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Chapter 1 

Introduction 

The origin of graph theory dates back to more than two hundred a.nd seventy years 

when the renowned Swiss :\lathcmatician Leonhard Euler solved the 'Konigsberg 

Bridge Problem' in his talk 'The solution of a pwblem relating to geometry of 

position' presented at St.Petersberg Acadamy on 26th August, 1735. Since then 

the subject has grown into one of t.he most inter disciplinary branches in mathe­

ma.tics ,,"ith a. great variety of a.pplications. The first book on this subject was by 

B.Konig [49]. Volumes have been written on the rich theory and the very many 

applicat.ions of graphs ([11], [19], [68], [79]), including the pioneer ,vorks of C.Berge 

[18], F. Harary [43] and O.Ore [61]. 

The applications of grilph theory Ul operation research, social science, psy­

chology and physics are detailed in C.\V.:vlarshall [56]. J.L.Gross [40] discusses a 

variety of graph classes with IlllllH~rOllS illuminating examples which arc of topolog­

ical relevance. The d('wJopment of graph theor.Y with it.s applications to electrical 

llct\vorks, flows dud (:(JlllH'ctivity ill'(' illcl1\d(~d ill [20] and [:31]. Rallls(~)" theory 

1 



Chapter 1 Introduction 2 

is an interesting branch of graph theory which relates it to the number theory. 

R.L.Graham, B.L.Rothschilcl and J.H.Spencer ha.s written a book [:38] in this area 

which covers all major developments in the subject. In [16], connections of graph 

theory with other bram.:hes of mathematics such as coding theory. algebra etc are 

discussed. 

This thesis entitled 'Studies on Some Graph Classes' is a humble attempt 

at making a small addition to the vast ocean of results in graph theory. 

By the terIll graph class, we Illean a collection of graphs \vhich satisfies some 

specific properties. 

A graph opera.tor is a mapping T : 9 -----7 9' where 9 a.nd 9' arc families of graphs. 

The most familia.r examples of graph operators are the graph complement and the 

line graph. A varict.y of graph classes can he obtained by applying suitable graph 

operators. The study of graph operators initiated \vith a set of three problems on 

line graphs posed by O. Ore [61]. 

• Determille' all graphs isomorphic to their liue graph. 

• \Vhen the line graph is given, is the original graph uniquely determined? 

• Investigate iterated line graphs. 

Graph OPCl'fItOl'S ilIld its dynamics - fixedness, conVE'rgencE', divergence etc. -

are extensively st.udied in [63]- The Gallai graphs, the anti-Gallai graphs, tlw cycle 

graphs and the cdgt' graphs arc SOllle of the gUlph classes obtained by choosing 

appropriate graph operators. 

Allot her wav of idcntih-ing graph classes is t hrollgh finite or infinite collection of 
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forbidden subgraphs. The inclusions behveen gra.ph classes can be easily identified 

from the forhidden subgraph characterizations. The co graphs , the split graphs, 

the threshold graphs and the linc graphs arc some of the interesting graph classes 

which admit. finite forbidden subgr8ph chn.racterizations. There are other interest­

ing graph cla.sses defined by forbidding an infinite collection of induced subgra,phs 

like the perfect graphs, t.he dist.ance hereditary graphs, t.he comparability graphs 

and the chordal graphs. The famous concept of minors is also an example of for­

bidden subgraph chanl,ct.erizat.ioll. Kmatowski's thporem [50] on planar graphs is 

a striking example of this kind. 

Yet another way of defining gra.ph classes is through recursive characterizations. 

The trees, the cographs a.nd the distance IlCreditary graphs aw some of the graph 

chtsSPs \vhich admit. recursive characterizations. 

The intersection graph is a very general notion in \vhich objects are assigned 

to the vertices of a graph and two distinct vertices arc adjacent if t.heir objects 

have non empty intersection. A variety of well studied graph classes including t.he 

line graphs: the chordal graphs, the clique graphs a.nd the block graphs are special 

types of intersection graphs. 

Graph cl(lsse::; also arise in connection with various graph parameters such as 

the clique transversal number, the clique independence llllmber, the chromatic 

lllllnber and the clique lIIunbcr awl various :-iub structures of a graph such as the 

cliques. the dominat.ing sets etc. The perfect graphs, t.he clique perfect graphs, the 

clique irreducible graphs ~Uld thr~ weakly clique irreducible graphs are examples of 

such graph classes. 

In any discllssion on graph classes, a mam source IS the classical book by 
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M.C.Golumbic, Algorithmic Graph Theory and Pe'fject Graphs [37]. A detailed 

study of about two hundred graph classes with an extensive bibliography is in the 

book :Cr'Q,ph Classes: A s·u.Tvey' by A. Brandstiiclt, V. B. Le and J. P. SpinrHd 

[14]. 

This thesis is mainly concerned \vit}} the graph classes - the Gallai graphs, the 

anti-Gallai graphs, the cographs, the clique graphs, t.he clique irreducible graphs 

and the weakly clique irreducible graphs. 

1.1 Basic definitions and lemmas 

The basic notations, terminology and definitions a.re from [11]. [14], [30], [34], 

[37], [52], [60], [65] and [71]. 

Definition 1.1.1. A graph G = (V, E) consists of a non-empty collection of 

points, \l ca.lled its vertices and a set of ullOl'dered pairs of distinct vertices, E 

called its edges. The nnOl'dered pair of vertices {11, v} E E are called the end 

vertices of the edge e = {11, v}. In that case, the vertex 11 is said to be adjacent 

to t.he vertex v. 1\.\'0 edges e and c' are said to be incident if they have a common 

end wrtex. 1\.-'1 is called the order of G. denoted by n. or n(G) and IEI is called 

the size of G, denoted by rn, orm.(G). A graph G is trivial or empty if it has no 

edges. 

Definition 1.1.2. A graph II = (V', E') is called a subgraph of G if V' ~ V 

and E' ~ E. A subgraph H is a spanning subgraph if Il' = V. H is called 

an induced subgraph if E' is the collection of all edges in G which has both it.s 
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end vertices in V'. < V' > denotes the induced subgraph with vertex set V'. A 

property P of a graph G is vertex hereditary if every induced subgraph of G has 

the propert.y P. A graph H is a forbidden subgraph for a property P, if any 

graph G ,vhich satisfies the property" P cannot have H as an induced subgraph. A 

graph G if:) H-free if it does not have H as an induced subgraph. 

Definition 1.1.3. The number of vertices adjacent t.o a vertex v is called the 

degree of the vertex, denoted by d(v). A vertex of degree one is called a pendant 

vertex and a vertex of degree n - 1 is called a universal vertex. 

Definition 1.1.4. A graph G is k-regular if d(v) = k for every vertex '7) E V(G). 

A spanning I-regular graph is called a I-factor or perfect matching. 

Definition 1.1.5. The set of all vertices adjacent to a vertex v is called open 

neighborhood of v, denoted by N( v). The open neighborhoocl of v together vrith 

the vertex v is called the closed neighborhood of I:, denoted by N[v]. 

Definition 1.1.6. A false twin of a V(~rtex 1], is Cl vertex 11 which is adjacent to 

all the vertices in iV[U]. A true twin of a vertex ?i is a vertex v \vhich is adjacent 

to all the vertices in N (11). 

Definition 1.1. 7. A graph G = (V, E) is isomorphic to a graph H = (V', E') if 

there exists a bijection from V to "\In which preserves adjacency. If G is isomorphic 

to H, wc write G = H. 

Definition 1.1.8. A path on n vertices Pn is the graph with "ertex set {VI, V2, ... , vn } 

and Vi is adjacent to Vi+l for i = L 2. "" n - 1 are the only edges. If in addition Vrz 

is adjacent to v, then it is called a cycle of length n, en. A path from the vertex 

'l/, to the vertex 'U is called et u - v path. A graph G is connected if for every 

/I., v E \/, there (~xists a v. - v path. If G is not connected then it is disconnected. 
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A maximal connected subgraph of G is called CL component of G. A component 

of a graph G is non-trivial if it has at least one edge. A graph is acyclic if it 

does not. cont.ain cycles. A connected acyclic graph is called a tree. 

Definition 1.1.9. A graph G is bipartite if the vertex set. can be partitioned 

into two non-empty sets U and [/' such that every edge of G has one end vertex 

in U and t.he other in U'. A bipartite graph in \vhich each vertex of U is adjacent 

to every vertex of (J' is called a complete bipartite graph. If IUI = rn and 

(J' = 1nl, tllen the complete bipartit.e graph is denoted by Km ,1l" The complete 

bipartite graph K1•n is called a star. 

Definition 1.1.10. Let G be a graph. The complement of G: denoted by GC is 

the graph with vertex set same as t.hat of V and any two vertices are adjacent in 

GC if they are not adjacent in G. I{~ is called totally disconnected . .A graph G 

is called self complementary if G = GC. 

Definition 1.1.11. .A subset I ~ V of vertices are said to be independent if no 

t.\VO vertices of I are adjacent. The maximum cardinality of an independent set is 

called the independence number o:(G) . .A subset K ~ V is called a covering 

of G if every edge of G is incident with at least one vertex of K. The number of 

vertices in a rnininnun covering is called tlw covering number J( G). 

Definition 1.1.12. A su bgraph H of G is Cl complete if every pair of distinct 

vertices of G are adjacent. A complete graph on n vertices is denoted by KIt. f{3 

is called a triangle. A complete is maximal if it is not properly contained in any 

otlwl' complete. A maximal complete subgraph is called a clique. The size of the 

largcl:it clique in G is called the clique number w(G). 

Definition 1.1.13. The intersection graph of a graph G is a graph \vhose vertex 

set is a collection of object.s and any two vert.ices are adjacent if the corresponding 
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objects intersect. The intersection graph of all cliques of a graph G is called the 

clique graph of G denoted by J{ (G). If]( (G) is complete then G is called clique 

complete. 

K(G) 
1 

/<21 
G 

2 

Fig: l.1 

In Fig: 1.1 G l is clique complete. 

K(G) 
2 

Definition 1.1.14. A collection of objects £ satisfies Belly property if for any 

sub collection £' ;;; E, the elements of £' pair-wise intersect, then neE£' e i: <p. If 

the cliqucs of Cl graph G satisfips Hclly property thcn we say that G is clique-

Belly. If G and all its induced subgraphs are clique-Helly, then G is hereditary 

clique-Helly. 

In Fig l.1 Cl is clique-Helly, ,,,,here as G2 is not. 

Definition 1.1.15. Assigning colors to the vertices of a graph is called a vertex 

coloring. If no two ad.iacent vertices receives the saIIle color, then such a coloring 

is called a proper vertex coloring. The minimllIll number of co10rs required for 

a proper vertex coloring of a graph G is called its chromatic number , denoted 

by X(G). 

Definition 1.1.16. The distance between two vertices u and v of a connected 

graph G, denoted by dc(u, v) or d(u, v) is the length of a shortest 1J, - v path. The 

eccentricity of a vert.ex e(v) = max{d('Il,v): v E V(C)}. The radius of a graph 
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r( G) is the minimum of the eccentricities of its vertices and the diameter of a 

graph d( G) is the maximum of the eccentricities of its vertices. 

Definition 1.1.17. The line graph of a graph G denoted by L(G) has the edges 

of G as its vert.ices and any two vertices are adjacent. in L( G) if the corresponding 

edges in G are incident. The iterated line graphs of G arc defined as L k (G) = 

L(LA:-l(G)) for k > 1. 

Definition 1.1.18. The Gallai graph qG) of a graph G has the edges of G as its 

vertices and Fmy two vertices are adjacent in r( G) if the corresponding edges are 

incident in G, hut do not. span a tdangle in G. The anti-Gallai graph .6. (G) of a 

graph G has the edges of G as its vertices and any two vertices of G are adjacent 

in .6.(G) if the corresponding edges are incident in G and lie on a triaugle in G. 

The iterated Gallai graphs and the iterated anti-Gallai graphs are defined 

as [k(G) = r(rk-l(G))) and .6.k (G) = .6.(.6.k - 1(G)) respectively for k > 1. 

Both qG) and .6.(G) are spanning subgraphs of L(G) and their union is L(G). 

1 

*~ 3 4 5 
G L(G) 

Fig 1.2 

1 
o 

2 Q ,06 

o \1 0 

:~ 5 
yt) 

Definition 1.1.19. A set S ~ V of vertices in a graph G is called a dominating 

set if every vertex t' E V is either an element of S or is adjacent to an element 

of S. A dominating set 5 is minimal dominating if no proper subset of S is Cl 

dominating set.. The domination number ~/( G) of a graph G is the minimum 

cardinality of Cl dominating set in G. A set S ~ V of vertices in a graph G is called a 
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global dominating set if it dominates both G and GC. The minimum cardinality 

of a global dominating set is called the global domination number ~(!Jcd( G). A 

set S ~ V of vertices in a graph G is called an independent dominating set if 

5 is independent and S dominates G. The minimum cardina.lity of an independent 

dominat.ing set. is called the independent domination number li(G). 

o 

G: 

\ 
\ 

Fig: 1.3 o 

For the graph G in Fig: 1.3, ;;(G) = 3, ~!!J(G) = 4 and ~/JG) = 5. 

Definition 1.1.20. A graph that can be reduced to edgeless graph by taking 

complements within components is called a cograph. 

For example, any graph of order less than or equal to four. except P4 is a 

cograph. The complete bipartite graphs and complete graphs are also examples of 

cographs. 

Definition 1.1.21. A plane representation of a graph G is an isomorphic copy 

of G in which any two edges intersect only at the vertices. A graph \vhich admit.s 

a plane repre:>entat.ion is called a planar graph. 

Definition 1.1.22. The union of two graphs G and H denoted by G U H is the 

graph with vertex set. V(G) U V(H) and edge set E(G) U E(H). 

Definition 1.1.2:3. The join of two graphs G and H denoted by G V H is the 

graph with vertex set V(G)UV(H) and E(GVH) = E(G)UE(H)U{u,v: u, E V(G) 

and v E V(H)}, 
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Definition 1.1.24. The tensor product of two graph:; G and H denoted by 

G x H is the graph with V(G x H) = {11,V) : 11 E V(Gd and v E V(G2 )} and any 

1.\vo vertices (U1' V1) and (112, V2) are adjacent if 1J,11J,2 E E(Gd and VI/)2 E E(G2). 

Definition 1.1.25. The cartesian product of two graph:; G and H denoted by 

GDH is the graph with V(GDH) = {v"v) : u E V(G 1 ) and v E V(G 2 )} and any 

two vertice:; (U1' VI) and (112, V2) are adjacent if OIle of the following holds. 

(i) 1Ll = 112 and VIV2 E E(G2) 

(ii) 1L1112 E E(G1 ) and?"'l = V2· 

Definition 1.1.26. The strong product of two graphs G and H denoted by 

G g, H is the graph with V(G g H) = {11, v) : 1J, E V(Gd and v E V(G2 )} and any 

t.wo vertices (UI' vd a.nd (1121 V2) a.re adjacent if one of the following holds. 

(i)Ul = 1J,2 and Vl'U2 E E(G2 ) 

(ii) Ul V'2 E E( Gd and 'U1 = U2 

(iii) Ul112 E E(Gd andvlv2 E E(G 2). 

Definition 1.1.27. A graphical invariant (5 is super multiplicative with respect 

to CL graph product 0, if given any two graphs G and H, a(G 0 H) ~ a(G)(5(H) 

and sub multiplicative if a(G 0 H) :s; a(G)a(H). A class C is called a universal 

multiplicative class for (5 on 0 if for every graph H, (5(G 0 H) = a(G)a(H) 

whenever G E C. 

Definition 1.1.28. Let B hc Cl, non-cmpty subset of the collection of all binary 

u-tllplcs which does not include (0, O .... ,0). The non-complete extended p­

sum of graphs G l , G2 . ...• Gp with basis B denoted by NEPS( G I , G'J., ... , Gp: B). 

is the graph with ycrtex set V(Gd x V(G 2 ) x '" x lI(Gp), in which t\yO vertices 

(Ul. U2, ... , up) and (Ul' V2, ... , vp) are adjacent if and only if there exists (31,32 , ... , (Jp) E 

B such thatu,i is adjacent to Vi in G i whenever {ji = 1 and 'Vi = '(.'i whenever d i = O. 

Th(-~ graphs G l , G2 , ... , Gp are called t.he factors of the ~EPS. 
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There are seven possible ways of choosing the basis B when p = 2. 

8 1 = {(CL I)} 

B2 ={(1,O)} 

8:~ = {(L 1)} 

84 = {(O,l),(1.0)} 

Bs = {(O,1),(1,1)} 

B6 = {( 1, 0), (1, I)} 

8 7 = {(O, 1), (1, 0). (1, I)} 

11 

The 2'l"EPS of graphs Cl and C2 "rith basis B3 , B4 and B7 are t.he tensor product.. 

the cartesian product and the strong product respectively. 

Definition 1.1.29. A subset V' of 1/ is called a clique transversal, if it int.ersects 

with every clique of G. The clique transversal number Tc( C) cf a graph G i1:> 

the minimum canlinality of a clique transvcrsal of G. A collection of mutually nOll-

intersecting cliques is called a clique independent set. The maximnm cardinality 

of a clique independent set in a graph C is called the clique independence 

number O'c(C). 

1 2 6 

~k1 0 

5 3 4 
Fig: lA 

The minimal clique transversal sets of the graph in Fig: 1.4 are {1,,-L5,6}. 

{2, :3}, {2,5} and {3,6}. Therefore the clique transversal .mullber is two. The 

maximal clique independent sets arc {< 2,6 >, < 3,5 >}, {< 1, 2, 3 >} and 

{ < 2,3,4 > }. Therefore the diqllP, indepcndence number is also t,,,v·o. 
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Definition 1.1.30. A graph G is clique perfect if Tc(H) 

induced subgraph H of G. 

12 

Q:(,( H) for every 

The graph in Fig: 1 A is cliqne perfect. The srnallest example of a graph which 

is not clique perfect is C,-" since 'Tc (C5 ) = 3 and Clc (C5 ) = 2. Note that, by the 

definition of clique perfect graphs, any graph which contains C5 as an inducerl 

sub graph is also llOt clique perfect. 

Definition 1.1.31. A class y of graphs satisfies the < t >-property if Tc( G) ~ 7 
for every G E Yt = {G E 9 : every edge of G is contained in a Kt c; G}. 

Note that the < t >-property does not imply the < t - 1 >-property. Let 9 

be the collection of cycles and complete graphs. Then Y does not have the < 2 >­

property since Tc( C2k+1) = k + 1 > 2k:;:1. But. it satisfies the < 3 >-property, since 

g3 = {Kn : n;;:: 3} and Tc(I\n) = 1, for every n .. 

Definition 1.1.32. A graph G whose vertex set can be partitioned into an inde-

pendent set and a clique is called a split graph. 

Fig: 1.5 gives an example of a split graph. 

Definition 1.1.33. A graph G is Cl threshold graph if it can be obtained from 

Kl by re cursively adding isolated vertices and universal vertices. 

Definition 1.1.34. A graph G is perfect if X(H) = w(H) for every induced 

subgraph H of G. 
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Definition 1.1.35. For a graph C, Tk(G) the trestled graph of index k is the 

graph obtained from G by adding k copies of K2 for each edge 'lLV of G and .ioining 

'/1 and/! to the wspectivc cnd vcrtices of each K 2 . 

o 
G 

T l(G) 
Fig: 1.6 

Definition 1.1.36. A graph G is clique irreducible if every clique in G has an 

edge which does not lie in any other clique in G. If G is not clique irreducible then 

it is clique reducible. 

Fig: 1.7 

In Fig: 1.7, Gl is clique reducible and C 2 is cliquc irreducible. 

Definition 1.1.37. A clique is essential if it has <1n edge which does not helong 

to any other clique in G. A graph G is weakly clique irreducible if every edge 

belongs to at. least one essential clique. If G is not weakly clique irreducible then 

it is weakly clique reducible. 
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Fig: 1.8 

III Fig: 1.8, G l is weakly clique irreducible and G2 is weakly clique reducible. 

Note that ,veakly clique irreducible graphs form a super class of clique irreducible 

graphs. The reverse inclusion does not hold as indicated by the example Cl in Fig 

: 1.8. 

Definition 1.1.38. A graph G is distance hereditary if for every connected 

induced suhgraph H of G, dH(u, v) = da(u, '0). 

Lemma 1.1.1. [27] G is a cogmph if and only if G is P4.-j'ree. 

Lemma 1.1.2. [27] Cogmphs mn be r'ec'uTsi'vely characteTized as 

(1) K} is a cogmph. 

(2) If G and Hare cographs, so is their union G U H. 

(3) If G and Hare cographs, so is their join G V H. 

Bot.h the forbidden subgraph characterization and the l'c("lll'siv(' c:liaracterizH-

tion of cographs are used frequently in this thesis. 

Lemma 1.1.3. [1SJ The distance hCTerldaTY graphs can be Tec'lI.l'sively chm'ucterizeri 

as follows. 

(1) J( 1 'is <list ance }Wf'eri'itaTY, 

(2) If G distance hereditary then 80 is the graph obtained by at/aching () JU:n.rlcnt 
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vertex to any of the ve'f't'ices of G. 

(8) rr G distance hereditary then so is the graph obtained by attaching trv,e twins 

to any of the vertices of G. 

(4) If G distance herc(IitaT!) then so is the graph obtained /J'!) attaching false twins 

to any of the vertices of G. 

Lemma 1.1.4. (13) A graph G is distance henxIitaTY if and only if it does not 

contain an induced h01.£se, hole, domino or gem, 'wheT'e a hole is a cycle of length 

greater than five and the other graphs are shown below, 

/x\ I r n rr A7\ 
o------------D o------------D d----~ 
House Domino Gml1 

Lemma 1.1.5. (13) A gmph G is a cograph if and only if it is the disjoint union 

of distance hereditary graphs of diameter at most two. 

Lemma 1.1.6. (Strong perfect graph theorem) (26) " A gmph G 'is a per:tect 

graph if and only 'if it does not conta'in any odd hole OT odd anti-hole as an ind'uced 

subgraph, where an odd hole is a cycle of odd length and an odd anti-hole is the 

complement of a cycle of odd length. 

Lemma 1.1.7. (27) Cogmphs aTf ptT/CCt. 

Lemma 1.1.8. (54! Cographs are diquc perfect. 

Lemma 1.1.9. (54) rr G is he7'f'ditar:1f diq'ue-IIclly . then it is cliqlJ.(; innizlcible. 

Lemma 1.1.10. (25) If CL graph G has no iruIuced (Ii(JJTloud (K~ - e), then every 

edge of G belongs to exactly one cliq'ue. 
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Lemma 1.1.11. (76j A gmph G is hereditary weakly maximal clique irreducible ~f 

and only 'if G does not contain any of the graph F1, F2 • ... , F19 in Fig : 1.9 as an 

ind'uced s'Ubgmph, 

Lemma 1.1.12. (64) A graph G is hereditary clique-Helly , ~f it does not contain 

any of the H(Jjo'8 gTaph as an 'induced 8ubgraph, 

~.':.D .. . li( ~c<:~~~ ... \\ \ _~'A/ "'\\ 
\,,/,--8 

Hnjo's graphs 

Lemma 1.1.13. (11 j In a loop lcss bipartite graph G, the rninirnum n.wnbCT of've'/"-

tiees that cover all the edges of G is eq-u.al to the rn-aTimum nnrnlw,. of independent 

edges. 

Lemma 1.1.14. /36j A gm])h G i8 a spht graph i:f and onlyzfit is (2K2, P4, C4 )­

free. 
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Lemma 1.1.15. (29j A gmph C is a threshold graph if and only zfit is (2K2 , C4 . C5 )­

free. 

1.2 New definitions 

Definition 1.2.1. [66] Let C = CV, E) be a graph. A subset V' of V is called 

a cographic dominating set if it dominates G and t.he subgraph induced by 

V' is a cograph. The cographic domination number ;cd( G) is the lllininnnl1 

cardinali ty of a cographic dominating sct. 

Definition 1.2.2. [66] Let G = (V. E) he a graph. A subset. v" of V is called a 

global co graphic dominating set if it dominates both G and GC and the sub-

graph induced by Viis Cl cograph. The global cographic domination number 

fgcd( G) is the minimum cardinality of a global cographic ~lominating set. 

For example, ICll(K1,,,) = 1 and ~!qcd(J(l,n) = 2. 

Definition 1.2.3. [5] A graph G is clique vertex irreducible if every clique in 

C has Cl vertex which does not lif: in any other clique in G and it is clique vertex 

reducible if it is not clique vertex irreducible. 

! 
Fig: 1.1D 

G 
2 

" \ ; 

In Fig: 1.10 Cl is c1iqlw vertex irreducible and C2 is cliqnc vertex reducible. 

Note that. t.he cliquc vcrtex innincihle graphs form a. sub class of clique irrednciblE' 
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graphs. The reverse inclusion does not hold as indicated by the example G2 in Fig 

: 1.10. 

Definition 1.2.4. [6] An edge e E E(G) is called an essential edge if it belongs 

to exactly onc cliquc in G. A vertex u E 1/ (G) is called an essential vertex if it 

belongs to exactly one clique in G. A clique C in G iH called vertex essential, 

if C has an essential vertex. 

5 

Fig: 1.11 

In Fig: 1.11, the essential cdges arc 12, 23, :34, 45, 56 Hud 61. The essential 

vertices arc 1, 3 and 5. The vertex essential cliques are < 1,2,6 >, < 2,3,4 > and 

< 4,5,6 >. 

1.3 A survey of results 

The following are some of the hUldmllC'llt.al results pertaining to the al)ov(~ said 

graph classes which ,ve discllss in this t h8si8. 

The Gallai graphs Hnd the anti-Callai graphs an~ sp~llll1ing snbgmphs of the 

well kllO\\'ll class of line graphs whost:' union is the line graph. Though the line 

graphs admit a forbidden subgraph characterization [17], bot.h the Gallai graphs 

and the anti-Gallai cannot be characterized usillg forbidden subgraphs, since it is 
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proved in [52J that given any graph C, both [(CC V K 1) and ~(G V ]{l) contains 

C as an induced sllbgraph. In [52J, it has aJso been proved t.hat the Cal1ai graph 

of a graph C is isomorphic t.o C only for cycles of length greater than three. In 

[53J, the Callni mortal graphs - graphs whose iterated Callai graph converges to 

the trivial graph, are characterized in several \vavs. In [72J the notioll of Gallai 

perfect graphs - the graphs whose Gallai graphs are perfect, are iutrocluced and 

discussed. 

The class of cographs - complenwllt reducible graphs, "'ere i:itudied by various 

authors ull(kl' difh~l"cllt names sHch as D* -graphs. P! restrict.cfl graphs and HD 

or hereditary dacey graphs. In [27]: eight dHtract(~rizations of cographs which 

includes the recursive characterization aIHl t.he forbirlden snhgraph characterization 

(Lemma 1.1.1 and Lemma 1.1.2) an.' givf)ll. A linear recognition algorithm for 

cographs is given in [28J. 

An algorithm to solve the Hamiltonian cycle problem - given a graph C, does 

there exists Cl cycle that passes through every vertex of C, for t.he cographs (for 

the distance hereditary graphs, which form a super class of cographs) is given in 

[46J. The rank of the adjacency ma.trix of a graph is bounded by the number of 

distinct naIl-zero rows of that matrix. G.F. Roylc [70J 1U1S prowd that in the case of 

cographs, the rank is eqlwl to the number of distinct non zero ruws of its acljacenc:r 

matrix. In ':57J the connection of cogrnphs with clH)}'(lnl gl'(lphs. interval graphs and 

series-parallel graphs are cliscussed. Cographs are lillked \vith intersect.ion graphs 

The median and the anti-median of cographs arc disc\lssed in [67]. It hi18 been 

proved that (my cograph can be expressed as the median graph and the anti-median 

graph of a cograph that is both Eu1t:rian and Hamiltonian. The cographs which 
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are planar and outer planar are also characterized. 

F.Larrion et..al, [51] studied in detail the clique operator on cographs. It has 

been proved that a cograph is clique convergent. if and only if it is clique Helly. 

A characterization of cographs whose clique graph is et cograph is also given. A 

cograph G is clique complete if and only if it has a universal vertex. 

It is proved in [42] that therp are graphs that cannot be the clique graph of 

any graph. A graph is a clique graph if and only if it admits an edge cover "\vhich 

satisfies the Helly property [69]. In [la] all graphs G for \vhich d(K(G)) = d(G)-l) 

d(K(G)) = d(G) and d(K(G)) = d(G) + 1 are cha.racterized and a class of graphs 

which satisCies d(I(2( G)) = d( G) + 2 is obtained. [59] deals \vith clique divergent 

graphs and it is proved that U((G V H))C = (K(G))CO(j((H)Y auci K(G:s H) = 

j((G) g K(H). The clique complete graphs are discussed in detail in [55]. 

J. L. Szwarcfiter has made an excellent survey of the clique graphs [73J. It 

includes the characterizations of the clique graph, the clique graph of various graph 

classes, the clique inverse classes, the complexity of recognizing the clique inverse 

classes, the convergence and the divergence of the clique operator and t.he diameter 

of clique graphs. A list of open problems is also included in the survey. Onc of these 

problenls is settlcd ill [2:3] by ohtaining CL countcr example <11Hl another problem is 

solved in chapter cl of this thesis. 

As we Imve alre~tdJ· lllClltiollCd. the < t >-prolwrty wa.s introduced to find gn~ph 

classes whicb ndlllit.s Cl. better upper bound for the clique tnmsversal number. The 

follm.ving are some of the upper bounds of the clique trallsy(~rsal munber as proved 

. r'3'JJ llll")· 

(1) Tc(G) ~ n - 0(0). 
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(2) Tc(G) ~ n - Ll(G), where Ll(G) is the maximum degree of a vertex in G. 

(:3) T,,(G) ~ n + Ll(G) +:3 - a(G) + Q~~)' 

(4) Tc(G) ~ 11, - J27i + ~. 

21 

(5) If nand k are natural numbers sHch thatn = k + 1 and G is Cl, graph on n 

vertices in which every clique has more t.han k vert.ices, then Tc( G) ~ n - J'kn, 

except for Cs. 

It is known [33] that every chordal graph satisfies the < 2 >-property. In [74], 

it is proved that the < 3 >-property holds for the chordal graphs, the split graphs 

have the < 4 >-property, but do not hav(~ the < 5 >-property and hence the 

chordal graphs also do not have the < 5 >-property. It is proved [35] that the 

< 4 >-property does not hold for the chordal graphs. 

The dclSS of clique perfect graphs were introduced in [41]. The distance hered­

itary graphs [54], the strongly chordal graphs [2~1], the dually chordal graphs [J 5J 

and the comparability graphs [12] are all subclasses of the rich class of clique 

perfect graphs. In [2:3], it is proved that the odd generalized suns are not clique 

perfect. In [21 L the clay,,-free graphs which are clique perfect are characterized and 

in [22] diamond-free graphs and Helly-circular arc graphs which are clique perfect 

are charactcrizcd. A characterization of clique prefect graphs is an open problem 

[T~]. 

Opsut dmi Rolwrts [GO] illtmduccd the concept. of clique irreducible graphs 

and proved that the interval graphs ~tre clique irreducibh). 'Vallis and Zhang [78] 

generali~cd this rcsnlt and attempted to characterize clique irreduc1ble graph~. In 

[77]. the line graphs which are clique irreducible me characterized using forbidden 

sllbgraphs. A cbamctcri~atioll of clique irreducible graphs is still an open problem 

[7:3]. 
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Tao-Ming \Vang [76] introduced the concept of weakly clique irreducible graphs, 

\vhich form a super class of clique irreducible graphs. In [76] nineteen forbidden 

snbgmphs for Cl graph to be hereditary weakly clique irreducible is given. The line 

graphs which are \veakly clique irreducible are chara.cterized in [77]. 

1.4 Summary of the thesis 

This thesis entitled 'Studies on Some Graph Classes' is divided into six chap­

ters. \Ve shall now give a summary of each chapter. 

The first chapter is an introduction and contains the literature on various graph 

classes studied in this thesis. It n1so includes the basic definitions and terminology. 

In tlw second chapt.er various properties of the Gallai graphs and the allti-Gallai 

graphs are studied. The follmving are some of the results which we have obtained. 

* There mc i1lfinitely many pails of non-isomorphic graphs of t.he same order 

having isoIllorphic Gallai graphs and anti-Gallai graphs. 

* There exist d. finite family of forbidden sllbgraphs for the Callai graphs and 

the anti-Gilllnj graphs to be H-fno€ for (ln~' finite graph H. 

* The forbidden sllbgraph characterizations of C for which the Cal1ai graphs 

and the anti-Gnllai graphs arc cographs, split graphs and threshold graphs. 

* Characterization of cographs for which the Galhti ftlld anti-Gallai graphs are 

also cogmphs. 
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* The relationship bet\veen the chromatic number, the radius and the diameter 

of a graph and its Callai and anti-Callai graphs. 

In the tbird chapter wc define two new domination parameters, cographic dom­

ination number ~fcd( G) and global cographic domination number ~(f)cd( G) based on 

cographs. Some of the properties of these domination parameters and results ob­

tained are listed below. 

~ There is no t.rce satisfying the inequality ",/(0) < Icd(G) = li(G). 

~ If G is a triangle free graph then ~fgcr1( G) = "Ycd( G) or ~fcd( G) + 1. 

~~ If G is a planar graph with "/cd(G) ? :3, thcn ~(qcd(G) ~ Icd(G) + 2. 

~I~ Two const.rnctions to illustrate t.he existence of graphs satisfying the inequal­

ities among the various domination parametms. 

~ Vizing's type relations of t.he domination number, the global domination 

lllllllber. t.he cographic domination number, the global cographic domination 

ll11111ber and the independent domination number of NEPS of two graphs. 

In the fourth chapter, t.he clique tmnsvcrsalnumbcr and t.he < t >-propcrt.y of 

various classes of gmphs arc stwliccl. The following are some of the results proved. 

()< Thc dominat.ion number i~ a lower bonnd for t.he cliqne transversal number 

nnd that the differellce between these two parameters can be arbitrarily large. 

[:x:) The cla.ss of clique perfect graphs without isolated vertices satisfies the < t >­

property for t = 2 and :3 and does not satisf\' the < t >-property for t ? 4. 
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tx:I The class of cographs without isolated vertices satisfies the < t >-property 

for t = 2 and 3 and does not satisfy the < t >-property for t )! 4. 

tx:I The class of planar graphs cloes not satisfy the < t >-property for t = 2, 3 

and 4 and 9t is empty for t )! 5. 

tx:I The class of perfect graphs dol's not satisfy the < t >-property for any t )! 2. 

tx:I The class of trestled graphs of index k, Tk (9) sab;fies the < 2 >-property if 

and only if ,13 (G) :::; ~ \:f G E 9 and Tk (9)t is empty for t ?: 3. 

tx:I The trestlccl graphs of index k, Tk(G) is clique perfect if and only if G is 

bipartite. 

tx:I Also~ an open problem on highly clique imperfect gra.phs posed in [73J IS 

solved. 

In the fifth chapter the clique graph of cographs are studied and we obtain the 

following results. 

EEl The diameter of the clique graph of a cograph ca.nllot exceed t\vo. 

EEl Any graph on prime ll1unber of vertices, other than K p , cannot be the clique 

graph of a cograph. 

EEl A cograph is clique complete if amI only if it has Cl vertex of full degree. 

EEl The number of clique graphs of a cograph with x(I«G)) = 8~ where s is a 

fixed integer is finite, 

Et A realiz.ation of cographs and its clique graph which have specific values 

for the domination llumbrr, the clique transversal number and the clique 

independence In llnbC'r. 
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The last chapter deals with two graph classes - the clique irreducible graphs and 

the weakly clique irreducible graphs. A new graph class called the cliqne vertex 

irreducible graphs is il,lso defined allci the following U·Sltlt.S an~ obt <tined. 

c:; Characterizations of G for which the line graph L( G) and all its iterates t.o 

be clique vertex irreducible and clique irreducible. 

:~ Characterizat.ions of G such that the Gallai graph r (G) is clique vertex irre­

ducible: clique irreducible and weakly clique irreducible. 

~~. Characterizations of G such that t.he anti-Gallai graph ~(G) and all its 

it(-~rates arc clique vert.ex irreducible, clique irreducible and weakly cliqlW 

irred uci ble. 

(~ The clique vertex irreducibility, clique irreciucibilit:y and weakly clique irre­

ducibility of graphs which are non-complete extended p-sums (NEPS) of t\VO 

grapht:l. 

c:) Necessary and sufficient. conditions for t.he cographs and t.he dit:ltance hered­

it.ary graphs t.o be clique vert.ex inedllcible, clique irreducible and weakly 

clique jrreduciblc. 
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Chapter 2 

Gallai and anti-Gallai graphs 

This chapter deals with two graph classes the Gallai graphs and the anti-Gallai 

graphs. \Ve construct infinitely many pairs of graphs G and H such that f( G) = 

r( H). The existence of a finite family offorbidden subgraphs for the Gallai graphs 

and the ant.i-Gallai graphs to be H-frce, for any fillit.e graph H is proved and the 

forbidden subgraph characterizations of G for which the Gallai graphs and the 

anti-Ga.llai graphs are cographs, split. graphs and threshold graphs are discussed 

in detail. If G is Cl connected co graph without a universal vertex then r( G) is 

a cograph if and only if G = (pK2)c. The relationships between t.he radius, t.he 

diameter and t.he chromatic number of Cl graph and it.s Gallai (r:l.llt.i-Gallai) graph 

a.rc a 180 st ndicd in detail. 
--.. -. -------.. -~-

Some result.s of this chapter are included ill the following pap~'r. 

Gallai and unt.i-Gnllai graphs of a graph, :\Jath. I3ohern., 132(1) (2007),43 - 54. 

28 
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2.1 Gallai and anti-Gallai graphs 

It is well knC}\Vll [80] that. the only pair of non-isomorphic graphs having the 

same line graph is J(L3 and [(3- But, we fin;t observe that, ill the case of both 

Gallai and anti-Gallai graphs, there are infinitely many pairs of non-isomorphic 

graphs of the same order having isomorphic Gallai graphs (anti-Gallai graphs)_ 

Theorem 2.1.1. There are infinitely rnany pairs of non-isomorphic graphs of the 

same order- hav'i'llg isomorphic Gallai graphs. 

Prool \Ye prove this theormn by the following two types of constructions. 

Type 1 :- Let G be the graph P4 with n independent vertices joined to both its 

internal vertices and an end vertex attached to k of these n vertices and H be two 

copies of [(1,'1+1 with k + 1 distinct pairs of end vertices made adjacent. 

The graph G in type 1 is as follows. Let Vl'U2V:~V'1 be an induced P l - Let V2 and 'IJ:; 

be joined to n vertices Ul, V'2, ... , Un. Introduce k end vertices Wl, W2, ... , 'IL'k such that 

each Wi is adjacent only to V'i for i = 1,2, ... , k. The edges Vl'U2, V21},1 , 1i2U2, ... , V211" 

of G, 'which aTe vertices of r( G) will induce a complete graph on n + 1 vertices 

in I'(G). Similarly, t'3'li4, V3Ul, V3'U2, ... , 'U3Un will induce another complete gmph on 

n + 1 vertices in r(G). The vertex corresponding to the ed~e V2V:\ will be adjacent 

to both t.he vertices corresponding to Vl1)2 and '/.::~Vl' The k vertices corresponding 

to the eclgeSv,i,wi for i = L 2, ... , k \vill be a.djacent to the vertices corresponding 

to the edges 1},il'2 and U(V3 for i = 1,2, ... , k respectiv(~ly. 

The graph JI in type 1 is as follows. Let lL ad.iacent to Ul, 112: ''', lLn+l alld V 

adjacent to VI, 1,'2, -_., L'n+ 1 be the two J{l ,n+ 1 S in H. Let 1J, IVl, U'2V"2, ... , Uk+ ,Uk+1 he 
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the k+ 1 distinct pairs of adjacent vertices in H. The vertices corresponding to the 

edges U,Ul, nV2, .... 1lUn +l \vill induce a complete graph on n + 1 vertices in f(H). 

Similarly. the vertices corresponding to VVl. VV2, ... , VVn+l will also induce another 

cornph~te graph on n + 1 vertices in f( H). Agaiu, the vertices corresponding to 

the edges UiVi for i = 1,2, ... , k + 1 will be adjacent to the vertices corresponding 

to the edges UUj. and VVi for i = 1,2, ... , k + 1 respectively. 

Therefore, both f(G) and f(H) are two copies of Kn+l together with k+l new 

vertices made adjacent to k + 1 distinct vertices of both the copies of Kn.+l' 

Type 2 :- Let G be the graph Pi with n independent vertices joined to both its 

internal vertices and an end vertex attached to k of them with k ? 1, together 

with one end vertex each attached to the two end vertices of Pl and H be two 

copies of J(l,n+l with k+ 1 distinct pairs of end vertices (one froIll each star) made 

adjacent and a single pair made adjacent to another vertex. 

The graph G in type 2 can be obtained from the graph G in type 1 by attaching 

bvo end vert.ices x and y to V1 and 1'2 respectively. In r( G) the vertices correspond­

ing t.o t.he edges '1-'1:1: and V4Y will be adjacent to the ·vert.ices corresponding to the 

edges 'Ul'U2 and V3V4 respectively. The graph H in type 2 can be obtained from 

the graph H in t.ype 1 by adding cl new vertex wand making it. adjacent to both 

11.1 aml VI. In r(H) the w~rticcs corresponding to the edges It'Hi and U:Vl will be 

adjacent to the vertices corresponding to the eclgpsuvl and VL'l respectively. 

Therefore, both f( G) and r(H) are two copies of KM 1 toget.her with k + 1 

vertices made adjacent t.o k + 1 distinct vertices of both the copies of ](n+l and 

two end vertices made adjacent to onc vertex from each of the complete graphs. 

The construnions mentioned in type 1 and tvpc 2 are illustrated in Table 2.1. 
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In both the cases~ the graphs G and H have the same Gallai graph. If n = k and 

n = k - 1 in type 1 and type 2 respectively, then the order of G and H is the same. 

Type 1 
-------------------l 

11 = i k = 11 Type 2 II Y k = 1 -I 
/\ /\ I 

i \ 0 i \ 0 
/ R\ \ I / \ \ I If '\,\ ' \ \ 

v--------\..1---/------;' 0----10; \~ 
/ 1/ 

/ 

G 

! -, , ,-
-'. 11/ I 

: \, // \\1/ , '- I '.'\. / '- j / 
H \L-o- \11 \/ '\,.:' 

'. / \ i 

~/D----D 0---0 

I 

Q I 0---0 y 9: 

i 

I 

l><1 O-~ D<C~ 
I 

i 

f(G)=~H 

1 1 
Table 2.1 

o 

Theorem 2.1.2. There aTe -if({indelymany pairs of n01l.-'L<;omorph.ic graphs of the 

same ordeT having i80nwrphic anti- Gallai graphs. 

Proof Let G be a graph with vertex spt {Vl~ 1':2 •... , 'Un} and an edge U;'Cj ~nch that. 

G is not isomorphic to a graph obtained nnder permutations of the index set of 

the vertices which interchange i and j a.nd ~(G) is COllllccted. Introduce a vertex 
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U adjacent to Vi and Vj. Let HI be the graph obtained by introducing one more 

vertex Ul adjacent to u and Vi' Let H2 be the graph obtained by introducing 

another vertex 'U2 (11,1 is absent here) adjacent t.o u a.nd Vj. Then by construction 

fIt a.nd H2 arc non-isomorphic. ~(HI) is ~(G) together with four more vertices 

corresponding to UVi, UVj' WJ.l, ViUl in whichuvi and UVj are adjacent to each other 

and to 'V{Uj, 1nLl and ViUl are adjacent. to each other and to UVi' ~(H2) is ~(G) 

together wit.h four more vertices corresponding to U,Vi, 1Wj, U'U2, VjU2 in which 'U'(,'i 

and UVj are adjacent to each other and to l\Vj, 1tU2 and lIjU2 are adjacent to each 

other and to UVj. Therefore, ~(Hd is isomorphic to ~(H2)' 

o 

2.2 Forbidden subgraph characterizations 

Even t.hough the Gallai and the ant.i-Gallai graphs cannot. be characterized us­

ing forbidden subgraphs, in this sect.ion we prove the existence of a finite forbidden 

subgraph characterization for t.he Gallai graph and t.he anti-Gallai graph to be H­

free and obtain the forbidden subgraph characterizations for the Galla,i and the 

anti-Gallai graphs to be a cograph, a split graph and a thrci::lhold graph. 

Notation: For a connected graph 11, let Q( H) = {G : r( G) is H - free} and 

Q*(H) = {G: ~(G) ii::l H - free}. 

Theorem 2.2.1. The properties of being UTI elc'ment ofQ(H) and Q*(H) ore lJerte:r 

hereditary. 

Proof. Let G E Q(H) and v E V(G). COllsider C' = G - {v}. It is rpquired to 
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prove that GI E Q(H). On the contrary assume that f(G/) has H as an induced 

sllbgraph. Let VI, 'U2 .... , 'Ut be neighbors of v. Therefore f(G) has the vertex set 

V(f(G')) U {VV1' VV2, ... ,VVt}. III I'{G), VVi is adjacent to VVj if Vi is not adjacent to 

Vj, and VVi will be adjacent to all edges which have Vi as one end vertex and other 

cnd vertex is not Vj for j = 1,2, ... , t. V(f(G')) induce r(CI ) itself. Hence if H is 

an induced subgraph of f( G' ) then H is an induced subgrapb of f( G) also. which 

is a contradiction. 

The case of Q*(H) follows similarly. o 

Corollary 2.2.2. Q(H) and Q*(H) have vertex rnin'lTfI,al forbidden subgraph char­

acterization. 

Though many well knmvn classes of graphs admit forbidden subgraph charac­

terizations, the number of such forbidden subgr8phs need not be finite. However, 

for Q(H) and Q*(H) we have 

Theorem 2.2.3. For every vertex minimal forbidden subgrnph ofQ(H) and Q*(H). 

the number of vertice8 i8 bounded above by n(H) + 1. 

Proof. Let F(H) be the collection of all vertex minimal forbidden sllbgraphs of 

Q(JI). Let LE F(H). Therefore, r(L) has H as an induced subgraph. The n(H) 

vertices of H, \vhich correspond to n( H) edges of L, say c" C2, ... , C/I( H), CfIll cover 

a maximum of n(H) + 1 vertices of L, since H is connectc~d. 

\-Ve have to prove that n(L) ( n(H) + 1. On the contrary UHSlUnp that n(L) > 

n( H) + l. Then there exists at least orH-~ vertex /: E V (L) which is not an end vertex 

of any of el, e2, ... ,en (H)' Therefore, f(L - v) still has H as an induced Hubgraph, 

which contradicts that L is a vertex minimal forbidden subgruph of Q(H). Hence. 
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n(L) ~ n(H) + 1. 

A similar a.rgument holds for Q* (H) also. o 

Corollary 2.2.4. The numbe1' of 'ucrtexminimal forbidden subgraphs for Q(H) 

and Q*(H) is finite. 

Theorem 2.2.5. Let G be a graph. Then, qC) is a cograph 'i.f and only ifC does 

not have the following graphs as inrl'lJ.ced subgmphs. 

(i) P (ii) C 
5 5 (iii) IS 3 

) (\'D//\\o 

0--9 

(vi) 0 __ 1>° (Viii 1>0 0--0·---0 

(viii) I I 

1-1 (iX)~r~ 
Fig: 2.1 

Proof. If r( G) is not a cograph then there exists an induced P4 ill r( G) say 

Since el is adjacent to C2, let U12 = U21 and letull be not adjacent to U22. Since 

e2 is adjacent to e3, either 1/21 = U31 or 'U22 = 'U~n· 

If 1/,21 = U31, then since CL is not adjacent to e:3, U11 is adjacent to 1l32' Since e3 

is adjacent to f4, eithcru:n = 11,11 or V:l'l = U41· If lL:31 =1141, then since e1 and e2 

are not adjacent t.o e.l, both Ull andlL21 are ndjaccnt to U12· If 1I.:n = 11.11 thenu31 

is not adjacent to '/1,12. 

If Un = U31, then 1-"21 is not adjacent t.ou:{'2' Agaill. since e3 is adjacent to e,l, 

either U;$1 = 1141 or U:32 = .(£41' If 11,;$1 = 1141. then since C2 and el are not adjacent, 

'U21 is adjacent to 1l42. Ifll:32 = Hell then ll:n is not adjacent to 11.12· The above four 

resulting graphs arc respectively (iv), (vi), (vi) and (i). 
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In (iv), if we add even a single edge the property of r(G) not being a cograph 

will be lost. In (vi), 11.22 adjacent to U42 gives (vii), 1)'11 adjacent to 1142 gives (ix) 

and the combination of both gives iv). The addition of these edges will not change 

the required property either. In (i), Un adjacent. tOUl2 gives Oi), 1111 adja.cent to 

U41 gives (viii) and a. combination of both gives (iii). Again, the addition of these 

edges \vill not change t.he required property. However, if \ve add any other edge 

then the property will be lost. 

Conversely, it can l)(~ verified that the Gallai graph "'ill not be a cograph 1£ any 

of the nine graphs listed above is an induced subgmph of G. o 

Theorem 2.2.6. Let G be (J, graph. Then 6.( G) is a. cograph ~f and only -if G does 

not h(l1)e the following graphs as induced 8'11bgraphs. 

4~ 
(ii)\\\/ \/ 

0--0 

@ 1J;;'~ A~ 
(iii)'. (ivt / ?l (v~. :/L_ ,7-
../ i"X\ 
,~., // ~ 
--0 0--0 0------0 

Fig: 2.2 

Proof. If 6.(G) is not a cograph then there exists all induced PI ill 6.(G), say 

Since el is a(ijnccnt t.o C2, let IL12 = Il2l and let 1111 be adjacent to 112'2, Since e2 

is adj acent t.o c:{, either U2l = U;J1 or V22 = 11:31· 

If ll21 = U;n t.henll'l2 is adjacent to 11;;2 imcl '(/11 is not adjacent tOU:31. Since e3 

is adjacent to C'I: either 1[:31 = U-ll or (1:32 = U-lI' If V:31 = 11.11, thell Il;n is adjacent 

to U'12 and 'Ull and 1122 are not adj acent to IJ.!~. If 11;32 = 11.11 then U:n is adj acent to 
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If 11.22 = U,.31 then 1.l12 is adjacent to U32' Again, since e3 is adjacent to e4, either 

U:H = U41 or v,;Q = U'll' If U,31 = 1)'41. then U32 is adjacent to V.12 and 1.121 is not 

adjacent to U,12. If U,32 = 11.42 then {I.:H is adjacent to '(142. 

All the four resulting graphs me isomorphic to (i) itself. Also, addition of any 

of the possible edges will leave an induced P4 in 6.( G) and hence any gra,ph "\vith 

five vertices "\vhich contains (i) as a (not induced) subgraph are also forbidden. 

Hence all the above graphs are forbidden. 

The converse can be easily proved. 

Gallai graph 

T,:\':o vertex disjoint P 3 0_, 
1_-0 ~-i 

1 ~1 6--0 

anti-Gallai graph 

2 K3 

~i L-l Split 
graph 

r-----+---:_t>_o 1_>_0 _I 2L 
Two vertex disjoint P3 

Threshold. 
graph 

l-r ~r 
b-b 1-0 

o ? 
/~\. ,/ " 

/ \ 

U' f-7 
:1 j .00 
i 

rr 
! ' 0--··---0 

9 
,'0, 

0' 0 

I 
i 
! 

I 
0 c 

Table 2.2 

I 

~1 1-0 

o 

If 9 is (tny graph class thElt, admits it finite forbidden subgraph characterization, 

then using similar arguments as in Theorenl 2.2.5 and Theorem 2.2.G, we can obtain 

forbidden subgraph characterizations for the Gallai graph and the anti-Gallai graph 
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to be in g. In Table 2.2. we list the forbidden subgraphs for r( G) and il( G) to be 

a split graph and a threshold graph. 

2.3 Applications to cographs 

In this section we obtain characterizations for the Gallai graph and the anti­

Gallai graph of El cograph to be a cograph. 

Theorem 2.3.1. If G is a connected cograph without a 1.lnivcT8al ver-fe:r then r( G) 

is a cogmph if and only i:l G = (pK'2)c. 

Proof. Let G = (pKlf. Then the llmnbcr of vertices of G is 2p and thc number of 

edges of G is 2p(p-l). Let the vertices of G be {VIi, V12,"" Vlp ,U21, 'U:n, ... ,V:2p} with 

'Vlj and 1'2j as the only pair of non-ad.iacent vertices, for j = 1,2, ... , p. Therefore, 

the vertices of the Gallai graph are of t.he fOrmVi{Vi'j' where j -I- j'. By the 

definition of the Gallai graphs, 'Uij'Ui'j' will be adjacent only to Vijlhj' or Vijl)2j' and 

Vl,i'Ui'j' or 'U2jVi'/ according to the value of i awl i'. Therefore, qG) = (I'C2 )C4 • 

which is a cograph. 

COll\'crsely, aSSlllllC that G is a cogn'iph withollt (\ lIniverscd vertex Hnd f( G) is 

also a cograph. For every u E V (G), there exist at least onc ul E V (G) which is 

not adjacent to u. 

Clainl : u' is the only vertex \yhicb is 110t adjacpnt to H. 

On the coutn11'.\· assume that there exist.s another vcrtexu" which is not ad.ia­

cent to H. Since G is et COllllcctcd cograph, G = Cl V G'1' Let U E V(Gd. Since 
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u is not adjacent to both u' and u", both of them belong to V(Gd. Since G has 

no vertex of full degree, G2 mm;t contain at least two non-adjacent vertices 1h 

and 'U2. Then the edges 11," VI, V]U, U1)'2, 1121/ will induce 1:1 PI in f( C), which is a 

contradiction. 

Therefore G = (pf(2Y, where 2p = n. o 

Notation: Consider the class of graphs "\\'hich arc recursively defined as follows: 

HI = {G : G = (Pf(2)' V (]{q), where p, q ?= 0 }. 

Hi = {G : G = (U Hi-d V K,., where Hi - 1 E H,:-l and r ) O} for i > 1. 

H=UH l 

Theorem 2.3.2. FOT a connected cograph C, f(G) IS a cograph -if and only if 

CEH. 

Proof. Let G be a cograph other t.han Kq with a vertex of full degree. Let VI be 

the collection of all full degree vertices in G. Define G 1 = < V - VI >. r ( G d is 

an induced subgraph of f( C). }Iore preciiiely, r( G) = r( Cd together "\vith some 

isolated vertices. Therefore, q G) is a cograph if and only if f( Gd is a cograph. 

If Cl is a connect.ed cograph then G l has llO vertex of full degree a.nd hence f( Cd 

is a cograph if and only if Cl = (Pf(2)c. Therefore, qC) is Cl cograph if and only 

If Cl is disconnected, then cOllsider each of the COllnecteel compommt.s of Cl. If 

the removal of (tll full degree vertices from each of the component.s of Cl preserves 

connecteciucss then tl.s above each of the::;e compollents lllUSt be of the form (PJ(2)"V 

Consequently. G E H 2 . 
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If any of the components of G l, say G2 , is disconnected then repeat the above 

process to get G 1 E H2 and hence G = (H1 U H 2 U ... U Hr) V K. \vhere each Hi E H2 

a.nd r ~ O. Consequently, G E H;{. 

This process must terminatc since the nUlnber of vertices of G is finite. There-

fore for a connect eel cograph G. r(G) is a cograph if and only if G E H. 0 

Theorem 2.3.3. For a connected cogmph G, ~(G) is a cograph if (J:nd only if 

(i) G = Gl V G2 , 'Where G l is edqeless and G2 doe8 not contain P.J as a subgmph 

(1.vhich need not be induced) OT 

(ii) G is C.J' 

Proof. Let G be a connected cograph whose ~(G) is also et cograph. Since G is a 

connected cograph. G = G l V Gl . Let G l be an edgeless graph and 11 E V(Gd. If 

G2 contains a PI, say (;11)2'1):31.-'4, t.hen the edges 'U1 (;2, V.,(IJ., ·IJ.V;~, V31)4 of G induce a RI 

in ~ (G), \v hich is a contradiction. Thercf'ore. if G 1 is edgeless thcn G2 does not 

contain PI a.s a sllbgraph. 

Let lllUl E E(G1 ) alld '1/,21)2 E E(G2 ). If Gl contains one more vertex, say v, 

not adjacent. to 111 and 1)1, then the edges 1l.1V1,Vl'U2,'Ll2V2,U2l.L of G induce a P" 

in ~(G), which is a contradiction. If v is adjacent to at least ono of the vertices, 

say '1'1, then the edgesu1Ul,'Il'2'l..'j,VlU2.V2V of G induce a. PI in ~(G), \vhich is a 

contradiction. A ~illlilctr argument holds also for the vertex set of G2 . Therefore 

both G l and G'}. are 1\.'2 -s and G = Cl. 

COllversply, aSSHIlle that G is et cograph of type (i) or (ii). Then G does not 

contain Hny of t.he graphs in Fig: 2.2 as an induced subgTaph Hnd lwncc ~(G) is 

a eogmph by Theorenl 2.2.6. 0 
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2.4 Chromatic number 

In this sect.ion we study the relation bd-weel! t.he chromatic numbers of G, r( G) 

and 6.(G). 

Theorem 2.4.1. Given t7.uo positive integers a, b, wluxe a > 1, there exists CL gmph 

G such that X(G) = a and X(I'(G)) = b. 

Proof. If a = 1 then G mnst be a graph without edges. which makes f( G) empty. 

So \\'e can assume that a > 1. 

Let G be the graph Ka together \vith b - 1 end vm-tices attached to anyone 

of the v(~rticcs. TIlCll 1"( G) is a. - 1 copies of K/; sharing b - 1 vertices in common 

together with some isolated vertices. Clearly, X(G) = a and X(r(G)) = b. 0 

Lemma 2.4.2. The anti-Gallai gmph of any graph G cannot be bipartite except 

for the Krfree graphs. 

Proof. If III is adjacent to '/1,2 in 6. (G) then the corresponding edges, say el and e2, 

lie in a K 3 , say el e2e:~. Then the vertex 1J.3 in 6.( G) which corresponds to e3 will 

be adjacpnt to both III and 'tL3. Therefore. 111'1I2V,3 induces a cycle of odd length in 

6.( C) and hencE' 6.( G) cannot he bipartit.e, 0 

Theorenl 2.4.3. Given two positi'cc integers a, b. where b < (J, b i- 2, there exists 

a graph G s'uch tlud x( G) = Cl and y( 6.( G)) = b. Farther, jor any odd integer Cl, 

there eTists CL qr'(Jph G such that X(G) = X(6.(G)) = (1. 

Proof Sincp the anb-Gallai graph of Cl gmph G cannot be bipartite except for the 

triangle fret' graphs (Lmmna 2.:1:.2), b = X(6.(G)) i- 2 for any G. 
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By ·~,Aycei\skl's construction \l\'\ there eXlsts a triangle-tree gml>h H W\\:'\1. chro­

matic number 0. If we choose G = H, then 6.(G) is a t.rivial graph and hence b = 1. 

For 2 < b < a. t.here exists an induced sllbgraph H' of H "\vhose chromatic number 

is b. Let 1-'1, U2, ... , VII be the vertices of H'. Let G be the graph obtained from H by 

joining all vertices of H' to a new vertex l/ .. Since b < a, \ (G) = a itself. If Vi and 

V.i are adjacent (or non-adjacent) in H' then the vertices corresponding to WIi and 

UVj arc adjilcent (or non-ad.iacent) in ~(G). Therefore, the vertices corresponding 

to the edges llV1,UV2, ... , UVn induce an H' in ~(G). Again for any pair of adjacent. 

vertices, say L';. and Vj in H', the vertices corresponding to the edges U.1'i and/LVj 

are adjacent to the vertex corresponding t.o Vi 1'2. Therefore ,0.( G) is H' together 

with one vertex each adjacent to bot.h the end vert.ices of each edge in H'. For 

b> 2, X(~(G)) = X(H') = b. 

If Cl is an odd integET then X(I<a) = a and X(~(G)) = X(£(G)) = X'(Ka) = 0., 

where X' is the edge chromatic number. o 

The t.riangle free graph H having chromatic number a. = 4 obtained using 

Myccilski's construction, the graph G in the above theorem having X( G) = 0. = 4 

and its anti-Gal1ai graph having>..(~(G)) = b =:3 are illustrated in Fig: 2.~t 
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2.5 Radius and diameter 

The relation between the radius and the diameter of G with its Gallai and 

anti-Gallai graphs are studied in this section. 

Theorem 2.5.1. Let G be a ymph such that qG) is connected. Then r(r(G)) ;:: 

r(G) -1 and d(f(G)) ;:: d(G)-1. 

Proof. Let r(I'(G)) = r. Then there exists a.n edge '/IV in G such that t.he vertex 

corresponding uv in r( G) is at a distance less than or equal to r from every other 

vertex in r( G). Hence, any vertex of G is at a dist.ance less than or equal to T + 1 

from both v. and '1,'. \Ve have r(G) ~ r + 1, which implies r(f(G)) ;:: r(G) - 1. 

Let d( G) = d. There exist two vertices u a.nd v such that d( It, v) = d. Let 

V,U(U.2 ... Ud-1'L' be a shortest path connecting n and v in G. 

UU1,UIU2,,,., Vd-IV is a path of length d -1 connecting nUl and Ud-lV in 1'(G). 

Therefore, dr(G)(UV1,'Ud-lV) ~ cl - 1. 

It. is required to prove t.hat. dqc) (VIi}, Hd-l v) = d - 1. On t.he contrary assume 

t.hat there exists a.n iuduced pa.th lWl,V1U~.'CiU~, ,Vk-lV~_l,Ud-lV of length k in 

r (G) conlH-'cting vu 1 and Ud -11'. \\'hcre 1,: < d - 1. Then there exists Lt path of 

length less than or equal to d - 1 comlf~cting u and v in G, which contradicts 

d(u., I') = d. Hence. dl'(G)(nul' Vd-lV) = d - 1. 

Since tlwrc exist two vertices of r(G) which are at a distance d - 1, d(1'(G») 

must be greater than or equal to d - 1. Hence, d(r( G)) ;:: d( G) - 1. 0 
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Remark 2.5.1. If a and b are two positive integers such that a > 1 and b ~ a-I then 

there exist graphs C' a.nd G" whose Gallai graphs are connect.ed and r( G') = G, 

r(r(G')) = b, d(G") = a and d(l'(G")) = b. 

Theorem 2.5.2. If G is a grnph such that ~(G) 'is connected and 1'(G) > 1, 

r(~(G)) ~ 2(r(G) - 1) and d(~(G)) ~ 2(d(G) - 1). 

Proof. Let r(~(G)) = r > l. There exist.s an edge uv in G such that the vertex 

corresponding t.o ItV in iJ. (G) is at a distance less than or equal to l' from every 

other vertex in ~(G). Let 'IV E V(G). Since G is connected there exists at lea,st 

one ~~dgc \vith 'w as an end vertex, say W7V'. There exists a. path of length h?ss than 

or equal to r from '11'11:' to U,v in iJ.( G). AllY two acl.iac(~nt edges in iJ.( G) belong 

to a triangle and hCHce this path induces a path of length less than or equal to 

~ from eithcru or v to 11: or w'. Therefore, any vert.ex is at et dist.ance less than 

or equal to ~ + 1 from both H. and v. Hence r( G) ~ § + 1, which implies that 

r(iJ.(G)) ~ 2(r(G) - 1). 

L(-~t cl( G) = d. There exist two vertices 11 and v such that d(u, v) = d. Let 

'/l'/1}1l2 ... Ut!--11' be a shortest path connecting u and 'U. Consider d(uu}, 'Ud--1V) in 

iJ.(G). If it is k, then there exists a path of length less than or equal to ~ + 1 in G 

connecting 11 and v. Therefore, ~ + 1 ~ d. \vhich implies k ~ 2(d - 1). However, 

d(iJ.(G)) ~ 1;;. Hence, d(iJ.(G)) ~ 2(d(G) - 1). o 

Remark 2.5.2. If (I and b are two posit.ive int.egers such that a> 1 and b ~ 2(0,-1) 

thpn thf~n~ exist graphs G' and G" whose anti-Gallai graphs are connected with 

r(G") = o. r(~(G')) = b, d(G"H) = (j and d(iJ.(G")) = b. 
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Domination in Graph Classes 

In [9], Bacso and Tuza Z. put forward the following problem. 

Problem: Let. P be a property of vertex sets in a graph. Characterize all graphs 

having a dominating set sa tisfying the property P. 

Based on various properties of the vertex set, many domination parameters were 

introduced and studied. For a detailed study of various domination parameters: 

the reader may refer to [44]. 

Inspired by the above problem, in this chapter ,ve define two new domination 

parameters, cographic domination number ~lcd( G) :md global cographic domination 

nU111ber ""'qcd( G) based on cographs and some of its properties are discussed. 
-------------------

SOIllC l"c::;ults of t,his chapt.er are included in thc following papeL 

Cographic and global cogrnphic dOlllinatiou HUlIlher of (l graph, Ar::; Cornbin .. (to appear). 

44 
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3.1 Cographic domination number 

III this section, given any graph G, \YC prove the existence of a cographic c1om-

inating set. The relationship behveen ",1, ",fcd and ~(i of a tree if:) f:)tudied. 

Theorem 3.1.1. For any graph G, there exist.s a dominating induced sll.bgraph 

'which is a cogn.lph. 

Pmof The proof is by induction ann. For n ~ 3, the theorem can be easily 

verified. Assume that it is true for all graphs with at most n vertices. 

Let G be Cl graph with n + 1 vertices. By induction a .. ssllrnptioll, the graph 

G -'U has Cl dominating induced subgraph H which is a cograph. If at least one of 

the vertices in H is adjacent to v, then H is Cl dominating induced snbgraph for 

G. If not, H U {v} is a dominating induced subgraph of G which is also a cograph. 

Therefore by induction, the theorem if:) true for all graphs. D 

Note: For any graph G, 'Y(G) ~ 'Ycd(G) ~ ",'i(G). Hmvever, there are graphs with 

",i(G) < ",icd(G) < ",I,(G). For e.g:-

G: 

0.."""-" 
0---0 L 
cr-J--L 
// ""-

o ~o 
Fig: 3.1 

",i(G) = 4, ~(c:rl(G) = 5 and ~ii(G) = 6. 
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Lemma 3.1.2. If T is a tree with 1(T) < "'(cd(T) , then T must ha'ue the graph G 

in Fig : 3.1 as an 'induced subgraph. 

Proof. Since ,-eT) < "'/crlT), in every dominating set D with cardillalitYl(T) there 

exists an induced P4 : V11)'2'(l.;{11,t. Since D is minimal dominating and Hi for i = 

1,2,3A is adjacent t.o at least oue vertex in the dominating set, there exi~ts at least 

one Vi in the vertex set of T corresponding to eachui such that. Vi is adjacent only 

to Vi in D for each i = 1,2,3,4. If for one of these 'i', Vi is t.he only such neighbor 

of 11 .. , then we can replace 'Ui by Vi for t.hat i in the dominating set to remove the 

induced Pt without changing the cardinality. Therefore, there exists at least one 

induced PI in T such that each of its vert.ices is adjacent to a pair of vertices. 

These twelve vertices t.ogether induce the required graph. o 

Corollary 3.1.3. FaT any graph G with less than twelve ve-rtices, "'((G) = "'lcd(G). 

Proof. If G has If~ss than twelve vertices, then G cannot have the graph in Fig: 

3.1 as an induced sllbgraph. Hence, "'((G) = "'/cd(G). o 

Lemma 3.1.4. If T is CL tl'ee with "'(cd(T) < "'/i(T) , then T has the following graph 

as an induced s'IJ,bgmph. 

~L-v 
Fig: 3.2 

PnJOf. Sillce~.'cd(T) < ~r'i(T), every cographic dominating set. D ,,,ith can~inalit.y 

'"'icd(T) \vill have at least one pair of adjacent vertices, sayuv. Sinceu and v are 

mutually dOI1linat.ing~ there exist at least two vertices 1/,1 and VI in T which are 
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adjacent only to 1}. and v, respectively. If these are the only sHch vertices then we 

can replace v. by 'Ui or 'l) by VI in T to remove the adjacency in D without affecting 

the carclinality. Therefore, t.here exist at least one pair of vertices in D which has at 

least hvo ncighbors of t.heir own. These six vertices induce the required graph. D 

Corollary 3.1.5. For any graph G with less than si:r vert'ices, ~(r.d(G) = ~/i(G). 

PmoI If G has less than six vert.ices, then G cannot havE) the graph in Fig: 3.2 

as an induced subgraph. Hence, ~(cd( G) = I'i( G). o 

Theorem 3.1.6. There is no tree T which satisfies ~i(T) < Icu(T) = l'i(T). 

Proof If possible aSSllme that there is et tree T which satisfies ~((T) < ~fcd(T) = 

:'i(T). Let D be a minimal dominating set of cardinality ;(T). Since ~((T) < 

"Ycrl(T) , by Lemma 3.1.2, T mnst contain the graph in Fig: 3.1 as an induced 

subgraph and the vertices which induce a P4 in it must be present in D. Also, 

none of the vertices of this PI can be replaced without affecting the domination 

propert.y and \vithout increasing the cardinalit.y of D. To lnake D a cographic 

dominating set, only one vertex is to be replaced, \vhereas t.o make D an indepen­

dent dominating set, two of the vertices are to be replaced. Since D is arbitrary, 

'Ycd(T) < 'Yi(T) which is a contradiction. Hence. the theorem. D 

3.2 Global cographic domination number 

\Ve prove the existence of a global cographic dominating set for every graph 

G and study the relation bet\veen 7cd( G) and "'igcd( G) of various special classes of 

graphs in this section. 
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Theorem 3.2.1. Given any graph G = (V, E), there e:J;ists a cogmphic dominating 

set which dmninates GC also. 

Proof. If D i~ a cographic· dominating set in G ·which dominates GC also, then 

there is nothing to prove. Otherwise, there exists at least one vertex, say VI which 

is not adjacent to any vertex of D in GC. Adjoin VI to D. If D U {VI} does not 

dominate GC, then there exist a V2 which is not adjacent to any vertex of Du {vd 

in GC. Adjoin 1'2 to D U {VI}' Continue this process until we get a dominating 

set D' = D U {VI, 1.12, ... , Vk} \vhieh dominates Gc. The process will eventually 

terminate, since V dominates GC. The subgraph induced by D' in G is the join 

of the subgraph induced by D in G with Kp , for some p. Therefore, the subgraph 

induced by D' is also a cograph by the choice of D and since D S;;; D', D' dominates 

G. Therefore, D' is a cographic dominating set in G which dominates GC a.lso. [] 

Note: For any graph G, "fgcd(G) :;:: maxbcd(G), "fcd(GC)}. 

Lemma 3.2.2. For any graph G =1= K 1 , ~(gcd( G) > 1. 

Proof. If ~(gcd(G) = 1, then "fcd(G) = 1. Then G has a vertex of fnll degree and so 

GC has an isolated vertex. Therefore, "fcd(GC) > 1 and so ~fgcd(G) < ~!(d(GC). This 

is a contradiction and hence ~!gcd( G) > 1. D 

Theorem 3.2.3. 'f G is a triangle free graph, the'!/, ",ycd( G) = -:'cd( G) aT ~rcr1( G) + 1. 

Proof. Let. "fgcd(G) =1= 1cd(G). Let D he a mllllmum cographic dominating set. 

Since none of the minimum cographic dominating sets dominate GC: at least one 

vertex 'U of G must be adjacent to all the vertices of D. Consider D U {v}. Since 

thp grcl,ph is triangle free, none of the neighbors of the vertices of D are adjacent 
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to v. Since D is dominating, every vertex of G is either in D or is adjacent to a 

vertex of D. Therefore, the only neighbors of v are those present in D. Hence, 

in 0:. V dominates all the vertices outside D. Also, DU {v} induces Cl cograph. 

Thus, D U {v} is a cographic dominating set in G as ,,·.'ell as GC, of cardinality 

o 

Remark 3.2.1. There are graphs for \vhich l'gcd(G) = ~/c:d(G) and l'grd(G) = ~icd(G)+ 

1. For example, I'cd( Co.!) = 'Ygcd( C4 ) = 2, whereas ~(cd( C5 ) = 2 and /'!lcd( Cs) = 3. 

But, the converse need not be true. In the graphs G l and G2 in Fig : :i.3, 

f 
I 
Q 

1\. 
/ \ 

/ , 
" \ 0--0----0----0 

q 
Fig: 3.3 

A 
/ \ 

I \ 
/ \ 
0--0----0 

G2 

Corollary 3.2.4. rt G is a t1'iangle free graph with ~(!I(;d( G) =I- ~/cd( G), then :cd( G) = 

Pmof. Let D be a minimum cographic dominating set. of G. Since, none of the 

minimnm cogmphic dominating sets dominate GC, at least onc vertex l' of G lllmit 

be adjacent to all the vertices of D. Since, G is t.riangle free, no two vertices of 

D are adjacent. Therefore, D is an independent dominating set. Hence, "':'(:d( G) = 

o 

Corollary 3.2.5. EveTY tree T has j!gcd(T) = ~!(:dCT) OT "'/cd(T) + 1. lvf07wver. 

I'gcd(T) = ~!cd(T) + 1 only if T is a. Tooted t'fee of depth two in which eveTY '(.'crte:r 

(may be el;cept the root) ha,') at least two children. 
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Proof. The first statement follows from Theorem 3.2.3, since trees are triangle free. 

Assume that '"Ygcd(T) = Icd(T) + 1 for a tree T. Then as in the proof of corollary 

3.2.4, there exists a minimum cographic dominating set. D, which is independent 

and has a common neighbor v. Since D is dominating and T is a tree, v is not 

adjacent to any other vertex of G. Now. every vertex of D has at least two pendant 

vertices attached to it. Since, otherwise if u. E D has only one pendant vertex w 

attached to it, then (D - {ll.}) U {w} is a global dominating set of cardinality 

'"Ycd(T), which is a contradiction. Therefore, all the vertices in D have at least two 

pendant vertices attached to it and so T is a rooted tree of depth t\vo with v as 

its root in which every vertex has at least two children. o 

Fig: 3.4 gives examples of trees with Igcd(T) = ~fcd(T) + 1. 

Fig: 3.4 

Lemma 3.2.6. rt G IS a disconnected graph, then ~(r:d( GC) ~ 2 and ~/ucd( G) -

Proof. Since G is disconnected, GC is COllllcctec1 and any two \'Crtices in the two 

different components of G dominates GC. So, lcd(GC) ~ 2. Abo. in any cographic 

dominating set of G, there \vill be at least one vertex from each component. There-

fore any cographic dominating set of G is a cographic clOlninating set of GC also. 

Hence ~!gcd(G) = ~fcd(G). o 

RemaTk 3.2.2. This lemma holds for the dominatioIl IlUlnber and the global dom-

ination Humber of a disconnected graph also. 
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Theorem 3.2.7. A cogroph G without a universal vertex has "'(qcd(G) = i'cd(G) if 

and only ~r theTe e;cists two vertices u and v .')v,ch that iV(u) and N(v) partitions 

V(G) or V(G) - {v,. v}. 

Proof. If N(u) and 2V(v) partitions V(G) or V(G) - {v" v}, the cographic dOlll­

ination number of G is 2. In GC, {u, ·u} itself dominates. Therefore, "lgcd(G) = 

"Ycd( G) = 2. 

Conversely, assume that "Ygcd(G) = "Ycd(G). Since "Ygcd(G) > 1 and "/cd(G) ~ 2, 

we have ~f.qcd( G) = "Ycd( G) = 2. Therefore, there exist two vert.ices 1l alld v snch that 

{u, v} dominates both G and GC. Since, neighbors of 'U in G will not be adjacent 

to u in GC, they must be adjacent to v in GC. Hence, no vertex in iVell) is adjacent 

to v in G and vice versa. Also, since {u, v} dominates, He'll.) U N(v) = V(G) or 

V(G) - {1l, v}. Therefore, N(u) and j\'{v) partitions V(G) or V(G) - {u, v}. 0 

Fig: 3.5 gives an example of a co graph for \vhich {gcd( G) = "Ycd( G). 

Fig: 3.5 

Theorem 3.2.8. fr G is a pla.na.r f)raphwith i'cc1(G) ;? 3. then ~''1(:(L(G) ~ ~(cd(G)+2. 

Proof. If possible assnme t.hat "'igcd( G) > ;'cd( G) + 2. Let 111, U'2, Il:~ he three vertices 

in any ~(cd-sct D of G. Since {gcd( 0) > ~'(;d( G) + 2. D cannot dominate GC and at 

least three more vert.ices are to be added to D to lnake it et global dominating set. 

Therefore, there exist at least three vertices 'U\, 1'2, 1':1 which are adjacellt t.o each 

other and to every vertex of D. Then the subgraph induced by these six vertice,:; 
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are adjacent to each other. Each of the above graph contains [(3.3 as a subgraph, 

\vhich is Cl contradict.ion to the planarity of G. Hence the theorem. o 

Rerno:rk 3.2.3. The converse need not be true. For example, in graphs G l , G2 and 

G3 in Fig: 3.6, ')'rd(G1 ) = "Yqcd(Gd = 2, "Ycd(G2 ) = 2) ~(gcd(G2) = 3. ~!cd(G3) = 2 

and ~igcd( ( 3 ) = 4. 

~""'.\ ....... '/'/.' I 'i 

I 
.'!' '. 

/ '-
./ \ 

o rY'----"o 

~ Ga 
Fig: 3.6 

Remark 3.2A. The bound "'(gcd( G) ~ ~rcd( G) + 2 is strict. 

Fig: 3.7 

For example, the plane graph ill Fig: ::3.7 has ".''''' = ;{ and ;'fjcd = S. 

3.3 Two constructions 

Theorem 3.3.1. Givcl1 thTee positive integers a. band c 8at?:sjying (J~ b ~ c. 

there is a graph G such that ~i(G) = a. ~ic<1(G) = b. ~;';(G) = c. 
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Pr-oof \Ve shall prove the theorem by constructing the required graph and by 

analyzing the follmving cases. 

Case 1 : a = b = c 

Let G = Pn or en where n = 380. Then, ~/(G) = "icd(G) = ~(i(G) = a. 

Case 2 : a = b < c 

Let G be the graph Pn where n = 3( a-I) together \vith (c - a + 1) pendant 

vertices each attached to an end vertex of Pn and its neighbor. Then, ~~( G) = 

rcd(G) = a and "fi(G) = c. 

Case 3 : a < b = c 

Let G be P" : Vl'V2V3 ...• 1'n' where 11 = 3a - 7 together \vith p = h - cl + 2 vcrtices. 

Uil, 1.Li2, .. lLip, made adjacent to each Vi for i = 1,2,3 and 4 and lllj made adjacent 

to ll3j for cach.i = 1,2, .... ,p. 

Then, the vertices VI, V2, V:) and 1,'1 dominate alluij s and v:;. To dominate the 

remaining (3a - 12) vertices of the path, (a - 4) vertices are required. Therefore, 

",1 ( G) = a. At least one vertex among VI, 'V2, r3 cmd V4 must be replaced to get. Cl 

cographic dominating set. Remove VI and include all the (b - Cl + 2) vertices. But, 

then ·u:~ is also not required in the dominating set so that "(,A G) = a - 2 + b - a + 

2 = b. This set. is also independent and hmcc ~/I (G) = b. 

Case 4 : a < b < c 

Let G be Pn : l' l V:(U3 .... Vn , where 11 = ;3a - 7 together with (b - a) vertices made 

adjacent to '111, (c - a + 1) vertices lnaclf~ adjacent tOI~2 and (c - a + 2) vertices 

each made adjacent tOlh and V3 and to each ot.her. 
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Then, the vertices VI, V2, V3 and V4 dominate all pendant vertices attached to 

them and V5. To dominate the remaining (3a - 12) vertices of the path, (a - 4) 

vertices are required. Therefore, ~(( G) = a. At least. onc vertex among 'UI, V2, 1,13 

and V.1 must be replaced to get a cographic dominating ::let. If we remove V4, the 

(b - a) pendant vertices adjacent to it and V5 are to be adjoined to get a cographic 

dominating set of cardinality Cl. - 1 + b - a + 1 = b. If we remove Vl, the (c 

- a + 2) pendant vertices adjacent to it are to be adjoined. But, then V:3 also 

can be removed from the dominating set to get an independent dominating set of 

cardinality (a - 2 + c - a + 2) = c. Therefore, "'/cd(G) = band I'i(G) = c. 0 

Illustration 

~ 1f-1_<lti_'e_l+I_1:l_=_b_=_c_= __ 2 --+ __ 0---0-___ ~ -~ I 

~I a = h = 3'L ;; \\' I 
as€) 2 c = 7 ___ 11 L 

I a=5. if:!l 
lase :3 . . .,/1' ------0,),' \\~ t b=c=7' ' 
1 oo~o O,vC 

a = 5. 

1) = 7. 

c = 10 

Tahle :3,1 

Theorem 3.3.2. Given two positive -integer.'! Cl and b sati4ying a :s;; band b > 1, 

there i.s a graph G .such that ~icd( G) = (/, ",/'1(:rI( G) = b. 
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Pmoj: \Ve shall prove the theorem by constructing the reqnired graph and by 

analyzing the follmving cases. 

Case 1 : (f = b > l. 

G is the graph obtained by taking any graph of order a. and attaching one pendant 

vertex to each of the vertices. 

Case 2 : a = 1 and (], < b. 

Case 3 : a = 2 and a < b. 

G is J(2b minus a perfect matching. 

Case 4 : u > 2 and a < b. 

The graph G is obtained as per the follOlving constructions based on the Fig: 3.8. 

./~-~ 

(b - a + 1 ! 
'~ 

/~, 
(b-a+1) 
'~Tertice~/ . 
~ 

i 
i 

\ / 
°v v [S" --0-_ .... -

1_~2-_ .. 

In the Fig: :3.8, the vertices insidp each of the circles are independent and 

the vertice:; inside both the n:ctallg1(~s forlll complet.e graphs. Every vertex v; for 

i = 1, 2, ... , a is made adjacent. to every vertex inside the circle t.o 'which an edge 

is dra.\Vll. All the' vertices of the snmller rectangle are made adjac8llt to, all the 



Chapter 3 : Domination in Graph Classes 56 

vertices in the bigger rectangle, all the vertices inside the circle to 'which an edge 

is drawn and to Va' Further, Vn-I is made adjacmlt to VO' The graph so obtained 

is G. 

Now, if we choose one vertex from each of the circles, we get an independent 

set of cardinality a which has no common neighbors. Therefore, any dominating 

set must contain at least a vertices and {VI, 1.,,'2, ..• , v(~} is a cographic dominating 

set. So Icd( G) = (L. 

The set {'U1, 'V2, ... , va } will not dominate UiS in GC. If wc remove anyone of 

the ViS from this cographic dominating set, then all the b - a + 1 vertices in t.he 

corresponding circle must be included to retain the set as Cl cographic dominating 

set. Therefore, the cardinality becomes a-I + b - a + 1 = b. 

If 'vc keep all the ViS, then a vertex from any of the circles, except the one 

corresponding to V,,-l cannot be introduced, since othenvise an induced Pi will 

be present. A vertex from the circle corresponding to Vn-l cannot dominate 11,J,S 

in the complement. Also, a Ui cannot dominate 11,j for i -I- j, Therefore to get a 

global cographic dominating set all the 'l1i~ lllust bo included. Then the cardinality 

becomes a + b - a = b, In any case, ~f.qcd( G) = b. o 

Illustration of case 4 (J = ;3, b = 5. 

Fig: 3,9 
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3.4 Complexity aspects 

In this section we discuss the complexity aspect.s of the newly defined parame­

ter::;. 

Theorem 3.4.1. Determining the cogm,phic dominatioTL number of et graph is NP­

complete. 

Proof. \Vc prove thi::; by reducing in pOlYllomial time, the dominating set problem 

in general to the cographic dominating set problem. 

Claim: Given a graph C) ''le CHn construct Cl graph H ill pol.ynomial time such 

that G has a dominating set of size k if and only if H has a cographic dominatiug 

set of size k + 1. 

Let G = (V, E) where V = {Vl' 'U'2) ... , vn } be the given graph. Construct H as 

follows: 

Let V(JI) = {Vl,V2,".,Vn } U {v~,v~, ... ,v;J U {x,y}. ~Iake Vi adjacent to vj if 

ViVjEE( G) or i = j: ;T, is adjacent. to vj for every j and x is adjacent to y in H. 

Let {'Uil' Vi", ... ,v'!'} be a minimal dorninating set of cardiuality k in G. Then 

{V;I' V;2' ... , u;!.,:r} is a minilllcll dominating ::;et in H. Sillce there is no induced P4 

in this seL it is l\ minimal cogl'aphic dOlllillatillg set. in H of carclillality k + 1. 

COllYe!'::;ely, let {Ul, 'U.2, ... , uHl} be a cographic clOlllirwting in H. (By construc­

tion of H. any minimal dominating set is cographic). One of these l1~S must be :1.: 

or y. Remove that HI' All other Vi'S must. be either v) orv~. Keep each Vj un­

challged awl replace each v~: by ·1~1.' This new set of cardinality k ,,,ill be a minimal 

clomiuating set of G. Since H can he compnted from G in time polYll()mial in size 
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of G, our claim holds. o 

Corollary 3.4.2. The problem of determining the cogmphic domination rI:umber 

i.<; HP-complete faT the class of bipartite graphs. 

Prnof. In the proof above, the graph H constructed from G is bipartite. 0 

Theorem 3.4.3. Detennining the global ('o[JHlphic domination number of a graph 

i.c; NP-cornplete. 

Proof. Claim: Given a graph G, we can construct a graph H in polynomial time 

such that G has a cographic dominating set of size k if and only if H has a global 

cographic duminating set of size k + 1. 

Given a graph G define H = GU]{l' Clearly, Cl minimum cographic dominating 

set in G together with the isolated vertex is a minimal global cographic dominating 

set in H. 

Conversely, any minimal global cographic dominating set in H will contain the 

isolated 'vertex and the remaining vertices is cl minimal cographic dominating set 

in G. Sillce Il can Iw computed from G ill time polynomial ill size of G, our claim 

holds. 0 

3.5 Domination in NEPS of two graphs 

In this sectioll. we t:ltudy the relation between t.he domination parameters 1', ",(9) 

Icd. ",'9("(/ ilnd "i of Cl awl (;"2 with the :.;rEPS of Gl and G'2 for all possible choices 

of the ba~i::;_ 
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NEPS with basis B1 and B2 

The value of "y(NEPS(C1. 0.1.; 8 1)), ~t'1(NEPS(Cl' C 2: Bd), ~/C(l\mpS(Cl' C 2 ; B1)), 

i'gc(l:'-JEPS( Cl, C2 ; 8d), ~(i(NEPS( Cl, C2 : Bd) are nj.i'( C 2 ). nl.~fq( C'2), (l,l·i'cd( C2 ), 

nl.~/.')cd(C2) and nl'~ii(C2) n~spectively and the case of ?'JEPS(C I , C2: B2) follows 

similarly. 

NEPS with basis 8 3 

In [39] it was conjecturecl that. ~/( G x JI) ) ,( C)".(( JI), \vhere x denotes the 

tensor product of two graphs. But, t.he conjecture was disproved in [48] by giving 

a realization of a graph C such that r( C x G) ~ 1( G)'2 - k for any nOll-negative 

integer k. 

Theorem 3.5.1. There e.7;'ist graphs Cl and G2 such that a (NEPS(C1, C 2; B:3))­

a( G 1 )a( C 2 ) = k JOT any positive integeT k:, wheTe a denoie8 any of the dmm:nation 

Proof. Let G l be the graph clefined as follows, Let lj'llU12 U 13, 1I.2lU22U23, '"" 

UA,t'U,I.:2Uk3 be k distinct P3 s and let VjI be adja.ccnt to uj+l,1 for j = 1,2, ... , k - l. 

Then a(Cd = k. Let C 2 be ](2- Then, a(C2 ) = 1. Also, a(NEPS(G1 , C 2 ; 8 3)) = 

2k. Thel'eforc~, a(NEPS(C., G2 ; 8:l )) - a(G.)a(G2 ) = k. 0 

Theorem 3.5.2. The ~(fJ (JJul ~!!lul are neitheT 8u.bm;ultiplicative nOT super multi­

plicativewith respect to the IVEPS with basis B:3• Alareo'veT, given any integeT k 

there e:rist ymphs Cl and G'2 ,such that a(NEPS(C1, G2 ; B3 )) - a(Gda(C2 ) = k, 

where a denotes r(, or' ".'ged' 

Proof. Casn 1: k ~ () is cvnn 
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Let Cl = Kn and G2 = 1(2. Then, a(Cd = nand a(G2 ) = 2. But, 

a(0IEPS(G1,G2 ;8.3 )) = 2. Therefore: the required difference is 2 - 2n which 

can he zero or any negative even integer. 

Case 2: k < 0 is odd or k = 1 

Let G;{ = P3 and G l he as in Case 1. Then a(G;~) = 2. Also, a(NEPS(C1 , G3 : 8 3 )) = 

:.1. Therefore. the required diffcn~IlC() is :J - 2n which can be one or any negative 

odd integer. 

Case :3: k > 1 

Let C.3 be as ill Case 2. Let G'l be the grRph defined as fo11O\vs. Let nu 11,12111:1, 

U211J.22Un, ... , 'IlklUk21J.k3 be k clistillct. P:~ s a.nd let Ujl be adjacent to 'I1j+1,1 for 

j = L 2, ... , le - 1. Then a(G.d = k. Also, a(:\fEPS(G." C3 ; B:j)) = ak. Thm'cfore, 

the required difference is k. 0 

NEPS with basis 8,1 

Vizing's conjecture [75]: The domination lllllllber is super multiplicative \vit.h 

respect to the cartesian product i.e; ~((GOH) ~ ,(Ch(H). 

Rerrun'k 3.5.1. There arc infinitely many pairs of graphs for which equality holds 

ill the Vizing:s con.iecture [G2]. 

Rell/urk 3.5.2. Vizing's type ineqnalit.y does not hold for cographic, global co­

graphic and independent domination numbers. For example, let G be the graph 

obt.ained by at.tachillg k pendallt \'erticf~S to e~lch vertex of a path on four vertices. 

Then, ~'cd(C) = "';·qcd(G) = k + 3 and rcd(GOC) = I'gccl(COG) = 16k + 8. For 

k ~ lO,:cd(GOG) ~:cd(C)2. 

Theorem 3.5.3. There eTi.st graphs Cl and G2 such that a(NEPS(G1, C 2; B4)) -
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a(GdO"(C2 ) = k for any positive integer k, wheTe 0" denotes any of the domination 

parmneters ~(, II'd or ~li' 

Proof. Let Cl = PT! and C2 = J(2. Then, O"(Ct) = l ~11-~ J [44] and 0"(G2 ) = 1. 

Also, 0"(:-JEPS(G1 , G2 ; 8 4 )) = L !:le:? J t,n]. Therefore, for any positive integer k, if 

we choose n = 61;; - 2 the claim follows. 0 

Theorem 3.5.4. The "'(9 and r(Jcd aTe neither sub multiplicative nor sllpe't multi­

phcaIive with respect to the NEPS with basis 8 4 , Aforeover, q'iren any intege',. k 

there c:rist graph8 Gl and Gl s'uch that a (NEPS(C 1 , Gl ; 8,1)) - 0"(GdO"(G2 ) = k, 

when, 0" denotes ~tfj or~/9cd· 

Proof. Case 1: k ~ 0 is even. 

Let C1 = ](n and Gl = 1(2' Then, O"(Gd = 11. and 0"(G2 ) = 2. But, 

0"(NEPS(C1 ,G2:84 )) = 2. Therefore: the required difference is 2 - 2n which 

can be any positive even integer. 

Case 2: k < 0 is odd, 

Let Ca = ~l and Cl be as in Case 1. Then 0"( Ca) = 2. Also, a-(NEPS( Cl, G3 : RI)) = 

3, Therdore, the rcquired difference is 3 - 2n which can be any negative odd in­

teger, 

Case ;~: k ~ 1. 

Let (;4 = Pit and GG = P l , Then, a(G1) = l nr~ J and 0"(G5 ) = 2. For any 

positive integer k, if ,ye choosen = 3k + 4, then a-(NEPS(C4 , G5 ; 8 4 )) = n. (Note 

that. the value is n + 1 only" when 0 = 1,2,3,5,6,9 [47]). Therefore the required 

difference is k. 
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o 

NEPS with basis B5 and B6 

Theorem 3.5.5. There exist g'lnphs Gl and G2 such that (J(IVEPS(G1 , C2 ; B5 )) -

(J(C 1 )(J(G2 ) = k fOI' any pasiti1JC integer k, whel'e (J denotes any afthe domination 

parameteT.'; ~r, ~!cd (J'/' ~!i. 

Proof. Let G I = Pn and G2 = ](2' Then dCI ) = ln~2J and (J(C2 ) = 1. Also, 

(J(NEPS( G l , G 2 ; B 5 )) = lllt2 J. For a positive integer k, if we choose n = 6k - 2 

thcll the difference is k. Hence, the t.heorem. 0 

Theorem 3.5.6. There e:rist graphs Cl and G2 such that (J(NEPS(G 1 , G2 ; B5))­

(J(G I )(J(G2 ) = k for o:n;IJ negative integer k, where (J denotes "/9 or "Iged. 

Proof. Let G I = Pn and G'2 = ](2. Then cr(Gd = l n~2 J and (J(G2 ) = 2. Also, 

(J(:.JEPS(G1, G2 : B5 )) = l nt2 J. Therefore, if we choose n = 6k - 2, the required 

difference is -k. 0 

NEPS with basis B7 

Theorem 3.5.7. The ~(. ~(i and ~!y are sub multiplicative with respect to the NEPS 

with basis B 7' . 

ProoI Let Dl = {UI' U2, .... lis} be a dominating; set of Gland D2 = {Ih, V2, ... , Vt} 

be Cl dominating set of G2· Consider the set D = {(Ul' Vl), (Ul' 1,'2), ... , (Ul, Vt), ... , 

(u."vd,(U s ,U2), ... ,('us ,Vt)}. Let (1L,v) be any vertex in NEPS(G1,G2;B7). Since 

Dl is Cl ~H;et in G 1, there exists at least one l/.1 E Dl s11ch thatu = Vi or l/, is 

a.djacent to '11;. Similarly, t.lwre exists at least. 011e Vj E D2 such t.hat v = 11j or v is 
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ad.iacent to Vj. Therefore, ('Ui~l!j) dominates (It,'v) in NEPS(C1,C2;87 ). Hence, 

~i(NEPS(Cl' O2 : 8 7 )) :s; ~i(Glh(C2)' 

Similar arguments hold for the independent domination and global domination 

numbers also. o 

Remark 3.5.3. The difference betvleen ~((Gd,(C2) and "f(:'-JEPS(Cl , C 2 ; 8 7)) can 

be arbit.rarily large. Similar is the case for ~Ii and ~fg' For, let Cl be the graph, n 

copies of C4 s \vith exactly onc common vertex. Then, ,(Cl) = "1i(Cd = n + 1. 

Abo, '}(NEPS(Cl , Cl; 8 7)) :s; 17,"2 + 3 and ~(i(NEPS(Cl' Cl; 8 7 )) :s; n'2 + 5. Also, 

Ig(Kn) = ri, ~!.r;(P3) = 2 m,d ~!9(NEPS(C2' C3: 8 7)) = n + 2, if n > 1. 

Theorem 3.5.8. The ~!cd and ~/fJ((l an~ neither sub multiplicative nor 81JpeT multi­

plicative 'with respect to the NEPS with basis 8 7 , Moreover, fOT any integer k there 

exi.st graphs Cl and Gc} such that O"(NEPS(Cl , C2 ; 8 7 )) - 0"(C1 )0"(C2 ) = k. where 

(1 denotes 'Y cd or ~((led' 

Proof. Case 1: k :s; 0 

Let Cl be the graph P:~ with k pendant vertices each attached to all the three 

vertices of the p'",. Let C 2 be t.he graph P4 with k pendant vertices each attached 

t.o all the four vertices of the P4 . So, 0"( Cd = 3 and 0"( C2 ) = k + 3. Also, 

(1);EPS( Cl, C 2 : 8 7 )) = 2k + 10. Therefore, the required difference is 1 - k. 

Case 2: k ) 0 

Let Cl be as in Case 1 and C:3 be the graph Pr) with k pendant vertices each at­

tached to all the six vertices of the PG' So, 0"(C:3) = k+5. Also, O"NEPS(C1 , C3 ; 8 7 )) = 

4k + 14. Tlwrci"ol"(" the required diffmcnc(' is k - 1. 0 



Chapter 4 

The < t >-property 

The question of determining better upper bounds for the clique transversal nnmber 

dates back to 1990 when Tuza Z. introduced the concept of the clique transversal 

number [74]. Erdos et.al. [33] determined various upper bounds for the clique 

transversal number. In all attelllPt to find graphs 'which admit a better upper 

bound: Tuza Z. [74] introduced the concept of the < t >-property. ~\Iotivated 

by the open problems mentioned in [33], ''le studied the < t >-property of the 

cographs. the clique perfect graphs, the perfect graphs, the planar graphs and the 

t.rcstled graphs of index k. In the last section, an open problem on highly clique 

imperfect graphs is solved. 

Some results of this chapter are included in the following paper. 

The < t >-propcrt.y of some classes of graphs. Discrete ~Iath., (to appear). 

64 
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4.1 Clique transversal number 

In this section we prove that the domination number is a 100ver bound for the 

clique transversal number, but the differellce can be arbitrarily large. 

Theorem 4.1.1. Every clique trans'uersal set is a domirwi'ing set. 

Pmoj. Let S be a clique transversal set of a graph G and v E V(G). If v E S then 

it is dominat.ed by S. If v ~ S then let C be a clique 'which contains v. Since, S 

is et clique transversal seL there exist a vertex u E S n C. But then, 11 dominates 

v. Therefore: S is a dominating set. o 

Corollary 4.1.2. Let G be (], gmph. Then, ~f(G) ~ Tc(G). 

Theorem 4.1.3. Let a and b be two pos'iti1Je integer8 such that 2 ~ 0 ~ b. There 

exists a cliq'ue perfect graph G such that 1'( G) = a and Tc( G) = h. 

Proof. Let G be the graph obtained from KM by attaching a-I tmcl vertices to 

(l - 1 distinct vertices in anyone of the partitions of G. 

To dominate thc a-I end vertices, at least a-I vertices arc reqnired alld 

those vertices cannot dorniuftte the remaining vertices (there exist.s at least one 

such vertex, since b ~ a) of that partit.ion. Therefore, ~!( G) is at leclst a. Again, 

the (f - 1 dbtinct neighbors of the a-I cnd vertices together with Olle vertf~x from 

the other partition of KI;,/J dOlllinates C. Therefore, ~/(G) = o. 

The graph G so constrncted is bipartite and hence the only cliques are·t.he edges 

of G. If wc take all the b vertices in the partition of Kb,b to which end vertices are 

attached, then that set forms a clique transversal. Therefore, T,,( G) ~ b. Again, if 
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,vc take thc b independent edges of K b,!>, it forms a clique independent set of size 

b. Therefore, b:::; O'c(G) :::; Tc(G). Hence, Tc(G) = b. 

Also, since 0(,( G) = Tc( G) = b, G is clique perfect. o 

Illustration 

Fig: 4.1 

For the graph C is Fig: 4.1, ~/(G) = :3 and O:c(G) = Tr;(G) = 4. 

4.2 Cographs and clique perfect graphs 

In this section we study the < t >-property of cographs and clique perfect 

graphs. A characterization for cographs and clique perfect graphs which attain 

maximum value for the clique transversal number is also obtained. 

Proof. Any clique in G is of the form HI V lh \\'hen~ HI is <1, clique in Cl and H2 

is a clique in C2 . If Viis a clique transversal of Cl (or G2 ), then any clique of C, 

which contains a clique of Cl (or G2), is covered by V' and hence \'" is a clique 

tmnsversal of C also. 
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Now, let V' he a clique transversal of G. If possible assume that V' does not 

cover cliques of G 1 alld G2 • Let H} and H2 be t.he cliques of G l and G2 respectively 

which are not covered by V'. Then HI V Eh is fl cliqne of C which is not covered 

by V', which is a contradiction. Hence V' contains a clique transversal of Cl or 

G'2' 

D 

Lemma 4.2.2. The cla.ss of all cographs without 'isolated vcrtices does not satisfy 

the < t > -property for' t ~ ,1. 

PTOof The proof is by construction. 

Case 1 : t = cl 

Let C = Cl V C2, where Cl = (3](1 U 1\'2) V (3/{1 U ](2) and C2 = (3/{1 U 1(2)' 

Then n = 15, t = 4 and Tc( G) = 4 v"hich implies that T < Tc( C). 

Case 2 : t > 4 

Let C = Cl vG2 , \vhere Cl = (3Kl UKt - a)V(3Kl U](I.-3) and C 2 = (31(2U!{t2). 

Then n(C) = 3t + 4 and Tc(G) = 4. 

Every edge in Cl lies in a complete of size t in G sillce Ch cont ain:-:; Cl clique 

of size t - 2. Every edge in G2 lies in a complete of size t for t ~ 4 in G sincf~ 

G l contains a clique of size 2t - 6. An edge with one end vert.ex in Cl and the 

other end vertex in C2 lies in a complete of size t since every vertex in Cl lies in 

a compldc of size t - 2 [tud every vertex of C2 lies in a completE' of size 2. Hence 

G is et cograph in which every edge lies in a clique of size t. 
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Also, T = 3 + ~. 

Therefore, T. < Tc( G) for t > 4. o 

Theorem 4.2.3. The class of clique perfect graph" 'Iuitho'/J,t isolated vcr-bees satis-

fies the < t > -pmperty for t = 2 and 3 and does not satisfy the < t > -property fOT 

t;:: 4. 

Proof. Let G be a clique perfect graph in which every edge lies in a complete of 

size t. G being clique perfect, Tc(G) = (}c(G). 

Case 1: t = 2 

Since G is without isolated vertices Q'c( G) :::; ~. So Tc( G) = (Jc( G) :::; ~ and 

hence the class of clique perfect graphs satisfies the < 2 >-property. 

Case 2: t = 3 

Every edge of G lies in a clique of size 3. So, the size uf the smallest clique of 

G is 3. Therefore, Qc(G) :::; ~ and Tc(G) = Q'c(G) :::; ~. 

Case 3: t;:: 4 

The class of cographs is a. subclass of clique perfect graphs (Lemma 1.1.8). So 

by Lemma 4.2.2, the claim follows. o 

Corollary 4.2.4. The class of cographs without isolated vertices satisfies the 

< t >-propeTty for t = 2 and S. Iv!ore01'fr, fOT the class of connected cographs 'with-

out isolated ve'rtir;e8, Tc( G) is maJ;'irnurn if and only if G is the cornplete b'ipartite 

qnlIJh J{ !l~l . 
• "2' 2 

P'f'Oof. Since the class of cographs is Cl subclass of clique perfect graphs (Lemma 
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1.1.8), it satisfies the < t >-property for t = 2 and 3. 

Since the class of cographs satisfy the < 2 >-property and Tc([(i'~) - ;, 

the lllcLximulll value of Tc( G) is ~. Conversely, let G be a connected cograph 

with Tc( G) = ~. Since G is a connected cograph G = Cl V Gl . TherE~fore, 

Tc(G) = rnin{TC(G1 ), Tc(G2 )}. But, both Tc(G l ) and Tc(G 2 ) cannot exceed the 

number of vertices in Gland G2 respectively and hence the number of vertices in 

Gl and G2 must be ~. Again, since Tc( G) = ~ all these vertices must be isolated. 

Therefore, G = J(!'. !l. 
, 2'2 

o 

Corollary 4.2.5. For the class of clique perfect graph'" 'without isolated vertices, 

Tc( G) is rnaximum if and only if then: e:rist a perfect matching in G -in wh'lch no 

edge lies -in a triangle. 

Prool The class of clique perfect graphs \vithout isolated vertices satisfies the 

< 2 >-property. Therefore, the maximum value that Tc(G) can obtain is ~. Let G 

be a clique perfect graph with Tc( G) = ~. G being clique perfect, O'c( G) = Tc( G) = 

~. Since each clique must have at least two vertices and there are ~ independent 

cliques, the cliques are of size exactly tvvo. Again, this independent set of ~ cliques 

forms a perfect matching of G and a clique beillg ma.ximal complete, the edges of 

this perfect matching do not lie in triangles. 

Conversely, if t]wre exists a perfect matching in which no edge lies ill a tri-

angle, the edges of this perfect matching form an independent set of cliques with 

cardinality~. Therefore. O'c(G) ~ ~. But: O'c(G) ~ Tc(G) ~ ; awl therefore 

o 
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4.3 Planar graphs 

Theorem 4.3.1. The class of planar graphs does not :mtis.fJJ the < t >-property 

for t = 2, Sand 4 and 9t is e'lnpty for t ?: 5. 

Proo/. Every odd cycle is et planar graph and ,AC2k+d = k + 1 > 2k;H. Clearly, 

odd cycles belong to 92 and hence the class of planar graphs does not satisfy the 

< 2 >-property. 

'~ 

~~o 
~~_/ 

Fig: 4.2 

The graph in Fig: 4.2 is planar and every edge lies in Cl triangle. Here, n = 8 

and the clique transversal number is 3 vvhich is greater than ~ and hence planar 

graphs do not satisfy the < 3 >-property. 
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The graph in Fig: 4.3 is planar and every edge lies in a K 4 . Here, n = 15 and the 

clique transversal nllIl1ber is 4 which is great.er than ~ and hellce planar graphs do 

not satisfy the < 4 >-property. 

Since J(, is a forbidden subgraph for planar graphs, there is no planar graph 

G such that all its edges lie in a K" for t ~ 5. Hence, the theorem. o 

4.4 Perfect graphs 

Theorem 4.4.1. The class of perfect graphs does not satisfy the < t > -propeTty 

for any t ~ 2. 

Proof. Let G be the cycle of lengt.h 3k, say Vll'2, ." ,V3kVl where ~; > 2 is odd, in 

which the vertices VI, V4, ". ,1j3k-2 are all adjacent to each other. Then G is perfect 

and Tc(G) = r32k l > :~': since 3k: is odd. Therefore the class of perfect graphs does 

not satisfy the < 2 >-property. 

Now, the class of perfect graphs does not satisfy the < 3 >-property since 

Cs is a perfect graph (Lemma 1.1.6) in which every edge lies in a triangle and 

Since the cographs are Cl subclass of perfect graphs (Lennna 1.1.7) [27], by 

Lemma 4.2.2. the class of perfect graphs also does not :-mtisfy t.he < t >-property 

for t ~ 4, o 
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4.5 Trestled graph of index k 

In this section the clique transversal nurnber and the clique independence num­

ber of Tk ( G) are determined. A characterization of G for which Td G) satisfies the 

< 2 >-property is also given. 

Lemma 4.5.1. For any graph G without isolated 'veT'tices, Tc(Tk(G)) = km+t3(G). 

PrYJoj. \Ve shall prove the theorem for the case k = 1. 

Let V' = {v,,1h, ... . vs} be a vertex cover of G. The cliques of Ti(G) are 

precisel.y the cliques of G together with the three J{2 s formed corresponding to 

each edge of C. Corresponding to each edge Ill) of G choose t.he vertex which 

corresponds to 1J, of the corresponding J( 2) if 'Ll is not present. in V'. If 'Il is present 

in v' then: choose the vertex corresponding to v, irrespective of v is present in 

V' or not.. Let this ne\v collection together \"\·-ith V' bp \/". Then V" is Cl clique 

transveniaJ of Tl (G) of cardinalitym + ,3( G). Therefore, T('(Tl (G)) ~ rH + 3( G). 

Let V' = {VI, ])2, ... ,vd, where t = Tc(Tl (G)) be a clique transversal of T1 (G). 

Let nv be an edge ill G and let 1/.'1..," be the /(2 lut.l'Oduced in Tl (G) corresponding 

to this f{2. At least one vertex from {u'.r'}, say v,'lllnst be present in \/', since 

ill is Cl clique t.ransversa.] and v'v' is a clique of T} (G). Remove 7/ from V'. If \/' 

cont.ains r' also then replace c' by v. If v' ~ \/' t.hen v E \/'. since V' is a cliqne 

transversal and /)1)' is a clique of T J (G). In either case, one vertex 'I' of the edge 

?IV it; present ill the Hew collection. Repeat the process for each edge in G to get 

V". Clearly. 1/" is Cl vtrtex cover of G \vith cardinalit:y TcCTl (G)) - JlL Hence, 

O( G) ~ TJT1 (G)) - m. Tlms, TcCTl (G)) = m. +3( G). 
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By a similar argument we can prove that Tc(Tk(G)) = km + 8(G). 0 

Notation: For a given class Q of graphs, let TdQ) = {T,J G) : G E Q}. 

Theorem 4.5.2. The class T1.(Q) satis./ies the < 2 >-pro]Je'rty if and only if,S(G) ~ 

!l V G E Q and (Tk(Q))t is empty for t ~ 3. 

Proof. Let G E Q. n(Tk(G)) 

km + (J( G). Therefore, 

n -+- 2km and by Lemma 4.4.1, Tc(Tk(G)) -

Tc(Tk(G)) ~ n(T;(G)) <=> km + 3(G) ~ fl+~kTn <=> J3(G) ~ ~. 

Hence. Tk (9) satisfies < 2 >-propcrty if and only if 3(G) ~ ~ VG E Q. 

If G contains at least onc edge then T.,(G) has a clique of size 2 and hence 

[J 

Lemma 4.5.3. For' any graph G without isolated 'vertices, Oc(Tk (G)) = km (G) + 

a'(G). 

Pr-oof. \Vc shall prove the theorelll for the case k = 1. 

Let £' = {el, C2, ... , en / } he a maxinnun matching of G with canlinality (}'(G). 

Let G\ = {eU.cl?e:nJ:22 .... ,fo'l.o/2} where each t'il,Ci2 for i = 1,2, .... 0' are 

the edges which join Ci to the cOITPsponcling [(2 of 11 (G). Not,c that each eij 

is a clique for i = 1, 2, ... , 0' and j = L 2. Let Cl. = {h, f2' ... , fm-o /} be the 

K 28 in Tl (G) correspondillg to tht' edges of F - E'. Also. each fi is a clique in 

Tt (G) for i: = L 2, ... ,In - 0". Therefore, Cl U C'1. b Cl set of independent cliques 

of Tl(G) \\"ith cardinality 2cl(G) + (m,(G) - o'(G)) = In(G) + (}'(G), Hence, 

CtjT1(G)) ~ m,(G) -+- o'(G). 
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Let 5 = {Cl, C2 , •.. , CoJ be a set of independent cliques of Tl(G) with carcli­

nality nc(Tl (C)). Let 

SI = {Ci : V(Ci ) ~ V(C)}, 

52 = {Ci : :::lC} with V(C,) n V(C) = {u}, V(Cj ) n V(C) = {v} \vhere ,(WE~(C)}, 

53 = 5 - (S 1 U 52) 

Note that 1521 is always even and the elements of 52 can be paired into (Ci , Cj ) 

which satisfy the required property. 

Choose one edge from each clique in SI and the edge uv correspollding to each 

pail' (Ci , Gj ) in 5'l. to get an independent set of edges E' ~ E(C). Now, IS~I 

cannot exceed 711,(C) and 151 = (Yc(Tj(G)). Therefore. IE'I ?:: oATj(C)) - m(G). 

Hence, n'(e) ?:: nc(Ti(C)) - m(C) and so nAT1(C)) :S;m(G) + n'CC). Thus, 

ncCTl(C)) = m(C) + CI:'(C) , 

By a similar argument we can prove that oc(Tk(C)) = krn(C) + (l1(C). 0 

Theorem 4.5.4.T,JG) is a diq7J.e pe'l~lect graph if and only if C is a bipartite 

graph. 

Proof. Let Tk ( G) be 1'1 clique perfect gnlph. From Lemm1'1 4.5.1 and Lernma L1.5.3, 

TcCTdG)) = Cl,JTdG)) if and only if l:f(G) = (I'(G), If H is an induced subgraph 

of G then TA-(H) is an induced subgraph of h(G) and hence for TdG) to be 

clique-perfect, del!) = n'(H) for every induced snbgraph H of C. If G contains a.n 

induced odd cycle of lengtb '2.k + L k ~ L r.hen /.: + 1 =:J(C:'2A:+l) #- (l'(C2k+d = k, 

which is a contradiction. Therefore, C is bipartite. 

~ow. ll~t, G he bipartitf~, Then 1/ .. ( G) is bipartit.e for each k, since Td G) contains 

an odd cycle if a.nd only if G contains clll odd cycle. For bipartite graphs, the clique 
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transversal number is same as the minimum number of vertices required to cover 

all edges and the cliqne independence number is sa.me a.s the maximum number of 

independent edges, siuce all cliques arc of size t,,'o. Hence by Lemma 1.1.13 and 

tlw fact that each induced sllbgraph of a bipartite graph is l)ipartite, it follows 

that Tk (G) is clique perfect. 

D 

The < t >-property of the various classes of graphs which wc have st.udied in 

this chapter arc summariz(~d in the following table. 

Satisfy < t >-property 
--- I 

Do not satisfy < -t, >-property I 
v • I 

I Cographs 2, 3 

Clique pcrfect graphs 2, 3 ~4 

2, 3, 4 I 
I Planar graphs 

Perfect graphs ~2 ~ 

4.6 Highly clique imperfect graphs 

A graph G il:> highly clique imperfect if the difference between Tc (G) a.nd 

ne( G) is arbitrarily large. In [:32]. a graph F~ sCl,tisf\'ing TA FI ) - oe( Ft) = t, where t is 

an arbitrary intpgcr is giYell where t1w IHllnlwr of vertices ill F~ grmvs expommtially 

'with t. Howcver, the following problem is open [73] : 

Problem: For all arbitrary integer t, are th~~rc graphs G' such that Tc( G) - (1c( G) = 

t where the 1l111nlwr of vertices in G is linear ill t. 

In t,his section. this problenl is sol vcd by constructing a fcunily of such graphs. 
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For each positive integer t, define Cl as J(U+l with 5-cycles attached to t 

distinct pendant", vertices of K'.HI (Fig: 4.4). 

size of C t is 5l + 2, 

0--------0 
/ \. 

o~~ 
\ 

\ 
\ 

\ 

I 
1 

6 
Fig: 4.4 

:\lore generall.y, if C k,t is the graph obtained by replacing the 5-cycles in this 

example by any odd cycle C2k+1 , then 'TACk,t) = (k+ l)t+ 1, Ctc(Gk,t) = kt+ 1 and 

the number of vertices in Gu is (2k + l)t + 2 which is a.lso polynomially bounded 

in t. 



Chapter 5 

Clique graphs and cographs 

In this chapter the clique graph of cographs arc studied and we prove that the 

diameter of the clique graph of a cograph cannot exceed two. If n( G) = p, \V-here 

p is prime, then G cannot be the clique graph of a cograph except for G = Kp_ 

The number of clique graphs of a cograph with xU{(G)) = 8, where s is a fixed 

integer is fiuitc. A realization of cographs and its clique graph which have specific 

values for tlw dominabon number, the clique transversal number and the clique 

independence number are given. 

5.1 Clique graph of a cograph 

Theorem 5.1.1. rle is (}, connected cograph then the diameter of K(G) ~ 2_ 
-_ .... _-----

Some results of t.his chapter are included in the following paper. 

Some properties of the clique graph of a cograph, Proceedings of the International Conference 
on Discret,p J\Iathclllat.ics, (20{)6), Bangalore, India, (t.o appear). 

77 
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Proof. Let 5\ and 52 be any bvo non-adjacent vertices in K(G). If a vertex in 51 

is adjacent to Cl vertex in 52, then there exists a clique 5 which contains this edge 

and hence is adjacent to both SI and 52 in K(G). Therefore, d(51,82 ) = 2. If 

possible assume that no vertex in 8 1 is adjacent to Cl vertex in 8 2 . Let VI E V (Bd 

and 1'2 E V(82). Then, d(Ul,1'2) = 2. Hence there exists a vertex 'I) adjacent to 

both VI and V2. If v~ is another vertex in V (5 d then '/)~ VI 1'1'2 should not induce 

PI in G and therefore v~ is adjacent t.o v. Since v~ was arbitrary, every vertex in 

V(51 ) is adjacent to v. But, this is et contradiction to the ma..-ximality of 81 . Hence, 

for a conllected cograph G, cHameter of K (G) :( 2. o 

Theorem 5.1.2. fr C is a connected cognLph with pr·ime n'llmber of cliques, then 

G i8 clique complete. 

Proof. Let G = G I V G 2• The lllUllber of cliques in G is the product of the number 

of cliques in Cl and G2 . But, the number of cliques in C is prime and hence one 

of the Ci's nmst have prime number of cliques and other mllst be complete. Every 

cliqtw in G is t.lw join of the cliques of Gl and G2 . Hence any two cliques in G 

have a nOll-empty intersection and therefore the clique graph of G is complete. 0 

Corollary 5.1.3. A.ny g'(·oph of priTne oTdeT, other than I<p, cannot be the clique 

graph of a cograph. 

Theorem 5.1.4. A cogTOph is clique complete if and only if there exists (J, universal 

vertc:r. 

Proof If thf~re exists a universal vertex in G then that vertex \viII be present in 

every cliqlle of G fllld hence K(G) is complete. 

)Iow, assume that a cograph G is clique complete. Let 8 be a clique of G 

wit,h maximum carclillality and ;,.;.,' he its clique number. The proof is by induction 
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on IV(G) - V(S)I. If IV(G) - V(S)I = 0 then G(= S) itself is complete. If 

W(G) - V(S)I = 1 then there exi~t only one vertex v out.side S. Siuce G is 

connected there exists at least. one vertex 'Il E S which is adjacent to v. Then 

deg(Il) = n - 1. Assume that if W (G) - V (S) I = k then there exists a vertex of 

full degree in G. 

NO\v, let IV(G) - V(S)[ = k + 1 alld '/)1, V2 • .... , Vk+l E V(G) - ytS). Let Gi 

be the graph ol)tainecl by deleting the vertex IJi for i E {I, 2, .. , k + I}. Then 

W(Gi)1 = n - 1 and S is a clique in Gf.. Also W(G i ) - V(S)I = k. Therefore by 

the induction hypothesis, there exists a vertexv~ of degree n - 2 in Gi for all i. 

Then '/..~ belongs t.o ytS). since it is adjacent to all vertices in Gi and S is maximal 

complete. If for at least one Vi ,Ui is adjacent to v;, then v~ \'·:ill be of full degree in 

G. 

Now, assume that t'i is not adjacent to v~ for all i and hence v; =I vj if i =I j. 

Consider two arbitrary vertices Vi andvj ,vhere i =I- j and i,j E {I, 2, ..... , k+ I}. If 

1'i is not adjacent to vi' then 't'iVj V;Vj is an induced P4 in G which is a contradiction. 

Therefore VI is adjacent to Vi for alIi =I ,7 and i, j E {1, 2, .... , k + 1}. Hence 

{lh, 1..'2, .... , vk+d induces a complete graph. So there exists a clique in G which 

contains all the vertices V1, V2, .... , 'Uk+ 1. This clique has non-empty intersection 

with 5, since G is clique complete. Therefore there exists 11. E V(S) 'which in 

adjacent to Vi for all i E 1. 2, .. k + 1 and hence1.l ,,,"ill be a vertex of full degree. 

The proof now follmys IJ;Y the mathemat.ical induction. o 
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5.2 Chromatic number of the clique graph 

Even though the difference behvccn the chromatic numbers of a cograph and 

its clique graph can be arbitraril:y large, the number of clique graphs of Cl cograph 

having a fixed chromatic number is finite. 

Renw.rk 5.2.1. Given any two positive integers Cl, b > 1. there exists a cograph G 

such that X(C) = u and X(K(G)) = b. Let G = Ka with b - 1 pendant vertices 

attached to one of its vertices. Therefore, ]{( C) = Kb and hence x( G) = a and 

(K(C)) = b. 

Theorem 5.2.1. The nu:rnber of clique graphs of a connected cograph G w'ith 

X([((G)) = 8i8 finite. 

Proof. Let G be a cograph with X(K(G)) = 8. Let G = G1 vG2 be a decomposition 

of C. Let the number of cliques of Ci be Pi for i = 1,2. If Pi > s for sorne i, say 

i = 1, then Cl "vill have at least s + 1 cliques, R 1l , H 12 , ..... , H1,s+1' Let H2 be a 

clique of G2 . Then Hn V R 2 , R12 V H2 , ...... , H1,s+1 V H2 are cliques of G \vhich induce 

Ks+ 1 in K (G). But, then x( J( (G)) ;? s + 1 \vhich is a contradiction. Therefore 

each Pi ~ 8 amI hellce IV(J((G))I ~ 8 2• Hence, the number of clique graphs of a 

connected cogmph with X(K(G)) = s is finite. o 

5.3 Some graph parameters 

In thiti i::iectioll \YC study the relation between the domination number, the clique 

trallsw~rsal number and the cliqne independence number of a cograph and its clique 
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graph. It is also observed that, though cographs are clique perfect and the clique 

graph of Cl cograph satisfies Tc(I{(G)) = O:c(K(G)), they are not clique perfect. 

Theorem 5.3.1. There e:rists (), cogmph G such that i'(G) = a and ~f(I«(G)) = b 

if and only 'U' 

(1) a ~ 2. 

(2) a = 1 if and only 4' b = l. 

(3) a = 2 and b ;;? a. 

Proof. If G is Cl cograph then r(G) ~ 2 [66]. Therefore (1) holds. If il(G) = 1 

then G has a, vertex of full degree and hence J( (G) is complete. Therefore, a = 1 

implies that b = 1. If b = 1 then K (G) has a vertex of full degree. Let C be 

the clique in G which corresponds to this vertex of full degree in K (G). Let 

U1,'iI2, ... ,Up E V(G) - V(C). Every clique in G intersects "with C and hence u,: s 

for i = 1,2, ... ,p must be adjacent to at least OIle vertex of V(C). 

Claim: Every 11, is adjacent to a common vertex v E V(G). 

On t.he contrary, assume that U1 and 11,2 do not have a common ncighbor in C. 

Let V1 be adjacent to V1 and 112 be adjacent to ))2. But, UIV1V21L2 cannot induce a 

P l in G and hence III is adjacent to H2. Since, Ul and U2 have no common neighbors 

in C, the clique of G \vhich contains the edge 111U2 does not intersect C which is a 

coutradiction. Tlwrdorc, our claim holds. 

Therefore. v is a vertex of full degree in G and hence a = ~f( G) = 1. Hence, (2) 

holds. 

If a = 2 then h t 1 by (2). Therefore, b ;;? a and (3) holds. 

Conversely, assume that a and b satisfy the given conditions. Let G be Hie co-
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graph Kb,b. The clique graph of Kb.b, K(Kb•b) = K"OK". Therefore, 1(K(Kb,b)) = 

b. If b > 1 then {'(G) = 2 and if b = 1 then ~(( G) = 1. Hence, G is the required 

graph. 0 

Theorem 5.3.2. lfG is a cogm.ph then Tc(K(G)) = Ctc;(K(G)). 

PTOof. \Ve use t.he recursive definition of cographs to prove the theorem. If G = K 1 , 

then K(G) = J(1 and Tc(Kd = oc(Kd = 1. 

Let G l and Gl be cographs which satisfy Tc(1«GJ) = oAK(Ci )) for i = 

1. 2. Let G = G l U G2 . Then, K(G) = K(Gd U K(G2 ) and hence Tc(1«(G)) = 

Tc(K(Gd) + I c(1«(G 2 )) = nc(1«(Gd) + nAK(G2 )) = O:c(1«G)). 

Let. G = Cl V G'.!.. Let HI be a clique in K(Gd induced by the vertices 

corresponding to the cliques C ll ,G l2 , ... C lk in Cl' Let G21,G22, ... ,G2t be the 

cliques in C2 • Therefore, {Gh V G2j : i = 1,2, ... k and j = 1,2, ... , t} are cliques 

ill Cl V G2 and the vertices corrcsponding to these cliqucs induce a clique in 

K(G 1 V G2 ). Let this clique be H't. Similarly: if H2 is a clique in K(Cd, then 

we can find R clique H~ in K(C1 V G2). l\Ioreover, if Hi and H2 are independent, 

then H; and H~ arc also independent. Therefore, (}c(1«(G1 V G~d) :;:: oc(K(Gd). 

Similarly we can prove that. nAK(G1 V C2 )) :;:: (}c(1«(C 2 )). Thcrefore~ O'c(K(G1 V 

C2)) :;:: rno.1;{u,:(K(Cd), o,,(K(G2 ))}. Using similar arguments, we can prove that 

1,.(l{(C, V Cl)) ~ TTuu;{lc(K(C j )), Tc(K(G2 ))}. Therefore, 1,(K(Gd V I{(G2 )) ~ 

oc(K(G1) V J((G'2)' But, by definition, Tc(J«C 1 ) V K(G2 )) :;:: O'c(1«Cd V K(G2 ). 

Therefo}'(~, Tc(I«(G,) V K(G2 )) = oAK(G,) V K(G2 ). 

Hencp the t,heorern. o 

Hemar/,; 5.3.1. If a and b are any two positin~ real numbers which satisfies the 
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condit.ions a = 1 if and only if b = 1 and a ~ b then there exist cographs which 

satisfies Tc(G) = Qc(G) = a and Tc(I{(G)) = Qc(K(G)) = b. For example, consider 

An interesting observation: Despite Theorem 5.3.2 and Lemma 1.1.8; K(G) 

of Cl cograph G need not be clique perfect. For example consider the cograph 

U II 
5 4 

\ 
\. 

Fig: 5.1 

C\. 
5 

The cliques of G formed by the vertices {Ul' VI}, {'lh, 1)2, V3}, {1l41 U5, v:~, v,t}, 

{ua,u4:'cd anci {V2,1I.:3:vd induce et C5 in K(G) and hence K(G) is not cliquc 

pcrfect. 



Chapter 6 

Clique irreducible and weakly 

clique irreducible graphs 

This cha.pter deals \vith bvo graph classes - the clique irreducible graphs and the 

weakly clique irreducible graphs. A new graph class called the clique vertex i1'-

rcdncibl(~ g-n-lphs is also defined. "Vc dldractcri:.-;c line graphs awl its iteratioIls, 

Gallai graphs, anti-Gallai graphs and its iterations, cographs and distance heredi-

tary graphs which are clique irreducible, clique vertex irreducible and weakly clique 

irreducible graphs. 

Some results of this chapter are included in the following papers. 

(1) Clique irredllcibility and clique vertex irreducibility of graphs, (communicated). 

(2) CHq \le irreducibility of some iterative classes of graphs, Discuss. l\Iath. Graph Theory, 
(to appear). 

(3) On wcnkly clique irreducible graphs, (communicated). 

84 
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6.1 Iterations of the line graph 

In thi~ section the line graphs and all its iterations which arc clique irreducible 

and clique vertex irreducible are characterized. 

Theorem 6.1.1. Let G be a gmph. The line graph L(G) is dique 'ver·te:]; irreducible 

if and only if G satisfies the following conditions, 

(1) E'uery tT"jangle in 0 has at least two vertices of degree two. 

(2) Every vertex of deg'f'ee greater than one in G has (l pendant vertex attached to 

'it, except for the 'vertices of degTee two lying in a triangle. 

Proof. Let G be a graph ""hieh satisfies the conditions (1) and (2), The cliques 

of L( 0) are induced by the vertices corresponding to the edges in C which arc 

incident on a vert.ex of degree at least three, the edges in 0 which are incident on a 

vertex of degree t\VO and which do not lie in a triangle and by the edges in 0 which 

lie in a triangle. By (2), the cliques in L(O) induced by the vertices corresponding 

to the edges in G which are incident on a vertex, have a vertex which does not lie 

in any other clique of L(G), By (1), the cliques in L(O) induced by the vertices 

which correspond to the edges in G which lie in a triangle, have a vertex which 

does not lie ill any other clique of L( G). Therefore, 0 is clique vertex irreducible. 

Conversely, assume that L( G) is a clique vertex irreducible graph, Let 

< li.i, ([2, 'U.a > be a triangle in G. Let PI, £02, ea be the vertices in L(O) which 

correspond to the edges 'U}U2,1I'271;'l,1Lali.l in C. T =< el,e2,e3 > is a clique in 

L(G). If d(u,) > 2 for t\VO 'UiS, H} and 'U2' then there exist Vi and V2 (not necessarily 

different. but different fron11I;{) such that Ui is adjacent to Vi for i = 1,2. But then, 

the vertices e} and (;3 will be present in the clique induced by the edges incident 
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on the vertex 1Ll and the vertices e2 and e3 will be present in the clique induced 

by the edges iIlcident on the vertex U2' Therefore, every vertex in T belongs to 

anot.lier clique in L( G) which is a contradiction to the assnmption that L( G) is 

clique vertex irrE~ducible. Hence every triangle in G has at lea.st two vertices of 

degree two. 

Now, let. '11, E V(G) and N(11) = {Ul' U2, ... , u,p}, where p ) 2 and if p = 2 then 

Uj is not adjacent to 1[2. Let ei be the vertex in L( G) corresponding to the edge 

11'Ui in G for i = 1,2, ... , p. Let C be the clique < el, e2, ... , Cl' > in L(G). If 1.L has no 

pendant vertex attached to it then every Ui has a neighbor Vi -=/=u for 'i = 1,2, ... , p. 

The ViS are not necessarily pairwise different. 110r80ver, some Vi can be equal to 

some 'llj with j -=/= i, except in the case p = 2. Therefore, for each 'l, every e; in 

L( G) ,,,ill be present in another clique, either induced by the edges incident Oll the 

vertexlL; in G or by the edges in Cl triangle containing u and ILi in G. But this is 

a contradiction to the assumption that L( G) is clique vertex irreducible. Hence, 

every vertex of degree greater than one in G has a pendant vertex attached to it, 

except for the vertices of degree two which lie in a triangle. o 

Fig : 6.1 gives an example of a graph whose line graph is clique vertex i1're-

duciblc. 

G L(G) 

Fig: 6.1 

Theorem 6.1.2. Let G be a connected graph. The seco.nd iterated hne gnlj!h L2((;) 

is cliq'lJ.f ueTte:r.; iTTeducible 'i.f and only '~f G is one of the following groph.~. 
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(ii) K 
3 

(ii'i) p 
3 

(iv) P 
4 

(v) p~ (1ri)K c 
/) 1,3 

., 0---0 
(vu) / 

~O 
.... 0 

Proof. By Theorem 6.1.1, L2( G) is clique vertex irreducible if and only if 

(1) Every triangle in L(G) has at least two vertices of degree two. 

(2) Every vertex of degree greater than one in L( G) has a pendant vertex attached 

to iL except for the vertices of degree two which lie in a triangle. 

By (2), every non-pendant edge in G must have a pendant edge attached to it 

on one end vertex and the degree of that end vertex must be two. 

Case 1 : L( G) has a triangle. 

A triangle in L(G) corresponds to a triangle or a 1<1,3 (need not be induced) 

in G. Let it correspond to a triangle in G. If any of the vertices of this triangle 

has a neighbor outside the triangle, then two vertices in the corresponding triangle 

in L( G) have neighbors outside the triangle, vvhich is a contradiction. Therefore. 

since G is connected, in this case G must be ](3. 

If the triangle in L( G) corresponds to a f{ u in G, then two of the edges of this 

/(1,3 cannot have any other edge incident on any of its end n:rtices. Therefore. 

G cannot have a vertex of degree greater than three. ~Ion~over, two vertices of 

K},a in G must be pendant vertices. Again, by (2) and since G is COI1ll8ctecL we 

conclude that G is either /(l,a or the graph (vii). 

Case 2 : L (G) has no triangle. 



Chapter 6 : Clique irreducible and weakly clique irreducible graphs 88 

Since L( G) has no triangle, G cannot have a K:~ or a vertex of degree greater 

than or equal to 3. Therefore, since G is connected, G lllust be a path or Cl cycle 

of length greater than three. Again~ by (2), G cannot be a path of length greater 

than five 01' a cycle. Therefore G is 1(2, P3, P4 or p)' o 

Corollary 6.1.3. Let G be a connected graph. The n'h iterated line graph Ln(G) -is 

cliqv.e verte:r ilTeducible if and only if G is K 3 , K 1,3 OT Pk where n + 1 ~ k ~ n + 3, 

for n ~ 3. 

Theorem 6.1.4. The li'ne graph L (G) 'is diq'Ue iTredncible if and only if e'uery 

triangle in G has a vertex of degree two. 

Proof. Let G be a graph such that every triangle in G has a vertf:X of degree t.wo. 

Let C be Et clique in L(G). 

Case 1 : The clique C is illducecl by the vertices corresponding to t.he edges ill G 

which are incident on a vertex of degree at least three. 

An edge of C can be present in another clique of L( G) if and only if the 

corresponding pair of edges in G lies in et triangle. Thus, if ever.\' edge of C lies in 

another clique of L(G), then G has an induced ](p, where p is at least four. But, 

this contradicts the assumption that every triangle in G ha::; a vertex of degree two. 

Case 2 : The clique C is induced by the vert.ices corresponding to the edges in G 

which are incident on a vertex of degree two and which do not lie in a triangle. 

In this case, C is ](2 which always has an edge of its OWI1. 

Case 3 : The clique C is induced by tlw vertices corresponding to the edges \\"hich 

lie in a triangle T in G. 
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Since T has a vertex v of degree two, the vertices corresponding to the edges 

which are incident on v induce an edge in C \vhich does not lie in any other elique 

of L(G). 

Therefore, G is clique irreducible. 

Conversely, aSSllme that G is a clique irreducible graph. Let < 111,712, U:3 > be a. 

triangle in G. Let. el, e2, e3 be the vert.ices in L (G) which correspond to t.he edges 

UlU2,U2U3,U3Ul of G. T =< el,e2,e3 > is a clique in L(G). If d(1J.i) > 2 for each 

i, there exist 1h,V2,V3 such that. U'i is adjacent to Vi for i = 1,2,3 (-UI,'/}2 and 1);~ 

are not nccessarlly different, but they are different from 'ill, '112 and 1l3)' Then the 

edges ele2, e2e3 and e3el of L(G) \vill be present. in t.he cliques induced by edges 

which are incident. on the vertices Ul, 'lL2 and Ua respectively. Therefore, every edge 

in T is in another clique of L (G), which is a contradict.ion. 0 

Theorem 6.1.5. The second iterated line gmph L2(G) is clique irred'u.cible if and 

only if G .satisfies the following conditions. 

(1) Every triangle in G has at least two ver-tiees of degree two. 

(2) Every vertex of degree three has at least one pendant vertex attached to it. 

(3) G has no verteJ; of degree greater than or equal to four. 

Pmof. Let G be a graph such that L2(G) is clique irreducible. By Theorem 6.1A. 

every triangle in L( G) has et w~rlcx of degree two. Then. we have the following 

cases. 

Case 1 : The triangle in L ( G) corresponds 10 a triangle in G. 

Let. <Ul,V,2,U3 > be a triangle in G. Let el,e2,e:~ be the vertices in L(G) 

which correspond to the edges n11[2, 1I2V:~, U.;SUl of G. At least onc of th(· vertices 
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of the triangle < Cl, e2, e3 > in L( G) must be of degree two. Let et be a vertex 

of degree two in L(G). Since e2 and e3 belong to N(el) in L(G), el has no other 

neighbors in L(G). Therefore, the corresponding end vertices, III and 112 ill G have 

no other ncighbors. Hence (1) holds. 

Case 2 : The triangle in L{G) corresponds to Cl [-(1,3 (need not. be induced) in G. 

Let el, e2, e:~ be the vertices in L( G) corresponding to the edges VV,l, U,U,2, UU,:~ 

in G. At least one of the vertices of the triangle < el, e2, e3 > in L(G) lllllst be of 

degree t.wo. Let Cl be a vertex of degree t\VO in L( G). Vertices e2 and C3 belong 

to lV(ed in L(G) and hence el has no other neighbors in L(G). Therefore, the 

corresponding end vertices,1l and V'l in G have no other neighbOl's. Sinceu, has 

no other neighbOl's (3) holds and sillce Hl has 110 other neighbors (2) holds. 

Conversely, assume that G is Cl /2:1<1]>h which satisfies all t lw tll\'(~(~ ('()uditions. 

A triangle in £(G) corresponds to a triangle or a K1.3 (need not be induced) in G. 

A triangle in £ (G) which conesponds to a triangle in G has at least onc vcrtex 

of degree two by (1). Again, a triangle in £( G) which corresponds to a ](1.3 in G 

has at lea • .,t one vertex of degree tv\'O b,Y (2) and (3). Therefore, every t.riaugle in 

£( G) has at least onc vertex of degree two and by Theorem 6.1.4, £2 (G) is clique 

irreducible. 0 

Theorem 0.1.6. Let G be a coT/,nccted graph. If G f. 1(, then, £3(G) is cliq'{l(~ 

ir'rerlucible if and onl;lj if G satisfies the following conditions, 

(1) G is triangle free. 

(2) G has no ver"te:r of degree greater than 01' equal to fo I/. 1'. 

(8) At least t'l))O of the vertices uf every ](l.3 in G are jwru1anf 'ue'l'tices. 

(4) If nv is an edge in G, then either v, 01'1' has degree less than aT eqll.(! I to two. 
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Proof. Let L3(G) he clique irreducible. By Theorem 6.1.5, L(G) satisfies, 

(1') Every t.riangle in L(O) has at least two vert1ces of degree 2. 

(2)) Every vertex of degree three in L( 0) has at least one pendant vertex attached 

to it. 

(3') L(O) has no vertex of degree greRter than or equal to 4. 

A t.riangle in L(O) corresponds to a triangle or a. Ku (need not be induced) 

in O. Every triangle in L( 0) has at leRst two vertices of degree two implies that 

every triangle in G has its three vertices of degree two. i.e: G is a triangle. because 

G is connected. Since 0 =f ](3, G mnst be triangle free. Also, every ](1,.3 in G 

has at least two pendant vert.icps and the degree of a vert.ex cannot exceed three. 

Therefore (1), (2) and (3) hold. Again (:3') implies that no edge in G CHn haye 

more than three edges incident on its end vertices. Therefore, (4) holds. 

Conversely, assume that the given conditions hold. Since G is triangle free, a 

triangle in L(G) corresponds to a ](1,3 (need not be induced) in G. Therefore, by 

(2) and (3) every triangle in L( G) has at least two vertices of degree hvo. 

Let e be Cl vertex of degree three in L( G) and let 1I u be the corresponding edge 

in G. Since e is of degree three in L( G), t.he number of edg8s incident on 'U in G 

together with the number of edges incident on t· in G is three. If'lJ, (or v) bas three 

more edges incident on it thenl! (or/") will be of degree at least four which jf:; a 

contradict.ion to the condition (2). Therefore. 11 has two llcighhors and v has one 

neighbor (or vice versa) in G. Let 111 <lnd U2 be the ncighbors of u, and let VI be 

the neighbor of 1.: in G. Then < 11,1.'. HI. U:>. > = Ku iu G and hence at least two 

of v, It Land 'U2 must be peudant vert,ices. Siucev is not d peudant vertex,UI and 

ll2 lllust be pendant vertices. Therefore, e has two pendant vertices attached to it 

in L( G) corresponding to the edges 1.11Ll and 1111'2 in G. Hence (2') is satisficcl. 
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Again, (2), (3) and (4) together imply (3'). Since the conditions (1'). (2') and 

(:r) are satisfied, by Theorem 6.1.5, L:3(G) is clique irreducible. 0 

Theorem 6.1. 7. Let G be a connected graph. The fourth iterated line graph £4 (G) 

is clique irreducible ~f and only 'if G is 1(1, J(1.3, PI/, with 11, ~ 5 or en wdhn ;?: 4. 

Proof. Let L 4( G) be clique irreducible. Then by Theorem 6.1.6, if £( G) =I J(;{ t.hen 

£(G) must. be triangle free. If L(G) = J(3 then G is either I({ or J(1,:5' If £(G) 

is triangle free then G is triangle free and cannot have vertices of degree greater 

than or equal to three. Therefore, G is either Cl path or a cycle of length greater 

than three. 

Conversely, if G is J(:3, J(q, Pn or en then Ll (G) is either a triangle. et path or 

a cycle and all of them are clique irreducible. o 

Corollary 6.1.8. FaT" '11 ~ 5, L n( G) is clique iTTeducible if and only if it is non­

empty and £ 4 (G) is clique irreducible. 

6.2 Gallai graphs 

In thil:i section, we give structural and forbidden subgraph characterizations 

for the Gnllai graph to be clique irreducible, clique vprtex irreducible and weakly 

clique irreducible. 

Theorem 6.2.1. The Gallai gmp" r( G) is (:Jig/le 'i}(~TteT irn:dllcible if and only 

if faT eveTJj v E V (G), Cl1eTY Tlw:rimal indeperulent set I in 1\/ (v) with I I I ~ 2 

contains a vcr-ie:]; u such that . .Y(u) - {'d = .S (v) - I. 
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Pmof Let G be a graph such that its Gallai graph f( G) is clique vertex irreducible. 

A clique C in f( G) of size at least t,vo is induced by the vertices corresponding 

to the edges which are incident on a common vertex v E 11 (G) whose other end 

vertices form it maximal independent set I of size at least t\VO in N('u). Let 

I = {Vt, '112, ... , vp}, where p ~ 2, be a maximal independent set in j\l(v). Let ei 

be the vertex in f( G) corresponding to the edge VVi in G for i = 1,2, ... , p. Let C 

be the clique < el, e2 • ... , ep > ill 1'( G). Let ei be the vertex in C which does not 

belong to any other clique in C. Therefore, e; has no neighbors in f(G) other than 

those in C. Hence, N(Vi) - {v} = N(v) - I. 

Conversely, assume that for every v E V (G), every maximal independent set 

I = {VI, (~2, .... vp } in N( v) cont.ains a vertex 'U such that N(n) - {v} = .N (v) - I. 

If C is a clique of size one, it contains Et vertex of its O\VIl. Otherwise, let C 

be defined as above. Dy ()ur rl,SSlllllptioll. t hCl'e (~xists <l \ut(~X 1L =1,'1 ::iuch that 

N(u) - {u} = 2V('O) - I. Therefore, Pi has no neighbors outside C. Hence C has a. 

vertex ei of its own. o 

Fig: 6.2 gl\'CS an example of et graph whose Galla.i graph is clique vertex 

irred nci hIe, 

n 

~-('> 
"'-/ o 
G 

Fig: 6,2 

o 
I 

I 
o 

Theorem 6.2.2. If f( G) is clique 'vfrtcT luIl1ciblc then G contains one of the 

gTnphs in Fig : 6.3 as an induced subgmph. 
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Fig: 6.3 

Pmof. Let G h(~ it graph sHch that r( G) is clique vertex reducible and let C be a 

clique in r( G) such t.hat each vert.ex of C belongs to some otlwr clique in r( G). 

Consider the order relat.ion j among the vertices of C where e j e' if lV[e] j N[e']. 

If j is a t.otal ordering, then every vertex adjacent to the minimum vertex e is also 

adjaccnt t.o all the vertices in C. Therefore, by maximality of C, e cannot have 

neighbors outside C. This is a contn\'cliction to the assumption that e belongs to 

some other clique of r( G). So, therc exist t\VO vertices el and e2 in C which are 

not comparable. That is, there exist vmt.ices 11 and .1'2 of r( G) sllch that ei is 

adj accnt to fj if and only if i = .j. Let (7)l and '1)1)'2 be the edges corresponding to 

el and e2, l'espectivel~v. Then VI and 7)2 are non-adjacent. Let Ul and U2 be the 

cnd points of il and .1'2, respectively, which are both different from v. '1h and V2' 

Case 1 : Both .fl and h correspond to the edges incident to v. 

In this rase, III nndu2 arc ad.iacent t.o ?'.Vi is adja,cent to '('] if Clnd on1:y if i =J. j 

and VI and (/'2 can lw pither adjacent. or not.. Therefore < v. V1,F2, 'tll: u'2 > is the 

graph (i) or (ii) in Fig: G.:3. 

Case 2 : :-Jone of hand h corre~pond to the edges illCidcllt to r. 

In this case: 1£1 a.nd 'U2 a.re adjacent to Vl a.nd V2: respectively, and not t.o v. If 
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'Ul = 11,2 then G contains an induced C4 · If 11,1 =1= V,2 and G does not contain an 

Case 3 : Exactly one of .h and h correspond to the edges incident. to v, say 11. 

In this case. 'UI is adjacent to both v and 1)2 and is not. adjacent to VI' The 

vertexu2 is adjacent tOlh and is not adjacent to v. If U2 is adjacent to VI then G 

cont.ains an induced C4 . Otherwise, < v, VI, 'U2. '/J.l, 712 > is the graph (vi) or (vii) 

in Fig: 6.3. D 

Remark 6.2.1. The converse need not be true. For example consider the graph G 

in Fig: 6.4. It. contains (iv) in Fig : 6.3 as an induced subgraph. Still r( G) is 

clique vertex irreducible. 

G 
Fig: u.4 

Theorem 6.2.3. The Gallai graph 1'( G) is clique irred'uc'ible if and only if faT 

every v E 11 (G). < JV (v) > C is clique ilTeducible. 

Proof. A cliqne C in r( C) of siz(-' at least two is imlnced by the vertices corre-

spomlillg to the edges which Clre incident on n COnml()ll vertex!! E V(G) whose 

other end VPl'tices form Cl maximal independent. spt. I of size at least two in N (v). 

Therefore, C has an edge \vhicll does not belong to an\' otber clique of r(G) if and 

only if I haD Cl pair of vertices both of which together do(~s not belong to any other 

maxinwJ indepcndent set in N (v). But., this happens if and only if every clique of 

sil':c at lcast two in < S(u) >C lwoS all pdge which cloes not belong to any other 
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clique in < N(v) >c, since a maximal independent set in a graph corresponds to a 

clique in its complement. D 

Theorem 6.2.4. The second iterated Gallai graph 1'2(G) is clique irreri'u,cible if 

and only -if for fVff'/jUV E E(G), eitheT < Sell,) - N(v) > and < N(v) - N(u.) > 

aTe dique verte:J; iTTcduC'ible or one among them is a clique and the other is clique 

irreducible. 

Proof. By Theorem 6.2.3, [2(G) is clique irreducible if and only if for every e E 

V(f(G)), < N(e) >c is cliqne irreducible. 

Let e = ItV E E(G), N(u) - ,Y(v) = {U1,U2, ... , Up} and .N(v) - N(u) 

{VI, V2, ... , 'Ul}. Also let ei = VVi for i. = 1.2, ,." p and ./j =VVj for j = 1,2, ,." l. 

Nr(G)(e) = {el, C2, ... , ep, .h, h, ... , il}. < 1V(e) >" is clique irredncible if and only if 

every maximal independent set I in < N(e) > has a pair of vertices of its own. fi 

is not adjacent to Cj if and only if (j'i is adjacent. to u). Similarly, f; is not adjacent 

to fj if and only if Vi is adjacent. to 'Uj. So, I = {Cil' ei2' ... , ei., ijp fi2' ... , h} if 

and only if {Uil,'Ili2, ... ,UiJ is a clique in < N(Il) - J.V(v) > and {Vjl,Vj2,.,.,v,d is 

a clique in N(v) - 1V(u). Therefore, every maximal independent set I in Nr(G)(e) 

has Cl pair of vertices of its own if and only if either both < N(u) - N(v) > and 

< i\r(v) - N(u) > are cliqne vertex irreducible or one among them is a clique and 

the ot.lwr is clique irreducible. D 

Theorem 6.2.5. rr r(C) is di(j'ue reducible then, C contaJns one of the following 

graph" as an induced snbgraph. 
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(ii) 

('iv) 

Fig : 6.5 

~
v 

~ 'i/~u 
u-----~-- 2 

Proof. Let r(G) be a clique reducible graph. By Lemma 1.1.9 and Lemma 1.1.12, 

r( G) contain.s at least 011e of the Hajo's graph as an induced subgraph. A Hajo's 

graph is an inclllcecl subgraph of f( G) if and only if G contains one of the graphs 

ill Fig: 6,5 as an induc~!d subgraph. Hence the theorem. D 

Remarl.: 6.2.2. The converse need not be true. Let G be the graph in Fig: 6.6 . 

. - .. -.-~ ... _----- --- -~-~---------

Fig: 6.G 

lw the graph (i) ill Fig: 0.5 and let llJi,S for i = L 2 .... ,8 induce a complete graph. 
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Also. let 'Uh be adjacent to {VI,V2'V;~}, '11)2 be adjacent to {VI,7J2,n;3}, W3 be adja­

cent to {V1,U2,V3}, 'Uh be ad.iacent to {Vl,U2,U3}, lV,~ be ad.iacent to {U1,V2,V3}, 

Wo be adjacent to {1/'1. 1,'2, U.3}, W7 be ad.iacent to {1/J, 11.2, v:d, W8 be adjacent to 

{'Ill, ll2, V,;d and v adjacent to 'W, for i = 1,2, .",8. 

In f(G) the vertices corresponding; to the edges ,vith one end vertex v induces 

Kf) miUllS a perfect matching in which the vertices of each of the eight triangles 

are adjacent to another vert.ex each. The remaining vertiCf~s induce the graph 

H = clK1.8 · Therefore. f(G) is clique irreducible. 

Theorem 6.2.6. The Gallai graph of a g'f'(]ph G, qG) is weakly clique irreducible 

if and only if fm' fllery 'Vate:}; 71. E V (G), < N (u) >c is weakly cliq'ue irred'u,cible. 

Proof. Let G be a graph such that r( G) is weakly clique irreducible. Let 'U11L2 be 

an edge in < N( u) >C and let e'; be the vertex in r( G) corresponding to the edge 

lW'i in G for i = 1, 2. Since r (G) is weakly clique irreducible and e1 e2 is an edge 

in r(G), let C =< el, e2, .. " ek > be the essential clique in r(C) which contains 

the edge e 1 e2 . For i = 3, 4, .... k. letuui be the edge in G corresponding to the 

vertex ei ill r( G), Let eie} be the essential edge in C. Therefore, there exist no 

independent set in IV (11) which contains both the vertices Ui and Uj. Hence, there 

is no clique in < N(v,) >" which cont.ains the edge 1J1:1ljl other than the clique 

S =<111. H2, ... ,ll~: >. Therefore, S is an essential clique in < }\!(u) >C which 

contains the edge 1111L2. Since the edge lll'1l2 was arbitrary, < N(u) >c is weakly 

clique irreducible. 

The (ouverse can be proved similarly. o 
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6.3 Iterations of the anti-Gallai graph 

In this section the anti-Gallai graph and all its iterations which are clique irre­

ducible, clique vertex irreducible and weakly cliqne irreducible arc characterized. 

Theorem 6.3.1. The anti-Gallai graph .6.( G) 'is diqv,e 'veTte.1: iTTeduC'ible if and 

only if G does neither contain K4 nOT one of the Hajo 7S graphs as an induced 

8ubgraph. 

Proof. Let G be Cl graph \vhich does neither contain J{4 nor one of the Rajo's 

graphs (IS an iuduced subgraph. The cliques of .6.( G) are induced by the vertices 

corresponding to the edges of G incident on a vertex of degree at least 3 whose 

other end vertiu:s indnce a complete graph and by the vertices corresponding to 

the edges which lie in Cl triangle. In the first case G contains an induced K 4 , which 

is Cl contradiction. Therefore. the cliques of .6.( G) are induced by the edges which 

lie in a triangle. Let. < 1h, U2, It;~ > be a triangle in G. Let el, e2, e3 be the vertices 

in .6.( G) corresponding to the edges UIU2,U21L3, 1L31Ll in G. Then < el, e2, e3 > is 

a clique in .6.( G). If a vertex ei for i = 1,2,3 lies in another clique of ~(G), then 

the edge corresponding to ei lies in another triangle. Therefore, the end vertices of 

the cdge corresponding to ei in G has a neighbor Vi for i = L 2, 3. Vi -I- Vj if i -# .i 

and Vl, V2· t':3 are not ad.iaccnt t.o U:J, Ill. U,2. respectively. since otherwise G cont.ains 

et ](1. which is a contradiction. Then, < Vi, 11.2,113, '()l, V2, V3 > is onc of the Ha.jo's 

graph". a contradiction. Hence, G is clique vertex irreducible. 

Conversely, aSSllme tha.t G is clique vertex irreducible. If G contains J{4 or one 

of the Hajo's graphs as an induced subgmph, then there exists a clique in ll(G), 

corresponding to Cl triangle in G, \vhich shares each of its vertices with some other 
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clique of ~(G). 0 

Lemma 6.3.2. U G is Kcfree then .6(G) is rliamonrl free. 

Proof. Let G be et graph which does not contain 1(1 as an induced subgraph. 

Tlwr('fou~, a t riallgk in .6.( G) can only be induced by <1 triangle in G. If two 

vertices of the triangle in .6(G) have a common neighbor, then it forces G to have 

a K1: a contradiction. Therefore, ~(G) is diamond free. 0 

Theorem 6.3.3. The second iterated anf'i- Gallai graph .62 (G) is cliq'/J.e verte:r 

iT'Tcd'ucible if and only if G does not contain Kl as an 'induced subg'("oph. 

Proof. B:v Theorem 6,:1.1, .6.2 (G) is clique vertex irreducible if ane! only if .6(G) 

does neither contain 1\:4 nor onc of the Hajo's graphs as an induced subgraph. 

Let G be a graph which does not contain K4 as an induced subgraph. Therefore, 

G does not contain J{5 as an induced sub graph and hence .6( G) does not contain 

J(4 as 8Il induced subgraph. Aga.in, by Lemma 6.3,2 . .6(G) cannot have diamond 

as an induced subgraph and hence it does Ilot contain any of the Hajo's graph as 

an induced subgraph. Hence, .62 (G) is clique vertex irreducible. 

Conversely. assume that .62 (G) is clique vertex irreducible. If G contains ]{4 

<IS dll ilHluced sllbgrclph t hell ill ~(G) the vertices corresponding to the edges of 

this J{j induce Kc) minus n perfect matching which is the fourth Hajo's graph, a 

contradiction, Therefore. G does not contain K~ ~lS an induced subgraph. 0 

Theorem 6.3.4. Tht nth iterated ardi- Gallai gmph .6 n (G) 'is clique vertex irre­

du.cible ~l and only '~f G does not contain K n+2 as an. induced subg'T'Gph. 

Proof. By Theorern ().3.:) . .6.rt (G) is clique \'ertex irreducible if a.nd only if .6n - 2(G) 
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does not contain K4 as an induced subgraph. ~n-2(G) does not contain K4 as 

an induced subgraph if and only if ~n-3(G) does not contain K5 as an induced 

sllbg;raph. PnKcc'dillg like t.his, wc get that ~(G) does not cont.ain R"n+l as an 

induced subgraph if and only if G does not contain Kn+2 as an induced subgraph. 

Therefore, ~ n (G) is clique 'vertex irreducible if and only if G does not contain 

Kn+2 as an induced subgraph. o 

Theorem 6.3.5. The anti-Callai graph ll(G) is clique irrerJ'llcible ~f and only if 

G does not contain 1(1 as an -induced 8'ubgraph. 

Proof. Let G be a graph \vhich does not contain K4 as an induced subgraph. By 

Lemma 6.3.2 and Lemma 1.1.10, ~(G) is clique irreducible. 

Conversely, if G contains a 1(1 =< UI ,U2, 7J.:~, U,4 >, t.hen it fo11O"W8 that the 

clique in ~(G), corresponding to the triangle < U1, /12, 'U.3 > in G, shares each of 

its edges with some other clique. Therefore, if ~(G) is clique irreducible, then G 

cannot Imve K4 as an induced subgraph. o 

Theorem 6.3.6. The nY'· itenLied anti-Calli graph ~ n (G) 'is clique i1'reducible if 

and only if G does not contain an induced K n +3. 

Pmof. By Theorem 6.3.5, ~n(G) is clique irreducible if and only if ~n-l(G) does 

not contain an induced Kt. 6,n-l(G) does not contain an induced K4 if and only 

if ll" 2 (G) does not contain an induced K 5 . Proceeding like this, we get, ~(G) 

does not cOlltain an induced ](n+2 if and only if G does not contain an induced 

](n+:3. Therefore, ~1t (G) is clique irreducible if and only if G does not contain an 

induced ]( n+:1. D 

Theorem 6.3.7. The anti-Callai !jmph of a graph G. ~(G) is weakly clique -irre­

ducible if a.nd only if G is Kc, -free. 
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Pmoj. Let < Ul, U2, ... , Uk > be a clique of size greater than or equal to four in C. 

Let eij be the vertex corresponding to the edge UiUj in C for i,j E {l, 2, ... , k} and 

i =I- j. (Note that eij = eji). Consider the edge e12ela in ~(C). Th(! diqlH:s ill ~(C) 

obtained from the clique < U1, '/1,2, ..• , Uk > in C, \vhich contains the edge e12el:3 

are < e12, el:3 .... , elk > and < e}2, e23, e:n >. Both these cliques are not essential, 

since all of their edges arc present in at least one of the cliques < e2l, e23, ... , e2k >, 

< e31,e32, ... e:~k > or < eli,eij,ejl > for i,j E {3,4, ... ,k} and i =I- j. Similarly, if 

there is any other clique which contains the vertices 'Ill, U2 and 11,:1 in G, then the 

corresponding cliques in ~(G) ,,,ill not be essential. Therefore, ~(G) is not weakly 

clique irreducible. 

COllversely", assume that C is Krfree. Then by Theorem 6.3.5. ~(G) is clique 

irreducible and bence is \V-eakly clique irreducible. D 

Corollary 6.3.8. The anti-Gallai graph of a graph G, ~(G) is weakly dique ir­

reducible ~f and only ~f it is cliq'ue irreducible. 

Corollary 6.3.9. The nY' iterated anti-Gallai graph ~n(G) is 'Weakly diq'U,e iTTe­

ducible ~f und only if it is K n+3 -free. 

6.4 Cographs 

In this section t.he cographs \vhich are clique irreducible. clique vertex irre­

ducible and weakly clique irreducible are characterized. 

Lemma 6.4.1. If GC has at least three non-trivial components then G 'l8 cliq1J.e 

reducible. 
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Pmof. Let G be a graph such that GC has at least three non trivial components. 

Let Hl , H2 , ... , Hp be the components of GC. Let G; = Hr for 'i = L 2, ... ,p. Then, 

G = G l V G2 V ... V Gp. Also, any clique of G is the join of the cliques of Gi s for 

i = 1,2, ... , p. At least three of the Hi s are nOll-trivial and hence at least three 

of the Gi s have more than onc clique. Let Cij for j = 1, 2 be any two of the 

cliques .of Gi for i = 1,2,3. Let Si be CL clique of Gi for i = 4,5, ... , p. Consider the 

clique C11 V On V C31 V S4 V ... V Sp. Every edge of this clique is present in at least 

one of the cliques Cll V C21 V 032 V S4 V ... V Sp, Cll V C22 V C31 V 54 V ... V Sp, 

C12 V 0 21 V Cal V S4 V ... V Sp. Therefore, G is clique reducible. 0 

Lemma 6.4.2. If GC has at least two non-trivial components the'/}, G is diq'IJc 

'ucrte:r: reduc'ible. 

Proof. Let G be a graph whose complement has at least two non trivial compo-

nents. Let Hi, Gi , C j fori = 1,2, .... p and j = 1,2 and Si for i = 3,4, ... p be defined 

as in t.he proof of Lemma 6.4.1 and con.sider the clique Cn Ven V S3 V ... V 5p" Every 

vert(~x of t.his clique is present in at least one of the cliques C11 V C22 V 5.3 V ... V Sp, 

C12 V C21 V 5:3 V ... V Sp. Therefore, G is clique vertex reducible. 0 

Remark 6.4.1. If G is clique irreducible then GC is either connected or has exactly 

two non trivial components and if G is clique vertex irreducible then GC is either 

connected or has exactl.y one non-trivial component. 

Lemma 6.4.3. The clique ver'tex 'reducible graphs and the clique 1'educible graphs 

are closed faT the operations of union and join. 

Theorem 6.4.4. A coyraph G is clique· verte:r irreducible if and -only 4 it can be 

Teduced to a trivial graph by TecuTsi'uely deleting universal verhces in each of the 

component.s. 
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Proof. The proof is by induction on IVI = n. For n = 1 the theorem is trivially 

true. Assume that the theorem is true for any cograph with less t.han n vertices. A 

disconnected graph is clique vertex irreducible if and only if each of its components 

is clique vertex irreducible. Therefore: we may assume that, G is cl connected 

cograph with n vert.ices. Then G = G l V G2 . If both Gis are not complete, 

then GC will have at least two non trivial components which by Lemma 6.4.2 is 

a contradiction. Therefore, let G l be complete. Every vertex of G l is a universal 

vertex of G. Deleting these vertices we get a cograph C2 \vith less t.han n vertices. 

Any clique C of G2 corresponds to a clique Cl V C of C and hence has a vertex 

which does not lie in any other clique of C2 . Therefore, O2 is a clique irreducible 

cograph with less than n vertices and hence by the induction hypothesis G2 can 

be reduced to tri vial graph by deleting universal vert.ices. Hf-mce, the theorem. 0 

Theorem 6.4.5. A connected cograph C is diq'lJ.e iTTedncible 'd and only if G = 

GI V C2 V J(p wheTC Gl and G2 are cliqu,e vertc.T irreducible cographs such that Gf 

is connected for i = 1,2 and p :;?: o. 

Proof. Let G = Gl V G2 V /(p "vhere G l and G2 are connected clique vertex irre­

ducible cographs and p :;?: O. Any clique of G is of the form H = HI V H2 V J(p, 

where Ih and H2 are cliques of Cl and C 2 respectively. Since, Gl and C 2 are 

clique vertex irreducible, there exist vertices Vl E Hl and 1'2 E lI2 sllch that t.hey 

do not lie in any other clique of G. ThcrcfOl'P, the f'dgp Vl1'2 of H does not lie in 

an:r other clique of G and hence G is clique irreducible. 

Conversely, assume that G is clique iI"l'pdllcible. Since G is a cograpb GC must 

be disconnected. Therefore by Lemma 6.4.1, Cc has exactly two non trivial com­

ponents. So~ G = Cl V O2 V /(1" where Gl and G2 are both connected. Let 

lIu and H12 be any two cliques of Cl and H2l and H22 be any two cliqlles of G2 · 
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H = Hn V H21 V Kp is a clique of C. Every edge in H l1 , every edge which joins Hll 

to a vertex of Kp and every edge in Kp \vill be present in the clique Hl1 V H22 V Kp. 

Again, every edge in H2l , every edge which joins H2l to a vertex of R .. 'p and every 

edge in Kp will be present in the cliqne H12 V H2l V Kp. But, H has all edge which 

does not lie in any other clique of C. Therefore, that edge must be an edge which 

joins a vertex of Hll to a vertex of H21 . Let that edge be 7J.11l2. But., then 'lll and 

U,2 cannot be present in any other clique of Cl and C2 respectively. Therefore, Cl 

and C 2 are clique vertex irreducible. o 

Theorem 6.4.6. The weakly clique irreducible cographs can be recllrsively chamc­

trTized as follows. 

(1) Kl is a weakly cli(tlJ,e i1Teducible cograph. 

(2) If Cl and C2 are weakly clique iTreducible cogmphs, then so is the'iT union 

Cl U C2 . 

(3) If Cl i8 a weakly cliq'lJ,e irreducible cograph. then 80 is Cl V Kp. 

(4) If Cl and C'2 are non-complete weakly clique irredu.cible cographs, then Cl V 

C2 i8 a weakly dique irTeducible cograph if and only if ever:1J edge in Ci. belongs 

to at least one 'vertex essential clique, faT i = 1, 2. 

PT()of. The graph Kl is \vmlkly clique irreducible and union of allY two \n~nkly 

clique inwlucible graphs is "veakly clique irreducible. The cliques of Cl V Kp are 

of the form HI V K 1" \vhere HI is a clique in Cl' If HI is essential in Cl then so 

is HI V Kl' in Cl V Kp. If HI is an isolated vertex 11" then again Hl V I([) is an 

essential clique in Cl V Kp with all edges with onc cnd vertex u as essential edges. 

Therefore, Cl V Kp is weakly clique irreducible if Cl is weakly clique irreducible. 
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Let Cl and C2 be non-complete weakly clique irreducible cographs such that 

every edge in C i belongs to at least onc vert.ex essential clique, for i = 1,2. If Hi 

is a vertex essential clique in C i \vhere Vi E V (Hi) is the vertex \vhich does not 

belong to any other clique in C i for i = 1,2 then HI V H2 is an essential clique in 

Cl V C'}, where V1V2 is an essential edge. Therefore, every edge in E( C i ) belongs 

to an essential clique in Cl V C2 , since every edge in Gi belongs to at least one 

vertex essential clique, for i = 1,2. Let u E V(Cd and v E V(G 2 ). Consider the 

edge uv E E(C I V C 2 ). 

Case 1 : v, and v are iI:Jolatecl vertices in Cl and C 2 respectively. 

In this case, uv is a clique and is essential. 

Case 2 : II is an iI:Jolated vertex in G I, but v is not an isolated vertex in G'!.. 

Let v' E N (v). There exist a vertex essential clique C in G2 which contains the 

edge V1". Let 'W be the essential vertex in C. Therefore, U'W is an essential edge in 

the clique {u} V C. Hence the edge uv belongs to the essential clique {u} V C in 

Cl V G2 . 

The case \vhere, u is not an isolated vertex in Cl, but v is an isolated vertex 

in G2 can be proved similarly. 

Case J : u and v are not isolated vertices in Cl and C'}, respectively. 

Let 11/ E N (n) and v' E .. N (v ). Let. H, and H 2 be the vertex essential cliques in 

Cl and C2 respectively, which contains the edges 1J,l/,' andvv' respectively. Let 'Wi 

be the essential vertex in Hi for i = 1, 2. Therefore, 'W!'W2 is an essential edge in 

the clique HI V H 2 . Hence the edge nu belongs t.o the essential clique HI V H2 in 

Cl V G2 . 
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Therefore, every edge in Cl V C2 belongs to an essential clique and hence it is 

\veakly clique irreducible. 

Conversely, assume that C is a weakly clique irreducible cograph. If G is 

disconnected then it is the union of weakly cliqne inedllciblp cographs. If G has 

universal vertices then it is the join of a weakly clique irreducible graph with /(p, 

\\there p is the number of universal vertices. 

Therefore, let G be a connected cograph without universal vertices. Hence, 

G = Cl V C2 ,vhere both Cl and C2 are not cmnplete. None of the edges in 

E(G l ) UE(G2 ) are essential, since both Gl and G2 contains more than one clique. 

Therefore an essential edge in Cl V G2 , if it exist, must be of the form U'U, where 

'l[ E V ( G 1) and v E II ( G2 ). Then, 1l a nd v are essential vertices of Gland C2 

respectively. Hence, for i = 1,2, the edges of Gi can be covered by essential cliques 

if and only if every edge in Gi belongs to at least one vertex essential clique. 

Therefore, if G1 and G2 are non-complete weakly clique irreducible cographs, then 

Cl vC2 is a \veakly clique irreducible cograph if and only if every edge in Gi belongs 

to at le31:lt one vertex essential clique, for i = 1,2. 

Hence, the theorem. D 

6.5 Distance hereditary graphs 

In this section the distance hereditary graphs which are clique irreducible, clique 

vertex irreducible and weakly clique irreducible are characterized. 

Lemma 6.5.1. The clique vcrtex n~(I(J.cible (chquc reducible) gmplr:; on:. closed 
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under the operations of attaching a pendant vertex, a tru,e twin and a false twin. 

Proof. Let G be a clique vertex reducible (clique reducible) graph and C be a 

clique in G, all of\vhose vertices (edges) are present in some ot.her clique in G. 

The cliques of thc graph obtained by attaching et pendant vertex u, to et vertex 

v of G are the cliques of G together with the cliqueul'. Therefore C is a clique in 

this nc"v graph and all of its vertices (edges) arc present in some ot.her clique. 

The cliques of the graph obtained by attaching a true twin u to the -.-ertex v 

of G are the cliques of G \vhich does not cont.ain the vertex v and the cliques of 

G which contains v together with the vertex '/1,. If v 1- C, then C is a clique in the 

ne"v graph and all its vertices (edges) are pres~mt in some ot.her clique. If v E C, 

then all the vertices (edges) in C other than u (the (~dges with one end vertex u) 

are already present in some other clique. Since v is (the edges with one end vertex 

'V are) present in some other clique, 'U (the edges 'with one end vertex 'u) also must 

be present in some other clique. 

The cliques of the graph obt.ained by attaching a false twin II t.o the vertex v 

of G are the cliques of G and the cliques of the form (S u {u} ) - {u}, where S is a 

clique in G which contains the vertex 'U. Therefore. C is a clique in this new graph 

and all of its vertices (edges) are present in some other cliqne. o 

Theorerll 6.5.2. The clique L'CTtr.:r irl'uIl1ciblc rlistnJ/cr; hereditary graphs can be 

recursive/y c/w:ractcTized rl8 follows. 

(1) K 1 is a clique vertc:r 'irn~d1J,cible distance hcreddar'Y graph. 

(2) lfG is a clique veTte:r irreclv,cible di.,/;ance hereditary graph, then.'iD is the graph 

obtained by attaching a pendant ver-te]: to a vertex v E V (G). where v satisfies either 

NC/.!) 'is not complete or there c:ri8t8 W E S(r) such thot N(1L') = N(v). 
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(3) If G is a cliq1.te vertex irreducible distance hereditary graph, then 80 is the graph 

obtained by attach'ing a tTU.e twin. 

(4) If G is a. clique verte:t irreducible distance herefIitaTY graph, then so is the graph 

obtained by attaching a false twin to a veTte.TV E V (G), wheT£: v satisfies < }\[ (v) > 

is complete. 

Prvoj. The graph f{1 is clique vertex irreducible. Let G be Cl. clique vertex irre­

ducible graph. Let G' be a graph obta.ined by attaching a pendant vertex 11, to a 

vertex v where v satisfies the conditions in theorem, The cliques of C' are precisely, 

the cliques of G and the edge w). The clique uv contains the vertex It which does 

not belong to any other clique of G' . Every clique of C' \vhich does not contain v 

also has a vertex which does not lie in any other clique of C', since G is clique ver­

tex irreducible. Let C be a clique of C which contains the vertex v. If lV(v) is not 

complete then C contains a vertex Vi =I=- v which is not present in any other clique 

of G and hence of C'. If N(v) is complete, then C contains a vertex which does 

not belong to any other clique of G' if and only if there exist a vertex 1.V E V(C) 

which does not belong t.o an.Y other clique of C. i.e: if and only if New) = 1V(V). 

Let G be a clique vertex irreducible graph. Let G' be the graph obtairwd by 

attaching a true twin lL to a vertex '/..' of C. The cliques of C' are preciseh', the 

cliques of G which does not contain v alld the cliques of C which contains v together 

with the vertex u. Each such clique contains a n~rtcx which does not lie ill any 

other clique of C', since G is cH que W'rtf~x irreducible and hence G' is also cliqne 

vertf~x ilTed uci ble. 

Let G' be the graph obtained by attachillg Cl fabp twin u to a \'ertex v of 

G. The cliques of G' arc the cliqnes of G together with the diq\l(~s of the form 
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(c u {1/,} ) - {v} \vhere C is a clique of C which contains v. The cliques of Cl which 

does not contain v will continue to have a vertex which does not lie in any other 

clique. Let C be a cliqne of C which conta.ins the vertex 'U. Every vertex of the 

clique C other than v will be present in the clique (C U {'/l,} ) - {v} also. Therefore. 

C contains Cl vertex which does not lie in any other clique of Cl if and only if v 

does not belong to any other clique of C ~ 'v hi ch happens if and only if < .N (v) > 

is complete. 

Also, any distancf~ hcrpditary graph C call he obtained from /(1 by the oper­

atiomi of attaching pendant vertices, introducing true twins and introducing false 

twins (Lemma 1.1.3) and by Lemma 6.5.1. the theorem follows. 

o 

Theorem 6.5.3. The weakly dique iTreducible distance heTeditary graphs can be 

rcc'uTsively characte'f"'ized as follows. 

(1) /(2 is a cliq11e irTed'/1,cible distance her'editaTY gmph. 

(2) If G is a clique irreriu,cible distance hereditary graph then 80 'is the graph ob­

tained by attaching a. pendant vertex. 

(8) If C is a cliqv,e in'educible distance hereditary graph then 80 is the graph ob­

tained by attaching a tru.e twin. 

(4) fr G is a diq'ne 'irrwi:u.cible distance hercrlitaT!} graph. then so i8 the graph ob­

tained by attach'lng a false turin to Ul'crtc.c 11 if < ;Y ( 1.') > is clique I'crte:r iTTe­

d'Ucible. 

Proof. The graph ](2 is clique irreducible. Let C he a clique irreducible graph. 

Let Cl be the graph obtained b.y attaching a pendant vertex n to Cl vertex v of 

G. The cliques of Cl are precisely, tlw cliqnes of C; and the edge l1V. Ever:v clique 
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contains an edge which does not lie in any other clique of C' and hence C' is clique 

irreducible. 

Let C be a clique irreducible graph. Let C' be the graph obtaincd by attaching 

a t.rne t\vin u to a vertex'/) of C. The cliques of C' are precisely, the cliques of 

C which doE's not contain v and the cliques of C which contains v together with 

the vertex u. Every such clique contains an edge which does not lie in any other 

clique, since C is clique irreducible and hencc C' is also cliqllc irreducible. 

Let C' be the graph obtained by attaching a false twin u to a vertex v of 

C. The cliques of C' are t.he cliques of C together with the cliques of the form 

(c u { u} ) - { v} where C is a clique of C ,vhich contains v. The cliques of C' which 

does not contain v \vill continue to have an edge \vhich does not lie in any other 

clique. Let C he a clique of G which contains the vertex v. Every edge of C which 

does not contain v will bf~ present in the clique (C U {u}) - {v} also. Therefore, 

C contains an edge which does not lie in any other clique of C' if and only if there 

exists an edge vv' which does not lie in any other clique of C. Therefore, the vertex 

Vi is not present in any clique of < N(v) > other than C - {v}. So, < N{v} > is 

clique vortex irreducible. 

The converse follows by Lemma 1.1.3 and by Lemma 6.5.1. o 

Lemma 6.5.4. The class of uH;ukly clique Tcdlu:ible graphs is closed undeT the 

operations of attaching petulant 'Iwrticcs, true (l1'ins and false ilDins. 

Proof. Let G be a weakly clique reducible graph (llHllet c bp the edgf' ,vhich is not 

covered by any of t.he essential cliqlws in C. 

Let C' lw the graph obtained from G by attaching a pendant vertex. The essen-
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tial cliques of C' are the essential cliques of C together with the newly introduced 

edge. But, these essential cliques will not cover the edge e. 

Let C' be the graph obtained from C by attaching Cl true t.v,'in 'l) to a vertex 

u. The essential cliques of Cl are the essential cliques of C which does not contain 

the vertex 1l and the cliques of the form C U fu}, where C is an essential clique in 

C which contains the vertex '1/,. StilL the edge e is not covered by essential cliques. 

Let C' be the graph obtained from C by attaching a false hvin v to a vertex 11. 

The essential cliqnes of Cl are the essential cliques of G \'v'hich does not contain the 

vertex u, the cliques of the form (C - {11}) U {v} and C, where C is an essential 

clique in C which contains the vertex u and which has an essential edge ,vith one 

end vertex 11. Agaill, the edge e is not covered by the essential cliques. 

Hence the lemma. o 

Theorem 6.5.5. A distance hereditary graph C is weakly clique irred'ucible if and 

only '4 all its induced s1/.bgraphs are weakly clique irreducible. 

Theorem 6.5.6. A distance hereditary graph C is 'weakly cliqlle irreducible if and 

only if C does not conta'in F1u in Fig .' 1.9 0,8 an induced 8v.bgmph. 

Proof. By TheoreIll 6.5-5, C is weakly clique irreducible if and only if all it.s induced 

subgraphs are weakly clique irreducible. BuL a graph G is hereditary weakly 

clique irreducible if and only if G does not contain any of the graphs in Fig : 

1.9 as all induced subgraph (Lemma 1.1.11). BuL G cannot have any of the 

. graphs F1, F2 .... F18 as an induced subgraph, since they contain gem as an induced 

subgraph (Lemma 1.1.4). Hence, the theorem. D 

Corollary 6.5.7. A C()(IT(lph C 'is wm!.:l!) ma:rimal clique irndv,dble if and only if 
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G does not contain FI9 in 1.1.9 as an induced 8ubgraph. 

Proof. Since, cographs arc a subclass of distance hereditary graphs (Lemma 1.1.5) 

and FI9 ill Fig: 1.9 is Cl cograph, the corollary follows. o 

Theorem 6.5.8. The weakly cliq1w it'reducible dLstance hereditary graphs can be 

recuTsively characterized as follows. 

(1) f{2 i8 a weakly cliq-ue irreducible disto,'fI,ce heredita:ry graph. 

(2) If G is a weakly clique ir-redv,ciblc distance heTeditoTY graph then so is the 

gmph obtained by attaching pendent vertices to the vertices of G. 

(3) If G is (]'l,J)eakly diq'ue 'irTeriv,cible distance heredita:ry gTaph then so is the 

graph obtained by attaching true t'wins to the vertices of G. 

(4) If G is weakly clique irredw:ible distance hereditary graph then 80 is the graph 

obtaJned by attachiTl,g false twi'ns to (J, verte:E u when < N(u) > is C4 -free is 

also weakl!l clique irreducible, 

Proof. The graph 1'1."2 is weakly clique irreducible. Let G be a weakly clique irre­

ducible distance hereditary graph. If G does not have Fp] as an induced subgraph 

then a graph obtained by any of the above operations also cannot have Fu) as an 

induced sllhgl'aph. Therefore, they are (~Jl weakly clique irreducible. 

Conversely, by tlw recUl'sive definition of disUmce hereditary graphs (Lemma 

1.1.~3), it is ellough if "\vc could prove that, at.taching a false twin v to a vertex u 

which cOl1tains a Cl =< 'Ut. 11'2, H;~,l/,-I > in N(lI). gives a weakly clique reducible 

graph. Clearly, < 11, 't.:, (1.1, U2, (13, U,1 > is Ftg • 

Hence' the tlH'orelll. o 
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List of some open problems 

1. Charact.{~rizc non-isomorphic graphs of t.he same order having isornorphic 

Gallai graphs (anti-Gallai graphs). 

2. Characterize graphs G for which the Gallai and the anti-Gallai operators 

commute. 

3. Characterize graphs G for \\"hi('h r( G) = ~(G). 

4. Characterize a.ll connected graphs which :satisfy ,(G) = Ied(G). 

5. Characterize all connected graphs which satisfy ''led ( G) = "/ged( G). 

6. Identify the domilla.tion paramctcrs which satisfy Vizing's typ~~ relation under 

allY of the graph products. 

7. Characterize the clique perfect graphs [73]. 

8. Iclentif~' special classes of clique perfect graphs. 

9. Estimate sharp upper bonnds for the cliq\le transversal number for special 

classes of graphs and charact.erize the graphs which attains this upper bound. 

10. Does there exist. graph classes which sat.isfy the < t >-propert.y for every t? 

11. Ch~\l'ilctCl'ize the clique irreducible graph:s, the clique vertex irreducible graphs 

and the weakly' clique irreducible graphs. 



List of symbols 

Co 

d(v) 

d(G) 

d(l1. v) or dG(u, v) 

EorE(G) 

GDH 

GVlI 

G®H 

GxH 

GUH 

[((G) 

L(G) 

Lk(G) 

In or 1n( G) 

X[v] 

N(v) 

nO 

n or n(G) 

NEPS( G 1, G:!, B) 

Cycle of length n 

Degree of a vertex 

Diarnetpr of Cl graph G 

Distance between u and v in G 

Edge set of G 

Cart.esian product of G and H 

Join of G and H 

Strong product of G and H 

- Tensor product of G and H 

Union of G and H 

Clique graph of G 

Complete bipartite graph where rn and n arc the 

cardinalitics of the part.itions 

Complete graph on n vertices 

Line graph of G 

kth iterated line graph of G 

N umber of edges of G 

Closed neighborhood of '/;' 

Open llcighborhood of 'V 

n disjoint copif's of G 

Number of vertices of G 

))"on CfHIlpietc expcnded p sum of G l and G2 

with basis B 
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List of symbols 

PI) 

1'( G) 

<8> 

TdG) 

Vor V(G) 

o(G) 

(tc( G) 

3(G) 

1(G) 

i'cd(G) 

19(G) 

At'gcd( G) 

!i(G) 

Tc(G) 

x(G) 

w(G) 

r(G) 

rl.:(G) 

.6(G) 

.6 k (G) 

Path on n vertices 

Radius of G 

Graph induced by 8 ~ V 

Trestlecl graph of index k 

Vertex set of G 

Independence number of G 

Clique independence number of G 

Covering number of G 

Domination number of G 

Cographic domination rnnnber of G 

Global domination llmnher of G 

Global cographic domination rnnnber of G 

Independence domination number of G 

Clique transversal number of G 

Chromatic number of G 

Clique number of G 

Gallal graph of G 

kJh iterated Galla.l graph of G 

Anti-Gallai graph of G 

kth iterated anti-Gallai graph of G 

116 



Bibliography 

[1] T. Andreap, On the clique trans\wsal !lHmber of chordal graphs, Discrete 

:\Iath., 191 (1998), 3 - 11. 

[2] Aparna Lakshmanan S., S. B. Rao, A. Vijayakumar, Cnllai and anti-Gallai 

graphs of a graph, }Iath. Bolu·)lll., 132( 1) (2007), 4:) - 54. 

[3] Aparna Lakshrnallan S., A. VijaynkumaL A note on some dominat.ion param­

eters in graph products, CongI'. NUlllCr., (Proceedings of the International Con­

ference on Recent Developments in COlnbinatorics and Graph Theory, 2007, 

India), (to appear). 

[4J Aparna Lakshmanan S., A. Vijayakurnnr, Clique irreducibility and clique vertex 

irreduciblilit.y of graphs, (coInnmnicated). 

[5] Aparna Lakshmanan S .. A. Vijayakulllar, Clique irreducibility of BOlne iterat.ive 

classes of graphs, Discuss. :".Iath. Graph Theory, (t.o appear). 

[6] Aparna Lakshmanau S .. A. Vijayakurnar, On weakly clique irreducible graphs, 

(communicated) . 

[7] Apa,rna Lakshrnanan S., A. Vijayakurnar, Smne properties of t.he clique graph 

of a cograph, Proceedings of the International Conference on Discrete Mathe­

mat.ics, Bangalore, India, (2006), (to appear). 

117 



Bibliography 118 

[8] Aparnn Lakshmanan S., A. Vijayakumar, The < t >-property of some classes 

of graphs, Discrete l\:lath., (to appear). 

[9] G. Bacso, Z. Tuza, Dominating cliques in PG-free graphs, Period. ~\Iath. Hun­

gaL 21(4) (1990), 303 - 308. 

[10] R. Balakrishnan, P. Paulraja, Self-clique graphs and diameters of iterated 

clique graphs, Util. :.\Iath. 29 (1986), 263 - 268. 

[11] R. Balakrishnan, K. Ranganathan, A text book of graph theory, Springer 

(1999). 

[12] V. Balachallclran, P. Nagavarnsi, C. Pandu Rangan, Clique transversal and 

clique independence on comparability graphs, Inform. Process. Lett. 58 (1996), 

181 - 184. 

[13] H. J. Bandelt, H. I'd. :\Illlder, Distance hereditary graphs, J. Combin. Theory 

B, 41 (1986), 182 - 208. 

[14] A. Brandstadt., V. B. Le . .J. P. Spinrad, Graph classes - a survey, SIA:\-l (1999). 

[15] A. BrancbtCi.clt, V. Chepoi, F. Dragan, Clique r-domination and clique r­

packing problems on dually chordal graphs, SIA}'l J. Discrete Math. 11 (1998), 

2:1 - 29. 

[16] L. \Y. Beineke. H. .l. \Vilsoll, (Eels.) Graph Conllf)(~t.ions, Oxford University 

Press, (1997). 

[17] L. \V. Beinckc, On derived graphs and digraphs, in Beit.rage zur Graphenthe­

orie, Leipzig, (1968L 17 - 23. 

[18] C. Berge, The Theory of Graphs, l\lethuen, (1962). 



Bibliography 119 

[19] N. L. Biggs. E. K. Lloyd, R. J. \Vilson, Graph Theory 1736 - 1936, Oxford 

University Press, (1976). 

[20] 13. 13011ohas, :\Ioclern Graph Theory, Springer, (1991). 

[21] F. Bonomo, 1'v1. Chunclnoysky, G. Duran, Pa.rtial charact.erizat.ions of clique 

perfect. graphs I: subclasses of c1mv-free graphs, Discrete Appl. Mat.h., 156(7), 

2008, 1058 - 1082. 

[22] F. 130110l11o, 1\1. Chlludno\'sky, G. Dnr6.n, Partial characterizat.ions of clique 

perfect. graphs II: diamond-free and Helly circular-arc graphs, Discret.e 1\'lath., 

in press. 

[2:3] F. Bonomo, G. Dman, 1\11. Groshalls fmcl J. L. Szwa.rcfit.er. On clique perfect 

and K-Twrfect graphs, Ars Combin .. 80 (2006), 97 - 112. 

[24] 1\1 Cha.ng, 11. Farber, Tuza Z., Algorithmic a.spect.s of neighbourhood llum­

bers, SIAM ,1. Discrete l\'Iath., 6 (1993), 24 - 29. 

[25] L. Chong-Keang, P. Yee-Hock, On graphs without multicliqual edges, J. 

Graph Theory, 5 (1981), 443 - 45l. 

[26] M. Chundnovsky, :.J. Robertson, P. Seymour, It Thomas, The st.rong perfect. 

graph theorem, Ann. of Mat-h., 16'1 (2006), 51 - 229. 

[27] D. G. CorneiL H. Ler-ehs, 1. S. Bnrlington, Complement. reducible graphs, 

Discrete App!. :\Jath., 3(~j)(1981), 163 - 174. 

(28] D. G. ConwiL Y. Perl, 1. K. Stcwart. A linear recognit.ioll algorithm for 

cographs, SIA~J J. Comput. 14 (1985),926 - 934. 



Bibliogmphy 120 

[29] V. Chvo.tai, P. L. Hammer, Set packing and threshold graphs, Research report, 

Computer Science Department, University of \Vaterloo, Canada CORK (1973), 

73 - 121. 

[:~O] D. Cvct.kovi(~, R. LuCiC, A new generalization of the concept of the p-sum of 

graphs, Univ. Beograd Publ. Elektrotehn. Pak., Ser. Mat. Fiz. 302 - 319 (1970), 

67 - 71. 

[31] R. Diestel, Graph Theory, Springer, (1991). 

[32] G. DurOJ1, :'1. Lin, J. L. Szwarcfiter, On clique-transversal and clique­

independent sets, Ann. Ope!". Res., 116 (2002), 71 - 77. 

[33J P. Erclos, T. Gallai, Z. Tuza, Covering the cliques of Et graph ,vith vertices, 

Discret.e l\Iath. 108 (1992), 279 - 289. 

[34] M. R. Fellows, G. H. Fricke, S. T. Hedetniemi, D. Jacobs, The private neighbor 

cube, SIAl\I .J. Discrete ~'lath., 7(1) (1994),41 - 47. 

[35] C. Flotmv, Obere Schranken hi,r die Clique-Transversalzahl eines Graphen, 

Diploma Thesis, Uni.Hamburg, 1992. 

[36] S. Foldcs, P. L. Hammer, Split graphs, Congr. Numer., 19 (1977), 311 - 315. 

[:37] \1. C. Golllmbic, Algorithmic graph theor:y and perfect graphs, Acadamic 

Press. ='J(~y\- York (1980). 

[:38] H. L. GrahanL B. L. Rothschild, J. H. Spencer, Rarnsey Theory, Wiley, (1990). 

[39] S.Gravier, A. Khelladi, On the domination number of cross products of graphs, 

Discrete ~lath., 145 (1995) 273 - 277. 

[40] .1. L. Gross, T. VV. Tucker, Topological Graph Theory: Dover, (2001). 



Bibliography 121 

[41] V. Guruswarni, C. Pandu Rangan, Algorithmic aspects of clique transversal 

and clique independent ~ets, Discr8t.E~ Appl. :\lath. lOO (2000L 183 - 202. 

[42] R.C. Hamelink, A partial characteri,mtion of clique graphs, .1. Combin. Theory 

5 (1968), 192 - 197. 

[43] F. Harary, Graph Theory, Addison\Vesley, (1969); Narosa, (2000). 

[44] T. \V. Haynes, S. T. HedetnicmL P . .1. Slater, Fundamentals of domination in 

graphs, l'vlarcel Dekkel', Inc. (1998). 

[45] E. Hov.'Orka, A characterization of distance hereditary graphs, Quart. J. rvIath. 

Oxford, Ser.2, 28 (1977),25 - 31. 

[46] R. \V. Hung, S. C. \Vu, :\L S. Chang, Hamiltonian cycle problem on distance 

hereditary graphs, .1. Inform. Sci. and Engg. 19 (2003), 827 - 838. 

[47] l\J. S. Jacobson and L. F. Kinch, On the domination number of products of 

graphs: L An; Combin., 18 (1984), 33 - 44. 

[48] S. Klavzar, B. Zmazek, On a Vizing-like conjecture for direct product. graphs, 

Di~crete l\lath. 156 (1996), 243 - 246. 

[49] D. Konig, Theorie der Endlichen unci Unelldlichen Graphen, Leipzig, (1936). 

[50] C. Kuratowski, Sur le problf'me des combes gauches en topologic, FUlld. l\Iat.h. 

15 (1930), 271 - 283. 

[51] F. Larri6n, C. P. de Mello, A. 1Iorgana, V. :.JeulIHlllll-LnrH, :\1. A. Pizaiia, 

The clique operator on cographs and serial graphs, Discret.e :'lath., ?82 (2004), 

183 - 191. 



Bibliography 122 

[52] V. B. Le, Gallai graphs and anti-Gallai graphs, Discrete l\lath., 159 (1996), 

179 - 189. 

[53J V. B. Le, 1'Iortality of iterated G all ai graphs, Period. l\Iath. Hungar., 27(2) 

(1993), 105 - 124. 

[54] C. ~\L Lee, 11. S. Chang, Distance-hereditary graphs are cliq1le-perfect, Dis­

crete Appl. Math., 154(3) (2006), 525 - 536. 

[55] C. 1. Lucdwsi, C. P. !..,ldlo, .1. L. Szwarcfitcr, Ou clique compiete graphs, 

Discrete Math. 183 (1998), 247 - 254. 

[56] C. \iV. Marshall, Applied Graph Theory, \Viley, (1971). 

[57] T. A. 1kkee, Dimensions for cographs, Ars Combin. 56 (2000), 85 - 95. 

[58] T. A. Mckce, Intersection graphs and cographs, Congr. Numer. 78 (1990), 223 

- 230. 

[59] V. Neurnann-Lara, On clique divergent graphs, In probl(~llles Cornbinatoires 

et Theorie des Graphes, Orsey, France, Colloques Internationaux C.N.R.S., 260 

(1978), 313 - 315. 

[60] R. J. Opsut, F. S. Roberts, On the fleet maintenance, mobile radio frequency, 

task assignment and traffic problems, in: G. Chartrand et. a 1.. eels., The Theory 

and Applications of Graphs, \Vilcy, Newyork (1981), 479 - 4D2. 

[61] O. Ore, Theory of Graphs, Amer. ~\Iath. Soc. Coll. Publ. 38, Providence 

(RI.)(1962). 

[62J C. Payan, N. H. Xuong, Domination-balanced graphs, J. Graph Theory 6 

(1982) 23 - 32. 



Bibliography 123 

[63] E. Prisner, Graph Dynamics, Longman (1995). 

[64] E. Prisner, Hereditar.y clique-Belly graphs. ,J. Combin. \Iath. COlllbin. Com­

put. 14 (1993), 216 - 220. 

[65] D. F. Rall, Packing and domination invariants on cartesian products and 

direct products, Pre-conference proceedings of the International Conference on 

Discrete Mathematics (ICD1\1 2006), Bangalore, India. 

[66] S. B. Rao, Apaina Lakshrnanan S., A. Vijayakumar, Cographic and global 

cographic domination number of a graph, Ars Combin., (to appear) 

[67] S. B. Rao, A. Vijayakllmar, On the median and the anti-median of a cograph, 

Internat . .T. Pure Appl. ~;Iath., (to appear). 

[68] F. S. Roberts, Discrete :"lathematical Models \vith Applications to Social. 

Biological and Environmental Problems, Prentice - Hall, (lD76). 

[69] F. S. Roherts, J. H. Spencer, A characterization of clique graphs, .J. Combin. 

Theory Ser, B, 10 (1971), 102 - 108. 

[70] G. F. Royle, The rank of a cograph. The Electron . .T. Combin. 10 (2003). 

[71] E. Sampathkumar, The global domination number of a graph, J. l\Iath. Phys. 

23 (1989), :377 - 385. 

[72] L. Sun, Two classes of perfect graphs, J. COlllbin. Theory Ser. B 53 (1991), 

27:3 - 292. 

[73] J. L. Szwarcfiter, A survey on clique graphs, Rcc~;nt Aclvancps in Algorithms 

and Combinatorics, (2003), 109 - 136. 

[74] Z. Tllza, Covering all cliques of a graph, Discret(-) i\Iath., 86 (1990),117 - 126. 



Bibliography 124 

[75J V. G. Vizing, Some unsolved problems in graph theory, Uspechi }'vlat. Nauk 

23 (1968) 6(144), 117 - 134. 

[76] T. 11. \Vang, On characterizing weakly maximal clique irreducible graphs, 

Congl'. ":\l UlllCr.. 163 (2003), 177 - 188. 

[77] T. l\l. \Vang, On line graphs which are \veakly maximal clique irreducible, 

Ars. Combin., 76(2005). 

[78J \·V. D. \Vallis, G. H. Zhang, On maximal clique irreducible graphs, .J. Combin. 

}Iath. Combin. Comput. 8 (1990), 187 - 193. 

[79] D. B. \Vest, Introduction to Graph Theory, Prentice - Hall, (1999). 

[80] H. \Vhitncy, Congruent graphs and connectivity of graphs, Anwr . .1. ldath. 

54 (1932), 150 - 168. 



Index 

acyclic, 6 

adjacent, 4 

anti-Gallai graph. 2, 8, 18, 29, 99 

basis of NEPS, 10 

bipartite, 6 

cartesian product, 10 

chromatic number, 3. 7, 40, 80 

clique, 3, 6 

complete, 7, 78 

graph, 3, 7, 20, 77 

Helly, 7 

independence number, 3, 11, 73, 

82 

independent set, 11 

irreducible graph, 3. 13. 15. 21 

number. :3, 6 

perfect graph, 3, 12, 15, 21, 65, 

66,1'1, 83 

reducible graph, 13, 102, 107 

transversal number, 3, 1l, 20. 65, 

72,82 

1')" _0 

transversal set. 11, 65 

vertex irreducible graph, 17, 85, 

92, 99, 103, 108 

vertex reducible graph, 17, 103, 

107 

closed neighborhood, 5 

cograph, 3, 9, 14, 15, 19, :34, 35, 37, 

51. 66, 77. 102 

complement, 2, 6 

complete 

bipartite graph, 6 

graph, 6 

component, 6 

connected, 5 

covering, 6 

covering l1mnber. 6 

cycle, 5 

degree, ;) 

diameter, 8, ,12. 77 

cliscOllnectpd graph, 6, 50 

distancp, 7 



Index 

distance hereditary graph, 3, 14, 15, 

21, 107 

domination number, 8, 45, 80 

cographic, 17, 4G 

global. 9, 50 

global cographir:, 17, 47 

independent, 9, 45 

eccent ricit~\', 7 

edge, 4 

cnd vertex. 4 

essential, 13 

edge, 18 

vertex, 18 

I-factor, 5 

factors of NEPS, 10 

false t\vin, 5 

forbidden subgraph, 3, 5, 32 

Gallai graph, 2, 8, 18, 29, 92 

graph, 4 

class, 2--4 

operator, 2 

H-frec, 5 

Hajo's graph, 16 

Helly l)mperty, 7, 20 

hereditary clique-Helly, 7, 15, 16 

126 

hereditary weakly maximal clique ir­

reducible, 16 

highly clique imperfect graph, 75 

incident. '-1 

independence munher, 6 

independent, I) 

induced subgraph, 4 

intersection graph, 3, 6 

isomorphic, 5 

iterated anti-Gallai graph, 8, 99 

iterated Gallai graph, 8 

iterated line graph, 8, 85 

join, 9 

k-regular, [) 

line graph, 2, 3, 8, 22, 85 

minimal dominating. 8 

NEPS, 10.58 

nOll-complete c~xt.endcd p-smn. 10 

NP-COlllpktc, ')7. 58 

open neighborhoocl. [) 

order, -J 

path, 5 

pCl1ciant vertex, 5 



Index 

perfect graph, 3, 12, 15, 71 

perfect matching, 5 

planar graph, 3, 9, 51, 70 

plane repre~entation, 9 

proper vertex coloring, 7 

radius, 7, 42 

self complementary, 6 

size: 4 

spanning subgraph, 4, 8 

split graph, 3, 12, 16, 21, 37 

star, 6 

strong product., 10 

sub multiplicative, 10 

subgraph,4 

super lllult.iplicative, 10 

< t >-propcrty, 12: 20 

tensor product, 10 

threshold graph, 3, 12, 17, :37 

t.otally disconnected: 6 

t.ree, 3, 6, 46, 49 

trestled graph of index k, 13, 72 

triangle, 6 

true twin, 5 

union, 9 

universal multiplicative: 10 

universal vertex, 5 

vertex, 4 

colming, 7 

essential, 18 

hereditary, 5 

Vizing's conjecture, 60 

127 

weakly clique irreducible graph, 3, 13, 

22 

weakly clique redncible graph, 13 


	Title
	Certificate
	Declaration
	Acknowledgements
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Symbols
	Bibliography
	Index

