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Chapter 1

Introduction

There are many situations in real life where customers have to wait in a line
(queue) for getting service. This happens when there is more demand for service
than there is facility available for service. Such situations arise due to shortage
of servers, economical infeasibility in providing more service to avoid waiting, etc.
For examples customers wait in a bank counter, patients wait in a doctors’ clinic,
airplanes wait to take off or landing etc.

A study on any queueing system is mainly based on the arrival of customers,
type of service provided, the number of servers, the capacity of the service station
and service discipline. Queueing theory has a wide range of applications in the
field of telecommunication systems, computer networks, hospital management etc.

Here the queueing models are analysed by means of continuous time Markov
chains in which we use the modelling tools such as Markovian Arrival/Service
Process (MA/(S)P) and Phase type distributions (PH-distributions). Numerically
tractable tools like these help us to model and analyse the structures so obtained
in a general manner. Resulting quasi-birth-and-death processes are solved numer-

ically by matrix analytic methods.
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Now we list in brief, the definitions and terminology used in this thesis.

Continuous time PH-distribution

Let {X(¢),t > 0} be a continuous time Markov chain with finite state space

{1,2,....,m + 1} and generator

T To
0 0

where the m x m matrix T = (T};) satisfies T;; <0 for 1 <¢ < mand T;; > 0 for
1 # 7. Also Te + Ty = 0 where ¢ is a column vector of 1’s of appropriate order.
The initial probability vector of @ is given by (@, am+1) with ae + apyy = 1.
Assume that 1,2, ..., m are transient, so that absorption into the state m+1 from
any initial state is certain. Let Z be the random variable representing the time
until absorption i.e., Z = inf{t > 0: X({) = m+ 1}. Then the distribution of
Z is called phase type distribution {PH- distribution) with representation (a, T').
The dimension m of T is called the the order of the distribution. The distribution
function of Z is

F(t)=Pr(Z<t)=1-aee

and its probability density function is

f(t) = ae™T,.

PH- renewal Process

A renewal process in which the renewal intervals follow PH-distribution is called

a PH- renewal process. To construct a PH renewal process, consider a continuous
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time Markov Chain with state space {1,2,....,m + 1} having infinitesimal genera-

tor
T T,

0 0

The m x m matrix T is taken to be nonsingular so that absorption into the state
m + 1 is certain from any initial state. Let (&, 0) be the initial probability vector
with ae = 1. When absorption occurs in the above chain we say that a renewal
event, may be in the form of an arrival, has occurred and the process immediately
starts anew in one of the states in {1, 2, ....,m} according to the probability vector
a, thereby continuing the process. If 0=1¢, < ¢ < fg........ are the time points
at which the Markov process is preinitialized with «, this process forms a renewal
process with inter renewal distribution PH(e,T'). Here there is a rate matrix
Ty = T, - a which gives transitions with arrivals. The transitions without arrivals
are described by the matrix 7. Now the matrix D = T+ 7 will be an infinitesimal
generator of a Markov process {J(t) : t > 0} on {1,2,....,m}, which is the ‘phase
process’ associated with the PH-renewal process.

Let N(t) denote the number of renewals in (0,¢). Then {{N(t), J(¢)) : t > 0}

is a two dimensional Markov process with generator

i
T T, 0 0
0T T, 0

Q=
00T T
| ]

Markovian Arrival Process

In PH renewal process, immediately after the occurrence of an event, the

phase distribution is always a. Therefore a new phase after an arrival is cho-
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sen independently of the phase immediately before that arrival. If this restric-
tion is relaxed we arrive at a new rate matrix 7° { instead of T} in PH re-
newal process) corresponding to transitions with arrival. i.e., T/ = (Ti’j) where
T}; = (To); (a); > 0,(cu); is the probability that the process restart at phase j
immediately after absorption at the phase ¢ and (Tp); is the i** component of Ty.
o; = ((o4),, (@i)g 5 oony (@4),,) I8 & probability vector with aze =1, for 1 <4 < m.
By choosing Dy = T and D, = T”, the matrix D = Dy + D, is the generator
of the Markov process {Y'(¢):¢ > 0} on the state space {1,2,...,m}. If N(¢)

denotes the number of arrivals in (0,¢), then the two dimensional Markov process

{(N@®),Y(¢)): t > 0} with state space {(¢,7),? 2 0,1 < j < m} has infinitesimal

generator i
Dy Dy 0 0
0 Dy Dy 0O

Q=
0 0 Dy Dy

Dy = (6;x) and Dy = (6};) are m x m matrices where §;; denotes the transition
rate from (¢,7) to (i + 1,k), ¢ > 0;1 < j,k <m and 53& denotes the transition
rate from (Z,j) to (3,k), ¢ 2 0;1 < j,k < m;j # k. A Markov process with
such a generator @ is called Markovian Arrival Process (MAP). In BMAP (Batch
Markovian Arrival Process) we have a sequence {D} of matrices where entries of
Dy represents transition without an arrival and those of D) represent transitions
coupled with a batch arrival of size k (= 1,2,...)

If the process {Y'(¢) : t > 0} is irreducible, then this Markov chain has a unique
stationary distribution = such that 7D = 0. The fundamental arrival rate of the

MAP is given by A = wDe.
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Quasi-birth-and-death process(QBD process)

Consider a Markov chain on a state space | J [ (i) where [ (i) = {(¢,7) : 1 <j < m}
for i > 0. The vector {(3) is called the i*" l;\zrgl and j stands for the phase of the
state (7,7).

The Markov chain is called a QBD process if the transitions from a state are
restricted to the states in the same level or to the two adjacent levels. i.e., move
in one step from (¢,7) to (¢/,j ) only if ¢/ =4,5+ 1 fori=0and i =¢,i+1,i -1
fori>1.

If the transition rates are level independent, the resulting QBD process is called

level independent quasi-birth-and-death process (LIQBD). The infinitesimal gen-

erator of an LIQBD with state space defined above has the form

(B, A, 0 O
Ay A Ay O
Q=0 Ay A A

where Ay, A; Ay and By are square matrices of order m. If @ is irreducible the

following theorem holds [45].

Theorem 1.1. The process @ is positive recurrent if and only if the minimal non

negative solution R to the matriz quadratic equation

R?A;+ RA, + Ay =0



CHAPTER 1. INTRODUCTION 6

has spectral radius less than I and the finite system of equations

zo(By+ RA2) =0, xo(I—R) le=1

has a unique positive solution xq.
If the matrir A = Ag + Ay + Ay is irreducible, then sp(R) < 1 if and only if
mAze > wApe, where w is the stationary probability vector of the generator matriz

A and sp(R) is the spectral Tadius of R.

The stationary probability vector = (xg, 1, ......... ) of @ is given by z; = o R
fori > 0.

A QBD process in which transition rates are level dependent is known as level
dependent QBD process (LDQBD). The infinitesimal generator of an LDQBD on

the state space |J I (¢) in which [ (3) = {(4,75) : 1 < j < m;} has the form
i>0

- -

By A 0 0
C, By A4 0
Q* = 0 Cz Bz Ao s

| |

where Bye + Age = 0 and Cie + Bie + Aje =0 for i > 1.
Here all B]s are square matrices but the Ajs and C}s in the boundary states

are, in general, rectangular. Assume that the QBD is irreducible. Then we have

the following theorem.

Theorem 1.2. When Q* is positive recurrent, its steady state distribution
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z = (xo, T1,....) satisfies the relation
Tiy1 = TR fori >0

where the matrices R; are the minimal nonnegative solutions of the system of equa-

tions
i) (B() + R]Cl) = 0

RiR Cip+ RiBi+ Ao =0,fori>1

Regarding the positive recurrence of J* we have the following theorem.

Theorem 1.3. Q* is positive recurrent if and only if the system of equations

zo(Bog + R1Cy) =0

.’IJOQ+Z{$0( H Rk)§}=1
=1 1<k<i—1

has a positive solution for xy.

For more details one can refer {40, 45]

1.1 Review of related works

Recent application in health care systems (Brahimi[10], Taylor[54], Wang[57]),
in queues with impatient customers arriving in telecommunication networks (Bac-
celli [4], Zhao [58], Zohar[59])and inventory systems with perishable goods (Graves(32],
Perry[48]) resulted in a spurt of interest in prioritization of customers in queueing
models.

Quite a large number of probabilistic models possessing a variety of proper-
ties have been discussed in the literature on priority queues (see books by Gross

and Harris {33], Jaiswal[36], Takagi {52] and Stanford[49]). All these treat priority
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queues with exogeneous priority rules which means that the decision of selecting
the next unit for service may depend only on the knowledge of the priority class
to which the unit belongs. However in many applications this discipline may not
be an accurate modelling approach. This is especially the case in several medi-
cal procedure - patients are treated according to the urgency of their requirements
(seriousness of illness); aircraft landing and in several communication related prob-
lems. At the time of arrival a customer does not assume (i.e., not assigned )any
priority; however while waiting in a clinic his condition may worsen resulting in
the need urgent attention. Similarly an aircraft in queue for landing may develop
problems {running out of fuel, for example)and so has to be given the next chance
to land, irrespective of its position in the queue. We shall call such customers
as priority generated customers( see Krishnamoorthy, Viswanath and Deepak[37],
Gomez Corral, Krishnamoorthy and Viswanath[30]). Self generation of priorities
by units in queue may be thought of as a consequence of their impatient behavior
[58]. Classical queueing theory on impatient units [4, 5, 50, 51] usually concerns
with models in which units wait for service for a limited time only and leave the
system for ever if service has not begun within that time.

MAP and its extension allowing group arrival (BMAP) are wide generalization
of the Poisson process and it encompasses a large class of numerically tractable
point process as special case (for example Markov modulated Poisson process,
Renewal process with phase type inter-renewal times, and superpositions of such
processes). This class of versatile point process was introduced by Neuts[44] and
further extended by Lucantoni [42]. It has the advantage of being almost as compu-
tationally tractable as the scalar Poisson process, while yielding a dense class within
the Space of point processes on [0, c0). Because of its computational tractability,

it is regarded as the simplest modelling choice when correlation aspect cannot be
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ignored. For results concerning MAPs, MAPs with marked transition and queues
with exogenous priority rules, one may refer paper by He[35], Krieger [37], Leemans
[41], Takine[53] and Wager [56]. Chakravarthy([14] provides an excellent account of
BMAP. In all these the analysis is essentially based on Matrix Analytic Method, a
thorough discussion of which can be found in Latouche and Ramaswamy [40] and
Neuts [45].

Matrix analytic methods introduced by M.F. Neuts in late 1970’s, establish a
success story, illustrating the enrichment of science and applied probability. As a
modelling tool one can use this to construct and analyze a wide class of stochastic
models in an algorithmically tractable manner.

Retrial queues have been extensively studied by Fallin and Templeton [24]. An
exhaustive survey of the recent developments in retrial and other queueing models

tackled with matrix analytic method is given in Gomez-Corral [31].

1.2 Summary of the thesis

This thesis entitled ‘Impact of Self-generation of Priorities and Non-preemptive
Service in Single/Multiserver Queues’ is divided into 5 chapters including this
introductory one. In Chapters 2 to 5 the systems under study are always stable
due to the phenomenon ‘self-generation of priorities’. We employ the Bright and
Taylor [13] procedure for obtaining a dominating process to arrive at a truncation
level. Then the Neuts-Rao algorithm [46]is employed to obtain the steady state
system state distribution.

Chapter 2 discusses a single server queueing system in which waiting customers
generate priority at a constant rate. A customer in service will be completely served

before this priority generated customer is taken for service. We call this service
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discipline as ‘non-preemptive service’. Priority generated customer can wait in a
waiting space of capacity 1 specially provided such class of customers. Only one
priority generated customer can wait at a time and a customer generating into
priority at that time will leave the system in search of emergency service. Arrival
process is according to MAP and service process follow PH-distribution. Perfor-
mance measures such as probability of n consecutive services of priority generated
customers, that of ordinary customers, mean waiting time of a tagged customer are
found by approximating them by the corresponding value in a truncated system.

In the third chapter we consider a ¢ server queueing system in which waiting
customers generate priority. Such a customer is immediately taken for service if
at least one of the servers is free. Else it waits in a waiting space of capacity
¢ exclusively for priority generated customers, provided there is space. As in
Chapter 2, a customer in service will be completely served before the priority
generated customer is taken for service. If there is no space and if all servers are
busy, the priority generated customer will leave the system in search of urgent
service elsewhere. Arrival of customers follow MAP and service times of ordinary
and priority generated customers follow PH distribution. Several performance
measures are evaluated and we attempt to compute the optimal number of servers
to be employed to minimize the loss of customers due to priority generation.

In Chapter 4, a multi server retrial queue is considered. An arriving customer
who finds the server busy, join an orbit of infinite capacity. Each customer in the
orbit tries independently of others to access the server. Customers in the orbit
generate priority at constant rate and such a customer is immediately taken for
service if any of the server is free. Else they wait in a waiting space as described
in Chapter 3 or leave the system if all servers are busy and if there is no waiting

space. Arrival, service patterns and performance measures are also discussed.
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Chapter 5 deals with a multi-priority retrial queue with a finite number of
priority classes having finite waiting space and an orbit of infinite capacity for the
least priority customers. The system has only one server. An arriving customer
join the waiting line of the a priority class to which he belongs if there are vacant
spaces. There is a super priority class of capacity 1 in which no arrival from
outside the system takes place. The customers waiting in the lower priority classes
generate priority and joins the higher priority class as dictated by the priority
generated; provided there are vacant spaces. Else they leave the system in search
of emergency service elsewhere. Customers of least priority join the orbit if at the
time of arrival the server is busy and tries independently of each other to access the
server at a constant rate. Priority generation of customers in the orbit is only to the
super priority class. The service discipline is non-preemptive. Customers arrive
to the system according to a marked Markovian arrival process and the service
time distribution of each customer is phase type. System performance measures

are provided with numerical illustrations.



Chapter 2

MAP/(PH,PH)/1 Queue

In this chapter we consider single server queueing system in which customers
arrive according to a Markovian arrival process. Waiting customers generate prior-
ity at a constant rate. Such a customer waits in a waiting space of capacity 1,if the
server is busy and if this waiting space is not already occupied by a priority gener-
ated customer. A customer in service will be completely served before the priority
generated customer is taken for service (non - preemptive service discipline). Only
one priority generated customer can wait at a time and a customer generating into
priority at that time, will have to leave the system in search of emergency service
elsewhere. The service times of ordinary and priority generated customers follow
distinct PH-distributions. Matrix Analytic method is used to compute steady state
distribution and performance evaluation. Performance measures such as probabil-
ity of n consecutive services of priority generated customers, probability of the
same for ordinary customers, mean waiting time of a tagged customer are found
by approximating them by their corresponding values in a truncated system.

This chapter is arranged as follows. In section 2.1 the problem is mathemati-

cally formulated and analysed. In section 2.2 we see that the system under study is

12
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always stable. We employ Bright and Taylor procedure for obtaining a dominating
process to arrive at a truncation level. Then the Neuts-Rao algorithm is employed
to obtain the steady state system state distribution. These are done in section
2.3. In section 2.4 we provide various system performance measures of interest.

Finally, numerical illustration are given in section 2.5.

2.1 Mathematical modelling

Customers arrive to a single server counter according to MAP with represen-
tation (Dg, D)) of order m;. At the time of arrival all customers are classified
as ‘ordinary’. If the server is busy the arriving customers join a queue. Waiting
customers ‘generate priority’ at a constant rate -y in such a way that if there are n
customers in the queue then the rate of priority generation is ny. Such a customer
waits in waiting space of capacity 1 (exclusively for priority generated customers)
for service which begins on completion of the present service. A second priority
generated customer during that time period (while the previously generated pri-
ority customer is waiting) will have to leave the system in search of emergency
service elsewhere.

The service time of ordinary and priority generated customers follow PH-
distribution with representation (a,T)} and (3,S) respectively with 7o= -T e and
So=-S e where e is a column vector of 1’s of appropriate order. Let
N(t) = {f of ordinary customers in the system at time ¢
N;(t) = of priority generated customers in service.

N3(t) = | of priority generated customers waiting for service.

M, (t} = phase of arrival process at time t.

M,(t) = phase of service process of ordinary customers at time t.
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M;(t) = phase of service process of priority generated customer at time t.
If X(t) = {N1(t), Naft), Ns(t), Ma(t), Ma2(t)/Ms(t)},then {X(¢),t > 0} form a con-
tinuous time Markov chain ‘H with state space
{(0,0,0,k1);1 < by < my}U {(0,1,72,k1,k3);52 = 0,11 < by <mp;1 < kg <
ms}J {(,0, 52, k1, k2);4 > 1,72 =0,1; 1 < ky <y 1 < ko <mo}lJ
{(t,1,52,k1,k3);1 > 1,2 =0,1;1 < ky <my;1 < ky < ms}

By partitioning the state space into levels with respect to the number of ordi-
nary customers in the system, the generator of the above Markov chain is of the

form

By A

C, B, A
Q= oA , where

Cy By A

L .

(Dl ® a)ulxu-z 01/1)(1/2 Oul Xv3

AO = y With
0
OU3XV2 OV3XU2 (Ué ))
L v3 X3
v, =my, Yy = myms and vz = 2myms,
[ ] (0
Di®lI, 0 U 0
U(EO) = : ’ 3 Al = ! o )
0 Dl ® Ima 0 U(E )
L .
Di®l, 0
Ul(O) = ' ’ 3
0 Dy®1,,
D 0 I, ®S
Bo= (3) m |’ VO(O) = I ’ )
VO VO Omlmaxfm
Dy® S 0 vy o
Vo(l) = ° ; fork>1, By, = k2 ,
| In, ® 568 Do®S A
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g _ | Do®T = (k= 1)vlmim, 0
k - b
0 DO 69 T - (k - 1)717711777,2
Vk(z) Iml Qa® SO 0 ,
0 0
V(S) — DO 69 S - k’)/[mlm:; 0 )
k ?
Iml ® (SO @ ;8) Do S — k7[m1m3
W(O) W(l) ]ml ® TO
Cy = ! 1(2) . ,
0 W 0
Wl(1) _ 0 0 ’ Wl(z) _ 0 YImms ’
| I ®(Ty®f) 0 0 Vi,
W(O) W(l) ]ml & (Toa k= DYl
fOr k 2 2, Ck = k kz ’ W[EO) — ( 0 ) ( )’7 1m2
0o wP 0 (k= DYl
1 2 mims3
wil = W = :

2.2 System stability

Theorem 2.1. The system under discussion is always stable.

Proof. Consider the Lyapunov test function defined by ¢(s) = i, where ‘s’ is a

state in level ;. Then for a state ‘s’ in level 7, the mean drift y, is given by

Ys = ; [d)(p) - d)(s)]q.sp

= 2 [0(5) = &(s)] o+ 2 {A(s") = &(5)] s+ 2 [B(5™) = B(5)] g

where ', s"” and s vary over the states belonging to levels i — 1, ¢ and 7 + 1,

respectively. Then ¢(s) =1, o(s') =i -1, ¢(s") =iand p(s") =i +1

Ys = — Z Qss' + Z qss”
s’

8”’

15
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—(t = 1)y ~ (eam; ® To)s + J_ gss,if the server is busy with ordinary customer

. 8'”

—iy + 3 gsg ,if the server is busy with priority generated customer

slll

where {ezm, ® Tp)s denotes the s entry of the vector eyn, ® Tp. Since the

number of phase is finite, Y g;s~ is bounded by some fixed constant for any s in

sIII

level ¢ > 1. Hence we can find a positive real number K such that > g < K

sIII

for all s inlevel ¢ > 1. Thus, for any € > 0, we can find N large enough that
Yy, < —¢ for any s belonging to level i > N. Hence the theorem follows from

Tweedie [55]. O

2.3 Steady state distribution

Let z = (zg, 1, .....) be the equilibrium distribution. For a positive recurrent

LDQBD, z; satisfies the relationship x4, = zxEx, k = 0, which gives 244, =
k

zo [] R where the family of matrices {Rx : k > 0} are the minimal nonnegative
1=0

solution of the system of equations

Ao + RoBy + RgR1Cy =0, (2.1)
Ay + Ry Bry1 + Rk Ry 1Crypa =01for k > 1 (2.2)

and zp is the solution of
zo(Bo + ReC1) =0 (2.3)

subject to

oo k-1
Zo€ + g (Z H Rl) e=1 (2.4)

k=1 l=0

Before we pass on to the numerical computations we construct a dominating

process. Here the process under discussion, {X(t),¢t > 0}, satisfies the condition
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that for all k> 1 and for all i, there exists j such that (Cy);; > 0. Therefore, there
exists a dominating process X (t) (see Bright and Taylor [13]) on the same state

space as X(t) and with generator

0 B A
Q = 02 Bg Al ’

Wherea (Al)i,j = ;_lj ((Ale)max) y
(Ck)i,j = "ll ((Ck—le)min) 1k 2 21

(Bk)i,j = (Bk)i,j,i #jand k > 1
and u = 2m;(me + mg3) is the dimension of the level k > 1, and (A1€)mqz is the

maximum element of the column vector A,e
Let {l,,n >0} and {l,,n > 1} be the marginal distributions of the levels of

X(t) and X (t), respectively, in the long run as the system get stabilized. Let z =

If P, < oo, then an equilibrium distribution for X () exists and I,=FL,. But
the structure of X (t) shows that {[n, n> 1} can be considered as an equilibrium
distribution of a standard birth-and-death process on state space {i > 1} with

transition rates (¢, ) given by

g(0,1) =0,
q(z’z + 1) = (Alg)ma:ca 1 Z 1)
g(1,0) =0,

Q(Z,Z - 1) = (Ci—lg)mim 1> 2
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So {l,,n > 1} is given by

q(z i+1)
> 1. 2.
0I_Iq(z+1z nzl (2:5)

g(ii+1)
G(i+1,%)

Equation (2.5) shows that a sufficient condition for Py! < oo is that <r<
1, V i> N for some N. Thus if {l_n, n> 1} exists, Z, the steady state distribution

of X (t), must exist and therefore x must exist since X (¢) stochastically dominate

X(t). Now we fix the truncation level K* such that Y. I, < ¢. Since X(t)
n=K*
dominates X (t) we have ) I, < Y [, so it is sufficient to fix K* such that
o n=K* n=K*
Y, lha<e.
n=K*

We use the K* obtained by the above method to fix the truncation level and

employ Neuts-Rao procedure in numerical computations. Thus zx(K*),1 < k <

k-1
K*, is given by xx(K™) = zo(K*) [] R where zo( K*) satisfies zo(Bg + RoCy) =0
=0

The components of z above the level K* are given by zx~4; = k- [] Rx+4+; and
i=1
K* k=1
eq. (2.4) becomes ze = Tg+41(I — Ri+) 7 te + 2o(K*)e + 2o(K*) 3° 1 R)e =1

k=1 1{=0
Note that zg+41(f — Rg+)"'e < € for our choice of K*.

2.4 System performance measures

For the evaluation of system performance measures we partition each z; in the
steady state probability vector z = (zo,z;, T2, ... ... ) as follows
zo = (%0(0,0), y0(1,0), %o(1, 1))
z; = (%:(0,0),%:(0,1),%:(1,0)),3:(1,1)) for¢>1
where yi (i, 7) is a row vector corresponding to Np(t) = 7 and N;(¢) =

We concentrate on the following performance measures.
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(o8]

o Average number E), of ordinary customers in the system = }_ i z;e
i=0

o Average number E,, of priority generated customers in the system

= yO(I’ O)Q + 2y0(1’ 1)§ + ;i (yk(oa 1) + yk(l’ 0)) €+ §2yk(l, 1)§

o Average number Fj3, of priority generated customers lost per unit time

'Z( _17yk(016+2k"yyk11))

° Probablhty P, that a prlorlty generated customer is waiting for service
— oL, e+ 35 (0, e + kf} ye(1,1)e

For convellii_elnce we partit_i_(l)n the probability vector y;(0,0) as
% (0,0) = (%ioo (1) 4 e ey Yino (M)
(here we make the substitution j = (k; — 1)my + ko which maps (k1, k;),1 < k; <
mi, 1 € ke € my respectively, into 1,2,.....,myms). By a similar argument we can
write,

Vi (1, 0) = (yﬂo (mlmg + 1) ...... y ¥i10 (2m1m2)),

s (0, 1) = (yiOI (2m1m2 + 1) y reenen y Yi01, (2m1m2 + mlmg)) and

¥ (1,1) = (g1 (2mumg + mymg + 1), oo, Yinn (2mym2 + 2mymg)). Then

e probability P, that a priority generated customer is lost to the system
o) 2myme ) o ' 2mj(mz+ma3) _ o )

=23 2 (G=1)7/(=Bi(:3)yor (5) + 2 (1v/(=Bi(5, 7 )yin ()
i=1 | j=mima+1 j=2mymz4+mimz+1

e Probability P that a priority generated customer is retained in the system

myms o ‘ 2mimaz+myms ‘ o ]
= Z Z (G = 1)v/(=Bi(7, 5))vioo (7) + \ > 1 (ev/(=Bi(J, 3))yao (4)
j=2mimy+

) Probablhty P, that the server is idle = (0, 0)

Probability of n consecutive services for priority generated
customers.

Here we obtain the probability PP,, that there are exactly n consecutive services
for priority generated customers between the services of two ordinary customers.

We note that for this event to happen there should be a priority generation during
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the service of the ordinary customer to be followed by at least one priority genera-
tion during the service to each of the n — 1 priority generated customers and there
should not be a priority generation during the service to the n** priority customer.

We find the probability PP,, by approximating it using the probabilities PPN)
as N — co. The probability PPY is defined to be the probability for exactly n
consecutive priority services following an ordinary service in the queueing system
Hy, which is obtained by truncating the original system M, where the truncation is
done such that no customer is allowed to join the system if the number of ordinary
customers in the system (including the one in service) is equal to N with the
waiting space for priority generated customer either empty or occupied. We note
that Hywill have the state space CJ [(i) where {(?) is the same as that defined for
" i=0

Now consider the case of a priority service starting in Hy following an ordi-
nary service. i.e., Hy is in one of the states (0,1,0),(1,1,0),....... , (N —1,1,0),
{for convenience we use the first three coordinates of elements of the state space).
From a state in sub level (¢,1,0), 1 < ¢ < N — 1, the chain Hy can move to
the states in the sub level (¢ + 1,1,0) due to an arrival or to state (¢,0,0) due
to a service completion and to states (¢ — 1,1,1) due to a priority generation;
from the state (0,1,0) the chain can move either to (1,1,0) due to arrival or
to (0,0,0) due to a service completion. From state (NV,1,0) the chain Hy can
move to states (N,0,0) due to a service completion and to state (N — 1,1,1)
due to a priority generation. We want to find the probability that starting from
one of the states in {(0,1,0),(1,1,0),....,(N — 1,1,0)} the chain reaches one of
the states in {(0,1,1),(1,1,1),....,(N — 1,1,1)} before reaching any of the states
in {(0,0,0),(1,0,0),....,(N,0,0)}. This probability can be found in the vector

2 = §(I — Py)~'Py, where § = (¥0,1.0,¥1,1,0, s YN_1,1,0,0) with O being a zero
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vector containing m;ms elements.

(Pw)is = {esiyi # 3, 1<4,5 < (N +1)myms, (Pn)ie=0 and
Wao )i, .

(Pn)ij = Sy 1 €. < (N + mamg;

[ Dy®S Di®Ln,

Dy®dS~-T1 Di®I,,

Do@S—FN_l D1®Im3

DeS-Ty J
with I'; = ¢v1, m, and D = Dy + Dy;
(0,1,1) (1,1,1) (N-1,1,1) (N,1,1)
010 | o
(1,1:0) Y mims
- 2,1,0 2 Imlm
Wy, = ( ) Y myms
(N,1,0) NyILnym, 0 |

Similarly the probability that starting from one of the states in {(0, 1,0),(1,1,0), ...,
(N —1,1,0)} the chain reaches one of the states in {(0,0,0),(1,0,0),....,(N,0,0)}
before reaching any of the states in {(0,1,1),(1,1,1),....,(N,1,1)} is given by

f =9I - Pn)"'Py

5 Wig)ss -
(PN)‘i.j = _L(vaggﬁal <1,J< (N+ 1)m1m3
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rIrr21®s()
Im1®a®So

Im1®a®S0

L Iml®a®S0-

22

We note that z;e and Z1e give respectively, the probability that there will be at

least one transition due to priority generation and there will not be any transition

due to priority generation before the service completion of a priority customer who

is selected for service after an ordinary service completion.

Now starting from the states {(0,1,1),(1,1,1),.....,(N — 1,1,1),(N,1,1)} with

probabilities recorded in z;,the probability that the chain reaches the states in

{(0,1,0),(1,1,0),....,{N — 1,1,0), (N, 1,0)} is given by the vector
2y = 21(] - PN))_ler

Wadis . .
(PNI)I',J' = %]}_ﬁ—iaz ?é I 1< 12%] < (N + l)mlms, (PN1)i,i =0 and
(PNl)i'j = —(_?vlvﬁ,t)%vl < 1,7 < (N + 1)myms. where
174
-
Do®S Dy ®Im,

Fl D()@S—Fl D1®Im3

vy Dg@S~Tnoy Dy ®lUp,

L IY DpS-T'n

with I'; = iyl m, and D = (Do + Dy );
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(Im1®50®,8
Iml ®So®ﬂ

Im ® S5 ®0

Im1®50®6

Note that, since (I — Py,) " 'Pye=c¢,
zme=za(l - Py) 'Pye
=21 €.
Again starting in {(0,1,0),(1,1,0),....,(N,1,0)}, according to 22, the probabil-

ity that before a transition due to service completion, there is at least one transition

due to priority generation or no transition due to priority generation are given by
z(I — Py) 'Pye and zy(J] — Py)~'Pye respectively.

So the probability that there are exactly two consecutive priority services after an
ordinary customer’s service completion, followed by a priority customer’s selection

for service is
PPYY = (I ~ Py) ' By(I — Py,) ' Py, (I — Py)"'Pye
Proceeding like this
PPN = g[(I — Py)"'Pn(I — Py,) 7 Py, |" (T - PN)—I}:)NQ

In table 3 we produce numerical evidence for convergence of PP to PP,
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Probability of n consecutive services for ordinary customers.

Here we compute the probability OP,, that, starting with the srvice of an
ordinary customer there are exactly n consecutive ordinary services, to be followed
by the service of a priority generated customer. As in the previous section we
approximate OP,, by using the probability OP as N— oo, where OPY is defined
as the required probability in the system Hy

After an ordinary service started in Hy in one of the states {(1,0,0), (2,0,0), ..,
(N,0,0)} according to 1 = (y1,00, Y200, ----» Yn,0,0), the probability that 7 reaches
one of the states in {(0,0,0), (1,0,0),....,(N —1,0,0)} due to a service completion

and before any priority generation, is given by
23 = gl(l - PNz)_lPNz »

Wnodig . . ..
where (PNZ)iJ = :(_(T%V%’l %Jvl <47 < Nmyma, (PNz)i.i =0,

5 1% i ..
(PNz)i,j = %,1 S Z,] S lemz.

i
Do S D1®Im2
Do®T Ty D\® I,

Do®T-Ty o, Di®In,

’

DeT-Ty

_2-]

where D = (Dg + D;) and I'; = iy m,-
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(0,0,0) (1,0,0) (2,0,0) (N —1,0,0)
(1,0,0) | Im, ®To |
(2,0,0) I ®a®Th
Wr, = (3,0,0) I @a®Th
(N,0,0) L Im[®a®To |

Again starting in one of the states in {(0,0,0),(1,0,0),...., (N —1,0,0),(N,0,0)}
according to z4 = (z3,0), where 0 is a zero row vector of order m;m,, the proba-
bility that the chain reaches {(0,0,0),(1,0,0),....,(N — 1,0,0), (N,0,0)} due to a
service completion and before any priority generation, is given by the vector
z5 = 2z4(1 — PN;;)_IISN:;
and the probability that there will be a priority generation before service comple-
tion is given by
zge = z4(I — PNa)‘llz’Nag, where
(H@m=§%%%d#$1SLjSNmmm(&@u=Q

(Pry)ij = _(—?’Wﬁﬁ)—)il <i,j < Nmymy and
M 3 T,

= - (WN )Q
(Pry)e = s

[-D() D1®a
Do®dT D1®lIn,

Dy®T T D\ ® I,

Wn, =

Dy®T ~ Ty, D, ® I,

D®T-Ty_,

-
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where F; = 1ylmm, and D = Dy + Dy,

(0,0,0) (1,0,0) (N =1,0,0) (N,0,0)
0,0,0) | oI
(1,0,0) | Inm, ®To
Wn, = (2,0,0) I, ®a® Ty ,

(N,0,0)

Iy, ®a®Ty  Olpym, |

0Ly,
01, m,
=z ’YImlmg

27Im1m2

] (N = D) vlmym, ]
Thus the probability of exactly two consecutive services to ordinary customers is
OPLY = ze. Proceeding like this

OPY = 24J(I — Prny) " Pry" 2(I — P,) " Prye , n=23,4,5,.....

In table 4 we produce numerical evidence for convergence of OPW ) to OP,.

Expected waiting time of a tagged customer.

The waiting time W of a tagged customer is defined to be the amount of time a
tagged customer waits in the system (either as ordinary customer or as a priority
generated customer) until he is taken for service or leave the system by priority
generation because the waiting space is already occupied by a priority generated
customer. We find the expected value E(W) by approximating it with the expected

waiting time of a tagged customer in the truncated system Hy which we defined
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in the previous section.

Let us define W) as the time until absorption in the Markov Chain Hj
defined as Hj, = {NO NO NP S(t), N,(t), My(t), Ma(t)/Ms(t)|t > 0}, where
( 0 if the tagged customer waits as an ordinary customer
No(t) 1 if the tagged customer waits as an priority generated customer

~(t) =

if the tagged customer has to leave the system

on priority generation or is selected for service

\
N4(t) =1 of ordinary customers ahead of the tagged customer.

Np(t) =4 of ordinary customers behind the tagged customer.

S(t) = server status

0 if the server is busy with the service of an ordinary customer

1 if the server is busy with a priority generated customer

N,(t) =1 of priority generated customers waiting.
We note that when Np(t)=0, N(t) = Na(t)+Np(t)+1. When Np(t)=1, the tagged
customer will be the next one to be served. Further in this case N,(t) = Nz(t).
Therefore when Ny(t) = 1, we need only know the status of the server (i.e., S(¢)).
Finally when Np(t)=2, the waiting time W) of the tagged customer ends (i.e.,
absorption takes place in the chain H}). The state space for H}, is
N-1

s ={Unourue)
where §(7),0 <4 < N—1, consists of states for which Np(¢)=0, ] consists of states
for which Nr(¢)=1 and A is the absorbing state that corresponds to Nrp(t)=2.
$50)={(0,0,5,L,,h,r)I0<j < N-11=0,1,1 Sh <mu;l < ropy < Mgy
andfor 1 <i< N -1,
@) = {(0,4, 5,k LA, ra)0< < N-1-%k=0,1;1=0,1;1 < hy <my;1 <
ropt < ma}, I = {(L,khyrep)lk = 0,151 < by < mys1 < gy < map}

Arranging the state space lexicographically, we get the infinitesimal generator of
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N as
Q _ QN *QNQ
0 0
5 (0) 5 (1) 5 (2) L(N-1) I}
5o [ 4 A |
I3 (1) A5 Al Al
oo GO A, A A3,
v =
lg (N_l) A;N—l A;N—I AaN-—l
I 0 Al
~Qne =transpose of | Az AL, A, ... Aly_, Aly
ALY AY 7
AR ARY AR
ARD AGY
A;O = . . y
AN AGNY AR
i AGNTD - AGN ]
. Do® S~ ivl, . 0
A = | 70T T T imms A<i<N-1,
Iml ® SUIB DO @ S~ i'YImlmg
qom | (Dot D)) &S — Nylym, 0
10 -
Im1®‘5‘0:3 (D0+Dl)®S_N’YIm1m3
D Iy 0 A 0 vImm
AR = | 18 AZO =TT i N -,
L 0 D1®Im3 0 i'y]mlma
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fori1<i< N -2,

29

[ 1, 0 T
A AR
AY A A
2,2 1,42
| A A
1= ’
ATNED AR AR
N-1-i N-—
| A A |
i T
Dl ® Im2
Di®I,
A(l(i)— ' ? , forl <j<N-2,
Dl ® Ima
] Dy ®In, ]
Dy®T -T; 0 0 0
A(lll’j) _ 0 Do T - Fj 0 0
Im1®a®50 0 D()@S—Fj.H 0
i 0 0 Im1®SO,B D0®S‘—FJ‘+1 ]

where I‘; = jVImym, and U; = jylm ma,

0 0
AGN-D _ 0 De&T-Ty_, 0 0
In, ®a® S 0 D&S-—Ty 0
] 0 0 I, ® S8 D&S-Ty
[ 0 mm; 00 -
AR = O Il 00 L 1<j<N-2;

0 0 0 jvlnim
0 0 0 jYImms |
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* (1,N-1
AIN—I = Au ), AIN =

[ 0

AR

1
Ay

Aglv_l) is a zero matrix of order same as that of Ay,

[ o

; I,.To ®
Agll) - 1 0

for2<i< N -1

* —_—
A2i -

Aﬁf‘"*) is a zero matrix of order same as that of A;/’,

T

N=2) 4(N-1
Agl ) A21 ) ]

(0)
0 T
0
7Im1m3
Vmim; |
0
0

el

(0)

T Iml ®a®Tp (7’ - 1)7Im1m2 0 0
G) _ 0 (i— D vlpmy Im; ®T®B 0
Ay = 7
0 0 0 Y mym,
0 0 0 Z.’)’Imlmz

30
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0<j<N-i-1

i 0
AR
(1
. Aoo)
060 — . )
(N-1)
| Aw

for0<j< N-1,

. ( 0 vem, ® 1,
Ag = e ;
0 0
L 2mimax(mq+m3)
for1<i<N-1,
0
A
A
Ay = ' , where for all 7 and j
A((]N—l-l)
l -
Yem, ® Im, 0
. 0 0
AR = ;
0 Yem; @ Img
L 0 0 J 2m4 (ma+ma);x (ma+ma)
0
AR
ASY
Ay = , for0<j< N -1,
N-1
A% ]
[ 0|
_ AD
(1)
- em, ® Sy . Az
Agjo) = ; Ag = )
7em1m3
N-2,
| A




CHAPTER 2. MAP/(PH,PH)/1 QUEUE 32

Cm ® TO
; Yem
AF) = Tl 0< i< N -2
0em,ms
| V€mims i
for 2<i<N -1,
i T
4}
A
AL
A:,;i _ 31 :
(N—i-1)
Ay |

for all 7 and 3,

( 0epn,m,
. €m Tt
AD | o A= | °
Oemlmz So
| Yemms |

Since the matrix 6:2 w~ is invertible, absorption occurs with probability 1 in the chain
Hi. Also W ™follows phase type distribution with representation (£, é ~) where
the row vector £y is given by En = (&o,&1y -, €N-1,€N), in which

€0 = (o0, o1, -, Sonv—1), where &y = (Yo10,%011) and for 1 < j < (N —1),

§oj = 0.6po for 1 < i < (N —2), & = (&0, i -, Eiv—i1), where

§io = (Yioo» Y01, Yaro, Y ), and & = 0.6, for 1 <j < N —i—1;

Ev-1 = (YN-1,00,YN-101,YN-110,Y~-1,1,1) and &y = 0, a vector containing
my + ma entries. Thus E(WW) = —fN(C:QN)‘l_c;. We approximate E(W) as

lim, . E(W®)). In table 5 we give numerical evidence for the convergence of

the sequence { E(W{")}.
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Computation of (éN)‘lg

Let (QN)“lg = a = transpose of [ ay a an_1 an ]

33

where ap is a column vector containing 2Nmms entries; for 1 <i < N —1, q; is

a column vector of order (N — 1)2m,(m; +m3) and ay is a column vector of order

mo + m3. Then QNd = e and which gives rise to the equations
Alpao + Ajgan = ¢€

Ao+ ALai + Ajay =6, 1 <i<N-1
Alyan =¢€

From equation(2.8), we get

an = (Ajy)"'e

From equation (2.6) ,

ag = (A7) (e — Agean)
a; = (Afi)_l(g - A;,-a,-_l — AsiaN),l S 1 S N - 1.

Using equations {2.9),(2.10) and (2.11) we get (CjN)’lg.

2.5 Numerical examples

Example 1.

-85 0.25 8.0 025
Take Dy = and D; =

0.25 -0.75 0.25 0.25

Here fundamental arrival rate = 4.37500 and correlation = 0.12681

(2.9)

(2.10)

(2.11)
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—8.0 490 4.0
Let § = y So =
40 -80 4.0
-15.0 3.0 12.0
T= and T() =
3.0 -15.0 12.0

witha=[0.3 0.7] and ﬂ=[0.4 0.6}-

Table 1. -~ versus performance measures.
Y E, Ey E; P Pe Ps Py

5 {0.60257 | 0.42363 | 1.09431 | 0.13112 | 0.04031 | 0.03423 | 0.56901

10 | 0.40416 | 0.52446 | 1.32334 | 0.11279 | 0.04091 | 0.03184 | 0.57048

15 ) 0.32246 | 0.58466 | 1.42594 | 0.09815 | 0.03823 | 0.02891 | 0.57066

20 | 0.27733 | 0.62400 | 1.48538 | 0.08812 | 0.03518 | 0.02626 | 0.57049

30 | 0.22852 | 0.67206 | 1.55229 | 0.07578 | 0.02980 | 0.02201 | 0.56994

40 | 0.20242 | 0.70031 |} 1.58934 | 0.06859 | 0.02564 | 0.01887 | 0.56943

Example 2.

—10.5 0.25 10.0 0.25
Here we have Dy = and D, =

0.25 -0.75 0.25 0.25
Then the fundamental arrival rate = 5.37500 and correlation = 0.13398

S, So, T, Ty, o, and [ are same as that of example 1.

Table 2. vy versus performance measures.
Y B E, Es P Py Py Py

o | 0.81560 | 0.55416 | 1.90306 | 0.19170 | 0.06272 | 0.04115 0 | .50259

10 | 0.50601 | 0.65172 | 2.16532 | 0.15953 | 0.06080 | 0.03677 | 0.51248

151 0.38730 | 0.71754 | 2.28062 | 0.13573 | 0.05625 | 0.03305 | 0.51610

201 0.32372 | 0.76240 | 2.34705 | 0.11948 | 0.05167 | 0.02995 | 0.51784

30 | 0.25648 | 0.81855 | 2.42165 | 0.09940 | 0.04385 | 0.02513 | 0.51937

40 1 0.22118 | 0.85206 | 2.46292 | 0.08765 | 0.03785 | 0.02160 | 0.51998




CHAPTER 2. MAP/(PH,PH)/1 QUEUE

Example 3.

35

Next we compute the probability of consecutive services for ordinary and priority

generated customers. Here we take

-200 0.5
Do =

0.25

-6.0 4.0

Let S =
4.0

witha=103 0.7

—6.0

and

—10.75

|

1.0

1:

18.5

0.25 10.25
Then the fundamental arrival rate = 10.73077 and correlation = -0.00001

2.0
2.0

-3.0

3.0

04 06 ] .

3.0
-5.0

2.0

To =

2.0

Table 3. Probability of consecutive services of ordinary customers.

N

2 consec.

services

3 consec.

services

4 consec.

services

5 consec.

services

0.005743

0.001407

0.000380

0.000106

0.005772

0.001400

0.000377

0.000105

0.005780

0.001398

0.000376

0.000105

[o <IN I I B =B IR

0.005782

0.001397

0.000376

9

0.005783

0.001397

10

0.005783

Table 4. Probability of consecutive services of priority gen.

s
N

2 consec.

services

3 consec.

services

4 consec.

services

5 consec.

services

0.017331

0.014565

0.012252

0.010307

0.017369

0.014611

0.012305

0.010366

0.017378

0.014623

0.012320

0.010382

0.017381

0.014626

0.012322

0.010386

0.017381

0.014627

0.012324

0.010387

10

0.014627

0.012325

0.010388

11

0.012325

0.010388

customers.
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Example 4.

Here we calculate the expected waiting time of a tagged customer for different

arrival rates, service rates and 7, with « =[0.3 0.7] and 3= [0.4 0.6].

-85 0.25 80 0.25
(I) Take Dy = and D =

0.25 -0.75 025 .25

Fundamental arrival rate=4.37500 and Correlation =0.12681

—6.0 4.0 2.0 -5.0 3.0 2.0
Let,S= , Sp = T = and Ty =

4.0 —-6.0 2.0 30 —-50 2.0
with v = 5.

(II) v = 10, all other parameters are same as in (I)

—6.5 0.25 6.0 025
(II1) Here D, = and D, =

025 -0.75 025 .25

Fundamental arrival rate=3.37500 and correlation =0.11568,

all other parameters are same as in (I)

(IV) Here Dy, Dy, T,and Tj are same as in (I) and y=10,

-10.0 5.0 5.0
S= and Sp =

5.0 -10.0 5.0

(V) Here Dy, Dy, Sand S are same as in (I} and y=10,

-80 3.0 5.0
with T = and Ty =

3.0 -80 5.0
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Table 5. Expected waiting time of tagged customers

37

N I 11 11 v A4

5 | 0.233564 | 0.169384 | 0.176110 | 0.126818 | 0.142625
6 | 0.234276 | 0.169406 | 0.176116 | 0.126849 | 0.142639
7 10.234440 | 0.169409 | 0.176117 | 0.126853 | 0.142641
8 |0.234474 | 0.169409 | 0.176117 | 0.126853 | 0.142641
9 |0.234480 | 0.169409

10 | 0.234481

11 | 0.234481

Tables 1 and 2 show that when +y increases average number of ordinary
customers decreases, average number of priority generated customers and average
number of customers lost per unit time increases. However the server idle probabil-
ity shows only a slight fluctuation. Probability that priority generated customers
are lost to the system and probability of priority generated customer retained in
the system decreases.

In Table 3 the probability of n consecutive services of ordinary customers grad-
ually decreases as n increases; also this table shows convergence of OP™ as N
increases.

Table 4 gives the probability of n consecutive services of priority generated
customers approximated by PPS,N ) as N increases.

Columns I and II of Table 5 show that when v increases expected waiting
time of the tagged customer decreases. This can be attributed to the fact that
as v increases more priority generated customers will leave the system in search
of emergency service, including the tagged customer himself. Columns II and II1
show that expected waiting time of tagged customer increases as the arrival rate

increases, when the priority generation rate is fixed. This can also be considered
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as a characteristic of systems with self generation of priorities. Also, as can be
expected, columns IV and V of table 5 show that when service rate increases, the

expected waiting time of the tagged customer decreases.



Chapter 3

MAP/(PH,PH)/c Queue

This chapter deals with a multi-server system in which the input stream of
customers form a Markovian arrival process and service requirements are of phase
type. As in Chapter 2 waiting customers generate into priority at a constant.
Such a customer is immediately taken for service if at least one of the servers is
free. Else the customer waits at a waiting space of capacity ¢, exclusively for
priority generated customers, provided there is space. A customer in service will be
completely served before the priority generated customer is taken for service. Any
waiting customer generating into priority at an epoch when all servers are busy
and c priority generated customer are already in the wait, will leave the system in
search of urgent service elsewhere. We provide a numerical procedure to compute
the optimal number of servers to be employed to minimize the loss to the system.
It is proved that the system is always stable. We compute the long run system
state probabilities and performance measures.

This chapter is arranged as follows. In section 3.1 the problem is mathemati-
cally formulated and analysed. In section 3.2 we see that the system under study

is always stable. We construct a dominating process to arrive at a truncation level.

39
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Then the Neuts-Rao algorithm is employed to obtain the steady state system state
distribution. These are done in section 3.3. In section 3.4 we provide a number of
system performance measures of interest. Finally, in section 3.5 we investigate the

optimal value of ¢ numerically.

3.1 Mathematical modelling

Customers arrive to a ¢ - server counter, according to a Markovian
arrival process with representation ( Dy, D;) of order m;. If all servers are busy, the
arriving customers join a queue. At the time of arrival all customers are classified
as ‘ordinary’. Waiting customers ‘generate priority’ at a rate v (i.e., if there
are n customers in the queue then the rate of priority generation is ny). Such
a customer is immediately taken for service if at least one of the servers is free.
Else it waits in a waiting space (specially for the priority generated customers
) of capacity ¢, if the waiting space is not already filled by priority generated
customers. If this waiting space is also full, the present priority generated customer
leaves the system for ever in search of emergency service. A customer in service
will be completely served before the next customer ( priority generated / ordinary
customer) is taken for service.

The service time of ordinary and priority generated customers follow PH-
distribution with representation («,T) and (3, S) respectively. Define Tp = —Te
and Sy = —Se where e is a column vector of 1’s of appropriate order.

We use the following definitions based on Kronecker product ® and Kronecker

sum @.

Definition 1. For a given square matriz A, define A®™ as the matriz

A" = ABAD ... ® A, m terms form > 1 and
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A®0 =0, the scalar.

Definition 2. For a column vector B with n entries the matriz
B =B®@Iim1+1,@ B Iim2+ ...... + Iims @ B, for m>1 and

B®0 =1, the scalar.

Let Ny (f) =} of ordinary customers at time ¢ in the system.
Na(t) = § of priority generated customers in service at time t.
N3(t) =t of priority generated customers waiting for service at time t.
M(t) = phase of arrival process at time t.
M, (t) = vector of phase of service process of ordinary customers .
Ma(t) = vector of phase of service process of priority generated customers.
If X(t) = {N1(t), Na(2), N3(t), M(t), M. (t), Ma(t)}, then {X(t),t > 0} form a
continuous time Markov chain with state space § = B L(k)

k=0
in which the kt* level

" (c:gll(k,i,0)>u< U l’(k,i,j)),fork<cand0§j§c;

i=c—k

Ul (k,i,j),fork>cand0<j<ec
i=0

The subset [(k, 7, 0) represents
{(k7ivoaunu'l) ---- y By Ty eeee 777‘i); 151/57711»

1< gy pie S, 1<y, s <mig}
(here we consider the service phase only for busy servers). '(k,1, ) represents

{(k7i7j) V7/-1'1a "'1/-1'c—i17717 ,n1)7 0 .<~ ] S Cvl S v S ml)

1< gy ey i Sma, L <y, < mgh
and ["(k, 1, j) represents

{(k$iaja V’/-I‘l)'");u‘c~i9771>“':ni); 0 S J _<_ C,l S v S my,

1< pgy ooy phomi S mg, 1 <y sy < Mgk
The number of states in each
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c—k-1 ¢ -
mims S mi+(c+)my Y, mitmik<c
L(k) — =0 t=c-k
[ . R
(c+1)m; > mi'mi;k>c
i=0
If we partition the state space into levels based on the number of or-

dinary customers in the system, the generator of the Markov chain is

N
C. B A
C, By A
Q= :
Cee1 Beer Acr
C. B, A,

Cc+1 BC—H Ac

where for 0 < k < ¢,
U]EO) Ol/1 xXv3 0]/1 X2
Ay = y
Ouz X miy Ouz X3 U)E

with 1y, s, v3 functions of k and are given by
nk) =mms(l+mz+mj+------ +m§F
w(k) = (c+ Dmy(mimS* + mitmg ... +m§
u3(k) = crmymETimgr !
the order of Ay for 1 <k <cis (n(k)+1a(k)) x (h(k+1) +va(k + 1)),
U,Eo) = diag(D, ® a ® Im:;, Di®a® Im:;ma, ..... Di®a® Imgmg—k—l)
U}EI) = diag(l.41 ® D1 ® Lppme=t: Iey1 ® Dy @ I e-tppe-ktty ooniy Iep1 ® Dy ® Ing)
A; = diag(les1 ® Dy ® Inmg, Ly ® D1 ® Lye-tyy oo Lot ® D1 @ Inng);
/A

for0<k<e Bp= )
v v
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¥(k,0) 0 0 0
(0) ]mlm‘2°®50 Qr/)(k_ 1’1) 0 0
v = :
0 0 o L ®STETFY p(0,c -k — 1)
¥(5,7) = Do ® T @ 58U,
r ]
{0
0
v = ,
0
- < (k+1}x1

each block in Vk(l) is of order (c + 1) x (c — k) and the j** entry of the i** block

k—i-1, c=-k+i—1

is matrix of order (myms ‘" 'mj§ x mymEmd ™) fori=1,.., (k+1), j=

1,...(c—k) and
0 «voenn Lyt ® S(G)B(c—k)
=10 ... 0 ;
0 «veenn 0
v 00 o o0 |
v,(f) v,(f) 0 0 0
0 o ® 0 0
Vk(z) _ ko Uk )
k) (2k+1
i o o0 0o .- v,i ) v,i 0 |
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R 0|
Y2 Y1 O 0
SR s ¥ 0 1l,gq=01,.... kK,
| 0 Y2 Yy |
P = (Do &) S‘B(C'k*")) — gyl k-q_c-k+q and
m1m2 ma
Y2 = Imxm;‘—q ® S(G)]a(c_k+q) ® B,
Lt ®a® 5% 0 0 |
0 0 0
vl(c2q) — ,
i 0 0 0 |

order of each zero matrix is same as that of Im]m;‘"’ ® a® Sp® ke,

fork >c, By=

(2¢+1) _
Uk _—

-
0 0 0 0
v,(f) v,(ca) 0 0 0

0 v,(f) v,(:’)

i 0 0 0 U’(c2c) U](c2c+1)

[ 0 0 0
w2 1 O 0

0 v o 0
0 0 Y2 1

(e+1)x(c+1)

44
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o1= (Do ® T9(=9) g S$%9) —(k—c+ @)Vl cma9s

mym, 3

W2 = Imlmif" ® (SO)GBq ® 137

Imlm;_q Ra® S[)@q 0 0
0 0 0
v,(gq) — ,q=12 ..¢
0 0 0
- J (e+1}x(c+1)
(0}
forl<k<c Ck — Wk OVl(k)XUS(k) Oyl(k)x"z(k‘l)
a ’ (1) 2) !
Wy W,

va(k) x va(k)

where v; and v,, as functions of k are defined while describing A; and, v4 and
vs as functions of k are given by
vg(k) = mymE (1 +mg+------ +m§ 1),

vs(k) = mym§~'m§ ¥

: -

Iml ® T(;ek O 0
wo — 0 Iy QT @ Iy .. 0 |
I 0 0 e Iy, ® TSB’“ ® Img-k-l ]
N - i
w [ [ T @ e
0 0
WIEI) = in which w,(co) = ’
- 0 | (k+1)x1 N 0 j (c+1)x1
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[ w,(cl) 0 0 ]
w,(f) w,(f) 0
W =1 .. S
0 0 w,(fk_l)
0 0 w® |
0 0 o 0|
er(g — 1) 0 0 0
v =0 plg-1) 0 0 ;
L ¢ 0 el =1) 0 (c+1)x(c+1)
oe(@=1) = Im, ®TE* V@ [ errir @8, g=1,2,000,k,
[ [ ®0®(T0)°¢ D@ s T, 0 0 0 ]
0 0 I, 0 0
wl(c2q) - :
0 0 0 0 T,
i 0 0 0 0 I, |
Ty = @V eamsiras @= 1,2, (k= 1),
[0 kvl OO 0o |
0 0 KV O 0
w,(fk) = ;
0 0 0 0 .o Kyl
0 0 \ S O 9 S
20
C,= , WO = (I, @ T§],
oo
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w® 0 0
w?) w£3) 0
wih =
0 0 w((:2c—1)
0 0 w?
[ 9 0
ro(q - 1) 0
w = 0 plg—1)
| 0 0

0 0
0 0
0 0
wlg~1) 0

0(q—=1) =In, @TY TV RI 1 @8, g=1,2,...06,

1 ®a® (T2 9@, T, 0 0
0 0 I, 0
wf?q) =
0 0 0 0
I 0 0 0 0
F; = q’ylmlm§~qm§ forg=1,..,(c=1)
[0 s 0 O . O]
0 0 Vg O oo O
wgzc) _
0 0 0 0 ... ovlpmms
00 0 0 YL

(c+1)x(e+1)
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w,(co) w,(cl) 0 0 0 |
0 w,(f) w,(cs) 0 0
for k > c, Cy = ,
0 0 0 w§c2c—2) w’(c2c—1)
2¢
| 0 0 o0 0wl |
Iml Qa® (TO)@(C—q) ® Img I-‘;c~c+¢1 0
0 0 F;c—-c+q
(2
w) @)
0 0 0
! 0 0 0
I‘;#Hq =(k—c+ Q)'Ylmlm;“’mg’ g=0,1,..... ,(c—1),
0 kYmms O O o |
0 0 kvInmg O 0
2c¢
w? = ,
0 0 0 0 kY Imymg
L 0 0 0 0 k’)’]mlmg ]
0 0 0 0
pelg) O 0 0
w=1 0 g 0 o |,
| o 0 ¢clg) O
‘pc(q) = Iml ® TOGB(C—Q) ® Img ®ﬂa q= Os 1’2a ------- ) (C - 1)

48
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!
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3.2 System stability

Theorem 3.1. The system under discussion is always stable.

Proof. Consider the Lyapunov test function defined by ¢(s) = k, where ‘s’ is a

state in level k. Then for a state s in level & > ¢, the mean drift y, is given by

Ys = 3 [6(p) — &(5)]asp

p#s
= Z: [¢(3’) - ¢(S)} Qss't+ Z [¢(5”) - ¢(5)] Qsst t 2”; {¢(S”’) - ¢(3)] qss

3”

where ', s” and s” vary over the states belonging to levels k — 1, k and k + 1

respectively. Then ¢(s) =k, p(s') =k -1, p(s") =k and o(s")=k+1

Thus y, = — Z Qss’ + Z Qs
&

slll

( Z gssm —(k+j—c)v— (-@(c+1)m1 ® (T(?(c_j)) f:) if (¢ — j) servers

slll

are busy with ordinary customers, j =0, 1, ......, (¢ — 1).

Zq”'" - k’)’ )

sIII

if all servers are busy with priority generated customers.

where (g(c +1)my @ (Tg3 (c=d )> g) denotes the s'* entry of the vector
S

(_@(C +1)my © (T SB (=3 )> g). Since the number of phase is finite, ) gss~ is bounded

sIH

by some fixed constant for any s in level £ > ¢. Hence we can find a positive

real number K such that ) g~ < K forall s inlevel k> c. Thus, for any

slll

£ > 0, we can find K* large enough that y, < —e¢ for any s belonging to level
k> K*.

Hence the theorem follows from Tweedie [55]. a
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3.3 Steady state distribution

Let z = (zg, 21, .....) be the equilibrium distribution. For a positive recurrent
LDQBD, z; satisfies the relationship zxy; = 2Ry, k& > 0, which gives x4, =
k
zo [[ R: where the family of matrices {Ry : k > 0} is the minimal nonnegative

=0
solution of the system of equations

Ax + Ry Bi1 + RkRk+ICk+2 =0 for0<k<c (31)

and A + Ry Biyy + ReRiy1Crio =0 for k > ¢, (32)

and z; is the solution of

Io(Bo + RgCl) =0 (33)

subject to

Tog + xoi ((]:[ Rz) Q) =1 (3.4)
=0

k=1
Here the process {X(f),t > 0}, under discussion, satisfies the condition ¢ for
all k> 1 and for all i, there exists j such that (Ci);; > 0. Therefore, there exist a
dominating process X (t) (see Bright and Taylor [13]) on the same state space as

X (t) and with generator

[ B, 4, ]
0 B A4
Cy, B, A
Q= I
Ce-1 Beoi Aca
C. B, A
Cet1 Beyn Ac
i ]
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(Zo)i,j = (AO)i,j )

(Zk)- = (mﬁm) ((Ax-18)ax) » 1 <k <o,
Ac). . = (%) ((Ac€) pax) Where N = (c+1)m; 3 (m§ *mi), the dimension of the
( z_; max d 2 3

level for k > ¢ and (A.€)maz 1s the maximum element of the column vector A.e

(51)1, =0,

(6 (V1(k 1)+V2(k 1)) (Cx=1€)min) 2 < k < o¢,
(C k) = (%) (Ck&) i) sk > ¢,

(Bx),; = (Bx);; ,j #i and k> 0.

Let {l,,n > 0} and {l_n,n > 1} be the marginal distributions of the levels of
X(t) and X (t) respectively in the long run as the system gets stabilized. Let z =
(21, 22, .-...) be an invariant measure for X (¢). Define L, = Z,e and P; ' = § L.
If P;' < oo, then an equilibrium distribution for X(t) exists and l_n=PgI_,,,.~ But
the structure of X () shows that {Zn, n> 1} can be considered as an equilibrium
distribution of a standard birth-and-death process on state space {i > 1} with

transition rates §(¢, j)given by

g(0,1) =0
Ai18) e 1 <1<
g{i,i+1)= (Ainre)
(Ac€) axr 1> €
3(1,0) =0

i,i+1
So {ln,n> 1} is given by [, *POHq—(Z:_I—Z% n>1 (3.5)
Equation (3.5) shows that a sufficient condition for P;' < oo is that 38:{3 <r<

1, V i> N for some N. Thus if {l_n, n> 1} exists, T the steady state distribution

of X(t), must exist and therefore z must exist since X (¢) stochastically dominate
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o0

X(t). Now we fix the truncation level K* such that > [, < e. Since X(¢)
n=K*
00 oo _
dominates X(t) we have > I, < > [,, so it is sufficient to fix K* such that
n=K* n=K=*

S h<e
n=K"
We use the K* obtained by the above method to fix the truncation level and

employ Neuts-Rao procedure in numerical computations. Thus zx(K*),1 < k <
k=1
K*, is given by z(K*) = zo(K*) [[ Ry, where zo( K*) satisfies zo(By+ RyCy) = 0.

1=0
1
The components of = above the level K* are given by zx-4; = g+ [| Rx++; and
j=1
K* /[ /k=1
eq.(3.4) becomes ze = zx+4+1(I — Ri+) e + zo(K*)e + zo(K*) 3. (( IT Rl) g) =
k=1 \ \/=0

Note that zx-4,(I — Rg-)"'e < € for our choice of K*.

3.4 System performance measures

The steady state probability vector of X(¢) process is z = (o, 71, .....). Let us

partition zy as

Ye (5,0)if k<cand 0<i<c-k

Tp = o if k<ecc-k<i<cand 0<j<c
yk(7’7.7)
orif 0<¢,5<cand k>c

where y,(i,j) is a row vector corresponding to Na(t) =i and N3(t) = 7.
We concentrate on the following measures of interest.

o0

e Average number E) of ordinary customers in the system = ) ¢ z;e
=0

o Average number F; of priority generated customers in the system

y (Célzyk(l 0)e+ E Z( i+ 7) yk (2, J))

= Z
k=0 i=c—k j=0
Z 2 yk(O,j)§+ZlZo(iﬂ)yk(i,j)g)
k=c 1= =1 7=
¢ Average number Ej of priority generated customers waiting
= kEO( Z Z (¢ J)e) + Z (Z% leyk (LJ’)Q)
= k=c i=0j=
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e Average number Fj of priority generated customers lost per unit time to the

system
c—1 k- oo ¢
—EZ(k—z vy (c—t,c)e EZ(k’_c+i)7yk(i’0)Q
=11=0 k=
c—lc
e Average number Fs of Idle servers = Z Z r(c—k—1,0)e

Next we construct a cost function for numerical computation.

Let Ci=Holding cost per unit of the ordinary customers in the system.
Cy = Holding cost per unit of the priority generated customers in service.
C3 = Holding cost per unit of the priority generated customers waiting,.
C4 = Cost per unit due to the loss of priority generated customers.

Cs = Cost per unit of idle servers per server.

eThe expected total cost ETC = E\C) + (Fy — E3)Cs + E3C3 + EyCy + E5Cs.

3.5 Numerical examples

We provide two illustrations.

Example 1.

-6.5 0.25 6.0 0.25
Take Dy = and D =

025 -0.75 0.25 0.25

Here fundamental arrival rate = 3.37500 and correlation = 0.11568

—-8.0 4.0 4.0
Let S = Y SO = ?
4.0 -8.0 4.0
—-150 30 12.0
T= and Ty =

3.0 =150 12.0
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with a = [ 0.3 0.7] and §= [0.4 0.6}-
Further take v =20,C, =5,C; = 5,C3 = 10,C, = 350,C5 = 5. We then have

Table 1. Number of servers versus expected total cost.

C E 1 E2 E3 E4 E5 E TC

1| 0.22851 | 0.44293 [ 0.05720 | 0.76329 | 0.64589 | 274.02557

0.27314 | 0.07613 | 0.02081 | 0.02751 | 1.68045 | 19.90072

w | N

0.28055 | 0.00590 } 0.00087 | 0.00015 | 2.71551 | 15.06754

41 0.28119 | 0.00520 | 0.00005 | 0.00000 | 3.71823 | 20.00780

51 0.28124 | 0.00004 | 0.00000 | 0.00000 | 4.71837 | 25.00007

Example 2.

—-12.0 0.25 11.5 0.25
Here we have Dy = and D; =

0.26 -3.25 0.5 25

Then the fundamental arrival rate = 825000 and correlation = 0.18064

-8.0 4.0 4.0
Further take S§ = , Sy = ,
40 -8.0 4.0
—-15.0 3.0 12.0
= and To =
30 -15.0 12.0

with o= {0.3 0.7}and6= [0.4 0.6}-
Also we assume v =10, C; =5, Cy =5, C3 =10, Cy = 350, Cs = 5.
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Then we have

Table 2. Number of servers versus expected total cost.
C E, E, E3 E, FEs ETC

1| 0.81411 | 0.96927 | 0.27039 | 4.08202 | 0.29187 | 1440.43530

0.69839 | 0.51991 | 0.18472 | 0.60385 | 1.16249 | 224.17624

0.69303 | 0.07316 | 0.01723 | 0.02002 | 2.27852 | 22.31635

0.68795 | 0.00892 | 0.00102 f 0.00015 | 3.30635 | 20.07529

(<52 B I~ N OO I )

0.68757 | 0.00107 | 0.00009 | 0.00000 | 4.31188 | 25.00350

Note that in both tables 1 and 2 the Total expected cost first decreases with
the increasing number of customers, reaches a minimum value and then starts
increasing. Of course this has a bearing on the input parameters. In any case this
expected cost, as function of number of servers, will be either strictly convex or

monotone.

Figure 3.1: No. of servers versus expected total cost for different priority generation
rates.(The performance measures corresponding to vy = 20 are given in Table 1.)
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1600
......... »=30
.................................. »=20
1000 »=10
500 |
0
1 2 3 4 5

Figure 3.2: No. of servers versus expected total cost for different priority generation
rates.(The performance measures corresponding to vy = 10 are given in Table 1.)



Chapter 4

MAP/(PH,PH)/c Retrial Queue

In this chapter we discuss about multi-server retrial queueing systems. Cus-
tomers join the ¢ server system according to a Markovian arrival process. If any
of the servers is free, such a customer enters for service immediately. If all servers
are busy the arriving customer enters an orbit of infinite capacity. Each customer
in the orbit tries, independently of each other, to access the server at a constant
rate 6. Each customer in the orbit, independently of others, generate into pri-
ority with inter occurrence time exponentially distributed with parameter ~. A
priority generated customer is immediately taken for service if any of the server is
free. Else it waits in a waiting space {specially for priority generated customers) of
capacity ¢, if this waiting space is not full at that instant. If this waiting space is
full the present priority generated customer leaves the system for ever. The service
discipline is non-preemptive priority. The service times of ordinary and priority
generated customers follow PH-distribution. We provide a numerical procedure
to compute the optimal number of servers to be employed to minimize the loss
of customers. It is proved that the system is always stable. Several performance

measures are evaluated.

o7
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This chapter is arranged as follows. In section 4.1 the problem is mathemati-
cally formulated and analyzed. In section 4.2 we prove that the system under study
is always stable. We construct a dominating process to arrive at a truncation level.
From there we proceed to obtain the long run system state distribution. These
are done in section 4.3. In section 4.4 we provide a number of system performance
measures of interest. Finally, in section 4.5, we investigate the optimal value of ¢

numerically.

4.1 Mathematical modelling

Here we consider a service system with ¢ servers, to which customers arrive
according to a Markovian arrival process with representation (Dg, D;). An arriving
customer enters service immediately if at least one server is free; on the other hand
it enters an orbit of infinite capacity if all servers are busy. Each customer in the
orbit tries independently of each other to access the server at a constant rate 6
(i.e., if there are k& customers in the orbit, the rate of retrial is k£8). Each Customer
in the orbit, independently of others, generate into priority with inter occurrence
time exponentially distributed with parameter ~y. A priority generated customer
is immediately taken for service if at least one of the servers is free. Else it waits in
a waiting space (specially for priority generated customers) of capacity c¢, if this
waiting space is not full with priority generated customers at that instant. If this
waiting space is full the present priority generated customer will leave the system
for ever. A customer in service (priority generated or otherwise) will be completely
served before the priority generated customer is taken for service.

The service time of ordinary and priority generated customers follow PH-

distribution with representation (a,T) and (3,5) respectively. Write Ty = —T¢
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and Sy = —Se where e is a column vector of 1's of appropriate order.
Let, Ni(t) = number of customers in the orbit at time ¢,
(t

N, (t) = number of busy servers,
N;3(t) = number of priority generated customers in service,
)

Ny(t) = number of priority generated customers waiting for service,

M (t) = phase of Markovian arrival process,

M (t) = vector of phase of service process of ordinary customers and

M, (t) = vector of phase of service process of priority generated customers. Write
X (t) = (Ni(t), No(t), N3(t), Na(t), M(t), M1(t), M2(t)); then {X (t) : £t > 0} forms

o0
a continuous time Markov chain with state space S = |J L(k), in which the
k=0

kthlevel L (k) = |J I (i), where
=0

2

)
I'(k,0,0,0) ,if i =0

13

L) =14 Ul(kij0),ifl1<i<c

=0

U l”, (ka Cajajl)

\ j)jl=0

The element {'(k,0,0,0) represents {{k,0,0,0,v) : 1 < v < m,;}, which means
all servers are idle. {"(k,%,7,0) represents {(k,%,7,0,v, p1, .., thicjy Ty - 1)
1<y <my, 1 < p, o, ptiog Sme, 1 <1y, m; < ma), here we consider the service
phase only for busy servers. Finally {"(k,c, 7, j1) represents
{(k, e, 4, 31,0, 1y v themjy Ty oo M) 21 S Smy, TS gy premj Smg, 1 <y g1y <
mg}.

By partitioning the state space into levels based on the number of customers in

the orbit, the generator of the above Markov chain has the block partitioned form
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C1 Bl Ao
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. The description of Ay, By and Cy are as follows

c—1 1 Lo ¢ L
v=m Y. Y. mylml, va=(c+1)m Y. m;?'ml and
7=0

i=0 j=0

0

Ienn @ D1 @ I e-1y,

Bog:
B

Bokc-1 Bike—1 Boke—1

Ic+1 ® Dl ® ]m§
0
A=
0
Biro  Boxo
Bak1  Bin
B, Boka
|
fori=0,1,....
 D'®l,
0
Boki = 0

Boka

B2kc
. (c—2),
0
D ® Imi,_lms
0
0

Blkc

0

0
DI i,
2 3

Ic+1 @ Dl ® Img R

o 0]

0 0

0 0
DI®Im§ 0



CHAPTER 4.

where D' = D ®a,

[ v o 0
0 W 0
BOk,c—lz
0 0 Vear
V) = D1 ® a’® Im;_lﬂjmj O

Bk =

!

where @i (i,j) = Do @ T® @ S® — k61

iy d
m1m2m3

[ "
Vo Vo
’ "
Vo i

Vee
0
Iy @ T 1,80

0
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, in which

0l,7=0,1,.....(c—1)

ka(oa 7’) _

Iy ®TEP @1, ®0 0
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o -

v1(4)

Vk’j= @2 (3) w1 (J)

e2(f) ¥1(4) |

¢1(j) = Do @ T®) @ S — kyI

rmm;_jmg’
w2 (J) = Imlm;“,- ® Sg;j ® B, forj=0,1,....,¢

fori=0,1,....,(c—1),

£1(3,1) 0 0
52(1:7 1) 51(7:) 2) 0

Boy; = 0 b6 ’ )
0 0 . &(9)
0 0 §a(1, 1)

-

&1(7;,].) — Iml ® Téf?(i—j+1) ® Img_l

§2(1,4) = Im1m§_j ® S[e)Bj’j =1,2,...%

i 1 1
VO
Vl'”
BQkC = )
.V(‘III
L -
Im, ®TE® 0 0
" O O 0
VO = ]
| 0 0 0 |
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1"

1t

1

Cy =

Wio =

Wi

[

i

|

(

Lyms-1®S0 I @ T3 V@ Ly, 0 . 0

0 0 0 0

0 0 0 0
0 Ine2®SP In @I QL 0 .. 0
0 0 0 0 0
0 0 0 0 0
0 0 I, ®S¥
0 0 0

, V. are block matrices of order (¢ + 1) x ¢;

0 0 0
0 Weo O 0 0 0
0 0 Weg O 0 0

0 0 0 0 Wk,c-2 0
0 0 0 0 0 Wien

0 0 0 O 0 chj

]ml ® (kea) Om1><m1m3 )

Lnyms ® (Kb) 0 Oz xmym3
0 Lpym, ® (kba) Oy my xmym2 ’

I -2 ® (k) 0 0 0 0
0 L ims=3my ® (kB2) 0 0 0

0 0 0 . Iy e ® (ka) O

m
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wyy 0 0 0]
0wy 0 0
Wie-1 = , where
0 0 .. wey O
Wi = | Lppypms—imit ® (K6) 0 ... 0 ;
(e+1)x1 _ '
the 0’s in wy; are zero matrices of order mym§—*mi™ x mymg "+ imi !
wy 0 0
0 w; 0
Wie = , where
L 0 0 w,
0 k’)’] r—i+1m;—l 0 0 0
0 0 k')’]mlmg—i+lmé—l 0 0
Wy =
0 0 0 0 .. k’)’]mlm;—ﬂlm;—l
| 0 0 0 0 k’)’]mlm;—i“ma—x ]

4.2 System stability

Theorem 4.1. With v > 0, the system under discussion is always stable.

Proof. Consider the Lyapunov test function defined by p(s) = k, where ‘s’ is a

state in level k. Then the mean drift y, is given by

=2 [6(p) - #(s)lgsp

p#s

= Z [¢ ] Qs+ E [¢(3” - ¢(S)] Qsst
+2_ [8(s") — ¢(5)] gss

3/”

where ', s” and s vary over the states belonging to levels k — 1, k and &k + 1

respectively. Then ¢(s) =k, p(s') =k —1, ¢(s") = k and o(s") =k +1
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Ys = — zl Qss’ + Z qss

slli

—k@ + > g5, at least one server is free

. st

—ky+ > gsem , all servers are busy

sIII

Since the number of phase is finite, D gso# is bounded by some fixed constant for
sIII

any s in level £ > 1. Hence we can find a positive real number K such that

Y. gssw < K forall s inlevel &> 1. Thus, for any &> 0,we can find K; large

enough that y, < —¢ for any s belonging to level i > K;. Hence the theorem

follows from Tweedie [55]. O

4.3 Steady state distribution

Here the process {X(t):t >0} is a positive recurrent LDQBD and let z =

(xg, 21, .....) be its steady state distribution. z; satisfies the relationship zxy; =
k

zx Ry, k > 0, which gives 41 = 7o [] R, where the family of matrices { Ry : k >
=0

0} are the minimal nonnegative solution of the system of equations
Ag + RiBri1 + R Rk 1Crio =0for k>0 (41)

and zo is the solution of

Zo(Bo + RoC1) =0 (4.2)

subject to

Ty <I+ iﬂR[) e=1 (4.3)

k=1 (=0
Before we pass on to the numerical computations we construct a dominating
process. Here the process under discussion, { X (t),t > 0}, satisfies the condition
that for all k> 1 and for all i, there exist j such that (Cy)i; > 0. Therefore there

exists a dominating process X () (see Bright and Taylor [13]) on the same state
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space as X(t) and with generator

BO Ao
0 B A
Q-z C—'z B2 AO ’

where, (AO)i,j jb ((AOQ)max) )
(Ciij = % ((Ck-1€)min)  k = 2,
(Bk)i_g (Bk)ijai 7éj and & > 1

in which N = z z m +{c+1) Z mg m3, (Ao€)maz is the maximum ele-
=1 j=0
ment of the column vector Age and (Ckglg)min is the minimum element of the

column vector Cy_;e
We fix a truncation level K* from the above method and employ Neuts-Rao
[46] procedure in numerical computations. Thus zx(K*), 0 < k < K*, is given by

k-1
zp(K*) = zo(K™*) [] R; where zo( K*) satisfies 2o(Bg + RoCy) = 0
=0

4.4 System performance measures

We partition each zj in the steady state probability vector z = (zg, z;, Z2, ....)
as Tx = (Yk0s Y1y - Yre) in Which yx; = (yxi(0,0), vxi(1,0), ..., yxi(¢,0)) , for k < ¢
and yie = (Yee(51,J2) 1 0 < 4,5 < ¢). Here yii(J1, j2) represents the row vector cor-
responding to Ny(t) = 7, N3(t) = j; and Ny(t) = jo, respectively. We concentrate
on the following system performance measures.

o
e Average number E; of customers in the orbit = »_ kx;e
k=0

e Average number F; of successful retrials = z k6 Z Z Yk (7,0)
k=1 i=0 j=0

o Average number Fj of priority generated customers in the system
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i:) (Z:I ‘éyym(J, +ZZ(Z+J ) Yke (8 J))

1=0j=
e Average number F, of priority generated customers waiting

=§I ZZ]ykcw

=0 \ i=07=1
° Averag umber Fs of priority generated customers lost per unit time

= i:: ky (¥ Yrel, C))Q

c—1

o Average number Eg of idle servers = E > (c—i Z yki (4,0) |e

In order to optimize the number of se:vgrs c1 numeilcally we construct a cost

function as follows. Let

C; = Holding cost for each priority generated customer in service.

C, = Holding cost per unit of a priority generated customer waiting for service.

Cs3 = Loss to the system due to a priority generated customer leaving without
getting service.

C; = Holding cost of an idle server per unit time.

e The expected total cost, ETC = (E3 — E4)C; + E4Cy + EsC3 + EgC.

4.5 Numerical examples

Example 1.

—-11.0 0.50 10.0 0.50
Take Dy = and D; =

0.25 -0.75 0.25 0.25

Fundamental arrival rate = 3.83333 and correlation = 0.12356

-8.0 4.0 4.0
Let § = s SO =

40 -—-8.0 4.0
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—15.0
T =
3.0

witha=[0.3 0.7] and ﬁ=[0.4 0.6}.
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3.0

and
—-15.0

T():

12.0
12.0

Further v = 10,9 = 5,C, = 10, C; = 10,C3 = 200, C4 = 25. We then have

Table 1. Number of servers versus expected total cost.

Ey

Ey

Es

E,

Es

Eg

ETC

0.44208

0.48705

0.22213

0.16043

1.70035

0.64099

358.31605

0.13240

0.11774

0.14520

0.06997

0.18007

1.59876

77.43500

0.03042

0.10850

0.02080

0.00483

0.00398

2.66702

67.67950

0.00560

0.02366

0.00217

0.00027

0.00003

3.67911

92.00545

(LT IO I B o]

0.00089

0.00401

0.00024

0.00002

0.00000

4.68039

117.01215

Example 2.

-11.0 0.50

Take D 0=

0.25

-3.25

and D

10.0 0.5

1=

0.5 2.5
Here fundamental arrival rate = 6.21425 and correlation = 0.15475

All other parameters are same as that in Example 1

Table 2. Number of servers versus expected total cost.

by

E,

Es

Eq

Es

Eg

ETC

0.84632

0.98570

0.31515

0.23121

2.71705

0.43764

557.5025.

0.20219

0.16648

0.22478

0.11210

0.29429

1.35682

95.0263

0.04383

0.15481

0.03060

0.00736

0.00632

2.46227

63.12675

0.00793

0.03345

0.00310

0.00039

0.00004

3.48008

87.041

0.00126

0.00563

0.00034

0.00003

0.00000

4.48192

112.0514

68
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400;

Figure 4.1: No. of servers versus expected total cost. corresponding to Table 1

700[—

1 2 3 “ §

Figure 4.2: No. of servers versus expected total cost. (The performance measures
corresponding to y = 10 are given in Table 1.)

Table 1 and 2 show that increase in the fundamental arrival rate has its own
effect in the system performance measures. Also the effect of variation of self
generation of priority on the expected system cost can be seen in Figure 2. Thus
numerical experiments indicate that the cost function in the number of servers is

convex.



Chapter 5

MAP/PH/1 Multi-priority

Retrial Queue

Here we deal with a queueing system with a finite number of priority classes,
say m, labelled 1,2, ...,m — 1, m. Each of the priority class i have a finite waiting
space of capacity n;, i = 1,...,m—1, at the service station. Priority class m does
not have waiting space in the service station. Hence if the arrival is being at the
arrival epoch of a customer of priority m, then it joins an orbit of infinite capacity.
These customers try to access the server independently of each other. The inter-
retrial times have exponential distribution with parameter 8. If a retrial turns out
to be a failure then the customer returns to the orbit and tries again. In addition
orbital customers generate priority which we designate as super priority denoted
by ‘0’. On priority generation they can get immediately into the service station
provided either the server is idle or a waiting space of capacity ‘1’, exclusively for
priority 0 customers, is vacant. Else it leaves the system forever. At each service
completion epoch the next unit to be taken for service is a super priority customer

provided there is one waiting. Customers of priority ¢, 1 < < m—1, generate into

70
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priority 7 according to an exponentially distributed random time with parameter
v; for 0 < j < 4. At this epoch if the waiting space for priority j is full, such
priority generated customer leaves the system forever.

The process under discussion is always stable. We construct a dominating
process by Bright and Taylor method and fix the truncation level. Then Neuts-
Rao algorithm is employed to obtain the steady state system state probabilities. In
5.1 we formulate the problem mathematically and that the system is always stable
is established in 5.2. In 5.3 we provide the steady state system state distribution.
5.4 provides some system performance measures and in 5.5 numerical illustrations

are provided.

5.1 Mathematical modelling

Here we consider a single server retrial queueing system with a finite number
of priority classes having finite waiting space at the service station and and an
orbit of infinite capacity. An arriving customer can directly access the server if the
server is free. If the arriving customer is a customer with priority i = 1,..., m—1
and if the server is busy at the time of arrival, join in a priority class according to
his priority at the time of arrival, provided there are free spaces. Else they leave
the system forever. Let p; be the probability that the arriving customer belongs
to the priority class ¢. There is one super priority class with priority labelled as 0
in which there is no arrival from outside the system. i.e, pg = 0. If the arriving
customer is one with least priority( this event has probability p,,), find the server
busy and then it join the orbit of infinite capacity; where p,, = 1 — nil pi. The
customers in the orbit try independently of each other to access the 1s=eorver at a

constant rate 6.
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Let n; be the capacity of the waiting space of the i** priority class, 1 < i < m—1.
The capacity of the waiting space of the super priority class is l.i.e, ng = 1. The
service discipline is non-preemptive. i.e, a customer is taken for service according
to their priority, only after the service completion of the unit at the service station
even when the priority generated customer belongs to the super priority class. Thus
the maximum number of i** priority class customer in the system at an epoch is
n; + 1, including those in service if it belongs to class .

A priority class j is defined as a higher priority class than i if § < i. Customers
in priority class ¢, 1 <% < m — 1, generate into higher priority at the rate y;;, 0 <
j < 1, come into the 7* priority class if there is at least one free waiting space. Else
it leaves the system in search of emergency service elsewhere. Priority generation
of customers in the orbit is only to the super priority class at the rate vn,g. Thus

the generator of the process of priority generation is

0 0 0 0 0
Y10 M1 0 0 0
I' =
Ym—-10 Ym-11 Tm-12 - Tm—1m-1 0
Ym0 0 0 0 TYmm |
i-1
where v;; = — ), 7,1 <1< m.
3=0

Customers arrive according to Markovian Arrival Process(MAP) with repre-
sentation {Dy, D;) of order [;. The service distribution of each customer is phase
type with representation (c,S) of order [, and So = —Se where ¢ is a column
vector of 1's of appropriate order.

Let A(t) = # of customers in the orbit at time ¢,

Ao(t) = server status at time ¢.
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0 if idle
=4 1if busy with an ordinary customer

i+ 2 if busy with the i** priority class customer, 0 < ¢ < m — 1
Ji(t) = # of customers waiting in the 5** priority class at time ¢, 0 < ¢ <m — 1.

A3(t) = phase of arrival process.
A4(t) = phase of service process.
IfX() = (A (), D2(t),J1 (B) 5oy Jo (8) , A3 (8) , Ag (2)) then {X (¢): ¢t >0}

is a continues time Markov chain with state space
S ={(k,0,...,0,v1) : k> 0;1 <v; <[;}U

{(k,v3,dm~1, - J0,U1,v2) 1 k2 0;1 <u3 <m+1;0 <5 <my; 1 <up <1 S < o}
Arranging the state space lexicographically the infinitesimal generator of the Markov

chain has the form
[ B, A

Cl Bl Ao
Cl Bl Ag

Before describing the block matrices Ag, B; and C; we define the products

i -1 Opxy, O
=[[(n;+1)and M; = H ni+1). Ap , where
=0 = 0 A
A= Iimy))Np_y © (PmD1 @ 1)
Dy — k81, Ay 0 Apa Ao Agm+1
Ao An A Az A . Aim41
B Ao 0 An+ A A Ay Atms1
k= )
A 0 App A+ A An Atm+1
] Ao 0 Az A A .. An+Aimna ]
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AOi = [ pi—?Dl Qa 0 ... 0 jl ) 1= 213a'"1m + 1, with P2=07

T
A = [ Imi®S, 0 0 } , where T" denotes transpose;
Nm_1X1

0 0
A12 = IIM1 [0%9) N let
I[l ® S()a 0
[ 0 0 0 0
WN;_, 0 0 0
W, = 0 WN,_, 0 0 , where
0 0 . wn,_, O

WN;,_, = 3 i=2737"'9m_1,

] 0 0 .. 0
< Ni_yxN;
then A1i+1 = IMi ® VV,'_I, i= 1,2, ey M — 1 and A1m+1 = Wm—l;

’ . .
A“ = /}11 e k’YmOINm_xlllw in which

1A SR A 0 0 0 0
LV v vt o 0 0
P R R 7 S 0 0
11 =
0 0 0 0 Vi e VY
|0 0 0 0 1 - VD ym=) ]

V(m—l) = Vn(::jllj-l,nm—l%*l + V1(2m_1)= VI(Zm“I) = INm—z ® (pm—lDl ® Ilz)a

VD = D 4 G- D Iy ® (et tdigs) s 5= 2,350 (Mot + 1),
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V1(1m_2) Vl(2m—2) 0 0 . . l
1. V2(1m—2) V2(2m—2) V1(2m—2) 0 0 0
yim=1) _ 0 2. 1/2(1’"‘2) 1/3(3’"“2) V1(2m_2) 0 0
11 =
0 0 0 0 A A A )
L 0 0 0 0 Nm—2 - {/2(17"_2) y(m-2) J
vin = VTE’r:‘_;ilvnm—Ti'l + l/1(2"1_2)1 1/1(2"7'—2) = -[Nm—s ® (pm—-QDl ® [lz)a

Vigm_Z) = Vl(lm_Q) + (Z - 1) INm—s ® (7771-2,771—2[!1!2) ) i= 2a 3; orey (nm~2 + 1);

[

1
Vl(l) V1(21) 0
1Y Ve WY
1 1 1
@ _ 0 9. V2(1) VS(S) Vl(z)
1 —
0 0 0
0 0 0

L
1
v = V(1)+1,n1+1 +

n

0
0

0
0

o o |
0 0
0 0
Vn(zlf)ll V1(21)
ny- V2(11) v

V1(21)’ Vl(21) = INo @ (plDl ® [lz)a

‘/1,51) = ‘/1(11) + (7' - 1) INO ® (’71,1-[!112) H t= 2? 31 teey (nl + 1),

Vo _ Dy®S 0 o 0 Yol |
0 Dy S 0 moly,
Ui o o 0 0 7
o vy phod 0 0
V2(1m =
0 0 0 yim® Ulz?
0 0 0 o UrY+ui? |

Uy

INm_a ® (')’m—l,m-ZIlllg) 3
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Ul(;n 4) U(m 3) 0 0 0 -1
0 U:ﬁn—fl) U(m 3) O 0
Ui = |
0 0 o .ouy? U
| 0 0 0 o U+ |
Us ™ = Inpos ® (Ymetm-3lty),

[ v® UD o 0 0o |
o v yl 0 0
Ul = . . ,
o o o .vu9® Uup
|0 0 o 0 UP+Uf |
Ul(;) = INO ® (’Ym—l,llhlz) and
0 Ym-10d 0 Cp
Ul(?)= Pl Ck= s C2=| 1, kb 0 .. 0|,
0 Ym-10d1, Co1 O
T
Co = [ 00 .. 0 ] , the (s in Cy; are zero matrices of order [, X {;
(m+1)Np—1 x1
0 Ymolni, , ,
Cy = Iim=1)M, ® , here 0's are zero matrices of order {1l x l,15
0 Ymolyt,

5.2 System stability

Theorem 5.1. The system under discussion is always stable.

Proof. Consider the Lyapunov test function defined by ¢(s) = k, where ‘s’ is a

state in level k. Then the mean drift y, is given by
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Ys = ; [B(p) — B(5)|dsp

= 2 [8(s") = &(8)) gowr+ 2 [8(5") = ¢(8)] o+ D [B(5™) — 6(5)] gssrv

where s/, s” and s vary over the states belonging to levels k — 1, k and k + 1
respectively. Then ¢(s) =k, ¢(s') =k -1, p(s") =k and p(s") =k +1

Ys = — Z Qss' + Zq”’”
sl

s”l

—k6 + > gsom, if tthe server is free

— SIII

—ky +_ g5 ,if the server is busy

slll

Since the number of phase is finite, ) gse» is bounded by some fixed constant

3'”
for any s in level £ > 1. Hence we can find a positive real number K such that
Y g < K forall s inlevel k> 1. Thus, for any ¢ > 0,we can find K’ large
3”’

enough that y, < —¢ for any s belonging to level ¢ > K’. Hence the theorem

follows from Tweedie’s [55] result. O

5.3 Steady state distribution

The process under discussion {X(t):¢ > 0} is a positive recurrent LDQBD.

Let z = (x¢, 2y, .....) be its steady state distribution, then z; holds the relationship
k

Tr41 = TpRe, k > 0, which gives x4, = z¢ [[ R;, where the family of matrices
=0

{Ry : k > 0} are the minimal nonnegative solution of the system of equations
Ao+ RyBii1 + Ry R 1Crya =0for k>0 (5.1)

and zg is the solution of

26(Bo + RoC1) = 0 (5.2)
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subject to

oo k-1
Ty (1+ZHR[>Q=1 (5.3)

k=1 i=0

For all £ > 1, the entries in Cy, are determined by the rate of successful retrials
and priority generation. Therefore there exist at least one nonzero entry in each
row of Cy i.e., (Ck);; > 0. So we can construct a dominating process X(t) (see
Bright and Taylor [13]) on the same state space as that of the original process

X(t). The generator of the dominating process is given by

[ B, A,
0 B A
Q= G By, A ,

Cy By A

where, (AO)i,j = ‘]%," ((Aog)max) y
(C)ij = % ((Ck-1€)min) , k = 2,

(Bi)ij = (B)ij,i #jand k> 1
in which N =(m + 1)N,_1l1ls, (Ag€)mar is the maximum element of the column

vector Age and (Ci_1€) is the minimum element of the column vector Cy_;e

min
As explained in Chapter 2 it is possible to fix a truncation level K™ from this
dominating process, which will work in Neuts-Rao [46] procedure to determine the

steady state system stare distribution numerically.

5.4 System performance measures

We partition each vector z; of the steady state probability vector z = (o, Z1, ---.)
as Ty == (y(kaoy"°)0)’y(k’ul7jm~la'“)jlaj(]))a 1 S 1 S m+ 1) 0 S ji S n; a'nd

Jj; denotes the number of customers in priority class i, 0 < i < m — 1. The row



CHAPTER 5. MAP/PH/1 MULTI-PRIORITY RETRIAL QUEUE 79

vector y(k,0, ..., 0) for & > 0 contains /; entries and y(k, 1, jm-1, ---, J1, jo) contains
[l entries. We concentrate on the following system performance measures.

o0
o Average number E’ of customers in the orbit = 3 kzre
k=0

o0
» Average number E” of successful retrials = 3 kfy (k,0,...,0) e

k=1
e Average number E; of customers waiting in priority class ¢
N1 iyl MNi-1
- Z .71 Z Z ' Z Z Z y k U3’.7m 1y - ]0)6
Fi=1 OJm 1=0 Jt+1—0.71 =0 Jo=0
oo Nm-1 i ny_1

Let L;y = Z Ji%Yia Z Z Z Z E y (k,vs, Jm-1, ..., ..., jo)e. Then

Ji=1 k=0 jm_1—0 Jigr=03i_1=0 Jo=0

e Average number L; of priority generated customers lost from priority class ¢

i—1
= ZLi,i/,ISiSm—l.
=0
e Average number L,, of priority generated customers lost from the orbit

Nm—1

—Zk’ymo . Zy(k U3, Jm-1s---J1, 1) €.

Jm-1=0  j1=0

5.5 Numerical example

Example 1.

—-12.0 0.25 11.5 0.25
Take Dy = and D, =

026 -3.25 0.5 25

Here average arrival rate = 8.25000 and correlation = (.18064

—-8.0 4.0 4.0
Let S = , So = witha=[0,4 0.6]-
40 -8.0 4.0

= 407 P2 = 30) D3 = 30, 0= 10 and
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Concluding remarks and suggestions for further
study

In this thesis we have studied a few models involving self-generation of priorities.
Priority queues have been extensively discussed in literature(see Jaiswal(1968),
Takagi {36, 52]). However, these are situations involving priority assigned to
(or possessed by) customers at the time of their arrival. Nevertheless, customers
generating into priority is a common phenomena. Such situations especially arise
at a physicians clinic, aircrafts hovering over airport running out of fuel but waiting
for clearance to land and in several communication systems. Quantification of these
are very little seen in literature except for those cited in some of the work indicated
in the introduction. Our attempt is to quantify a few of such problems. In doing
so, we have also generalized the classical priority queues by introducing priority
generation ( going to higher priorities and during waiting). Systematically we have
proceeded from single server queue (in Chapter 2) to multi server queue(Chapter 3
and 4). We also introduced customers with repeated attempts (retrial) generating
priorities(see page 72). All models that were analyzed in this thesis involve non-
preemptive service. Since the models are not analytically tractable, a large number
of numerical illustrations were produced in each chapter to get a feel about the
working of the systems.

One can extend the models discussed in this thesis to several directions. For
example some of the models can be analyzed in the preemptive situation, the

results for which are not available till date.
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