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Chapter 1

Introduction

The origin of graph theory dates back to more than two hundred and seventy years
when the renowned Swiss Mathematician Leonhard Euler solved the ‘Konigsberg
Bridge Problem’ in his talk “The solution of a problem relating to geometry of
position’ presented at St.Petersberg Acadamy on 26th August, 1735. Since then
the subject has grown into one of the most inter disciplinary branches in mathe-
matics with a great variety of applications. The first book on this subject was by
B.Kénig [49]. Volumes have been written on the rich theory and the very many
applications of graphs ([11]. [19], [68]. [79]), including the pioncer works of C.Berge

(18], F. Harary [43] and O.Ore [61].

The applications of graph theory in operation research, social science, psy-
chology and physics are detailed in C.W.Marshall [56]. J.L.Gross [40] discusses a
variety of graph classes with numerous illuminating examples which are of topolog-
ical relevance. The development of graph theory with its applications to electrical

networks, flows and connectivity are included in [20] and [31}]. Ramsey theory
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is an interesting branch of graph theory which relates it to the number theory.
R.L.Graham, B.L.Rothschild and J.H.Spencer has written a book [38] in this area
which covers all major developments in the subject. In [16], connections of graph
theory with other branches of mathematics such as coding theory. algebra etc are

discussed.

This thesis entitled ‘Studies on Some Graph Classes’ is a humble attempt

at making a small addition to the vast ocean of results in graph theory.

By the term graph class, we mean a collection of graphs which satisfies some

specific properties.

A graph operator is a mapping T : G — G’ where G and G’ arc families of graphs.
The most familiar examples of graph operators are the graph complement and the
line graph. A variety of graph classes can be obtained by applying suitable graph
operators. The study of graph operators initiated with a set of three problems on

line graphs posed by O. Ore [61].
e Deterniine all graphs isomorphic to their line graph.

e When the line graph is given, is the original graph uniquely determined?

o Investigate iterated line graphs.

Graph operators and its dvnamics - fixedness, convergence, divergence etc. -
are extensively studied in [63]. The Gallai graphs . the anti-Gallai graphs, the cycle
graphs and the edge graphs are some of the graph classes obtained by choosing

appropriate graph operators.

Another wav of identifving graph classes is through finite or infinite collection of
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forbidden subgraphs. The inclusions between graph classes can be easily identified
from the forbidden subgraph characterizations. The cographs . the split graphs ,
the threshold graphs and the line graphs are some of the interesting graph classes
which admit finite forbidden subgraph characterizations. There are other interest-
ing graph classes defined by forbidding an infinite collection of induced subgraphs
like the perfect graphs, the distance hereditary graphs, the comparability graphs
and the chordal graphs. The famous concept of minors is also an example of for-
bidden subgraph characterization. Kuratowski's theorem [50] on planar graphs is

a striking example of this kind.

Yet another way of defining graph classes is through recursive characterizations.
The trees . the cographs and the distance hereditary graphs are some of the graph

classes which admit recursive characterizations.

The intersection graph is a very general notion in which objects are assigned
to the vertices of a graph and two distinct vertices arc adjacent if their objects
have non empty intersection. A variety of well studied graph classes including the
line graphs, the chordal graphs, the clique graphs and the block graphs are special

types of intersection graphs.

Graph classes also arise in connection with various graph parameters such as
the clique transversal number, the clique independence number, the chromatic
number and the clique number and various suby structures of a graph such as the
cliques, the dominating sets etc. The perfect graphs, the clique perfect graphs, the
clique irreducible graphs and the weakly clique irreducible graphs are examples of

such graph classes.

In any discussion on graph classes, a main source is the classical book by
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M.C.Golumbic, Algorithmic Graph Theory and Perfect Graphs [37]. A detailed
study of about two hundred graph classes with an extensive bibliography is in the
book ‘Graph Classes : A survey’ by A. Brandstadt, V. B. Le and J. P. Spinrad
[14].

This thesis is mainly concerned with the graph classes - the Gallai graphs, the
anti-Gallai graphs, the cographs, the clique graphs, the clique irreducible graphs

and the weakly clique irreducible graphs.

1.1 Basic definitions and lemmas

The basic notations, terminology and definitions are from [11]. [14]. [30], [34],

[37], [52], [60], [65] and [71].

Definition 1.1.1. A graph G = (V, E) consists of a non-empty collection of
points, V' called its vertices and a sct of unordered pairs of distinct vertices, F
called its edges. The unordered pair of vertices {u,v} € E are called the end
vertices of the edge e = {u,v}. In that case, the vertex u is said to be adjacent
to the vertex v. Two edges e and ¢’ are said to be incident if they have a common

end vertex. |V

is called the order of G. denoted by n or n(G) and |E] is called
the size of G, denoted by m or m(G). A graph G is trivial or empty if it has no

edges.

Definition 1.1.2. A graph H = (V' F’) is called a subgraph of G if V! C V
and E' C E. A subgraph H is a spanning subgraph if V/ = V. H is called

an induced subgraph if £’ is the collection of all edges in G which has both its
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end vertices in V'. < V' > denotes the induced subgraph with vertex set V'. A
property P of a graph G is vertex hereditary if every induced subgraph of G has
the property P. A graph H is a forbidden subgraph for a property P, if any
graph GG which satisfies the property P cannot have H as an induced subgraph. A

graph G is H-free if it does not have H as an induced subgraph.

Definition 1.1.3. The number of vertices adjacent to a vertex v is called the
degree of the vertex, denoted by d(v). A vertex of degree one is called a pendant

vertex and a vertex of degree n — 1 is called a universal vertex.

Definition 1.1.4. A graph G is k-regular if d(v) = k for every vertex v € V(G).

A spanning l-regular graph is called a 1-factor or perfect matching.

Definition 1.1.5. The set of all vertices adjacent to a vertex v is called open
neighborhood of v, denoted by N(v). The open neighborhood of v together with

the vertex v is called the closed neighborhood of v, denoted by NJu].

Definition 1.1.6. A false twin of a vertex u is a vertex v which is adjacent to
all the vertices in N{u]. A true twin of a vertex u is a vertex v which is adjacent

to all the vertices in N (u).

Definition 1.1.7. A graph G = (V, E) is isomorphic to a graph H = (V' F') if
there exists a bijection from V' to V'’ which preserves adjacency. If G is isomorphic

to H. we write G = H.

Definition 1.1.8. A path on n vertices P, is the graph with vertex set {vy, va, ..., vn}
and v; is adjacent to v,y for i = 1.2, ....n — 1 are the only edges. If in addition v,
is adjacent to vy then it is called a cycle of length n, C,. A path from the vertex
u to the vertex v is called a u — v path. A graph G is connected if for every

u, v € V., there exists a v — v path. If G is not connected then it is disconnected.
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A maximal connected subgraph of G is called a component of G. A component
of a graph G is non-trivial if it has at least one edge. A graph is acyclic if it

does not contain cycles. A connected acyclic graph is called a tree.

Definition 1.1.9. A graph G is bipartite if the vertex set can be partitioned

into two non-empty sets U and U’

such that every edge of G has one end vertex
in U and the other in U”. A bipartite graph in which each vertex of U is adjacent
to every vertex of U’ is called a complete bipartite graph. If |[U| = m and

U’ = |n|, then the complete bipartite graph is denoted by K, ,. The complete

bipartite graph K4, is called a star.

Definition 1.1.10. Let G be a graph. The complement of G, denoted by G€ is
the graph with vertex sct same as that of V' and any two vertices are adjacent in
G* if they are not adjacent in G. K¢ is called totally disconnected. A graph G

is called self complementary if G = G°.

Definition 1.1.11. A subset I C V of vertices are said to be independent if no
two vertices of I are adjacent. The maximum cardinality of an independent set is
called the independence number o(G). A subset K C V is called a covering
of G if every edge of G is incident with at least one vertex of K. The number of

vertices in a minimum covering is called the covering number 3(G).

Definition 1.1.12. A subgraph H of G is a complete if every pair of distinct
vertices of (G are adjacent. A complete graph on n vertices is denoted by K,,. K3
is called a triangle. A complete is maximal if it is not properly contained in any
other complete. A maximal complete subgraph is called a clique. The size of the

largest clique in G is called the clique number w(G).

Definition 1.1.13. The intersection graph of a graph G is a graph whose vertex

set is a collection of objects and any two vertices are adjacent if the corresponding
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objects intersect. The intersection graph of all cliques of a graph G is called the
clique graph of G denoted by K (G). If K(G) is complete then G is called clique

complete.

In Fig : 1.1 G is clique complete.

Definition 1.1.14. A collection of objects £ satisfies Helly property if for any
sub collection £ C &. the elements of £ pair-wise intersect, then (... e # ¢. If
the cliques of a graph G satisfies Helly property then we say that G is clique-
Helly. If G and all its induced subgraphs are clique-Helly, then G is hereditary

clique-Helly.

In Fig 1.1 G, is clique-Helly, where as G3 is not.

Definition 1.1.15. Assigning colors to the vertices of a graph is called a vertex
coloring. If no two adjacent vertices receives the same color, then such a coloring
is called a proper vertex coloring. The minimum number of colors required for
a proper vertex coloring of a graph G is called its chromatic number , denoted

by x(G).

Definition 1.1.16. The distance between two vertices u and v of a connected
graph G, denoted by de(u,v) or d(u,v) is the length of a shortest u — v path. The

eccentricity of a vertex e(v) = maz{d(u.v) : v € V(G)}. The radius of a graph
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r(G) is the minimum of the eccentricities of its vertices and the diameter of a

graph d(() is the maximum of the eccentricities of its vertices.

Definition 1.1.17. The line graph of a graph G denoted by L(G) has the edges
of G as its vertices and any two vertices are adjacent in L(G) if the corresponding
edges in G are incident. The iterated line graphs of G are defined as L*(G) =

L(L*YG)) for k> 1.

Definition 1.1.18. The Gallai graph I'(G) of a graph G has the edges of G as its
vertices and any two vertices are adjacent in ['(G) if the corresponding edges are
incident in G, but do not span a triangle in G. The anti-Gallai graph A(G) of a
eraph G has the edges of G as its vertices and any two vertices of G are adjacent
in A(G) if the corresponding edges are incident in G and lie on a triangle in G.
The iterated Gallai graphs and the iterated anti-Gallai graphs are defined
as TH(G) = T(T*1(G))) and A*(G) = A(A*HG)) respectively for £ > 1.

Both T'(G) and A(G) arc spanning subgraphs of L(G) and their union is L(G).

C
i 1 1
1| ! J o
2 % 2 N6 24 Nob 24 6
) \ \ \,
O/5 4 QQO k b Lo——o o) X o
3 4 5 3 4 5 3 5
G L(G) c) e
Fig 1.2

Definition 1.1.19. A set S C V of vertices in a graph G is called a dominating
set if cvery vertex v € V' is either an element of S or is adjacent to an element
of S. A dominating set S is minimal dominating if no proper subset of S is a
dominating set. The domination number +(G) of a graph G is the minimum

cardinality of a dominating set in G. A set S C V of vertices in a graph G is called a
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global dominating set if it dominates both G and G¢. The minimum cardinality
of a global dominating set is called the global domination number ~,.(G). A
set S C V of vertices in a graph G is called an independent dominating set if
S is independent and S dominates G. The minimum cardinality of an independent

dominating set is called the independent domination number +;(G).

Fig: 1.3 o

For the graph G in Fig: 1.3, v(G) = 3, v,(G) = 4 and v(G) = 5.
Definition 1.1.20. A graph that can be reduced to edgeless graph by taking

complements within components is called a cograph.

For example, any graph of order less than or equal to four, except P, is a
cograph. The complete bipartite graphs and complete graphs are also examples of
cographs.

Definition 1.1.21. A plane representation of a graph G is an isomorphic copy
of G in which any two edges intersect only at the vertices. A graph which admits
a plane representation is called a planar graph.

Definition 1.1.22. The union of two graphs G and H denoted by G U H is the
graph with vertex set V(G) UV (H) and edge set E(G)U E(H).

Definition 1.1.23. The join of two graphs G and H denoted by G V H is the
graph with vertex set V(G)UV(H) and E(GVH) = E(G)UE(H)U{uv : u € V(G)
and v € V(H)}.
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Definition 1.1.24. The tensor product of two graphs G and H denoted by
G x H is the graph with V(G x H) = {u,v) : v € V(G)) and v € V(G3)} and any

two vertices {(uq.v1) and (ug, v2) are adjacent it ujus € E(G)) and vive € E(Gy).

Definition 1.1.25. The cartesian product of two graphs G and H denoted by
GOH is the graph with V(GOH) = {u,v) : u € V(Gy) and v € V(G3)} and any
two vertices (uq,vy) and (ua, v9) are adjacent if one of the following holds.

(i) u; = up and vyvy € E(Gy)

(il) mus € E(Gy) and vy = vy.

Definition 1.1.26. The strong product of two graphs G and H denoted by
G © H is the graph with V(G & H) = {u,v) : v € V(G,) and v € V(G>)} and any
two vertices {(uq, vy) and (uy, v3) are adjacent if one of the following holds.

(i) u; = up and vy € E(G3)

(1) urug € E(Gy) and vy = vy

(ill) ujugy € E(Gy) and vyve € E(Ga).

Definition 1.1.27. A graphical invariant ¢ is super multiplicative with respect
to a graph product o, if given any two graphs G and H. (G o H) > o(G)o(H)
and sub multiplicative if 0(Go H) < o(G)o(H). A class C is called a universal
multiplicative class for ¢ on o if for every graph H, o(G o H) = o(G)o(H)

whenever G € C.

Definition 1.1.28. Let B be a non-empty subset of the collection of all hinary
n-tuples which does not include (0,0.....0). The non-complete extended p-
sum of graphs Gy, Go. .... G, with basis B denoted by NEPS(G1, G, ..., G,: B).
is the graph with vertex set V(G1) x V(G,) x ... x V(G,), in which two vertices
(u1.u2, ... up) and (v1, Vs, ..., v,) are adjacent if and only if there exists (3, s, ..., 3,) €
B such that u; is adjacent to v; in G; whenever 3; = 1 and u; = v; whenever J; = 0.

The graphs G, Gy, ..., G}, are called the factors of the NEPS.
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There are seven possible ways of choosing the basis B when p = 2.

By ={(0.1)}

By = {(1,0)}

By = {(1.1)}

By = {(0,1),(1,0)}

B; = {(0,1),(1,1)}

Bg = {(1,0),(1,1)}

B: ={(0.1),(1,0).(1,1)}

The NEPS of graphs GGy and G5 with basis B3, B, and By are the tensor product,

the cartesian product and the strong product respectively.

Definition 1.1.29. A subset V' of V' is called a clique transversal , if it intersects
with every clique of G. The clique transversal number 7.(G) of a graph G is
the minimum cardinality of a clique transversal of G. A collection of mutually non-
intersecting cliques is called a clique independent set. The maximum cardinality
of a clique independent set in a graph G is called the clique independence

number a.(G).

1 2 6
O———o0— ¢
.
5 3 4
Fig: 1.4

The minimal clique transversal sets of the graph in Fig : 1.4 are {1,4.5,6},
{2,3}, {2,5} and {3,6}. Therefore the clique transversal number is two. The
maximal clique independent sets are {< 2,6 >, < 3,5 >}, {< 1,2,3 >} and

{<2,3.4 >}. Therefore the clique independence number is also two.
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Definition 1.1.30. A graph G is clique perfect if 7.(H) = a.(H) for every

induced subgraph H of G.

The graph in Fig : 1.4 is clique perfect. The smallest example of a graph which
is not clique perfect is Cj, since 7.(Cs) = 3 and «.(Cs) = 2. Note that, by the
definition of clique perfect graphs, any graph which contains Cjs as an induced

subgraph is also not clique perfect.

Definition 1.1.31. A class G of graphs satisfies the < t >-property if 7.(G) < }

for every G € G; = {G € G : every edge of G is contained in a K; C G}.

Note that the < ¢t >-property does not imply the < t — 1 >-property. Let G
be the collection of cycles and complete graphs. Then G does not have the < 2 >-
property since 7.(Cary1) = k+1> %ri But. it satisfies the < 3 >-property. since

Gs = {K, : n >3} and 7.(K,) = 1, for every n..

Definition 1.1.32. A graph G whose vertex set can be partitioned into an inde-

pendent set and a clique is called a split graph.

Fig : 1.5 gives an example of a split graph.

Definition 1.1.33. A graph G is a threshold graph if it can be obtained from

K, by recursively adding isolated vertices and universal vertices.

Definition 1.1.34. A graph G is perfect if xY(H) = «w(H) for every induced

subgraph H of G.
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Definition 1.1.35. For a graph G, T;.(G) the trestled graph of index k is the
graph obtained from G by adding k copies of K for each edge uv of G and joining

u and v to the respective end vertices of each K.

1 C E

T{(G) TS
Fig: 1.6

Definition 1.1.36. A graph G is clique irreducible if every clique in G has an
edge which does not lie in any other clique in G. If G is not clique irreducible then

it is clique reducible.

In Fig : 1.7, G, is clique reducible and G, is clique irreducible.

Definition 1.1.37. A clique is essential if it has an edge which does not belong
to any other clique in G. A graph G is weakly clique irreducible if every edge
belongs to at least one essential clique. If G is not weakly clique irreducible then

it is weakly clique reducible.
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OO

3 7 ;_‘\ \\ \\‘
/ / / N / \)4 AN
O -0 Q O

1 2
Fig : 1.8

N,

o

In Fig : 1.8, G is weakly clique irreducible and Gy is weakly clique reducible.
Note that weakly clique irreducible graphs form a super class of clique irreducible
graphs. The reverse inclusion does not hold as indicated by the example ;) in Fig

: 1.8,

Definition 1.1.38. A graph G is distance hereditary if for every connected

induced subgraph H of G, dy(u,v) = dg(u, v).

Lemma 1.1.1. /27] G is a cograph if and only if G is Py-free.

Lemma 1.1.2. [27] Cographs can be recursively characterized as
(1) K s a cograph.

(2) If G and H are cographs, so is their union GU H.

(8) If G and H are cographs, so is their join GV H.

Both the forbidden subgraph characterization and the recursive characteriza-

tion of cographs are used frequently in this thesis.

Lemma 1.1.3. [13] The distance hereditary graphs can be recursively characterized
as follows.
(1) K. is distance hereditary.

(2) If G distance hereditary then so is the graph obtained by attaching a pendent
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vertex to any of the vertices of G.
(3) If G distance hereditary then so is the graph obtained by attaching true twins
to any of the vertices of G.

(4) If G distance hereditary then so is the graph obtained by attaching false twins

to any of the vertices of 5.

Lemma 1.1.4. [18] A graph G is distance hereditary if and only if it does not
contain an induced house, hole, domino or gem, where a hole is a cycle of length

greater than five and the other graphs are shown below.

! F—9
E \ / ‘\
' /
/ \
b5 o3 L o

House  Domino Gem

Lemnma 1.1.5. [18] A graph G is a cograph if and only if it is the disjoint union

of distance hereditary graphs of diameter at most two.

Lemma 1.1.6. (Strong perfect graph theorem) [26/ : A graph G is a perfect
graph if and only if it does not contain any odd hole or odd anti-hole as an induced
subgraph, where an odd hole is a cycle of odd length and an odd anti-hole is the

complement of a cycle of odd length.

Lemma 1.1.7. [27] Cographs are perfect.

Lemma 1.1.8. [54] Cographs are clique perfect.

Lemma 1.1.9. [64] If G is hereditary clique-Ilelly | then it is clique irreducible.

Lemma 1.1.10. [25] If a graph G has no induced diamond (Ky —e), then every

edge of G belongs to exactly one clique.
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Lemma 1.1.11. [76] A graph G is hereditary weakly mazimal clique irreducible if

and only if G does not contain any of the graph Fy. Fs. ..., Fyg in Fig : 1.9 as an

induced subgraph.

Lemma 1.1.12. [64] A graph G is hereditary clique-Helly , if it does not contain

any of the Hajo’s graph as an induced subgraph.

Hajo's graphs

Lemma 1.1.13. [11] In a loop less bipartite graph G. the minimum number of ver-
tices that cover all the edges of G is equal to the mazimum number of independent
edges.

Lemma 1.1.14. [36] A graph G is a split graph if and only if it is (2K,. Py, Cy)-

free.
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Lemma 1.1.15. [29] A graph G is a threshold graph if and only if it is (2K, Cy. C5)-

free.

1.2 New definitions

Definition 1.2.1. [66] Let G = (V, E) be a graph. A subset V’ of V is called
a cographic dominating set if it dominates G and the subgraph induced by
V' is a cograph. The cographic domination number 7. (G) is the minimum

cardinality of a cographic dominating set.

Definition 1.2.2. [66] Let G = (V, E) be a graph. A subset V' of V is called a
global cographic dominating set if it dominates both G and G¢ and the sub-
graph induced by V' is a cograph. The global cographic domination number

Yyed(G) is the minimum cardinality of a global cographic dominating set.

For example, yea(K41 ) = 1 and ~vgeq(I1,0) = 2.

Definition 1.2.3. [5] A graph G is clique vertex irreducible if every clique in
G has a vertex which does not lie in any other clique in G and it is clique vertex

reducible if it is not clique vertex irreducible.

O‘f T ',7’0. o—C
Q/ C O \/ 'S
N G
(:1 5
Fig : 1.10

In Fig : 1.10 G, is clique vertex irreducible and G, is clique vertex reducible.

Note that the clique vertex irreducible graphs form a sub class of clique irreducible
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graphs. The reverse inclusion does not hold as indicated by the example G, in Fig

: 1.10.

Definition 1.2.4. [6] An edge e € F(G) is called an essential edge if it belongs
to exactly one clique in G. A vertex v € V(G) is called an essential vertex if it
belongs to exactly one clique in G. A clique C in G is called vertex essential |,
if C' has an essential vertex.
1
246
4 o

Fig: 1.11

3

In Fig : 1.11, the essential edges are 12, 23, 34, 45, 56 and 61. The essential
vertices are 1, 3 and 5. The vertex essential cliques are < 1,2,6 >, < 2,3,4 > and

< 4,5,6>.

1.3 A survey of results

The following are some of the fundamental results pertaining to the above said

graph classes which we discuss in this thesis.

The Gallai graphs and the anti-Gallai graphs are spanning subgraphs of the
well known class of line graphs whose union is the line graph. Though the line
graphs admit a forbidden subgraph characterization 17}, both the Gallai graphs

and the anti-Gallai cannot be characterized using forbidden subgraphs, since it is
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proved in [52] that given any graph G, both I'(G° V K;) and A(G V K;) contains
G as an induced subgraph. In [52], it has also been proved that the Gallai graph
of a graph G is isomorphic to G only for cvcles of length greater than three. In
[53], the Gallai mortal graphs - graphs whose iterated Gallai graph converges to
the trivial graph, are characterized in several ways. In [72] the notion of Gallai
perfect graphs - the graphs whose Gallai graphs are perfect, are introduced and

discussed.

The class of cographs - complement reducible graphs, were studied by various
authors under different names such as D*-graphs. Py restricted graphs and HD
or hereditary dacey graphs. In [27], cight characterizations of cographs which
includes the recursive characterization and the forbidden subgraph characterization
(Lemma 1.1.1 and Lemma 1.1.2) are given. A linear recognition algorithm for

cographs is given in [28].

An algorithm to solve the Hamiltonian cycle problem - given a graph G, does
there exists a cycle that passes through every vertex of G. for the cographs (for
the distance hereditary graphs, which form a super class of cographs) is given in
[46]. The rank of the adjacency matrix of a graph is bounded by the number of
distinet non-zero rows of that matrix. G.F. Royle [70] has proved that in the case of
cographs, the rank is equal to the number of distinct non zero rows of its adjacency
matrix. In ;57] the connection of cographs with chordal graphs. interval graphs and
series-parallel graphs are discussed. Cographs are linked with intersection graphs

in [38].

The median and the anti-median of cographs are discussed in {67]. It has been
proved that any cograph can be expressed as the median graph and the anti-median

graph of a cograph that is both Eulerian and Hamiltonian. The cographs which
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are planar and outer planar are also characterized.

F.Larrion et.al, [51] studied in detail the clique operator on cographs. It has
been proved that a cograph is clique convergent if and only if it is clique Helly.
A characterization of cographs whose clique graph is a cograph is also given. A

cograph G is clique complete if and only if it has a universal vertex.

It 1s proved in [42] that there are graphs that cannot be the clique graph of
any graph. A graph is a clique graph if and only if it admits an edge cover which
satisfies the Helly property [69]. In [10] all graphs G for which d(K(G)) = d(G) -1,
d(K(G)) = d(G) and d(K(G)) = d(G) + 1 ave characterized and a class of graphs
which satislies d(K?(G)) = d(G) + 2 is obtained. [59] deals with clique divergent
graphs and it is proved that (K(G V H))¢ = (K(G))°‘C(K(H))¢ and K(GR H) =

K(G) & K(H). The clique complete graphs are discussed in detail in [55].

J

J. L. Szwarcfiter has made an excellent survey of the clique graphs [73]. It
includes the characterizations of the clique graph, the clique graph of various graph
classes, the clique inverse classes, the complexity of recognizing the clique inverse
classes, the convergence and the divergence of the clique operator and the diameter
of clique graphs. A list of open problems is also included in the survey. One of these
problems is settled in [23] by obtaining a counter example and another problem is

solved in chapter < of this thesis.

As we have already mentioned. the < t >-property was introduced to find graph
classes which admits a better upper bound for the clique transversal number. The
following are some of the upper hounds of the clique transversal number as proved
in {33].

(1) 7(G) < n — a(G).
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G), where A(G) is the maximum degree of a vertex in G.
Y 3 , 2n

G)+3—-a(G)+ il

<n—vV2n+ %

(5) If nn and £k are natural numbers such that n = £+ 1 and G is a graph on n
vertices in which every clique has more than k vertices, then 7.(G) < n — Vkn,

except for Cs.

It is known [33] that every chordal graph satisfics the < 2 >-property. In [74],
it is proved that the < 3 >-property holds for the chordal graphs, the split graphs
have the < 4 >-property, but do not have the < 5 >-property and hence the
chordal graphs also do not have the < 5 >-property. It is proved [35] that the

< 4 >-property does not hold for the chordal graphs.

The class of clique perfect graphs were introduced in [41]. The distance hered-
itary graphs [54], the strongly chordal graphs [24], the dually chordal graphs {15!
and the comparability graphs [12] are all subclasses of the rich class of clique
perfect graphs. In [23], it is proved that the odd generalized suns are not clique
perfect. In [21], the claw-free graphs which are clique perfect are characterized and
in [22] diamond-free graphs and Helly-circular arc graphs which are clique perfect
are characterized. A characterization of clique prefect graphs is an open problem

73).

Opsut and Roberts [60] introduced the concept of clique irreducible graphs
and proved that the interval graphs are clique irreducible. Wallis and Zhang [78)
generalized this result and attempted to characterize clique irreducible graphs. In
[77]. the line graphs which are clique irreducible are characterized using forbidden
subgraphs. A characterization of clique irreducible graphs is still an open problem

73].
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Tao-Ming Wang [76] introduced the concept of weakly clique irreducible graphs,
which form a super class of clique irreducible graphs. In [76] nineteen forbidden
subgraphs for a graph to be hereditary weakly clique irreducible is given. The line

graphs which are weakly clique irreducible are characterized in [77].

1.4 Summary of the thesis

This thesis entitled ‘Studies on Some Graph Classes’ is divided into six chap-

ters. We shall now give a summary of each chapter.

The first chapter is an introduction and contains the literature on various graph

classes studied in this thesis. It also includes the basic definitions and terminology.

In the second chapter various properties of the Gallai graphs and the anti-Gallai

graphs are studied. The following are some of the results which we have obtained.

« There are infinitely many pairs of non-isomorphic graphs of the same order

having isomorphic Gallai graphs and anti-Gallai graphs.

* There exist a finite family of forbidden subgraphs for the Gallai graphs and

the anti-Gallai graphs to be H-free for any finite graph H.

x The forbidden subgraph characterizations of G for which the Gallai graphs

and the anti-Gallai graphs arc cographs, split graphs and threshold graphs.

x Characterization of cographs for which the Gallai and anti-Gallai graphs are

also cographs.
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* The relationship between the chromatic number, the radius and the diameter

of a graph and its Gallai and anti-Gallai graphs.

In the third chapter we define two new domination parameters, cographic dom-
ination number v.4(G) and global cographic domination number v,.4(G) based on
cographs. Some of the properties of these domination parameters and results ob-

tained are listed below.

"I There is no tree satisfying the inequality v(G) < v.4(G) = 7:(G).
¢ If G is a triangle free graph then v,.4(G) = vea(G) or vq4(G) + 1.
¢ If G is a planar graph with v.4(G) = 3, then v,a(G) < 74(G) + 2.

Y« Two constructions to illustrate the existence of graphs satisfying the inequal-

ities among the various domination parameters.

v Vizing's type relations of the domination number, the global domination
number, the cographic domination number, the global cographic domination

number and the independent domination number of NEPS of two graphs.

In the fourth chapter, the clique transversal number and the < t >-property of

various classes of graphs are studied. The following are some of the results proved.

s< The domination number is a lower bound for the clique transversal number

and that the difference Hetween these two parameters can be arbitrarily large.

o T'he class of clique perfect graphs without isolated vertices satisfies the < ¢ >-

property for + = 2 and 3 and does not satisty the < ¢ >-property for ¢ > 4.
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> The class of cographs without isolated vertices satisfies the < ¢ >-property

for t = 2 and 3 and does not satisty the < ¢t >-property for ¢ > 4.

i The class of planar graphs does not satisfy the < ¢ >-property for ¢t = 2, 3

and 4 and G, is empty for ¢t > 5.
1 The class of perfect graphs does not satisfy the < ¢t >-property for any ¢t > 2.

i The class of trestled graphs of index k, T(G) satisfies the < 2 >-property if

and only if 3(G) < § VG € G and Ti(G); is empty for ¢ > 3.

> The trestled graphs of index k&, Tp(G) is clique perfect if and only if G is

bipartite.
> Also, an open problem on highly clique imperfect graphs posed in [73] is

solved.

In the fifth chapter the clique graph of cographs are studied and we obtain the
following results.
@ The diameter of the clique graph of a cograph cannot exceed two.

@ Any graph on prime number of vertices, other than K, cannot be the clique

graph of a cograph.
@ A cograph is clique complete if and only if it has a vertex of full degree.

& The number of clique graphs of a cograph with x(K(G)) = s, where s is a

fixed integer is finite.

@ A realization of cographs and its clique graph which have specific values
for the domination number, the clique transversal number and the clique

independence number.
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The last chapter deals with two graph classes - the clique irreducible graphs and

the weakly clique irreducible graphs. A new graph class called the clique vertex

irreducible graphs is also defined and the following results are obtained.

N
i

i
N

IO
N

; Characterizations of G for which the line graph L(G) and all its iterates to

be clique vertex irreducible and clique irreducible.

» Characterizations of G such that the Gallai graph I'(G) is clique vertex irre-

ducible, clique irreducible and weakly clique irreducible.

Characterizations of G such that the anti-Gallai graph A(G) and all its
iterates are clique vertex irreducible, clique irreducible and weakly clique

irreducible.

The clique vertex irreducibility, clique irreducibility and weakly clique irre-
ducibility of graphs which are non-complete extended p-sums (NEPS) of two

graphs.

Necessary and sufficient conditions for the cographs and the distance hered-
itary graphs to be clique vertex irreducible, clique irreducible and weakly

clique irreducible.
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Chapter 2

Gallai and anti-(GGallai graphs

This chapter deals with two graph classes the Gallai graphs and the anti-Gallai
graphs. We construct infinitely many pairs of graphs G and H such that I'(G) =
['(H). The existence of a finite family of forbidden subgraphs for the Gallai graphs
and the anti-Gallai graphs to be H-{ree, for any finite graph H is proved and the
forbidden subgraph characterizations of G for which the Gallai graphs and the
anti-Gallai graphs are cographs, split graphs and threshold graphs are discussed
in detail. If G i1s a connected cograph without a universal vertex then I'(G) is
a cograph if and only if G = (pK3)°. The relationships between the radius, the
diameter and the chromatic number of a graph and its Gallai (anti-Gallai) graph

arc also studied in detail.

Some results of this chapter are included in the following paper.

Gallai and anti-Gallai graphs of a graph, Math. Bohem., 132(1) (2007), 43 - 54.

28
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2.1 Gallai and anti-Gallai graphs

It is well known [80] that the only pair of non-isomorphic graphs having the
same line graph is K3 and K3, But, we first observe that, in the case of both
Gallai and anti-Gallai graphs, there are infinitely many pairs of non-isomorphic

graphs of the same order having isomorphic Gallai graphs (anti-Gallai graphs).

Theorem 2.1.1. There are infinitely many pairs of non-isomorphic graphs of the

same order having isomorphic Gallai graphs.

Proof. We prove this theorem by the following two types of constructions.

Type 1 :- Let G be the graph P; with n independent vertices joined to both its
internal vertices and an end vertex attached to k of these n vertices and H be two

copies of K7 .41 with £+ 1 distinct pairs of end vertices made adjacent.

The graph G in type 1 is as follows. Let vyvy14v, be an induced Py. Let vy and vy
be joined to n vertices uy, us, ..., u,. Introduce k end vertices wy, wo, ..., Wy such that
each w; is adjacent only to u; for i = 1,2, ..., k. The edges vivq, vou1, VouUs, ..., VU,
of G, which are vertices of I'(G) will induce a complete graph on n + 1 vertices
in ['(G). Similarly, vsvy, vsuy, Ustig, ..., Ust, will induce another complete graph on
n+ 1 vertices in I'(G). The vertex corresponding to the edge vy will be adjacent
to both the vertices corresponding to vvs and vyvy. The & vertices corresponding
to the edges w;w; for 1 = 1,2, ... k will be adjacent to the vertices corresponding

to the edges w;vy and u;vz for i = 1,2, ..., k respectively.

The graph H in type 1 is as follows. Let u adjacent to uy,us, ..., unyy and v

adjacent to vy, Vg, ..., Uny1 be the two Ky 41 s in H. Let uy vy, gy, .oy Ugp1vp4q be
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the £+ 1 distinct pairs of adjacent vertices in H. The vertices corresponding to the
edges uuy, Uy, ..., U,y Will induce a complete graph on n + 1 vertices in I'(H).
Similarly, the vertices corresponding to vvy, vvg. ..., v, Will also induce another
complete graph on n + 1 vertices in T'(H). Again, the vertices corresponding to
the edges u;v; for 1 = 1,2, ...,k + 1 will be adjacent to the vertices corresponding

to the edges uu; and vy; for i = 1,2, ..., k + 1 respectively.

Therefore, both I'(G) and ['(H) are two copies of K, together with k+1 new

vertices made adjacent to k + 1 distinct vertices of both the copies of K4 ;.

Type 2 :- Let G be the graph P, with n independent vertices joined to both its
internal vertices and an end vertex attached to & of them with & > 1, together
with one end vertex cach attached to the two end vertices of Py and H bhe two
copies of K, with £+ 1 distinct pairs of cnd vertices (one from each star) made

adjacent and a single pair made adjacent to another vertex.

The graph G in type 2 can be obtained from the graph G in type 1 by attaching
two end vertices « and y to v; and v, respectively. In ['(G) the vertices correspond-
ing to the edges vy and v,y will be adjacent to the vertices corresponding to the
edges vyvy and v3vy respectively. The graph H in type 2 can be obtained from
the graph H in type 1 by adding a new vertex w and making it adjacent to both
uy and v;. In I'(H) the vertices corresponding to the edges wu; and wuy will be

adjacent to the vertices corresponding to the edges v, and vey respectively.

Therefore. both [(G) and I'(H) are two copies of K, together with & + 1
vertices madc adjacent to & 4+ 1 distinct vertices of both the copies of K, ., and

two end vertices made adjacent to one vertex from each of the complete graphs.

The constructions mentioned in type 1 and tvpe 2 are illustrated in Table 2.1.
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In both the cases. the graphs G and H have the same Gallai graph. If n = k and

n = k—11in type 1 and type 2 respectively, then the order of G and H is the same.

Typel n=3 k=1 Type2n=3 k=1
O
/‘L‘\ //\\
// \ /

]

/ \ ) / \
G / \\\ \ l f\\\\
o—d o0 | 6 N &
\// //

} I \\4:// \‘.\ L//
O O

O

O

Table 2.1
O
Theorem 2.1.2. There are infinitely many pairs of non-isomorphic graphs of the

same order having isomorphic anti-Gallai graphs.

Proof. Let G be a graph with vertex set {v), 15, ....v,} and an edge v;v; such that
G is not isomorphic to a graph obtained under permutations of the index set of

the vertices which interchange 7 and j and A(G) is conunected. Introduce a vertex
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u adjacent to v; and v;. Let H, be the graph obtained by introducing one more
vertex u; adjacent to u and v;. Let Hy be the graph obtained by introducing
another vertex uy (u; is absent here) adjacent to u and v;. Then by construction
H, and H, arc non-isomorphic. A(H;) is A(G) together with four more vertices
corresponding to uv;, uv;, uuy, v;uq in which uv; and uv; are adjacent to each other
and to v;v;, uuy and vu; are adjacent to each other and to wv;. A(H,) is A(G)
together with four more vertices corresponding to uv;, uv;, uug, vju; in which uv;
and uv; are adjacent to each other and to v;v;, uus and vjuy are adjacent to each

other and to uv;. Therefore, A(H,) is isomorphic to A(Hy).

2.2 Forbidden subgraph characterizations

Even though the Gallai and the anti-Gallai graphs cannot be characterized us-
ing forbidden subgraphs, in this section we prove the existence of a finite forbidden
subgraph characterization for the Gallai graph and the anti-Gallai graph to be H-
free and obtain the forbidden subgraph characterizations for the Gallai and the

anti-Gallai graphs to be a cograph, a split graph and a threshold graph.

Notation : For a connected graph H. let G(H) = {G : I'(G) is H - {ree} and
G*(H) ={G: A(G) is H - free}.

Theorem 2.2.1. The properties of being an element of G(H) and G*(H) are vertex

hereditary.

Proof. Let G € G(H) and v € V(G). Consider G’ = G — {v}. It is required to
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prove that G’ € G(H). On the contrary assume that I'(G’) has H as an induced
subgraph. Let vy, vs,...,v¢ be neighbors of v. Therefore T'(G) has the vertex set
V(D(G")) U{vey, vva,...,vve . In I(G), vy; is adjacent to vy if v; is not adjacent to
v;, and ve; will be adjacent to all edges which have v; as one end vertex and other
end vertex is not v; for j = 1,2,...,t. V(I'(G')) induce I'(G’) itself. Hence if H is
an induced subgraph of ['(G’) then H is an induced subgraph of I'(G) also, which

is a contradiction.
The case of G*(H) follows similarly. O

Corollary 2.2.2. G(H) and G*(H) have vertex minimal forbidden subgraph char-

acterization.

Though many well known classes of graphs admit forbidden subgraph charac-
terizations, the number of such forbidden subgraphs need not be finite. However,

for G(H) and G*(H) we have

Theorem 2.2.3. For cvery vertex minimal forbidden subgraph of G(H) and G*(H).

the number of vertices is bounded above by n(H) + 1.

Proof. Let F(H) be the collection of all vertex minimal forbidden subgraphs of
G(H). Let L € F(H). Thercfore, T'(L) has H as an induced subgraph. The n(H)
vertices of H, which correspond to n(H) edges of L, say €1, eq..... ¢,,(g). cau cover

a maximum of n(H) + 1 vertices of L, since H is connected.

We have to prove that n(L) < n(H) + 1. On the contrary assume that (L) >
n(H)+1. Then there exists at least one vertex v € V(L) which is not au end vertex
of any of e, es,..., €5y Therefore, I'(L — v) still has H as an induced subgraph.

which contradicts that L is a vertex minimal forbidden subgraph of G(H). Hence,
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n(L) <n(H)+ 1.

A similar argument holds for G*(H) also. 0

Corollary 2.2.4. The number of vertex minimal forbidden subgraphs for G(H)
and G*(H) is finite.

Theorem 2.2.5. Let G be a graph. Then, U'(G) is a cograph if and only if G does

not have the following graphs as induced subgraphs.

© (vn; ]K 'uT
o———o/ | Q} (vi l
Fig: 2

Proof. 1f T'(G) is not a cograph then there exists an induced P; in ['(G), say

e1eaezes. In G, let e; = w1, €9 = UsiUag, €3 = Uz Usy and ey = g Ugo.

Since ey is adjacent to ey, let u1a = ug; and let uy; be not adjacent to ugy. Since

e9 i adjacent to e, either ug; = uzy or U = uy;.

If ug; = ug3q, then since ey is not adjacent to ez, u1; is adjacent to us,. Since eg
is adjacent to ey, either ug; = uyy or ugy = wyy. If ugy = w4y, then since ey and e,
are not adjacent to ey, both uy; and wug; are adjacent to wyy. If ugy = uyp then us

is not adjacent to .

If ugs = ugzy, then uyy is not adjacent to us,. Again, since e; is adjacent to ey,
either uz; = uyy or ugy = wygy. If uzp = uyy. then since e; and ey are not adjacent,
Uy is adjacent to ugy. If ugs = uy; then usp is not adjacent to wy. The above four

resulting graphs arc respectively (iv), (vi). (vi) and {i).
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In (iv), if we add even a single edge the property of I'(G) not being a cograph
will be lost. In (vi). ugy adjacent to ugy gives (vii), upp adjacent to ugy gives (ix)
and the combination of both gives iv). The addition of these edges will not change
the required property either. In (i), uy; adjacent to wys gives (ii), uy adjacent to
u4y gives (viil) and a combination of both gives (iil). Again, the addition of these
edges will not change the required property. However, if we add any other edge

then the property will be lost.

Conversely, it can be verified that the Gallai graph will not be a cograph if any

of the nine graphs listed above is an induced subgraph of G. d

Theorem 2.2.6. Let G be a graph. Then A(G) is a cograph if and only if G does

not have the following graphs as induced subgraphs.

Proof. If A(G) is not a cograph then there exists an induced P; in A(G). say

€1€9€3€4. In G, let €1 = U U, €2 = U UYY. €3 = U3 U3 and €1 = UqUg9.

Since €7 is adjacent to ey, let ujs = ugy and let gy be adjacent to usy. Since ey

is adjacent to ey, either uy; = ug or ugy = uz.

If upy = ugy then wuyy is adjacent to uyy and wy is not adjacent to uy;. Since ey
is adjacent to eg, either uz; = ugy or ugs = uyy. If ug = uy, then uyy is adjacent
to uqe and uqp and gy are not adjacent to wyy. If ugy = uy) then ug) is adjacent to

Uyq2.



Chapter 2 : Gallai and anti-Gallai graphs 36

It w9y = us; then uy is adjacent to uzs. Again, since ez is adjacent to ey, cither
5 : 3 , )
Uz = Ugyp OF Uz = Ugy. If uzy = uyy. then usy 1s adjacent to uyy and usp is not

adjacent to wyp. If uge = u4o then uy, is adjacent to uys.

All the four resulting graphs arc isomorphic to (i) itself. Also, addition of any
of the possible edges will leave an induced Py in A(G) and hence any graph with
five vertices which contains (i) as a (not induced) subgraph are also forbidden.

Hence all the above graphs are forbidden.

The converse can be easily proved. O
Gallai graph anti-Gallai graph
Two vertex disjoint I3
O T
Split 0
graph ° o o
o) N,
O
O. O/ ———O/)
Two vertex disjoint P .
5 T . 3 2 Iy
' o
Threshold . ©
graph s
o—- “Z”o o;‘ \ o o o
! ! : /v\ L
2 N 0 NS B B JAVANES
I J

Table 2.2

If G is any graph class that admits a finite forbidden subgraph characterization,
then using similar arguments as in Theorem 2.2.5 and Theorem 2.2.6, we can obtain

forbidden subgraph characterizations for the Gallai graph and the anti-Gallai graph
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to be in G. In Table 2.2, we list the forbidden subgraphs for I'(G) and A(G) to be

a split graph and a threshold graph.

2.3 Applications to cographs

In this section we obtain characterizations for the Gallai graph and the anti-

Gallai graph of a cograph to be a cograph.

Theorem 2.3.1. If G is a connected cograph without a universal vertex then I'(G)

is a cograph if and only if G = (pK,)“.

Proof. Let G = (pIy)¢. Then the number of vertices of G is 2p and the number of
edges of G is 2p(p—1). Let the vertices of G be {v11, v1a,..., C1p. U21. V2, V0p } With
vy; and vy; as the only pair of non-adjacent vertices, for j = 1,2, ..., p. Therefore,
the vertices of the Gallai graph are of the form v;;vy; where 7 # j/. By the
definition of the Gallai graphs, vi;vyy will be adjacent only to v vy or v and
U Uiy O Uy according to the value of i and 7. Therefore. T'(G) = (?Cy)Cy.

which is a cograph.

Conversely, assume that G is a cograph without a universal vertex and ['(G) is
also a cograph. For every u € V(G). there exist at least one « € V(G) which is

not adjacent to u.
Claim : «' is the only vertex which is not adjacent to w.

On the contrary assume that there exists another vertex u” which is not adja-

cent to u. Since (& is a connected cograph, G = G, V Gy. Let u € V(G;). Since
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u is not adjacent to both v’ and u”, both of them belong to V(G;). Since G has
no vertex of full degree, G> must contain at least two non-adjacent vertices v;
and vo. Then the edges u” vy, viu, uvy, vou’ will induce a Py in I'(G), which is a

contradiction.

Thercfore G = (pk,)¢, where 2p = n. O

Notation : Consider the class of graphs which arc recursively defined as follows :
H1={G:G = (pK,)*V (K,), where p,q >0 }.

H, ={G:G=(UH;-1)V K,, where H,_; € H,_y and r > 0} for i > 1.
H=UH,

Theorem 2.3.2. For a connected cograph G, ['(G) is a cograph if and only if
GeH.

Proof. Let G be a cograph otber than K, with a vertex of full degree. Let V; be
the collection of all full degree vertices in G. Define Gy =< V -V} >. I'(Gy) is
an induced subgraph of T'(G). More precisely, T'(G) = ['{((G) together with some
isolated vertices. Therefore, I'(G) is a cograph if and only if ['(G) is a cograph.
If G, is a connected cograph then Gy has no vertex of full degrec and hence I'(Gy)
is a cograph if and only if G| = (pK3)¢. Therefore, I'(G) is a cograph if and only

if G = (p.[(g)( \Y ([\'q) € Hl.

If G, is disconnected. then consider each of the connected components of G. If
the removal of all full degree vertices from each of the components of Gy preserves
connecteduess then as above each of these components must be of the form (pK,)<v
(Ky). Therefore. G = (Fy UF,U...UF,) VK, where each F; € Hy and g > 0.

Consequently. G € H..
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If any of the components of G, say G, is disconnected then repeat the above
process to get G € Hy and hence G = (HiUH,U...UH, )V K, where each H;, € H,

and r > 0. Consequently, G € Hj;.

This process must terminate since the number of vertices of G is finite. There-

fore for a connected cograph G. T'(G) is a cograph if and only if G € H. O

Theorem 2.3.3. For a connected cograph G, A(G) is a cograph. if and only if
(i) G = G1 V Gy, where Gy is edgeless and Gy does not contain Py as a subgraph
(which need not be induced) or

Proof. Let G be a connected cograph whose A(G) is also a cograph. Since G is a
connected cograph. G = GV Gy. Let Gy be an edgeless graph and « € V(Gy). If
G4 containg a Py, say v11pv3vy, then the edges vivg. vau, uvs, 13ty of G induce a Py
in A(G), which is a contradiction. Thercfore. if Gy is edgeless then G5 does not

contain Py as a subgraph.

Let wyvy, € E(Gy) and uyvy € E(G,). If G contains one more vertex, say v,
not adjacent to u; and vy, then the edges ujvy, viug, upvy, usu of G induce a P
in A(G), which is a contradiction. If © is adjacent to at least one of the vertices,
say 1y, then the edges uquy, uyvy. vivy, vov of G induce a Py in A(G), which is a
contradiction. A similar arguient holds also for the vertex set of Gy. Therefore

both G| and Gs are Ky -s and G = ().

Conversely, assume that G is a cograph of type (i) or (ii). Then G does not
contain any of the graphs in Fig : 2.2 as an induced subgraph and hence A(G) is

a cograph by Theorem 2.2.6. O
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2.4 Chromatic number

In this section we study the relation between the chromatic numbers of G. T'(G)

and A(G).

Theorem 2.4.1. Given two positive integers a, b, where a > 1, there exists a graph

G such that x(G) = a and x(I'(G)) = b.

Proof. If @ = 1 then G must be a graph without edges. which makes I'(G) empty.

So we can assume that ¢ > 1.

Let G be the graph K, together with b — 1 end vertices attached to any one
of the vertices. Then I'(G) is a — 1 copies of K, sharing b — 1 vertices in common

together with some isolated vertices. Clearly, x(G) = a and x(T['(G)) = b. O

Lemma 2.4.2. The anti-Gallai graph of any graph G cannot be bipartite except

for the K3-free graphs.

Proof. If uy is adjacent to ug in A(G) then the corresponding edges, say e; and ez,
lic in a K3, say ejeyes. Then the vertex uz in A(G) which corresponds to es will
be adjacent to both u; and u3. Therefore. uqusug induces a cycle of odd length in

A(G) and hence A(G) cannot be bipartite. aJ

Theorem 2.4.3. Given two positive integers a, b, where b < a,b # 2, there ezists
a graph G such that \(G) = a and \(A(G)) = b. Further, for any odd integer a,

there exists a graph G such that x(G) = x(A{G)) = a.

Proof. Since the anti-Gallai graph of a graph G cannot be bipartite except for the

triangle free graphs (Lemma 2.4.2). b = x(A(G)) # 2 for any G.
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By Myceilski’s construction {11} there exists a triangle-free graph H with chro-
matic number a. 1f we choose G = H, then A(G) is a trivial graph and lience b = 1.
For 2 < b < a, there exists an induced subgraph H' of H whose chiromatic number
is b. Let vy, vq, .... 1, be the vertices of H'. Let G be the graph obtained from H by
joining all vertices of H’ to a new vertex u. Since b < a, \(G) = a itself. If v; and
v; are adjacent (or non-adjacent) in H' then the vertices corresponding to uv; and
uv; are adjacent (or non-adjacent) in A(G). Therefore, the vertices corresponding
to the edges uvy, uvs. ..., uty, induce an H' in A(G). Again for any pair of adjacent
vertices, say v; and v; in H', the vertices corresponding to the edges uv; and ww;
are adjacent to the vertex corresponding to vyvy. Therefore A(G) is H' together
with one vertex each adjacent to both the end vertices of cach edge in H'. For

b>2, x(A(G)) = x(H') =b.

If ¢ is an odd integer then x(K,) = a and Y(A(G)) = x(L(G)) = X' (K,) = a.

where Y\’ is the edge chromatic number. O

The triangle free graph H having chromatic number a = 4 obtained using
Myceilski’s construction, the graph G in the above theorem having x(G) =a =4

and its anti-Gallai graph having x (A(G)) = b = 3 are illustrated in Fig : 2.3.
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2.5 Radius and diameter

The relation between the radius and the diameter of G with its Gallai and

anti-Gallai graphs are studied in this section.

Theorem 2.5.1. Let G be a graph such that T(G) is connected. Then r(I'(G)) >
r(G) — 1 and d(T(G)) = d(G) — 1.

Proof. Let r(I'(G)) = r. Then there exists an edge uv in G such that the vertex
corresponding uv in ['(G) is at a distance less than or equal to r from every other
vertex in I'(G). Hence, any vertex of G is at a distance less than or equal to r + 1

from both u and v. We have r(G) < r + 1, which implies »(I'(G)) > 7(G) — 1.

Let d(G) = d. There exist two vertices u and v such that d{u,v) = d. Let

UUUy... Ug_1V be a shortest path connecting u and v in G.
Claim:- dy(¢)(uug, ug—1v) = d — 1.

Wy, Upla,..., Ug—1v is a path of length d — 1 connecting uu) and ug_yv in I'(G).

Therefore, dr(g)(uuy, ug—1v) < d— 1.

It is required to prove that dy(¢)(uuy, ug-1v) = d — 1. On the contrary assume
that there exists an induced path wwy, viv]. vovy, , v V). wg-1v of length & in
I'(G) conmecting vuy and vgy-qv, where b < d — 1. Then there exists a path of
length less than or equal to d — 1 connecting u and v in G, which contradicts

d(u.v) = d. Hence, dyy(uuy. ug_v) =d — 1.

Since there exist two vertices of ['(G) which are at a distance d — 1, d(I'(G))

must be greater than or equal to d — 1. Hence, d(T'(G)) = d(G) — 1. O
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Remark 2.5.1. If a and b are two positive integers such that ¢ > 1 and b > a—1 then
there exist graphs G’ and G” whose Gallai graphs are connected and r(G') = a,

r(D(G") = b, d(G") = a and d(I'(G")) = b.

Theorem 2.5.2. If G is a graph such that A(G) is connected and r(G) > 1,
r(A(G)) 2 2(r(G) = 1) and d(A(G)) = 2(d(G) - 1).

Proof. Let r(A(G)) = r > 1. There exists an edge uv in G such that the vertex
corresponding to uv in A(G) is at a distance less than or equal to r from every
other vertex in A(G). Let w € V(G). Since G is connected there exists at least
one edge with w as an end vertex, say ww’. There exists a path of length less than
or equal to r from ww' to wv in A(G). Any two adjacent edges in A(G) belong
to a triangle and hence this path induces a path of length less than or equal to
5 from either u or v to w or w’. Therefore, any vertex is at a distance less than
or equal to § + 1 from both u and v. Hence r(G) < § + 1, which implies that

r(A(G)) 2 2(r(G) - 1).

Let d(G) = d. There exist two vertices u and v such that d(u,v) = d. Let
uuUsg...ug 10 be a shortest path connecting u and v. Consider d(uuy,uy.1v) in
A(G). If it is k. then there exists a path of length less than or equal to % +1inG
connecting u and v. Therefore, % + 1 > d. which implies k¥ > 2(d — 1). However,

d(A(G)) > k. Hence, d(A(G)) > 2d(G) — 1). 0

Remark 2.5.2. If @ and b are two positive integers such that @ > 1 and b > 2(a—1)
then there exist graphs G’ and G” whose anti-Gallai graphs are connected with

r(G') = a. r{(A(G") = b, d(G"H) = a and d(A(G")) = b.



Chapter 3

Domination in Graph Classes

In [9], Bacsé and Tuza Z. put forward the following problem.

Problem : Let P be a property of vertex sets in a graph. Characterize all graphs

having a dominating set satisfying the property P.

Based on various propertics of the vertex set, many domination parameters were
introduced and studied. For a detailed study of various domination parameters,

the reader may refer to [44].

Inspired by the above problem, in this chapter we define two new domination
parameters, cographic domination number v.4(G) and global cographic domination

number v,.4(G) based on cographs and some of its properties are discussed.

Some results of this chapter are included in the following paper.

Cographic and global cographic domination nuinber of a graph, Ars Combin., (to appear).

44
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3.1 Cographic domination number

In this section, given any graph G, we prove the existence of a cographic dom-

inating set. The relationship between v, v.4 and ~; of a tree is studied.

Theorem 3.1.1. For any graph G, there exists a dominating induced subgraph

which is a cograph.

Proof. The proof is by induction on n. For n < 3, the theorem can be easily

verified. Assume that it is true for all graphs with at most n vertices.

Let G be a graph with n + 1 vertices. By induction assumption. the graph
G — v has a dominating induced subgraph H which is a cograph. If at least one of
the vertices in H is adjacent to v, then H is a dominating induced subgraph for
G. If not, HU{v} is a dominating induced subgraph of G which is also a cograph.

Therefore by induction, the theorem is true for all graphs. O

Note : For any graph G, v(G) < 7.4(G) < %(G). However, there are graphs with
Y(G) < 7ea(G) < %(G). For e.g:-

O o} ?—O
G: ’ !
s, o O O
e \\
Fig : 3.1

Y(G) = 4. %a(G) =5 and 7:(G) = 6.
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Lemma 3.1.2. If T is a tree with ¥(T) < v.4(T). then T must have the graph G

in Fig : 3.1 as an induced subgraph.

Proof. Since ¥(T') < v.(T), in every dominating set D with cardinality v(T) there
exists an induced Py : ujusugus. Since D is minimal dominating and u; for i =
1,2,3.4 is adjacent to at least one vertex in the domirating set. there exists at least
one v; in the vertex set of T' corresponding to each u; such that v; is adjacent only
to u; in D for each i = 1,2,3,4. If for one of these ’1’, v; is the only such neighbor
of u; then we can replace u; by v; for that 7 in the dominating set to remove the
induced P, without changing the cardinality. Therefore, there exists at least one
induced P; in T such that each of its vertices is adjacent to a pair of vertices.

These twelve vertices together induce the required graph. O
Corollary 3.1.3. For any graph G with less than twelve vertices, v(G) = #.4(G).
Proof. 1f G has less than twelve vertices, then G cannot have the graph in Fig :
3.1 as an induced subgraph. Hence, v(G) = v.(G). O

Lemma 3.1.4. If T is a tree with v.4(T) < v(T), then T has the following graph

as an induced subgraph.

e}

N

Fig : 3.2

Proof. Since ~4(T) < v(T), every cographic dominating set D with cardinality
~(T) will have at lcast one pair of adjacent vertices, say uv. Since u and v are

mutually dominating, there exist at least two vertices u; and v, in T which are
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adjacent only to u and v, respectively. If these are the only such vertices then we
can replace u by uj or v by vy in T to remove the adjacency in D without affecting
the cardinality. Therefore, there exist at least one pair of vertices in D which has at

least two neighbors of their own. These six vertices induce the required graph. 0O

Corollary 3.1.5. For any graph G with less than sic vertices, v.a(G) = v(G).

Proof. If G has less than six vertices, then G cannot have the graph in Fig : 3.2

as an induced subgraph. Hence, v.4(G) = v(G). O

Theorem 3.1.6. There is no tree T which satisfies y(T') < Yea(T) = v(T).

Proof. If possible assume that there is a tree T which satisfies Y(T) < v.0(T) =
~(T). Let D be a minimal dominating set of cardinality (7). Since v(T) <
Yea(T), by Lenuna 3.1.2, T must contain the graph in Fig : 3.1 as an induced
subgraph and the vertices which induce a P; in it must be present in D. Also,
none of the vertices of this P; can be replaced without affecting the domination
property and without increasing the cardinality of D. To make D a cographic
dominating set, only one vertex is to be replaced, whereas to make D an indepen-
dent dominating set, two of the vertices are to be replaced. Since D is arbitrary,

~va(T) < v(T) which is a contradiction. Hence, the theorem. O

3.2 Global cographic domination number

We prove the existence of a global cographic dominating set for every graph
G and study the relation between v.4(G) and 7v,.4(G) of various special classes of

graphs in this scction.
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Theorem 3.2.1. Given any graph G = (V, E), there exists a cographic dominating

set which dominates G¢ also.

Proof. If D is a cographic dominating set in G which dominates G° also, then
there is nothing to prove. Otherwise, there exists at least one vertex. say v, which
is not adjacent to any vertex of D in G¢. Adjoin v to D. If D U{v,} does not
dominate G, then there exist a v, which is not adjacent to any vertex of DU {v}
in G¢. Adjoin vy to D U {v,}. Continue this process until we get a dominating
set D' = D U {vy,vy,...,u} which dominates G¢. The process will eventually
terminate, since V dominates G¢. The subgraph induced by D’ in G is the join
of the subgraph induced by D in G with K, for some p. Therefore, the subgraph
induced by D' is also a cograph by the choice of D and since D C D', D' dominates

G. Therefore, IV is a cographic dominating set in G which dominates G also. [

Note : For any graph G, v,c4(G) = maz{~(G). va(G°)}.

Lemma 3.2.2. For any graph G # K1, v4a(G) > 1.

Proof. 1If y,.4(G) = 1, then v,4(G) = 1. Then G has a vertex of full degree and so
G* has an isolated vertex. Therefore, v.4(G*) > 1 and $0 v,4(G) < ~qa(G¢). This

is a contradiction and hence v,4(G) > 1. C

Theorem 3.2.3. If G is a triangle free graph. then v,q(G) = va(G) 0r 1.4(G)+1.

Proof. Let voea(G) Y.q{G). Let D be a minimum cographic dominating set.
g =3

Since none of the minimum cographic dominating sets dominate G¢, at least one

vertex ¢ of G must be adjacent to all the vertices of D. Consider D U {v}. Since

the graph is triangle free, none of the neighbors of the vertices of D are adjacent
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to v. Since D is dominating, every vertex of G is either in D or is adjacent to a
vertex of D. Therefore, the only neighbors of v are those present in D. Hence,
in G¢. v dominates all the vertices outside D. Also, D U {v} induces a cograph.
Thus, D U {v} is a cographic dominating set in G as well as G°, of cardinality

Yea(G) + 1. O

Remark 3.2.1. There are graphs for which v,ei(G) = 7ei(G) and v4ea(G) = vea(G)+
1. For example, .4(Cy) = Y4ea(Cs) = 2, whereas v.4(C5) = 2 and 7,(Cs) = 3.
But, the converse need not be true. In the graphs G; and G, in Fig : 3.3,

T’Igcd(Gl) = A/cd(Gl) =3 and ’chd(G?> =2 and A/'cd(GZ) = 1.

/ A
/ \ / \
7 N 7 \
O O O —0 O— 00—
G Gy
Fig : 3.3

Corollary 3.2.4. IfG is a triangle free graph with 7,.4(G) # ~ea(G), then vq(G) =
%(G).

Proof. Let D be a minimum cographic dominating set of G. Since. none of the
minimum cographic dominating sets dominate G¢, at least one vertex v of G must
be adjacent to all the vertices of D. Since, G is triangle free. no two vertices of
D are adjacent. Therefore, D is an independent dominating set. Hence. ~v.4(G) =

%‘(G)' U

Corollary 3.2.5. Every tree T has v,ea(T) = va(T) or va(T) + 1. Moreover.
Yoed(T) = 7a(T) + 1 only of T is a rooted tree of depth two in which every vertex

(may be except the root) has at least two children.
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Proof. The first statement follows from Theorem 3.2.3, since trees are triangle free.
Assume that vy.q(T) = v.4(T") + 1 for a tree T. Then as in the proof of corollary
3.2.4, there exists a minimum cographic dominating set D, which is independent
and has a common neighbor v. Since D is dominating and T is a tree, v is not
adjacent to any other vertex of G. Now. every vertex of D has at least two pendant
vertices attached to it. Since, otherwise if u € D has only one pendant vertex w
attached to it, then (D — {u}) U {w} is a global dominating set of cardinality
Yea(T), which is a contradiction. Therefore, all the vertices in D have at least two
pendant vertices attached to it and so T is a rooted tree of depth two with v as

its root in which every vertex has at least two children. 0

Fig : 3.4 gives examples of trees with vyeq(T") = vea(T) + 1.

Lemma 3.2.6. [f G is a disconnected graph. then v.4(G) < 2 and v,.4(G) =
7'cd(G)'

Proof. Since G is disconnected, G° is connected and any two vertices in the two
diffcrent components of G dominates G¢. So, v.4(G®) < 2. Also. in any cographic
dominating set of GG, there will be at least one vertex from each component. There-
fore any cographic dominating set of G is a cographic dominating set of G also.

Hence v40a(G) = 70a(G). -

Remark 3.2.2. This lemma holds for the domination number and the global dom-

ination number of a disconnected graph also.
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Theorem 3.2.7. A cograph G without a universal verter has v,.4(G) = vea(G) if

and only if there exists two vertices u and v such that N(u) and N(v) partitions

V(G) or V(G) — {u.v}.

Proof. If N(u) and N(v) partitions V(G) or V(G) — {u, v}, the cographic dom-
ination number of G is 2. In G°, {u,v} itself dominates. Therefore, v44(G) =

’ch(G) = 2.

Conversely, assume that v,.4(G) = v.4(G). Since v,¢(G) > 1 and ~4(G) < 2,
we have ,.4(G) = Y.a(G) = 2. Therefore, there exist two vertices v and v such that
{u,v} dowminates both G and G°. Since, neighbors of v in G will not be adjacent
to u in G¢, they must be adjacent to v in G°. Hence, no vertex in N(u) is adjacent
to v in G and vice versa. Also, since {u,v} dominates, N(u) U N(v) = V(G) or

V(G) — {u, v}. Therefore, N(u) and N{v) partitions V(G) or V(G) — {u,v}. O

Fig : 3.5 gives an example of a cograph for which v,.4(G) = v.4(G)-

<R

H . ¢
Fig: 3.5

Theorem 3.2.8. If GG is a planar graph with ~.4(G) 2 3. then ~yca(G) < v.q(G)+2.

Proof. If possible assume that ~y.4(G) > va(G)+2. Let uy, us. uz be three vertices
in any veg-set D of G. Since v4.a(G) > vea(G) + 2. D cannot dominate G¢ and at
least three more vertices are to be added to D to make it a global dominating set.
Therefore, there exist at least three vertices v, vy. v which are adjacent to each

other and to every vertex of D. Then the subgraph induced by these six vertices
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will be Kg, Ko — {e1}, K — {e1, €2} or Kg— {€e1, €2, €3} where €1, e9,e3 € E(G) and
are adjacent to each other. Each of the above graph contains K33 as a subgraph,

which is a contradiction to the planarity of G. Hence the theorem. ]

Remark 3.2.3. The converse need not be true. For example, in graphs G, Gy and

G in Fig : 3.6, 7:4(G1) = Y4ea(G1) = 2, 7a(G2) = 2, 7%ea(G2) = 3. 7ea(G3) = 2

and ,.4(G3) = 4.

For example, the plane graph in Fig : 3.7 has v, = 3 and 40 = 5.

3.3 Two constructions

Theorem 3.3.1. Guiven three positive integers a, b and ¢ satisfying a< b < ¢,

there is a graph G such that ~(G) = a, ~4(G) = b. ~(G) = ¢
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Proof. We shall prove the theorem by constructing the required graph and by

analyzing the following cases.
Casel:a=b=c

Let G = P, or C,, where n = 3a. Then, ¥(G) = 7.4(G) = %(G) = a.
Case2:a=b<c

Let G be the graph P, where n = 3(a - 1) together with (c - a + 1) pendant
vertices each attached to an end vertex of P, and its neighbor. Then, +(G) =

Case3:a<b=c

Let G be P, : v1vat3....0,, where n = 3a - 7 together with p = b - a + 2 vertices.
(o]
Ui, Uiz, - Uip, Made adjacent to each v; for i = 1,2,3 and 4 and u;; made adjacent

to ug; for each j = 1,2,....p.

Then, the vertices vy, v2, v3 and v; dominate all u;; s and v5. To dominate the
remaining (3a - 12) vertices of the path. (a - 4) vertices are required. Therefore,
v(G) = a. At least one vertex among vy, v, v3 and vy must be replaced to get a
cographic dominating set. Remove v; and include all the (b - a 4+ 2) vertices. But,
then vy is also not required in the dominating set so that v4(G) =a-2+b-a +

2 = b. This set is also independent and hence +(G) = b.
Cascd:a<h<c

Let G be P, : tyuyus....t,, where 1 = 3a - 7 together with (I - a) vertices made
adjacent to vq, (¢ - a + 1) vertices made adjacent to v and (¢ - a + 2) vertices

each made adjacent to v; and vs and to each other.
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Then, the vertices vy, v2, v3 and vy dominate all pendant vertices attached to
them and v;. To dominate the remaining (3a - 12) vertices of the path, (a - 4)
vertices are required. Therefore, v(G) = a. At least one vertex among vy, vo, s
and v; must be replaced to get a cographic dominating set. If we remove vy, the
(b - a) pendant vertices adjacent to it and v; are to be adjoined to get a cographic
dominating set of cardinality a - 1 + b - a 4+ 1 = b. If we remove v;, the (c
- a + 2) pendant vertices adjacent to it are to be adjoined. But, then wv3 also
can be removed from the dominating set to get an independent dominating set of

cardinality (a - 2 + ¢ - a + 2) = ¢. Therefore, v.4(G) = b and 14(G) = c. dJ

Nlustration

Casel] a=b=c=2
Case 2 a=h=3,
c=7
- p a = 5,
Case 3
l) = C = 7
a = D,
Case 4 h=7.
c=10

Table 3.1

Theorem 3.3.2. Given two positive integers a and b satisfying a < b and b > 1,

there is a graph G such that ~.4(G) = a. v,a(G) = b.
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Proof. We shall prove the theorem by constructing the required graph and by

analyzing the following cases.

Casel:a=0b>1.
G is the graph obtained by taking any graph of order a and attaching one pendant

vertex to each of the vertices.

Case2:a=1and a <b.

G = I{-b.

Case3:a=2and a <b.

G is Ky, minus a perfect matching.

Cased:a>2anda<b.

The graph G is obtained as per the following constructions based on the Fig : 3.8.

VRN VRN

(b—a-l-l}(b-a+1\} {b-a+1] {b'a,'}'l 4
wertices, . vertices, ‘vertices,/ Vvertices
N N
N !! »." )
. / : /
VY v 0“'_73\;/
1 2 a-1 o a
///
i /

In the Fig : 3.8, the vertices inside each of the circles are independent and
the vertices inside both the rectangles form complete graphs. Every vertex v; for
i =1,2,...,a is made adjacent to every vertex inside the circle to which an edge

is drawn. All the vertices of the smaller rectangle are made adjacent to, all the
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vertices in the bigger rectangle, all the vertices inside the circle to which an edge
is drawn and to v,. Further, v,_; is made adjacent to v,. The graph so obtained

15 G.

Now, if we choose one vertex from cach of the circles, we get an independent
set of cardinality a which has no common neighbors. Therefore, any dominating
set must contain at least o vertices and {vy,v9, ..., v, } is a cographic dominating

set. So v4(G) = a.

The set {v1, v, ..., v, } will not dominate u;s in G°. If we remove any one of
the v;s from this cographic dominating set, then all the b — a + 1 vertices in the
corresponding circle must be included to retain the set as a cographic dominating

set. Therefore, the cardinality becomes a —1+b—a+ 1= 0.

If we keep all the u;s, then a vertex from any of the circles, except the one
corresponding to v,_; cannot be introduced , since otherwise an induced P; will
be present. A vertex from the circle corresponding to v,_; cannot dominate u,;s
in the complement. Also. a u, cannot dominate u; for ¢ # j. Therefore to get a
glohal cographic dominating set all the u;s must be included. Then the cardinality

becomes a + b —a =b. In any case, v,4(G) = b. O

Illustration of case 4 : a =3, b =5.
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3.4 Complexity aspects

In this section we discuss the complexity aspects of the newly defined parame-

ters.

Theorem 3.4.1. Determining the cographic domination number of a graph is NP-

complete.

Proof. We prove this by reducing in poivnomial time, the dominating set problem

in general to the cographic dominating set problem.

Claim: Given a graph G, we can construct a graph H in polynomial time such
that G has a dominating sct of size k if and only if H has a cographic dominating

set of size k 4 1.

Let G = (V, E) where V = {vy, 19, ..., vy} be the given graph. Construct H as
follows:
Let V(H) = {vy.vo, .,ve} U {v), 1,0} U {z, ¥} Make v; adjacent to v if

vu;e E(G) or i = j; T is adjacent to v} for every j and x is adjacent to y in H.

Let {v;, vy ..., vy, } be a minimal dominating set of cardinality & in G. Then
{v),. v, ... v}, 2} is a minimal dominating set in f. Since there is no induced Py

in this sct. it is a minimal cographic dominating set in H of cardinality & + 1.

Conversely, let {uy. us, ..., 1341 } be a cographic dominating in /. (By construc-
tion of H. any minimal dominating set is cographic). One of these u}s must be z
or y. Remove that u,. All other u;’s must be either v; or v.. Keep each v; un-
changed and replace each v} by v;. This new set of cardinality & will be a minimal

dominating set of G. Since H can be computed from G in time polynomial in size
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of G, our claim holds. 0

Corollary 3.4.2. The problem of determining the cographic domination number

is NP-complete for the class of bipartite graphs.

Proof. In the proof above, the graph H constructed from G is bipartite. O

Theorem 3.4.3. Determining the global cographic domination number of a graph

is NP-complete.

Proof. Claim : Given a graph G, we can construct a graph H in polynomial time
such that G has a cographic dominating set of size k if and only if H has a global

cographic dominating set of size & + 1.

Given a graph G define H = GUK;. Clearly, a minimum cographic dominating
set in G together with the isolated vertex is a minimal global cographic dominating

set in H.

Conversely. any minimal global cographic dominating set in H will contain the
isolated vertex and the remaining vertices is a minimal cographic dominating set
in ¢¢. Since H can be computed from G in time polynomial in size of G, our claim

holds. O

3.5 Domination in NEPS of two graphs

In this section. we study the relation between the domination parameters v, v,,
Yed: Yged a1d v of G and G with the NEPS of G and G- for all possible choices

of the basis.
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NEPS with basis B; and B,

The value of "/(NEPS(G’[ . Gg; 81)), ".i'g(NEPS(Gl, Gg B] )), ",-’L.,I(NEPS(Gl, Gg; B])):
"rch(.\IEPS(Gl GQI_ B])), A/1‘(1\11":-138((1'1, GQI Bl)) are fh."((Gg). 'Tll."/g(Gg), fl]."‘/'cd(Gg),
n1.%ed(G2) and ny.vi(Ga) respectively and the case of NEPS(G,, Gy: Bs) follows

similarly.
NEPS with basis Bs

In [39] it was conjectured that (G x H) > v(G)~(H), where x denotes the
tensor product of two graphs. But, the conjecture was disproved in [48] by giving
a realization of a graph G such that v(G x G) < 7(G)? — k for any non-negative

integer k.

Theorem 3.5.1. There exist graphs Gy and Gy such that o(NEPS(G1, Gs; By)) —
0(G)o(Gy) = k for any positive integer k, where o denotes any of the domination

parameters v. Yeq OT ;.

Proof. Let G be the graph defined as follows. Let wujjujsugs, U usotiss, ...,
U Upalyg De K distinet Ps s and let uj; be adjacent to ujpqq for j =1,2,.., k- 1.
Then o(G;) = k. Let Gy be K,. Then, 0(Gy) = 1. Also, o(NEPS(Gh, Go; B3)) =
2k. Therefore, o(NEPS(Gy, Gy; B;)) — 0(G1)o(Gs) = k. O

Theorem 3.5.2. The v, and ~,q are neither sub multiplicative nor super multi-
plicative with respect to the NEPS with basis By. Moreover, given any integer k
there exist graphs Gy and Gy such that o(NEPS(G),Ga; Bs)) — 0(G1)o(G3) = k,

where o denotes v, 01 ~yeq-

Proof. Case 1. k <0 is even
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Let Gy = K, and Gy = K,. Then. 6(G;) = n and 0(G,) = 2. But,
o(NEPS(G1,Gy; Bs)) = 2. Therefore. the required difference is 2 — 2n which

can bhe zero or any negative even integer.
Case 2. k<Oisoddor k=1

Let Gy = P; and Gy be asin Case 1. Then 0(G3) = 2. Also, 6(NEPS(G1,G3; B3)) =
3. Therefore. the required difference is 3 — 2n which can be one or any negative

odd integer.
Case 3: k> 1

Let G35 be as in Case 2. Let G4 be the graph defined as follows. Let w1213,
Ui Ugaliog, ..., UpiUkolgs be k distinet Py s and let uj; be adjacent to ujip for
J=1.2,..,k—1. Then o(G,) = k. Also, o(NEPS(G,, G3; B3)) = 3k. Thercfore,

the required difference is k. O

NEPS with basis B,

Vizing’s conjecture [75]: The domination number is super multiplicative with
respect to the cartesian product i.e; v(GOH) > v(G)vy(H).

Remark 3.5.1. There arc infinitely many pairs of graphs for which equality holds
in the Vizing’s conjecture [62].

Remark 3.5.2. Vizing’s tvpe inequality does not hold for cographic. global co-
graphic and independent domination numbers. For example, let G be the graph
obtained by attaching & pendant vertices to each vertex of a path on four vertices.
Then. ~a(G) = 74a(G) = k + 3 and v4(GOG) = v,.4(GOG) = 16k + 8. For
k 2 10. 7(GOG) < va(G)*.

Theorem 3.5.3. There exist graphs Gy and Gy such that o(NEPS(G. Gs; By)) —
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a(G\)o(Gy) = k for any positive integer k, where o denotes any of the domination

parameters v, Yed OT ;-

Proof. Let Gy = P, and Gy = I, Then, o(Gy) = 23] [44] and o(Gs) =
Also, 0(NEPS(G1, Ga; Bs)) = | %2] [47]. Therefore, for any positive integer k, if

we choose n = 6k — 2 the claim follows. O

Theorem 3.5.4. The v, and v,q are neither sub multiplicative nor super multi-
plicative with respect to the NEPS with basis By. Moreover, given any integer k
there exist graphs Gy and Gy such that o(NEPS(G1,Gy; By)) — 0(G1)o(Gs) = k,

where o denotes v, 0T Yged-

Proof. Case 1: k < 0 is even.

Let G = K, and G5 = K. Then, 0(G;) = n and o(Gy) = 2. But,
d(NEPS(G,,G»: By)) = 2. Therefore, the required difference is 2 — 2n which

can be any positive even integer.

Case 2: k < 0 1s odd.

Let G5 = Py and Gy be asin Case 1. Then 0(G3) = 2. Also, o(NEPS(G,,G3: B;)) =

3. Therefore, the required difference is 3 — 2n which can be any negative odd in-

teger.
Case 3: k> 1.

Let Gy = P, and G5 = P;. Then, 0(G;) = [22] and ¢(G;) = 2. For any
positive integer &, if we choose n = 3k + 4, then o(NEPS(G4, Gs5: By)) = n. (Note
that the value is n + 1 only when n = 1,2,3,5.6,9 [47]). Therefore the required

difference is k.
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NEPS with basis Bs and Bg

Theorem 3.5.5. There exist graphs Gy and G such that c( NEPS(Gy, Ga; Bs)) —
o(G1)o(Ga) = k for any positive integer k, where o denotes any of the domination

.....

Proof. Let G, = P, and Gy = K. Then o(G;) = Lﬂ’;—zj and o(G2) = 1. Also,
o(NEPS(G1, G2; Bs)) = [™2]. For a positive integer k, if we choose n = 6k — 2

then the difference is k. Hence, the theorem. O

Theorem 3.5.6. There exist graphs G and Gy such that o( NEPS(Gy, G2;Bs)) —

0(G1)o(Ga) =k for any negative integer k, where o denotes ~, 0T Ve

Proof. Let Gy = P, and Gy = K,. Then o(G;) = 2] and o(G,) = 2. Also,

o(NEPS(G1.Gy: B;)) = | 22|, Therefore, if we choose n = 6k — 2, the required

difference is —k. O

NEPS with basis B;

Theorem 3.5.7. The ~v.~, and ~, are sub multiplicative with respect to the NEPS

with basis B-.

Proof. Let Dy = {uy. ua. ... us} be a dominating set of Gy and Dy = {vy, v, ..., t4}
be a dominating set of G,. Consider the set D = {(uy, vy), (u1, v2), ..., (U1, V), -
(ug.vy), (Us, Ua), ooy (g, v4) b Let (u,v) be any vertex in NEPS(Gy, Gy; B;). Since
Dy is a v-set in G, there exists at least one u, € D; such that u = u; or u is

adjacent to ;. Similarly, there exists at least one v; € D, such that v = v; or v is
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adjacent to v;. Therefore, (u;. v;) dominates (u,v) in NEPS(G,, G3: B;). Hence,

"‘y(NEPS(G] Gz 37)) < ",’(Gl)",’(Gg)

Similar arguments hold for the independent domination and global domination

numbers also. d

Remark 3.5.3. The difference between v(G1)v(G2) and v(NEPS(G,, Gy; B7)) can
be arbitrarily large. Similar is the case for v; and ~,. For, let G; be the graph, n
copies of Cy s with exactly one common vertex. Then, v(G;) = v:(G1) = n+ 1.
Also, v(NEPS(G1,Gy: B7)) € n? + 3 and w(NEPS(G,,Gy;B7)) €< n? + 5. Also,
Yo (Krn) = n. 7,(P3) = 2 anl v, (NEPS(G1. G3: B7)) =n+ 2, if n > 1.

Theorem 3.5.8. The ~.q and cq are neither sub multiplicative nor super multi-
plicative with respect to the NEPS with basis By. Moreover. for any integer k there
exist graphs Gy and Gy such that o{ NEPS(G,, Gs;B7)) — 0(G1)o(G2) = k. where

o denotes Yeq OT Yged-

Proof. Case 1: £ <0

Let G be the graph P; with &k pendant vertices each attached to all the three
vertices of the P3. Let Gy be the graph P, with k& pendant vertices each attached
to all the four vertices of the Py. So, o(G;) = 3 and o(G2) = k + 3. Also,
oNEPS(G,, Gy: By)) = 2k + 10. Therefore, the required difference is 1 — k.

Case 2: k>0

Let Gy be as in Case 1 and G3 be the graph P with &k pendant vertices each at-
tached to all the six vertices of the Ps. So, 0(G3) = k+5. Also, oNEPS(G1, Gs; B7)) =

4k + 14. Therefore, the required difference is k — 1. O



Chapter 4

The <t >-property

The question of determining better upper bounds for the clique transversal number
dates back to 1990 when Tuza Z. introduced the coucept of the clique transversal
number [74]. Erdds et.al. [33] determined various upper bounds for the clique
transversal muuber. In an attempt to find graphs which admit a better upper
bound, Tuza Z. [74] introduced the concept of the < ¢ >-property. Motivated
by the open problems mentioned in [33], we studied the < ¢t >-property of the
cographs, the clique perfect graphs, the perfect graphs, the planar graphs and the

trestled graphs of index k. In the last section, an open problem on highly clique

imperfect graphs is solved.

Some results of this chapter are included in the following paper.

The < t >-property of some classes of graphs, Discrete Math., (to appear).

64
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4.1 Clique transversal number

In this section we prove that the domination number is a lower bound for the

clique transversal number, but the difference can be arbitrarily large.

Theorem 4.1.1. Fvery clique transversal set is a dominating set.

Proof. Let S be a clique transversal set of a graph G and v € V(G). If v € S then
it is dominated by S. If v € S then let C be a clique which contains v. Since, S
is a clique transversal set. there exist a vertex u € SN C. But then, u dominates

v. Therefore, S is a dominating set. O

Corollary 4.1.2. Let G be a graph. Then, v(G) < 7.(G).

.

Theorem 4.1.3. Let a and b be two positive integers such that 2 < a < b. There

exists a cligue perfect graph G such that v(G) = a and 7.(G) = b.

Proof. Let G be the graph obtained from K, ; by attaching a — 1 end vertices to

a — 1 distinet vertices in any one of the partitions of G.

To dominate the @ — 1 end vertices, at least @ — 1 vertices are required and
those vertices cannot dominate the remaining vertices (there exists at least one
such vertex, since b 2 a) of that partition. Therefore, v(G) is at least a. Again.
the « — 1 distinct neighbors of the a — 1 end vertices together with one vertex from

the other partition of K, dominates G. Therefore, v(G) = a.

The graph G so constructed is bipartite and hence the only cliques are-the edges
of G. If we take all the b vertices in the partition of K} to which end vertices are

attached, then that set forms a clique transversal. Therefore, 7.(G) < b. Again, if
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we take the b independent edges of K. it forms a clique independent set of size

b. Therefore. b < a.(G) < 7.(G). Hence, 7.(G) = b.

Also, since a.(G) = 7.(G) = b, G is clique pertect. O

INlustration

For the graph G is Fig : 4.1, (G) = 3 and «(G) = 7.(G) = 4.

4.2 Cographs and clique perfect graphs

In this section we study the < t >-property of cographs and clique perfect
graphs. A characterization for cographs and clique perfect graphs which attain

maximum value for the clique transversal number is also obtained.

Lemma 4.2.1. [f G = GV Gy then 7.(G) = min{7.(G)). 7.(G2)}.

Proof. Any clique in G is of the form H, V Hs where H; is a clique in G, and H>
is a clique in Gy. If V' is a clique transversal of Gy (or Gs), then any clique of G,
which contains a clique of G (or G3), is covered by V' and hence V' is a clique

transversal of G also.



Chapter 4 : The <t >-property 67

Now, let V’ be a clique transversal of G. If possible assume that V' does not
cover cliques of Gy and Go. Let Hy and H, be the cliques of Gy and G, respectively
which are not covered by V’. Then H; V Hy is a clique of G which is not covered
by V', which is a contradiction. Hence V' contains a clique transversal of Gy or

G,.

Therefore, 7.(G) = min{7.(G1).7.(G2)}. O
Lemma 4.2.2. The class of all cographs without isolated vertices does not satisfy
the < t >-property fort > 4.

Proof. The proof is by construction.
Casel: t=4

Let G = G V Gs, where G = (3](1 U I\’g\} \% (3](1 U .[(2) and Gy = (3[([ U I(g).

Then n = 15,t = 4 and 7.(G) = 4 which implies that } < 7.(G).

Case2:t>4
Let G = G1VGy, where Gy = (3K UK, _3)V(3K1UK,_3) and Gy = (3K3UK, ).
Then n(G) = 3t + 4 and 7.(G) = 4.

Every edge in G| lies in a complete of size ¢ in G since G, contains a clique
of size t — 2. Every edge in G lies in a complete of size ¢ for + > 4 in G since
G, contains a clique of size 2t — 6. An edge with one end vertex in G and the
other end vertex in G, lies in a complete of size ¢ since every vertex in G lies in
a complete of size £ — 2 and every vertex of G, lies in a &:omplete of size 2. Hence

G is a cograph in which every edge lies in a clique of size t.
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. v 4
Also, 3 =3+ 7.

Therefore, 7 < 7.(G) for t > 4. O

Theorem 4.2.3. The class of clique perfect graphs without isolated vertices satis-
fies the < t >-property fort = 2 and 3 and does not satisfy the < t >-property for

t>d.

Proof. Let G be a clique perfect graph in which every edge lies in a complete of

size t. G being clique perfect, 7.(G) = a.(G).
Case 1: t = 2

Since G is without isolated vertices a.(G) < 2. So 7.(G) = a.(G) < % and

2 S 3

hence the class of clique perfect graphs satisfies the < 2 >-property.
Case 2: t =3

Every cdge of G lies in a clique of size 3. So, the size of the smallest clique of

G is 3. Therefore, a.(G) < § and 7.(G) = a(G) < §.

Case 3: t >4

The class of cographs is a subclass of clique perfect graphs (Lemma 1.1.8). So

by Lemima 4.2.2) the claim follows. O

Corollary 4.2.4. The class of cographs without isolated vertices satisfies the
<t >-property fort = 2 and 3. Moreover, for the class of connected cographs with-
out isolated vertices, 7.(G) is maximum if and only if G is the complete bipartite

vy b d
graph Kz ».

Proof. Since the class of cographs is a subclass of clique perfect graphs (Lemma
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1.1.8). it satisfies the < ¢t >-property for ¢ = 2 and 3.

Since the class of cographs satisfy the < 2 >-property and 7.(K» n) =

3172/

N3

)

7).

the maximum value of 7.(G) is 7. Conversely, let G be a connected cograph
with 7.(G) = 5. Since G is a connected cograph G = G, V G,. Therefore,
7(G) = min{r(G1),7(G2)}. But, both 7.(G;) and 7.(Gs) cannot exceed the
number of vertices in G, and G5 respectively and hence the number of vertices in

G and G, must be 7. Again, since 7.(G) = Z all these vertices must be isolated.

|3

Therefore, G = Kn n. |

~N

13
w3

Corollary 4.2.5. For the class of clique perfect graphs without isolated vertices,
1.(G) is maximum if and only if there exist a perfect matching in G in which no

edge lies in o triangle.

Proof. The class of clique perfect graphs without isolated vertices satisfies the

< 2 >-property. Therefore, the maximum value that 7.(G) can obtain is }. Let G
be a clique perfect graph with 7.(G) = 5. G being clique perfect, o (G) = 7.(G) =

5. Since each clique must have at least two vertices and there are 7 independent
cliques, the cliques are of size exactly two. Again, this independent sct of § cliques
forms a perfect matching of GG and a clique being maximal complete, the edges of

this perfect matching do not lie in triangles.

Conversely, if there exists a perfect matching in which no edge lies in a tri-
angle, the cdges of this perfect matching form an independent sct of cliques with

cardinality 7. Therefore. a.(G) =2 5. But. o(G) < 7(G) < 3 and therefore

2

7(G) = 3. O

SN
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4.3 Planar graphs

Theorem 4.3.1. The class of planar graphs does not satisfy the < t >-property

fort =2, 3 and 4 and G, is empty fort > 5.

Proof. Every odd cycle is a planar graph and 7(Caxy1) = k+1 > 251 Clearly,
odd cycles belong to G, and hence the class of planar graphs does not satisfy the

< 2 >-property.

The graph in Fig : 4.2 is planar and every edge lies in a triangle. Here, n = 8

and the clique transversal number is 3 which is greater than % and hence planar

graphs do not satisfy the < 3 >-property.
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The graph in Fig : 4.3 is planar and every edge lies in a K. Here, n = 15 and the
clique transversal number is 4 which is greater than 5 and hence planar graphs do

not satisfy the < 4 >-property.

Since K is a forbidden subgraph for planar graphs, there is no planar graph

G such that all its edges lie in a K, for ¢t > 5. Hence, the theorem. O

4.4 Perfect graphs

Theorem 4.4.1. The class of perfect graphs does not satisfy the < t >-property

forany t > 2.

Proof. Let G be the cycle of length 3k, say vyvo, ... ,usev; where & > 2 is odd, in
which the vertices vy, vy, ... , v3r_o are all adjacent to each other. Then G is perfect
and 7.(G) = [3—2'”] > i;— since 3k is odd. Therefore the class of perfect graphs does

not satisfy the < 2 >-property.

Now, the class of perfect graphs does not satisfy the < 3 >-property since
Cs is a perfect graph (Lemma 1.1.6) in which cvery edge lies in a triangle and

7.(Cs) = 3 > %

Since the cographs are a subclass of perfect graphs (Lemma 1.1.7) [27]. by
Lemma 4.2.2. the class of perfect graphs also does not satisfy the < t >-property

fort > 4. J
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4.5 Trestled graph of index k

In this section the clique transversal number and the clique independence num-
ber of T (G) are determined. A characterization of G for which Tx(G) satisfies the

< 2 >-property is also given.

Lemma 4.5.1. For any graph G without isolated vertices, 7.(Tx(G)) = km+3(G).

Proof. We shall prove the theorem for the case k = 1.

Let V' = {vi, 19, ... .vz} be a vertex cover of G. The cliques of T,(G) are
precisely the cliques of G together with the three Ky s formed corresponding to
each edge of G. Corresponding to each edge ur of G choose the vertex which
corresponds to u of the correspouding K, if u is not present in V', If u is present,
in v/ then, choose the vertex corresponding to v, irrespective of v is present in
V' or not. Let this new collection together with V' be V. Then V" is a clique

transversal of T3(G) of cardinality m + 3(G). Thercfore, 7.(T1(G)) < m + 3(G).

Let V' = {v1, v, ... ,u,.}, where t = 7.(T7(G)) be a clique transversal of 71 (G).
Let wv be an edge in G and let v'v" be the K introduced in 77(G) corresponding
to this K. At least one vertex from {u'. 7'}, say v’ must be present in V', since
V7’ is a clique transversal and v'v’ is a cligue of T1(G). Remove ' from V', If V’
contains v’ also then replace ¢' by v. If v/ ¢ V' then v € V', since V' is a clique
transversal and v¢’ is a clique of T1(G). In either case, one vertex v of the edge
uv is present in the uew collection. Repeat the process for each edge in G to get
V", Clearly. V" is a vertex cover of G with cardinality 7.(T1(G)) — m. Hence,

B(Q) € 7.(T1(G)) — m.Thus. 7.(T1(G)) = m + 3(G).
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By a similar argument we can prove that 7.(Tx(G)) = km + 8(G). O

Notation : For a given class G of graphs, let T.(G) = {T.(G) : G € G}.

Theorem 4.5.2. The class T),(G) satisfies the < 2 >-property if and only if 3(G) <
YV GG and (Ti(G)): is empty fort > 3.

Proof. Let G € G. n(Tx(G)) = n + 2km and by Lemma 4.4.1, 7.(Tx(G)) =
km + (G). Therefore,

7(T(@)) < ﬂ@ <=>km+ 3(G) < =2 <=> 3(G) < L.
Hence, T;(G) satisfies < 2 >-property if and only if 3(G) < 5 V(G € G.

If G contains at least one edge then Ti(G) has a clique of size 2 and hence

(Ti(G)): is empty for ¢ > 3. [

Lemma 4.5.3. For any graph G without isolated vertices, a.(T,(G)) = km(G) -+
o (G).

Proof. We shall prove the theorem for the casc k = 1.

Let B/ = {e1, ¢y, ..., en} be a maximum matching of G with cardinality o'(G).
Let €7 = {en.€10. €91, €99. ... €4r1.02F Where cacli €;1.e;0 for 7 = 1.2.....a" are
the cdges which join ¢; to the correspouding K, of T1(G). Note that each e;;
is a clique for i = 1,2....a" and j = 1,2, Let Cy = {[1, fo..... fm_o’} be the
Ksys in T1(G) corresponding to the edges of £ — E’. Also. each f; is a clique in
T(G) for + = 1.2,....m — ¢/. Therefore. C, U (5 is a set of independent cliques
of T1(G) with cardinality 2¢/(G) + (m{(G) — o’'(G)) = m(G) + /(G). Hence,
a (T (G)) = m(G) + o'(G).
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Let S = {C},Cs,...,C,.} be a set of independent cliques of 77(G) with cardi-
nality «.(71(G)). Let

51 = {Cz . V(Cl) g V(G)}
Sy = {C; : 3C; with V(C;) N V(G) = {u}, V(C;) N V(G) = {r} where uveFE(G)},
S3=8—(51US,)

Note that |Ss| is always even and the elements of S, can be paired into (C;, C})

which satisfy the required property.

Choose one edge from each clique in S; and the edge uv corresponding to each
pair (C;,C;) in S, to get an independent set of edges E' C E(G). Now, |Ss
cannot exceed m(G) and |S| = «a (T1(G)). Therefore, |E'| = o (T1(G)) — m(G).
Hence, o/(G) 2 a(Ti(G)) — m(G) and so a.(T1(G)) < m(G) + o/(G). Thus,
a(T1(G)) = m(G) + & (G).

By a similar argument we can prove that o.(Tx(G)) = km(G) + o'(G). O

Theorem 4.5.4. T.(G) is a clique perfect graph if and only if G is « bipartite

graph.

Proof. Let T(G) be a clique perfect graph. From Lemma 4.5.1 and Lemia 4.5.3,
Te(Te(G)) = a(Ti(G)) if and only if J(G) = /(G). If H is an induced subgraph
of G then Ty(H) is an induced subgraph of T.(() and hence for T(G) to be
clique-perfect, 3(H) = o/ (H) for every induced subgraph H of G. If G contains an
induced odd cycle of length 2k + 1k > L. then k+ 1 = 3(Coyq) # o' (Cousr) = K,

which is a contradiction. Therefore, GG is bipartite.

Now, let G be bipartite. Then T;(G) is bipartite for each &, since 7,.(G) contains

an odd cycle if and ouly if G contains an odd cvele. For bipartite graphs, the clique
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transversal number is same as the minimum number of vertices required to cover
all edges and the clique independence number is same as the maximum number of
independent edges. since all cliques are of size two. Hence by Lemuna 1.1.13 and
the fact that each induced subgraph of a bipartite graph is bipartite, it follows

that 7(G) is clique perfect.

The < t >-property of the various classes of graphs which we have studied in

this chapter are summarized in the following table.

Class Satisfy < t >-property { Do not satisfy < ¢ >-property
Cographs ? 2,3 >4
Clique perfect graphs 2,3 >4
Planar graphs - 2,3, 4
Perfect graphs - > 2

4.6 Highly clique imperfect graphs

A graph G is highly clique imperfect if the difference between 7.(G) and
a.(G) is arbitrarily large. In [32], a graph F; satisfving 7.(F,)—o.(F,) = t, where t ig
an arbitrary integer is given where the number of vertices in F; grows exponentially

with 7. However, the following problem is open {73] :

Problem : For an arbitrary integer ¢, arve there graphs G such that 7.(G)—a.(G) =

t where the number of vertices in GG is linear in t.

In this section. this problem is solved by constructing a family of such graphs.
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For each positive integer ¢, define G, as K41 with 5-cycles attached to t

distinct pendant vertices of K4 (Fig : 4.4).

Fig : 4.4

Then 7.(G,) = 3t + 1 and «.(G;) = 2t + 1 so that 7.(G;) — a.(G;) =t and the
size of G, is 5t + 2.

More generally, if Gy, is the graph obtained by replacing the 5-cycles in this
example by any odd cycle Cypq, then 7.(Gy,) = (k+ 1)t +1, a(Gyy) = kt+1 and
the number of vertices in Gy, is (2k + 1) + 2 which is also polynomially bounded

in t.



Chapter 5

Clique graphs and cographs

In this chapter the clique graph of cographs are studied and we prove that the
diameter of the clique graph of a cograph cannot exceed two. If n(G) = p, where
p is prime, then G cannot be the clique graph of a cograph except for G = I,.
The number of clique graphs of a cograph with Y(K(G)) = s, where s is a fixed
integer is finite. A realization of cographs and its clique graph which have specific
values for the domination number, the clique transversal number and the clique

independence number are given.

5.1 Clique graph of a cograph

Theorem 5.1.1. If G is a connected cograph then the diameter of K(G) < 2.

Some results of this chapter are included in the following paper.

Some properties of the clique graph of a cograph. Proceedings of the International Conference
on Discrete Mathematics, (2006), Bangalore, India, (1o appear).

77
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Proof. Let 51 and S5 be any two non-adjacent vertices in K (G). If a vertex in S
is adjacent to a vertex in Sy, then there exists a clique S which contains this edge
and hence is adjacent to both S; and Sy in K(G). Therefore, d(S;.5) = 2. If
possible assne that no vertex in S; is adjacent to a vertex in Sy. Let vy € V(S))
and vy € V(5,). Then, d(v;.19) = 2. Hence there exists a vertex v adjacent to
both vy and vs. If ¢{ is another vertex in V(S;) then vjv vt should not induce
Py in G and therefore v] is adjacent to v. Since v} was arbitrary, every vertex in

V(S)) is adjacent to v. But, this is a contradiction to the maximality of S;. Hence,

for a conunected cograph G, diameter of K(G) < 2. O

Theorem 5.1.2. If G is a connected cograph with prime number of cliques, then

G is clique complete.

Proof. Let G = GV Gy. The number of cliques in G is the product of the number
of cliques in G; and G». But, the number of cliques in G is prime and hence one
of the G;’s must have prime number of cliques and other must be complete. Every
cligue in G is the join of the cliques of Gy and G5. Hence any two cliques in G

have a non-empty intersection and therefore the clique graph of G is complete. [

Corollary 5.1.3. Any graph of prime order, other than K,, cannot be the clique

graph of a cograph.

Theorem 5.1.4. A cograph is clique complete if and only if there exists a universal

verter.

Proof. It there exists a universal vertex in G then that vertex will be present in

every clique of ¢ and hence K(G) is complete.

Now, assume that a cograph G is clique complete. Let S be a clique of G

with maximum cardinality and w be its clique number. The proof is by induction
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on |V(G) — V(9)].

If |[V(G) = V(S)| = 0 then G(= S) itself is complete. If

V(G) — V(S)| = 1 then there exist only one vertex v outside S. Since G is
connected there exists at least one vertex « € S which is adjacent to v. Then
deg(u) = n — 1. Assume that if |[V(G) — V(S)| = k then there exists a vertex of

full degree in G.

Now, let |V(G) = V(S)] = b+ 1 and vy, vg, ..., v € V(G) — V(S). Let G;
be the graph obtained by deleting the vertex v; for ¢ € {1,2,..,k + 1}. Then
[V(G))] = n—1and S is a clique in G;. Also |V(G;) — V(S)| = k. Thercfore by
the induction hypothesis, there exists a vertex v] of degree n — 2 in G; for all i.
Then «] belongs to V(.S), since it is adjacent to all vertices in G; and S is maximal
complete. If for at least one v;. v; is adjacent to v, then v} will be of full degree in

G.

Now, assume that v; is not adjacent to v; for all ¢ and hence v} # v} if i # j.
Consider two arbitrary vertices v; and v; wherei # jand 4,5 € {1,2, ..., k+1}. If
v; is not adjacent to v;, then v;v}vjv; is an induced Py in G which is a contradiction.
Therefore v; is adjacent to v; for all 7 # j and 4,5 € {1,2,....,k + 1}. Hence
{v1,v9,....,v141} induces a complete graph. So there exists a clique in G which
contains all the vertices vy, vq,....,vx41. This clique has non-empty intersection
with S, since G is clique complete. Thercfore there exists v € V(S) which in
adjacent to v; for all 4 € 1.2, .k + 1 and hence u will be a vertex of full degree.

The proof now follows by the mathematical induction. O
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5.2 Chromatic number of the clique graph

Even though the difference between the chromatic numbers of a cograph and
its clique graph can be arbitrarily large. the number of clique graphs of a cograph

having a fixed chromatic number is finite.

Remark 5.2.1. Given any two positive integers a,b > 1. there exists a cograph G
such that x(G) = ¢ and x(K(G)) = b. Let G = K, with b — 1 pendant vertices
attached to one of its vertices. Therefore, K(G) = K and hence v(G) = a and

(K(G)) =b.

Theorem 5.2.1. The number of clique graphs of a connected cograph G with

X(K(G)) = s 1s finile.

Proof. Let G be a cograph with x(K(G)) = s. Let G = G, VG, be a decomposition
of G. Let the number of cliques of G; be p, for i = 1,2. If p; > s for some ¢, say
i = 1, then G; will have at least s + 1 cliques, Hyy, Hig, ..., H1 s41. Let Hy be a
clique of Go. Then HyyVHy, HysVHy, ......, Hy 11V Hs are cliques of G which induce
K1 in K(G). But, then x(K(G)) =2 s+ 1 which is a contradiction. Therefore
each p; < s and hence |V(K(G))] < s*. Hence, the number of clique graphs of a

connected cograph with y(K(G)) = s is {inite. O

5.3 Some graph parameters

In this section we study the relation between the domination number, the clique

transversal number and the clique independence number of a cograph and its clique



Chapter 5 : Clique graphs and cographs 81

graph. It is also observed that, though cographs are clique perfect and the clique

graph of a cograph satisfies 7.(K(G)) = a (K (G)), they are not clique perfect.

Theorem 5.3.1. There exists a cograph G such that v(G) = a and v(K(G)) = b
iof and only if

(1) a < 2.

(2) a =1 1if and only if b= 1.

(8) a=2and b > a.

Proof. If G is a cograph then v(G) < 2 [66]. Thercfore (1) holds. If v(G) =1
then G has a vertex of full degree and hence K(G) is complete. Therefore, a = 1
implies that b = 1. If b = 1 then K(G) has a vertex of full degree. Let C be
the clique in G which corresponds to this vertex of full degree in K(G). Let
U1, Up, ..., up € V(G) — V(C). Every clique in G intersects with C' and hence u; s

for i = 1,2,....,p must be adjacent to at least one vertex of V(C).
Claim : Every u; is adjacent to a common vertex v € V(G).

On the contrary, assume that u; and 1y do not have a common neighbor in C.
Let u4 be adjacent to v; and us be adjacent to vy. But, ujvivus cannot induce a
Py in G and hence u, is adjacent to uy. Since, u; and u, have no common neighbors
in C. the clique of G which contains the edge u,u, does not intersect C which is a

contradiction. Therefore, our claim holds.

Therefore. v is a vertex of full degree in G and hence a = v(G) = 1. Hence, (2)

holds.
If « = 2 then b # 1 by (2). Therefore, b > « and (3) holds.

Conversely. assume that a and b satisfy the given conditions. Let G be the co-
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graph K. The clique graph of Ky, K(Kyp) = K,OOK,,. Therefore, y{K(Ky,)) =
b. If b > 1 then +(G) = 2 and if b = 1 then (G) = 1. Hence, G is the required

graph. O

Theorem 5.3.2. If G is a cograph then 7.(I{(GQ)) = a(K(G)).

Proof. We use the recursive definition of cographs to prove the theorem. If G = I,

then K(G) = K and 7.(K) = a{(K;) = L.

Let G; aud Gy be cographs which satisfy 7.(K(G;)) = @ (K(G;)) for i =
1.2. Let G = Gy UG,. Then, K(G) = K{(G;) U K(G») and hence 7.(K(G)) =
Tc(I((GI)) + Tc(]\/(Gz)) = ”'C(K’(Gl)) + (T((.K(Gg)) = QC(K’(G))

Let G = Gy V Gy. Let H) be a clique in K(Gy) induced by the vertices
corresponding to the cliques Gip, Gyo,...Gy in Gp. Let Gy, Gag, ..., Go; be the
cliques in Gy. Thercfore. {Gy; V Gz @i =1,2,...k and j = 1,2,....t} are cliques
in G; V Gy and the vertices corresponding to these cliques induce a clique in
K(Gy V G3). Let this clique be H|. Similarly, if Hs is a clique in K(G;), then
we can find a clique Ay in K(G; V G2). Moreover, if H; and H, are independent.
then H{ and H} arc also independent. Therefore, a.(K(Gy V Gy)) 2 a(K(Gh)).
Similarly we can prove that o (K (G V Gs)) 2 a(K(Gs)). Therefore. o (K (G, V
G3)) = max{o(K(G))). a.(K(G2))}. Using similar arguments, we can prove that
T(K(Gy V Ga)) € max{7(K(Gy)), 7.(K(G2))}. Therefore, 7.(K(G,) V K(G2)) <
o (K(Gy) V K(Gy). But, by definition, 7.(K(G1) V K(G3)) = o (K(Gy) V K{G»).
Therefore. 7.(K(G))V K(G2)) = a.(K(Gy) V K(G,).

Hence the theorem. O

Remark 5.3.1. If a and b are anv two positive real numbers which satisfies the
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conditions @ = 1 if and only if ¥ = 1 and a < b then there exist cographs which
satisfies 7.(G) = a.(G) = a and 7.(K(G)) = a.(K(G)) = b. For example, consider
the cograph K, p. K(K.p) = KK, Thercfore, 7.(Ku.p) = a.(Kqp) = @ and
Te(K(Kap)) = ac(K(Kap)) = D.

An interesting observation : Despite Theorem 5.3.2 and Lemma 1.1.8, K(G)
of a cograph G need not be clique perfect. For example consider the cograph

G =(KiUCy)V(2KU Pj) as in Fig : 5.1.
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Fig : 5.1

The cliques of G formed by the vertices {uy, v1}, {u1,vs,v3}, {wy, us, vy, va},
{us. ug, v5} and {ug,us, v} induce a C; in K(G) and hence K(G) is not clique

perfect.



Chapter 6

Clique irreducible and weakly

clique irreducible graphs

This chapter deals with two graph classes - the clique irreducible graphs and the
weakly clique irreducible graphs. A new graph class called the clique vertex ir-
reducible graphs is also defined. We characterize line graphs and its iterations,
Gallai graphs. anti-Gallai graphs and its iterations, cographs and distance heredi-
tary graphs which are clique irreducible, clique vertex irreducible and weakly clique

irreducible graphs.

Some results of this chapter are included in the following papers.

(1} Clique irreducibility and clique vertex irreducibility of graphs. (communicated).

(2) Clique irreducibility of some iterative classes of graphs, Discuss. Math. Graph Theory,
(to appear).

(3) On weakly clique irreducible graphs, (communicated).

34
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6.1 Iterations of the line graph

In this section the line graphs and all its iterations which are clique irreducible

and clique vertex irreducible are characterized.

Theorem 6.1.1. Let G be a graph. The line graph L(G) is clique vertex irreducible
if and only if G satisfies the following conditions.

(1) Every triangle in G has at least two vertices of degree two.

(2) Every vertex of degree greater than one in G has a pendant vertex attached to

it, except for the vertices of degree two lying in a triangle.

Proof. Let G be a graph which satisfies the conditions (1) and (2). The cliques
of L(G) are induced by the vertices corresponding to the edges in G which are
incident on a vertex of degree at least three, the edges in G which are incident on a
vertex of degree two and which do not lie in a triangle and by the edges in G which
lie in a triangle. By (2), the cliques in L(G) induced by the vertices corresponding
to the edges in G which are incident on a vertex, have a vertex which does not lie
in any other clique of L(G). By (1), the cliques in L(G) induced by the vertices
which correspond to the edges in G which lie in a triangle, have a vertex which

does not lie in any other clique of L(G). Therefore, G is clique vertex irreducible.

Conversely, assume that L(G) is a clique vertex irreducible graph. Let
< uy,ua,uy > be a triangle in G. Let ey, ey, e3 be the vertices in L(G) which
correspond to the edges ujus, uouz, uzu; in G. T =< e1,¢e9,e3 > is a clique in
L(G). It d(u;) > 2 for two u;8, uq and u,. then there exist v; and vy (not necessarily
different. but different from w3) such that u; is adjacent to v; for 7« = 1,2. But then,

the vertices e; and ey will be present in the clique induced by the edges incident
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on the vertex u; and the vertices e; and es will be present in the clique induced
by the edges incident on the vertex us. Therefore, every vertex in T helongs to
another clique in L(G) which is a contradiction to the assumption that L(G) is
clique vertex irreducible. Hence every triangle in G has at least two vertices of

degree two.

Now, let u € V(G) and N(u) = {u), uz, ..., u,}, where p > 2 and if p = 2 then
u; is not adjacent to uy. Let e; be the vertex in L(G) corresponding to the edge
uwu; in Gfori=1,2,...,p. Let C be the clique < ey, e, ...,2, > in L(G). If u has no
pendant vertex attached to it then every u; has a neighbor v; # u fori =1,2. ..., p.
The v;s are not nececssarily pairwise different. Moreover, some v; can be equal to
some u; with j # i, except in the case p = 2. Therefore, for each i. every e; in
L(G) will be present in another clique, either induced by the edges incident on the
vertex u; in G or by the edges in a triangle containing v and w; in G. But this is
a contradiction to the assumption that L(G) is clique vertex irreducible. Hence,
every vertex of degree greater than one in GG has a pendant vertex attached to it,

except for the vertices of degree two which lie in a triangle. O

Fig : 6.1 gives an example of a graph whose line graph is clique vertex irre-

ducible.

Theorem 6.1.2. Let G be a connected graph. The secand iterated line graph L*(G)

s clique vertex irreducible if and only if G is one of the following graphs.
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Proof. By Theorem 6.1.1, L?(G) is clique vertex irreducible if and only if
(1) Every triangle in L(G) has at least two vertices of degree two.
(2) Every vertex of degrec greater than one in L(G) has a pendant vertex attached

to it, except for the vertices of degree two which lie in a triangle.

By (2), every non-pendant edge in G must have a pendant edge attached to it

on one end vertex and the degree of that end vertex must be two.
Case 1 : L(G) has a triangle.

A triangle in L(G) corresponds to a triangle or a K73 (need not be induced)
in G. Let it correspond to a triangle in G. If any of the vertices of this triangle
has a neighbor outside the triangle, then two vertices in the corresponding triangle
in L(G) have neighbors outside the triangle, which is a contradiction. Therefore,

since G is connected, in this case G must be K.

If the triangle in L(G) corresponds to a K 3 in G. then two of the edges of this
K, 3 cannot have any other edge incident on any of its end vertices. Therefore.
G cannot have a vertex of degree greatcr than three. Noreover, two vertices of
Kj 3 in G must be pendant vertices. Again, by (2) and since G is connected. we

conclude that G is either K4 3 or the graph (vii).

Case 2 : L(G) has no triangle.
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Since L(G) has no triangle, G cannot have a K3 or a vertex of degree greater
than or equal to 3. Therefore, since G is connected, G must be a path or a cycle
of length greater than three. Again, by (2), G cannot be a path of length greater

than five or a cycle. Therefore G is K5, Ps, Py or Ps. 0

Corollary 6.1.3. Let G be a connected graph. The n'* iterated line graph L(G) is
clique vertex irreducible if and only if G is K3, K3 or P, where n+1 < k< n+3,

forn > 3.

Theorem 6.1.4. The line graph L(G) is clique irreducible if and only if every

triangle in G has a vertex of degree two.

Proof. Let G be a graph such that every triangle in G has a vertex of degree two.

Let C be a clique in L(G).

Case 1 : The clique C is induced by the vertices corresponding to the edges in G

which are incident on a vertex of degree at least three.

An edge of C can be present in another clique of L(G) if and only if the
corresponding pair of edges in G lies in a triangle. Thus, if every edge of C lies in
another clique of L(G), then G has an induced K),, where p is at least four. But,

this contradicts the assumption that every triangle in G has a vertex of degree two.

Case 2 : The clique C is induced by the vertices corresponding to the edges in G

which are incident on a vertex of degree two and which do not lie in a triangle.
In this case, C is Ky which always has an edge of its own.

Case 3 : The clique C is induced by the vertices corresponding to the edges which

lie in a triangle T in G.
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Since T has a vertex v of degree two, the vertices corresponding to the edges

which are incident on v induce an edge in C' which does not lie in any other clique

of L(G).
Thercfore, G is clique irreducible.

Conversely, assume that G is a clique irreducible graph. Let < v, us, u3 > be a
triangle in G. Let eq, s, e3 be the vertices in L(G) which correspond to the edges
Ulg, Ugug, ugthy of G. T =< e1,es,e3 > is a clique in L(G). If d(u;) > 2 for each
i, there exist vy, vs, vs such that u, is adjacent to v; for i = 1,2, 3 (vq, v, and vy
are not necessarily different, but thev are different from wy, us and uz). Then the
edges ejeq, eqe3 and eze; of L(G) will be present in the cliques induced by edges
which are incident on the vertices uy, uy and uj respectively. Therefore, every edge

in T is in another clique of L(G), which is a contradiction. g

Theorem 6.1.5. The second iterated line graph L*(G) is clique irreducible if and
only if G satisfies the following conditions.

(1) Every triangle in G has at least two vertices of degree two.

(2) Every vertex of degree three has at least one pendant vertex attached to it.

(3) G has no vertex of degree greater than or equal to four.

Proof. Let G be a graph such that L2(G) is clique irreducible. By Theorem 6.1.4,
every triangle in L(G) has a vertex of degree two. Then. we have the following

cases.
Case 1 : The triangle in L(G) corresponds to a triangle in G.

Let < uy,us,uz > be a triangle in . Let eq, ey, €3 be the vertices in L(G)

which correspond to the edges ujuy. ugus, usuy of G. At least one of the vertices
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of the triangle < ey, e9.e3 > in L(G) must be of degree two. Let e; be a vertex
of degree two in L(G). Since s and ez belong to N(e;) in L(G). e; has no other
neighbors in L(G). Therefore, the corresponding end vertices, u; and us in G have

no other neighbors. Hence (1) holds.
Case 2 : The triangle in L(G) corresponds to a K 3 (need not be induced) in G.

Let ey, eq,e3 be the vertices in L(G) corresponding to the edges vu,, uus, uug
in G. At least one of the vertices of the triangle < e1, e, e; > in L{G) must be of
degree two. Let ¢ be a vertex of degree two in L(G). Vertices e; and e3 belong
to N(e;) in L(G) and hence e; has no other neighbors in L(G). Therefore, the
corresponding end vertices, u and u; in G have no other neighbors. Since u has

no other neighbors (3) holds and since uq has no other neighbors (2) holds.

Conversely, assume that G is a graph which satisfics all the three conditions.
A triangle in L(G) corresponds to a triangle or a K 3 (need not be induced) in G.
A triangle in L(G) which corresponds to a triangle in G has at least one vertex
of degree two by (1). Again, a triangle in L(G) which corresponds to a K3 in G
has at least one vertex of degree two by (2) and (3). Therefore, every triangle in
L(G) has at least onc vertex of degree two and by Theorem 6.1.4, L2(G) is clique

irreducible. O

Theorem 6.1.6. Let G be a connected graph. If G # Ky then. L*(G) is clique
irreducible if and only if G satisfics the following conditions.

(1) G is triangle free.

(2) G has no vertex of degree greater than or equal to four.

(8) At least two of the vertices of cvery Ky 3 in G are pendant vertices.

(4) If uv is an edge in G, then either u or v has degree less than or equal to two.
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Proof. Let L*(G) be clique irreducible. By Theorem 6.1.5, L(G) satisfies,

(1') Every triangle in L(G) has at least two vertices of degree 2.

(27) Every vertex of degree three in L(G) has at least one pendant vertex attached
to it.

(3’) L(G) has no vertex of degrec greater than or equal to 4.

A triangle in L(G) corresponds to a triangle or a K3 (need not be induced)
in G. Every triangle in L(G) has at least two vertices of degree two implies that
every triangle in G has its three vertices of degree two. i.e: G is a triangle. because
G is connected. Since G # K3, G must be triangle free. Also, every {13 in &
has at least two pendant vertices and the degree of a vertex cannot exceed three.
Therefore (1), (2) and (3) hold. Again (3’) implies that no edge in G can have

morc than three edges incident on its end vertices. Therefore, (4) holds.

Conversely, assume that the given conditions hold. Since G is triangle free, a
triangle in L(G) corresponds to a K, 3 (need not be induced) in G. Therefore, by

(2) and (3) every triangle in L(G) has at least two vertices of degree two.

Let e be a vertex of degree three in L(G) and let v be the corresponding edge
in G. Since e is of degree three in L(G), the number of edges incident on v in &
together with the number of edges incident on v in G is three. If u (or v) has three
more edges incident on it then u (or ¢) will be of degree at least four which is a
contradiction to the condition (2). Therefore, v has two neighbors and ¢ has one
neighbor (or vice versa) in G. Let u; aud uy be the neighbors of u, and let v be
the neighbor of v in G. Then < u,v.uy. us > = K3 in G and hence at least two
of v, u; and uy must be pendant vertices. Since v is not a pendant vertex, u; and
ug must be pendant vertices. Therefore, e has two pendant vertices attached to it

in L(G) corresponding to the edges wuy and vuy in G. Henee (27) is satisfed.
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Again. (2), (3) and (4) together imply (3°). Since the conditions (1'). (2') and

(3’) are satisfied, by Theorem 6.1.5, L3(G) is clique irreducible. O

Theorem 6.1.7. Let G be a connected graph. The fourth iterated line graph L*(G)

is clique irreducible if and only if G 1s Ky, K13, P, withn > 5 or C,, withn > 4.

Proof. Let L*(G) be clique irreducible. Then by Theorem 6.1.6, if L(G) # K3 then
L(G) must be triangle free. If L(G) = K3 then G is either K3 or Ky 3. If L(G)
is triangle free then ¢ is triangle free and cannot have vertices of degree greater
than or equal to three. Thercfore, G is either a path or a cycle of length greater

than three.

Conversely, if G is K3, Ky 3, P, or C, then L'(G) is either a triangle. a path or

a cycle and all of them are clique irreducible. C

Corollary 6.1.8. For n > 5, L™(G) is cligue irreducible if and only if it is non-

empty and L*(G) is clique irreducible.

6.2 Gallai graphs

In this scction, we give structural and forbidden subgraph characterizations
for the Gallai graph to be clique irreducible. clique vertex irreducible and weakly

clique irreducible.

Theorem 6.2.1. The Gallai graph [(G) is cligue wvertex irreducible if and only
if for every v € V(G). every marimal independent set I in N(v) with \I| = 2

contains a vertex u such that N(u) — {v} = N{v) — L.
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Proof. Let G be a graph such that its Gallai graph I'(G) is clique vertex irreducible.
A clique C in T'(G) of size at least two is induced by the vertices corresponding
to the edges which are incident on a common vertex v € V(G) whose other end
vertices form a maximal independent set I of size at lcast two in N(v). Let
I = {v1,vq, ..., vp}, where p > 2, be a maximal independent set in N(v). Let e
be the vertex in ['(G) corresponding to the edge vv; in G fori = 1,2,...,p. Let C
be the clique < ey, €, ...,e, > in I'(G). Let e; be the vertex in C' which does not
belong to any other clique in G. Therefore, e; has no neighbors in I'(G) other than

those in C. Hence, N(v;) — {v} = N(v) — I.

Conversely, assume that for every v € V(G), every maximal independent set
I ={vy,va,....u,} in N(v) contains a vertex u such that N(u) — {v} = N(v) — I.
If C is a clique of size one, it contains a vertex of its own. Otherwise, let C
be defined as above. By our assumption, there exists a vertex w = v; such that
N(u) — {v} = N(v) — I. Therefore, e; has no neighbors outside C'. Hence C has a

vertex e; of its own. 0

Fig : 6.2 gives an example of a graph whose Gallai graph is clique vertex

irreducible.

|
e

@ o
/"/
v} B
|

(G)
Fig : 6.2

Theorem 6.2.2. If ['(G) is cligue verter reducible then G contains one of the

graphs in Fig : 6.8 as an induced subgraph.



Chapter 6 : Clique irreducible and weakly clique irreducible graphs 94

> C<I iy T T 1

111

O__..
O__

|

i
\/ v) o (vi) & (vii)

Proof. Let G be a graph such that [(G) is clique vertex reducible and let C be a
clique in T(G) suck that each vertex of C' belongs to some other clique in T'Y(G).
Consider the order relation < among the vertices of C' where e < ¢’ if Ne] < Ne’].
If < is a total ordering, then every vertex adjacent to the minimuin vertex e is also
adjacent to all the vertices in C. Therefore, by maximality of C, e cannot have
neighbors outside C'. This is a contradiction to the assumption that e belongs to
some other clique of I'(G). So, there exist two vertices e; and e; in C' which are
not comparable. That is, there exist vertices f, and f; of I'(G) such that e; is
adjacent to f; if and only if ¢ = 5. Let vvy and vuy be the edges corresponding to
e1 and ey, respectively. Then 1y and vy are non-adjacent. Let u; and us be the

end points of f; and fs, respectively, which are both different from v. v; and vs.
Case 1: Both f; and f, correspond to the edges incident to v.

In this case, u; and uy are adjacent to v, u; is adjacent to vy if and only if 7 # j
and u; and u,y can be either adjacent or not. Therefore < v. vy, vg, uy. ug > is the

grapli (i) or (ii) in Fig : G.3.
Case 2 : None of f; and f; correspond to the edges incident to v.

In this case, u; and uy are adjacent to vy and u,, respectively, and not to v. If
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u; = ug then G contains an induced Cy. If uy # uy and G does not contain an

induced Cy, then < ¢, vy, vg. uy. uy > is either 5 or Cs.
Case 3 : Exactly one of f; and f, correspond to the edges incident to v. say fi.

In this case. u; is adjacent to both v and vs and is not adjacent to vy. The
vertex us is adjacent to vy and is not adjacent to v. If uy is adjacent to v; then G
contains an induced Cy. Otherwise, < v, vy, vg. 41, uy > is the graph (vi) or (vii)

in Fig : 6.3. O

Remark 6.2.1. The converse need not be true. For example consider the graph G
in Fig : 6.4. It contains (iv) in Fig : 6.3 as an induced subgraph. Still ['(G) is

clique vertex irreducible.

T e
d. -
G (G)
Fig : 6.4

Theorem 6.2.3. The Gallui graph 1'(G) is clique irreducible if and only if for

every v € V(G)., < N(v) > is clique irreducible.

Proof. A cligne C in I'(G) of size at least two is induced by the vertices corre-
sponding to the edges which are incident on a common vertex v € V(G) whose
other end vertices form a maximal independent set I of size at least two in N(v).
Therefore, C has an edge which does not belong to any other clique of I'(G) if and
only if [ has a pair of vertices both of which together does not belong to any other
maximal independent set in N(v). But, this happens if and only if every clique of

size at least two in < N(v) > has an edge which does not belong to any other
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clique in < N(v) >¢ since a maximal independent set in a graph corresponds to a

clique in its complement. O

Theorem 6.2.4. The second iterated Gallai graph 12(G) is clique irreducible if
and only if for cvery uv € E(G), either < N{u) — N(v) > and < N(v) — N(u) >
are clique vertexr irreducible or one among them is a clique and the other is clique

irreducible.

Proof. By Theorem 6.2.3, T%(G) is clique irreducible if and only if for every e €

V(T'(G)), < N(e) >° is clique irreducible.

Let ¢ = uv € E(G), N(u) — N(v) = {u1,uz,....up} and N(v) — N(u) =
{v1, 09, oy}, Also let e; = wu; for i = 1.2, ..,pand f; = vy; for j = 1,2, ..., L
Nroy(e) = {er,ea,....ep, f1, fo, ... fi}. < N(e) >¢is clique irreducible if and only if
every maximal independent set I in < N{e) > has a pair of vertices of its own. e;
is not adjacent to e; if and only if u; is adjacent to u;. Similarly, f; is not adjacent
to f; if and only if v; is adjacent to v;. So. I = {e;,€i,. ..., €. fir: fize o fi} if
and only if {w;,,,, ..., u;, } Is a clique in < N(u) — N(v) > and {v;,, vj,, ..., v;, } I8
a clique in N(v) — N(u). Thercfore, every maximal independent set I in Np(g)(e)
has a pair of vertices of its own if and only if either both < N(u) — N(v) > and
< N(v) — N(u) > are clique vertex irreducible or one among them is a clique and

the other is clique irreducible. O

Theorem 6.2.5. [f T(C) is clique reducible then G contains one of the following

graphs as an induced subgraph.



Chapter 6 : Clique irreducible and weakly clique irreducible graphs 97

; U

(i)é/ %/Ku (ii) v %74(0&0“

)] i z 2
1
U 5

3

v

3
Yy
< X (iv)
2

Fig: 6.5

Proof. Let I'(G) be a clique reducible graph. By Lemma 1.1.9 and Lemma 1.1.12,
['(G) contains at least one of the Hajo's graph as an induced subgraph. A Hajo's
graph is an induced subgraph of T'(G) if and only if G contains one of the graphs

in Fig : 6.5 as an induced subgraph. Hence the theorem. ]

Remark 6.2.2. The converse need not be true. Let G be the graph in Fig : 6.6.

V(G) = {v. vy, 12, Ug, Uy, U, Uy, W), Wa, w3, Wy, W5, Wy, Wr, We }. Let < v, vy, Vg, vz, Uy, Us, Uz >

be the graph (i) in Fig : 6.5 and let w;s for 7 = 1.2, ..., 8 induce a complete graph.
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Also. let wy be adjacent to {vq,va,v3}, wa be adjacent to {v1, v2, uz}, ws be adja-
cent to {vy, up, 3}, wy be adjacent to {vy, us, uz}. w; be adjacent to {uy, v, vs},
wg be adjacent to {u1,ve,uz}, wr be adjacent to {u),us, v3}, ws be adjacent to

{u1,u9. u3} and v adjacent to w; for i =1,2, ..., 8.

In T'(G) the vertices corresponding to the edges with one end vertex v induces
K¢ minus a perfect matching in which the vertices of each of the eight triangles
are adjacent to another vertex each. The remaining vertices induce the graph

H = 4K 4. Therefore. I'(G) is clique irreducible.

Theorem 6.2.6. The Gallai graph of a graph G, T'(G) is weakly clique irreducible

if and only if for cvery vertex u € V(G), < N(u) > is weakly clique irreducible.

Proof. Let G be a graph such that I'(G) is weakly clique irreducible. Let u us be
an edge in < N(u) > and let €; be the vertex in I'(G) corresponding to the edge
wuy; in G for i = 1,2. Since I'(G) is weakly clique irreducible and eje; is an edge
in I'(G), let C =< ey, e, ...,ex > be the essential clique in I'(G) which contains
the edge e;ey. For i = 3,4, ...k, let uu; be the edge in G corresponding to the
vertex e; in I'(G). Let e;e; be the essential edge in C. Therefore, there exist no
independent set in N (%) which contains both the vertices u; and u;. Hence, there
is no clique in < N(u) >° which contains the edge wu;u;, other than the clique
S =< up g, ...,ur >. Therefore, S is an essential clique in < N(u) >¢ which
contains the edge ujuy. Since the edge ujuy was arbitrary, < N(u) >¢ is weakly

clique irreducible.

The converse can be proved similarly. O
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6.3 Iterations of the anti-Gallai graph

In this section the anti-Gallai graph aud all its iterations which are clique irre-

ducible, clique vertex irreducible and weakly clique irreducible are characterized.

Theorem 6.3.1. The anti-Gallai graph A(G) is clique vertez irreducible if and
only if G does neither contain Ky nor one of the Hajo’s graphs as an induced

subgraph.

Proof. Let G be a graph which does neither contain K nor one of the Hajo’s
graphs as an il’l(lucodbsubg_raph. The cliques of A(G) are induced by the vertices
corresponding to the edges of G incident on a vertex of degree at least 3 whose
other end vertices induce a complete graph and by the vertices corresponding to
the edges which lie in a triangle. In the first case G contains an induced K4, which
is a contradiction. Therefore, the cliques of A(G) are induced by the edges which
lie in a triangle. Let < uy,us,u3 > be a triangle in G. Let eq, eq, e3 be the vertices
in A(G) correspouding to the cdges ujus, usug, usu; in G. Then < ey, ez, e3 > is
a clique in A(G). If a vertex ¢; for i = 1,2,3 lies in another clique of A(G), then
the edge corresponding to e; lies in another triangle. Therefore, the end vertices of
the edge corresponding to e; in G has a neighbor v; for i =1,2,3. v; #v; if i # j
and vq. v9. v3 are not adjacent to us. uq, uy, respectively, since otherwise G contains
a K. which is a contradiction. Then. < uy, uy, ug, v1. v, v3 > is one of the Hajo's

graphs. a contradiction. Hence, G is clique vertex irreducible.

Conversely. assume that G is clique vertex irreducible. If G contains Ky or one
of the Hajo’s graphs as an induced subgraph, then there exists a clique in A(G),

corresponding to a triangle in G, which shares each of its vertices with some other
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clique of A(G). O

Lemma 6.3.2. If G is Ky-free then A(G) is diamond free.

Proof. Let G be a graph which does not contain I{; as an induced subgraph.
Therefore, a triangle in A{G) can only be induced by a triangle in G. If two
vertices of the triangle in A(G) have a common neighbor, then it forces G to have

a K, a contradiction. Therefore, A(G) is diamond free. tJ

Theorem 6.3.3. The second iterated anti-Gallai graph A*(G) is clique vertex

irreducible if and only if G does not contain Ky as an induced subgraph.

Proof. By Theorem 6.3.1, A*(G) is clique vertex irreducible if and only if A(G)

does neither contain Iy nor one of the Hajo’s graphs as an induced subgraph.

Let G be a graph which does not contain K as an induced subgraph. Therefore,
G does not contain K; as an induced subgraph and hence A(G) does not contain
K, as an induced subgraph. Again. by Lemma 6.3.2. A(G) cannot have diamond
as an induced subgraph and hence it does not contain any of the Hajo's graph as

an induced subgraph. Hence, A?(G) is clique vertex irreducible.

Converscly, assume that A*(G) is clique vertex irreducible. If G contains K,
as an induced subgraph then in A(G) the vertices corresponding to the edges of
this /¥ induce Ky minus a perfect matching which is the fourth Hajo's graph. a

contradiction. Therefore, G does not contain K as an induced subgraph. g

Theorem 6.3.4. The n'" iterated anti-Gallai graph A™(G) is clique vertex irre-

ducible if and only if G does not contain K, o as an induced subgraph.

Proof. By Theorem 6.3.3, A™(G) is clique vertex irreducible if and only if A™~%(G)
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does not contain K, as an induced subgraph. A"2(G) does not contain K, as
an induced subgraph if and only if A"73(G) does not contain K as an induced
subgraph. Proceeding like this, we get that A(G) does not contain K, as an
induced subgraph if and only if G does not contain K, 49 as an induced subgraph.
Therefore, A™(G) is clique vertex irreducible if and only if G does not contain

K42 as an induced subgraph. |

Theorem 6.3.5. The anti-Gallai graph A(G) is clique irreducible if and only if

G does not contain Ky as an induced subgraph.

Proof. Let G be a graph which does not contain K, as an induced subgraph. By

Lemma 6.3.2 and Lemma 1.1.10, A(G) is clique irreducible.

Conversely, if G contains a Ky =< uq,us, u3,uq4 >, then it follows that the
clique in A(G), corresponding to the triangle < wuq,up,uz > in G, shares each of
its edges with some other clique. Therefore, if A(G) is clique irreducible, then G

cannot have Ky as an induced subgraph. O

Theorem 6.3.6. The n'" iterated anti-Galli graph A™(G) is clique irreducible if

and only if G does not contain an induced K 3.

Proof. By Theorem 6.3.5, A™(G) is clique irreducible if and only if A" 1(G) does
not contain an induced K. A""}(G) does not contain an induced Kj if and only
if A" 2(G) does not contain an induced Ks. Proceeding like this, we get, A(G)
does not contain an induced K, .5 if and only if G does not contain an induced
K,3. Therefore. A™(G) is clique irreducible if and only if G does not contain an

induced K, ;3. O

Theorem 6.3.7. The anti-Gallai graph of a graph G. A(G) is weakly clique irre-
ducible if and only if G is K4-free.
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Proof. Let < uy,us, ..., ux > be a clique of size greater than or equal to four in G.
Let e;; be the vertex corresponding to the edge u,u; in G for 4,5 € {1,2...., k} and
i # j. (Note that e;; = ¢;;). Consider the edge eqpe13 in A(G). The cliques in A(G)
obtained from the clique < uq,ug,...,u > in G, which contains the edge ejpers
are < €19,€13. ..., e1x > and < ejs, €93, €33 >. Both these cliques are not essential,
since all of their edges are present in at least one of the cliques < esy, €93, ..., €91 >,
< €31, €32, ...63x > OF < ey, €;5,e;1 > for 1,5 € {3,4,...,k} and i # j. Similarly, if
there is any other clique which contains the vertices uy, us and u3 in G, then the
corresponding cliques in A(G) will not be essential. Therefore. A{G) is not weakly

clique irreducible.

Conversely, assume that G is K4-free. Then by Theorem 6.3.5. A(G) is clique

irreducible and hence is weakly clique irreducible. O

Corollary 6.3.8. The anti-Gallai graph of a graph G, A(G) is weakly clique ir-

reducible if and only if it is clique irreducible.

Corollary 6.3.9. The n'" iterated anti-Gallai graph A™(G) is weakly clique irre-

ducible if and only if it is I, 3-free.

6.4 Cographs

In this section the cographs which are clique irreducible, clique vertex irre-

ducible and weakly clique irreducible are characterized.

Lemma 6.4.1. If G¢ has at least three non-trivial components then G is clique

reducible.
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Proof. Let G be a graph such that G° has at least three non trivial components.
Let Hy, Hy, ... H, be the components of G¢. Let G; = Hf for i = 1,2,...,p. Then,
G =G VGV ... VG, Also, any clique of G is the join of the cliques of G; s for
i =1,2,...,p. At least three of the H; s are non-trivial and hence at least three
of the G; s have more than one clique. Let Cj; for j = 1,2 be any two of the
cliques of G; for i = 1,2,3. Let S; be a clique of G; for i = 4.5, ..., p. Consider the
clique C11 VCan Vs VSsV... VS, Every edge of this clique is present in at least
one of the cliques C13 VCy VC3 V Sy V...V S, C11 VCu VC; VSV ... VS,

CroV Co V3 V Sy V...V S, Therefore, G is clique reducible. O

Lemma 6.4.2. If G° has at least two non-trivial components then G is clique

verter reducible.

Proof. Let G be a graph whose complement has at least two non trivial compo-
nents. Let H;,G;,Cy;fori=1,2,...pand j = 1,2 and S; for i = 3,4, ...p be defined
as in the proof of Lemma 6.4.1 and consider the clique C;;VCs VS3V...VS,. Every
vertex of this clicue is present in at least one of the cliques C11 VCy V S3V ...V .S,

Ci2VCy V S3V ...V S,. Therefore, G is clique vertex reducible. O

Remark 6.4.1. If G is clique irreducible then G° is either connected or has exactly
two non trivial components and if G is clique vertex irreducible then G¢ is either

conuected or has exactly one non-trivial component.

Lemma 6.4.3. The clique vertex reducible graphs and the clique reducible graphs

are closed for the operations of union and join.

Theorem 6.4.4. A cograph G is clique vertexr irreducible if and only if it can be
reduced to a trivial graph by recurswely deleting universal vertices in each of the

components.
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Proof. The proof is by induction on |V| = n. For n = 1 the theorem is trivially
true. Assume that the theorem is true for any cograph with less than n vertices. A
disconnected graph is clique vertex irreducible if and only if each of its components
is clique vertex irreducible. Therefore, we may assume that, G is a connected
cograph with n vertices. Then G = G; V G,. If both G;s are not complete,
then G will have at least two non trivial components which by Lemma 6.4.2 is
a contradiction. Therefore, let G be complete. Every vertex of G, is a universal
vertex of G. Deleting these vertices we get a cograph G5 with less than n vertices.
Any clique C of G, corresponds tc a clique G, V C of G and hence has a vertex
which does not lie in any other clique of G». Therefore, GG is a clique irreducible
cograph with less than n vertices and hence by the induction hypothesis G5 can

be reduced to trivial graph by deleting universal vertices. Hence, the theorem. [

Theorem 6.4.5. A connected cograph G is clique irreducible if and only if G =
GV Gy V I, where Gy and Gy are clique vertex irreducible cographs such that G¢

is connected fori=1,2 and p > 0.

Proof. Let G = G; V G2 V K, where G and G are connected clique vertex irre-
ducible cographs and p > 0. Any clique of G is of the foom H = H, V H, V K,,.
where H; and Hy are cliques of G; and G5 respectively. Since, Gy and Gy are
clique vertex irreducible, there exist vertices v; € Hy and vy € Hs such that they
do not lie in any other clique of G. Therefore, the edge v119 of H does not lie in

any other clique of G and hence G is clique irreducible.

Conversely, assume that G is clique irreducible. Since G is a cograph G¢ must
be disconnected. Therefore by Lemma 6.4.1, G has cxactly two non trivial com-
ponents. So, G = G1V Gy V K,,, where G{ and G§ are both connected. Let

Hyy and Hiyg be any two cliques of Gy and Hy; and Hyy be any two cliques of G,.
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H = HVHy VK, is aclique of G. Every edge in Hy;, every edge which joins Hyy
to a vertex of K, and every edge in K, will be present in the clique Hy; V Hyy V K.
Again, every edge in Hyj, every edge which joins Ha; to a vertex of K, and every
edge in K, will be present in the clique HyoV Hy, V K. But, H has an edge which
does not lie in any other clique of G. Therefore, that edge must be an edge which
joins a vertex of Hyj to a vertex of Hy). Let that edge be uju,. But, then u; and
uy cannot be present in any other clique of G; and G, respectively. Therefore, G,

and G are clique vertex irreducible. O

Theorem 6.4.6. The weakly clique irreducible cographs can be recursively charac-

terized as follows.

(1) K 1s a weakly clique irreducible cograph.

(2) If G1 and G, are weakly clique irreducible cographs, then so is their union

G1UGs.
(3) If Gy is a weakly clique irreducible cograph. then so is Gy V K.

(4) If Gy and G, are non-complete weakly clique irreducible cographs. then GV
G, is a weakly clique irreducible cograph if and only if every edge in G; belongs

to at least one vertex essential clique, for i = 1.2.

Proof. The graph K is weakly clique irreducible and union of any two weakly
clique irreducible graphs is weakly clique irreducible. The cliques of G4 V R, are
of the form H, V K,,, where H; is a clique in G. If H; is essential in G, then so
is H1V K, in G1 V K,. If Hy is an isolated vertex u. then again H, V I, is an
essential clique in Gy V K, with all edges with one end vertex u as essential edges.

Therefore, G, V K, is weakly clique irreducible if G is weakly clique irreducible.
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Let G, and G2 be non-complete weakly clique irreducible cographs such that
every edge in G; belongs to at least one vertex essential clique, for i = 1,2. If H;
is a vertex essential clique in G; where v; € V(H;) is the vertex which does not
belong to any other clique in G; for i = 1,2 then H; V H, is an essential clique in
Gy V Gy where vivy is an essential edge. Therefore, every edge in E(G;) belongs
to an essential clique in G, V Gs, since every edge in G; belongs to at least one
vertex essential clique, for 1 = 1,2. Let u € V{(G;) and v € V(G,). Consider the

edge uv € E(G1 V G3).
Case 1 : v and v are isolated vertices in (G; and G5 respectively.
In this case, uv is a clique and is essential.
Case 2 : u is an isolated vertex in Gy, but v is not an isolated vertex in Gs.

Let v" € N(v). There exist a vertex essential clique C in G5 which contains the
edge vv'. Let w be the essential vertex in C'. Therefore, uw is an essential edge in
the clique {u} V C. Hence the edge uv belongs to the essential clique {u} vV C in

G1V Gs.

The case where, u is not an isolated vertex in Gy, but v is an isolated vertex

in G, can be proved similarly.
Case 3 : u and v are not isolated vertices in G| and G, respectively.

Let v € N(u) and v € N(v). Let Hy and H, be the vertex essential cliques in
G, and G, respectively, which contains the edges uu’ and vy’ respectively. Let w;
be the essential vertex in H; for i = 1,2. Therefore, wyw, is an essential edge in
the clique H, V Hy. Hence the edge we belongs to the essential clique H; V Hy in

GV Gs.
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Therefore, every edge in G1 V G2 belongs to an essential clique and hence it is

weakly clique irreducible.

Conversely, assume that G is a weakly clique irreducible cograph. If G is
disconnected then it is the union of weakly clique irreducible cographs. If G has
universal vertices then it is the join of a weakly clique irreducible graph with IS,

where p is the number of universal vertices.

Therefore, let G be a connected cograph without universal vertices. Hence,
G = G, V G, where hoth G; and G, are not complete. None of the edges in
E(G:1)U E(G,) are essential, since both G; and Gy contains more than one clique.
Therefore an essential edge in G, V Gy, if it exist, must be of the form uv, where
u € V(Gy) and v € V(Gy). Then, v and v are essential vertices of G; and Gy
respectively. Hence, for i = 1,2, the edges of G; can be covered by essential cliques
if and only if every edge in G; belongs to at least one vertex essential clique.
Therefore, if G; and G, are non-complete weakly clique irreducible cographs, then
GV G,y is a weakly clique irreducible cograph if and only if every edge in G; belongs

to at least one vertex essential clique, for z =1, 2.

Hence, the theorem. O

6.5 Distance hereditary graphs

In this section the distance hereditary graphs which are clique irreducible. clique

vertex irreducible and weakly clique irreducible are characterized.

Lemma 6.5.1. The clique vertex reducible (clique reducible) graphs arve closed
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under the operations of attaching a pendant vertex, a true twin and a false twin.

Proof. Let G be a clique vertex reducible (clique reducible) graph and C be a

clique in G, all of whose vertices (edges) are present in some other clique in G.

The cliques of the graph obtained by attaching a pendant vertex u to a vertex
v of G are the cliques of G together with the clique uv. Therefore C is a clique in

this new graph and all of its vertices (edges) are present in some other clique.

The cliques of the graph obtained by attaching a true twin u to the vertex v
of G are the cliques of G which does not contain the vertex v and the cliques of
G which contains v together with the vertex u. If v ¢ C, then C is a clique in the
new graph and all its vertices (edges) are present in some other clique. If v € C,
then all the vertices (edges) in C other than u (the edges with one end vertex u)
are already present in some other clique. Since v is (the edges with one end vertex
v are) present in some other clique, u (the edges with one end vertex u) also must

be present in some other clique.

The cliques of the graph obtained by attaching a false twin w to the vertex v
of G are the cliques of G and the cliques of the form (SU{u}) — {v}. where S is a
clique in G which contains the vertex v. Therefore. (' is a clique in this new graph

and all of its vertices {edges) are present in some other clique. O

Theorem 6.5.2. The clique verter irreducible distance heveditary graphs cen be
recursively characterized as follows.

(1) Ky is a cliqgue verter irreducible distance hereditary graph.

(2) If G is a clique vertex irreducible distance hereditary graph. then so is the graph
obtained by attaching a pendant vertex to a vertex v € V/(G), where v satisfies either

N(v) is not complete or there exists w € N(v) such that N(w) = N(v).
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(3)IfG is a cliqﬁe vertex irreducible distance hereditary graph, then so is the graph
obtained by attaching a true twin.

(4) If G is a clique vertex irreducible distance hereditary graph, then so is the graph
obtained by attaching a false twin to a vertex v € V(G), where v satisfies < N(v) >

15 complete.

Proof. The graph K, is clique vertex irreducible. Let G be a clique vertex irre-
ducible graph. Let G’ be a graph obtained by attaching a pendant vertex u to a
vertex v where v satisfies the conditions in theorem. The cliques of G' are precisely,
the cliques of G and the edge uv. The clique uv contains the vertex u which does
not belong to any other clique of G’. Every clique of G’ which does not contain v
also has a vertex which does not lie in any other clique of G'; since G is clique ver-
tex irreducible. Let C be a clique of G which contains the vertex v. If N(v) is not
complete then C contains a vertex v’ # v which is not present in any other clique
of G and hence of G'. If N(v) is complete, then C contains a vertex which does
not belong to any other clique of G’ if and only if there exist a vertex w € V(C)

which does not belong to any other clique of G. i.e; if and only if ¥N(w) = N(v).

Let G be a clique vertex irreducible graph. Let G’ be the graph obtained by
attaching a true twin u to a vertex v of G. The cliques of G’ are precisely, the
cliques of G which does not contain v and the cliques of G which contains v together
with the vertex u. Each such clique contains a vertex which does not lie in any
other clique of G’. since G is clique vertex irreducible and hence G’ is also cligue

vertex irreducible.

Let G’ be the graph obtained by attaching a false twin u to a vertex v of

G. The cliques of G' are the cliques of GG together with the cliques of the form
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(CU{u}) —{v} where C is a clique of G which contains v. The cliques of G’ which
does not contain v will continue to have a vertex which does not lie in any other
clique. Let C be a clique of G which contains the vertex v. Every vertex of the
clique C other than v will be present in the clique (CU{u}) — {v} also. Therefore.
C contains a vertex which does not lie in any other clique of G’ if and only if v
does not belong to any other clique of G, which happens if and only if < N(v) >

is complete.

Also, any distance hereditary graph G can be obtained from I by the oper-
ations of attaching pendant vertices, introducing true twins and introducing false

twins (Lemma 1.1.3) and by Lemma 6.5.1, the theorem follows.

0

Theorem 6.5.3. The weakly clique irreducible distance hereditary graphs can be
recursively characterized as follows.

(1) K, is a clique irreducible distance hereditary graph.

(2) If G is a clique trreducible distance hereditary graph then so is the graph ob-
tained by attaching a pendant vertex.

(3) If G is a clique irreducible distance hereditary graph then so is the graph ob-
tained by attaching a true twin.

(4) If G is a clique irreducible distance hereditary graph then so is the graph ob-
tained by attaching a false twin to o verter 'V if < N(v) > s cligue verter irre-

ducible.

Proof. The graph I, is clique irreducible. Let G be a clique irreducible graph.
Let G be the graph obtained by attaching a pendant vertex u to a vertex v of

G. The cliques of G’ are preciscly, the cliques of G and the edge uv. Every clique
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contains an edge which does not lie in any other clique of G’ and hence G’ is clique

irreducible.

Let G be a clique irreducible graph. Let G’ be the graph obtained by attaching
a true twin u to a vertex v of G. The cliques of G’ are precisely, the cliques of
G which does not contain v and the cliques of G which contains v together with
the vertex u. Every such clique containg an edge which does not lie in any other

clique, since G is clique irreducible and hence G’ is also clique irreducible.

Let G’ be the graph obtained by attaching a false twin u to a vertex v of
G. The cliques of G’ are the cliques of G together with the cliques of the form
(CU{u})—{v} where C is a clique of G which contains v. The cliques of G’ which
does not contain v will continue to have an edge which does not lie in any other
clique. Let C be a clique of G which contains the vertex v. Every edge of ' which
does not contain v will be present in the clique (C U {u}) — {v} also. Therefore,
C contains an edge which does not lie in any other clique of G’ if and only if there
exists an edge vv’ which does not lie in any other clique of G. Therefore, the vertex
v’ is not present in any clique of < N(v) > other than C — {v}. So, < N{v} > is

cligque vertex irreducible.
The converse follows by Lemma 1.1.3 and by Lemma 6.5.1. 0

Lemma 6.5.4. The class of weakly clique reducible graphs is closed under the

operations of attaching pendant vertices, true twins and false twins.

Proof. Let G be a weakly clique reducible graph and let ¢ be the edge which is not

covered by any of the essential cliques in G.

Let G’ be the graph obtained from G by attaching a pendant vertex. The essen-
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tial cliques of G’ are the essential cliques of G together with the newly introduced

edge. But, these essential cliques will not cover the edge e.

Let G’ be the graph obtained from G by attaching a true twin v to a vertex
u. The essential cliques of G’ are the essential cliques of G which does not contain
the vertex w and the cliques of the form C' U {v}. where C is an essential clique in

G which contains the vertex u. Still. the edge e is not covered by essential cliques.

Let G’ be the graph obtained from G by attaching a false twin v to a vertex u.
The essential cliques of G’ are the essential cliques of G which does not contain the
vertex u, the cliques of the form (C' — {u}) U {v} and C, where C is an essential
clique in G which contains the vertex u and which has an essential edge with one

end vertex u. Again, the edge e is not covered by the essential cliques.
Hence the lemma. O

Theorem 6.5.5. A distance hereditary graph G is weakly clique irreducible if and

only if all its induced subgraphs are weakly clique irreducible.

Theorem 6.5.6. A distance hereditary graph G is weakly clique irreducible if and

only iof G does not contain Fig in Fig : 1.9 as an induced subgraph.

Proof. By Theorem 6.5.5, GG is weakly clique irreducible if and only if all its induced
subgraphs are weakly clique irreducible. But. a graph G is hereditary weakly
clique irreducible if and only if G does not contain any of the graphs in Fig :
1.9 as an induced subgraph (Lemma 1.1.11). But. G cannot have any of the
_graphs F1. Fy. ... Fig as an induced subgraph, since they contain gem as an induced

subgraph (Lemma 1.1.4). Hence, the theoren. O

Corollary 6.5.7. A cograph G is weakly maximal clique irreducible if and only if
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G does not contain Fig in 1.1.9 as an induced subgraph.

Proof. Since, cographs arc a subclass of distance hereditary graphs (Lemma 1.1.5)

and Fig in I'ig : 1.9 is a cograph, the corollary follows. a

Theorem 6.5.8. The weakly clique irreducible distance hereditary graphs can be

recursively characterized as follows.

(1) K5 is a weakly clique irreducible distance hereditary graph.

(2) If G is a weakly cligue irreducible distance hereditary graph then so is the

graph obtained by attaching pendent vertices to the vertices of G.

(3) If G is a weakly clique irreducible distance hereditary graph then so is the

graph obtained by attaching true twins to the vertices of G.

(4) If G is weakly clique irreducible distance hereditary graph then so is the graph
obtained by attaching folse twins to a vertex u where < N(u) > is Cy-free is

also weakly clique wrreducible.

Proof. The graph K is weakly clique irreducible. Let G be a weakly clique irre-
ducible distance hereditary graph. If G does not have Fjg as an induced subgraph
then a graph obtained by any of the above operations also cannot have Fig as an

induced subgraph. Therefore, they are all weakly clique irreducible.

Conversely, by the recursive definition of distance hereditary graphs (Lemma
1.1.3), it is enough if we could prove that, attaching a false twin v to a vertex u
which contains a €'y =< uy. uy. uz, uy > in N(u), gives a weakly clique reducible

raph. Clearly, < u.v.uq, uy, uz, uqg > is Fig.
LU UYL U, U3 19

Hence the theoren. O
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List of some open problems

1.

o

3]

6.

10.

11.

Characterize non-isomorphic graphs of the same order having isomorphic

Gallai graphs (anti-Gallai graphs).

Characterize graphs G for which the Gallai and the anti-Gallai operators

comimute.

Characterize graphs G for which ['(G) = A(G).

. Characterize all connected graphs which satisfy v(G) = v.(G).

Characterize all connected graphs which satisfy v.a(G) = v4a(G).

[dentify the domination parameters which satisfy Vizing’s type relation under

any of the graph products.

. Characterize the clique perfect graphs [73].
. Identify special classes of clique perfect graphs.

. Estimate sharp upper bounds for the clique transversal number for special

classes of graphs and characterize the graphs which attains this upper bound.
Does there exist graph classes which satisfy the < ¢ >-property for every t?

Characterize the clique irreducible graphs. the clique vertex irreducible graphs

and the weakly clique irreducible graphs.
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List of symbols

c, - Cycle of length n

d(v) - Degree of a vertex

d(G) - Diameter of a graph G

d{u.v) or dg(u,v) - Distance between u and v in G o
E or E(G) - Edge set of G

GUH - Cartesian product of G and H

GV H - Join of G and H

G H - Strong product of G and H

GxH - Tensor product of G and H

GUH - Union of G and H

K(G) - Clique graph of G

Kmon - Complete bipartite graph where m and n are the

cardinalities of the partitions

K, - Complete graph on n vertices

L(G) - Line graph of G

LK (G) -k iterated line graph of G

m or m(G) - Number of edges of G

Nv| - Closed neighborhood of v

N(w) - Open neighborhood of v

nG - n disjoint copies of G

n or n(G) - Number of vertices of G

NEPS(G,,G>.B) - Non complete expended p sum of Gy and Gy

with basis B



List of symbols

P,
"G)

<S>

116

Path on n vertices

Radius of G

Graph induced by S CV

Trestled graph of index &

Vertex set of &

Independence number of G

Clique independence number of G
Covering number of G

Domination number of G

Cographic domination number of G
Global domination number of G
Global cographic domination number of G
Independence domination number of ¢
Clique transversal number of G
Chromatic number of G

Clique number of G

Gallai graph of G

k" iterated Gallai graph of G
Anti-Gallai graph of G

k" iterated anti-Gallai graph of G
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1-factor, 5
k-regular, 5
factors of NEPS, 10

false twin, 5 line graph, 2, 3, 8. 22, 85

forbidden subgraph, 3. 5. 32 . ..
grapil, 2. o, minimal dominating, 8

Gallai graph, 2, 8, 18, 29, 92 NEPS. 10. 58

graph, 4
graph. non-complete extended p-sum, 10

class, 24 -
e NP-complete. H7. 58

operator, 2
open neighborhood. 5

H-free, 5
: order, 4

Hajo’s graph, 16

Helly property, 7, 20 path, 5

‘ ' _ _ yendant vertex, 5
hereditary clique-Helly, 7. 15, 16 ‘ -
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perfect graph, 3, 12, 15, 71 universal vertex, 5

perfect matching, 5
vertex, 4
planar graph, 3, 9, 51, 70 .
coloring. 7
plane representation, 9 ]
essential, 18
proper vertex coloring, 7 ] }
hereditary, 5

radius, 7, 42 Vizing's conjecture, 60

self complementary, 6 weakly clique irreducible graph, 3, 13,
size. 4 22

spanning subgraph, 4, 8 weakly clique reducible graph, 13

split graph, 3, 12, 16, 21, 37
star, 6

strong product, 10

sub multiplicative, 10
subgraph, 4

super multiplicative, 10

< t >-property, 12, 20

tensor product, 10

threshold graph, 3, 12, 17, 37
totally disconnected, 6

tree, 3, 6, 46, 49

trestled graph of index k, 13, 72
triangle, 6

true twin, 5

union, 9

universal muitiplicative, 10
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