STUDIES ON SOME GRAPH CLASSES

Thesis submitted to the
Cochin University of Science and Technology for the award of the degree of

DOCTOR OF PHILOSOPHY under the faculty of Science by

APARNA LAKSHMANAN S.

Department of Mathematics
Cochin University of Science and Technology
Cochin - 682022
May 2008

Certificate

This is to certify that the work reported in the thesis entitled 'Studies on Some Graph Classes' that is being submitted by Smt. Aparna Lakshmanan S. for the award of Doctor of Philosophy to Cochin University of Science and Technology is based on bonafide research work carried out by her under my supervision in the Department of Mathematics, Cochin University of Science and Technology. The results embodied in this thesis have not been included in any other thesis submitted previously for the award of any degree or diploma.

Dr. A. Vijayakumar, (Superviser), Reader, Department of Mathematics, Cochin University of Science and Technology, Cochin - 682 022, Kerala, India.

Cochin

Declaration

The thesis entitled 'Studies on Some Graph Classes' contains no material which had been accepted for any other Degree or Diploma in any University and to the best of my knowledge and belief, it contains no material previously published by any person except where due reference is made in the text of the thesis.

(Register No:2738),
Department of Mathematics, Cochin University of Science and Technology, Cochin - 682 022, Kerala, India.

Cochin - 22
22-05-2008

Acknowledgements

God gave you a gift of 86,400 seconds today. Have you used one to say "thank you?"

William A. Ward

It is not my ability, but his grace, that I could make this dream come true. I owe much gratitude to many individuals for their invaluable advices, encouragements, support and cooperation for the completion of my thesis.

I wish to express my sincere gratitude to Dr.A.Vijayakumar, Reader, Department of Mathematics, Cochin University of Science and Technology for being a role model to me. I was fortunate to have him as my supervisor. It is due to his patient listening, timely suggestions, constant inspiration and daughterly affection shown, I am able to complete this task. I am indebted to him more than he knows.

I am extremely thankful to Prof.S.B.Rao, Director, C R Rao AIMSCS, Hydrabad for spending his precious time and giving me critical comments on my work. The help he rendered to me in the initial stage of my work is worth mentioning.

I thank Prof.A.Krishnamoorthy, Head, Department of Mathematics, Cochin University of Science and Technology for extending necessary help at different stages of my work. I also thank all other faculty members, office staff and the librarian of the Department of Mathematics, Cochin University of Science and Technology for the interest they have shown in my work and their timely helps. I acknowledge the authorities of the Cochin University of Science and Technology
for the facilities they provided. I am thankful to the Council of Scientific and Industrial Research for the financial assistance in the initial stage of my work.

I sincerely thank the Manager, the Principal, the Head of the Department of Mathematics and my colleagues at St.Xavier's College for Women, Aluva for their support and prayers.

I am also grateful to my fellow research scholars Dr.Indulal G., Manju K. Menon, Seema Varghese and Pramada Ramachandran for their willingness to share their bright thoughts with me, which were very fruitful for shaping up my ideas and research. My thanks are also due to Retheesh R., Pramod P.K. and Nisha Mary Thomas who were always ready to lend a helping hand. I specially acknowledge my fellow research scholar Pravas K., for the help rendered to me in the formatting of the thesis.

My parents and in-laws deserve special mention for their inseparable support, prayers and blessings. Words fail to express my appreciation to my husband Adv.Ranjith Krishnan N. whose dedication, love and persistent confidence in me, has taken the load off my shoulders. I gratefully acknowledge the love and support of my husband and son.

As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them.

STUDIES ON SOME GRAPH CLASSES

Contents

1 Introduction 1
1.1 Basic definitions and lemmas 4
1.2 New definitions 17
1.3 A survey of results 18
1.4 Summary of the thesis 22
1.5 List of publications 26
2 Gallai and anti-Gallai graphs 28
2.1 Gallai and anti-Gallai graphs 29
2.2 Forbidden subgraph characterizations 32
2.3 Applications to cographs 37
2.4 Chromatic number 40
2.5 Radius and diameter 42
3 Domination in Graph Classes 44
3.1 Cographic domination number 45
3.2 Global cographic domination number 47
3.3 Two constructions 52
3.4 Complexity aspects 57
3.5 Domination in NEPS of two graphs 58
4 The $<t>$-property 64
4.1 Clique transversal number 65
4.2 Cographs and clique perfect graphs 66
4.3 Planar graphs 70
4.4 Perfect graphs 71
4.5 Trestled graph of index k 72
4.6 Highly clique imperfect graphs 75
5 Clique graphs and cographs 77
5.1 Clique graph of a cograph 77
5.2 Chromatic number of the clique graph 80
5.3 Some graph parameters 80
6 Clique irreducible and weakly clique irreducible graphs 84
6.1 Iterations of the line graph 85
6.2 Gallai graphs 92
6.3 Iterations of the anti-Gallai graph 99
6.4 Cographs 102
6.5 Distance hereditary graphs 107
List of some open problems 114
List of symbols 115
Bibliography 117
Index 125

Chapter 1

Introduction

The origin of graph theory dates back to more than two hundred and seventy years when the renowned Swiss Mathematician Leonhard Euler solved the 'Konigsberg Bridge Problem' in his talk 'The solution of a problem relating to geometry of position' presented at St.Petersberg Acadamy on 26th August, 1735. Since then the subject has grown into one of the most inter disciplinary branches in mathematics with a great variety of applications. The first book on this subject was by B.König [49]. Volumes have been written on the rich theory and the very many applications of graphs ([11]. [19], [68], [79]), including the pioneer works of C.Berge [18], F. Harary [43] and O.Ore [61].

The applications of graph theory in operation research, social science, psychology and physics are detailed in C.W.Marshall [56]. J.L.Gross [40] discusses a variety of graph classes with mumerous illuminating examples which are of topological relevance. The development of graph theory with its applications to electrical networks, flows and connectivity are included in [20] and [31]. Ramsey theory
is an interesting branch of graph theory which relates it to the number theory. R.L.Graham, B.L.Rothschild and J.H.Spencer has written a book [38] in this area which covers all major developments in the subject. In [16], comnections of graph theory with other branches of mathematics such as coding theory, algebra etc are discussed.

This thesis entitled 'Studies on Some Graph Classes' is a humble attempt at making a small addition to the vast ocean of results in graph theory.

By the term graph class, we mean a collection of graphs which satisfies some specific properties.

A graph operator is a mapping $T: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ where \mathcal{G} and \mathcal{G}^{\prime} are families of graphs. The most familiar examples of graph operators are the graph complement and the line graph. A variety of graph classes can be obtained by applying suitable graph operators. The study of graph operators initiated with a set of three problems on line graphs posed by O. Ore [61].

- Determine all graphs isomorphic to their line graph.
- When the line graph is given, is the original graph uniquely determined?
- Investigate iterated line graphs.

Graph operators and its dynamics - fixedness, convergence: divergence etc. are extensively studied in [63]. The Gallai graphs, the anti-Gallai graphs, the cycle graphs and the elge graphs are some of the graph classes obtained by choosing appropriate graph operators.

Another way of identifving graph classes is through finite or infinite collection of
forbidden subgraphs. The inclusions between graph classes can be easily identified from the forbidden subgraph characterizations. The cographs, the split graphs, the threshold graphs and the line graphs are some of the interesting graph classes which admit finite forbidden subgraph characterizations. There are other interesting graph classes defined by forbidding an infinite collection of induced subgraphs like the perfect graphs, the distance hereditary graphs, the comparability graphs and the chordal graphs. The famous concept of minors is also an example of forbidden subgraph characterization. Kuratowski's theorem [50] on planar graphs is a striking example of this kind.

Yet another way of defining graph classes is through recursive characterizations. The trees , the cographs and the distance hereditary graphs are some of the graph classes which admit recursive characterizations.

The intersection graph is a very general notion in which objects are assigned to the vertices of a graph and two distinct vertices are adjacent if their objects have non empty intersection. A variety of well studied graph classes including the line graphs, the chordal graphs, the clique graphs and the block graphs are special types of intersection graphs.

Graph classes also arise in connection with various graph parameters such as the clique transversal number; the clique independence number; the chromatic number and the clique number and rarious sub) structures of a graph such as the cliques, the dominating sets etc. The perfect graphs, the clique perfect graphs, the clique irreducible graphs and the weakly clique irreducible graphs are examples of such graph classes.

In any discussion on graph classes, a main source is the classical book by
M.C.Golumbic, Algorithmic Graph Theory and Perfect Graphs [37]. A detailed study of about two hundred graph classes with an extensive bibliography is in the book 'Graph Classes : A survey' by A. Brandstädt, V. B. Le and J. P. Spinrad [14].

This thesis is mainly concerned with the graph classes - the Gallai graphs, the anti-Gallai graphs, the cographs, the clique graphs, the clique irreducible graphs and the weakly clique irreducible graphs.

1.1 Basic definitions and lemmas

The basic notations, terminology and definitions are from [11], [14], [30], [34]; [37], [52], [60], [65] and [71].

Definition 1.1.1. A graph $G=(V, E)$ consists of a non-empty collection of points, V called its vertices and a set of unordered pairs of distinct vertices, E called its edges. The unordered pair of vertices $\{u, v\} \in E$ are called the end vertices of the edge $e=\{u, v\}$. In that case, the vertex u is said to be adjacent to the vertex r. Two edges e and e^{\prime} are said to be incident if they have a common end vertex. $|V|$ is called the order of G. denoted by n or $n(G)$ and $|E|$ is called the size of G, denoted by m or $m(G)$. A graph G is trivial or empty if it has no edges.

Definition 1.1.2. A graph $H=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of G if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. A subgraph H is a spanning subgraph if $V^{\prime}=V . H$ is called an induced subgraph if E^{\prime} is the collection of all edges in G which has both its
end vertices in V^{\prime}. $<V^{\prime}>$ denotes the induced subgraph with vertex set V^{\prime}. A property P of a graph G is vertex hereditary if every induced subgraph of G has the property P. A graph H is a forbidden subgraph for a property P, if any graph G which satisfies the property P cannot have H as an induced subgraph. A graph G is \mathbf{H}-free if it does not have H as an induced subgraph.

Definition 1.1.3. The number of vertices adjacent to a vertex v is called the degree of the vertex, denoted by $d(v)$. A vertex of degree one is called a pendant vertex and a vertex of degree $n-1$ is called a universal vertex.

Definition 1.1.4. A graph G is k-regular if $d(v)=k$ for every vertex $v \in V(G)$. A spanning 1-regular graph is called a 1-factor or perfect matching.

Definition 1.1.5. The set of all vertices adjacent to a vertex v is called open neighborhood of v, denoted by $N(v)$. The open neighborhood of v together with the vertex v is called the closed neighborhood of v, denoted by $N[v]$.

Definition 1.1.6. A false twin of a vertex u is a vertex v which is adjacent to all the vertices in $N[u]$. A true twin of a vertex u is a vertex v which is adjacent to all the vertices in $N(u)$.

Definition 1.1.7. A graph $G=(V, E)$ is isomorphic to a graph $H=\left(V^{\prime}, E^{\prime}\right)$ if there exists a bijection from V to V^{\prime} which preserves adjacency. If G is isomorphic to H : we write $G=H$.

Definition 1.1.8. A path on n vertices P_{n} is the graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and v_{i} is adjacent to v_{i+1} for $i=1,2, \ldots, n-1$ are the only edges. If in addition v_{n} is adjacent to v_{1} then it is called a cycle of length n, C_{n}. A path from the vertex u to the vertex v is called a $\mathbf{u}-\mathbf{v}$ path. A graph G is connected if for every $u, v \in V$ there exists a $u-v$ path. If G is not connected then it is disconnected.

A maximal connected subgraph of G is called a component of G. A component of a graph G is non-trivial if it has at least one edge. A graph is acyclic if it does not contain cycles. A connected acyclic graph is called a tree.

Definition 1.1.9. A graph G is bipartite if the vertex set can be partitioned into two non-empty sets U and U^{\prime} such that every edge of G has one end vertex in U and the other in U^{\prime}. A bipartite graph in which each vertex of U is adjacent to every vertex of U^{\prime} is called a complete bipartite graph. If $|U|=m$ and $U^{\prime}=|n|$, then the complete bipartite graph is denoted by $K_{m, n}$. The complete bipartite graph $K_{1, n}$ is called a star.

Definition 1.1.10. Let G be a graph. The complement of G, denoted by G^{c} is the graph with vertex set same as that of V and any two vertices are adjacent in G^{c} if they are not adjacent in G. K_{n}^{c} is called totally disconnected. A graph G is called self complementary if $G=G^{c}$.

Definition 1.1.11. A subset $I \subseteq V$ of vertices are said to be independent if no two vertices of I are adjacent. The maximum cardinality of an independent set is called the independence number $\alpha(G)$. A subset $K \subseteq V$ is called a covering of G if every edge of G is incident with at least one vertex of K. The number of vertices in a minimum covering is called the covering number $\beta(G)$.

Definition 1.1.12. A subgraph H of G is a complete if every pair of distinct vertices of G are adjacent. A complete graph on n vertices is denoted by K_{n}. K_{3} is called a triangle. A complete is maximal if it is not properly contained in any other complete. A maximal complete subgraph is called a clique. The size of the largest clique in G is called the clique number $\omega(G)$.

Definition 1.1.13. The intersection graph of a graph G is a graph whose vertex set is a collection of objects and any two vertices are adjacent if the corresponding
objects intersect. The intersection graph of all cliques of a graph G is called the clique graph of G denoted by $K(G)$. If $K(G)$ is complete then G is called clique complete.

G_{2}

$\mathrm{K}(\mathrm{G})$

Fig : 1.1

In Fig: $1.1 G_{1}$ is clique complete.

Definition 1.1.14. A collection of objects \mathcal{E} satisfies Helly property if for any sub collection $\mathcal{E}^{\prime} \subseteq \mathcal{E}$. the elements of \mathcal{E}^{\prime} pair-wise intersect, then $\bigcap_{e \in \mathcal{E}^{\prime}} e \neq \phi$. If the cliques of a graph G satisfies Helly property then we say that G is cliqueHelly. If G and all its induced subgraphs are clique-Helly, then G is hereditary clique-Helly.

In Fig $1.1 G_{1}$ is clique-Helly, where as G_{2} is not.

Definition 1.1.15. Assigning colors to the vertices of a graph is called a vertex coloring. If no two adjacent vertices receives the same color, then such a coloring is called a proper vertex coloring. The minimum number of colors required for a proper vertex coloring of a graph G is called its chromatic number, denoted by $\chi(G)$.

Definition 1.1.16. The distance between two vertices u and v of a connected graph G, denoted by $d_{G}(u, v)$ or $d(u, v)$ is the length of a shortest $u-v$ path. The eccentricity of a vertex $e(v)=\max \{d(u, v): v \in V(G)\}$. The radius of a graph
$r(G)$ is the minimum of the eccentricities of its vertices and the diameter of a graph $d(G)$ is the maximum of the eccentricities of its vertices.

Definition 1.1.17. The line graph of a graph G denoted by $L(G)$ has the edges of G as its vertices and any two vertices are adjacent in $L(G)$ if the corresponding edges in G are incident. The iterated line graphs of G are defined as $L^{k}(G)=$ $L\left(L^{k-1}(G)\right)$ for $k>1$.

Definition 1.1.18. The Gallai graph $\Gamma(G)$ of a graph G has the edges of G as its vertices and any two vertices are adjacent in $\Gamma(G)$ if the corresponding edges are incident in G, but do not span a triangle in G. The anti-Gallai graph $\Delta(G)$ of a graph G has the edges of G as its vertices and any two vertices of G are adjacent in $\Delta(G)$ if the corresponding edges are incident in G and lie on a triangle in G. The iterated Gallai graphs and the iterated anti-Gallai graphs are defined as $\left.\Gamma^{k}(G)=\Gamma\left(\Gamma^{k-1}(G)\right)\right)$ and $\Delta^{k}(G)=\Delta\left(\Delta^{k-1}(G)\right)$ respectively for $k>1$.

Both $\Gamma(G)$ and $\Delta(G)$ are spanning subgraphs of $L(G)$ and their union is $L(G)$.

Fig 1.2

Definition 1.1.19. A set $S \subseteq V$ of vertices in a graph G is called a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. A dominating set S is minimal dominating if no proper subset of S is a dominating set. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in G. A set $S \subseteq V$ of vertices in a graph G is called a
global dominating set if it dominates both G and G^{c}. The minimum cardinality of a global dominating set is called the global domination number $\%_{g c d}(G)$. A set $S \subseteq V$ of vertices in a graph G is called an independent dominating set if S is independent and S dominates G. The minimum cardinality of an independent dominating set is called the independent domination number $\gamma_{i}(G)$.

Fig : 1.3

For the graph G in Fig : 1.3, $\gamma(G)=3, \gamma_{g}(G)=4$ and $\gamma_{i}(G)=5$.
Definition 1.1.20. A graph that can be reduced to edgeless graph by taking complements within components is called a cograph.

For example, any graph of order less than or equal to four, except P_{4} is a cograph. The complete bipartite graphs and complete graphs are also examples of cographs.

Definition 1.1.21. A plane representation of a graph G is an isomorphic copy of G in which any two edges intersect only at the vertices. A graph which admits a plane representation is called a planar graph.

Definition 1.1.22. The union of two graphs G and H denoted by $G \cup H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$.

Definition 1.1.23. The join of two graphs G and H denoted by $G \vee H$ is the graph with vertex set $V(G) \cup V(H)$ and $E(G \vee H)=E(G) \cup E(H) \cup\{u v: u \in V(G)$ and $v \in V(H)\}$.

Definition 1.1.24. The tensor product of two graphs G and H denoted by $G \times H$ is the graph with $V(G \times H)=\{u, v): u \in V\left(G_{1}\right)$ and $\left.v \in V\left(G_{2}\right)\right\}$ and any two vertices (u_{1}, v_{1}) and (u_{2}, v_{2}) are adjacent if $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$.

Definition 1.1.25. The cartesian product of two graphs G and H denoted by $G \square H$ is the graph with $V(G \square H)=\{u, v): u \in V\left(G_{1}\right)$ and $\left.v \in V\left(G_{2}\right)\right\}$ and any two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent if one of the following holds.
(i) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$
(ii) $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1}=v_{2}$.

Definition 1.1.26. The strong product of two graphs G and H denoted by $G \otimes H$ is the graph with $V(G \otimes H)=\{u, v): u \in V\left(G_{1}\right)$ and $\left.v \in V\left(G_{2}\right)\right\}$ and any two vertices (u_{1}, v_{1}) and (u_{2}, v_{2}) are adjacent if one of the following holds.
(i) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$
(ii) $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1}=v_{2}$
(iii) $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$.

Definition 1.1.27. A graphical invariant σ is super multiplicative with respect to a graph product \circ, if given any two graphs G and $H, \sigma(G \circ H) \geqslant \sigma(G) \sigma(H)$ and sub multiplicative if $\sigma(G \circ H) \leqslant \sigma(G) \sigma(H)$. A class \mathcal{C} is called a universal multiplicative class for σ on \circ if for every graph $H, \sigma(G \circ H)=\sigma(G) \sigma(H)$ whenever $G \in \mathcal{C}$.

Definition 1.1.28. Let \mathcal{B} be a non-empty subset of the collection of all binary n-tuples which does not include ($0,0, \ldots, 0$). The non-complete extended psum of graphs $G_{1}, G_{2}, \ldots, G_{p}$ with basis \mathcal{B} denoted by $\operatorname{NEPS}\left(G_{1}, G_{2}, \ldots, G_{p} ; \mathcal{B}\right)$, is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right) \times \ldots \times V\left(G_{p}\right)$, in which two vertices $\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ and $\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ are adjacent if and only if there exists $\left(B_{1}, B_{2}, \ldots, B_{p}\right) \in$ \mathcal{B} such that u_{i} is adjacent to v_{i} in G_{i} whenever $\beta_{i}=1$ and $u_{i}=v_{i}$ whenever $\beta_{i}=0$. The graphs $G_{1}, G_{2}, \ldots, G_{p}$ are called the factors of the NEPS.

There are seven possible ways of choosing the basis \mathcal{B} when $p=2$.

$$
\begin{aligned}
\mathcal{B}_{1} & =\{(0,1)\} \\
\mathcal{B}_{2} & =\{(1,0)\} \\
\mathcal{B}_{3} & =\{(1,1)\} \\
\mathcal{B}_{4} & =\{(0,1),(1,0)\} \\
\mathcal{B}_{5} & =\{(0,1),(1,1)\} \\
\mathcal{B}_{6} & =\{(1,0),(1,1)\} \\
\mathcal{B}_{7} & =\{(0,1),(1,0),(1,1)\}
\end{aligned}
$$

The NEPS of graphs G_{1} and G_{2} with basis $\mathcal{B}_{3}, \mathcal{B}_{4}$ and \mathcal{B}_{7} are the tensor product, the cartesian product and the strong product respectively.

Definition 1.1.29. A subset V^{\prime} of V is called a clique transversal, if it intersects with every clique of G. The clique transversal number $\tau_{c}(G)$ of a graph G is the minimum cardinality of a clique transversal of G. A collection of mutually nonintersecting cliques is called a clique independent set. The maximum cardinality of a clique independent set in a graph G is called the clique independence number $\alpha_{c}(G)$.

The minimal clique transversal sets of the graph in Fig : 1.4 are $\{1,4.5,6\}$, $\{2,3\},\{2,5\}$ and $\{3,6\}$. Therefore the clique transversal number is two. The maximal clique independent sets are $\{<2,6>,<3,5>\},\{<1,2,3>\}$ and $\{\langle 2,3,4\rangle\}$. Therefore the clique independence number is also two.

Definition 1.1.30. A graph G is clique perfect if $\tau_{c}(H)=\alpha_{c}(H)$ for every induced subgraph H of G.

The graph in Fig : 1.4 is clique perfect. The smallest example of a graph which is not clique perfect is C_{5}, since $\tau_{c}\left(C_{5}\right)=3$ and $\alpha_{c}\left(C_{5}\right)=2$. Note that, by the definition of clique perfect graphs, any graph which contains C_{5} as an incluced subgraph is also not clique perfect.

Definition 1.1.31. A class \mathcal{G} of graphs satisfies the $<\mathbf{t}>$-property if $\tau_{c}(G) \leqslant \frac{n}{t}$. for every $G \in \mathcal{G}_{t}=\left\{G \in \mathcal{G}\right.$: every edge of G is contained in a $\left.K_{t} \subseteq G\right\}$.

Note that the $<t>$-property does not imply the $<t-1>$-property. Let \mathcal{G} be the collection of cycles and complete graphs. Then \mathcal{G} does not have the $<2>-$ property since $\tau_{c}\left(C_{2 k+1}\right)=k+1>\frac{2 k+1}{2}$. But. it satisfies the $<3>$-property, since $\mathcal{G}_{3}=\left\{K_{n}: n \geqslant 3\right\}$ and $\tau_{c}\left(K_{n}\right)=1$, for every $n \ldots$

Definition 1.1.32. A graph G whose vertex set can be partitioned into an independent set and a clique is called a split graph.

Fig : 1.5 gives an example of a split graph.

Fig: 1.5

Definition 1.1.33. A graph G is a threshold graph if it can be obtained from K_{1} by recursively adding isolated vertices and universal vertices.

Definition 1.1.34. A graph G is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G.

Definition 1.1.35. For a graph $G, T_{k}(G)$ the trestled graph of index \mathbf{k} is the graph obtained from G by adding k copies of K_{2} for each edge we of G and joining u and v to the respective end vertices of each K_{2}.

G

$\mathrm{T}_{1}(\mathrm{G})$

$\mathrm{T}_{3}(\mathrm{G})$

Fig : 1.6

Definition 1.1.36. A graph G is clique irreducible if every clique in G has an edge which does not lie in any other clique in G. If G is not clique irreducible then it is clique reducible.

G_{1}

G_{2}

Fig: 1.7

In Fig : 1.7, G_{1} is clique reducible and G_{2} is clique irreducible.

Definition 1.1.37. A clique is essential if it has an edge which does not belong to any other clique in G. A graph G is weakly clique irreducible if every edge belongs to at least one essential clique. If G is not weakly clique irreducible then it is weakly clique reducible.

Fig : 1.8

In Fig: 1.8, G_{1} is weakly clique irreducible and G_{2} is weakly clique reducible. Note that weakly clique irreducible graphs form a super class of clique irreducible graphs. The reverse inclusion does not hold as indicated by the example G_{1} in Fig : 1.8 .

Definition 1.1.38. A graph G is distance hereditary if for every connected induced subgraph H of $G, d_{H}(u, v)=d_{G}(u, v)$.

Lemma 1.1.1. [27] G is a cograph if and only if G is P_{4}-free.

Lemma 1.1.2. [27] Cographs can be recursively characterized as
(1) K_{1} is a cograph.
(2) If G and H are cographs, so is their union $G \cup H$.
(3) If G and H are cographs, so is their join $G \vee H$.

Both the forbidden subgraph characterization and the recursive characterization of cographs are used frequently in this thesis.

Lemma 1.1.3. [13] The distance hereditary graphs can be recursively characterized as follows.
(1) K_{1} is distance hereditary.
(2) If G distance hereditary then so is the graph obtained by attaching a pendent
vertex to any of the vertices of G.
(3) If G distance hereditary then so is the graph obtained by attaching true twins to any of the vertices of G.
(4) If G distance hereditary then so is the graph obtained by attaching false twins to any of the vertices of G.

Lemma 1.1.4. [13] A graph G is distance hereditary if and only if it does not contain an induced house, hole, domino or gem, where a hole is a cycle of length greater than five and the other graphs are shown below.

Domino

Gem

Lemma 1.1.5. [13] A graph G is a cograph if and only if it is the disjoint union of distance hereditary graphs of diameter at most two.

Lemma 1.1.6. (Strong perfect graph theorem) [26]: A graph G is a perfect graph if and only if it does not contain any odd hole or odd anti-hole as an induced subgraph, where an odd hole is a cycle of odd length and an odd anti-hole is the complement of a cycle of odd length.

Lemma 1.1.7. [27] Cographs are perfect.

Lemma 1.1.8. [54] Cographs are clique perfect.

Lemma 1.1.9. [64] If G is hereditary clique-IIelly, then it is clique irreducible.

Lemma 1.1.10. [25] If a graph G has no induced diamond ($K_{4}-e$), then every edge of G belongs to exactly one clique.

Lemma 1.1.11. [76] A graph G is hereditary weakly maximal clique irreducible if and only if G does not contain any of the graph $F_{1}, F_{2}, \ldots, F_{19}$ in Fig: 1.9 as an induced subgraph.

F

F
13

F_{9}

F_{8}

F_{4}

F_{6}

F_{19}
Fig: 1.9

Lemma 1.1.12. [64] A graph G is hereditary clique-Helly, if it does not contain any of the Hajo's graph as an induced subgraph.

Lemma 1.1.13. [11] In a loop less bipartite graph G, the minimum number of vertices that cover all the edges of G is equal to the maximum number of independent edges.

Lemma 1.1.14. [36] A graph G is a split graph if and only if it is $\left(2 K_{2}, P_{4}, C_{4}\right)$ free.

Lemma 1.1.15. [29] A graph G is a threshold graph if and only if it is ($2 K_{2}, C_{4}, C_{5}$)free.

1.2 New definitions

Definition 1.2.1. [66] Let $G=(V, E)$ be a graph. A subset V^{\prime} of V is called a cographic dominating set if it dominates G and the subgraph induced by V^{\prime} is a cograph. The cographic domination number $\gamma_{c d}(G)$ is the minimum cardinality of a cographic dominating set.

Definition 1.2.2. [66] Let $G=(V, E)$ be a graph. A subset V^{\prime} of V is called a global cographic dominating set if it dominates both G and G^{c} and the subgraph induced by V^{\prime} is a cograph. The global cographic domination number $\gamma_{g c d}(G)$ is the minimum cardinality of a global cographic dominating set.

For example, $\gamma_{c l}\left(K_{1, n}\right)=1$ and $\gamma_{g c d}\left(K_{1, n}\right)=2$.
Definition 1.2.3. [5] A graph G is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique in G and it is clique vertex reducible if it is not clique vertex irreducible.

Fig: 1.10

In Fig : $1.10 G_{1}$ is clique vertex irreducible and G_{2} is clique vertex reducible. Note that the clique vertex irreducible graphs form a sub class of clique irreducible
graphs. The reverse inclusion does not hold as indicated by the example G_{2} in Fig : 1.10 .

Definition 1.2.4. [6] An edge $e \in E(G)$ is called an essential edge if it belongs to exactly one clique in G. A vertex $v \in V(G)$ is called an essential vertex if it belongs to exactly one clique in G. A clicue C in G is called vertex essential, if C has an essential vertex.

Fig: 1.11

In Fig : 1.11, the essential edges are 12, 23, 34, 45, 56 and 61 . The essential vertices are 1, 3 and 5. The vertex essential cliques are $<1,2,6>,<2,3,4\rangle$ and $\langle 4,5,6>$.

1.3 A survey of results

The following are some of the fundamental results pertaining to the above said graph classes which we discuss in this thesis.

The Gallai graphs and the anti-Gallai graphs are spaming subgraphs of the well known class of line graphs whose union is the line graph. Though the line graphs admit a forbidden subgraph characterization !17], both the Gallai graphs and the anti-Gallai cannot be characterized using forbidden subgraphs, since it is
proved in [52] that given any graph G, both $\Gamma\left(G^{c} \vee K_{1}\right)$ and $\Delta\left(G \vee K_{1}\right)$ contains G as an induced subgraph. In [52], it has also been proved that the Gallai graph of a graph G is isomorphic to G only for cycles of length greater than three. In [53], the Gallai mortal graphs - graphs whose iterated Gallai graph converges to the trivial graph, are characterized in several ways. In [72] the notion of Gallai perfect graphs - the graphs whose Gallai graphs are perfect, are introduced and discussed.

The class of cographs - complement reducible graphs, were studied by various authors under different names such as D^{*}-graphs. P_{4} restricted graphs and HD or hereditary dacey graphs. In [27], cight characterizations of cographs which includes the recursive characterization and the forbidden subgraph characterization (Lemma 1.1.1 and Lemma 1.1.2) are given. A linear recognition algorithm for cographs is given in [28].

An algorithm to solve the Hamiltonian cycle problem - given a graph G, does there exists a cycle that passes through every vertex of G, for the cographs (for the distance hereditary graphs, which form a super class of cographs) is given in [46]. The rank of the adjacency matrix of a graph is bounded by the number of distinct non-zero rows of that matrix. G.F. Royle [70] has proved that in the case of cographs, the rank is equal to the number of distinct non zero rows of its adjacency matrix. In [57] the connection of cographs with chordal graphs, interval graphs and series-parallel graphs are discussed. Cographs are linked with intersection graphs in [58].

The median and the anti-median of cographs are discussed in [67]. It has been proved that any cograph can be expressed as the median graph and the anti-median graph of a cograph that is both Eulerian and Hamiltonian. The cographs which
are planar and outer planar are also characterized.
F.Larrión et.al, [51] studied in cletail the clique operator on cographs. It has been proved that a cograph is clique convergent if and only if it is clique Helly. A characterization of cographs whose clique graph is a cograph is also given. A cograph G is clique complete if and only if it has a universal vertex.

It is proved in [42] that there are graphs that cannot be the clique graph of any graph. A graph is a clique graph if and only if it admits an edge cover which satisfies the Helly property [69]. In [10] all graphs G for which $d(K(G))=d(G)-1$, $d(K(G))=d(G)$ and $d(K(G))=d(G)+1$ are characterized and a class of graphs which satisfies $d\left(K^{2}(G)\right)=d(G)+2$ is obtained. [59] deals with clique divergent graphs and it is proved that $(K(G \vee H))^{c}=(K(G))^{c} \square(K(H))^{c}$ and $\left.K(G) H\right)=$ $K(G) \not \otimes_{j} K(H)$. The clique complete graphs are discussed in detail in [55].
J. L. Szwarcfiter has made an excellent survey of the clique graphs [73]. It includes the characterizations of the clique graph, the clique graph of various graph classes, the clique inverse classes, the complexity of recognizing the clique inverse classes, the convergence and the divergence of the clique operator and the diameter of clique graphs. A list of open problems is also included in the survey. (ne of these problems is settled in [23] by obtaining a counter example and another problem is solved in chapter 4 of this thesis.

As we have already mentioned, the $<t>$-property was introduced to find graph classes which admits a better upper bound for the clique transversal number. The following are some of the upper bounds of the clique transversal number as proved in [33].
(1) $\tau_{c}(G) \leqslant n-\sigma(G)$.
(2) $\tau_{c}(G) \leqslant n-\Delta(G)$, where $\Delta(G)$ is the maximum degree of a vertex in G.
(3) $\tau_{c}(G) \leqslant n+\Delta(G)+3-\alpha(G)+\frac{2 n}{\alpha(G)}$.
(4) $\tau_{c}(G) \leqslant n-\sqrt{2 n}+\frac{3}{2}$.
(5) If n and k are natural numbers such that $n=k+1$ and G is a graph on n, vertices in which every clique has more than k vertices, then $\tau_{c}(G) \leqslant n-\sqrt{k n}$, except for C_{5}.

It is known [33] that every chordal graph satisfies the $<2>$-property. In [74], it is proved that the $<3>$-property holds for the chordal graphs, the split graphs have the $<4>$-property, but do not have the $<5>$-property and hence the chordal graphs also do not have the $<5>$-property. It is proved [35] that the $<4>$-property does not hold for the chordal graphs.

The class of clique perfect graphs were introduced in [41]. The distance hereditary graphs [54]: the strongly chordal graphs [24], the dually chordal graphs [15] and the comparability graphs [12] are all subclasses of the rich class of clique perfect graphs. In [23], it is proved that the odd generalized suns are not clique perfect. In [21], the claw-free graphs which are clique perfect are characterized and in [22] diamond-free graphs and Helly-circular arc graphs which are clique perfect are characterized. A characterization of clique prefect graphs is an open problem [73].

Opsut and Roberts [60] introduced the concept of clique irreducible graphs and proved that the interval graphs are clique irreducible. Wallis and Zhang [78] generalized this result and attempted to characterize clique irreducible graphs. In [77], the line graphs which are clique irreducible are characterized using forbidden subgraphs. A characterization of clique irreducible graphs is still an open problem [73].

Tao-Ming Wang [76] introduced the concept of weakly clique irreducible graphs, which form a super class of clique irreducible graphs. In [76] nineteen forbidden subgraphs for a graph to be hereditary weakly clique irreducible is given. The line graphs which are weakly clique irreducible are characterized in [77].

1.4 Summary of the thesis

This thesis cntitled 'Studies on Some Graph Classes' is divicled into six chapters. We shall now give a summary of each chapter.

The first chapter is an introduction and contains the literature on various graph classes studied in this thesis. It also includes the basic definitions and terminology.

In the second chapter various properties of the Gallai graphs and the anti-Gallai graphs are studied. The following are some of the results which we have obtained.

* There are infinitely many pairs of non-isomorphie graphs of the same order having isomorphic Gallai graphs and anti-Gallai graphs.
* There exist a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H -free for any finite graph H .
* The forbidden subgraph characterizations of G for which the Gallai graphs and the anti-Gallai graphs are cographs, split graphs and threshold graphs.
* Characterization of cographs for which the Gallai and anti-Gallai graphs are also cographs.
\star The relationship between the chromatic number, the radius and the diameter of a graph and its Gallai and anti-Gallai graphs.

In the third chapter we define two new domination parameters, cographic domination number $\gamma_{c d}(G)$ and global cographic domination number $\%_{g c d}(G)$ based on cographs. Some of the properties of these domination parameters and results obtained are listed below.

There is no trce satisfying the inequality $\gamma(G)<\gamma_{c d}(G)=\gamma_{i}(G)$.

If G is a triangle free graph then $\gamma_{g c t}(G)=\gamma_{c d}(G)$ or $\gamma_{c d}(G)+1$.

If G is a planar graph with $\gamma_{c d}(G) \geqslant 3$, then $\gamma_{g c d}(G) \leqslant \gamma_{c d}(G)+2$.
Two constructions to illustrate the existence of graphs satisfying the inequalities among the various domination parameters.

Vizing's type relations of the domination number, the global domination number, the cographic domination number, the global cographic domination number and the independent domination number of NEPS of two graphs.

In the fourth chapter, the clique transversal number and the $\langle t\rangle$-property of various classes of graphs are studied. The following are some of the results proved.
\propto The domination number is a lower bound for the clique transversal number and that the difference between these two parameters can be arbitrarily large.
\bowtie 'The class of clique perfect graphs without isolated vertices satisfies the $<t>$ property for $t=2$ and 3 and does not satisfy the $\langle t\rangle$-property for $t \geqslant 4$.
\bowtie The class of cographs without isolated vertices satisfies the $<t>$-property for $t=2$ and 3 and does not satisfy the $<t>$-property for $t \geqslant 4$.
\bowtie The class of planar graphs does not satisfy the $<t>$-property for $t=2,3$ and 4 and \mathcal{G}_{t} is empty for $t \geqslant 5$.
\bowtie The class of perfect graphs does not satisfy the $<t>$-property for any $t \geqslant 2$.
\bowtie The class of trestled graphs of index $k, T_{k}(\mathcal{G})$ satisfies the $<2>$-property if and only if $\beta(G) \leqslant \frac{n}{2} \forall G \in \mathcal{G}$ and $T_{k}(\mathcal{G})_{t}$ is empty for $t \geqslant 3$.
\bowtie The trestled graphs of index $k, T_{k}(G)$ is clique perfect if and only if G is bipartite.
\bowtie Also, an open problem on highly clique imperfect graphs posed in [73] is solved.

In the fifth chapter the clique graph of cographs are studied and we obtain the following results.
\oplus The diameter of the clique graph of a cograph cannot exceed two.
\oplus Any graph on prime number of vertices, other than K_{p}, cannot be the clique graph of a cograph.
\oplus A cograph is clique complete if and only if it has a vertex of full degree.
© The number of clique graphs of a cograph with $\chi(K(G))=s$, where s is a fixed integer is finite.
\oplus A realization of cographs and its clique graph which have specific values for the domination number, the clique transversal number and the clique independence number.

The last chapter deals with two graph classes - the clique irreducible graphs and the weakly clique irreducible graphs. A new graph class called the clique vertex irreducible graphs is also definced and the following results are obtained.
© Characterizations of G for which the line graph $L(G)$ and all its iterates to be clique vertex irreducible and clique irreducible.

- Characterizations of G such that the Gallai graph $\Gamma(G)$ is clique vertex irreducible, clique irreducible and weakly clique irreducible.

2. Characterizations of G such that the anti-Gallai graph $\Delta(G)$ and all its iterates are clique vortex irreducible, clique irreducible and weakly clique irreducible.
© The clique vertex irreducibility, clique irreducibility and weakly clique irreducibility of graphs which are non-complete extended p-sums (NEPS) of two graphs.
e) Necessary and sufficient conditions for the cographs and the distance hereditary graphs to be clique vertex irreducible, clique irreducible and weakly clique irreducible.

1.5 List of publications

Papers presented

(1) Some domination concepts in cographs, International Conference on Discrete Mathematics and its Applications, December 9 - 11, 2004, Amrita Viswa Vidyapeetham, Coimbatore, India.
(2) The clique graph of a cograph, International Conference on Discrete Mathematics, December 15-18, 2006, IISc, Bangalore, India.
(3) A note on some domination parameters in graph products, International Conference on Recent Developments in Combinatorics and Graph Theory, June 10-14, 2007, Kalasalingam University, Krishnankoil, India.
(4) Characterization of some special classes of Gallai and anti-Gallai graphs, National Seminar on Algebra and Discrete Mathematics, November 14-16, 2007, University of Kerala, Thiruvananthapuram, India.
(5) Clique irreducibility and clique vertex irreducibility of graphs, 73rd Annual Conference of Indian Mathematical Society, December 27-30, 2007, University of Pune, Pune, India.
(6) On weakly clique irreducible graphs, International Conference on Discrete Mathematics, June 6-10, 2008, University of Mysore, Mysore, India.

Papers published / communicated

(1) Aparna Lakslmanan S., S. B. Rao, A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem., 132(1) (2007), 43-54.
(2) Aparna Lakshmanan S., A. Vijayakumar, A note on some domination parameters in graph products, Congr. Numer., (Proceedings of the International Conference on Recent Developments in Combinatorics and Graph Theory, 2007. India), (to appear).
(3) Aparna Lakshmanan S., A. Vijayakumar, Clique irreducibility and clique vertex irreduciblility of graphs, (communicated).
(4) Aparna Lakshmanan S., A. Vijayakumar, Clique irreducibility of some iterative classes of graphs, Discuss. Math. Graph Theory, (to appear).
(5) Aparna Lakshmanan S., A. Vijayakumar, On weakly clique irreducible graphs, (communicated).
(6) Aparna Lakshmanan S., A. Vijayakumar, Some properties of the clique graph of a cograph, Proceedings of the International Conference on Discrete Mathematics, Bangalore, India, (2006), (to appear).
(7) Aparna Lakshmanan S., A. Vijayakumar, The $<t$-property of some classes of graphs, Discrete Math., (to appear).
(8) S. B. Rao, Aparna Lakshmanan S., A. Vijayakumar, Cographic and global cographic domination number of a graph, Ars Combin. (to appear)

Chapter 2

Gallai and anti-Gallai graphs

This chapter deals with two graph classes the Gallai graphs and the anti-Gallai graphs. We construct infinitely many pairs of graphs G and H such that $\Gamma(G)=$ $\Gamma(H)$. The existence of a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H-free, for any finite graph H is proved and the forbidden subgraph characterizations of G for which the Gallai graphs and the anti-Gallai graphs are cographs, split graphs and threshold graphs are discussed in detail. If G is a connected cograph without a universal vertex then $\Gamma(G)$ is a cograph if and only if $G=\left(p K_{2}\right)^{\text {c }}$. The relationships between the radius, the diameter and the chromatic number of a graph and its Gallai (anti-Gallai) graph are also studied in detail.

Some results of this chapter are included in the following paper.
Gallai and anti-Gallai graphs of a graph, Math. Bohem., 132(1) (2007), 43-54.

2.1 Gallai and anti-Gallai graphs

It is well known [80] that the only pair of non-isomorphic graphs having the same line graph is $K_{1,3}$ and K_{3}. But, we first observe that, in the case of both Gallai and anti-Gallai graphs, there are infinitely many pairs of non-isomorphic graphs of the same order having isomorphic Gallai graphs (anti-Gallai graphs).

Theorem 2.1.1. There are infinitely many pairs of non-isomorphic graphs of the same order having isomorphic Gallai graphs.

Proof. We prove this theorem by the following two types of constructions.

Type 1 :- Let G be the graph P_{4} with n independent vertices joined to both its internal vertices and an end vertex attached to k of these n vertices and H be two copies of $K_{1, n+1}$ with $k+1$ distinct pairs of end vertices made adjacent.

The graph G in type 1 is as follows. Let $v_{1} v_{2} v_{3} v_{1}$ be an induced P_{4}. Let v_{2} and v_{3} be joined to n vertices $u_{1}, u_{2}, \ldots, u_{n}$. Introduce k end vertices $w_{1}, w_{2}, \ldots, w_{k}$ such that each u_{i} is adjacent only to u_{i} for $i=1,2, \ldots, k$. The edges $v_{1} v_{2}, v_{2} u_{1}, v_{2} u_{2}, \ldots, v_{2} u_{n}$ of G : which are vertices of $\Gamma(G)$ will induce a complete graph on $n+1$ vertices in $\Gamma(G)$. Similarly, $v_{3} v_{4}, v_{3} u_{1}, v_{3} u_{2}, \ldots, v_{3} u_{n}$ will induce another complete graph on $n+1$ vertices in $\Gamma(G)$. The vertex corresponding to the edge $v_{2} v_{3}$ will be adjacent to both the vertices corresponding to $v_{1} v_{2}$ and $v_{3} v_{4}$. The k vertices corresponding to the edges $u_{i} u_{i}$ for $i=1,2, \ldots, k$ will be adjacent to the vertices corresponding to the edges $u_{i} v_{2}$ and $u_{i} v_{3}$ for $i=1,2, \ldots, k$ respectively.

The graph H in type 1 is as follows. Let u adjacent to $u_{1}, u_{2}, \ldots, u_{n+1}$ and v adjacent to $v_{1}, v_{2}, \ldots, v_{n+1}$ be the two $K_{1, n+1}$ s in H. Let $u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{k+1} v_{k+1}$ be
the $k+1$ distinct pairs of adjacent vertices in H. The vertices corresponding to the edges $u u_{1}, u u_{2}, \ldots, u u_{n+1}$ will incluce a complete graph on $n+1$ vertices in $\Gamma(H)$. Similarly, the vertices corresponding to $v v_{1}, v v_{2}, \ldots, v v_{n+1}$ will also induce another complete graph on $n+1$ vertices in $\Gamma(H)$. Again, the vertices corresponding to the edges $u_{i} v_{i}$ for $i=1,2, \ldots, k+1$ will be adjacent to the vertices corresponding to the edges $u u_{i}$ and $v v_{i}$ for $i=1,2, \ldots, k+1$ respectively.

Therefore, both $\Gamma(G)$ and $\Gamma(H)$ are two copies of K_{n+1} together with $k+1$ new vertices made adjacent to $k+1$ distinct vertices of both the copies of K_{n+1}.

Type 2 :- Let G be the graph P_{4} with n inclependent vertices joined to both its internal vertices and an end vertex attached to k of them with $k \geqslant 1$, together with one end vertcx each attached to the two end vertices of P_{4} and H be two copies of $K_{1, n+1}$ with $k+1$ distinct pairs of end vertices (one from each star) made adjacent and a single pair made adjacent to another vertex.

The graph G in type 2 can be obtained from the graph G in type 1 by attaching two end vertices x and y to v_{1} and v_{2} respectively. In $\Gamma(G)$ the vertices corresponding to the edges $v_{1} x$ and $v_{4} y$ will be adjacent to the vertices corresponding to the edges $v_{1} v_{2}$ and $v_{3} v_{4}$ respectively. The graph H in type 2 can be obtained from the graph H in type 1 by adding a new vertex w and making it adjacent to both u_{1} and v_{1}. In $\Gamma(H)$ the vertices corresponding to the edges $u u_{1}$ and $w v_{1}$ will be adjacent to the vertices corresponding to the edges $u u_{1}$ and $v w_{1}$ respectively.

Therefore, both $\Gamma(G)$ and $\Gamma(H)$ are two copies of K_{n+1} together with $k+1$ vertices made adjacent to $k+1$ distinct vertices of both the copies of K_{n+1} and two end vertices made adjacent to one vertex from each of the complete graphs.

The constructions mentioned in type 1 and type 2 are illustrated in Table 2.1.

In both the cases, the graphs G and H have the same Gallai graph. If $n=k$ and $n=k-1$ in type 1 and type 2 respectively, then the order of G and H is the same.
Type $1 \mathrm{n}=3 \mathrm{k}=1$

Table 2.1

Theorem 2.1.2. There are infinitely many pairs of non-isomorphic graphs of the same order having isomorphic anti-Gallai graphs.

Proof. Let G be a graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and an edge $v_{i} v_{j}$ such that G is not isomorphic to a graph obtained under permutations of the index set of the vertices which interchange i and j and $\Delta(G)$ is connected. Introduce a vertex
u adjacent to v_{i} and v_{j}. Let H_{1} be the graph obtained by introducing one more vertex u_{1} adjacent to u and v_{i}. Let H_{2} be the graph obtained by introducing another vertex u_{2} (u_{1} is absent here) adjacent to u and v_{j}. Then by construction H_{1} and H_{2} are non-isomorphic. $\Delta\left(H_{1}\right)$ is $\Delta(G)$ together with four more vertices corresponding to $u v_{i}, u v_{j}, u u_{1}, v_{i} u_{1}$ in which $u v_{i}$ and $u v_{j}$ are adjacent to each other and to $v_{i} v_{j}, u u_{1}$ and $v_{i} u_{1}$ are adjacent to each other and to $u v_{i} . \Delta\left(H_{2}\right)$ is $\Delta(G)$ together with four more vertices corresponding to $u v_{i}, u v_{j}, u u_{2}, v_{j} u_{2}$ in which $u v_{i}$ and $u v_{j}$ are adjacent to each other and to $v_{i} v_{j}, u u_{2}$ and $v_{j} u_{2}$ are adjacent to each other and to $u \imath^{\prime} j$. Therefore, $\Delta\left(H_{1}\right)$ is isomorphic to $\Delta\left(H_{2}\right)$.

2.2 Forbidden subgraph characterizations

Even though the Gallai and the anti-Gallai graphs cannot be characterized using forbidden subgraphs, in this section we prove the existence of a finite forbidden subgraph characterization for the Gallai graph and the anti-Gallai graph to be H free and obtain the forbidden subgraph characterizations for the Gallai and the anti-Gallai graphs to be a cograph, a split graph and a threshold graph.

Notation : For a connected graph H, let $\mathcal{G}(H)=\{G: \Gamma(G)$ is H - free $\}$ and $\mathcal{G}^{*}(H)=\{G: \Delta(G)$ is $H-$ free $\}$.

Theorem 2.2.1. The properties of being an element of $\mathcal{G}(H)$ and $\mathcal{G}^{*}(H)$ are vertex hereditary.

Proof. Let $G \in \mathcal{G}(H)$ and $v \in V(G)$. Consider $G^{\prime}=G-\{v\}$. It is required to
prove that $G^{\prime} \in \mathcal{G}(H)$. On the contrary assume that $\Gamma\left(G^{\prime}\right)$ has H as an induced subgraph. Let $v_{1}, v_{2}, \ldots, v_{t}$ be neighbors of v. Therefore $\Gamma(G)$ has the vertex set $V\left(\Gamma\left(G^{\prime}\right)\right) \cup\left\{v v_{1}, v v_{2}, \ldots, v v_{t}\right\} . \operatorname{In} \Gamma(G), v v_{i}$ is adjacent to $v v_{j}$ if v_{i} is not adjacent to v_{j}, and $v v_{i}$ will be adjacent to all edges which have v_{i} as one end vertex and other end vertex is not v_{j} for $j=1,2, \ldots, t . V\left(\Gamma\left(G^{\prime}\right)\right)$ induce $\Gamma\left(G^{\prime}\right)$ itself. Hence if H is an induced subgraph of $\Gamma\left(G^{\prime}\right)$ then H is an induced subgraph of $\Gamma(G)$ also, which is a contradiction.

The case of $\mathcal{G}^{*}(H)$ follows similarly.

Corollary 2.2.2. $\mathcal{G}(H)$ and $\mathcal{G}^{*}(H)$ have vertex minimal forbidden subgraph characterization.

Though many well known classes of graphs admit forbidden subgraph characterizations, the number of such forbidden subgraphs need not be finite. However, for $\mathcal{G}(H)$ and $\mathcal{G}^{*}(H)$ we have

Theorem 2.2.3. For every vertex minimal forbidden subgraph of $\mathcal{G}(H)$ and $\mathcal{G}^{*}(H)$. the number of vertices is bounded above by $n(H)+1$.

Proof. Let $\mathcal{F}(H)$ be the collection of all vertex minimal forbidden subgraphs of $\mathcal{G}(H)$. Let $L \in \mathcal{F}(H)$. Thercfore, $\Gamma(L)$ has H as an induced subgraph. The $n(H)$ vertices of H, which correspond to $n(H)$ edges of L, say $e_{1}, e_{2}, \ldots, e_{n(H)}$, can cover a maximum of $n(H)+1$ vertices of L, since H is connected.

We have to prove that $n(L) \leqslant n(H)+1$. On the contrary assume that $u(L)>$ $n(H)+1$. Then there exists at least one vertex $v \in V(L)$ which is not an end vertex of any of $e_{1}, e_{2}, \ldots, e_{n(H)}$. Therefore, $\Gamma(L-v)$ still has H as an induced subgraph: which contradicts that L is a vertex minimal forbidden subgraph of $\mathcal{G}(H)$. Hence,
$n(L) \leqslant n(H)+1$.

A similar argument holds for $\mathcal{G}^{*}(H)$ also.

Corollary 2.2.4. The number of vertex minimal forbidden subyraphs for $\mathcal{G}(H)$ and $\mathcal{G}^{*}(H)$ is finite.

Theorem 2.2.5. Let G be a graph. Then, $\Gamma(G)$ is a cograph if and only if G does not have the following graphs as induced subgraphs.

Fig : 2.1

Proof. If $\Gamma(G)$ is not a cograph then there exists an induced P_{4} in $\Gamma(G)$, say $e_{1} e_{2} e_{3} e_{4}$. In G, let $e_{1}=u_{11} u_{12}, e_{2}=u_{21} u_{22}, e_{3}=u_{31} u_{32}$ and $e_{4}=u_{41} u_{42}$.

Since e_{1} is adjacent to e_{2}, let $u_{12}=u_{21}$ and let u_{11} be not adjacent to u_{22}. Since e_{2} is adjacent to e_{3}, either $u_{21}=u_{31}$ or $u_{22}=u_{31}$.

If $u_{21}=u_{31}$, then since e_{1} is not adjacent to e_{3}, u_{11} is adjacent to u_{32}. Since e_{3} is adjacent to ϵ_{4}, either $u_{31}=u_{41}$ or $u_{32}=u_{41}$. If $u_{31}=u_{41}$, then since e_{1} and e_{2} are not adjacent to e_{4}, both u_{11} and u_{21} are adjacent to u_{12}. If $u_{132}=u_{41}$ then u_{31} is not adjacent to u_{42}.

If $u_{22}=u_{31}$, then u_{21} is not adjacent to u_{32}. Again, since e_{3} is adjacent to e_{4}, either $u_{31}=u_{41}$ or $u_{32}=u_{41}$. If $u_{31}=u_{41}$. then since e_{2} and e_{4} are not adjacent, u_{21} is adjacent to u_{42}. If $u_{32}=u_{41}$ then u_{31} is not adjacent to u_{42}. The above four resulting graphs are respectively (iv). (vi), (vi) and (i).

In (iv), if we add even a single edge the property of $\Gamma(G)$ not being a cograph will be lost. In (vi), u_{22} adjacent to u_{42} gives (vii), u_{11} adjacent to u_{42} gives (ix) and the combination of both gives iv). The addition of these edges will not change the required property either. In (i), u_{11} adjacent to u_{12} gives (ii), u_{11} adjacent to u_{41} gives (viii) and a combination of both gives (iii). Again, the addition of these edges will not change the required property. However, if we add any other edge then the property will be lost.

Conversely, it can be verified that the Gallai graph will not be a cograph if any of the nine graphs listed above is an induced subgraph of G.

Theorem 2.2.6. Let G be a graph. Then $\Delta(G)$ is a cograph if and only if G does not have the following graphs as induced subgraphs.

Fig : 2.2

Proof. If $\Delta(G)$ is not a cograph then there exists an induced P_{4} in $\Delta(G)$, say $e_{1} e_{2} e_{3} e_{4}$. In G, let $e_{1}=u_{11} u_{12}, e_{2}=u_{21} u_{22}, e_{3}=u_{31} u_{32}$ and $e_{4}=u_{41} u_{42}$.

Since e_{1} is adjacent to e_{2}. let $u_{12}=u_{21}$ and let u_{11} be acljacent to u_{22}. Since e_{2} is adjacent to e_{3}, either $u_{21}=u_{31}$ or $u_{22}=u_{31}$.

If $u_{21}=u_{31}$ then u_{22} is adjacent to u_{32} and u_{11} is not adjacent to u_{31}. Since e_{3} is adjacent to c_{4}, either $u_{31}=u_{41}$ or $u_{32}=u_{41}$. If $u_{31}=u_{41}$, then u_{32} is adjacent to u_{42} and u_{11} and u_{22} are not adjacent to u_{42}. If $u_{32}=u_{41}$ then u_{31} is adjacent to u_{42}.

If $u_{22}=u_{31}$ then u_{12} is adjacent to u_{32}. Again, since e_{3} is adjacent to e_{4}, either $u_{31}=u_{41}$ or $u_{32}=u_{41}$. If $u_{31}=u_{41}$, then u_{32} is adjacent to u_{42} and u_{21} is not adjacent to u_{12}. If $u_{32}=u_{42}$ then u_{31} is adjacent to u_{42}.

All the four resulting graphs are isomorphic to (i) itself. Also, addition of any of the possible edges will leave an induced P_{4} in $\Delta(G)$ and hence any graph with five vertices which contains (i) as a (not induced) subgraph are also forbidden. Hence all the above graphs are forbidden.

The converse can be easily proved.

Table 2.2

If \mathcal{G} is any graph class that admits a finite forbidden subgraph characterization, then using similar arguments as in Theorem 2.2.5 and Theorem 2.2.6. we can obtain forbidden subgraph characterizations for the Gallai graph and the anti-Gallai graph
to be in \mathcal{G}. In Table 2.2, we list the forbidden subgraphs for $\Gamma(G)$ and $\Delta(G)$ to be a split graph and a threshold graph.

2.3 Applications to cographs

In this section we obtain characterizations for the Gallai graph and the antiGallai graph of a cograph to be a cograph.

Theorem 2.3.1. If G is a connected cograph without a universal vertex then $\Gamma(G)$ is a cograph if and only if $G=\left(p K_{2}\right)^{c}$.

Proof. Let $G=\left(p K_{2}\right)^{c}$. Then the number of vertices of G is $2 p$ and the number of edges of G is $2 p(p-1)$. Let the vertices of G^{\prime} be $\left\{v_{11}, v_{12}, \ldots, v_{1 p}, v_{21}, v_{22}, \ldots, v_{2 p}\right\}$ with $v_{1 j}$ and $v_{2 j}$ as the only pair of non-adjacent vertices, for $j=1,2, \ldots, p$. Therefore, the vertices of the Gallai graph are of the form $v_{i j} v_{i^{\prime} j^{\prime}}$ where $j \neq j^{\prime}$. By the definition of the Gallai graphs, $v_{i j} v_{i^{\prime} j^{\prime}}$ will be adjacent only to $v_{i j} v_{1 j^{\prime}}$ or $v_{i j} v_{2 j^{\prime}}$ and $v_{1 j^{\prime} v_{i^{\prime} j^{\prime}}}$ or $v_{2 j} v_{i^{\prime} j^{\prime}}$ according to the value of i and i^{\prime}. Therefore. $\Gamma(G)=\left({ }^{p} C_{2}\right) C_{4}$. which is a cograph.

Conversely, assume that G is a cograph without a universal vertex and $\Gamma(G)$ is also a cograph. For every $u \in V(G)$, there exist at least one $u^{\prime} \in V(G)$ which is not adjacent to u.

Claim : u^{\prime} is the only vertex which is not adjacent to u.

On the contrary assume that there exists another vertex $u^{\prime \prime}$ which is not adjacent to u. Since G is a commected cograph, $G=G_{1} \vee G_{2}$. Let $u \in V\left(G_{1}\right)$. Since
u is not adjacent to both u^{\prime} and $u^{\prime \prime}$, both of them belong to $V\left(G_{1}\right)$. Since G has no vertex of full degree, G_{2} must contain at least two non-adjacent vertices v_{1} and v_{2}. Then the edges $u^{\prime \prime} v_{1}, v_{1} u, u v_{2}, v_{2} u^{\prime}$ will induce a P_{4} in $\Gamma(G)$, which is a contradiction.

Therefore $G=\left(p K_{2}\right)^{c}$, where $2 p=n$.

Notation : Consider the class of graphs which are recursively defined as follows : $\mathcal{H}_{1}=\left\{G: G=\left(p K_{2}\right)^{c} \vee\left(K_{q}\right)\right.$, where $\left.p, q \geqslant 0\right\}$.
$\mathcal{H}_{i}=\left\{G: G=\left(\bigcup H_{i-1}\right) \vee K_{r}\right.$, where $H_{i-1} \in \mathcal{H}_{i-1}$ and $\left.r \geqslant 0\right\}$ for $i>1$.
$\mathcal{H}=\bigcup \mathcal{H}_{i}$

Theorem 2.3.2. For a connected cograph $G, \Gamma(G)$ is a cograph if and only if $G \in \mathcal{H}$.

Proof. Let G be a cograph other than K_{q} with a vertex of full degree. Let V_{1} be the collection of all full degree vertices in G. Define $G_{1}=<V-V_{1}>. \Gamma\left(G_{1}\right)$ is an induced subgraph of $\Gamma(G)$. More precisely: $\Gamma(G)=\Gamma\left(G_{1}\right)$ together with some isolated vertices. Therefore, $\Gamma(G)$ is a cograph if and only if $\Gamma\left(G_{1}\right)$ is a cograph. If G_{1} is a connected cograph then G_{1} has no vertex of full degrec and hence $\Gamma\left(G_{1}\right)$ is a cograph if and only if $G_{1}=\left(p K_{2}\right)^{c}$. Therefore, $\Gamma(G)$ is a cograph if and only if $G=\left(p K_{2}\right)^{c} \vee\left(K_{q}\right) \in \mathcal{H}_{1}$.

If G_{1} is disconnected, then consider each of the connected components of G_{1}. If the removal of all full degree vertices from each of the components of G_{1} preserves connecteducss then as above each of these components must be of the form $\left(p K_{2}\right)^{c} \vee$ $\left(K_{q}\right)$. Therefore, $G=\left(F_{1} \cup F_{2} \cup \ldots \cup F_{p}\right) \vee K_{q}$ where each $F_{i} \in \mathcal{H}_{1}$ and $q \geqslant 0$. Consequently, $G \in \mathcal{H}_{2}$.

If any of the components of G_{1}, say G_{2}, is disconnected then repeat the above process to get $G_{1} \in \mathcal{H}_{2}$ and hence $G=\left(H_{1} \cup H_{2} \cup \ldots \cup H_{r}\right) \vee K_{s}$ where each $H_{i} \in \mathcal{H}_{2}$ and $r \geqslant 0$. Consequently, $G \in \mathcal{H}_{3}$.

This process must terminate since the number of vertices of G is finite. Therefore for a connected cograph $G: \Gamma(G)$ is a cograph if and only if $G \in \mathcal{H}$.

Theorem 2.3.3. For a connected cograph $G, \Delta(G)$ is a cograph if and only if (i) $G=G_{1} \vee G_{2}$, where G_{1} is edgeless and G_{2} does not contain P_{4} as a subgraph (which need not be induced) or
(ii) G is C_{4}.

Proof. Let G be a connected cograph whose $\Delta(G)$ is also a cograph. Since G is a connected cograph, $G=G_{1} \vee G_{2}$. Let G_{1} be an edgeless graph and $u \in V\left(G_{1}\right)$. If G_{2} contains a P_{4}, say $v_{1} v_{2} v_{3} v_{4}$, then the edges $v_{1} v_{2}, v_{2} u, u v_{3}, v_{3} v_{4}$ of G induce a P_{4} in $\Delta(G)$, which is a contradiction. Therefore. if G_{1} is edgeless then G_{2} does not contain P_{4} as a subgraph.

Let $u_{1} v_{1} \in E\left(G_{1}\right)$ and $u_{2} v_{2} \in E\left(G_{2}\right)$. If G_{1} contains one more vertex, say v, not adjacent to u_{1} and v_{1}, then the edges $u_{1} v_{1}, v_{1} u_{2}, u_{2} v_{2}, u_{2} u$ of G induce a P_{4} in $\Delta(G)$, which is a contradiction. If v is adjacent to at least one of the vertices, say v_{1}, then the edges $u_{1} u_{2}, u_{2} v_{1}, v_{1} v_{2}, v_{2} v$ of G induce a P_{1} in $\Delta(G)$, which is a contradiction. A similar argument holds also for the vertex set of G_{2}. Therefore both G_{1} and G_{2} are K_{2}-s and $G_{r}=C_{4}$.

Conversely, assume that G is a cograph of type (i) or (ii). Then G does not contain any of the graphs in Fig : 2.2 as an induced subgraph and hence $\Delta(G)$ is a cograph by Theorem 2.2.6.

2.4 Chromatic number

In this section we study the relation between the chromatic numbers of $G . \Gamma(G)$ and $\Delta(G)$.

Theorem 2.4.1. Given two positive integers a, b, where $a>1$, there exists a graph G such that $\chi(G)=a$ and $\chi(\Gamma(G))=b$.

Proof. If $a=1$ then G must be a graph without edges, which makes $\Gamma(G)$ empty. So we can assume that $a>1$.

Let G be the graph K_{a} together with $b-1$ end vertices attached to any one of the vertices. Then $\Gamma(G)$ is $a-1$ copies of K_{b} sharing $b-1$ vertices in common together with some isolated vertices. Clearly, $\chi(G)=a$ and $\chi(\Gamma(G))=b$.

Lemma 2.4.2. The anti-Gallai graph of any graph G cannot be bipartite except for the K_{3}-free graphs.

Proof. If u_{1} is adjacent to u_{2} in $\Delta(G)$ then the corresponding edges, say e_{1} and e_{2}, lie in a K_{3}, say $e_{1} e_{2} e_{3}$. Then the vertex u_{3} in $\Delta(G)$ which corresponds to e_{3} will be adjacent to both u_{1} and u_{3}. Therefore. $u_{1} u_{2} u_{3}$ induces a cycle of odd length in $\Delta(G)$ and hence $\Delta\left(G_{t}\right)$ camot be bipartite.

Theorem 2.4.3. Given two positive integers a, b, where $b<a, b \neq 2$, there exists a graph G such that $\chi(G)=a$ and $\chi(\Delta(C))=b$. Further, for any odd integer a, there exists a graph G such that $\chi(G)=\chi(\Delta(G))=a$.

Proof. Since the anti-Gallai graph of a graph G cannot be bipartite except for the triangle free graphs (Lemma 2.4.2) $: b=\chi(\Delta(G)) \neq 2$ for any G.

By Myceilski's construction [11] there exists a triangle-free graph H with chromatic number a. If we choose $G=H$, then $\Delta(G)$ is a trivial graph and hence $b=1$. For $2<b<a$, there exists an induced subgraph H^{\prime} of H whose chromatic number is b. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of H^{\prime}. Let G be the graph obtained from H by joining all vertices of H^{\prime} to a new vertex u. Since $b<a, \chi(G)=a$ itself. If v_{i} and v_{j} are adjacent (or non-adjacent) in H^{\prime} then the vertices corresponding to $u v_{i}$ and $u v_{j}$ are adjacent (or non-adjacent) in $\Delta(G)$. Therefore, the vertices corresponding to the edges $u v_{1}, u v_{2}, \ldots, u v_{n}$ induce an H^{\prime} in $\Delta(G)$. Again for any pair of adjacent vertices, say v_{i} and v_{j} in H^{\prime}, the vertices corresponding to the edges $u v_{i}$ and $u v_{j}$ are adjacent to the vertex corresponding too $v_{1} v_{2}$. Therefore $\Delta(G)$ is H^{\prime} together with one vertex each adjacent to both the cnd vertices of each edge in H^{\prime}. For $b>2, \chi(\Delta(G))=\chi\left(H^{\prime}\right)=b$.

If a is an odd integer then $\chi\left(K_{a}\right)=a$ and $\chi(\Delta(G))=\chi(L(G))=\chi^{\prime}\left(K_{a}\right)=a$. where χ^{\prime} is the edge chromatic number.

The triangle free graph H having chromatic number $a=4$ obtained using Myceilski's construction, the graph G in the above theorem having $\chi(G)=a=4$ and its anti-Gallai graph having $\lambda(\Delta(G))=b=3$ are illustrated in Fig : 2.3.

Fig: 2.3

2.5 Radius and diameter

The relation between the radius and the diameter of G with its Gallai and anti-Gallai graphs are studied in this section.

Theorem 2.5.1. Let G be a graph such that $\Gamma(G)$ is connected. Then $r\left(\Gamma^{\top}(G)\right) \geqslant$ $r(G)-1$ and $d(\Gamma(G)) \geqslant d(G)-1$.

Proof. Let $r(\Gamma(G))=r$. Then there exists an edge $u v$ in G such that the vertex corresponding $u v$ in $\Gamma(G)$ is at a distance less than or equal to r from every other vertex in $\Gamma(G)$. Hence, any vertex of G is at a clistance less than or equal to $r+1$ from both u and t. We have $r(G) \leqslant r+1$, which implies $r(\Gamma(G)) \geqslant r(G)-1$.

Let $d(G)=d$. There exist two vertices u and v such that $d(u, v)=d$. Let $u u_{1} u_{2} \ldots u_{d-1} v$ be a shortest path connecting u and v in G.

Claim:- $d_{\mathrm{I}^{\prime}\left(C_{)}\right)}\left(u u_{1}, u_{d-1} v\right)=d-1$.
$u u_{1}, u_{1} u_{2}, \ldots, u_{d-1} v$ is a path of length $d-1$ connecting $u u_{1}$ and $u_{d-1} v$ in $\Gamma(G)$. Therefore, $d_{\Gamma(G)}\left(u u_{1}, u_{d-1} v\right) \leqslant d-1$.

It is required to prove that $d_{\mathrm{r}(C)}\left(u u_{1}, u_{d-1} v\right)=d-1$. On the contrary assume that there exists an induced path $u u_{1}, v_{1} v_{1}^{\prime} \cdot v_{2} v_{2}^{\prime}, v_{k-1} v_{k-1}^{\prime}, u_{d-1} v$ of length k in $I(G)$ comecting $u u_{1}$ and $u_{d-1} v$, where $k<d-1$. Then there exists a path of length less than or equal to $d-1$ connecting u and v in G, which contradicts $d(u, v)=d$. Hence, $d_{1^{\prime}(G)}\left(u u_{1}, u_{d-1} v\right)=d-1$.

Since there exist two vertices of $\Gamma(G)$ which are at a distance $d-1, d(\Gamma(G))$ must be greater than or equal to $d-1$. Hence, $d(\Gamma(G)) \geqslant d(G)-1$.

Remark 2.5.1. If a and b are two positive integers such that $a>1$ and $b \geqslant a-1$ then there exist graphs G^{\prime} and $G^{\prime \prime}$ whose Gallai graphs are connected and $r\left(G^{\prime}\right)=a$, $r\left(\Gamma\left(G^{\prime}\right)\right)=b, d\left(G^{\prime \prime}\right)=a$ and $d\left(\Gamma\left(G^{\prime \prime}\right)\right)=b$.

Theorem 2.5.2. If G is a graph such that $\Delta(G)$ is connected and $r(G)>1$, $r(\Delta(G)) \geqslant 2(r(G)-1)$ and $d(\Delta(G)) \geqslant 2(d(G)-1)$.

Proof. Let $r(\Delta(G))=r>1$. There exists an edge $u v$ in G such that the vertex corresponding to $u v$ in $\Delta(G)$ is at a distance less than or equal to r from every other vertex in $\Delta(G)$. Let $w \in V(G)$. Since G is connected there exists at least one edge with u as an end vertex, say $w w^{\prime}$. There exists a path of length less than or equal to r from wu' to $u v$ in $\Delta(G)$. Any two adjacont edges in $\Delta(G)$ belong to a triangle and hence this path induces a path of length less than or equal to $\frac{r}{2}$ from either u or v to w or w^{\prime}. Therefore, any vertex is at a distance less than or equal to $\frac{r}{2}+1$ from both u and v. Hence $r(G) \leqslant \frac{r}{2}+1$, which implies that $r(\Delta(G)) \geqslant 2(r(G)-1)$.

Let $d(G)=d$. There exist two vertices u and v such that $d(u, v)=d$. Let $u u_{1} u_{2} \ldots u_{d-1} v$ be a shortest path connecting u and v. Consider $d\left(u u_{1}, u_{d-1} v\right)$ in $\Delta(G)$. If it is k, then there exists a path of length less than or equal to $\frac{k}{2}+1$ in G connecting u and v. Therefore, $\frac{k}{2}+1 \geqslant d$. which implies $k \geqslant 2(d-1)$. However, $d(\Delta(G)) \geqslant k$. Hence, $d(\Delta(G)) \geqslant 2(d(G)-1)$.

Remark 2.5.2. If a and b are two positive integers such that $a>1$ and $b \geqslant 2(a-1)$ then there exist graphs G^{\prime} and $G^{\prime \prime}$ whose anti-Gallai graphs are connected with $r\left(G^{\prime}\right)=a, r\left(\Delta\left(G^{\prime}\right)\right)=b, d\left(G^{\prime \prime} H\right)=a$ and $d\left(\Delta\left(G^{\prime \prime}\right)\right)=b$.

Chapter 3

Domination in Graph Classes

In [9], Bacsó and Tuza Z. put forward the following problem.

Problem : Let \mathbf{P} be a property of vertex sets in a graph. Characterize all graphs having a dominating set satisfying the property \mathbf{P}.

Based on various properties of the vertex set, many domination parameters were introduced and studied. For a detailed study of various domination parameters, the reader may refer to [44].

Inspired by the above problem, in this chapter we define two new domination parameters, cographic domination number $\gamma_{c d}(G)$ and global cographic domination number $\gamma_{\text {gcd }}(G)$ based on cographs and some of its properties are discussed.

Some results of this chapter are included in the following paper.
Cographic and global cographic domination number of a graph, Ars Combin., (to appear).

3.1 Cographic domination number

In this section, given any graph G, we prove the existence of a cographic dominating set. The relationship between $\gamma, \gamma_{c d}$ and γ_{i} of a tree is studied.

Theorem 3.1.1. For any graph G, there exists a dominating induced subgraph which is a cograph.

Proof. The proof is by induction on n. For $n \leqslant 3$, the theorem can be easily verified. Assume that it is true for all graphs with at most n vertices.

Let G be a graph with $n+1$ vertices. By induction assumption, the graph $G-v$ has a dominating induced subgraph H which is a cograph. If at least one of the vertices in H is adjacent to v, then H is a dominating induced subgraph for G. If not, $H \cup\{v\}$ is a dominating induced subgraph of G which is also a cograph. Therefore by induction, the theorem is true for all graphs.

Note : For any graph $G, \gamma(G) \leqslant \gamma_{c d}(G) \leqslant \gamma_{i}(G)$. However, there are graphs with $\gamma(G)<\gamma_{c d}(G)<\gamma_{i}(G)$. For e.g:-

Fig : 3.1
$\gamma(G)=4: \gamma_{c d}(G)=5$ and $\gamma_{i}(G)=6$.

Lemma 3.1.2. If T is a tree with $\gamma(T)<\gamma_{c d}(T)$, then T must have the graph G in Fig: 3.1 as an induced subgraph.

Proof. Since $\gamma(T)<\gamma_{c d}(T)$, in every dominating set D with cardinality $\gamma(T)$ there exists an induced $P_{4}: u_{1} u_{2} u_{3} u_{4}$. Since D is minimal dominating and u_{i} for $\mathrm{i}=$ $1,2,3,4$ is adjacent to at least one vertex in the dominating set, there exists at least one v_{i} in the vertex set of T corresponding to each u_{i} such that v_{i} is adjacent only to u_{i} in D for each $\mathrm{i}=1,2,3,4$. If for one of these ' i ', v_{i} is the only such neighbor of u_{i} then we can replace u_{i} by v_{i} for that i in the dominating set to remove the induced P_{4} without changing the cardinality. Therefore, there exists at least one induced P_{4} in T such that each of its vertices is adjacent to a pair of vertices. These twelve vertices together induce the required graph.

Corollary 3.1.3. For any graph G with less than twelve vertices, $\gamma(G)=\%_{c d}(G)$.

Proof. If G has less than twelve vertices, then G cannot have the graph in Fig : 3.1 as an induced subgraph. Hence, $\gamma(G)=\gamma^{\prime} c d(G)$.

Lemma 3.1.4. If T is a tree with $\gamma_{c d}(T)<\gamma_{i}(T)$, then T has the following graph as an induced subgraph.

Fig: 3.2

Proof. Since $\gamma_{c d}(T)<\gamma_{i}(T)$, every cographic dominating set D with cardinality $\gamma_{c d}(T)$ will have at least one pair of adjacent vertices, say $u v$. Since u and v are mutually dominating, there exist at least two vertices u_{1} and v_{1} in T which are
adjacent only to u and v, respectively. If these are the only such vertices then we can replace u by u_{1} or v by v_{1} in T to remove the adjacency in D without affecting the cardinality. Therefore, there exist at least one pair of vertices in D which has at least two neighbors of their own. These six vertices induce the required graph.

Corollary 3.1.5. For any graph G with less than six vertices, $\gamma_{c d}(G)=\gamma_{i}(G)$.

Proof. If G has less than six vertices, then G cannot have the graph in Fig: 3.2 as an induced subgraph. Hence, $\gamma_{c d}(G)=\gamma_{i}(G)$.

Theorem 3.1.6. There is no tree T which satisfies $\gamma(T)<\gamma_{c d}(T)=\gamma_{i}(T)$.

Proof. If possible assume that there is a tree T which satisfies $\gamma(T)<\gamma_{c d}(T)=$ $\gamma_{i}(T)$. Let D be a minimal dominating set of cardinality $\gamma(T)$. Since $\gamma(T)<$ $\gamma_{c d}(T)$, by Lemma 3.1.2, T must contain the graph in Fig: 3.1 as an induced subgraph and the vertices which induce a P_{4} in it must be present in D. Also, none of the vertices of this P_{4} can be replaced without affecting the domination property and without increasing the cardinality of D. To make D a cographic dominating set, only one vertex is to be replaced, whereas to make D an independent dominating set, two of the vertices are to be replaced. Since D is arbitrary, $\gamma_{c d}(T)<\gamma_{i}(T)$ which is a contradiction. Hence, the theorem.

3.2 Global cographic domination number

We prove the existence of a global cographic dominating set for every graph G and study the relation between $\gamma_{c d}(G)$ and $\gamma_{g c d}(G)$ of various special classes of graphs in this section.

Theorem 3.2.1. Given any graph $G=(V, E)$, there exists a cographic dominating set which dominates G^{c} also.

Proof. If D is a cographic dominating set in G which dominates G^{c} also, then there is nothing to prove. Otherwise, there exists at least one vertex. say v_{1} which is not adjacent to any vertex of D in G^{c}. Adjoin v_{1} to D. If $D \cup\left\{v_{1}\right\}$ does not dominate G^{c}, then there exist a v_{2} which is not adjacent to any vertex of $D \cup\left\{v_{1}\right\}$ in G^{c}. Adjoin v_{2} to $D \cup\left\{v_{1}\right\}$. Continue this process until we get a dominating set $D^{\prime}=D \cup\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ which dominates G^{c}. The process will eventually terminate, since V dominates G^{c}. The subgraph induced by D^{\prime} in G is the join of the subgraph induced by D in G with K_{p}, for some p. Therefore, the subgraph induced by D^{\prime} is also a cograph by the choice of D and since $D \subseteq D^{\prime}, D^{\prime}$ dominates G. Therefore, D^{\prime} is a cographic dominating set in G which dominates G^{c} also.

Note : For any graph $G, \gamma_{g c d}(G) \geqslant \max \left\{\gamma_{c d}(G), \gamma_{c d}\left(G^{c}\right)\right\}$.

Lemma 3.2.2. For any graph $G \neq K_{1}, \gamma_{g c d}(G)>1$.

Proof. If $\gamma_{g c d}(G)=1$, then $\gamma_{c d}(G)=1$. Then G has a vertex of full degree and so G^{c} has an isolated vertex. Therefore, $\gamma_{c d}\left(G^{c}\right)>1$ and so $\gamma_{g c d}(G)<\gamma_{c d}\left(G^{c}\right)$. This is a contradiction and hence $\gamma_{g c d}(G)>1$.

Theorem 3.2.3. If G is a triangle free graph, then $\gamma_{g c d}(G)=\gamma_{c d}(G)$ or $\gamma_{\operatorname{ccd}}(G)+1$.

Proof. Let $\gamma_{g c d}(G) \neq \gamma_{c d}(G)$. Let D be a minimum cographic dominating set. Since none of the minimum cographic dominating sets dominate G^{c}, at least one vertex v of G must be adjacent to all the vertices of D. Consider $D \cup\{v\}$. Since the graph is triangle free, none of the neighbors of the vertices of D are adjacent
to v. Since D is dominating, every vertex of G is either in D or is adjacent to a vertex of D. Therefore, the only neighbors of v are those present in D. Hence, in G^{c}, v dominates all the vertices outside D. Also, $D \cup\{v\}$ induces a cograph. Thus, $D \cup\{v\}$ is a cographic dominating set in G as well as G^{c}, of cardinality $\gamma_{c d}(G)+1$.

Remark 3.2.1. There are graphs for which $\gamma_{g c d}(G)=\gamma_{c d}(G)$ and $\gamma_{g c d}(G)=\gamma_{c d}(G)+$ 1. For example, $\gamma_{c d}\left(C_{4}\right)=\gamma_{g c d}\left(C_{4}\right)=2$, whereas $\gamma_{c d}\left(C_{5}\right)=2$ and $\gamma_{g c d}\left(C_{5}\right)=3$. But, the converse need not be true. In the graphs G_{1} and G_{2} in Fig: 3.3, $\gamma_{g c d}\left(G_{1}\right)=\gamma_{c d}\left(G_{1}\right)=3$ and $\gamma_{g c d}\left(G_{2}\right)=2$ and $\gamma_{c d}\left(G_{2}\right)=1$.

Fig: 3.3

Corollary 3.2.4. If G is a triangle free graph with $\gamma_{g c d}(G) \neq \gamma_{c d}(G)$, then $\gamma_{c d}(G)=$ $\gamma_{i}(G)$.

Proof. Let D be a minimum cographic dominating set of G. Since, none of the minimum cographic dominating sets dominate G^{c}, at least one vertex v of G must be adjacent to all the vertices of D. Since, G is triangle free, no two vertices of D are adjacent. Therefore, D is an independent dominating set. Hence, $\gamma_{c d}(G)=$ $\gamma_{i}(G)$.

Corollary 3.2.5. Every tree T has $\gamma_{g c d}(T)=\gamma_{c d}(T)$ or $\gamma_{c d}(T)+1$. Moreover. $\gamma_{g c d}(T)=\gamma_{c d}(T)+1$ only if T is a rooted tree of depth two in which every vertex (may be except the root) has at least two children.

Proof. The first statement follows from Theorem 3.2.3, since trees are triangle free. Assume that $\gamma_{g c d}(T)=\gamma_{c d}(T)+1$ for a tree T. Then as in the proof of corollary 3.2.4, there exists a minimum cographic dominating set D, which is independent and has a common neighbor v. Since D is dominating and T is a tree, v is not adjacent to any other vertex of G. Now. every vertex of D has at least two pendant vertices attached to it. Since, otherwise if $u \in D$ has only one pendant vertex w attached to it, then $(D-\{u\}) \cup\{w\}$ is a global dominating set of cardinality $\gamma_{c d}(T)$, which is a contradiction. Therefore, all the vertices in D have at least two pendant vertices attached to it and so T is a rooted tree of depth two with v as its root in which every vertex has at least two children.

Fig: 3.4 gives examples of trees with $\gamma_{g c d}(T)=\gamma_{c d}(T)+1$.

Fig : 3.4

Lemma 3.2.6. If G is a disconnected graph, then $\gamma_{c d}\left(G^{c}\right) \leqslant 2$ and $\gamma_{g c d}(G)=$ $\gamma_{c d}(G)$.

Proof. Since G is disconnected, G^{c} is connected and any two vertices in the two different components of G dominates G^{c}. So, $\gamma_{c d}\left(G^{c}\right) \leqslant 2$. Also. in any cographic dominating set of G, there will be at least one vertex from each component. Therefore any cographic dominating set of G is a cographic dominating set of G^{c} also. Hence $\gamma_{g c d}(G)=\gamma_{c d}(G)$.

Remark 3.2.2. This lemma holds for the domination number and the global domination number of a disconnected graph also.

Theorem 3.2.7. A cograph G without a universal vertex has $\gamma_{g c d}(G)=\gamma_{c d}(G)$ if and only if there exists two vertices u and v such that $N(u)$ and $N(v)$ partitions $V(G)$ or $V(G)-\{u, v\}$.

Proof. If $N(u)$ and $N(v)$ partitions $V(G)$ or $V(G)-\{u, v\}$, the cographic domination number of G is 2 . In $G^{c},\{u, v\}$ itself dominates. Therefore, $\gamma_{g c d}(G)=$ $\gamma_{c d}(G)=2$.

Conversely, assume that $\gamma_{g c d}(G)=\gamma_{c d}(G)$. Since $\gamma_{g c d}(G)>1$ and $\gamma_{c d}(G) \leqslant 2$, we have $\gamma_{g c d}(G)=\gamma_{c d}(G)=2$. Therefore, there exist two vertices u and v such that $\{u, v\}$ dominates both G and G^{c}. Since, neighbors of u in G will not be adjacent to u in G^{c}, they must be adjacent to v in G^{c}. Hence, no vertex in $N(u)$ is adjacent to v in G and vice versa. Also, since $\{u, v\}$ dominates, $N(u) \cup N(v)=V(G)$ or $V(G)-\{u, v\}$. Therefore, $N(u)$ and $N(v)$ partitions $V(G)$ or $V(G)-\{u, v\}$.

Fig : 3.5 gives an example of a cograph for which $\gamma_{g c d}(G)=\gamma_{c d}(G)$.

Fig : 3.5

Theorem 3.2.8. If G is a planar graph with $\gamma_{c d}(G) \geqslant 3$, then $\gamma_{g c d}(G) \leqslant \gamma_{c d}(G)+2$.

Proof. If possible assume that $\gamma_{g c d}(G)>\gamma_{c d}(G)+2$. Let u_{1}, u_{2}, u_{3} be three vertices in any $\gamma_{c d}$-set D of G. Since $\gamma_{g c d}(G)>\gamma_{c d}(G)+2, D$ cannot dominate G^{c} and at least three more vertices are to be added to D to make it a global dominating set. Therefore, there exist at least three vertices v_{1}, v_{2}, v_{3} which are adjacent to each other and to every vertex of D. Then the subgraph induced by these six vertices
will be $K_{6}, K_{6}-\left\{e_{1}\right\}, K_{6}-\left\{e_{1}, e_{2}\right\}$ or $K_{6}-\left\{e_{1}, e_{2}, e_{3}\right\}$ where $e_{1}, e_{2}, e_{3} \in E(G)$ and are adjacent to each other. Each of the above graph contains $K_{3.3}$ as a subgraph; which is a contradiction to the planarity of G. Hence the theorem.

Remark 3.2.3. The converse need not be true. For example, in graphs G_{1}, G_{2} and G_{3} in Fig : 3.6, $\gamma_{c d}\left(G_{1}\right)=\gamma_{g c d}\left(G_{1}\right)=2, \gamma_{c d}\left(G_{2}\right)=2, \gamma_{g c d}\left(G_{2}\right)=3, \gamma_{c d}\left(G_{3}\right)=2$ and $\gamma_{g c d}\left(G_{3}\right)=4$.

Fig: 3.6

Remark 3.2.4. The bound $\gamma_{g c d}(G) \leqslant \gamma_{c d}(G)+2$ is strict.

Fig: 3.7

For example, the plane graph in Fig: 3.7 has $\gamma_{\text {cod }}=3$ and $\gamma_{g c d}=5$.

3.3 Two constructions

Theorem 3.3.1. Given three positive integers a, b and c satisfying $a \leqslant b \leqslant c$, there is a graph G such that $\gamma(G)=a, \hat{\gamma}_{c d}(G)=b, \gamma_{i}(G)=c$.

Proof. We shall prove the theorem by constructing the required graph and by analyzing the following cases.

Case 1: $\mathrm{a}=\mathrm{b}=\mathrm{c}$

Let $G=P_{n}$ or C_{n} where $n=3$ a. Then, $\gamma(G)=\gamma_{c d}(G)=\gamma_{i}(G)=\mathrm{a}$.

Case 2: $\mathrm{a}=\mathrm{b}<\mathrm{c}$

Let G be the graph P_{n} where $\mathrm{n}=3(\mathrm{a}-1)$ together with $(\mathrm{c}-\mathrm{a}+1)$ pendant vertices each attached to an end vertex of P_{n} and its neighbor. Then, $\gamma(G)=$ $\gamma_{c d}(G)=\mathrm{a}$ and $\gamma_{i}(G)=\mathrm{c}$.

Case 3: $\mathrm{a}<\mathrm{b}=\mathrm{c}$

Let G be $P_{n}: v_{1} v_{2} v_{3} \ldots v_{n}$, where $\mathrm{n}=3 \mathrm{a}-7$ together with $\mathrm{p}=\mathrm{b}-\mathrm{a}+2$ vertices. $u_{i 1}, u_{i 2}, . . u_{i p}$, made adjacent to each v_{i} for $\mathrm{i}=1,2,3$ and 4 and $u_{1 j}$ made adjacent to $u_{3 j}$ for each $\mathrm{j}=1,2, \ldots, \mathrm{p}$.

Then, the vertices v_{1}, v_{2}, v_{3} and v_{1} dominate all $u_{i j} \mathrm{~s}$ and v_{5}. To dominate the remaining $(3 a-12)$ vertices of the path, $(a-4)$ vertices are required. Therefore. $\gamma(G)=\mathrm{a}$. At least one vertex among v_{1}, v_{2}, v_{3} and v_{4} must be replaced to get a cographic dominating set. Remove v_{1} and include all the $(b-a+2)$ vertices. But, then v_{3} is also not required in the dominating set so that $\%_{c d}(G)=\mathrm{a}-2+\mathrm{b}-\mathrm{a}+$ $2=\mathrm{b}$. This set is also independent and hence $\gamma_{i}(G)=\mathrm{b}$.

Casc 4: $\mathrm{a}<\mathrm{b}<\mathrm{c}$

Let G be $P_{n}: v_{1} v_{2} v_{3} \ldots v_{n}$, where $11=3 \mathrm{a}-7$ together with (b - a) vertices made adjacent to $v_{4},(c-a+1)$ vertices made adjacent to v_{2} and $(c-a+2)$ vertices each made adjacent to v_{1} and v_{3} and to each other.

Then, the vertices v_{1}, v_{2}, v_{3} and v_{4} dominate all pendant vertices attached to them and v_{5}. To dominate the remaining (3a-12) vertices of the path, (a-4) vertices are required. Therefore, $\gamma(G)=$ a. At least one vertex among v_{1}, v_{2}, v_{3} and v_{4} must be replaced to get a cographic dominating set. If we remove v_{4}, the ($\mathrm{b}-\mathrm{a}$) pendant vertices adjacent to it and v_{5} are to be adjoined to get a cographic dominating set of cardinality $\mathrm{a}-1+\mathrm{b}-\mathrm{a}+1=\mathrm{b}$. If we remove v_{1}, the (c $-\mathrm{a}+2$) pendant vertices adjacent to it are to be adjoined. But, then v_{3} also can be removed from the dominating set to get an independent dominating set of cardinality $(\mathrm{a}-2+\mathrm{c}-\mathrm{a}+2)=\mathrm{c}$. Therefore, $\gamma_{c d}(G)=\mathrm{b}$ and $\gamma_{i}(G)=\mathrm{c}$.

Illustration

Table 3.1

Theorem 3.3.2. Given two positive integers a and b satisfying $a \leqslant b$ and $b>1$, there is a graph G such that $\gamma_{c d}(G)=a . \gamma_{\text {ged }}(G)=b$.

Proof. We shall prove the theorem by constructing the required graph and by analyzing the following cases.

Case 1: $a=b>1$.
G is the graph obtained by taking any graph of order a and attaching one pendant vertex to each of the vertices.

Case 2: $a=1$ and $a<b$.
$G=K_{b}$.

Case 3: $a=2$ and $a<b$.
G is $K_{2 b}$ minus a perfect matching.

Case 4: $a>2$ and $a<b$.
The graph G is obtained as per the following constructions based on the Fig : 3.8.

Fig: 3.8

In the Fig: 3.8, the vertices inside each of the circles are independent and the vertices inside both the rectangles form complete graphs. Every vertex v_{i} for $i=1,2, \ldots, a$ is made adjacent to every vertex inside the circle to which an edge is drawn. All the vertices of the smaller rectangle are made adjacent to, all the
vertices in the bigger rectangle, all the vertices inside the circle to which an edge is drawn and to v_{a}. Further, v_{a-1} is made adjacent to v_{a}. The graph so obtained is G.

Now, if we choose one vertex from cach of the circles, we get an independent set of cardinality a which has no common neighbors. Therefore, any dominating set must contain at least a vertices and $\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ is a cographic dominating set. So $\gamma_{c d}(G)=a$.

The set $\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ will not dominate $u_{i} \mathrm{~s}$ in G^{c}. If we remove any one of the $v_{i} s$ from this cographic cominating set, then all the $b-a+1$ vertices in the corresponding circle must be included to retain the set as a cographic dominating set. Therefore, the cardinality becomes $a-1+b-a+1=b$.

If we keep all the $t_{i} s$, then a vertex from any of the circles, except the one corresponding to v_{a-1} cannot be introduced, since otherwise an induced P_{4} will be present. A vertex from the circle corresponding to v_{a-1} cannot dominate $u_{i} \mathrm{~S}$ in the complement. Also, a u_{i} cannot dominate u_{j} for $i \neq j$. Therefore to get a global cographic dominating set all the $u_{i} s$ must be included. Then the cardinality becomes $a+b-a=b$. In any case, $\gamma_{g c d}(G)=b$.

Illustration of case $4: a=3, b=5$.

Fig : 3.9

3.4 Complexity aspects

In this section we discuss the complexity aspects of the newly defined parameters.

Theorem 3.4.1. Determining the cographic domination number of a graph is NPcomplete.

Proof. We prove this by reducing in poiynomial time, the dominating set problem in general to the cographic dominating set problem.

Claim: Given a graph G, we can construct a graph H in polynomial time such that G has a dominating set of size k if and only if H has a cographic dominating set of size $k+1$.

Let $G=(V, E)$ where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the given graph. Construct H as follows:

Let $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\} \cup\{x, y\}$. Make v_{i} adjacent to v_{j}^{\prime} if $v_{i} v_{j} \epsilon E(G)$ or $i=j ; x$ is adjacent to v_{j}^{\prime} for every j and x is adjacent to y in H.

Let $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$ be a minimal dominating set of cardinality k in G. Then $\left\{v_{i_{1}}^{\prime}, v_{i_{2}}^{\prime}, \ldots, v_{i_{k}}^{\prime}, x\right\}$ is a minimal dominating set in H. Since there is no induced P_{4} in this set, it is a minimal cographic dominating set in H of cardinality $k+1$.

Conversely, let $\left\{u_{1}, u_{2}, \ldots, u_{k+1}\right\}$ be a cographic dominating in H. (By construction of H. any minimal dominating set is cographic). One of these $u_{i}^{\prime} s$ must be x or y. Remove that u_{i}. All other u_{i} 's must be either v_{j} or v_{k}^{\prime}. Keep each v_{j} unchanged and replace each v_{k}^{\prime} by v_{k}. This new set of cardinality k will be a minimal dominating set of G. Since H can be computed from G in time polynomial in size
of G, our claim holds.

Corollary 3.4.2. The problem of determining the cographic domination number is NP-complete for the class of bipartite graphs.

Proof. In the proof above, the graph H constructed from G is bipartite.

Theorem 3.4.3. Determining the global cographic domination number of a graph is NP-complete.

Proof. Claim : Given a graph G, we can construct a graph H in polynomial time such that G has a cographic dominating set of size k if and only if H has a global cographic dominating set of size $k+1$.

Given a graph G clefine $H=G \cup K_{1}$. Clearly, a minimum cographic dominating set in G together with the isolated vertex is a minimal global cographic dominating set in H.

Conversely, any minimal global cographic dominating set in H will contain the isolated vertex and the remaining vertices is a minimal cographic dominating set in G. Since H can be computed from G in time polynomial in size of G, our claim holds.

3.5 Domination in NEPS of two graphs

In this section. we study the relation between the domination parameters γ, γ_{g}, $\gamma_{c d}, \gamma_{g c d}$ and γ_{i} of G_{1} and G_{2} with the NEPS of G_{1} and G_{2} for all possible choices of the basis.

NEPS with basis \mathcal{B}_{1} and \mathcal{B}_{2}

The value of $\gamma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{1}\right)\right), \gamma_{g}\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{1}\right)\right)$, $\gamma_{i c d}\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{1}\right)\right)$, $\gamma_{g c d}\left(\operatorname{NEPS}\left(G_{1}, G_{2}^{\prime} ; \mathcal{B}_{1}\right)\right), \gamma_{i}\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{1}\right)\right)$ are $n_{1} \cdot \gamma\left(G_{2}\right), n_{1} \cdot \gamma_{g}\left(G_{2}\right), n_{1} \cdot \gamma_{c d}\left(G_{2}\right)$, $n_{1} \cdot \gamma_{g c d}\left(G_{2}\right)$ and $n_{1} \cdot \gamma_{i}\left(G_{2}\right)$ respectively and the case of $\operatorname{NEPS}\left(G_{1}, G_{2}: \mathcal{B}_{2}\right)$ follows similarly.

NEPS with basis \mathcal{B}_{3}

In [39] it was conjectured that $\gamma(G \times H) \geqslant \gamma(G) \gamma(H)$, where \times denotes the tensor product of two graphs. But, the conjecture was disproved in [48] by giving a realization of a graph G such that $\gamma(G \times G) \leqslant \gamma(G)^{2}-k$ for any non-negative integer k.

Theorem 3.5.1. There exist graphs G_{1} and G_{2} such that $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{3}\right)\right)$ $\sigma\left(G_{1}\right) \sigma\left(G_{2}\right)=k$ for any positive integer k, where σ denotes any of the domination parameters $\gamma_{\gamma} \gamma_{c d}$ or γ_{i}.

Proof. Let G_{1} be the graph defined as follows. Let $u_{11} u_{12} u_{13}, u_{21} u_{22} u_{23}, \ldots$, $u_{k 1} u_{k 2} u_{k 3}$ be k distinct P_{3} s and let $u_{j 1}$ be adjacent to $u_{j+1,1}$ for $j=1,2, \ldots, k-1$. Then $\sigma\left(G_{1}\right)=k$. Let G_{2} be K_{2}. Then, $\sigma\left(G_{2}\right)=1$. Also, $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{3}\right)\right)=$ $2 k$. Therefore, $\sigma\left(\operatorname{NEPS}\left(G_{1}: G_{2} ; \mathcal{B}_{3}\right)\right)-\sigma\left(G_{1}\right) \sigma\left(G_{2}\right)=k$.

Theorm 3.5.2. The γ_{g} and $\gamma_{g \text { ged }}$ are neither sub multiplicative nor super multiplicative with respect to the NEPS with basis \mathcal{B}_{3}. Moreover, given any integer k there exist graphs G_{1} and G_{2} such that $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{3}\right)\right)-\sigma\left(G_{1}\right) \sigma\left(G_{2}\right)=k$, where σ denotes γ_{g} or γ igcd.

Proof. Case 1: $k \leqslant 0$ is even

Let $G_{1}=K_{n}$ and $G_{2}=K_{2}$. Then, $\sigma\left(G_{1}\right)=n$ and $\sigma\left(G_{2}\right)=2$. But, $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{3}\right)\right)=2$. Therefore, the required difference is $2-2 n$ which can be zero or any negative even integer.

Case 2: $k<0$ is odd or $k=1$

Let $G_{3}=P_{3}$ and G_{1} be as in Case 1. Then $\sigma\left(G_{3}\right)=2$. Also, $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{3} ; \mathcal{B}_{3}\right)\right)=$ 3. Therefore, the required difference is $3-2 n$ which can be one or any negative odd integer.

Case 3: $k>1$

Let G_{3} be as in Case 2. Let G_{4} be the graph defined as follows. Let $u_{11} u_{12} u_{13}$, $u_{21} u_{22} u_{23}, \ldots, u_{k 1} u_{k 2} u_{k 3}$ be k distinct $P_{33} \mathrm{~s}$ and let $u_{j 1}$ be adjacent to $u_{j+1,1}$ for $j=1,2, \ldots, k-1$. Then $\sigma\left(G_{4}\right)=k$. Also, $\sigma\left(\operatorname{NEPS}\left(G_{4}, G_{3} ; \mathcal{B}_{3}\right)\right)=3 k$. Thercfore, the required difference is k.

NEPS with basis \mathcal{B}_{4}

Vizing's conjecture [75]: The domination number is super multiplicative with respect to the cartesian product i.e; $\gamma(G \square H) \geqslant \gamma(G) \gamma(H)$.

Remark 3.5.1. There are infinitely many pairs of graphs for which equality holds in the Vizing's conjecture [62].

Remark 3.5.2. Vizing's type inerquality does not hold for cographic, global cographic and independent domination numbers. For example, let G be the graph oltained by attaching k pendant vertices to each vertex of a path on four vertices. Then, $\imath_{c d}(G)=\gamma_{g c d}(G)=k+3$ and $\gamma_{c d}(G \square G)=\gamma_{g c d}(G \square G)=16 k+8$. For $k \geqslant 10, \gamma_{c d}(G \square G) \leqslant \gamma_{c d}(G)^{2}$.

Theorem 3.5.3. There exist graphs G_{1} and G_{2} such that $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{4}\right)\right)-$
$\sigma\left(G_{1}\right) \sigma\left(G_{2}\right)=k$ for any positive integer k, where σ denotes any of the domination parameters $\gamma_{,} \gamma_{c d}$ or γ_{i}.

Proof. Let $G_{1}=P_{n}$ and $G_{2}=K_{2}$. Then, $\sigma\left(G_{1}\right)=\left\lfloor\frac{n+2}{3}\right\rfloor[44]$ and $\sigma\left(G_{2}\right)=1$. Also, $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{4}\right)\right)=\left\lfloor\frac{n+2}{2}\right\rfloor[47]$. Therefore, for any positive integer k, if we choose $n=6 k-2$ the claim follows.

Theorem 3.5.4. The γ_{g} and $\gamma_{g c d}$ are neither sub multiplicative nor super multiplicative with respect to the NEPS with basis \mathcal{B}_{4}. Moreover, given any integer k there exist graphs G_{1} and G_{2} such that $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{4}\right)\right)-\sigma\left(G_{1}\right) \sigma\left(G_{2}\right)=k$, where σ denotes γ_{g} or $\gamma_{\text {gcd }}$.

Proof. Case 1: $k \leqslant 0$ is even.

Let $G_{1}=K_{n}$ and $G_{2}=K_{2}$. Then, $\sigma\left(G_{1}\right)=n$ and $\sigma\left(G_{2}\right)=2$. But, $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{4}\right)\right)=2$. Therefore, the required difference is $2-2 n$ which can be any positive even integer.

Case 2: $k:<0$ is odd.

Let $G_{3}=P_{3}$ and G_{1} be as in Case 1. Then $\sigma\left(G_{3}\right)=2$. Also, $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{3}: \mathcal{B}_{4}\right)\right)=$ 3. Therefore, the required difference is $3-2 n$ which can be any negative odd integer.

Case 3: $k \geqslant 1$.

Let $G_{4}=P_{n}$ and $G_{5}=P_{1}$. Then, $\sigma\left(G_{4}\right)=\left\lfloor\frac{n+2}{3}\right\rfloor$ and $\sigma\left(G_{5}\right)=2$. For any positive integer k, if we choose $n=3 k+4$, then $\sigma\left(\operatorname{NEPS}\left(G_{4}, G_{5} ; \mathcal{B}_{4}\right)\right)=n$. (Note that the value is $n+1$ only when $n=1,2,3,5,6,9[47])$. Therefore the required difference is k.

NEPS with basis \mathcal{B}_{5} and \mathcal{B}_{6}

Theorem 3.5.5. There exist graphs G_{1} and G_{2} such that $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{5}\right)\right)$ $\sigma\left(G_{1}\right) \sigma\left(G_{2}\right)=k$ for any positive integer k, where σ denotes any of the domination parameters $\gamma, \gamma_{c d}$ or γ_{i}.

Proof. Let $G_{1}=P_{n}$ and $G_{2}=K_{2}$. Then $\sigma\left(G_{1}\right)=\left\lfloor\frac{n+2}{3}\right\rfloor$ and $\sigma\left(G_{2}\right)=1$. Also, $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{5}\right)\right)=\left\lfloor\frac{n+2}{2}\right\rfloor$. For a positive integer k, if we choose $n=6 k-2$ then the difference is k. Hence, the theorem.

Theorem 3.5.6. There exist graphs G_{1} and G_{2} such that $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{5}\right)\right)$ $\sigma\left(G_{1}\right) \sigma\left(G_{2}\right)=k$ for any negative integer k, where σ denotes γ_{g} or $\gamma_{g c d}$.

Proof. Let $G_{1}=P_{n}$ and $G_{2}=K_{2}$. Then $\sigma\left(G_{1}\right)=\left\lfloor\frac{n+2}{3}\right\rfloor$ and $\sigma\left(G_{2}\right)=2$. Also, $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{\overline{3}}\right)\right)=\left\lfloor\frac{n+2}{2}\right\rfloor$. Therefore, if we choose $n=6 k-2$, the required difference is $-k$.

NEPS with basis \mathcal{B}_{7}

Theorem 3.5.7. The γ, γ_{i} and γ_{g} are sub multiplicative with respect to the NEPS with basis \mathcal{B}_{-}.

Proof. Let $D_{1}=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ be a dominating set of G_{1} and $D_{2}=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ be a dominating set of G_{2}. Consider the set $D=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right), \ldots,\left(u_{1}, v_{t}\right), \ldots\right.$, $\left.\left(u_{s}, v_{1}\right),\left(u_{s}, v_{2}\right), \ldots,\left(u_{s}, v_{t}\right)\right\}$. Let (u, v) be any vertex in $\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{7}\right)$. Since D_{1} is a $\gamma_{\text {-set in }} G_{1}$, there exists at least one $u_{i} \in D_{1}$ such that $u=u_{i}$ or u is adjacent to u_{i}. Similarly, there exists at least one $v_{j} \in D_{2}$ such that $v=v_{j}$ or v is
adjacent to v_{j}. Therefore, $\left(u_{i}, v_{j}\right)$ dominates (u, v) in $\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{7}\right)$. Hence, $\gamma\left(\operatorname{NEPS}\left(G_{1}, G_{2}: \mathcal{B}_{7}\right)\right) \leqslant \gamma\left(G_{1}\right) \gamma\left(G_{2}\right)$.

Similar arguments hold for the independent domination and global domination numbers also.

Remark 3.5.3. The difference between $\gamma\left(G_{1}\right) \gamma\left(G_{2}\right)$ and $\gamma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{7}\right)\right)$ can be arbitrarily large. Similar is the case for γ_{i} and γ_{g}. For, let G_{1} be the graph, n copies of C_{4} s with exactly one common vertex. Then, $\gamma\left(G_{1}\right)=\gamma_{i}\left(G_{1}\right)=n+1$. Also, $\gamma\left(\operatorname{NEPS}\left(G_{1}, G_{1} ; \mathcal{B}_{7}\right)\right) \leqslant n^{2}+3$ and $\gamma_{i}\left(\operatorname{NEPS}\left(G_{1}, G_{1} ; \mathcal{B}_{7}\right)\right) \leqslant n^{2}+5$. Also, $\gamma_{g}\left(K_{n}\right)=n, \gamma_{g}\left(P_{3}\right)=2 \operatorname{and} \gamma_{g}\left(\operatorname{NEPS}\left(G_{2}, G_{3} ; \mathcal{B}_{7}\right)\right)=n+2$, if $n>1$.

Theorem 3.5.8. The $\gamma_{c d}$ and $\gamma_{g c d}$ are neither sub multiplicative nor super multiplicative with respect to the NEPS with basis \mathcal{B}_{7}. Moreover: for any integer k there exist graph.s G_{1} and G_{2} such that $\sigma\left(\operatorname{NEPS}\left(G_{1}, G_{2} ; \mathcal{B}_{7}\right)\right)-\sigma\left(G_{1}\right) \sigma\left(G_{2}\right)=k$. where σ denotes $\gamma_{c d}$ or $\gamma_{g c d}$.

Proof. Case 1: $k \leqslant 0$

Let G_{1} be the graph P_{3} with k pendant vertices each attached to all the three vertices of the P_{3}. Let G_{2} be the graph P_{4} with k pendant vertices each attached to all the four vertices of the P_{4}. So, $\sigma\left(G_{1}\right)=3$ and $\sigma\left(G_{2}\right)=k+3$. Also, $\left.\sigma \operatorname{NEPS}\left(G_{1}, G_{2}: \mathcal{B}_{7}\right)\right)=2 k+10$. Therefore, the required difference is $1-k$.

Case 2: $k \geqslant 0$

Let G_{1} be as in Case 1 and G_{3} be the graph P_{6} with k pendant vertices each attached to all the six vertices of the P_{6}. So, $\sigma\left(G_{3}\right)=k+5$. Also, $\left.\sigma \operatorname{NEPS}\left(G_{1}, G_{3} ; \mathcal{B}_{7}\right)\right)=$ $4 k+14$. Therefore, the required difference is $k-1$.

Chapter 4

The $<t>$-property

The question of determining better upper bounds for the clique transversal number dates back to 1990 when Tuza Z. introduced the concept of the clique transversal number [74]. Erdös et.al. [33] determined various upper bounds for the clique transversal number. In an attempt to find graphs which admit a better upper bound, Tuza Z. [74] introduced the concept of the $<t>$-property. Motivated by the open problems mentioned in [33], we studied the $<t>$-property of the cographs, the clique perfect graphs, the perfect graphs, the planar graphs and the trestled graphs of index k. In the last section, an open problem on highly clique imperfect graphs is solved.

Some results of this chapter are included in the following paper.
The $\langle t\rangle$-property of some classes of graphs, Discrete Math., (to appear).

4.1 Clique transversal number

In this section we prove that the domination number is a lower bound for the clique transversal number, but the clifference can be arbitrarily large.

Theorem 4.1.1. Every clique transversal set is a dominating set.

Proof. Let S be a clique transversal set of a graph G and $v \in V(G)$. If $v \in S$ then it is dominated by S. If $v \notin S$ then let C be a clique which contains v. Since, S is a clique transversal set, there exist a vertex $u \in S \cap C$. But then, u dominates v. Therefore, S is a dominating set.

Corollary 4.1.2. Let G be a graph. Then, $\gamma(G) \leqslant \tau_{c}(G)$.

Theorem 4.1.3. Let a and b be two positive integers such that $2 \leqslant a \leqslant b$. There exists a clique perfect graph G such that $\gamma(G)=a$ and $\tau_{c}(G)=b$.

Proof. Let G be the graph obtained from $K_{b ; b}$ by attaching $a-1$ end vertices to $a-1$ distinct vertices in any one of the partitions of G.

To dominate the $a-1$ end vertices, at least $a-1$ vertices are required and those vertices cannot dominate the remaining vertices (there exists at least one such vertex, since $b \geqslant a)$ of that partition. Therefore, $\gamma(G)$ is at least a. Again, the $a-1$ distinct neighbors of the $a-1$ end vertices together with one vertex from the other partition of $K_{b, b}$ dominates G. Therefore, $\gamma(G)=a$.

The graph G so constructed is bipartite and hence the only cliques are the edges of G. If we take all the b vertices in the partition of $K_{b, b}$ to which end vertices are attached, then that set forms a clique transversal. Therefore, $\tau_{c}(G) \leqslant b$. Again, if
we take the b independent edges of $K_{b, b}$: it forms a clique independent set of size b. Therefore, $b \leqslant \alpha_{c}(G) \leqslant \tau_{c}(G)$. Hence, $\tau_{c}(G)=b$.

Also, since $\alpha_{c}(G)=\tau_{c}(G)=b, G$ is clique perfect.

Illustration

Fig: 4.1

For the graph G is Fig : 4.1, $\gamma(G)=3$ and $\alpha_{c}(G)=\tau_{c}(G)=4$.

4.2 Cographs and clique perfect graphs

In this section we study the $\langle t>$-property of cographs and clique perfect graphs. A characterization for cographs and clique perfect graphs which attain maximum value for the clique transversal number is also obtained.

Lemma 4.2.1. If $G=G_{1} \vee G_{2}$ then $\tau_{c}(G)=\min \left\{\tau_{c}\left(G_{1}\right), \tau_{c}\left(G_{2}\right)\right\}$.

Proof. Any clique in G is of the form $H_{1} \vee H_{2}$ where H_{1} is a clique in G_{1} and H_{2} is a clique in G_{2}. If V^{\prime} is a clique transversal of G_{1} (or G_{2}), then any clique of G, which contains a clique of G_{1} (or G_{2}), is covered by V^{\prime} and hence V^{\prime} is a clique transversal of G also.

Now, let V^{\prime} be a clique transversal of G. If possible assume that V^{\prime} does not, cover cliques of G_{1} and G_{2}. Let H_{1} and H_{2} be the cliques of G_{1} and G_{2} respectively which are not covered by V^{\prime}. Then $H_{1} \vee H_{2}$ is a clique of G which is not covered by V^{\prime}, which is a contradiction. Hence V^{\prime} contains a clique transversal of G_{1} or G_{2}.

Therefore, $\tau_{c}(G)=\min \left\{\tau_{c}\left(G_{1}\right), \tau_{c}\left(G_{2}\right)\right\}$.

Lemma 4.2.2. The class of all cographs without isolated vertices does not satisfy the $<t>$-property for $t \geqslant 4$.

Proof. The proof is by construction.

Case 1: $t=4$

Let $G=G_{1} \vee G_{2}$, where $G_{1}=\left(3 K_{1} \cup K_{2}\right) \vee\left(3 K_{1} \cup K_{2}\right)$ and $G_{2}=\left(3 K_{1} \cup K_{2}\right)$. Then $n=15, t=4$ and $\tau_{c}(G)=4$ which implies that $\frac{n}{t}<\tau_{c}(G)$.

Case 2: $t>4$

Let $G=G_{1} \vee G_{2}$, where $G_{1}=\left(3 K_{1} \cup K_{t-3}\right) \vee\left(3 K_{1} \cup K_{t-3}\right)$ and $G_{2}=\left(3 K_{2} \cup K_{t \cdot 2}\right)$.

Then $n(G)=3 t+4$ and $\tau_{c}(G)=4$.

Every edge in G_{1} lies in a complete of size t in G since G_{2} contains a clique of size $t-2$. Every edge in G_{2} lies in a complete of size t for $t \geqslant 4$ in G since, G_{1} contains a clique of size $2 t-6$. An edge with one end vertex in G_{1} and the other end vertex in G_{2} lies in a complete of size t since every vertex in G_{1} lies in a complete of size $t-2$ and every vertex of G_{2} lies in a complete of size 2. Hence G is a cograph in which every edge lies in a clique of size t.

Also, $\frac{n}{t}=3+\frac{4}{t}$.

Therefore, $\frac{n}{t}<\tau_{c}(G)$ for $t>4$.
Theorem 4.2.3. The class of clique perfect graphs without isolated vertices satisfies the $<t>$-property for $t=2$ and 3 and does not satisfy the $<t>$-property for $t \geqslant 4$.

Proof. Let G be a clique perfect graph in which every edge lies in a complete of size t. G being clique perfect, $\tau_{c}(G)=\alpha_{c}(G)$.

Case 1: $t=2$

Since G is without isolated vertices $\alpha_{c}(G) \leqslant \frac{n}{2}$. So $\tau_{c}(G)=\alpha_{c}(G) \leqslant \frac{n}{2}$ and hence the class of clique perfect graphs satisfies the $<2>$-property.

Case 2: $t=3$

Every edge of G lies in a clique of size 3 . So, the size of the smallest clique of G is 3 . Therefore, $\alpha_{c}(G) \leqslant \frac{n}{3}$ and $\tau_{c}(G)=\alpha_{c}(G) \leqslant \frac{n}{3}$.

Case 3: $t \geqslant 4$

The class of cographs is a subclass of clique perfect graphs (Lemma 1.1.8). So by Lemma 4.2.2, the claim follows.

Corollary 4.2.4. The class of cographs without isolated vertices satisfies the $<t>$-property for $t=2$ and 3. Moreover, for the class of connected cographs without isolated vertices, $\tau_{c}(G)$ is maximum if and only if G is the complete bipartite $\operatorname{graph} K_{\frac{n}{2}, \frac{n}{2}}$.

Proof. Since the class of cographs is a subclass of clique perfect graphs (Lemma
1.1.8), it satisfies the $<t>$-property for $t=2$ and 3 .

Since the class of cographs satisfy the $<2>$-property and $\tau_{c}\left(K_{\frac{n}{2}, \frac{n}{2}}\right)=\frac{n}{2}$, the maximum value of $\tau_{c}(G)$ is $\frac{n}{2}$. Conversely, let G be a comected cograph with $\tau_{c}(G)=\frac{n}{2}$. Since G is a connected cograph $G=G_{1} \vee G_{2}$. Therefore, $\tau_{c}(G)=\min \left\{\tau_{c}\left(G_{1}\right), \tau_{c}\left(G_{2}\right)\right\}$. But, both $\tau_{c}\left(G_{1}\right)$ and $\tau_{c}\left(G_{2}\right)$ cannot exceed the number of vertices in G_{1} and G_{2} respectively and hence the number of vertices in G_{1} and G_{2} must be $\frac{n}{2}$. Again, since $\tau_{c}(G)=\frac{n}{2}$ all these vertices must be isolated. Therefore, $G=K_{\frac{n}{2}: \frac{n}{2}}$.

Corollary 4.2.5. For the class of clique perfect graphs without isolated vertices, $\tau_{c}(G)$ is maximum if and only if there exist a perfect matching in G in which no edge lies in a triangle.

Proof. The class of clique perfect graphs without isolated vertices satisfies the $<2>$-property. Therefore, the maximum value that $\tau_{c}(G)$ can obtain is $\frac{n}{2}$. Let G be a clique perfect graph with $\tau_{c}(G)=\frac{n}{2}$. G being clique perfect, $\alpha_{c}(G)=\tau_{c}(G)=$ $\frac{n}{2}$. Since each clique must have at least two vertices and there are $\frac{n}{2}$ independent cliques, the cliques are of size exactly two. Again, this indepenclent set of $\frac{n}{2}$ cliques forms a perfect matching of G and a clique being maximal complete, the edges of this perfect matching do not lie in triangles.

Conversely, if there exists a perfect matching in which no edge lies in a triangle, the edges of this perfect matching form an independent set of cliques with cardinality $\frac{n}{2}$. Therefore, $\alpha_{c}(G) \geqslant \frac{n}{2}$. But, $\alpha_{c}(G) \leqslant \tau_{c}(G) \leqslant \frac{n}{2}$ and therefore $\tau_{c}(G)=\frac{n}{2}$.

4.3 Planar graphs

Theorem 4.3.1. The class of planar graphs does not satisfy the $<t>$-property for $t=2,3$ and 4 and \mathcal{G}_{t} is empty for $t \geqslant 5$.

Proof. Every odd cycle is a planar graph and $\tau_{c}\left(C_{2 k+1}\right)=k+1>\frac{2 k+1}{2}$. Clearly; odd cycles belong to \mathcal{G}_{2} and hence the class of planar graphs does not satisfy the $<2>$-property.

Fig : 4.2

The graph in Fig : 4.2 is planar and every edge lies in a triangle. Here, $n=8$ and the clique transversal number is 3 which is greater than $\frac{n}{3}$ and hence planar graphs do not satisfy the $<3>$-property.

Fig: 4.3

The graph in Fig : 4.3 is planar and every edge lies in a K_{4}. Here, $n=15$ and the clique transversal number is 4 which is greater than $\frac{n}{4}$ and hence planar graphs do not satisfy the $<4>$-property.

Since $K_{\overline{5}}$ is a forbidden subgraph for planar graphs, there is no planar graph G such that all its edges lie in a K_{t} for $t \geqslant 5$. Hence, the theorem.

4.4 Perfect graphs

Theorem 4.4.1. The class of perfect graphs does not satisfy the $<t>$-property for any $t \geqslant 2$.

Proof. Let G be the cycle of length $3 k$, say $v_{1} v_{2}, \ldots, v_{3 k} v_{1}$ where $k>2$ is odd, in which the vertices $v_{1}, v_{4}, \ldots, v_{3 k-2}$ are all adjacent to each other. Then G is perfect and $\tau_{c}(G)=\left\lceil\frac{3 k}{2}\right\rceil>\frac{3 k}{2}$; since $3 k$ is odd. Therefore the class of perfect graphs does not satisfy the $<2>$-property.

Now, the class of perfect graphs does not satisfy the $<3>$-property since $\overline{C_{8}}$ is a perfect graph (Lemma 1.1.6) in which every edge lies in a triangle and $\tau_{c}\left(\overline{C_{8}}\right)=3>\frac{8}{3}$.

Since the cographs are a subclass of perfect graphs (Lemma 1.1.7) [27]. by Lemma 4.2.2, the class of perfect graphs also does not watisfy the $<t>$-property for $t \geqslant 4$.

4.5 Trestled graph of index k

In this section the clique transversal number and the clique independence number of $T_{k}(G)$ are determined. A characterization of G for which $T_{k}(G)$ satisfies the $<2>$-property is also given.

Lemma 4.5.1. For any graph G without isolated vertices, $\tau_{c}\left(T_{k}(G)\right)=k m+\beta(G)$.

Proof. We shall prove the theorem for the case $k=1$.

Let $V^{\prime}=\left\{v_{1}, v_{2}, \ldots . v_{3}\right\}$ be a vertex cover of G. The cliques of $T_{1}(G)$ are precisely the cliques of G together with the three $K_{2} \mathrm{~s}$ formed corresponding to each edge of G. Corresponding to each edge $u v$ of G choose the vertex which corresponds to u of the corresponding K_{2}, if u is not present in V^{\prime}. If u is present in v^{\prime} then, choose the vertex corresponding to v, irrespective of v is present in V^{\prime} or not. Let this new collection together with V^{\prime} be $V^{\prime \prime}$. Then $V^{\prime \prime}$ is a clique transversal of $T_{1}(G)$ of cardinality $m+\beta(G)$. Therefore, $\tau_{c}\left(T_{1}(G)\right) \leqslant m+\beta(G)$.

Let $V^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$, where $t=\tau_{c}\left(T_{1}(G)\right)$ be a clique transversal of $T_{1}(G)$. Let $u v$ be an edge in G and let $u^{\prime} v^{\prime}$ be the K_{2} introduced in $T_{1}(G)$ corresponding to this K_{2}. At least one vertex from $\left\{u^{\prime}, v^{\prime}\right\}$, say u^{\prime} must be present in V^{\prime}, since V^{\prime} is a clique transversal and $u^{\prime} v^{\prime}$ is a clique of $T_{1}(G)$. Remove u^{\prime} from V^{\prime}. If V^{\prime} contains v^{\prime} also then replace v^{\prime} by v. If $v^{\prime} \notin V^{\prime}$ then $v \in V^{\prime}$. since V^{\prime} is a clique transversal and $v v^{\prime}$ is a clique of $T_{1}(G)$. In either case, one vertex v of the edge $u v$ is present in the new collection. Repeat the process for each edge in G to get $V^{\prime \prime}$. Clearly, $V^{\prime \prime}$ is a vertex cover of G with cardinality $\tau_{c}\left(T_{1}(G)\right)-m$. Hence, $B(G) \leqslant \tau_{c}\left(T_{1}(G)\right)-m$. Thus. $T_{c}\left(T_{1}(G)\right)=m+B(G)$.

By a similar argument we can prove that $\tau_{c}\left(T_{k}(G)\right)=k m+\beta(G)$.

Notation : For a given class \mathcal{G} of graphs, let $T_{k}(\mathcal{G})=\left\{T_{k}(G): G \in \mathcal{G}\right\}$.

Theorem 4.5.2. The class $T_{k}(\mathcal{G})$ satisfies the $<2>$-property if and only if $\beta(G) \leqslant$ $\frac{n}{2} \forall G \in \mathcal{G}$ and $\left(T_{k}(\mathcal{G})\right)_{t}$ is empty for $t \geqslant 3$.

Proof. Let $G \in \mathcal{G} . \quad n\left(T_{k}(G)\right)=n+2 k m$ and by Lemma 4.4.1, $\tau_{c}\left(T_{k}(G)\right)=$ $k m+\beta(G)$. Therefore,

$$
\tau_{c}\left(T_{k}(G)\right) \leqslant \frac{n\left(T_{k}(G)\right)}{2}<=>k m+\beta(G) \leqslant \frac{n+2 k m}{2}<=>\beta(G) \leqslant \frac{n}{2} .
$$

Hence, $T_{k}(\mathcal{G})$ satisfies $<2>$-property if and only if $\beta(G) \leqslant \frac{n}{2} \forall G \in \mathcal{G}$.

If G contains at least one edge then $T_{k}(G)$ has a clique of size 2 and hence $\left(T_{k}(\mathcal{G})\right)_{t}$ is empty for $t \geqslant 3$.

Lemma 4.5.3. For any graph G without isolated vertices, $\alpha_{c}\left(T_{k}(G)\right)=k m(G)-+$ $\alpha^{\prime}(G)$.

Proof. We shall prove the theorem for the case $k=1$.

Let $E^{\prime}=\left\{e_{1}, e_{2}, \ldots, e_{n^{\prime}}\right\}$ be a maximum matching of G with cardinality $\alpha^{\prime}(G)$. Let $C_{1}=\left\{e_{11}, e_{12}, e_{21}, e_{22}, \ldots, e_{\alpha^{\prime} 1 . \alpha^{\prime} 2}\right\}$ where each $e_{i 1}, e_{i 2}$ for $i=1,2, \ldots, \alpha^{\prime}$ are the edges which join e_{i} to the corresponding K_{2} of $T_{1}(G)$. Note that each $e_{i j}$ is a clique for $i=1,2, \ldots, \alpha^{\prime}$ and $j=1,2$. Let $C_{2}=\left\{f_{1}, f_{2}, \ldots, f_{m-\alpha^{\prime}}\right\}$ be the $K_{2} \mathrm{~s}$ in $T_{1}(G)$ corresponding to the edges of $E-E^{\prime}$. Also, each f_{2} is a clique in $T_{1}(G)$ for $\dot{t}=1,2, \ldots, m-\alpha^{\prime}$. Therefore. $C_{1} \cup C_{2}$ is a set of independent cliques of $T_{1}(G)$ with cardinality $2 \alpha^{\prime}(G)+\left(m(G)-\alpha^{\prime}(G)\right)=m(G)+\alpha^{\prime}(G)$. Hence, $\alpha_{c}\left(T_{1}(G)\right) \geqslant m(G)+\alpha^{\prime}(G)$.

Let $S=\left\{C_{1}, C_{2}, \ldots, C_{\alpha_{c}}\right\}$ be a set of independent cliques of $T_{1}(G)$ with cardinality $\alpha_{c}\left(T_{1}(G)\right)$. Let
$S_{1}=\left\{C_{i}: V\left(C_{i}\right) \subseteq V(G)\right\}$,
$S_{2}=\left\{C_{i}: \exists C_{j}\right.$ with $V\left(C_{i}\right) \cap V(G)=\{u\}, V\left(C_{j}\right) \cap V(G)=\{v\}$ where $\left.u v \in E(G)\right\}$, $S_{3}=S-\left(S_{1} \cup S_{2}\right)$

Note that $\left|S_{2}\right|$ is always even and the elements of S_{2} can be paired into (C_{i}, C_{j}) which satisfy the required property.

Choose one edge from each clique in S_{1} and the edge $u v$ corresponding to each pair $\left(C_{i}, C_{j}\right)$ in S_{2} to get an independent set of edges $E^{\prime} \subseteq E(G)$. Now, $\left|S_{3}\right|$ cannot exceed $m(G)$ and $|S|=\alpha_{c}\left(T_{1}(G)\right)$. Therefore, $\left|E^{\prime}\right| \geqslant \alpha_{c}\left(T_{1}(G)\right)-m\left(G^{\prime}\right)$. Hence, $\alpha^{\prime}(G) \geqslant \alpha_{c}\left(T_{1}(G)\right)-m(G)$ and so $\alpha_{c}\left(T_{1}(G)\right) \leqslant m(G)+\alpha^{\prime}(G)$. Thus, $\alpha_{c}\left(T_{1}(G)\right)=m(G)+\alpha^{\prime}(G)$.

By a similar argument we can prove that $\alpha_{c}\left(T_{k}(G)\right)=k m(G)+\alpha^{\prime}(G)$.

Theorem 4.5.4. $T_{k}(G)$ is a clique perfect graph if and only if G is a bipartite graph.

Proof. Let $T_{k}(G)$ be a clique perfect graph. From Lemma 4.5.1 and Lemma 4.5.3, $\tau_{c}\left(T_{k}(G)\right)=\alpha_{c}\left(T_{k}\left(G^{\prime}\right)\right)$ if and only if $\beta(G)=\alpha^{\prime}(G)$. If H is an induced subgraph of G then $T_{k}(H)$ is an induced subgraph of $T_{k}(G)$ and hence for $T_{k}(G)$ to be clique-perfect, $B(H)=\alpha^{\prime}(H)$ for every induced subgraph H of G. If G contains an induced odd cycle of length $2 k+1, k \geqslant 1$, then $k+1=3\left(C_{2 k+1}\right) \neq \alpha^{\prime}\left(C_{2 k+1}\right)=k$, which is a contradiction. Therefore, G is bipartite.

Now, let G be bipartite. Then $T_{k}(G)$ is bipartite for each k, since $T_{k}(G)$ contains an odd cycle if and only if G contains an odd cycle. For bipartite graphs, the clique
transversal number is same as the minimum number of vertices required to cover all edges and the clique independence number is same as the maximum number of independent edges. since all cliques are of size two. Hence by Lemma 1.1.13 and the fact that each induced subgraph of a bipartite graph is bipartite, it follows that $T_{k}(G)$ is clique perfect.

The $<t>$-property of the various classes of graphs which we have studied in this chapter are summarized in the following table.

Class	Satisfy $<t>$-property	Do not satisfy $<t>$-property
Cographs	2,3	$\geqslant 4$
Clique perfect graphs	2,3	$\geqslant 4$
Planar graphs	-	$2,3,4$
Perfect graphs	-	$\geqslant 2$

4.6 Highly clique imperfect graphs

A graph G is highly clique imperfect if the difference between $\tau_{c}(G)$ and $\alpha_{c}(G)$ is arbitrarily large. In [32], a graph F_{t} satisfying $\tau_{c}\left(F_{t}\right)-\alpha_{c}\left(F_{t}\right)=t$, where t is an arbitrary integer is given where the number of vertices in F_{l} grows exponentially with t. However, the following problem is open [73]:

Problem : For an arbitrary integer t, are there graphs G such that $\tau_{c}(G)-\alpha_{c}(G)=$ t where the number of vertices in G is linear in t.

In this section, this problem is solved by constructing a family of such graphs.

For each positive integer t, define G_{t} as $K_{1, t+1}$ with 5 -cycles attached to t distinct pendant vertices of $K_{1, t+1}($ Fig : 4.4).

Fig : 4.4

Then $\tau_{c}\left(G_{t}\right)=3 t+1$ and $\alpha_{c}\left(G_{t}\right)=2 t+1$ so that $\tau_{c}\left(G_{t}\right)-\alpha_{c}\left(G_{t}\right)=t$ and the size of G_{t} is $5 t+2$.

More generally, if $G_{k, t}$ is the graph obtained by replacing the 5 -cycles in this example by any odd cycle $C_{2 k+1}$, then $\tau_{c}\left(G_{k, t}\right)=(k+1) t+1, \alpha_{c}\left(G_{k, t}\right)=k t+1$ and the number of vertices in $G_{k: t}$ is $(2 k+1) t+2$ which is also polynomially bounded in t.

Chapter 5

Clique graphs and cographs

In this chapter the clique graph of cographs are studied and we prove that the diameter of the clique graph of a cograph cannot exceed two. If $n(G)=p$, where p is prime, then G cannot be the clique graph of a cograph except for $G=K_{p}$. The number of clique graphs of a cograph with $\chi(K(G))=s$, where s is a fixed integer is finite. A realization of cographs and its clique graph which have specific values for the domination number, the clique transversal number and the clique independence number are given.

5.1 Clique graph of a cograph

Theorem 5.1.1. If G is a connected cograph then the diameter of $K(G) \leqslant 2$.
Some results of this chapter are included in the following paper.
Some properties of the clique graph of a cograph, Proccedings of the International Conference on Discrete Mathematics, (2006), Bangalore, India, (to appear).

Proof. Let S_{1} and S_{2} be any two non-adjacent vertices in $K(G)$. If a vertex in S_{1} is adjacent to a vertex in S_{2}, then there exists a clique S which contains this edge and hence is adjacent to both S_{1} and S_{2} in $K(G)$. Therefore, $d\left(S_{1}, S_{2}\right)=2$. If possible assume that no vertex in S_{1} is adjacent to a vertex in S_{2}. Let $v_{1} \in V\left(S_{1}\right)$ and $v_{2} \in V\left(S_{2}\right)$. Then, $d\left(v_{1}, v_{2}\right)=2$. Hence there exists a vertex v adjacent to both v_{1} and v_{2}. If v_{1}^{\prime} is another vertex in $V\left(S_{1}\right)$ then $v_{1}^{\prime} v_{1} v v_{2}$ should not induce P_{4} in G and therefore v_{1}^{\prime} is adjacent to v. Since v_{1}^{\prime} was arbitrary, every vertex in $V\left(S_{1}\right)$ is adjacent to v. But, this is a contradiction to the maximality of S_{1}. Hence, for a connected cograph G, diameter of $K(G) \leqslant 2$.

Theorem 5.1.2. If G is a connected cograph with prime number of cliques, then G is clique complete.

Proof. Let $G=G_{1} \vee G_{2}$. The number of cliques in G is the product of the numberi of cliques in G_{1} and G_{2}. But, the number of cliques in G is prime and hence one of the G_{i} 's must have prime number of cliques and other must be complete. Every clique in G is the join of the cliques of G_{1} and G_{2}. Hence any two cliques in G have a non-empty intersection and therefore the clique graph of G is complete.

Corollary 5.1.3. Any graph of prime order, other than K_{p}, cannot be the clique graph of a cograph.

Theorem 5.1.4. A cograph is clique complete if and only if there exists a universal verter.

Proof. If there exists a universal vertex in G then that vertex will be present in every cligue of G and hence $K(G)$ is complete.

Now; assume that a cograph G is chique complete. Let S be a clique of G with maximum cardinality and w be its clique number. The proof is by induction
on $|V(G)-V(S)|$. If $|V(G)-V(S)|=0$ then $G(=S)$ itself is complete. If $|V(G)-V(S)|=1$ then there exist only one vertex v outside S. Since G is connected there exists at least one vertex $u \in S$ which is adjacent to v. Then $\operatorname{deg}(u)=n-1$. Assume that if $|V(G)-V(S)|=k$ then there exists a vertex of full degree in G.

Now, let $|V(G)-V(S)|=k+1$ and $v_{1}, v_{2}, \ldots, v_{k+1} \in V(G)-V(S)$. Let G_{i} be the graph obtained by deleting the vertex v_{i} for $i \in\{1,2, . ., k+1\}$. Then $\left|V\left(G_{i}\right)\right|=n-1$ and S is a clique in G_{i}. Also $\left|V\left(G_{i}\right)-V(S)\right|=k$. Therefore by the induction hypothesis, there exists a vertex v_{i}^{\prime} of degree $n-2$ in G_{i} for all i. Then v_{i}^{\prime} belongs to $V(S)$, since it is adjacent to all vertices in G_{i} and S is maximal complete. If for at least one v_{i}, v_{i} is adjacent to v_{i}^{\prime}, then v_{i}^{\prime} will be of full degree in G.

Now, assume that v_{i} is not adjacent to v_{i}^{\prime} for all i and hence $v_{i}^{\prime} \neq v_{j}^{\prime}$ if $i \neq j$. Consider two arbitrary vertices v_{i} and v_{j} where $i \neq j$ and $i, j \in\{1,2, \ldots, k+1\}$. If v_{i} is not adjacent to v_{j}, then $v_{i} v_{j}^{\prime} v_{i}^{\prime} v_{j}$ is an induced P_{4} in G which is a contradiction. Therefore v_{i} is adjacent to v_{j} for all $i \neq j$ and $i, j \in\{1,2, \ldots, k+1\}$. Hence $\left\{v_{1}, v_{2}, \ldots, v_{k+1}\right\}$ induces a complete graph. So there exists a clique in G which contains all the vertices $v_{1}, v_{2}, \ldots, v_{k+1}$. This clique has non-empty intersection with S, since G is clique complete. Thercfore there exists $u \in V(S)$ which in adjacent to v_{i} for all $i \in 1,2 \ldots k+1$ and hence u will be a vertex of full degree. The proof now follows by the mathematical induction.

5.2 Chromatic number of the clique graph

Even though the difference between the chromatic numbers of a cograph and its clique graph can be arbitrarily large the number of clique graphs of a cograph having a fixed chromatic number is finite.

Remark 5.2.1. Given any two positive integers $a, b>1$, there exists a cograph G such that $\chi(G)=a$ and $\chi(K(G))=b$. Let $G=K_{a}$ with $b-1$ pendant vertices attached to one of its vertices. Therefore, $K(G)=K_{b}$ and hence $夭(G)=a$ and $(K(G))=b$.

Theorem 5.2.1. The number of clique graphs of a connected cograph G with $\chi(K(G))=s$ is finite.

Proof. Let G be a cograph with $\chi(K(G))=s$. Let $G=G_{1} \vee G_{2}$ be a decomposition of G. Let the number of cliques of G_{i} be p_{i} for $i=1,2$. If $p_{i}>s$ for some i, say $i=1$, then G_{1} will have at least $s+1$ cliques, $H_{11}, H_{12}, \ldots . ., H_{1, s+1}$. Let H_{2} be a clique of G_{2}. Then $H_{11} \vee H_{2}, H_{12} \vee H_{2}, \ldots \ldots, H_{1, s+1} \vee H_{2}$ are cliques of G which induce K_{s+1} in $K(G)$. But, then $\chi(K(G)) \geqslant s+1$ which is a contradiction. Therefore each $p_{i} \leqslant s$ and hence $|V(K(G))| \leqslant s^{2}$. Hence, the number of clique graphs of a connected cograph with $\chi(K(G))=s$ is finite.

5.3 Some graph parameters

In this section we study the relation between the domination number, the clique transversal number and the clique independence number of a cograph and its clique
graph. It is also observed that, though cographs are clique perfect and the clique graph of a cograph satisfies $\tau_{c}(K(G))=\alpha_{c}(K(G))$, they are not clique perfect.

Theorem 5.3.1. There exists a cograph G such that $\gamma(G)=a$ and $\gamma(K(G))=b$ if and only if (1) $a \leqslant 2$.
(2) $a=1$ if and only if $b=1$.
(3) $a=2$ and $b \geqslant a$.

Proof. If G is a cograph then $\gamma(G) \leqslant 2$ [66]. Therefore (1) holds. If $\gamma(G)=1$ then G has a vertex of full degree and hence $K(G)$ is complete. Therefore, $a=1$ implies that $b=1$. If $b=1$ then $K(G)$ has a vertex of full degree. Let C be the clique in G which corresponds to this vertex of full degree in $K(G)$. Let $u_{1}, u_{2}, \ldots, u_{p} \in V(G)-V(C)$. Every clique in G intersects with C and hence $u_{i} \mathrm{~s}$ for $i=1,2, \ldots, p$ must be adjacent to at least one vertex of $V(C)$.

Claim : Every u_{i} is adjacent to a common vertex $v \in V(G)$.

On the contrary, assume that u_{1} and u_{2} do not have a common neighbor in C. Let u_{1} be adjacent to v_{1} and u_{2} be adjacent to v_{2}. But, $u_{1} v_{1} v_{2} u_{2}$ cannot induce a P_{4} in G and hence u_{1} is adjacent to u_{2}. Since, u_{1} and u_{2} have no common neighbors in C, the clique of G which contains the edge $u_{1} u_{2}$ does not intersect C which is a contradiction. Therefore, our claim holds.

Therefore. v is a vertex of full degree in G and hence $a=\gamma(G)=1$. Hence, (2) holds.

If $a=2$ then $b \neq 1$ by (2). Therefore, $b \geqslant a$ and (3) holds.

Conversely, assume that a and b satisfy the given conditions. Let G be the co-
graph $K_{b, b}$. The clique graph of $K_{b, b}, K\left(K_{b, b}\right)=K_{b} \square K_{b}$. Therefore, $\gamma\left(K\left(K_{b, b}\right)\right)=$ b. If $b>1$ then $\gamma(G)=2$ and if $b=1$ then $\gamma(G)=1$. Hence, G is the required graph.

Theorem 5.3.2. If G is a cograph then $\tau_{c}(K(G))=\alpha_{c}(K(G))$.

Proof. We use the recursive definition of cographs to prove the theorem. If $G=K_{1}$, then $K(G)=K_{1}$ and $\tau_{c}\left(K_{1}\right)=\alpha_{c}\left(K_{1}\right)=1$.

Let G_{1} and G_{2} be cographs which satisfy $\tau_{c}\left(K\left(G_{i}\right)\right)=\alpha_{c}\left(K\left(G_{i}\right)\right)$ for $i=$ 1, 2. Let $G=G_{1} \cup G_{2}$. Then, $K(G)=K\left(G_{1}\right) \cup K\left(G_{2}\right)$ and hence $\tau_{c}(K(G))=$ $\tau_{c}\left(K\left(G_{1}\right)\right)+\tau_{c}\left(K\left(G_{2}\right)\right)=\alpha_{c}\left(K\left(G_{1}\right)\right)+\alpha_{c}\left(K\left(G_{2}\right)\right)=\alpha_{c}(K(G))$.

Let, $G=G_{1} \vee G_{2}$. Let H_{1} be a clique in $K\left(G_{1}\right)$ induced by the vertices corresponding to the cliques $G_{11}, G_{12}, \ldots G_{1 k}$ in G_{1}. Let $G_{21}, G_{22}, \ldots, G_{2 t}$ be the cliques in G_{2}. Thercfore. $\left\{G_{1 i} \vee G_{2 j}: i=1,2, \ldots k\right.$ and $\left.j=1,2, \ldots, t\right\}$ are cliques in $G_{1} \vee G_{2}$ and the vertices corresponding to these cliques induce a clique in $K\left(G_{1} \vee G_{2}\right)$. Let this clique be H_{1}^{\prime}. Similarly, if H_{2} is a clique in $K\left(G_{1}\right)$, then we can find a clique H_{2}^{\prime} in $K\left(G_{1} \vee G_{2}\right)$. Moreover, if H_{1} and H_{2} are independent, then H_{1}^{\prime} and H_{2}^{\prime} arc also independent. Therefore, $\alpha_{c}\left(K\left(G_{1} \vee G_{2}\right)\right) \geqslant \alpha_{c}\left(K\left(G_{1}\right)\right)$. Similarly we can prove that $\alpha_{c}\left(K\left(G_{1} \vee G_{2}\right)\right) \geqslant \alpha_{c}\left(K\left(G_{2}\right)\right)$. Therefore, $\alpha_{c}\left(K\left(G_{1} \vee\right.\right.$ $\left.\left.G_{2}\right)\right) \geqslant \max \left\{\alpha_{c}\left(K\left(G_{1}\right)\right), \alpha_{c}\left(K\left(G_{2}\right)\right)\right\}$. Using similar arguments, we can prove that $\tau_{c}\left(K\left(G_{1} \vee G_{2}\right)\right) \leqslant \max \left\{\tau_{c}\left(K\left(G_{1}\right)\right), \tau_{c}\left(K\left(G_{2}\right)\right)\right\}$. Therefore, $\tau_{c}\left(K\left(G_{1}\right) \vee K\left(G_{2}\right)\right) \leqslant$ $\alpha_{c}\left(K\left(G_{1}\right) \vee K\left(G_{2}\right)\right.$. But, by definition, $\tau_{c}\left(K\left(G_{1}\right) \vee K\left(G_{2}\right)\right) \geqslant \alpha_{c}\left(K\left(G_{1}\right) \vee K\left(G_{2}\right)\right.$. Therefore. $\tau_{c}\left(K\left(G_{1}\right) \vee K\left(G_{2}\right)\right)=\alpha_{c}\left(K\left(G_{1}\right) \vee K\left(G_{2}^{\prime}\right)\right.$.

Hence the theorem.

Remark; 5.3.1. If a and b are any two positive real numbers which satisfies the
conditions $a=1$ if and only if $b=1$ and $a \leqslant b$ then there exist cographs which satisfies $\tau_{c}(G)=\alpha_{c}(G)=a$ and $\tau_{c}(K(G))=\alpha_{c}(K(G))=b$. For example, consider the cograph $K_{a, b} . K\left(K_{a, b}\right)=K_{a} \square K_{b}$. Therefore, $\tau_{c}\left(K_{a, b}\right)=\alpha_{c}\left(K_{a, b}\right)=a$ and $\tau_{c}\left(K\left(K_{a, b}\right)\right)=\alpha_{c}\left(K\left(K_{a, b}\right)\right)=b$.

An interesting observation : Despite Theorem 5.3 .2 and Lemma 1.1.8, $K(G)$ of a cograph G need not be clique perfect. For example consider the cograph $G=\left(K_{1} \cup C_{4}\right) \vee\left(2 K_{1} \cup P_{3}\right)$ as in Fig: 5.1.

Fig: 5.1

The cliques of G formed by the vertices $\left\{u_{1}, v_{1}\right\},\left\{u_{1}, v_{2}, v_{3}\right\}$, $\left\{u_{4}, u_{5}, v_{3}, v_{4}\right\}$, $\left\{u_{3}, u_{4}, v_{5}\right\}$ and $\left\{u_{2}, u_{3}, v_{1}\right\}$ induce a C_{5} in $K(G)$ and hence $K(G)$ is not clique perfect.

Chapter 6

Clique irreducible and weakly

clique irreducible graphs

This chapter deals with two graph classes - the clique irreducible graphs and the weakly clique irreducible graphs. A new graph class called the clique vertex inreducible graphs is also defined. We characterize line graphs and its iterations, Gallai graphs, anti-Gallai graphs and its iterations, cographs and distance hereditary graphs which are clique irreducible, clique vertex irreducible and weakly clique irreducible graphs.

Some results of this chapter are included in the following papers.
(1) Clique jrreducibility and clique vertex irreducibility of graphs. (communicated).
(2) Clique irreducibility of some iterative classes of graphs, Discuss. Math. Graph Theory, (to appear).
(3) On weakly clique irreducible graphs, (communicated).

6.1 Iterations of the line graph

In this section the line graphs and all its iterations which are clique irreducible and clique vertex irreducible are characterized.

Theorem 6.1.1. Let G be a graph. The line graph $L(G)$ is clique vertex irreducible if and only if G satisfies the following conditions.
(1) Every triangle in G has at least two vertices of degree two.
(2) Every vertex of degree greater than one in G has a pendant vertex attached to it, except for the vertices of degree two lying in a triangle.

Proof. Let G be a graph which satisfies the conditions (1) and (2). The cliques of $L(G)$ are induced by the vertices corresponding to the edges in G which are incident on a vertex of degree at least three, the edges in G which are incident on a vertex of degree two and which do not lie in a triangle and by the edges in G which lie in a triangle. By (2), the cliques in $L(G)$ induced by the vertices corresponding to the edges in G which are incident on a vertcx, have a vertex which does not lie in any other clique of $L(G)$. By (1), the cliques in $L(G)$ induced by the vertices which correspond to the edges in G which lie in a triangle, have a vertex which does not lie in any other clique of $L(G)$. Therefore, G is clique vertex irreducible.

Conversely, assume that $L(G)$ is a clique vertex irreducible graph. Let $<u_{1}, u_{2}, u_{3}>$ be a triangle in G. Let e_{1}, e_{2}, e_{3} be the vertices in $L(G)$ which correspond to the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1}$ in $G . T=<e_{1}, e_{2}, e_{3}>$ is a clique in $L(G)$. If $d\left(u_{i}\right)>2$ for two $u_{i} s, u_{1}$ and u_{2}, then there exist v_{1} and v_{2} (not necessarily different, but different from u_{3}) such that u_{i} is adjacent to v_{i} for $i=1,2$. But then, the vertices e_{1} and e_{3} will be present in the clique induced by the edges incident
on the vertex u_{1} and the vertices e_{2} and e_{3} will be present in the clique induced by the edges incident on the vertex u_{2}. Therefore, every vertex in T belongs to another clique in $L(G)$ which is a contradiction to the assumption that $L(G)$ is clique vertex irreducible. Hence every triangle in G has at least two vertices of degree two.

Now, let $u \in V(G)$ and $N(u)=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, where $p \geqslant 2$ and if $p=2$ then u_{1} is not adjacent to u_{2}. Let e_{i} be the vertex in $L(G)$ corresponding to the edge $u u_{i}$ in G for $i=1,2, \ldots, p$. Let C be the clique $<e_{1}, e_{2}, \ldots, e_{p}>$ in $L(G)$. If u has no pendant vertex attached to it then every u_{i} has a neighbor $v_{i} \neq u$ for $i=1,2, \ldots, p$. The v_{i} s are not necessarily pairwise different. Moreover, some v_{i} can be equal to some u_{j} with $j \neq i$, except in the case $p=2$. Therefore, for each i, every e_{i} in $L(G)$ will be present in another clique, either induced by the edges incident on the vertex u_{i} in G or by the edges in a triangle containing u and u_{i} in G. But this is a. contradiction to the assumption that $L(G)$ is clique vertex irreducible. Hence, every vertex of degree greater than one in G has a pendant vertex attached to it, except for the vertices of degree two which lie in a triangle.

Fig : 6.1 gives an example of a graph whose line graph is clique vertex irreducible.

Fig: 6.1

Theorem 6.1.2. Let G be a connected graph. The secand iterated line graph $L^{2}(G)$ is clique vertex irreducible if and only if G is one of the following graphs.
(i) $K_{2} \quad$ (ii) $K_{3} \quad$ (iii) $P_{3} \quad$ (iv) $P_{4} \quad$ (v) P_{5} (vi) $K_{1.3}$ (vii)

Proof. By Theorem 6.1.1, $L^{2}(G)$ is clique vertex irreducible if and only if
(1) Every triangle in $L(G)$ has at least two vertices of degree two.
(2) Every vertex of degree greater than one in $L(G)$ has a pendant vertex attached to it, except for the vertices of degree two which lie in a triangle.

By (2), every non-pendant edge in G must have a pendant edge attached to it on one end vertex and the degree of that end vertex must be two.

Case 1: $L(G)$ has a triangle.

A triangle in $L(G)$ corresponds to a triangle or a $K_{1,3}$ (need not be induced) in G. Let it correspond to a triangle in G. If any of the vertices of this triangle has a neighbor outside the triangle, then two vertices in the corresponding triangle in $L(G)$ have neighbors outside the triangle, which is a contradiction. Therefore, since G is connected, in this case G must be K_{3}.

If the triangle in $L(G)$ corresponds to a $K_{1.3}$ in G, then two of the edges of this $K_{1,3}$ cannot have any other edge incident on any of its end vertices. Therefore. G cannot have a vertex of degree greater than three. Moreover, two vertices of $K_{1,3}$ in G must be pendant vertices. Again, by (2) and since G is connected, we conclude that G is either $K_{1,3}$ or the graph (vii).

Case $2: L(G)$ has no triangle.

Since $L(G)$ has no triangle, G cannot have a K_{3} or a vertex of degree greater than or equal to 3 . Therefore, since G is connected, G must be a path or a cycle of length greater than three. Again, by (2): G cannot be a path of length greater than five or a cycle. Therefore G is K_{2}, P_{3}, P_{4} or P_{5}.

Corollary 6.1.3. Let G be a connected graph. The $n^{\text {th }}$ iterated line graph $L^{n}(G)$ is clique vertex irreducible if and only if G is $K_{3}, K_{1,3}$ or P_{k} where $n+1 \leqslant k \leqslant n+3$, for $n \geqslant 3$.

Theorem 6.1.4. The line graph $L(G)$ is clique irreducible if and only if every triangle in G has a vertex of degree two.

Proof. Let G be a graph such that every triangle in G hass a vertex of degree two. Let C be a clique in $L(G)$.

Case 1: The clique C is induced by the vertices corresponding to the edges in G which are incident on a vertex of degree at least three.

An edge of C can be present in another clique of $L(G)$ if and only if the corresponding pair of edges in G lies in a triangle. Thus, if every edge of C lies in another clique of $L(G)$, then G has an induced K_{p}, where p is at least four. But, this contradicts the assumption that every triangle in G has a vertex of degree two.

Case 2: The clique C is induced by the vertices corresponding to the edges in G which are incident on a vertex of degree two and which do not lie in a triangle.

In this case, C is K_{2} which always has an edge of its own.

Case 3: The clique C is induced by the vertices corresponding to the edges which lie in a triangle T in G.

Since T has a vertex v of degree two, the vertices corresponding to the edges which are incident on v induce an edge in C which does not lie in any other clique of $L(G)$.

Thercfore, G is clique irreducible.

Conversely, assume that G is a clique irreducible graph. Let $<u_{1}, u_{2}, u_{3}>$ be a triangle in G. Let e_{1}, e_{2}, e_{3} be the vertices in $L(G)$ which correspond to the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1}$ of $G . T=<e_{1}, e_{2}, e_{3}>$ is a clique in $L(G)$. If $d\left(u_{i}\right)>2$ for each i, there exist v_{1}, v_{2}, v_{3} such that u_{i} is adjacent to v_{i} for $i=1,2,3\left(v_{1}, v_{2}\right.$ and v_{3} are not necessarily different, but they are different from u_{1}, u_{2} and u_{3}). Then the edges $e_{1} e_{2}, e_{2} e_{3}$ and $e_{3} e_{1}$ of $L(G)$ will be present in the cliques induced by edges which are incident on the vertices u_{1}, u_{2} and u_{3} respectively. Therefore, every edge in T is in another clique of $L(G)$, which is a contradiction.

Theorem 6.1.5. The second iterated line graph $L^{2}(G)$ is clique irreducible if and only if G satisfies the following conditions.
(1) Every triangle in G has at least two vertices of degree two.
(2) Every vertex of degree three has at least one pendant vertex attached to it.
(3) G has no vertex of degree greater than or equal to four.

Proof. Let G be a graph such that $L^{2}(G)$ is clique irreducible. By Theorem 6.1.4, every triangle in $L(G)$ has a vertex of degree two. Then. we have the following cases.

Case 1: The triangle in $L(G)$ corresponds to a triangle in G.

Let $<u_{1}, u_{2}, u_{3}>$ be a triangle in G. Let e_{1}, e_{2}, e_{3} be the vertices in $L(G)$ which correspond to the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1}$ of G. At least one of the vertices
of the triangle $<e_{1}, e_{2}, e_{3}>$ in $L(G)$ must be of degree two. Let e_{1} be a vertex of degree two in $L(G)$. Since e_{2} and e_{3} belong to $N\left(e_{1}\right)$ in $L(G), e_{1}$ has no other neighbors in $L(G)$. Therefore, the corresponding end vertices, u_{1} and u_{2} in G have no other neighbors. Hence (1) holds.

Case 2: The triangle in $L(G)$ corresponds to a $K_{1,3}$ (need not be induced) in G.

Let e_{1}, e_{2}, e_{3} be the vertices in $L(G)$ corresponding to the edges $u u_{1}, u u_{2}, u u_{3}$ in G. At least one of the vertices of the triangle $\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ in $L(G)$ must be of degree two. Let e_{1} be a vertex of degree two in $L(G)$. Vertices e_{2} and e_{3} belong to $N\left(e_{1}\right)$ in $L(G)$ and hence e_{1} has no other neighbors in $L(G)$. Therefore, the corresponding end vertices, u and u_{1} in G have no other neighbors. Since u has no other neighbors (3) holds and since u_{1} has no other neighbors (2) holds.

Conversely, assume that G is a graph which satisfies all the three conditions. A triangle in $L(G)$ corresponds to a triangle or a $K_{1,3}$ (need not be induced) in G. A triangle in $L(G)$ which corresponds to a triangle in G has at least one vertex of degree two by (1). Again, a triangle in $L(G)$ which corresponds to a $K_{1,3}$ in G has at least one vertex of degree two by (2) and (3). Therefore, every triangle in $L(G)$ has at least one vertex of degree two and by Theorem 6.1.4, $L^{2}(G)$ is clique irreducible.

Theorem 6.1.6. Let G be a connected graph. If $G \neq K_{3}$ then. $L^{3}(G)$ is clique irreducible if and only if G satisfies the following conditions.
(1) G is triangle free.
(2) G has no vertex of degree greater than or equal to four.
(3) At least two of the vertices of every $K_{1,3}$ in G are pendant vertices.
(4) If $u v$ is an edge in G, then either u or v has degree less than or equal to tuo.

Proof. Let $L^{3}(G)$ be clique irreducible. By Theorem 6.1.5, $L(G)$ satisfies,
(1) Every triangle in $L(G)$ has at least two vertices of degree 2.
(2) Every vertex of degree three in $L(G)$ has at least one pendant vertex attached to it.
(3) $L(G)$ has no vertex of degree greater than or equal to 4 .

A triangle in $L(G)$ corresponds to a triangle or a $K_{1,3}$ (need not be induced) in G. Every triangle in $L(G)$ has at least two vertices of degree two implies that every triangle in G has its three vertices of degree two. i.e: G is a triangle, because G is connected. Since $G \neq K_{3}, G$ must be triangle free. Also, every $K_{1,3}$ in G has at least two pendant vertices and the degree of a vertex cannot exceed three. Therefore (1), (2) and (3) hold. Again (3) implies that no edge in G can have more than three edges incident on its end vertices. Therefore, (4) holds.

Conversely, assume that the given conditions hold. Since G is triangle free, a triangle in $L(G)$ corresponds to a $K_{1,3}$ (necd not be induced) in G. Therefore, by (2) and (3) every triangle in $L(G)$ has at least two vertices of degree two.

Let e be a vertex of degree three in $L\left(G^{\prime}\right)$ and let w be the corresponding edge in G. Since e is of degree three in $L(G)$, the number of edges incident on u in G together with the number of edges incident on v in G is three. If u (or v) has three more edges incident on it then u (or v) will be of degree at least four which is a contradiction to the condition (2). Therefore, u has two neighbors and v has one neighbor (or vice versa) in G. Let u_{1} and u_{2} be the neighbors of u, and let v_{1} be the neighbor of v in G. Then $\left\langle u, v \cdot u_{1}, u_{2}\right\rangle=K_{1.3}$ in G and hence at least two of v, u_{1} and u_{2} must be pendant vertices. Since v is not a pendant vertex, u_{1} and u_{2} must be pendant vertices. Therefore, e has two pendant vertices attached to it in $L(G)$ corresponding to the edges $u u_{1}$ and $u u_{2}$ in G. Hence (2) is satisfied.

Again, (2), (3) and (4) together imply (3'). Since the conditions (1^{\prime}). (2^{*}) and (3') are satisfied, by Theorem 6.1.5, $L^{3}(G)$ is clique irreducible.

Theorem 6.1.7. Let G be a connected graph. The fourth iterated line graph $L^{4}(G)$ is clique irreducible if and only if G is $K_{3}, K_{1,3}, P_{n}$ with $n \geqslant 5$ or C_{n} with $n \geqslant 4$.

Proof. Let $L^{4}(G)$ be clique irreducible. Then by Theorem 6.1.6, if $L(G) \neq K_{3}$ then $L(G)$ must be triangle free. If $L(G)=K_{3}$ then G is either K_{3} or $K_{1,3}$. If $L(G)$ is triangle free then C is triangle free and cannot have vertices of degree greater than or equal to three. Thercfore, G is either a path or a cycle of length greater than three.

Conversely, if G is $K_{3}, K_{1,3}, P_{n}$ or C_{n} then $L^{1}(G)$ is either a triangle, a path or a cycle and all of them are clique irreducible.

Corollary 6.1.8. For $n \geqslant 5, L^{n}(G)$ is clique irreducible if and only if it is nonempty and $L^{4}(G)$ is clique irreducible.

6.2 Gallai graphs

In this section, we give structural and forbidden subgraph characterizations for the Gallai graph to be clique irreducible, clique vertex irreducible and weakly clique irreducible.

Theorem 6.2.1. The Gallai graph $\Gamma(G)$ is clique vertex irreducible if and only if for every $v \in V(G)$, every maximal independent set I in $N(v)$ with $|I| \geqslant 2$ contains a vertex u such that $N(u)-\{v\}=N(v)-I$.

Proof. Let G be a graph such that its Gallai graph $\Gamma(G)$ is clique vertex irreducible. A clique C in $\Gamma(G)$ of size at least two is induced by the vertices corresponding to the edges which are incident on a common vertex $v \in V(G)$ whose other end vertices form a maximal independent set I of size at least two in $N(v)$. Let $I=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, where $p \geqslant 2$, be a maximal independent set in $N(v)$. Let e_{i} be the vertex in $\Gamma(G)$ corresponding to the edge τv_{i} in G for $i=1,2, \ldots, p$. Let C be the clique $<e_{1}, e_{2}, \ldots, e_{p}>$ in $\Gamma^{\prime}(G)$. Let e_{i} be the vertex in C which does not belong to any other clique in G. Therefore, e_{i} has no neighbors in $\Gamma(G)$ other than those in C. Hence, $N\left(v_{i}\right)-\{v\}=N(v)-I$.

Conversely, assume that for every $v \in V(G)$, every maximal independent set $I=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ in $N(v)$ contains a vertex u such that $N(u)-\{v\}=N(v)-I$. If C is a clique of size one, it contains a vertex of its own. Otherwise, let C be defined as above. By our assmmption, there exists a vertex $u=v_{i}$ such that $N(u)-\{v\}=N(v)-I$. Therefore, e_{i} has no neighbors outside C. Hence C has a vertex e_{i} of its own.

Fig : 6.2 gives an example of a graph whose Gallai graph is clique vertex irreducible.

Fig : 6.2

Theorem 6.2.2. If $\Gamma(G)$ is clique vertex reducible then G contains one of the graphs in Fig : 6.3 as an induced subgraph.
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Fig : 6.3

Proof. Let G be a graph such that, $\Gamma(G)$ is clique vertex reducible and let C be a clique in $\Gamma(G)$ such that each vertex of C belongs to some other clique in $\Gamma(G)$. Consider the order relation \preceq among the vertices of C where $e \preceq \epsilon^{\prime}$ if $N[e] \preceq N\left[e^{\prime}\right]$. If \preceq is a total ordering, then every vertex adjacent to the minimum vertex e is also adjacent to all the vertices in C. Therefore, by maximality of C, e cannot have neighbors outside C. This is a contradiction to the assumption that e belongs to some other clique of $\Gamma(G)$. So, there exist two vertices e_{1} and e_{2} in C which are not comparable. That is, there exist vertices f_{1} and f_{2} of $\Gamma(G)$ such that e_{i} is adjacent to f_{j} if and only if $i=j$. Let $v v_{1}$ and $v v_{2}$ be the edges corresponding to e_{1} and e_{2}, respectively. Then v_{1} and v_{2} are non-adjacent. Let u_{1} and u_{2} be the cnd points of f_{1} and f_{2}, respectively, which are both different from v, v_{1} and v_{2}.

Case 1: Both f_{1} and f_{2} correspond to the edges incident to v.

In this case, u_{1} and u_{2} are adjacent to v, u_{i} is adjacent to v_{j} if and only if $i \neq j$ and u_{1} and u_{2} can be either adjacent or not. Therefore $<v . v_{1}, v_{2}, u_{1}, u_{2}>$ is the graph (i) or (ii) in Fig : 6.3.

Case 2 : None of f_{1} and f_{2} correspond to the edges incident to t.

In this case, u_{1} and u_{2} are adjacent to v_{1} and v_{2}, respectively, and not to v. If
$u_{1}=u_{2}$ then G contains an induced C_{4}. If $u_{1} \neq u_{2}$ and G does not contain an induced C_{4}, then $<v, v_{1}, v_{2}, u_{1}, u_{2}>$ is either P_{5} or C_{5}.

Case 3 : Exactly one of f_{1} and f_{2} correspond to the edges incident to v : say f_{1}.

In this case, u_{1} is adjacent to both v and v_{2} and is not adjacent to v_{1}. The vertex u_{2} is adjacent to v_{2} and is not adjacent to v. If u_{2} is adjacent to v_{1} then G contains an induced C_{4}. Otherwise, $\left\langle v, v_{1}, v_{2}, u_{1}, u_{2}>\right.$ is the graph (vi) or (vii) in Fig: 6.3.

Remark 6.2.1. The converse need not be true. For example consider the graph G in Fig : 6.4. It contains (iv) in Fig : 6.3 as an induced subgraph. Still $\Gamma(G)$ is clique vertex irreducible.

G

(G)

Fig: 6.4

Theorem 6.2.3. The Gallai graph $\Gamma^{\prime}(G)$ is clique irreducible if and only if for every $v \in V(G),<N(v)>^{c}$ is clique irreducible.

Proof. A clique C in $\Gamma(G)$ of size at least two is induced by the vertices corresponding to the edges which are incident on a common vertex $v \in V(G)$ whose other end vertices form a maximal independent set. I of size at least two in $N(v)$. Therefore, C has an edge which does not belong to any other clique of $\Gamma(G)$ if and only if I has a pair of vertices both of which together does not belong to any other maximal independent set in $N(v)$. But, this happens if and only if every clique of size at least two in $<A(v)>^{c}$ has an edge which does not belong to any other
clique in $<N(v)>^{c}$, since a maximal independent set in a graph corresponds to a clique in its complement.

Theorem 6.2.4. The second iterated Gallai graph $\mathrm{I}^{\prime 2}(G)$ is clique irreducible if and only if for every $u v \in E(G)$, either $<N(u)-N(v)>$ and $<N(v)-N(u)>$ are clique vertex irreducible or one among them is a clique and the other is clique irreducible.

Proof. By. Theorem 6.2.3, $\Gamma^{2}(G)$ is clique irreducible if and only if for every $e \in$ $V(\Gamma(G)),<N(e)>^{c}$ is clique irreducible.

Let $e=u v \in E(G), N(u)-N(v)=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and $N(v)-N(u)=$ $\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$. Also let $e_{i}=u u_{i}$ for $i=1,2, \ldots, p$ and $f_{j}=v v_{j}$ for $j=1,2, \ldots, l$. $N_{\Gamma(G)}(e)=\left\{e_{1}, e_{2}, \ldots, e_{p}, f_{1}, f_{2}, \ldots, f_{l}\right\} .<N(e)>^{c}$ is clique irreducible if and only if every maximal independent set I in $<N(e)>$ has a pair of vertices of its own. e_{i} is not adjacent to e_{j} if and only if u_{i} is adjacent to u_{j}. Similarly, f_{i} is not adjacent to f_{j} if and only if v_{i} is adjacent to v_{j}. So, $I=\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}, f_{j_{1}}, f_{j_{2}}, \ldots, f_{j_{l}}\right\}$ if and only if $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{k}}\right\}$ is a clique in $<N(u)-N(v)>$ and $\left\{v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{l}}\right\}$ is a clique in $N(v)-N(u)$. Therefore, every maximal independent set I in $N_{\Gamma(G)}(e)$ has a pair of vertices of its own if and only if either both $<N(u)-N(v)>$ and $<N(u)-N(u)>$ are clique vertex irreducible or one among them is a clique and the other is clique irreducible.

Theorem 6.2.5. If $\Gamma(G)$ is clique reducible then G contains one of the following graphs as an induced subgraph.

Fig : 6.5

Proof. Let $\Gamma(G)$ be a clique reducible graph. By Lemma 1.1.9 and Lemma 1.1.12, $\Gamma(G)$ contains at least one of the Hajo's graph as an induced subgraph. A Hajo's graph is an induced subgraph of $\Gamma(G)$ if and only if G contains one of the graphs in Fig: 6.5 as an induced sulbgraph. Hence the theorem.

Remark: 6.2.2. The converse need not be true. Let G be the graph in Fig : 6.6.

Fig: 6.6

$$
V(G)=\left\{v, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}, w_{4}, u_{5}, w_{7}, w_{7}, w_{8}\right\} . \text { Let }<v, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}=
$$

be the graph (i) in Fig : 6.5 and let $u_{i} \mathrm{~s}$ for $i=1,2, \ldots, 8$ induce a complete graph.

Also, let w_{1} be adjacent to $\left\{v_{1}, v_{2}, v_{3}\right\}$, w_{2} be adjacent to $\left\{v_{1}, v_{2}, u_{3}\right\}, w_{3}$ be adjacent to $\left\{v_{1}, u_{2}, v_{3}\right\}, w_{4}$ be adjacent to $\left\{v_{1}, u_{2}, u_{3}\right\}, w_{5}$ be adjacent to $\left\{u_{1}, v_{2}, v_{3}\right\}$, w_{6} be adjacent to $\left\{u_{1}, v_{2}, u_{3}\right\}, w_{7}$ be adjacent to $\left\{u_{1}, u_{2}, v_{3}\right\}, w_{8}$ be adjacent to $\left\{u_{1}, u_{2}, u_{3}\right\}$ and v adjacent to w_{i} for $i=1,2, \ldots, 8$.

In $\Gamma(G)$ the vertices corresponding to the edges with one end vertex v induces K_{6} minuss a perfect matching in which the vertices of each of the eight triangles are adjacent to another vertex each. The remaining vertices induce the graph $H=4 K_{1,8}$. Therefore. $\Gamma(G)$ is clique irreducible.

Theorem 6.2.6. The Gallai graph of a graph $G, \Gamma(G)$ is weakly clique irreducible if and only if for every vertex $u \in V(G),\langle N(u)\rangle^{c}$ is weakly clique irreducible.

Proof. Let G be a graph such that $\Gamma(G)$ is weakly clique irreducible. Let $u_{1} u_{2}$ be an edge in $\langle N(u)\rangle^{c}$ and let $\dot{e_{i}}$ be the vertex in $\Gamma(G)$ corresponding to the edge $u u_{i}$ in G for $i=1,2$. Since $\Gamma(G)$ is weakly clique irreducible and $e_{1} e_{2}$ is an edge in $\Gamma(G)$, let $C=<e_{1}, e_{2}, \ldots, e_{k}>$ be the essential clique in $\Gamma(G)$ which contains the edge $e_{1} e_{2}$. For $i=3,4, \ldots, k$, let $u u_{i}$ be the edge in G corresponding to the vertex e_{i} in $\Gamma(G)$. Let $e_{i} e_{j}$ be the essential edge in C. Therefore, there exist no independent set in $N(u)$ which contains both the vertices u_{i} and u_{j}. Hence, there is no clique in $\left\langle N(u)>^{c}\right.$ which contains the edge $u_{i} u_{j}$, other than the clique $\left.S=<u_{1}, u_{2}, \ldots, u_{k}\right\rangle$. Therefore, S is an essential clique in $\left\langle N(u)>^{c}\right.$ which contains the edge $u_{1} u_{2}$. Since the edge $u_{1} u_{2}$ was arbitrary, $\left\langle N(u)>^{c}\right.$ is weakly clique irreducible.

The converse can be proved similarly.

6.3 Iterations of the anti-Gallai graph

In this section the anti-Gallai graph and all its iterations which are clique irreducible, clique vertex irreducible and weakly clique irreducible are characterized.

Theorem 6.3.1. The anti-Gallai graph $\Delta(G)$ is clique vertex irreducible if and only if G does neither contain K_{4} nor one of the Hajo's graphs as an induced subgraph.

Proof. Let G be a graph which does neither contain K_{4} nor one of the Hajo's graphs as an induced subgraph. The cliques of $\Delta(G)$ are induced by the vertices corresponding to the edges of G incident on a vertex of degree at least 3 whose other end vertices induce a complete graph and by the vertices corresponding to the edges which lie in a triangle. In the first case G contains ar induced K_{4}, which is a contradiction. Therefore, the cliques of $\Delta(G)$ are induced by the edges which lie in a triangle. Let $<u_{1}, u_{2}, u_{3}>$ be a triangle in G. Let e_{1}, e_{2}, e_{3} be the vertices in $\Delta(G)$ corresponding to the cdges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1}$ in G. Then $<e_{1}, e_{2}, e_{3}>$ is a clique in $\Delta(G)$. If a vertex ϵ_{i} for $i=1,2,3$ lies in another clique of $\Delta(G)$, then the edge corresponding to e_{i} lies in another triangle. Therefore, the end vertices of the edge corresponding to e_{i} in G has a neighbor v_{i} for $i=1,2,3 . v_{i} \neq v_{j}$ if $i \neq j$ and v_{1}, v_{2}, v_{3} are not adjacent to u_{3}, u_{1}, u_{2}, respectively, since otherwise G contains a K_{4}, which is a contradiction. Then. $\left\langle u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}\right\rangle$ is one of the Hajo's graphs. a contradiction. Hence, G is clique vertex irreducible.

Converscly, assume that G is clique vertex irreducible. If G contains K_{4} or one of the Hajo's graphs as an induced subgraph, then there exists a clique in $\Delta(G)$, corresponding to a triangle in G, which shares each of its vertices with some other
clique of $\Delta(G)$.

Lemma 6.3.2. If G is K_{4}-free then $\Delta(G)$ is diamond free.

Proof. Let G be a graph which does not contain K_{1} as an induced subgraph. Therefore, a triangle in $\Delta(G)$ can only be induced by a triangle in G. If two vertices of the triangle in $\Delta(G)$ have a common neighbor, then it forces G to have a K_{4}, a contradiction. Therefore, $\Delta(G)$ is diamond free.

Theorem 6.3.3. The second iterated anti-Gallai graph $\Delta^{2}(G)$ is clique vertex irreducible if and only if G does not contain K_{4} as an induced subgraph.

Proof. By Theorem 6.3.1, $\Delta^{2}(G)$ is clique vertex irreducible if and only if $\Delta(G)$ does neither contain K_{4} nor one of the Hajo's graphs as an induced subgraph.

Let G be a graph which docs not contain K_{4} as an induced subgraph. Therefore, G does not contain K_{5} as an induced subgraph and hence $\Delta(G)$ does not contain K_{4} as an induced subgraph. Again. by Lemma 6.3.2. $\Delta(G)$ cannot have diamond as an induced subgraph and hence it does not contain any of the Hajo's graph as an induced subgraph. Hence, $\Delta^{2}(G)$ is clique vertex irreducible.

Converscly, assume that $\Delta^{2}(G)$ is clique vertex irreducible. If G contains K_{4} as an induced subgraph then in $\Delta(G)$ the vertices corresponding to the edges of this K_{1} induce K_{6} minus a perfect matching which is the fourth Hajo's graph, a contradiction. Therefore, G does not contain K_{4} as an induced subgraph.

Theorem 6.3.4. The $n^{\text {th }}$ iterated anti-Gallai graph $\Delta^{n}(G)$ is clique vertex irreducible if and only if G does not contain K_{n+2} as an induced subgraph.

Proof. By Theorem $6.3 .3, \Delta^{n}(G)$ is clique vertex irreducible if and only if $\Delta^{n-2}(G)$
does not contain K_{4} as an induced subgraph. $\Delta^{n-2}(G)$ does not contain K_{4} as an induced subgraph if and only if $\Delta^{n-3}(G)$ does not contain K_{5} as an induced subgraph. Proceeding like this, we get that $\Delta(G)$ does not contain K_{n+1} as an induced subgraph if and only if G does not contain K_{n+2} as an induced subgraph. Therefore, $\Delta^{n}(G)$ is clique vertex irreducible if and only if G does not contain K_{n+2} as an induced subgraph.

Theorem 6.3.5. The anti-Gallai graph $\Delta(G)$ is clique irreducible if and only if G does not contain K_{4} as an induced subgraph.

Proof. Let G be a graph which does not contain K_{4} as an induced subgraph. By Lenma 6.3.2 and Lemma 1.1.10, $\Delta(G)$ is clique irreducible.

Conversely, if G contains a $K_{1}=<u_{1}, u_{2}, u_{3}, u_{4}>$, then it follows that the clique in $\Delta(G)$, corresponding to the triangle $<u_{1}, u_{2}, u_{3}>$ in G, shares each of its edges with some other clique. Therefore, if $\Delta(G)$ is clique irreducible, then G cannot have K_{4} as an induced subgraph.

Theorem 6.3.6. The $n^{\text {th }}$ iterated anti-Galli graph $\Delta^{n}(G)$ is clique irreducible if and only if G does not contain an induced K_{n+3}.

Proof. By Theorem 6.3.5, $\Delta^{n}(G)$ is clique irreducible if and only if $\Delta^{n-1}(G)$ does not contain an induced $K_{4} . \Delta^{n-1}(G)$ does not contain an induced K_{4} if and only if $\Delta^{n \cdot 2}(G)$ does not contain an induced K_{5}. Proceeding like this, we get, $\Delta(G)$ does not contain an incluced K_{n+2} if and only if G does not contain an induced K_{n+3}. Therefore. $\Delta^{n}(G)$ is clique irreducible if and only if G does not contain an induced K_{n+3}.

Theorem 6.3.7. The anti-Gallai graph of a graph $G, \Delta(G)$ is weakly clique irreducible if and only if G is K_{4}-free.

Proof. Let $<u_{1}, u_{2}, \ldots, u_{k}>$ be a clique of size greater than or equal to four in G. Let $e_{i j}$ be the vertex corresponding to the edge $u_{i} u_{j}$ in G for $i, j \in\{1,2, \ldots, k\}$ and $i \neq j$. (Note that $e_{i j}=e_{j i}$). Consider the edge $e_{12} e_{13}$ in $\Delta(G)$. The cliques in $\Delta(G)$ obtained from the clique $<u_{1}, u_{2}, \ldots, u_{k}>$ in G, which contains the edge $e_{12} e_{13}$ are $<e_{12}, e_{13}, \ldots, e_{1 k}>$ and $<e_{12}, e_{23}, e_{31}>$. Both these cliques are not essential, since all of their edges are present in at least one of the cliques $<e_{21}, e_{23}, \ldots, e_{2 k}>$, $<e_{31}, e_{32}, \ldots e_{3 k}>$ or $<e_{1 i}, e_{i j}, e_{j 1}>$ for $i, j \in\{3,4, \ldots, k\}$ and $i \neq j$. Similarly, if there is any other clique which contains the vertices u_{1}, u_{2} and u_{3} in G, then the corresponding cliques in $\Delta(G)$ will not be essential. Therefore, $\Delta(G)$ is not weakly clique irreducible.

Conversely, assume that G is K_{4}-free. Then by Theorem 6.3.5. $\Delta(G)$ is clique irreducible and hence is weakly clique irreducible.

Corollary 6.3.8. The anti-Gallai graph of a graph $G, \Delta(G)$ is weakly clique irreducible if and only if it is clique irreducible.

Corollary 6.3.9. The $n^{\text {th }}$ iterated anti-Gallai graph $\Delta^{n}(G)$ is weakly clique irreducible if and only if it is K_{n+3}-free.

6.4 Cographs

In this section the cographs which are clique irreducible, clique vertex irreducible and weakly clique irreducible are characterized.

Lemma 6.4.1. If G^{c} has at least three non-trivial components then G is clique reducible.

Proof. Let G be a graph such that G^{c} has at least three non trivial components. Let $H_{1}, H_{2}, \ldots, H_{p}$ be the components of G^{c}. Let $G_{i}=H_{i}^{c}$ for $i=1,2, \ldots, p$. Then, $G=G_{1} \vee G_{2} \vee \ldots \vee G_{p}$. Also, any clique of G is the join of the cliques of G_{i} s for $i=1,2, \ldots, p$. At least three of the $H_{i} \mathrm{~s}$ are non-trivial and hence at least three of the G_{i} s have more than one clique. Let $C_{i j}$ for $j=1,2$ be any two of the cliques of G_{i} for $i=1,2,3$. Let S_{i} be a clique of G_{i} for $i=4,5, \ldots, p$. Consider the clique $C_{11} \vee C_{21} \vee C_{31} \vee S_{4} \vee \ldots \vee S_{p}$. Every edge of this clique is present in at least one of the cliques $C_{11} \vee C_{21} \vee C_{32} \vee S_{4} \vee \ldots \vee S_{p}, C_{11} \vee C_{22} \vee C_{31} \vee S_{4} \vee \ldots \vee S_{p}$, $C_{12} \vee C_{21} \vee C_{31} \vee S_{4} \vee \ldots \vee S_{p}$. Therefore, G is clique reducible.

Lemma 6.4.2. If G^{c} has at least two non-trivial components then G is clique verter reducible.

Proof. Let G be a graph whose complement has at least two non trivial components. Let $H_{i}, G_{i}, C_{i j}$ for $i=1,2, \ldots p$ and $j=1,2$ and S_{i} for $i=3,4, \ldots p$ be defined as in the proof of Lemma 6.4.1 and consider the clique $C_{11} \vee C_{21} \vee S_{3} \vee \ldots \vee S_{p}$. Every vertex of this clique is present in at least one of the cliques $C_{11} \vee C_{22} \vee S_{3} \vee \ldots \vee S_{p}$, $C_{12} \vee C_{21} \vee S_{3} \vee \ldots \vee S_{p}$. Therefore, G is clique vertex reducible.

Remark 6.4.1. If G is clique irreducible then G^{c} is either comnected or has exactly two non trivial components and if G is clique vertex irreducible then G^{c} is either connected or has exactly one non-trivial component.

Lemma 6.4.3. The clique vertex reducible graphs and the clique reducible graphs are closed for the operations of union and join.

Theorem 6.4.4. A cograph G is clique vertex irreducible if and only if it can be reduced to a trivial graph by recursively deleting universal vertices in each of the components.

Proof. The proof is by induction on $|V|=n$. For $n=1$ the theorem is trivially true. Assume that the theorem is truc for any cograph with less than n vertices. A disconnected graph is clique vertex irreducible if and only if each of its components is clique vertex irreducible. Therefore, we may assume that, G is a connected cograph with n vertices. Then $G=G_{1} \vee G_{2}$. If both G_{i} s are not complete, then G^{c} will have at least two non trivial components which by Lemma 6.4.2 is a contradiction. Therefore, let G_{1} be complete. Every vertex of G_{1} is a universal vertex of G. Deleting these vertices we get a cograph G_{2} with less than n vertices. Any clique C of G_{2} corresponds to a clique $G_{1} \vee C$ of G and hence has a vertex which does not lie in any other clique of G_{2}. Therefore, G_{2} is a clique irreducible cograph with less than n vertices and hence by the induction hypothesis G_{2} can be reduced to trivial graph by deleting universal vertices. Hence, the theorem.

Theorem 6.4.5. A connected cograph G is clique irreducible if and only if $G=$ $G_{1} \vee G_{2} \vee K_{p}$ where G_{1} and G_{2} are clique vertex irreducible cographs such that G_{i}^{c} is connected for $i=1,2$ and $p \geqslant 0$.

Proof. Let $G=G_{1} \vee G_{2} \vee K_{p}$ where G_{1} and G_{2} are connected clique vertex irrcducible cographs and $p \geqslant 0$. Any clique of G is of the form $H=H_{1} \vee H_{2} \vee K_{p}$, where H_{1} and H_{2} are cliques of G_{1} and G_{2} respectively. Since, G_{1} and G_{2} are clique vertex irreducible, there exist vertices $v_{1} \in H_{1}$ and $v_{2} \in H_{2}$ such that they do not lie in any other clique of G. Therefore, the edge $v_{1} v_{2}$ of H does not lie in any other clique of G and hence G is clique irreducible.

Conversely, assume that G is clique irreducible. Since G is a cograph G^{c} must be disconnected. Therefore by Lemma 6.4.1, G^{c} has exactly two non trivial components. So, $G=G_{1} \vee G_{2} \vee K_{p}$, where G_{1}^{c} and G_{2}^{c} are both connected. Let H_{11} and H_{12} be any two cliques of G_{1} and H_{21} and H_{22} be any two cliques of G_{2}.
$H=H_{11} \vee H_{21} \vee K_{p}$ is a clique of G. Every edge in H_{11}, every edge which joins H_{11} to a vertex of K_{p} and every edge in K_{p} will be present in the clique $H_{11} \vee H_{22} \vee K_{p}$. Again, every edge in H_{21}, every edge which joins H_{21} to a vertex of K_{p} and every edge in K_{p} will be present in the clique $H_{12} \vee H_{21} \vee K_{p}$. But, H has an edge which does not lie in any other clique of G. Therefore, that edge must be an edge which joins a vertex of H_{11} to a vertex of H_{21}. Let that edge be $u_{1} u_{2}$. But, then u_{1} and u_{2} cannot be present in any other clique of G_{1} and G_{2} respectively. Therefore, G_{1} and G_{2} are clique vertex irreducible.

Theorem 6.4.6. The weakly clique irreducible cographs can be recursively characterized as follows.
(1) K_{1} is a weakly clique irreducible cograph.
(2) If G_{1} and G_{2} are weakly clique irreducible cographs, then so is their union $G_{1} \cup G_{2}$.
(3) If G_{1} is a weakly clique irreducible cograph, then so is $G_{1} \vee K_{p}$.
(4) If G_{1} and G_{2} are non-complete weakly clique irreducible cographs, then $G_{1} \vee$ G_{2} is a weakly clique irreducible cograph if and only if every edge in G_{i} belongs to at least one vertex essential clique, for $i=1,2$.

Proof. The graph K_{1} is weakly clique irreducible and mion of any two weakly clique irreducible graphs is weakly clique irreducible. The cliques of $G_{1} \vee K_{p}$ are of the form $H_{1} \vee K_{p}$, where H_{1} is a clique in G_{1}. If H_{1} is essential in G_{1} then so is $H_{1} \vee K_{p}$ in $G_{1} \vee K_{p}$. If H_{1} is an isolated vertex u, then again $H_{1} \vee K_{p}$ is an essential clique in $G_{1} \vee K_{p}$ with all edges with one end vertex u as essential edges. Therefore, $G_{1} \vee K_{p}$ is weakly clique irreducible if G_{1} is weakly clique irreducible.

Let G_{1} and G_{2} be non-complete weakly clique irreducible cographs such that every edge in G_{i} belongs to at least one vertex essential clique, for $i=1,2$. If H_{i} is a vertex essential clique in G_{i} where $r_{i} \in V\left(H_{i}\right)$ is the vertex which does not belong to any other clique in G_{i} for $i=1,2$ then $H_{1} \vee H_{2}$ is an essential clique in $G_{1} \vee G_{2}$ where $v_{1} v_{2}$ is an essential edge. Therefore, every edge in $E\left(G_{i}\right)$ belongs to an essential clique in $G_{1} \vee G_{2}$, since every edge in G_{i} belongs to at least one vertex essential clique, for $i=1,2$. Let $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Consider the edge $u v \in E\left(G_{1} \vee G_{2}\right)$.

Case 1: u and v are isolated vertices in G_{1} and G_{2} respectively.

In this case, $u v$ is a clique and is essential.

Case 2: u is an isolated vertex in G_{1}, but v is not an isolated vertex in G_{2}.

Let $v^{\prime} \in N(v)$. There exist a vertex essential clique C in G_{2} which contains the edge $v v^{\prime}$. Let w be the essential vertex in C. Therefore, $u w$ is an essential edge in the clique $\{u\} \vee C$. Hence the edge $u v$ belongs to the essential clique $\{u\} \vee C$ in $G_{1} \vee G_{2}$.

The case where, u is not an isolated vertex in G_{1}, but v is an isolated vertex in G_{2} can be proved similarly.

Case 3:u and v are not isolated vertices in G_{1} and G_{2} respectively:

Let $u^{\prime} \in N(u)$ and $v^{\prime} \in N(v)$. Let H_{1} and H_{2} be the vertex essential cliques in G_{1} and G_{2} respectively, which contains the edges $u u^{\prime}$ and $v v^{\prime}$ respectively. Let w_{i} be the essential vertex in H_{i} for $i=1,2$. Therefore, $w_{1} w_{2}$ is an essential edge in the clique $H_{1} \vee H_{2}$. Hence the edge uv belongs to the essential clique $H_{1} \vee H_{2}$ in $G_{1} \vee G_{2}$.

Therefore, every edge in $G_{1} \vee G_{2}$ belongs to an essential clique and hence it is weakly clique irreducible.

Conversely, assume that G is a weakly clique irreducible cograph. If G is disconnected then it is the union of weakly clique irreducible cographs. If G has universal vertices then it is the join of a weakly clique irreducible graph with K_{p}, where p is the number of universal vertices.

Therefore, let G be a connected cograph without universal vertices. Hence, $G=G_{1} \vee G_{2}$ where both G_{1} and G_{2} are not complete. None of the edges in $E\left(G_{1}\right) \cup E\left(G_{2}\right)$ are essential, since both G_{1} and G_{2} contains more than one clique. Therefore an essential edge in $G_{1} \vee G_{2}$, if it exist, must be of the form $u v$, where $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Then, u and v are essential vertices of G_{1} and G_{2} respectively. Hence, for $i=1,2$, the edges of G_{i} can be covered by essential cliques if and only if every edge in G_{i} belongs to at least one vertex essential clique. Therefore, if G_{1} and G_{2} are non-complete weakly clique irreducible cographs, then $G_{1} \vee G_{2}$ is a weakly clique irreducible cograph if and only if every edge in G_{i} belongs to at least one vertex essential clique, for $i=1,2$.

Hence, the theorem.

6.5 Distance hereditary graphs

In this section the distance hereditary graphs which are clique irreducible, clique vertex irreducible and weakly clique irreducible are characterized.

Lemma 6.5.1. The clique vertex reducible (clique reducible) graphs are closed
under the operations of attaching a pendant vertex, a true twin and a false twin.

Proof. Let G be a clique vertex reducible (clique reducible) graph and C be a clique in G, all of whose vertices (edges) are present in some other clique in G.

The cliques of the graph obtained by attaching a pendant vertex u to a vertex v of G are the cliques of G together with the clique $u x$. Therefore C is a clique in this new graph and all of its vertices (edges) are present in some other clique.

The cliques of the graph obtained by attaching a truc twin u to the vertex v of G are the cliques of G which does not contain the vertex v and the cliques of G which contains v together with the vertex u. If $v \notin C$, then C is a clique in the new graph and all its vertices (edges) are present in some other clicue. If $v \in C$, then all the vertices (cdges) in C other than u (the edges with one end vertex u) are already present in some other clique. Since v is (the edges with one end vertex v are) present in some other clique, u (the edges with one end vertex u) also must be present in some other clique.

The cliques of the graph obtained by attaching a false twin u to the vertex v of G are the cliques of G and the cliques of the form $(S \cup\{u\})-\{v\}$. where S is a clique in G which contains the vertex v. Therefore. C is a clique in this new graph and all of its vertices (edges) are present in some other clique.

Theorem 6.5.2. The clique vertex irreducible distance hereditary graphs can be recursively characterized as follows.
(1) K_{1} is a clique vertex irreducible distance hereditary graph.
(2) If G is a clique vertex irreducible distance hereditary graph, then so is the graph obtained by attaching a pendant vertex to a vertex $v \in V(G)$, where v satisfies either $N(v)$ is not complete or there exists $w \in N(v)$ such that $N(u)=N(v)$.
(3) If G is a clique vertex irreducible distance hereditary graph, then so is the graph obtained by attaching a true twin.
(4) If G is a clique vertex irreducible distance hereditary graph, then so is the graph obtained by attaching a false twin to a vertex $v \in V(G)$, where v satisfies $<N(v)>$ is complete.

Proof. The graph K_{1} is clique vertex irreducible. Let G be a clique vertex irreducible graph. Let G^{\prime} be a graph obtained by attaching a pendant vertex u to a vertex v where v satisfies the conditions in theorem. The cliques of G^{\prime} are precisely, the cliques of G and the edge $u v$. The clique $u v$ contains the vertex u which does not belong to any other clique of G^{\prime}. Every clique of G^{\prime} which does not contain v also has a vertex which does not lie in any other clique of G^{\prime}, since G is clique vertex irreducible. Let C be a clique of G which contains the vertex v. If $N(v)$ is not complete then C contains a vertex $v^{\prime} \neq v$ which is not present in any other clique of G and hence of G^{\prime}. If $N(v)$ is complete, then C contains a vertex which does not belong to any other clique of G^{\prime} if and only if there exist a vertex $w \in V(C)$ which does not belong to any other clique of G. i.e; if and only if $N(w)=N(v)$.

Let G be a clique vertex irreducible graph. Let G^{\prime} be the graph obtained by attaching a true twin u to a vertex v of G. The cliques of G^{\prime} are precisely, the cliques of G which does not contain v and the cliques of G which contains v together with the vertex u. Each such clique contains a vertex which does not lie in any other clique of G^{\prime}, since G is clique vertex irrextucible and hence G^{\prime} is also clique vertex irreducible.

Let G^{\prime} be the graph obtained by attaching a false twin u to a vertex v of G. The cliques of G^{\prime} are the cliques of G together with the cliques of the form
$(C \cup\{u\})-\{v\}$ where C is a clique of G which contains v. The cliques of G^{\prime} which does not contain v will continue to have a vertex which does not lie in any other clique. Let C be a clique of G which contains the vertex v. Every vertex of the clique C other than v will be present in the clique $(C \cup\{u\})-\{v\}$ also. Therefore. C contains a vertex which does not lie in any other clique of G^{\prime} if and only if v does not belong to any other clique of G, which happens if and only if $<N(v)>$ is complete.

Also, any distance hereditary graph G can be obtained from K_{1} by the operations of attaching pendant vertices, introducing true twins and introducing false twins (Lemma 1.1.3) and by Lemma 6.5.1, the theorem follows.

Theorem 6.5.3. The weakly clique irreducible distance hereditary graphs can be recursively characterized as follows.
(1) K_{2} is a clique irreducible distance hereditary graph.
(2) If G is a clique irreducible distance hereditary graph then so is the graph obtained by attaching a pendant vertex.
(3) If G is a clique irreducible distance hereditary graph then so is the graph obtained by attaching a true twin.
(4) If G is a clique irreducible distance hereditary graph then so is the graph obtained by attaching a false twin to a vertex V if $\mathcal{N}(v)>$ is clique vertex irreducible.

Proof. The graph K_{2} is clique irreducible. Let G be a clique irreducible graph. Let G^{\prime} be the graph obtained by attaching a pendant vertex u to a vertex v of G. The cliques of G^{\prime} are preciscly, the cliques of G and the cdge uv. Every clique
contains an edge which does not lie in any other clique of G^{\prime} and hence G^{\prime} is clique irreducible.

Let G be a clique irreducible graph. Let G^{\prime} be the graph obtained by attaching a true twin u to a vertex v of G. The cliques of G^{\prime} are precisely, the cliques of G which does not contain v and the cliques of G which contains v together with the vertex u. Every such clique contains an edge which does not lie in any other clique, since G is clique irreducible and hence $G^{\prime \prime}$ is also clique irreducible.

Let G^{\prime} be the graph obtained by attaching a false twin u to a vertex v of G. The cliques of G^{\prime} are the cliques of G together with the cliques of the form $(C \cup\{u\})-\{v\}$ where C is a clique of G which contains v. The cliques of G^{\prime} which does not contain v will continue to have an edge which does not lie in any other clique. Let C be a clique of G which contains the vertex v. Every edge of C which does not contain v will be present in the clique $(C \cup\{u\})-\{v\}$ also. Therefore, C contains an edge which does not lie in any other clique of G^{\prime} if and only if there exists an edge $v v^{\prime}$ which does not lie in any other clique of G. Therefore, the vertex v^{\prime} is not present in any clique of $<N(v)>$ other than $C-\{v\}$. So, $<N\{v\}>$ is clique vertex irreducible.

The converse follows by Lemma 1.1.3 and by Lemma 6.5.1.

Lemma 6.5.4. The class of weakly clique reducible graphs is closed under the operations of attaching pendant vertices, true twins and false twins.

Proof. Let G be a weakly clique reducible graph and let e be the edge which is not covered by any of the essential cliques in G.

Let G^{\prime} be the graph obtained from G by attaching a pendant vertex. The essen-
tial cliques of G^{\prime} are the essential cliques of G together with the newly introduced edge. But, these essential cliques will not cover the edge e.

Let G^{\prime} be the graph obtained from G by attaching a true twin v to a vertex u. The essential cliques of G^{\prime} are the essential cliques of G which does not contain the vertex u and the cliques of the form $C \cup\{v\}$, where C is an essential clique in G which contains the vertex u. Still, the edge e is not covered by essential cliques.

Let G^{\prime} be the graph obtained from G by attaching a false twin v to a vertex u. The essential cliques of G^{\prime} are the essential cliques of G which does not contain the vertex u, the cliques of the form $(C-\{u\}) \cup\{v\}$ and C, where C is an essential clique in G which contains the vertex u and which has an essential edge with one end vertex u. Again, the edge e is not covered by the essential cliques.

Hence the lemma.

Theorem 6.5.5. A distance hereditary graph G is weakly clique irreducible if and only if all its induced subgraphs are weakly clique irreducible.

Theorem 6.5.6. A distance hereditary graph G is weakly clique irreducible if and only if G does not contain F_{19} in Fig: 1.9 as an induced subgraph.

Proof. By Theorem 6.5.5, G is weakly clique irreducible if and only if all its induced subgraphs are weakly clique irreducible. But. a graph G is hereditary weakly clique irreducible if and only if G does not contain any of the graphs in Fig : 1.9 as an induced subgraph (Lemma 1.1.11). But. G cannot have any of the graphs $F_{1}, F_{2} \ldots F_{18}$ as an induced subgraph, since they contain gem as an induced subgraph (Lemma 1.1.4). Hence, the theorem.

Corollary 6.5.7. A cograph G is weahly maximal clique irreducible if and only if
G does not contain F_{19} in 1.1.9 as an induced subgraph.

Proof. Since, cographs are a subclass of distance hereditary graphs (Lemma 1.1.5) and F_{19} in Fig : 1.9 is a cograph, the corollary follows.

Theorem 6.5.8. The weakly clique irreducible distance hereditary graphs can be recursively characterized as follows.
(1) K_{2} is a weakly clique irreducible distance hereditary graph.
(2) If G is a weakly clique irreducible distance hereditary graph then so is the graph obtained by attaching pendent vertices to the vertices of G.
(3) If G is a weakly clique irreducible distance hereditary graph then so is the graph obtained by attaching true twins to the vertices of G.
(4) If G is weakly clique irreducible distance hereditary graph then so is the graph obtained by attaching false twins to a vertex u where $<N(u)>$ is C_{4}-free is also weakly clique irreducible.

Proof. The graph K_{2} is weakly clique irreducible. Let G be a weakly clique irreducible distance hereditary graph. If G does not have F_{19} as an induced subgraph then a graph obtained by any of the above operations also cannot have F_{19} as an induced subgraph. Therefore, they are all weakly clique irreducible.

Conversely: by the recursive definition of distance hereditary graphs (Lemma 1.1.3), it is enough if we could prove that, attaching a false twin v to a vertex u which contains a $C_{4}=<u_{1}, u_{2}, u_{3}, u_{4}>$ in $N(u)$. gives a weakly clique reducible graph. Clearly: $<u, v, u_{1}, u_{2}, u_{3}, u_{4}>$ is F_{19}.

Hence the theorem.

List of some open problems

1. Characterize non-isomorphic graphs of the same order having isomorphic Gallai graphs (anti-Gallai graphs).
2. Characterize graphs G for which the Gallai and the anti-Gallai operators commute.
3. Characterize graphs G for which $\Gamma(G)=\Delta(G)$.
4. Characterize all connected graphs which satisfy $\gamma(G)=\gamma_{c d}(G)$.
5. Characterize all connected graphs which satisfy $\gamma_{c d}(G)=\gamma_{g c d}(G)$.
6. Identify the domination parameters which satisfy Vizing's type relation under any of the graph products.
7. Characterize the clique perfect graphs [73].
8. Identify special classes of clique perfect graphs.
9. Estimate sharp upper bounds for the clicue transversal number for special classes of graphs and characterize the graphs which attains this upper bound.
10. Does there exist graph classes which satisfy the $<t>$-property for every t ?
11. Characterize the clique irreducible graphs, the clique vertex irreducible graphs and the weakly clique irreducible graphs.

List of symbols

C_{n}	Cycle of length n
$d(v)$	Degree of a vertex
$d(G)$	Diameter of a graph G
$d(u, v)$ or $d_{G}(u, v)$	Distance between u and v in G
E or $E(G)$	Edge set of G
$G \square H$	Cartesian product of G and H
$G \vee H$	Join of G and H
$G \otimes H$	Strong product of G and H
$G \times H$	Tensor product of G and H
$G \cup H$	Union of G and H
$K(G)$	- Clique graph of G
$K_{m, n}$	Complete bipartite graph where m and n are the cardinalities of the partitions
K_{n}	- Complete graph on n vertices
$L(G)$	- Line graph of G
$L^{k}(G)$	- $\mathrm{k}^{\text {th }}$ iterated line graph of G
m or $m(G)$	- Number of edges of G
$N[v]$	- Closed neighborhood of v
$N(r)$	- Open neighborhood of v
$n G$	- n disjoint copies of G
n or $n(G)$	Number of vertices of G
$\operatorname{NEPS}\left(G_{1}, G_{2}, \mathcal{B}\right)$	Non complete expended p sum of G_{1} and G_{2} with basis \mathcal{B}

$P_{n} \quad$ - Path on n vertices
$r(G) \quad-\quad$ Radius of G
$<S>\quad$ - Graph induced by $S \subseteq V$
$T_{k}(G) \quad-\quad$ Trestled graph of index k
V or $V(G)$ - Vertex set of G
$\alpha(G) \quad$ - Independence number of G
$\alpha_{c}(G) \quad$ - Clique independence number of G
$B(G) \quad-\quad$ Covering number of G
$\gamma(G) \quad-\quad$ Domination number of G
$\gamma_{c d}(G) \quad-\quad$ Cographic domination number of G
$\gamma_{g}(G) \quad$ - Global domination number of G
$\gamma_{\text {ged }}(G) \quad$ - Global cographic domination number of G
$\gamma_{i}(G)$ - Independence domination number of G
$\tau_{c}(G) \quad-\quad$ Clique transversal number of G
$\chi(G) \quad$ - Chromatic number of G
$\omega(G) \quad-\quad$ Clique number of G
$\Gamma(G) \quad$ - Gallai graph of G
$\Gamma^{k}(G) \quad-\quad k^{t h}$ iterated Gallai graph of G
$\Delta(G) \quad$ - Anti-Gallai graph of G
$\Delta^{k}(G) \quad-\quad k^{t h}$ iterated anti-Gallai graph of G

Bibliography

[1] T. Andreae, On the clique transversal number of chordal graphs, Discrete Math., 191 (1998), 3-11.
[2] Aparna Lakshmanan S., S. B. Rao, A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem., 132(1) (2007), 43-54.
[3] Aparna Lakshmanan S.. A. Vijayakumar, A note on some domination parameters in graph products, Congr. Numer., (Proceedings of the International Conference on Recent Developments in Combinatorics and Graph Theory, 2007, India), (to appear).
[4] Aparna Lakshmanan S., A. Vijayakumar, Clique irreducibility and clique vertex irreduciblility of graphs, (commmicated).
[5] Aparna Lakshmanan S., A. Vijayakumar, Clique irreducibility of some iterative classes of graphs, Discuss. Math. Graph Theory, (to appear).
[6] Aparna Lakshmanan S.. A. Vijayakumar, On weakly clique irreducible graphs, (communicated).
(7] Aparna Lakshmanan S., A. Vijayakumar, Some properties of the clique graph of a cograph, Proccedings of the International Conference on Discrete Mathematics, Bangalore, India, (2006), (to appear).
[8] Aparna Lakshmanan S., A. Vijayakumar, The $<t>$-property of some classes of graphs, Discrete Math., (to appear).
[9] G. Bacsó, Z. Tuza, Dominating cliques in P_{5}-free graphs, Period. Math. Hungar., 21(4) (1990), 303-308.
[10] R. Balakrishnan, P. Paulraja. Self-clique graphs and diameters of iterated clique graphs, Util. Math. 29 (1986), 263-268.
[11] R. Balakrishnan, K. Ranganathan, A text book of graph theory, Springer (1999).
[12] V. Balachandran, P. Nagavamsi, C. Pandu Rangan, Clique transversal and clique independence on comparability graphs, Inform. Process. Lett. 58 (1996), 181-184.
[13] H. J. Bandelt, H. M. Mulder, Distance hereditary graphs, J. Combin. Theory B, 41 (1986). 182-208.
[14] A. Brandstädt, V. B. Le, J. P. Spinrad, Graph classes - a survey, SIAM (1999).
[15] A. Brandstädt, V. Chepoi, F. Dragan, Clique r-domination and clique rpacking problems on dually chordal graphs, SIAM J. Discrete Math. 11 (1998), 24-29.
[16] L. W. Beineke. R. J. Wilson, (Eds.) Graph Comections, Oxford University Press, (1997).
[17] L. W. Beincke, On derived graphs and digraphs, in Beitrage zur Graphentheorie. Leipzig, (1968), 17-23.
[18] C. Berge, The Theory of Graphs, Methuen, (1962).
[19] N. L. Biggs, E. K. Lloyd, R. J. Wilson, Graph Theory 1736-1936, Oxford University Press, (1976).
[20] B. Bollohás, Modern Graph Theory, Springer, (1991).
[21] F. Bonomo, M. Chundnovsky; G. Durán, Partial characterizations of clique perfect graphs I: subclasses of claw-free graphs, Discrete Appl. Math., 156(7), 2008, 1058-1082.
[22] F. Bonomo, M. Chundnovsky, G. Durán, Partial characterizations of clique perfect graphs II: diamond-free and Helly circular-arc graphs, Discrete Math., in press.
[23] F. Bonomo, G. Durán, M. Groshaus and J. L. Szwarcfiter. On clique perfect and K-perfect graphs, Ars Combin.. 80 (2006), 97 - 112.
[24] M. Chang, M. Farber, Tuza Z., Algorithmic aspects of neighbourhood numbers, SIAM J. Discrete Math., 6 (1993), $24-29$.
[25] L. Chong-Keang, P. Yee-Hock, On graphs without multicliqual edges, J. Graph Theory, 5 (1981), 443-451.
[26] M. Chundnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math., 164 (2006), 51 - 229.
[27] D. G. Corneil, H. Lerchs, L. S. Burlington, Complement reducible graphs, Discrete Appl. Math., $3(3)(1981)$, 163-174.
[28] D. G. Comeil. Y. Perl, I. K. Stewart, A linear recognition algorithm for cographs. SIAM J. Comput. 14 (1985), 926 - 934.
[29] V. Chvátal, P. L. Hammer, Set packing and threshold graphs, Research report, Computer Science Department, University of Waterloo, Canada CORR, (1973), 73-121.
[30] D. Cvetković, R. Lucić, A new generalization of the concept of the p-sum of graphs, Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz. 302 - 319 (1970), 67-71.
[31] R. Diestel, Graph Theory, Springer, (1991).
[32] G. Durán, M. Lin, J. L. Szwarcfiter, On clique-transversal and cliqueindependent sets, Ann. Oper. Res., 116 (2002), 71 - 77.
[33] P. Erdös, T. Gallai, Z. Tuza, Covering the cliques of a graph with vertices, Discrete Math. 108 (1992), 279-289.
[34] M. R. Fellows, G. H. Fricke, S. T. Hedetniemi, D. Jacobs, The private neighbor cube, SIAM J. Discrete Math., 7(1) (1994), 41-47.
[35] C. Flotow, Obere Schranken für die Clique-Transversalzahl eines Graphen, Diploma Thesis, Uni.Hamburg, 1992.
[36] S. Földes, P. L. Hammer, Split graphs, Congr. Numer., 19 (1977), 311 - 315.
[37] M. C. Golumbic, Algorithmic graph theory and perfect graphs, Acadamic Press, New York (1980).
[38] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey Theory, Wiley, (1990).
[39] S.Gravier, A. Khelladi, On the domination number of cross products of graphs, Discrete Math., 145 (1995) 273-277.
[40] J. L. Gross, T. W. Tucker, Topological Graph Theory, Dover. (2001).
[41] V. Guruswami, C. Pandu Rangan, Algorithmic aspects of clique transversal and clique independent sets, Discrete Appl. Math. 100 (2000). 183-202.
[42] R.C. Hamelink, A partial characterization of clique graphs, J. Combin. Theory 5 (1968), 192-197.
[43] F. Harary, Graph Theory, AddisonWesley, (1969); Narosa, (2000).
[44] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker; Inc. (1998).
[45] E. Howorka, A characterization of distance hereditary graphs, Quart. J. Math. Oxford, Ser.2, 28 (1977), 25-31.
[46] R. W. Hung, S. C. Wu, M. S. Chang, Hamiltonian cycle problem on distance hereditary graphs, J. Inform. Sci. and Engg. 19 (2003), 827-838.
[47] M. S. Jacobson and L. F. Kinch, On the domination number of products of graphs : I, Ars Combin., 18 (1984), 33-44.
[48] S. Klavžar, B. Zmazek, On a Vizing-like conjecture for direct product graphs, Discrete Math. 156 (1996), 243-246.
[49] D. König, Theorie der Endlichen und Unendlichen Graphen, Leipzig, (1936).
[50] C. Kuratowski, Sur le probleme des courbes gauches en topologie, Fund. Math. $15(1930), 271-283$.
[51] F. Larrión, C. P. de Mello, A. Morgana, V. Nemmann-Lara, M. A. Pizaña, The clique operator on cographs and serial graphs, Discrete Math., 282 (2004), 183-191.
[52] V. B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math., 159 (1996), 179-189.
[53] V. B. Le, Mortality of iterated Gallai graphs, Period. Math. Hungar., 27(2) (1993), 105-124.
[54] C. M. Lee, M. S. Chang, Distance-hereditary graphs are clique-perfect, Discrete Appl. Math., 154(3) (2006), 525-536.
[55] C. L. Lucchesi, C. P. Mello, J. L. Szwarefiter, On clique compiete graphs, Discrete Math. 183 (1998), 247-254.
[56] C. W. Marshall, Applied Graph Theory, Wiley, (1971).
[57] T. A. Mckee, Dimensions for cographs, Ars Combin. 56 (2000), 85-95.
[58] T. A. Mckee, Intersection graphs and cographs, Congr. Numer. 78 (1990), 223 - 230.
[59] V. Neumann-Lara, On clique divergent graphs, In problèmes Combinatoires et Théorie des Graphes, Orsey, France, Colloques Internationaux C.N.R.S., 260 (1978), 313-315.
[60] R. J. Opsut, F. S. Roberts, On the fleet maintenance, mobile radio frequency, task assignment and traffic problems, in:G.Chartrand et.al.. eds., The Theory and Applications of Graphs, Wiley, Newyork, (1981). 479-492.
[61] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. 38, Providence (R.I.)(1962).
[62] C. Payan, N. H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32.
[63] E. Prisner, Graph Dynamics, Longman (1995).
[64] E. Prisner, Hercditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993), 216-220.
[65] D. F. Rall, Packing and domination invariants on cartesian products and direct products, Pre-conference proceedings of the International Conference on Discrete Mathematics (ICDM 2006), Bangalore, India.
[66] S. B. Rao, Aparna Lakshmanan S., A. Vijayakumar, Cographic and global cographic domination number of a graph, Ars Combin., (to appear)
[67] S. B. Rao, A. Vijayakumar, On the median and the anti-median of a cograph, Internat. J. Pure Appl. Math., (to appear).
[68] F. S. Roberts, Discrete Mathematical Models with Applications to Social, Biological and Environmental Problems, Prentice - Hall, (1976).
[69] F. S. Roberts, J. H. Spencer, A characterization of clique graphs, J. Combin. Theory Ser. B, 10 (1971), 102 - 108.
[70] G. F. Royle, The rank of a cograph, The Electron. J. Combin. 10 (2003).
[71] E. Sampathkumar, The global domination number of a graph, J. Math. Plys. 23 (1989), $377-385$.
[72] L. Sun: Two classes of perfect graphs, J. Combin. Theory Ser. B 53 (1991), 273-292.
[73] J. L. Szwarcfiter, A survey on clique graphs. Recent Advances in Algorithms and Combinatorics, (2003), 109-136.
[74] Z. Tuza, Covering all cliques of a graph, Discrete Math., 86 (1990), 117-126.
[75] V. G. Vizing, Some unsolved problems in graph theory, Uspechi Mat. Nauk 23 (1968) 6(144), 117-134.
[76] T. M. Wang, On characterizing weakly maximal clique irreducible graphs, Congr. Numer., 163 (2003), 177-188.
[77] T. M. Wang, On line graphs which are weakly maximal clique irreducible. Ars. Combin., 76(2005).
[78] W. D. Wallis, G. H. Zhang, On maximal clique irreducible graphs, J. Combin. Math. Combin. Comput. 8 (1990), 187-193.
[79] D. B. West, Introduction to Graph Theory, Prentice - Hall, (1999).
[80] H. Whitney, Congruent graphs and connectivity of graphs, Amer. J. Math. 54 (1932), $150-168$.

Index

acyclic, 6
adjacent, 4
anti-Gallai graph. 2, 8, 18, 29, 99
basis of NEPS, 10
bipartite, 6
cartesian product, 10
chromatic number, 3. 7, 40, 80
clique, 3,6
complete, 7, 78
graph, 3, 7, 20, 77
Helly, 7
independence number, 3, 11, 73, 82
independent set, 11
irreducible graph, $3,13,15,21$
number, 3, 6
perfect graph, 3, 12, 15, 21, 65, 66, 74, 83
reducible graph, 13, 102, 107
transversal number, 3, 11, 20. 65 .
72, 82
transversal set. 11, 65
vertex irreducible graph, 17, 85, 92, 99, 103, 108
vertex reducible graph, 17, 103, 107
closed neighborhood, 5
cograph, 3, 9, 14, 15, 19, 34, 35, 37, $51,66,77,102$
complement, 2, 6
complete
bipartite graph, 6
graph, 6
component, 6
connected, 5
covering: 6
covering number. 6
cycle, 5
degree, 5
diameter, 8, 42. 77
disconnected graph, 6, 50
distance, 7
distance hereditary graph, $3,14,15$, 21, 107
domination number, $8,45,80$
cographic, 17, 45
global, 9, 50
global cographic, 17, 47
independent, 9, 45
eccent ricity, 7
edge, 4
end vertex, 4
essential, 13
edge, 18
vertex, 18

1-factor, 5
factors of NEPS, 10
false twin, 5
forbidden subgraph, 3, 5, 32

Gallai graph, 2, 8, 18, 29, 92
graph, 4
class, 2-4
operator, 2

H-free, 5
Hajo's graph, 16
Helly property, 7,20
hereditary clique-Helly, $7,15,16$
hereditary weakly maximal clique irreducible, 16
highly clique imperfect graph, 75
incident. 4
independence number, 6
independent, 6
induced subgraph, 4
intersection graph, 3, 6
isomorphic, 5
iterated anti-Gallai graph, 8, 99
iterated Gallai graph. 8
iterated line graph, 8, 85
join, 9
k-regular, 5
line graph, 2, 3, 8, 22, 85
minimal dominating. 8

NEPS, 10. 58
non-complete extended p-sum, 10
NP-complete: 57.58
open neighborhood. 5
order, 4
path, 5
pendant vertex, 5
perfect graph, 3, 12, 15, 71
perfect matching, 5
planar graph, 3, 9, 51, 70
plane representation, 9
proper vertex coloring, 7
radius, 7,42
self complementary, 6
size: 4
spanning subgraph, 4,8
split graph, $3,12,16,21,37$
star, 6
strong product, 10
sub multiplicative, 10
subgraph, 4
super multiplicative, 10
$<t>$-property, 12,20
tensor product, 10
threshold graph, $3,12,17,37$
totally disconnected, 6
tree, $3,6,46,49$
trestled graph of index k, 13, 72
triangle, 6
true twin, 5
universal vertex, 5
vertex, 4
coloring, 7
essential, 18
hereditary, 5
Vizing's conjecture, 60
weakly clique irreducible graph, 3,13 , 22
weakly clique reducible graph, 13

