are known.

Censoring time	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{T}=30$	$\begin{gathered} \hat{a}_{3}=.0051004 \\ (9.08 \mathrm{E}-05) \end{gathered}$	$\begin{gathered} \hat{a}_{3}=.00491342 \\ -(5.53 \mathrm{E}-05) \end{gathered}$	$\begin{gathered} \hat{a}_{3}=.00497522 \\ (1.13 \mathrm{E}-05) \end{gathered}$
	$\begin{aligned} & \hat{a}_{4}=2.1098 \\ & (9.44 \mathrm{E}-05) \end{aligned}$	$\begin{aligned} & \hat{a}_{4}=2.02653 \\ & (6.81 \mathrm{E}-05) \end{aligned}$	$\begin{aligned} & \hat{a}_{4}=2.02132 \\ & (1.49 \mathrm{E}-05) \end{aligned}$
	$\begin{gathered} \hat{b}_{3}=2.829962 \\ (.000386) \end{gathered}$	$\begin{gathered} \hat{b}_{3}=2.918252 \\ (.000124) \end{gathered}$	$\begin{gathered} \hat{b}_{3}=3.029122 \\ (1.1 \mathrm{E}-4) \end{gathered}$
	$\begin{gathered} \hat{b}_{4}=5.0976 \\ (.0437) \end{gathered}$	$\begin{gathered} \hat{b}_{4}=4.9973 \\ (.00631) \end{gathered}$	$\begin{aligned} & \hat{b}_{4}=4.99843 \\ & (.000289) \end{aligned}$
	$\begin{gathered} \hat{p}_{3}=.608161 \\ (5.9 \mathrm{E}-11) \end{gathered}$	$\begin{gathered} \hat{p}_{3}=.6008275 \\ (9.7 \mathrm{E}-12) \end{gathered}$	$\begin{aligned} & \hat{p}_{3}=.6001367 \\ & (4.97 \mathrm{E}-12) \end{aligned}$
$\mathrm{T}=100$	$\begin{gathered} \hat{a}_{3}=.0051106 \\ (2.37 \mathrm{E}-05) \end{gathered}$	$\begin{aligned} & \hat{a}_{3}=.0051058 \\ & (1.892 \mathrm{E}-05) \end{aligned}$	$\begin{aligned} & \hat{a}_{3}=.0050117 \\ & (1.882 \mathrm{E}-05) \end{aligned}$
	$\begin{aligned} & \hat{a}_{4}=1.9124 \\ & (8.83 \mathrm{E}-06) \end{aligned}$	$\begin{gathered} \hat{a}_{4}=1.975 \\ (5.72 \mathrm{E}-06) \end{gathered}$	$\begin{aligned} & \hat{a}_{4}=2.0232 \\ & (4.98 \mathrm{E}-(06) \end{aligned}$
	$\begin{aligned} & \hat{b}_{3}=3.1096 \\ & (.040889) \end{aligned}$	$\begin{aligned} & \hat{b}_{3}=3.0864 \\ & (.040573) \end{aligned}$	$\begin{gathered} \hat{b}_{3}=3.00031 \\ (.007085) \end{gathered}$
	$\begin{gathered} \hat{b}_{4}=5.1087 \\ (.00963) \end{gathered}$	$\begin{gathered} \hat{b}_{4}=5.0965 \\ (.00149) \end{gathered}$	$\begin{aligned} & \hat{b}_{4}=5.0132 \\ & (.000397) \end{aligned}$
	$\begin{aligned} & \hat{p}_{3}=.59998 \\ & (5.18 \mathrm{E}-11) \end{aligned}$	$\begin{aligned} & \hat{p}_{3}=.59999 \\ & (8.57 \mathrm{E}-12) \end{aligned}$	$\begin{aligned} & \hat{p}_{3}=.6002 \\ & \\ & \hline \end{aligned}$

Table 5.6 Maximum likelihood estimates of parameters under type I censoring for $a_{3}=.005, a_{4}=2, b_{3}=3, b_{4}=5$ and $p_{3}=0.6$ in which observations belonging to each subpopulation are unknown.

Censoring time	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{T}=30$	$\begin{aligned} & \hat{a}_{3}=.00512 \\ & (3.7 \mathrm{E}-03) \end{aligned}$	$\begin{gathered} \hat{a}_{3}=.005098 \\ (2.4 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} \hat{a}_{3}=.005087 \\ (1.5 \mathrm{E}-03) \end{gathered}$
	$\begin{aligned} & \hat{a}_{4}=2.0912 \\ & (2.4 \mathrm{E}-03) \end{aligned}$	$\begin{gathered} \hat{a}_{4}=1.92786 \\ (1.9 \mathrm{E}-03) \end{gathered}$	$\begin{gathered} \hat{a}_{4}=2.01764 \\ (1.8 \mathrm{E}-03) \end{gathered}$
	$\begin{aligned} & \hat{b}_{3}=3.101 \\ & (2.7 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{3}=3.107 \\ & (2.1 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{3}=3.028 \\ & (1.5 \mathrm{E}-03) \end{aligned}$
	$\begin{aligned} & \hat{b}_{4}=5.0875 \\ & (5.4 \mathrm{E}-03) \end{aligned}$	$\begin{gathered} \hat{b}_{4}=5.07121 \\ (3.7 \mathrm{E}-03) \end{gathered}$	$\begin{aligned} & \hat{b}_{4}=5.019 \\ & (2.2 \mathrm{E}-03) \end{aligned}$
	$\begin{aligned} & \hat{p}_{3}=.6009 \\ & (4.2 \mathrm{E}-12) \end{aligned}$	$\begin{aligned} & \hat{p}_{3}=.59989 \\ & (3.7 \mathrm{E}-12) \end{aligned}$	$\begin{aligned} & \hat{p}_{3}=.6002 \\ & (1.8 \mathrm{E}-12) \end{aligned}$
$\mathrm{T}=100$	$\begin{aligned} & \hat{a}_{3}=.00509 \\ & (3.2 \mathrm{E}-03) \end{aligned}$	$\begin{gathered} \hat{a}_{3}=.005054 \\ (1.98 \mathrm{E}-03) \end{gathered}$	$\begin{aligned} & \hat{a}_{3}=.00508 \\ & (1.32 \mathrm{E}-03) \end{aligned}$
	$\begin{aligned} & \hat{a}_{4}=1.9469 \\ & (2.6 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{a}_{4}=1.98 \\ & (1.7 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{a}_{4}=2.0031 \\ & (1.3 \mathrm{E}-03) \end{aligned}$
	$\begin{aligned} & \hat{b}_{3}=3.0942 \\ & (2.1 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{3}=3.023 \\ & (1.1 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{3}=2.9976 \\ & (2.7 \mathrm{E}-04) \end{aligned}$
	$\begin{aligned} & \hat{b}_{4}=5.1087 \\ & (4.1 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{4}=5.0965 \\ & (2.1 \mathrm{E}-03) \end{aligned}$	$\begin{aligned} & \hat{b}_{4}=4.9832 \\ & (1.08 \mathrm{E}-03) \end{aligned}$
	$\begin{aligned} & \hat{p}_{3}=.59917 \\ & (7.6 \mathrm{E}-14) \end{aligned}$	$\begin{aligned} & \hat{p}_{3}=.60034 \\ & (3.9 \mathrm{E}-14) \end{aligned}$	$\begin{aligned} & \hat{p}_{3}=.60001 \\ & (2.2 \mathrm{E}-14) \end{aligned}$

Table 5.7 Maximum likelihood estimates of parameters under type II censoring for $a_{3}=.005, a_{4}=2, b_{3}=3, b_{4}=5$ and $p_{3}=0.6$

$\mathrm{n}=30$		$\mathrm{n}=50$			$\mathrm{n}=100$	
$\mathrm{r}=10$	$\mathrm{r}=30$	$\mathrm{r}=30$	$\mathrm{r}=50$	$\mathrm{r}=60$	$\mathrm{r}=100$	
$\hat{a}_{3}=.00511$	$\hat{a}_{3}=.00504$	$\hat{a}_{3}=.00494$	$\hat{a}_{3}=.00498$	$\hat{a}_{3}=.00508$	$\hat{a}_{3}=.00502$	
$(2.9 \mathrm{E}-4)$	$(1.22 \mathrm{E}-5)$	$(1.7 \mathrm{E}-5)$	$(1.01 \mathrm{E}-5)$	$(2.4 \mathrm{E}-6)$	$(1.98 \mathrm{E}-6)$	
$\hat{a}_{4}=1.9537$	$\hat{a}_{4}=2.087$	$\hat{a}_{4}=1.987$	$\hat{a}_{4}=1.995$	$\hat{a}_{4}=2.05$	$\hat{a}_{4}=1.999$	
$(.0711)$	$(.0532)$	$(.0532)$	$(.02187)$	$(.00721)$	$(.00210)$	
$\hat{b}_{3}=3.10$	$\hat{b}_{3}=3.0987$	$\hat{b}_{3}=2.9897$	$\hat{b}_{3}=3.0043$	$\hat{b}_{3}=3.014$	$\hat{b}_{3}=3.001$	
$(.0057)$	$(.0032)$	$(.00654)$	$(.00191)$	$(.0007)$	$(.00012)$	
$\hat{b}_{4}=5.075$	$\hat{b}_{4}=5.045$	$\hat{b}_{4}=4.9855$	$\hat{b}_{4}=4.997$	$\hat{b}_{4}=4.998$	$\hat{b}_{4}=5.001$	
$(.1001)$	$(.0978)$	$(.0325)$	$(.00951)$	$(.007821)$	$(.00019)$	
$\hat{p}_{3}=.6103$	$\hat{p}_{3}=.5987$	$\hat{p}_{3}=.5988$	$\hat{p}_{3}=.5999$	$\hat{p}_{3}=.6002$	$\hat{p}_{3}=.6001$	
$(6.7 \mathrm{E}-12)$	$(1.09 \mathrm{E}-13)$	$(3.1 \mathrm{E}-15)$	$(1.1 \mathrm{E}-15)$	$(7.2 \mathrm{E}-18)$	$(2.0 \mathrm{E}-19)$	

Table 5.8 Stress-strength reliability when strength is finite mixture of Pareto II and stress is exponential

Sample size	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
Stress-strength reliability R	0.553244	0.555229	0.559292

Table 5.9 Stress-strength reliability when strength is finite mixture of Pareto II and stress is Pareto II

Sample size	$n=30$	$n=50$	$n=100$
Stress-strength reliability R	0.79128	0.7991	0.80127

Table 5.10 Stress-strength reliability when strength is finite mixture of Pareto II and stress is finite mixture of Pareto II

Sample size	$n=30$	$n=50$	$n=100$
Stress-strength reliability R	0.6759	0.69131	0.71297

5.7 Data analysis.

For the illustration of the method, we consider a stress-strength data which is given in Table 5.11. (see Rao (1992)). The stresses induced in power transmitting shafts and the experimental values of the strength of the shaft material are given as stress and strength values. The values are given in $\mathrm{k}(\mathrm{lb} / \mathrm{in} 2)$. We then estimate the parameters using the method of maximum likelihood. We used the Kolmogorov Smirnov statistic to test the goodness of fit. From the analysis, it concludes that model (2.2) with $a_{1}=0.59, a_{2}=3.35 \times 10^{12}, b_{1}=b_{2}=b=.05$ and $p_{1}=0.5$ is a good model for strength data and the model (5.1) with $\lambda=.87$ is a plausible model for stress data. Then we estimate the reliability of the shafts as 0.213

Table 5.11 Stress-strength data

strength	31.8	25.2	28.3	29.6	30.1	32.7	26.5	28.9	30.8	33.5
stress	23.4	28.6	23.9	25.2	25.5	26.7	20.3	27.7	19.2	22.8

strength	27.4	29.1	30.7	32.2	29.9	30.6	31.7	31.3	33.9	34.3
stress	23.1	24.6	25.9	26.8	27.5	21.7	24.1	24.9	24.8	22.6

5.8 Finite mixture of beta distribution

In this section, we consider the strength X as finite mixture of beta distribution with p.d.f (3.1). As in the previous case, we consider three different distributions for the stress Y.

5.8.1 The stress Y follows exponential distribution

The stress Y follows exponential with probability density function given in (5.1) and assumes that X and Y are independent. Then the reliability R is obtained as,

$$
\begin{align*}
& R=\int_{0}^{1 / c_{1}} \int_{0}^{x}\left(\lambda e^{-\lambda y}\right)\left[p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)}\right] d y d x \\
& =\int_{0}^{1 / 1}\left(1-e^{-\lambda x}\right)\left[p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)}\right] d x \\
& =1-p_{1} c_{1} d_{1} \int_{0}^{1 / 1} e^{-\lambda x}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2} \int_{0}^{1 / c_{2}} e^{-\lambda x}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)} d x \\
& =1-p_{1} c_{1} d_{1}\left[(-1)^{-d_{1}} e^{-\lambda / c_{1}} \lambda^{-d_{1}}\left(\Gamma d_{1}-\Gamma\left(d_{1},-\lambda / c_{1}\right)\right) c_{1}^{-1+d_{1}}\right] \\
& -\left(1-p_{1}\right) c_{2} d_{2}\left[(-1)^{-d_{2}} e^{-\lambda / /_{2}} \lambda^{-d_{2}}\left(\Gamma d_{2}-\Gamma\left(d_{2},-\lambda / c_{2}\right)\right) c_{2}^{-1+d_{2}}\right] \\
& =1-p_{1} d_{1}\left[(-1)^{-d_{1}} e^{-\lambda_{1}}\left(c_{1} / \lambda\right)^{d_{1}}\left(\Gamma d_{1}-\Gamma\left(d_{1},-\lambda / c_{1}\right)\right)\right] \\
& -\left(1-p_{1}\right) d_{2}\left[(-1)^{-d_{2}} e^{-\lambda d_{2}}\left(c_{2} / \lambda\right)^{d_{2}}\left(\Gamma d_{2}-\Gamma\left(d_{2},-\lambda / c_{2}\right)\right)\right] \tag{5.17}
\end{align*}
$$

5.8.2 The stress Y follows beta distribution

The stress Y follows beta with probability density function

$$
\begin{equation*}
f(y)=c d(1-c y)^{(d-t)} ; c>0, d>0,0<y<\frac{1}{c} \tag{5.18}
\end{equation*}
$$

If X and Y are independent, the reliability R is given by
$R=\int_{0}^{1} \int_{0}^{1}\left(c d(1-c y)^{(d-1)}\right)\left[p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)}\right] d y d x$

$$
\begin{align*}
& =\int_{0}^{1 / 1}\left[1-(1-c x)^{d}\right]\left[p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)}\right] d x \\
& =1-p_{1} c_{1} d_{1} \int_{0}^{1 / c_{1}}(1-c x)^{d}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)} d x-\left(1-p_{1}\right) c_{2} d_{2} \int_{0}^{1}(1-c x)^{d}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)} d x \\
& =1-p_{1}\left[H y 2 F 1\left[1,-d, 1+d_{1}, \frac{c}{c_{1}}\right]\right]-\left(1-p_{1}\right)\left[H y 2 F 1\left[1,-d .1+d_{2}, \frac{c}{c_{2}}\right]\right] \tag{5.19}
\end{align*}
$$

5.8.3 The stress Y follows finite mixture of beta distribution

The stress Y follows finite mixture of beta with probability density function

$$
\begin{align*}
& f(y)=p_{3} c_{3} d_{3}\left(1-c_{3} y\right)^{\left(d_{3}-1\right)}+\left(1-p_{3}\right) c_{4} d_{4}\left(1-c_{4} y\right)^{\left(d_{3}-1\right)} ; \\
& c_{3}, c_{4}, d_{3}, d_{4}>0,0<p_{3}<1,0<y<\frac{1}{c_{3}} . \tag{5.20}
\end{align*}
$$

When X and Y are independent, the reliability is given by

$$
\begin{aligned}
& R=\int_{0}^{1} \int_{0}^{1}\left[p_{3} c_{3} d_{3}\left(1-c_{3} y\right)^{\left(d_{3}-1\right)}+\left(1-p_{3}\right) c_{4} d_{4}\left(1-c_{4} y\right)^{\left(d_{4}-1\right)}\right] \\
& \quad\left[p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)}\right] d y d x \\
& =\int_{0}^{1}\left[1-p_{3}\left(1-c_{3} x\right)^{d_{3}}-\left(1-p_{3}\right)\left(1-c_{4} x\right)^{d_{4}}\right]\left[p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)}\right] d x \\
& =1-\int_{0}^{1} p_{3}\left(1-c_{3} x\right)^{d_{3}}\left[p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)} d x\right. \\
& -\int_{0}^{1}\left(1-p_{3}\right)\left(1-c_{4} x\right)^{d_{4}}\left[p_{1} c_{1} d_{1}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)}+\left(1-p_{1}\right) c_{2} d_{2}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)} d x\right. \\
& =1-p_{3} p_{1} c_{1} d_{1} \int_{0}^{1}\left(1-c_{3} x\right)^{d_{3}}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)} d x-p_{3}\left(1-p_{1}\right) c_{2} d_{2} \int_{0}^{1}\left(1-c_{3} x\right)^{d_{3}}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)} d x \\
& \left.-\left(1-p_{3}\right) p_{1} c_{1} d_{1} \int_{0}^{1}\left(1-c_{4} x\right)^{d_{1}}\left(1-c_{1} x\right)^{\left(d_{1}-1\right)} d x-\left(1-p_{3}\right)\left(1-p_{1}\right) c_{2} d_{2} \int_{0}^{1}\left(1-c_{4} x\right)^{d_{1}}\left(1-c_{2} x\right)^{\left(d_{2}-1\right)}\right] d x
\end{aligned}
$$

$=1-p_{3} p_{1} d_{1}\left[\Gamma d_{1} H y 2 F 1 R\left[1,-d_{3}, 1+d_{1}, \frac{c_{3}}{c_{1}}\right]\right]-p_{3}\left(1-p_{1}\right) d_{2}\left[\Gamma d_{2} H y 2 F 1 R\left[1,-d_{3}, 1+d_{2}, \frac{c_{3}}{c_{2}}\right]\right]$
$-\left(1-p_{3}\right) p_{1} d_{1}\left[\Gamma d_{1} H y 2 F 1 R\left[1,-d_{4}, 1+d_{1}, \frac{c_{4}}{c_{1}}\right]\right]-\left(1-p_{3}\right)\left(1-p_{1}\right) d_{2}\left[\Gamma d_{2} H y 2 F 1 R\left[1,-d_{4}, 1+d_{2}, \frac{c_{4}}{c_{2}}\right]\right]$.
where $H y 2 F 1 \mathrm{R}\left[1,-d_{j}, 1+d_{i}, \frac{c_{j}}{c_{i}}\right], \quad i=1,2 \quad$ and $\quad j=3,4 \quad$ is the regularized hypergeometric function.

5.9 Estimation of parameters

In this section, we discuss the estimation of parameters of the different models by the method of maximum likelihood for the complete as well as censored situations.

5.9.1 Exponential distribution

Estimation of parameters in this case is mentioned in Section 5.4.1.

5.9.2 Beta distribution

The stress Y follows beta distribution with probability density function given in (5.18).

(a) Estimation of parameters based on type I censored samples.

In this section. we develop maximum likelihood estimators of parameters under type I censoring. Suppose there is a random sample of n units with lifetimes $Y_{1}, Y_{2}, \ldots, Y_{n}$ from the model (5.18) and associated with each unit, a fixed censoring time T. We observe Y_{i} only if $Y_{i} \leq T$ and the data therefore consists of pairs $\left(\tilde{y}_{1}, \delta_{i}\right), i=1,2, \ldots, n$ and $\tilde{y}_{i}=\min \left(Y_{i}, T\right)$
where $\delta_{i}=1$ if $Y_{i} \leq T$ and $\delta_{i}=0$ if $Y_{i}>T$.

The general form of the likelihood function for type I censored sample is given by (2.89) and for the beta model (5.18), (2.89) becomes
$\left.L(c \cdot d)_{\underline{y}}\right)=\prod_{i=1}^{n}\left\{\left(c d\left(1-c \tilde{y}_{i}\right)^{t-1}\right)^{d}(1-c T)^{d 1-x_{i}}\right\}$.
where $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
Maximization of \log likelihood function with respect to the model parameters yields the following differential equations.

$$
\begin{gather*}
\frac{r}{c}=d \frac{\sum_{i=1}^{n}\left(1-\delta_{i}\right) T}{(1-c T)}+(d-1) \sum_{i=1}^{n} \frac{\delta_{i} \tilde{y}_{i}}{\left(1-c \tilde{y}_{i}\right)}, \tag{5.23}\\
\frac{r}{d}=\sum_{i=1}^{n} \delta_{i} \log \left(1-c \tilde{y}_{i}\right)+\sum_{i=1}^{n}\left(1-\delta_{i}\right) \log (1-c T) . \tag{5.24}
\end{gather*}
$$

where $r=\sum_{i=1}^{n} \delta_{i}$ is the observed number of lifetimes.

Solving the equations (5.23) and (5.24) using Newton-Raphson method, we obtain M.L.E.s of c and d.

(b) Estimation of parameters based on type II censored samples.

In type II censoring, the number of observations r is decided before the data are collected. The data consists of the r smallest lifetimes $y_{(1)} \leq y_{(2)} \leq \ldots \leq y_{(r)}$ out of a random sample of n lifetimes. From (2.108), the likelihood function is given by

$$
\begin{equation*}
L(c, d \mid \underline{y})=\frac{n!}{(n-r)!}\left[\prod_{i=1}^{r} c d\left(1-c y_{(i)}\right)^{(d-1)}\right]\left(1-c y_{(r)}\right)^{d(n-r)} \tag{5.25}
\end{equation*}
$$

Maximization of log likelihood function with respect to the parameters yields the following equations,

$$
\begin{align*}
& \frac{r}{c}=\frac{d(n-r) y_{(r)}}{1-c y_{(r)}}+(d-1) \sum_{i=1}^{r} \frac{y_{(i)}}{\left(1-c y_{(i)}\right)} \tag{5.26}\\
& \frac{r}{d}=(n-r) \log \left(1-c y_{(r)}\right)+\sum_{i=1}^{r} \log \left(1-c y_{(i)}\right) \tag{5.27}
\end{align*}
$$

Solving the equations (5.26) and (5.27) using Newton-Raphson method, we obtain maximum likelihood estimates of c and d.

5.9.3 Finite mixture of beta distribution

Estimation of parameters of finite mixture of beta is discussed in Chapter 3.

5.10 Estimation of stress-strength reliability

When the strength X follows finite mixture of Beta with parameters $c_{1}, c_{2}, d_{1}, d_{2}$ and $\quad p_{1}$ and the stress Y follows exponential distribution with parameter λ, then the maximum likelihood estimate of R is given as

$$
\begin{aligned}
\hat{R}=1-\hat{p}_{1} \hat{d}_{1} & {\left[(-1)^{-\hat{d}_{1}} e^{-\hat{\lambda} / \hat{c}_{1}}\left(\hat{c}_{1} / \hat{\lambda}\right)^{\dot{d}_{1}}\left(\Gamma \hat{d}_{1}-\Gamma\left(\hat{d}_{1},-\hat{\lambda} / \hat{c}_{1}\right)\right)\right] } \\
& -\left(1-\hat{p}_{1}\right) \hat{d}_{2}\left[(-1)^{-\hat{d}_{2}} e^{-\hat{\lambda} / \epsilon_{2}}\left(\hat{c}_{2} / \hat{\lambda}\right)^{\hat{d}_{2}}\left(\Gamma \hat{d}_{2}-\Gamma\left(\hat{d}_{2},-\hat{\lambda} / \hat{c}_{2}\right)\right)\right] .
\end{aligned}
$$

When the strength X follows finite mixture of Beta with parameters $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} and the stress Y follows Beta distribution with parameter c and d, then the maximum likelihood estimate of R is obtained as

$$
\hat{R}=1-\hat{p}_{1}\left[H y 2 F 1\left[1,-\hat{d}, 1+\hat{d}_{1}, \frac{\hat{c}}{\hat{c}_{1}}\right]\right]-\left(1-\hat{p}_{1}\right)\left[H y 2 F 1\left[1,-\hat{d}, 1+\hat{d}_{2}, \frac{\hat{c}}{\hat{c}_{2}}\right]\right]
$$

When the strength X follows finite mixture of Beta with parameters $c_{1}, c_{2}, d_{1}, d_{2}$ and p_{1} and the stress Y follows finite mixture of Beta distribution with parameters $c_{3}, c_{4}, d_{3}, d_{4}$ and p_{3} then the maximum likelihood estimate of R is provided as

$$
\begin{aligned}
& \hat{R}=1-\hat{p}_{3} \hat{p}_{1} \hat{d}_{1}\left[\Gamma \hat{d}_{1} H y 2 F 1 R\left[1,-\hat{d}_{3}, 1+\hat{d}_{1}, \frac{\hat{c}_{3}}{\hat{c}_{1}}\right]\right]-\hat{p}_{3}\left(1-\hat{p}_{1}\right) \hat{d}_{2}\left[\Gamma \hat{d}_{2} H y 2 F 1 R\left[1,-\hat{d}_{3}, 1+\hat{d}_{2}, \frac{\hat{c}_{3}}{\hat{c}_{2}}\right]\right] \\
& -\left(1-\hat{p}_{3}\right) \hat{p}_{1} \hat{d}_{1}\left[\Gamma \hat{d}_{1} H y 2 F 1 R\left[1,-\hat{d}_{4}, 1+\hat{d}_{1}, \frac{\hat{c}_{4}}{\hat{c}_{1}}\right]\right]-\left(1-\hat{p}_{3}\right)\left(1-\hat{p}_{1}\right) \hat{d}_{2}\left[\Gamma \hat{d}_{2} H y 2 F 1 R\left[1,-\hat{d}_{4}, 1+\hat{d}_{2}, \frac{\hat{c}_{4}}{\hat{c}_{2}}\right]\right]
\end{aligned}
$$

5.11 Simulation Study

In this section. we carry out simulation studies to assess the performance of the estimators and we obtained stress strength reliability for simulated datum.

(a) Exponential distribution

We generate observations from exponential distribution with parameter $\lambda=.8$. Table 5.12 and 5.13 provide maximum likelihood estimate of parameter under complete as well as censored situations with various combinations of n (sample size), T (censoring time) and r (number of failures).

(b) Beta distribution

We generate samples from beta distribution with parameters $c=1, d=5$. The estimates under complete as well as type I and type II censoring set up are given in Tables 5.14 and 5.15 for various combinations of n, T and r

(c) Finite mixture of beta distributions

For the type I censoring, in which observations belonging to each subpopulation are known, we generate two sets of samples, one from a beta distribution with parameters c_{3} and d_{3} and the second from a beta distribution with parameters c_{4} and d_{4}.

For the type I censoring (in which observations belonging to each subpopulation are unknown) and type II censoring, first we generate two sets of samples, one from a beta distribution with parameters c_{3} and d_{3} and the second from a beta distribution with parameters c_{4} and d_{4} and then, we obtained finite mixture of beta distributions using Bernoulli probability $p_{3}\left(0<p_{3}<1\right)$.

The estimates of parameters by the method of maximum likelihood under type I censoring, in which observations belonging to each subpopulation are known, for $c_{3}=.1, c_{4}=.9, d_{3}=3, d_{4}=1$ and $p_{3}=0.7$ with various combinations of n (sample size) and T (censoring time) are given in Table 5.16. The variances of the estimates are given in brackets.

Stress strength reliability when strength is finite mixture of beta and stress is exponential is given in Table 5.17. Table 5.18 provides the stress strength reliability when strength is finite mixture of beta and stress is beta. When stress and strength are finite mixture of beta, the reliability is given in Table 5.19. We use the software 'Mathematica' to evaluate the integrals numerically.

Table 5.12 Maximum likelihood estimates of parameters under type I censoring for $\lambda=0.8$ (exponential)

Censoring time	$n=30$	$n=50$	$n=100$
	$\hat{\lambda}=0.794166$	$\hat{\lambda}=0 . .794354$	$\hat{\lambda}=0.805804$
$\mathrm{~T}=30$	(0.0297)	(0.00581)	(0.00185)
	$\hat{\lambda}=0.819436$	$\hat{\lambda}=0.8171227$	$\hat{\lambda}=0.805074$
$\mathrm{~T}=100$	(0.0476)	(0.00328)	(0.00012)

Table 5.13 Maximum likelihood estimates of parameters under type II censoring for $\lambda=0.8$ (exponential)

$n=30$		$n=50$		n	
$r=10$	$r=30$	$r=30$	$r=50$	$r=60$	$r=100$
$\hat{\lambda}=0.821529$	$\hat{\lambda}=0.794501$	$\hat{\lambda}=0.789441$	$\hat{\lambda}=0.80875$	$\hat{\lambda}=0.79951$	$\hat{\lambda}=.80035$
(0.0115)	(0.00276)	(0.00173)	(0.000111)	(0.0001)	$(.00001)$

Table 5.14 Maximum likelihood estimates of parameters for beta
$c=1, d=5$ under type I censoring

Censoring time	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{~T}=30$	$\hat{c}=.98976$	$\hat{c}=1.1023$	$\hat{c}=1.003$
	$(2.5 \mathrm{E}-2)$	$(2.1 \mathrm{E}-4)$	$(1.1 \mathrm{E}-5)$
	$\hat{d}=4.965$	$\hat{d}=5.118$	$\hat{d}=4.991$
	$(1.7 \mathrm{E}-3)$	$(1.4 \mathrm{E}-3)$	$(2.7 \mathrm{E}-5)$
	$\hat{c}=1.1098$	$\hat{c}=1.1003$	$\hat{c}=0.9989$
	$(3.3 \mathrm{E}-3)$	$(2.01 \mathrm{E}-4)$	$(2.1 \mathrm{E}-5)$
	$\hat{d}=4.985$	$\hat{d}=5.076$	$\hat{d}=5.0021$
	$(3.8 \mathrm{E}-4)$	$(1.9 \mathrm{E}-5)$	$(2.4 \mathrm{E}-6)$

Table 5.15 Maximum likelihood estimates of parameters for beta $c=1, d=5$ under type II censoring

$\mathrm{n}=30$		$\mathrm{n}=50$		$\mathrm{n}=100$	
$\mathrm{r}=10$	$\mathrm{r}=30$	$\mathrm{r}=30$	$\mathrm{r}=50$	$\mathrm{r}=60$	$\mathrm{r}=100$
$\hat{c}=1.1002$	$\hat{c}=1.0085$	$\hat{c}=0.9965$	$\hat{c}=1.0032$	$\hat{c}=0.9998$	$\hat{c}=1.00012$
(0.00467)	(0.00013)	$(4.1 \mathrm{E}-4)$	$(3.8 \mathrm{E}-5)$	$(2.54 \mathrm{E}-5)$	$(2.1 \mathrm{E}-6)$
$\hat{d}=4.973$	$\hat{d}=5.0064$	$\hat{d}=5.0012$	$\hat{d}=5.0027$	$\hat{d}=4.9987$	$\hat{d}=5.001$
(0.00041)	(0.000032)	$(2.1 \mathrm{E}-5)$	$(1.9 \mathrm{E}-5)$	$(1.6 \mathrm{E}-5)$	$(1.01 \mathrm{E}-6)$

Table 5.16 Maximum likelihood estimates of parameters under type I censoring for $c_{3}=0.1, c_{4}=0.9, d_{3}=3, d_{4}=1$ and $p_{3}=0.7$ in which observations belonging to each subpopulation are known.

Censoring time	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{~T}=19$	$\hat{c}_{3}=.0893$	$\hat{c}_{3}=.0953976$	$\hat{c}_{3}=.107286$
	$(.0000221)$	$(5.25 \mathrm{E}-7)$	$(3.062 \mathrm{E}-7)$
	$\hat{c}_{4}=.86014$	$\hat{c}_{4}=.91216$	$\hat{c}_{4}=.90179$
	$(.000017)$	$(9.85 \mathrm{E}-8)$	$(1.22 \mathrm{E}-9)$
	$\hat{d}_{3}=3.1105$	$\hat{d}_{3}=2.8069$	$\hat{d}_{3}=2.98003$
	$(.842805)$	$(.100405)$	$(.0833)$
	$\hat{d}_{4}=1.0268$	$\hat{d}_{4}=1.0197$	$\hat{d}_{4}=1.00527$
	$(.265423)$	$(.19532)$	$(.000135)$
	$\hat{p}_{3}=.7211$	$\hat{p}_{3}=.70653$	$\hat{p}_{3}=.70423$
	$(5.56 \mathrm{E}-6)$	$(1.15 \mathrm{E}-6)$	$(2.06 \mathrm{E}-7)$

Table 5.17 Stress-strength reliability when strength is finite mixture of beta and stress is exponential

Sample size	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
Stress-strength reliability R	0.6591	0.6927	0.69816

Table 5.18 Stress-strength reliability when strength is finite mixture of beta and stress is beta

Sample size	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
Stress-strength reliability R	0.8127	0.84316	0.84417

Table 5.19 Stress-strength reliability when strength is finite mixture of beta and stress is finite mixture of beta

Sample size	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
Stress-strength reliability R	0.7128	0.7517	0.7556

5.12 Conclusion

In this chapter, the role of finite mixture of Pareto II distributions and finite mixture of beta distributions as stress-strength models is examined. To study the finite sample properties of the estimates we carried out a simulation work. The use of finite mixture of Pareto II distributions is illustrated using a real life data. As n increases, the bias and variance of the estimate decreases.

Chapter 6

ESTIMATION OF THE LORENZ CURVE

6.1 Introduction

As mentioned earlier in Chapter I, the Lorenz curve is an important tool for the measurement of income inequality. Lorenz curve can be interpreted as the curnulative proportion of income to the cumulative proportion of population, after ordering the population according to the increasing level of income. Most of the popular parametric models have been employed in different situations of income analysis. For more details on this, one could refer to Kleiber and Kotz (2003). When population of income of individuals can be divided into population of income from different sources or any set of income data with earners in different categories, it is usual to model the data using finite mixture of distributions. However, the finite mixture of Pareto II and finite mixture of beta have not been explored much in literature in the context of income analysis.

Censored data are commonly encountered in practical applications to income and weaith distributions, for several reasons. Some high-income observations may have been removed from the sample because of concern for confidentiality-if it were not so, a skilful data-detective would have no difficulty, in identifying the individuals or households corresponding to individual observations in the sparse upper tail. In certain other instances, low- income observations may have been removed or modified for reasons of convenience. As pointed out in Fichtenbaum and Shahidi (1988), type I censoring is commonly used in such situations. So it is worthwhile to estimate Lorenz curve for type I censored data.

Motivated by these facts, in this chapter, we study the properties and applications of both finite mixture of Pareto II and finite mixture of beta distributions in the context of income analysis. The definition of the Lorenz curve is given in Section 6.2. Sections 6.3 and 6.4 give the maximum likelihood estimation of Lorenz
curve for the finite mixture of Pareto II distributions. Simulation studies are carried out in Section 6.5. We, then, illustrate the method using a real data on household expenditure of men and women in Section 6.6. We obtain the estimate of the Lorenz curve for the finite mixture of beta distributions in Sections 6.7 and 6.8. Simulation studies are carried out to asses the performance of the estimators in Section 6.9. Finally in Section 6.10, we give the conclusion of the chapter.

6.2 Definition

The Lorenz curve, one of the important measures of income inequality, plays a significant role in analyzing income data. For a non-negative random variable X with distribution function $F(x)$ and finite mean μ, the Lorenz curve $L(F(x))$ is defined by

$$
\begin{equation*}
L(p)=\frac{1}{\mu} \int_{0}^{x} t f(t) d t, \tag{6.1}
\end{equation*}
$$

where $f(t)$ is the probability density function of X and $p=F(x)$ which is already defined in equations (1.24) and (1.25).

6.3 Finite mixture of Parcto II distribution

Any set of income data with earners in different categories will be well described by a finite mixture of distributions. For example, if we have income data for families in Kerala, we would expect that families of different sizes and /or different makeup in terms of the gender distribution of the adults in the families would have incomes that would follow different Pareto or other skewed distributions. Then the data will be considered as a mixture of such distributions.

Assume that the density function of the income distribution in the whole population is a finite mixture of Pareto densities, defined in (2.2). Then, the Lorenz curve $L(F(x))$ is obtained as
$L(F(x))=\frac{p_{1} a_{2}\left(b_{2}-1\right)\left[1-\left(1+a_{1} x\right)^{-b_{1}}\left(1+a_{1} b_{1} x\right)\right]+\left(1-p_{1}\right) a_{1}\left(b_{1}-1\right)\left[1-\left(1+a_{2} x\right)^{-b_{2}}\left(1+a_{2} b_{2} x\right)\right]}{\left\{p_{1} a_{2}\left(b_{2}-1\right)+\left(1-p_{1}\right) a_{1}\left(b_{1}-1\right)\right]}$.

6.4 Estimation of Lorenz curve

In Chapter 2, we have discussed different estimation procedures and estimated the parameters of finite mixture of Pareto II for complete as well as censored samples. Then the M.L.E of $L(F(x))$ is given by

$$
\hat{L}(F(x))=\frac{\hat{p}_{1} \hat{a}_{2}\left(\hat{b}_{2}-i\right)\left[1-\left(1+\hat{a}_{1} x\right)^{-\hat{b}_{1}}\left(1+\hat{a}_{1} \hat{b}_{1} x\right)\right]+\left(1-\hat{p}_{1}\right) \hat{a}_{1}\left(\hat{b}_{1}-1\right)\left[1-\left(1+\hat{a}_{2} x\right)^{-\hat{b}_{2}}\left(1+\hat{a}_{2} \hat{b}_{2} x\right)\right]}{\left[\hat{p}_{1} \hat{a}_{2}\left(\hat{b}_{2}-1\right)+\left(1-\hat{p}_{1}\right) \hat{a}_{1}\left(\hat{b}_{1}-1\right)\right]} .
$$

Then from appendix B of Lawless (2003), the asymptotic variance of \hat{L} is given by

$$
\begin{align*}
& \operatorname{Var}(\hat{L})=\left(\frac{\partial L}{\partial a_{1}}\right)^{2} \operatorname{Var}\left(\hat{a}_{1}\right)+\left(\frac{\partial L}{\partial a_{2}}\right)^{2} \operatorname{Var}\left(\hat{a}_{2}\right)+\ldots+\left(\frac{\partial L}{\partial p_{1}}\right)^{2} \operatorname{Var}\left(\hat{p}_{1}\right) \\
& +\frac{\partial L}{\partial a_{1}} \frac{\partial L}{\partial a_{2}} \operatorname{Cov}\left(\hat{a}_{1}, \hat{a}_{2}\right)+\frac{\partial L}{\partial a_{1}} \frac{\partial L}{\partial b_{1}} \operatorname{Cov}\left(\hat{a}_{1}, \hat{b}_{1}\right)+\ldots+\frac{\partial L}{\partial b_{2}} \frac{\partial L}{\partial p_{1}} \operatorname{Cov}\left(\hat{b}_{2}, \hat{p}_{1}\right) . \tag{6.4}
\end{align*}
$$

where variances and covariances are directly obtained from the inverse of the matrix $I\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right)$ with
$I\left(a_{1}, a_{2}, b_{1}, b_{2}, p_{1}\right)=\left(\begin{array}{ccc}-\frac{\partial^{2} \log L}{\partial a_{1}^{2}} & -\frac{\partial^{2} \log L}{\partial a_{1} \partial a_{2}}-\frac{\partial^{2} \log L}{\partial a_{1} \partial b_{1}}-\frac{\partial^{2} \log L}{\partial a_{1} \partial b_{2}} & -\frac{\partial^{2} \log L}{\partial a_{1} \partial p_{1}} \\ \cdot \\ -\frac{\partial^{2} \log L}{\partial p_{1} \partial a_{1}} & -\frac{\partial^{2} \log L}{\partial p_{1} \partial a_{2}}-\frac{\partial^{2} \log L}{\partial p_{1} \partial b_{1}}-\frac{\partial^{2} \log L}{\partial p_{1} \partial b_{2}} & -\frac{\partial^{2} \log L}{\partial p_{1}{ }^{2}}\end{array}\right)$

6.5 Simulation study

In this section, we carry out simulation studies to find out the maximum likelihood estimates of the Lorenz curve under complete as well as censored samples.

For type I censoring, in which observations belonging to each subpopulation are known, we generate two sets of samples, one from a Pareto distribution with parameters a_{1} and b_{1} and the second from a Pareto distribution with parameters a_{2} and b_{2}.

For type I censoring, in which observations belonging to each subpopulation are unknown, we obtained finite mixture of Pareto distributions using a Bernoulli distribution with probability of success $p_{1}\left(0<p_{1}<1\right)$.

The estimates of parameters by the method of maximum likelihood under complete as well as type 1 censoring, for the set of parameters $a_{1}=.004, a_{2}=.09, b_{1}=7, b_{2}=3$ and $p_{1}=0.5$ with various combinations of n (sample size) and N (censoring income) are given in Tables 6.1 to 6.3 . Tables 6.4 to 6.6 provide the estimates for another set of parameters $a_{1}=2, a_{2}=3, b_{1}=5, b_{2}=7$ and $p_{1}=0.5$ under complete as well as type I censoring with various combinations of n and N. The values in brackets provide the variance of the estimates. Simulation studies reported here shows that M.L.E provide estimates with small bias and less variance. The variance of the estimates decreases as n increases. Graphs of the actual and estimated Lorenz curve are given in Figures 6.1 to 6.3.

Table 6.1 Maximum likelihood estimates of parameters under complete sample for $a_{1}=.004, a_{2}=.09, b_{1}=7, b_{2}=3$ and $p_{1}=0.5$

$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\hat{a}_{1}=.00411472$	$\hat{a}_{1}=.00423549$	$\hat{a}_{1}=.00410912$
$(3.38321 \mathrm{E}-8)$	$(2.46863 \mathrm{E}-8)$	$(2.4321 \mathrm{E}-8)$
$\hat{a}_{2}=.0983347$	$\hat{a}_{2}=.0986351$	$\hat{a}_{2}=.100476$
$(.0000321937)$	$(.00001894)$	$(3.85598 \mathrm{E}-6)$
$\hat{b}_{1}=6.89626$	$\hat{b}_{1}=6.93539$	$\hat{b}_{\mathrm{t}}=6.87722$
$(.0739452)$	$(.0661982)$	$(.00993038)$
$\hat{b}_{2}=2.86146$	$\hat{b}_{2}=2.8976$	$\hat{b}_{2}=2.91442$
$(.0139852)$	$(.0124295)$	$(.00361627)$
$\hat{p}_{1}=.500057$	$\hat{p}_{1}=.500052$	$\hat{p}_{1}=.500046$
$(3.2202 \mathrm{E}-9)$	$(2.70565 \mathrm{E}-9)$	$(2.09203 \mathrm{E}-9)$

Table 6.2 Maximum likelihood estimates of parameters under type I censoring for $a_{1}=.004, a_{2}=.09, b_{1}=7, b_{2}=3$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are known.

Censoring income	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{N}=30$	$\begin{aligned} & \hat{a}_{1}=.0044872 \\ & (8.421 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.00438394 \\ & (4.669 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.004984 \\ & (1.19918 \mathrm{E}-8) \end{aligned}$
	$\begin{aligned} & \hat{a}_{2}=.0963709 \\ & (.0008286) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.0980649 \\ & (1.8715 \mathrm{E}-6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.094886 \\ & (1.8042 \mathrm{E}-6) \end{aligned}$
	$\begin{aligned} & \hat{b_{1}}=6.85789 \\ & (.151983) \end{aligned}$	$\left\{\begin{array}{l} \hat{b}_{1}=6.88304 \\ (.0848708) \end{array}\right.$	$\begin{aligned} & \hat{b}_{1}=6.9353 \\ & (.001556) \end{aligned}$
	$\begin{aligned} & \hat{b}_{2}=2.92781 \\ & (.0500188) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.94408 \\ & .000855) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.96472 \\ & (.0006696) \end{aligned}$
	$\begin{aligned} & \hat{p}_{1}=.500443 \\ & (7.826 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.500446 \\ & (2.007 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hline \hat{p}_{1}=.501203 \\ & (1.98099 \mathrm{E}-7) \\ & \hline \end{aligned}$
$\mathrm{N}=50$	$\begin{aligned} & \hat{a}_{1}=.00380753 \\ & (1.183 \mathrm{E}-6) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.00375961 \\ & (1.492 \mathrm{E}-7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.0044017 \\ & (2.5361 \mathrm{E}-8) \end{aligned}$
	$\begin{aligned} & \hat{a}_{2}=.0988792 \\ & (.0000328) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.100693 \\ & (6.25 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.0981161 \\ & (4.62 \mathrm{E}-7) \end{aligned}$
	$\begin{aligned} & \hat{b}_{1}=7.00632 \\ & (.0308752) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=7.10751 \\ & (.006559) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=7.04669 \\ & (.0006628) \end{aligned}$
	$\begin{aligned} & \hat{b}_{2}=2.94612 \\ & (.0149049) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.97302 \\ & (.0002166) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.97256 \\ & (.00021) \end{aligned}$
	$\begin{aligned} & \hat{p}_{1}=.499885 \\ & (3.643 \mathrm{E}-8) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.49968 \\ & (2.265 \mathrm{E}-8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.500298 \\ & (2.1404 \mathrm{E}-8) \\ & \hline \end{aligned}$
$\mathrm{N}=100$	$\begin{aligned} & \hat{a}_{1}=.00420753 \\ & (1.0903 \mathrm{E}-7) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.00407865 \\ & (1.024 \mathrm{E}-7) \end{aligned}$	$\begin{gathered} \hat{a}_{1}=.004077 \\ (2.1194 \mathrm{E}-8) \\ \hline \end{gathered}$
	$\begin{aligned} & \hat{a}_{2}=.098026 \\ & (6.6085 \mathrm{E}-6) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.09778 \\ & (1.78 \mathrm{E}-6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.0984021 \\ & (1.6642 \mathrm{E}-6) \end{aligned}$
	$\begin{aligned} & \hat{b}_{1}=6.94212 \\ & (.006307) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=7.0007 \\ & (.000314) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=6.984 \\ & (.00004) \end{aligned}$
	$\begin{aligned} & \hat{b}_{2}=2.96212 \\ & (.001755) \end{aligned}$	$\begin{aligned} & \hat{b_{2}}=2.9459 \\ & (.00148) \end{aligned}$	$\begin{aligned} & \hat{b_{2}}=2.96334 \\ & (.0002764) \end{aligned}$
	$\begin{gathered} \hat{p}_{1}=.50006 \\ (8.6623 \mathrm{E}-8) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.500086 \\ & (3.726 \mathrm{E}-9) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.500153 \\ & (3.35 \mathrm{E}-9) \end{aligned}$

Table 6.3 Maximum iikelihood estimates of parameters under type I censoring for $a_{1}=.004, a_{2}=.09, b_{1}=7, b_{2}=3$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are unknown.

Censoring income	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{N}=30$	$\begin{aligned} & \hat{a}_{1}=.0043864 \\ & (7.53 \mathrm{E}-8) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.004298 \\ & (1.6192 \mathrm{E}-8) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.00418 \\ & (2.022 \mathrm{E}-9) \end{aligned}$
	$\begin{aligned} & \hat{a}_{2}=.0973671 \\ & (.00001113) \end{aligned}$	$\begin{gathered} \hat{a}_{2}=.09767 \\ (1.799 \mathrm{E}-6) \end{gathered}$	$\begin{aligned} & \hat{a}_{2}=.098766 \\ & (4.506 \mathrm{E}-7) \end{aligned}$
	$\begin{aligned} & \hat{b}_{1}=6.80949 \\ & (.141223) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=6.83318 \\ & (.0527144) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=5.94737 \\ & (.034792) \end{aligned}$
	$\begin{aligned} & \hat{b}_{2}=2.87988 \\ & (.00386) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.94875 \\ & (.001495) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.95472 \\ & (.0004162) \end{aligned}$
	$\begin{gathered} \hat{p}_{1}=.500074 \\ (4.8236 \mathrm{E}-8) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.500101 \\ & (3.8091 \mathrm{E}-8) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.500116 \\ & (4.945 \mathrm{E}-11) \end{aligned}$
$\mathrm{N}=50$	$\begin{aligned} & \hat{a}_{1}=.00417876 \\ & (6.18 \mathrm{E}-9) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.0042373 \\ & (1.60344 \mathrm{E}-9) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.004172 \\ & (1.548 \mathrm{E}-9) \end{aligned}$
	$\begin{aligned} & \hat{a}_{2}=.097445 \\ & (.0000237) \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.0986273 \\ & (.00001751) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.09959 \\ & (.0000111) \\ & \hline \end{aligned}$
	$\begin{aligned} & \hat{b}_{1}=6.88576 \\ & (.0126) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=6.91828 \\ & (.002838) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=6.92217 \\ & (.0003794) \end{aligned}$
	$\begin{aligned} & \hat{b}_{2}=2.88065 \\ & (.0101) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.92881 \\ & (.0011) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.93605 \\ & (.000867) \end{aligned}$
	$\begin{aligned} & \hat{p}_{1}=.50062 \\ & (8.5511 \mathrm{E}-9) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.500009 \\ & (2.1141 \mathrm{E}-9) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.50005 \\ & (1.07 \mathrm{E}-9) \end{aligned}$
$\mathrm{N}=100$	$\begin{aligned} & \hat{a}_{1}=.00412299 \\ & (3.414 \mathrm{E}-9) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.004205 \\ & (1.57 \mathrm{E}-9) \end{aligned}$	$\begin{aligned} & \hat{a}_{1}=.0041796 \\ & (1.044 \mathrm{E}-9) \\ & \hline \end{aligned}$
	$\begin{aligned} & \hat{a}_{2}=.096988 \\ & (.0000231) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.098146 \\ & (.0000169) \end{aligned}$	$\begin{aligned} & \hat{a}_{2}=.09915 \\ & (.0000108) \end{aligned}$
	$\begin{aligned} & \hat{b}_{1}=6.86767 \\ & (.00716) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=6.91419 \\ & (.00287) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=6.9157 \\ & (.0004095) \end{aligned}$
	$\hat{b}_{2}=2.89201$ (.010018)	$\begin{aligned} & \hat{b}_{2}=2.94047 \\ & (.001141) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=2.94684 \\ & (.0008588) \end{aligned}$
	$\begin{aligned} & \hat{p}_{1}=.500097 \\ & (9.6565 \mathrm{E}-9) \end{aligned}$	$\begin{gathered} \hat{p}_{1}=.500047 \\ (1.4751 \mathrm{E}-9) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.500084 \\ & (6.7675 \mathrm{E}-10) \end{aligned}$

Table 6.4 Maximum likelihood estimates of parameters under complete sample for $a_{1}=2, a_{2}=3, b_{1}=5, b_{2}=7$ and $p_{1}=0.5$

$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\hat{a}_{1}=2.1796$	$\hat{a}_{1}=1.90602$	$\hat{a}_{1}=2.02431$
$(.015002)$	$(.0071)$	$(.001621)$
$\hat{a}_{2}=2.77746$	$\hat{a}_{2}=3.13001$	$\hat{a}_{2}=2.99554$
$(.090189)$	$(.063607)$	$(.014771)$
$\hat{b}_{1}=4.61384$	$\hat{b}_{1}=5.24161$	$\hat{b}_{1}=4.94152$
$(.044781)$	$(.033323)$	$(.01437)$
$\hat{b}_{2}=7.56975$	$\hat{b}_{2}=6.80461$	$\hat{b}_{2}=7.16267$
$(.46587)$	$(.325679)$	$(.1713)$
$\hat{p}_{1}=.5$	$\hat{p}_{1}=.5$	$\hat{p}_{1}=.5$
$(2.7 \mathrm{E}-11)$	$(2.1 \mathrm{E}-11)$	$(1.7 \mathrm{E}-12)$

Table 6.5 Maximum likelihood estimates of parameters under type I censoring for $a_{1}=2, a_{2}=3, b_{1}=5, b_{2}=7$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are known.

Censoring income	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{N}=0.05$	$\begin{aligned} & \hat{a}_{1}=2.18731 \\ & (.014204) \end{aligned}$	$\begin{gathered} \hat{a}_{1}=1.945499 \\ (.0097261) \end{gathered}$	$\begin{gathered} \hat{a}_{1}=2.04146 \\ (.005322) \\ \hline \end{gathered}$
	$\begin{gathered} \hat{a}_{2}=2.81789 \\ (.092232) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{a}_{2}=3.08213 \\ & (.0610755) \end{aligned}$	$\begin{gathered} \hat{a}_{2}=3.03947 \\ (.020721) \end{gathered}$
	$\begin{gathered} \hat{b}_{1}=4.60094 \\ (.042512) \end{gathered}$	$\begin{gathered} \hat{b}_{1}=5.15087 \\ (.032336) \end{gathered}$	$\begin{aligned} & \hat{b}_{1}=4.91116 \\ & (.0299144) \end{aligned}$
	$\begin{gathered} \hat{b}_{2}=7.46988 \\ (.45217) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{b}_{2}=6.89746 \\ & (.294549) \\ & \hline \end{aligned}$	$\begin{gathered} \hat{b}_{2}=7.07043 \\ (.174879) \end{gathered}$
	$\begin{gathered} \hat{p}_{1}=.499975 \\ (3.5198 \mathrm{E}-11) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.500033 \\ (1.8122 \mathrm{E}-11) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.499973 \\ (1.2789 \mathrm{E}-11) \end{gathered}$
$\mathrm{N}=0.1$	$\begin{aligned} & \hat{a}_{1}=2.1819 \\ & (.0113455) \end{aligned}$	$\begin{gathered} \hat{a}_{1}=1.90403 \\ (.006345) \end{gathered}$	$\begin{gathered} \hat{a}_{1}=2.02279 \\ (.001711) \end{gathered}$
	$\begin{gathered} \hat{a}_{2}=2.77861 \\ (.090253) \end{gathered}$	$\begin{aligned} & \hat{a}_{2}=3.13203 \\ & (.0637089) \end{aligned}$	$\begin{gathered} \hat{a}_{2}=2.99652 \\ (.015009) \end{gathered}$
	$\begin{gathered} \hat{b}_{1}=4.60695 \\ (.046137) \end{gathered}$	$\begin{gathered} \hat{b}_{1}=5.24602 \\ (.044466) \end{gathered}$	$\begin{aligned} & \hat{b}_{1}=4.94477 \\ & (.0141144) \end{aligned}$
	$\begin{gathered} \hat{b}_{2}=7.56688 \\ (.465398) \end{gathered}$	$\begin{aligned} & \hat{b}_{2}=6.8007 \\ & (.325851) \end{aligned}$	$\begin{aligned} & \hat{b}_{2}=7.1607 \\ & (.27219) \end{aligned}$
	$\begin{gathered} \hat{p}_{1}=.465398 \\ (7.14726 \mathrm{E}-13) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.4999 \\ (2.4857 \mathrm{E}-14) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.5 \\ (1.3237 \mathrm{E}-14) \end{gathered}$

Table 6.6 Maximum likelihood estimates of parameters under type I censoring for $a_{1}=2, a_{2}=3, b_{1}=5, b_{2}=7$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are unknown.

Censoring income	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{N}=0.05$	$\begin{gathered} \hat{a}_{1}=1.96906 \\ (.04259) \end{gathered}$	$\begin{gathered} \hat{a}_{1}=2.05246 \\ (.010876) \end{gathered}$	$\begin{gathered} \hat{a}_{1}=2.14809 \\ (.004623) \end{gathered}$
	$\begin{gathered} \hat{a}_{2}=2.94507 \\ (.178502) \end{gathered}$	$\begin{gathered} \hat{a}_{2}=3.23991 \\ (.11828) \end{gathered}$	$\begin{aligned} & \hat{a}_{2}=3.0688 \\ & (.0296502) \end{aligned}$
	$\begin{gathered} \hat{b}_{1}=5.15519 \\ (.217949) \end{gathered}$	$\begin{gathered} \hat{b}_{1}=4.8908 \\ (.09505) \end{gathered}$	$\begin{aligned} & \hat{b}_{1}=4.75426 \\ & (.026343) \end{aligned}$
	$\begin{gathered} \hat{b}_{2}=7.17026 \\ (.84553) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{b}_{2}=6.67554 \\ & (.807092) \end{aligned}$	$\begin{gathered} \hat{b}_{2}=6.97098 \\ (.79998) \\ \hline \end{gathered}$
	$\begin{aligned} & \hat{p}_{1}=.500052 \\ & (6.2789 \mathrm{E}-9) \end{aligned}$	$\begin{gathered} \hat{p}_{;}=.4999 \\ (3.295 \mathrm{E}-9) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.500011 \\ & (3.0716 \mathrm{E}-9) \end{aligned}$
$\mathrm{N}=0.1$	$\begin{gathered} \hat{a}_{1}=1.98499 \\ (.029985) \end{gathered}$	$\begin{gathered} \hat{a}_{1}=2.02314 \\ (.016288) \end{gathered}$	$\begin{aligned} & \hat{a}_{1}=2.1451 \\ & (.0092313) \end{aligned}$
	$\begin{gathered} \hat{a}_{2}=3.02692 \\ (.072712) \end{gathered}$	$\begin{gathered} \hat{a}_{2}=3.23613 \\ (.01157) \end{gathered}$	$\begin{gathered} \hat{a}_{2}=3.07318 \\ (.002619) \\ \hline \end{gathered}$
	$\begin{gathered} \hat{b}_{1}=5.10479 \\ (.134448) \end{gathered}$	$\begin{aligned} & \hat{b}_{1}=4.92734 \\ & (.0945907) \end{aligned}$	$\begin{aligned} & \hat{b}_{1}=4.76164 \\ & (.0441035) \end{aligned}$
	$\begin{aligned} & \hat{b}_{2}=6.96226 \\ & (252676) \end{aligned}$	$\begin{gathered} \hat{b}_{2}=6.69581 \\ (.090537) \end{gathered}$	$\begin{aligned} & \hat{b}_{2}=6.94939 \\ & (.0768141) \end{aligned}$
	$\begin{gathered} \hat{p}_{1}=.49999 \\ (1.3833 \mathrm{E}-12) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.4999 \\ (4.778 \mathrm{E}-13) \end{gathered}$	$\begin{gathered} \hat{p}_{1}=.4999 \\ (1.0539 \mathrm{E}-14) \end{gathered}$

Fig. 6.1 Graph of actual $\left(a_{1}=.004, a_{2}=.09, b_{1}=7, b_{2}=3\right.$ and $\left.p_{1}=.5\right)$ and estimated Lorenz curve $\left(\hat{a}_{1}=.0041, \hat{a}_{2}=.1, \hat{b}_{1}=6.88, \hat{b}_{2}=2.91\right.$ and $\left.\hat{p}_{1}=.5\right)$ for the complete sample case.

Fig. 6.2 Graph of actual $\left(a_{1}=.004, a_{2}=.09, b_{1}=7, b_{2}=3\right.$ and $\left.p_{1}=.5\right)$ and estimated Lorenz curve ($\hat{a}_{1}=.0044, \hat{a}_{2}=.0963, \hat{b}_{1}=6.86, \hat{b}_{2}=2.93$ and $\hat{p}_{1}=.5$) for the censored sample case.

Fig. 6.3 Graph of actual $\left(a_{1}=2, a_{2}=3, b_{1}=5, b_{2}=7\right.$ and $\left.p_{1}=.5\right)$ and estimated Lorenz curve ($\hat{a}_{1}=1.96, \hat{a}_{2}=2.94, \hat{b}_{1}=5.2, \hat{b}_{2}=7.2$ and $\hat{p}_{1}=.5$) for the censored sample case.

Lorenz curve

6.6 Data analysis

For the illustration of the method, we consider a data on household expenditures for four commodity groups of 20 men and 20 women (see Aitchison, 1986). The expenditures are given in Hong Kong dollars, and the commodity groups are Housing, Foodstuffs, Other items and Services. The data is given in Table 6.7. To understand the behaviour of Lorenz curve in the censored situation, we censored the data with different censoring incomes, since incomes for different groups are varying. The estimates of parameters using the method of maximum likelihood under complete as well as censored set up are given in Table 6.8 to Table 6.11 . We then used the Kolmogorov smirnov statistic to test the goodness of fit. The values of the test statistic D_{n} for different commodities are given in Table 6.12. The table value at 5% significance level is 0.215036 . From the analysis, it concludes that finite mixture of Pareto distribution with common shape parameter is a plausible model for the data. We then estimate the Lorenz curve for different groups which are represented by Figures 6.4 to 6.8 .

The data come from a survey of household expenditure and give the expenditure of 20 single men (M) and 20 single women (W) on four commodity groups. The units of expenditure are Hong Kong dollars, and the commodity groups are as follows.

1 Housing, including fuel and light
2 Foodstuffs, including alcohol and tobacco
3 Other goods, including clothing, footwear and durable goods
4 Services, including transport and vehicles

Table 6.7 Household expenditure data

household no.	commodity group				household no.	commodity group			
	1	2	3	4		1	2	3	4
M1	497	591	153	291	W1	820	114	183	154
M2	839	942	302	365	W2	184	74	6	20
M3	798	1308	668	584	W3	921	66	1686	455
M4	892	842	287	395	W4	488	80	103	115
M5	1585	781	2476	1740	W5	721	83	176	104
M6	755	764	428	438	W6	614	55	441	193
M7	388	655	153	233	W7	801	56	357	214
M8	617	879	757	719	W8	396	59	61	80
M9	248	438	22	65	W9	864	65	1618	352
M10	1641	440	6471	2063	W10	845	64	1935	414
M 11	1180	1243	768	813	W11	404	97	33	47
M12	619	684	99	204	W12	781	47	1906	452
M13	253	422	15	48	W13	457	103	136	108
M14	661	739	71	188	W14	1029	71	244	189
M15	1981	869	1489	1032	W15	1047	90	653	298
M16	1746	746	2662	1594	W16	552	91	185	158
M17	1865	915	5184	1767	W17	718	104	583	304
M 18	238	522	29	75	W18	495	114	65	74
M19	1199	1095	261	344	W19	382	77	230	147
M20	1524	964	1739	1410	W20	1090	59	313	177

Table 6.8 Maximum likelihood estimates of parameters of housing expenses of men and women under complete as well as censoring.

Item	Censoring income(in dollars)		
	$\mathrm{N}=2000$	$\mathrm{~N}=1500$	$\mathrm{~N}=1000$
	$\hat{a}_{1}=0.00007$	$\hat{a}_{1}=0.00009$	$\hat{a}_{1}=0.000125$
	$\hat{a}_{2}=0.0001$	$\hat{a}_{2}=0.000085$	$\hat{a}_{2}=0.000112$
	$b_{1}=b_{2}=b$ $\hat{b}=14.17$	$b_{1}=b_{2}=b$ $\hat{b}=11.45$	$b_{1}=b_{2}=b$ $\hat{b}=8.86776$
	$\hat{p}_{1}=0.5$	$\hat{p}_{1}=0.408$	$\hat{p}_{1}=0.4047$

Table 6.9 Maximum likelihood estimates of parameters of food expenses of men and women under complete as well as censoring.

Item	Censoring income(in dollars)		
	$N=1400$	$\mathrm{~N}=1000$	$\mathrm{~N}=800$
	$\hat{a}_{1}=0.00007$	$\hat{a}_{1}=0.0000719$	$\hat{a}_{1}=0.000082$
	$\hat{a}_{2}=0.0007$	$\hat{a}_{2}=0.00081369$	$\hat{a}_{2}=0.001328$
	$b_{1}=b_{2}=b$	$b_{1}=b_{2}=b$	$b_{1}=b_{2}=b$
	$\hat{b}=17.42$	$\hat{b}=15.6138$	$\hat{b}=9.56$
	$\hat{p}_{1}=0.5$	$\hat{p}_{1}=0.5002$	$\hat{p}_{1}=0.499616$

Table 6.10 Maximum likelihood estimates of parameters of other expenses of men and women under complete as well as censoring.

Item	Censoring income(in dollars)		
	$\mathrm{N}=6500$	$\mathrm{~N}=5000$	$\mathrm{~N}=1000$
	$\hat{a}_{1}=0.0011$	$\hat{a}_{1}=0.00232$	$\hat{a}_{1}=0.002918$
	$\hat{a}_{2}=0.0019$	$\hat{a}_{2}=0.002815$	$\hat{a}_{2}=0.00343$
	$b_{1}=b_{2}=b$	$b_{1}=b_{2}=b$	$b_{1}=b_{2}=b$
	$\hat{b}=1.625$	$\hat{b}=1.4675$	$\hat{b}=1.409215$
	$\hat{p}_{1}=0.5$	$\hat{p}_{1}=0.4763$	$\hat{p}_{\mathrm{i}}=0.476815$

Table 6.11 Maximum likelihood estimates of parameters of service expenses of men and women under complete as well as censoring.

Item	Censoring income(in dollars)		
	$\mathrm{N}=2100$	$\mathrm{~N}=1500$	$\mathrm{~N}=1000$
Service Expenses	$\hat{a}_{1}=0.000 \mathrm{I} 1$	$\hat{a}_{1}=0.0001158$	$\hat{a}_{1}=0.0001598$
	$\hat{a}_{2}=0.0004$	$\hat{a}_{2}=0.00044$	$\hat{a}_{2}=0.000514$
	$b_{1}=b_{2}=b$		
	$b_{1}=b_{2}=b$ $\hat{b}=11.2505$	$b_{1}=b_{2}=b$ $\hat{b}=9.06372$	
	$\hat{p}_{1}=0.5$	$\hat{p}_{1}=0.498103$	$\hat{p}_{1}=0.487185$

Table 6.12 Calculated values of the test statistic for different expenses.

Different commodities	Max D_{n} (M.L.E)
Housing Expenses	0.200094
Food Expenses	0.133804
Other Expenses	0.0430059
Service Expenses	0.089086

Fig. 6.4 Graph of maximum likelihood estimate of Lorenz curve of housing expenses of men and women

Fig. 6.5 Graph of maximum likelihood estimate of Lorenz curve of service expenses of men and women

Remark 6.1

Lorenz curves for complete as well as censored samples are almost identical for housing expenses and service expenses of men and women.

Fig. 6.6 Graph of maximum likelihood estimate of Lorenz curve of food expenses of men and women

Fig. 6.7 Graph of maximum likelihood estimate of Lorenz curve of other expenses of men and women

Remark 6.2

However, Lorenz curve in the censored set up provide more disparity for food expenses and other expenses of men and women.

Fig. 6.8 Graph of maximum likelihood estimate of Lorenz curve of different expenses of men and women

lorenz curve (complete sample case)

Remark 6.3

In the complete sample set up, Lorenz curve gives more disparity for other expenses than housing, foodstuffs and service expenses of men and women.

6.7 Finite mixture of beta distribution

In this section, we study the role of finite mixture of beta distribution (3.1) in the context of income analysis. For the model (3.1), the Lorenz curve $L(F(x))$ is obtained as
$L(F(x))=$
$\frac{p_{1} c_{2}\left(d_{2}+1\right)\left[1-\left(1-c_{1} x\right)^{d_{1}}\left(1+c_{1} d_{1} x\right)\right]+\left(1-p_{1}\right) c_{1}\left(d_{1}+1\right)\left[1-\left(1-c_{2} x\right)^{d_{2}}\left(1+c_{2} d_{2} x\right)\right]}{\left[p_{1} c_{2}\left(d_{2}+1\right)+\left(1-p_{1}\right) c_{1}\left(d_{1}+1\right)\right]}$.

6.8 Estimation of Lorenz curve

For estimating the Lorenz curve, we need the estimate of parameters of the model (3.1). The estimation of parameters of the model is discussed in Chapter 3.

$$
\begin{equation*}
\hat{L}(F(x))=\frac{\hat{p}_{1} \hat{c}_{2}\left(\hat{d}_{2}+1\right)\left[1-\left(1-\hat{c}_{1} x\right)^{\hat{d}_{1}}\left(1+\hat{c}_{1} \hat{d}_{1} x\right)\right]+\left(1-\hat{p}_{1}\right) \hat{c}_{1}\left(\hat{d}_{1}+1\right)\left[1-\left(1-\hat{c}_{2} x\right)^{\hat{d}_{2}}\left(1+\hat{c}_{2} \hat{d}_{2} x\right)\right]}{\left[\hat{p}_{1} \hat{c}_{2}\left(\hat{d}_{2}+1\right)+\left(1-\hat{p}_{1}\right) \hat{c}_{1}\left(\hat{d}_{1}+1\right)\right]} . \tag{6.6}
\end{equation*}
$$

6.9 Simulation study

In this section, we carry out a simulation study to assess the performance of the estimator.

For type I censoring, in which observations belonging to each subpopulation are known, we generated two sets of samples, one from a beta distribution with parameters c_{1} and d_{1} and the second from a beta distribution with parameters c_{2} and d_{2}.

For type I censoring, in which observations belonging to each subpopulation are unknown, we obtained finite mixture of beta distributions using a Bernoulli distribution with probability of success $p_{1}\left(0<p_{1}<1\right)$.

The estimates of parameters by the method of maximum likelihood under complete and type I censoring, for the set of parameters $c_{1}=.1, c_{2}=.2, d_{1}=5, d_{2}=10$ and $p_{1}=0.5$ with various combinations of n and N are given in Table 6.13 to 6.15 . The values in brackets provide the variance of the estimates. Simulation study reported here shows that M.L.E provides estimates with small bias. The variance of the estimates decreases as n increases. Graphs of the actual and estimated Lorenz curve are given in Fig 6.9 and 6.10.

Table 6.13 Maximum likelihood estimates of parameters under complete sample for $c_{1}=.1, c_{2}=.2, d_{1}=5, d_{2}=10$ and $p_{1}=0.5$

$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\hat{c}_{1}=.1098236$	$\hat{c}_{1}=.109352$	$\hat{c}_{1}=.0916796$
$(8.322 \mathrm{E}-6)$	$(2.74217 \mathrm{E}-8)$	$(1.31172 \mathrm{E}-9)$
$\hat{c}_{2}=.188062$	$\hat{c}_{2}=1789255$	$\hat{c}_{2}=.179949$
$(1.23116 \mathrm{E}-7)$	$(3.2446 \mathrm{E}-6)$	$(1.26327 \mathrm{E}-6)$
$\hat{d}_{1}=4.92574$	$\hat{d}_{1}=5.07017$	$\hat{d}_{1}=5.02106$
$(.04452)$	$(.0151182)$	$(.00848767)$
$\hat{d}_{2}=10.3343$	$\hat{d}_{2}=10.4858$	$\hat{d}_{2}=10.4986$
$(.08585)$	$(.01558)$	$(.00303049)$
$\hat{p}_{1}=.5$	$\hat{p}_{1}=.5$	$\hat{p}_{1}=.5$
$(3.9 \mathrm{E}-8)$	$(2.7 \mathrm{E}-9)$	$(1.2 \mathrm{E}-11)$

Table 6.14 Maximum likelihood estimates of parameters under type I censoring for $c_{1}=.1, c_{2}=.2, d_{1}=5, d_{2}=10$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are known.

Censoring income	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{N}=15$	$\begin{aligned} & \hat{c}_{1}=.1220745 \\ & (1.40616 \mathrm{E}-9) \end{aligned}$	$\begin{gathered} \hat{c}_{1}=.0904950 \\ (1.03046 \mathrm{E}-9) \end{gathered}$	$\begin{gathered} \hat{c}_{1}=0903679 \\ (2.76269 \mathrm{E}-11) \end{gathered}$
	$\begin{aligned} & \hat{c}_{2}=.20328749 \\ & (1.32434 \mathrm{E}-8) \end{aligned}$	$\begin{gathered} \hat{c}_{2}=.280551 \\ (1.06227 \mathrm{E}-8) \end{gathered}$	$\begin{gathered} \hat{c}_{2}=.24784 \\ (1.80183 \mathrm{E}-9) \end{gathered}$
	$\begin{gathered} \hat{d}_{1}=4.83494 \\ (.52921) \end{gathered}$	$\begin{aligned} & \hat{d}_{1}=5.0323 \\ & (.266372) \end{aligned}$	$\begin{aligned} & \hat{d}_{1}=5.06633 \\ & (.00135048) \end{aligned}$
	$\begin{gathered} \hat{d}_{2}=10.1772 \\ (.17411) \end{gathered}$	$\begin{gathered} \hat{d}_{2}=10.078881 \\ (.038415) \end{gathered}$	$\begin{aligned} & \hat{d}_{2}=10.0850 \\ & (.0007159) \end{aligned}$
	$\begin{aligned} & \hat{p}_{1}=.586043 \\ & (.0158459) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.50153 \\ & (.008962) \end{aligned}$	$\begin{gathered} \hat{p}_{1}=.50697 \\ (.00099) \end{gathered}$
$\mathrm{N}=19$	$\begin{gathered} \hat{c}_{1}=.128464 \\ (7.33582 \mathrm{E}-7) \end{gathered}$	$\begin{gathered} \hat{c}_{1}=.170163 \\ (4.38079 \mathrm{E}-7) \end{gathered}$	$\begin{aligned} & \hat{c}_{1}=.132481 \\ & (1.194 \mathrm{E}-8) \end{aligned}$
	$\begin{gathered} \hat{c}_{2}=.1742113 \\ (2.597 \mathrm{E}-8) \end{gathered}$	$\begin{gathered} \hat{c}_{2}=.20692 \\ (9.55987 \mathrm{E}-9) \end{gathered}$	$\begin{gathered} \hat{c}_{2}=199065 \\ (2.61837 \mathrm{E}-9) \end{gathered}$
	$\begin{aligned} & \hat{d}_{1}=5.2529 \\ & (.0036046) \end{aligned}$	$\begin{aligned} & \hat{d}_{1}=4.96169 \\ & (.0199362) \end{aligned}$	$\begin{gathered} \hat{d}_{1}=4.76143 \\ (.002968) \end{gathered}$
	$\begin{gathered} \hat{d}_{2}=9.75696 \\ (.000887) \end{gathered}$	$\begin{gathered} \hat{d}_{2}=10.12323 \\ (.0005169) \end{gathered}$	$\begin{gathered} \hat{d}_{2}=10.40191 \\ (.000348) \end{gathered}$
	$\begin{gathered} \hat{p}_{1}=.482237 \\ (.000853) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.439791 \\ & (.0001795) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.532104 \\ & (.0000211) \end{aligned}$

Table 6.15 Maximum likelihood estimates of parameters under type I censoring for $c_{1}=.1, c_{2}=.2, d_{1}=5, d_{2}=10$ and $p_{1}=0.5$ in which observations belonging to each subpopulation are unknown.

Censoring income	Estimate	$\mathrm{n}=30$	$\mathrm{n}=50$	$\mathrm{n}=100$
$\mathrm{N}=15$	M.L.E	$\begin{gathered} \hat{c}_{1}=.103728 \\ (.000666) \end{gathered}$	$\begin{gathered} \hat{c}_{1}=.103320 \\ (.000466) \end{gathered}$	$\begin{gathered} \hat{c}_{1}=.10266 \\ (.00001924) \end{gathered}$
		$\begin{aligned} & \hat{c}_{2}=.25195 \\ & (.000535) \end{aligned}$	$\begin{gathered} \hat{c}_{2}=.20506 \\ (2.36588 \mathrm{E}-6) \end{gathered}$	$\begin{aligned} & \hat{c}_{2}=.205053 \\ & (1.6508 \mathrm{E}-6) \end{aligned}$
		$\begin{gathered} \hat{d}_{1}=5.9867 \\ (.02679) \end{gathered}$	$\begin{gathered} \hat{d}_{1}=5.2926 \\ (.00149) \end{gathered}$	$\begin{gathered} \hat{d}_{1}=5.03388 \\ (.000904) \end{gathered}$
		$\begin{gathered} \hat{d}_{2}=10.32588 \\ (.4479) \\ \hline \end{gathered}$	$\begin{gathered} \hat{d}_{2}=10.0336 \\ (.00312) \end{gathered}$	$\begin{gathered} \hat{d}_{2}=10.0319 \\ (.002064) \end{gathered}$
		$\begin{gathered} \hat{p}_{1}=.51162 \\ (.09115) \end{gathered}$	$\begin{aligned} & \hat{p}_{1}=.50804 \\ & (.000272) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.507314 \\ & (.0000748) \\ & \hline \end{aligned}$
$\mathrm{N}=19$	M.L.E	$\begin{gathered} \hat{c}_{1}=.1129162 \\ (.0000126) \\ \hline \end{gathered}$	$\begin{aligned} & \hat{c}_{1}=.1168359 \\ & (2.9314 \mathrm{E}-6) \end{aligned}$	$\begin{gathered} \hat{c}_{1}=.102233 \\ (8.36481 \mathrm{E}-7) \end{gathered}$
		$\begin{aligned} & \hat{c}_{2}=.199692 \\ & (1.4724 \mathrm{E}-6) \end{aligned}$	$\begin{gathered} \hat{c}_{2}=20114 \\ (3.6192 \mathrm{E}-7) \end{gathered}$	$\begin{aligned} & \hat{c}_{2}=.188321 \\ & (6.433 \mathrm{E}-8) \end{aligned}$
		$\begin{gathered} \hat{d}_{1}=5.90832 \\ (.704024) \end{gathered}$	$\begin{aligned} & \hat{d}_{1}=5.0816 \\ & (0004299) \end{aligned}$	$\begin{aligned} & \hat{\hat{d}}_{1}=5.05114 \\ & (.0010644) \end{aligned}$
		$\begin{gathered} \hat{d}_{2}=10.94874 \\ (.611743) \end{gathered}$	$\begin{gathered} \hat{d}_{2}=10.96933 \\ (.013504) \end{gathered}$	$\begin{gathered} \hat{d}_{2}=10.08138 \\ (.0013461) \end{gathered}$
		$\begin{aligned} & \hat{p}_{1}=.43484 \\ & (.0000388) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.447885 \\ & (.0000204) \end{aligned}$	$\begin{aligned} & \hat{p}_{1}=.514562 \\ & (2.1671 \mathrm{E}-7) \end{aligned}$

Fig. 6.9 Graph of actual $\left(c_{1}=.1, c_{2}=.2, d_{1}=5, d_{2}=10\right.$ and $\left.p_{1}=.5\right)$ and estimated Lorenz curve $\left(\hat{c}_{1}=.112, \hat{c}_{2}=.199, \hat{d}_{1}=5.91, \hat{d}_{2}=10.95\right.$ and $\left.\hat{p}_{1}=.5\right)$ for the censored sample case.

Lorenz curve

Chapter 7

CONCLUSION

7.1 Introduction

The remarkable fact about mixture distributions is that there are lots of real life situations where the concept of mixture distributions can be applied. For example, in life testing experiments, the systems will be failed due to different causes and the times to failure due to different reasons are likely to follow different distributions. A knowledge of these distributions is essential to eliminate cause of failures and thereby to improve the reliability.

In the foregone chapters, we have examined the role of finite mixture of Pareto and finite mixture of beta distributions in the context of reliability and income analysis. We have proved that finite mixture of Pareto and finite mixture of beta distributions are identifiable. The estimation of parameters has been done using various techniques for complete as well as censored samples. Maximum likelihood and Bayes methods provide estimates with small bias and less variance (in the case of Bayes, we calculated posterior risk) and the variance of the estimates decreases as n increases. As expected, the method of moments was shown to be inferior to maximum likelihood estimation, Bayes method and maximum product of spacing. We have employed finite mixture models for prediction of future observations and for this purpose Bayesian approach has been used. It should be remarked that the results obtained in Bayesian prediction seems to be quite good. Maximum likelihood estimation of stress-strength reliability and Lorenz curve using finite mixture models has also been carried out.

Finite mixture of Pareto always possesses decreasing hazard rate function. However, finite mixture of beta possesses decreasing hazard rate, increasing hazard rate, constant hazard rate and bathtub pattern depending upon the values of the parameters. We have employed the finite mixture of Pareto and finite mixture of beta distributions in modelling four different decreasing hazard rate situations. Since decreasing hazard rate is most commonly encountered in many real life situations, finite mixture of Pareto and finite mixture of beta can be an ideal choice for modelling a wide range of such situations when parametric methods are resorted to.

7.2 Future works

Estimation of the number of components is a special kind of model choice problem in the analysis of mixture model, for which there is a number of possible solutions. There is no universal method, and the implementation of the previous methods is often very difficult. Hence there exists a wide scope for attempting to find tractable solutions for the number of components in a mixture model, either by refining the existing ones or by trying some new approach.

Progressive censoring and hybrid censoring occur frequently in many real life situations and therefore analysis using mixtures in this context is an area for future study.

Bayesian estimation of stress-strength reliability using finite mixture models under complete as well as censored cases may also be attempted.

So far we have considered the maximum likelihood estimation of the Loren \angle curve for measuring income inequality; another important area which would require attention is the Bayesian estimation of Lorenz curve and other income inequality measures using finite mixture models.

The analysis of finite mixture of discrete distributions is an area of research work that remains to be explored.

In this study, we have attempted parametric approach using finite mixture of Pareto and finite mixture of beta models in the univariate set up. However, a systematic study on finite mixture of multivariate distributions is not yet carried out. Accordingly, analysis of multivariate mixture models is also an area worth exploring.

BIBILIOGRAPHY

Abraham, B. and Nair N.U. (2001). On characterizing of mixtures of some life distributions. Statistical Papers 42, 387-393.

Ahmad, A.A. (1996). Characterizations of a family of continuous distributions and a finite mixture of this family. Journal of the Applied Statistical Science 5, 225-232.

Ahmad. K.E. (1982). Mixtures of Inverse Gaussian distributions. Ph. D. Thesis. University of Assiut. Egypt.

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman and Hall 362, London.

Aitchison, J. and Brown, J.A.C. (1969). The Lognormal Distribution with Special Reference to its Uses in Economics, Cambridge University Press, London.

Akman, O., Sansgiry, P. and Minnotte, M.C. (1999). On the estimation of reliability based on mixture inverse Gaussian distributions, In Applied Statistical Science IV, 12I-I28. Nova Science Publishers.

Al-Hussaini, E.K. (1999). Bayesian prediction under a mixture of two exponential components model based on type 1 censoring. Journal of Applied Statistical Science 8, 173-185.

Al-Hussaini, E.K. (2001). Bayesian predictive density of order statistics based on finite mixture models (Personal communication).

Al-Hussaini, E.K. and Ahmad, K.E. (1984). Information matrix for a mixture of two inverse Gaussian distributions. Communications in Statistics- Simulation and Computation 13, 785-800.

Al-Hussaini, E.K., Al-Dayian, G.R. and Adham, S.A. (2000). On finite mixture of two-component Gompertz lifetime model. Journal of Statistical Computation and Simulation 67, 1-20.

Al-Hussaini, E.K., Mousa, M.A.M. and Sultan, K.S. (1997). Parametric and nonparametric estimation of $\mathrm{P}(\mathrm{Y}<\mathrm{X})$ for finite mixtures of lognormal components. Communications in Statistics -Theory and Methods 26, 1269-1289.

Al-Hussaini, E.K., Nigm, A.M. and Jaheen, Z.F. (2001). Bayesian prediction based on finite mixtures of Lomax components model and type I censoring. Statistics 35, 259268.

Al-Hussaini, E.K. and Osman, M. (1997). On the median of a finite mixture. Journal of Statistical Computation and Simulation 58, 121-144.

Al-Hussaini, E.K. and Sultan, K.S. (2001) Reliability and Hazard based on Finite mixture models. Handbook of Statistics 20, Eds. N. Balakrishnan and C.R. Rao, 139183.

Amoh, R.K. (1983). Classification procedures associated with the inverse Gaussian distribution. Ph. D. Thesis. University of Manitoba. Winnipeg. Canada.

Anand, S. (1983). Inequality and poverty in Malaysia. Measurement and Decomposition. A World Bank Research Publication. Oxford University Press, Cambridge.

Arnold, B.C. (1987). Majorization and Lorenz Order. A Brief Introduction. Springer Verlag (Lecture notes in Statistics 43). New York.

Ashton, W.D. (1971). Distribution for gaps in road traffic. Journal of the Institutional Mathematics Applications 7, 37-46.

Awad, A.M., Azzam, M.M. and Hamdan, M.A. (1981). Some inference results on $\operatorname{Pr}(\mathrm{X}<\mathrm{Y})$ in the bivariate exponential model. Communications in Statistics - Theory and Methods 10, 2515-2525.

Baetels, C.P.A. and van Metelen, H. (1975). Alternative probability density functions of income. Vrije University Amerstadam. Research Memorandum 29.

Barnett, V. and Lewis, T. (1984). Outliers in Statistical Data. Wiley, New York.
Beg, M.A. and Singh, N. (1979). Estimation of $\mathrm{P}(\mathrm{Y}<\mathrm{X})$ for the Pareto distribution. IEEE Transactions on Reliability 28, 411-414.

Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory. Wiley, New York.
Betemps, E.J and Buncher, C.R. (1993). Birthplace as a risk factor in motor neurone disease and Parkinson`s disease. International Journal of Epidemiology 22, 898-904.

Al-Hussaini, E.K., Nigm, A.M. and Jaheen, Z.F. (2001). Bayesian prediction based on finite mixtures of Lomax components model and type I censoring. Statistics 35, 259268.

Al-Hussaini, E.K. and Osman, M. (1997). On the median of a finite mixture. Journal of Statistical Computation and Simulation 58, 121-144.

Al-Hussaini, E.K. and Sultan, K.S. (2001) Reliability and Hazard based on Finite mixture models. Handbook of Statistics 20, Eds. N. Balakrishnan and C.R. Rao, 139183.

Amoh, R.K. (1983). Classification procedures associated with the inverse Gaussian distribution. Ph. D. Thesis. University of Manitoba. Winnipeg. Canada.

Anand, S. (1983). Inequality and poverty in Malaysia. Measurement and Decomposition. A World Bank Research Publication. Oxford University Press, Cambridge.

Arnold, B.C. (1987). Majorization and Lorenz Order. A Brief Introduction. Springer Verlag (Lecture notes in Statistics 43). New York.

Ashton, W.D. (1971). Distribution for gaps in road traffic. Journal of the Institutional Mathematics Applications 7, 37-46.

Awad, A.M., Azzam, M.M. and Hamdan, M.A. (1981). Some inference results on $\operatorname{Pr}(\mathrm{X}<\mathrm{Y})$ in the bivariate exponential model. Communications in Statistics - Theory and Methods 10, 2515-2525.

Baetels, C.P.A. and van Metelen, H. (1975). Alternative probability density functions of income. Vrije University Amerstadam. Research Memorandum 29.

Barnett, V. and Lewis, T. (1984). Outliers in Statistical Data. Wiley, New York.
Beg, M.A. and Singh, N. (1979). Estimation of $\mathrm{P}(\mathrm{Y}<\mathrm{X})$ for the Pareto distribution. IEEE Transactions on Reliability 28, 411-414.

Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory. Wiley, New York.
Betemps, E.J and Buncher, C.R. (1993). Birthplace as a risk factor in motor ncurone disease and Parkinson`s disease. International Journal of Epidemiology 22, 898-904.

Bhattacharjee, M.C. (1988). Reliability ideas and applications in Economics and Social Sciences .Handbook of Statistics 7, Eds. P.R Krishnaiah and C.R Rao, 175-214. Bhattacharjee, M.C. (1993). How rich are the rich? Modelling affluence and inequality via reliability theory. Sankhya, Series B 55, 1-26.

Bhattacharyya, G.K.and Johnson, R.A. (1974). Estimation of reliability in a multicomponent stress-strength model. Journal of the American Statistical Association 69, 966-970.

Birnbaum, Z.W. (1956). On a use of Mann-Whitney statistics. Proceedings of the Third Berkeley Symposium in Mathematical Statistics and Probability 1, 13-17, University of California Press, Berkeley, CA.

Birnbaum, Z.W. and McCarty, B.C. (1958) A distribution-free upper confidence bounds for $\operatorname{Pr}(\mathrm{Y}<\mathrm{X})$ based on independent samples of X and Y . Annals of Mathematical Statistics 29, 558-562.

Block, H. W., Savits, H. T. and Wondmagegnehu, E.T. (2003). Mixtures of distributions with increasing linear failure rates. Journal of the Applied Probability 40, 485-504.

Bullmore, E.T., Brammer, M.J., Williams, S.C.R., Rabe-Hesketh, S., Janot, W., David, A., Mellers, J., Howard, R. and Sham, P. (1996). Statistical methods of estimation and inference for functional MR image analysis. Magnetic Resonance Medicine 35, 261-277.

Cameron, E. and Pauling, L. (1978). Supplemental ascorbate in the supportive treatment of cancer: re-evaluation of prolongation of survival times in terminal human cancer. Proceedings of the National Academy of Science USA 75, 4538-4542.

Cassie, R.M. (1962). Frequency distribution models in the ecology of plankton and other organisms. Journal of the Animal Ecology 31. 65-95.

Chakrabarthy, G. (1982). Estimation of Lorenz curve and Gini coefficient from grouped observations. Artha Vijnana 24, 120-133.

Champernowne, D.G. (1953). A model of income distribution. Economic Journal 53, 318-351.

Chandra, M. and Singpurwalla, N.D. (1981). Relationships between some notions which are common to reliability theory and economics. Mathematics of Operations Research 6, 113-121.

Charlier, C.V.L. and Wicksell, S.D. (1924). On the dissection of frequency functions. Arkivf. Matematik Astron. ech Fysik., Bd. 18, No. 6.

Chatterjee, G.S. and Bhattacharya, N. (1974). On disparities in per capita household consumption in India. Sankhya, Series C. 36, 183-214.

Cheng, R.C.H and Amin, N.A.K. (1983). Estimating parameters in continuous univariate distributions with a shifted origin. Journal of the Royal Statistical Society, Series B 45, 394-403

Church, J.D., and Harris. B. (1970). The estimation of reliability from stress-strength relationship. Technometrics 12, 49-54.

Cohen, A.C. (1967). Estimation in mixtures of two normal distributions. Technometrics 9, 15-28.

Cox, D.R. (1959). The analysis of exponentially distributed lifetimes with two types of failure. Journal of the Royal Statistical Society, Series B 21, 411-421.

Cox, D.R. (1966). Notes on the analysis of mixed frequency distributions. British Journal of the Mathematical Statistics Psychology 19, 39-47.

Cox, D.R. (1972). Renewal Theory. Methuen, London.

Cramer, E. (2001). Inference for stress-strength models based on Wienman multivariate exponential samples. Communications in Statistics - Theory and Methods 30, 331-346.

Cross, R.J. (2004). Efficient tools for reliability analysis using finite mixture distributions. M.Sc Thesis. School of Aerospace Engineering. Georgia.

Crowder, M. (2001). Classical Competing Risks, Chapman and Hall, London.

Dalal, S.R. (1978). A note on adequacy of mixtures of Dirichlet processes. Sankhya, Series A 40, 185-191.

Davis, D.J. (1952). An analysis of some failure data. Journal of the American Statistical Association 47, 113-150.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society Series B 39, 1-38.

Desmond, A.F. and Chapman, G.R. (1993). Modelling task completion data with inverse Gaussian mixtures. Applied Statistics 42, 603-613.

Diaconis, P. and Ylvisaker, D. (1985). Quantifying Prior Opinion. In Bayesian Statistics 2. (Eds. J. M. Bernardo et.al.), 133-156. North Holand, Amsterdam.

Downton, F. (1973). On the estimation of $P(Y<X)$ in the normal case. Technometrics 15, 551-558.

Dudewicz, E.J. (1976). Introduction to Statistics and Probability. Holt Reinhart.
Dunsmore, I.R. (1983). The future occurrence of records. Annals of the Institute of Statistical Mathematics 35, 267-277.

Elandt-Johnson, R.C. and Johnson, N.L. (1980). Survival Models and Data Analysis. Wiley, New York.

Enis, P. and Geissel, S. (1971). Estimation of the $P(Y>X)$. Journal of the American Statistical Association 66, 162-168.

Epstein, B. and Sobel, M. (1953). Life testing. Journal of the American Statistical Association 48, 486-502.

Everitt, B.S. (1996). An introduction to finite mixture distributions. Statistical Methods in Medical Research. 5, 107-127.

Everitt, B.S. (1998). Cambridge Dictionary of Statistics. Cambridge University Press, Cambridge, London.

Everitt, B.S. (2003). Modern Medical Statistics. Wiley, New York.
Everitt, B.S. and Bullmore, E.T. (1999). Mixture model mapping of brain activation in functional magnetic resonance images. Human Brain Mapping 7. 1-14.

Everitt, B.S. and Hand, D.J. (1981). Finite Mixture Distributions. Chapman and Hall, London.

Everitt, B.S., Landau, S. and Leese, M. (2001). Cluster Analysis, Fourth edition. Asnold. London.

Feigl, P. and Zelen, M. (1965). Estimation of survival probabilities with concomitant information. Biometrics 21, 826-838.

Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics 1, 209-230.

Fichtenbaum, R. and Shahidi, H. (1988). Truncation bias and the measurement of income inequality. Journal of Business and Economic Statistics 6, 335-337.

Fielding, A. (1977). Latent Structure Analysis. In Exploring Data Structure. (Eds. C.A.O'Muircheartaigh and C.Payne), 125-157. Wiley, New York.

Flachaire, E. and Nunez, O. (2004). Estimation of income distribution and detection of subpopulations: an explanatory model. Maison des Sciences Economiques. 106112.

Fryer, J.G. and Robertson, C.A. (1972). A comparison of some methods for estimating normal mixture distributions, Biometrika 59, 639-648.

Galambos, J. and Kotz, S. (1978). Characterizations of Probability Distributions. Springer-Verlag, New York.

Gastwirth, J.L. (1971). A general definition of Lorenz curve. Econometrica. 39, 10371039.

Gastwirth, J.L. (1972). The estimation of the Lorenz curve and Gini-index. Review of Economics and Statistics 54, 306-316.

Geisser, S. (1993). Predictive Inference - An Introduction. Chapman and Hall, London.

Gibrat, R. (1931). Les inegalites economiques. Paris: Librairie du Recueil Sirey. Goidje, C.M. (1977). Convergence theorems for empirical Lorenz curves and their inverses. Advances in Applied probability 9, 756-791.

Govindarajulu, Z . (1967). Two sided confidence limits for $\mathrm{P}(\mathrm{X}>\mathrm{Y})$ based on normal samples of X and Y. Sankhya, Series B 29, 35-40.

Govindarajulu, Z. (1968). Distribution-free confidence bounds for $\mathrm{P}(\mathrm{X}<\mathrm{Y})$. Annals of Institute of Statistical Mathematics 20, 229-238.

Gupta, C.G. and Brown, N. (2001). Reliability studies of the skew- normal distribution and its application to a stress strength model. Communications in Statistics- Theory and Methods 30, 2427-2445.

Hanagal, D.D. (1995). Testing reliability in a bivariate exponential stress-strengih model. Journal of the Indian Statistical Association 33, 41-45.

Hanagal, D.D. (1997a). Note on estimation of reliability under bivariate Pareto stressstrength model. Statistical Papers 38, 453-459.

Hanagal, D.D. (1997b). Estimation of reliability when stress is censored at strength. Communications in Statistics - Theory and Methods 26, 911-919.

Harris, C.M. (1983). On finite mixtures of geometric and negative binomial distributions. Communications in Statistics- Theory and Methods 12, 987-1007.

Hasselblad, V. (1969). Estimation of finite mixtures of distributions from the exponential family. Journal of the American Statistical Association 64, 1459-1471.

Hitha, N. (1991). Some characterizations of Pareto and related populations. Ph D Thesis. Cochin university of Science and Technology, India.

Hollander, M. and Korwar, R.M. (1976) Nonparametric empirical Bayes estimation of the probability that $\mathrm{X}<\mathrm{Y}$. Communications in Statistics -Theory and Methods 5, 13691383.

Howlader, H.A. and Hossain, A. (1995). On Bayesian estimation and prediction from Rayleigh based on type II censored data. Communications in Statistics -Theory and Methods 24, 2249-2259.

Hyrenius, H. (1950). Distribution of 'Student'-Fisher t in samples from compound normal function. Biometrika 37, 429-442.

Izenman, A.J. and Sommer, C.J. (1988). Philatelic mixtures and multimodal densities. Journal of the American Statistical Association 83, 941-953.

Jaheen, Z.F. (2003). Bayesian prediction under a mixture of two component gompertz lifetime model. Sociedad Espanola de estadistica e investigacion operative test 12, 413-426.

Jana, P.K. (1994). Estimation of $P(Y<X)$ in the bivariate exponential case due to Marshall-Olkin. Journal of the Indian Statistical Association 31, 25-37.

Jana, P.K. and Roy, D. (1994). Estimation of reliability under stress strength model in a bivariate exponential set up .Calcutta Statistical Association Bulletin 44, 175-181.

Jeevanand, E.S. (1997). Bayesian estimation of $P(Y<X)$ for a bivariate Pareto distribution. Statistician 46, 93-99.

Jeevanand, E.S. and Nair, N.U. (1994). Estimating $P(Y<X)$ from exponential samples containing spurious observations .Communications in Statistics- Theory and Methods 23, 2629-2642.

Jin, C. and Pal, N. (1992). On common location of several exponentials under a class of convex loss functions. Calcutta Statistical Association Bulletin 42, 167-168.

Johnson, R.A. (1988). Stress- strength models for reliability. In Handbook of Statistics. Ed. Krishnaiah, P.R. and Rao, C.R., Vol.7, Elsevier, North Holland, 27-54.

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, Vol 2. Wiley, New York.

Kakwani, N.C. (1980). Income Inequality and Poverty. Methods of Estimation and Policy Application, World Bank, Oxford University Press, Cambridge.

Kakwani, N.C. and Podder, N. (1976). Efficient estimation of the Lorenz curve and associated inequality measures. Econometrica 44, 137-148.

Kalbfeisch, J.D. and Prentice, R.L. (1980). The Statistical Analysis of Failure Time Data. Wiley, New York.

Lingappaiah, G.S. (1989). Bayes prediction of maxima and minima in exponential life tests in the presents of outliers. Journal of Industrial Mathematicai Society 39, 169 182.

Lomax, K.S. (1954). Business failures: Another example of the analysis of failure data, Journal of the American Statistical Association 49, 847-852.

Lorenz, M.O. (1905). Methods of measuring the concentration of wealth. Journal of the American Statistical Association 9, 209-219.

Macdonald, P.D.M. (1971). Comment on a paper by K. Choi and W.G. Bulgren. Journal of the Royal Statistical Society, Series B 33, 326-329.

Mann, N.R., Schafer, R.E. and Singpurwalla, N.D. (1974). Methods for Statistical Analysis of Reliability and Lifetime data. New York.

Maritz, J. and Levin, T. (1989). Empirical Bayes Methods, Second Edition, Chapman \& Hall. London.

McGiffin, D.C., O’Brien, M.F., Galbraith, A.J., McLachlan, G. J., Stafford, E.G., Gardiner, M.A.H., Pohlner, P.G., Early, L. and Kearny, L. (1993). An analysis of risk factors for death and mode specific death following aortic valve replacement using allograft, xenograft, and mechanical valves. Journal of the Thoracic and Cardiovascular Surgery 106, 895-911.

McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics. 36, 318-324.

McLachlan, G. J. and Basford, K.E. (1988). Mixture Models: Inference and Applications to Clustering. New York: Marcel Dekker.

McLachlan, G. I. and McGiffin, D.C. (1994). On the role of finite mixture models in sarvival analysis. Statistical Methods in Medical Research. 3, 211-226.

McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. Wiley, New York.
Mendenhall. W. and Hader. R.J. (1958). Estimation of parameters of mixed exponentially distributed failure time distributions from censored failure data, Biometrika 45, 504-520.

Miller, R.B. (1987). Maximum likelihood estimation of mixed stock fishery composition. Canadian Journal of the Fisheries Aquatic Science 44, 583-590.

Moothathu, T.S.K. (1985a). Sampiing distributions of Lorenz curve and Gini-index of the Pareto distribution. Sankhya, Series B 47, 247-278.

Moothathu, T.S.K. (1985b). Distributions of maximum likelihood estimators of Lorenz curve and Gini-index of exponential distribution. Annals of Institute of Statistical Mathematics 37, 473-479.

Moothathu, T.S.K. (1990). The best estimator and a strongly consistent asymptotically normal unbiased estimator of Lorenz curve, Gini index and Theil entropy index of Pareto distribution. Sankhya, Scries B 52, 115-127.

Muench, H. (1936). The probability distribution of protection test results. Journal of the American Statistical Association 31, 677-689.

Mukherjee, S.P. and Islam, A. (1983). A finite range distribution of failure time, Naval Research Logistics Quarterly 30, 487-491.

Mukherjee, S.P. and Roy, D. (1986). Some characterizations of the exponential and related life distributions. Calcutta Statistical Association Bulletin 35, 189-197.

Nadarajah, S. (2004). Reliability for Laplace distributions. Mathematical Problems in Engineering 2, 169-183.

Nair, N.U. and Sankaran, P.G. (1991). Characterization of the Pearson family of distributions. IEEE Transactions on Reliability 40, 75-77.

Nassar, M.M. (1988). Two properties of mixtures of exponential distributions. IEEE Transactions on Reliability 37, 383-385.

Nassar, M.M. and Mahmoud, M.R. (1985). On characterizations of a mixture of exponential distributions. IEEE Transactions on Reliability 34, 484-488.

Nelson, W.B. (1972). Graphical analysis of accelerated life test data with the inverse power law model. IEEE Transactions on Reliability 21, 2-11.

Nelson, W.B. (1982). Applied Life Data Analysis. Wiley, New York.

Nelson, W.B. and Hahn, G.J. (1972). Linear estimation of a regression relationship from censored data. Part I- Simple methods and their applications. Technometrics 14, 247-269.

Newcomb, S. (1886). A generalized theory of the combination of observations so as to obtain the best result. American Journal of Mathematics 8, 343-366.

Owen, D.B., Craswell, K.J. and Hanson, D.L. (1964). Nonparametric upper confidence bounds for $P(Y<X)$ and confidence limits for $P(Y<X)$ when X and Y are normal. Journal of the American Statistical Association 59, 906-924.

Paap, R. and van Dijk, H.K. (1998). Distribution and mobility of wealth of nations. European Economic Review 42, 1269-1293.

Patel, J.K. (1989). Prediction intervals - a review. Communications in StatisticsTheory and Methods 18, 2393-2465.

Patil, G.P. and Bildikar, S. (1966). Identifiability of countable mixtures of discrete probability distributions using methods of infinite matrices. Proceedings of the Cambridge Philosophical Society 62, 485-494.

Pearson, K. (1894). Contributions to the theory of mathematical evolution. Philosophical Transactions of the Royal Society of London, Series A 185, 71-110.

Peters, B.C. and Coberly, W.A. (1976). The numerical evolution of the maximum likelihood estimate of mixture proportions. Communications in Statistics- Theory and Methods 5, 1127-1135.

Peterson, A.V. and Kronmal, R.A. (1982). On mixture method for the computer generation of random variables. American Statistician 36, 184-191.

Prakasa Rao, B.L.S. (1992). Identifiability in Stochastic Models: Characterization of Probability Distributions, Academic press. London.

Rao, S.S. (1992). Reliability Based Design. R.R. Donnelley and Sons Company.

Redner, R.A. and Walker, H.F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26, 195-239.

Reed, W.J. and Jorgensen, M. (2004). The double pareto- lognormal distribution- a new parametric model for size distribution. Communications in Statistics- Theory and Methods 33.

Ripley, B.D. (1994). Neural network and related methods for classification (with discussion). Journal of the Royal Statistical Society, Series B 56, 409-456.

Salem, A.B. and Mount, T.D. (1974). A convenient descriptive model of income distribution: The gamma density. Econometrica 42, 1115-1127.

Sankaran, P.G. and Maya, T.Nair (2004). On a finite mixture of beta distributions. Far East Journal of Theoretical Statistics 14(1) 103-120.

Sankaran, P.G. and Maya, T.Nair (2005). On a finite mixture of Pareto distributions. Calcutta Statistical Association Bullettin 57, 67-83.

Schilling. W. (1947). A frequency distribution represented as the sum of two Poisson distributions. Journal of the American Statistical Association 42, 407-424.

Sinha, S.K. (1986). Reliability and Life Testing, Wiley Eastern Limited, New Delhi.
Sinha, S.K. (1998). Bayesian estimation, New Age International Publications, New Delhi.
Skellam, J.G. (1948). A probability distribution derived from the binomial distribution by regarding the probability of success as variable between sets of trials. Journal of the Royal Statistical Society, Series B 10, 257-261.

Swartz, G.B. (1973). The mean residual lifetime function. IEEE Transactions on Reliability 22, 108-109.

Symons, M.J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics 37, 35-43.

Tan. W.Y. (1980). On probability distributions from mixtures of multivariate densities. South African Statistical Journal 14, 47-55.

Tan, W.Y. and Chang, W.C. (1972). Some comparisons of the method of moments and the method of maximum likelihood in estimating parameters of a mixture of two normal densities. Journal of the American Statistical Association 67, 702-708.

Tanaka, S. (1962). A method of analyzing a polymodal frequency distribution and its application to the length distribution of the porgy, Taius tumifrons. Journal of the Fisheries Research, Canada 19, 1143-1159.

Teicher, H. (1960). On the mixture of distributions. Annals of Mathematical Statistics 31, 55-73.

Teicher, H. (1961). Identifiability of mixtures. Annals of Mathematical Statistics 32, 244248.

Teicher, H. (1963). Identifiability of finite mixtures. Annals of Mathematical Statistics 34, 1265-1269.

Teicher, H. (1967). Identifiability of mixtures of product measures. Annals of Mathematical Statistics 38, 1300-1302.

Thurow, L. (1970). Analyzing the American income distribution. American Economic Revicw 48, 261-269.

Titterington, D.M. (1983). Minimum distance non-parametric estimation of mixture proportions. Journal of the Royal Statistical Society, Series B, 45, 37-46.

Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1985). Statistical Analysis of Finite Mixture Distributions. Wiley, New York.

Tong, H (1974). A note on the estimation of $P(Y<X)$ in the exponential case. Technometrics 16, 625. Errata: Technometrics 17, 395

Tong, H. (1977). On the estimation of $P(Y<X)$ for exponential families. IEEE Transactions on Reliability 26, 54-56.

Usinger, H. (1975). Pollenanalytische and Statigraphische Undersuchungen an zwei spatglazial-Vorkammen in Schleswig-Holstein. Mitt. Arbeitsgem. Geobot. SchleswigHolstein, Humberg, 25.

Weldon, W. F. R. (1892). Certain correlated variations in Crangon vulgaris. Proceedings of the Royal Society of London 51, 2-21.

Weldon, W. F. R. (1893). On certain correlated variations in Carcinus moenas. Proceedings of the Royal Society of London 54, 318-329.

Whitmore, G.A. (1986). Prediction limits for a univariate normal observation. American Statistician 40, 141-143.

Whitemore, A. and Altschuler, B. (1976). Lung cancer incidence in cigarette smokers: further analysis of Doll and Hill's data for British physicians. Biometrics 32, 805-816.

Woodward, W.A. and Kelley, G.D. (1977). Minimum variance unbiased estimation of $P(Y<X)$ in the normal case. Technometrics 19, 95-98.

Yakowitz, S.J. and Spragins, J.D. (1968). On the identifiability of finite mixtures. Annals of Mathematical Statistics 39, 209-214.

