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Chapter 1 

In trod uction 

Computation of bounds on variance of functions of random variables, conditions 

for attainment and the fonn of probability distributions admitting such bounds have been 

always fascinating problems in statistics and probability. Some classical examples in this 

direction are those representing the lower bound to the variance of an unbiased estimator 

proposed in the well known Cramer-Rao, Bhattacharya and the Chapman- Robbins 

inequalities. One stream of research belonging to this category stimulated by a simple 

inequality giving the upper bound to the variance of a standard nonnal variate proposed 

by Chernoff in 1981 in connection with the solution of a variational problem, has 

produced a vast amount of literature. Chernoff's (1981) result is that when X is N (0, I) 

and c(x) is absolutely continuous function with derivative c'(x) , under appropriate 

condition on the moments, 

V(c(X)) ~ E(C'(X))2 (1.1 ) 

with equality sign holding good if and only if c (x) is linear. This was followed by a 

plethora of extensions initially to higher dimensions in the nonnal case and subsequently 

to inequalities for other probability distributions including discrete ones. While Chernoff 

(1981) made use of Hennite polynomials as the main fabric to arrive at (1.1), other 

methods of proof like the use of Schwarz inequality, Legranges identity etc were 

proposed to obtain what was later known as Chernoff- type inequalities as well as lower 

bounds to the variance of functions of random variables and vectors. Another notable turn 

in this research area was the exploration of the possibilities to characterize discrete and 



continuous distributions in terms of the upper and lower bounds. These characterizations 

were further consolidated by prescribing a general measure- theoretic framework that 

encompassed the discrete and continuous cases and also extended to cover singular 

distributions. The impact of the theoretical developments on the usefulness of the bounds 

and covariance identities proved in the course of establishing various results were felt in 

other areas like probability theory, statistical estimation, isoperimetric problems, 

reliability modeling, etc. In view of the considerable scope this area of research has, to 

open up new theoretical developments as well as potential to encourage building up 

meaningful models and analysis of random phenomena, an attempt is made in this thesis 

to study a different aspect ofthe work induced by Chernoff- type inequalities. 

An important thought originated from (1.1) is to characterize the class probability 

models through lower bound on the variance of a function of random variables satisfying 

specific conditions. Characterizations based on various extensions of Chernoff inequality 

have been obtained by Borokov and Utev (1984), Cacoullos and Papathanasiou (1985, 

1989, 1992, 1995, 1997), Srivastava and Sreehari (1987, 1990), Prakasa Rao and Sreehari 

(1986, 1987, 1997), Purkayastha and Bhandari (1990), Korwar (1991), Papathanasiou 

(1993), Alharbi and Shanbhag (1996) and Borzadaran and Shanbhag (1998). Among 

these Alharbi and Shanbhag (1996) point out the application of the results in 

characterizing life distributions through a result similar to Cox representation of the 

survival function in terms of failure rate and suggest cases of some continuous 

distribution as illustrations. A detailed review of these results can be found in Chapter 2. 

The results due to Alharbi and Shanbhag (1996) throws light in to the potential 

application of the variance bounds in reliability analysis, though the authors makes a brief 

mention of this aspect. This line of thought is further strengthened and encouraged by 

another stream of research in reliability modelling during the last three decades, which 

has conditions similar to those in the work on Chernofftype inequalities. 

Associated with a non- negative random variable X with distribution function 

F (x), the concept of failure rate, mean residual life, reversed failure rate and the 

reversed mean residual life are extensively used in modelling and analysis in reliability 

studies and for applications in other disciplines such as economics, actuarial science, 

survival analysis and biology. Relationship between failure rate(reversed failure rate) and 
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mean residual life(reversed mean residual life) or left (right) truncated expectations of 

functions of X were found to be quite useful in studying comparative behaviour of these 

functions and in characterizing probability distributions. In many cases some of these 

functions do not have a simple closed fonn for analytic treatment and this necessitates 

such relationships for identifying the underlying distribution through characterization 

theorems. Of these, reversed failure rate, which is receiving considerable attention 

recently (see Block et. al. (1998), Gupta and Nanda (2001), Nanda and Gupta (2001), 

Nanda et. al. (2003), Nanda et. al. (2003), Nair and Asha (2004), Nair et. al. (2005), 

Gupta et. al. (2005) and Nanda and Sengupta (2005» opens up some interesting 

extensions hitherto not discussed in earlier papers. Like the Chemoff inequality it seems 

that the relationships between conditional expectations and failure rate was first derived 

in the case of the nonnal distribution N (,li, a 2
) (Kotz and Shanbhag (1980» in the form 

E(X I X > x) =,li+ a 2k(x) 

where k (x) is the failure rate of X (see Chapter 2 for a review and detailed discussion). 

Since then similar results were proved for individual distributions and families in both 

discrete and continuous cases by various researchers like Osaki and Li (1981), Ahmed 

(1991), Nair and Sankaran (1991), Glanzel (1991), Koicheva (1993), Ruiz and Navarro 

(1994), Consul (1995), Ghitany et. al. (I995), Gupta and Bradley (2003), Navarro and 

Ruiz (2004), etc. 

In this thesis, our aim is to link the results in these two streams of characterization 

through a general theorem that holds for most of the life time distributions used in 

practice. By doing so our expectation is that the new theorem will enable the introduction 

of an alternative criteria for modelling lifetime data through the relationships between 

conditional expectations and failure rates and also to infer the parameters contained in the 

model, from among a large class of distributions through the variance bounds that could 

be established in the process. The relaxation of the support of the random variable to the 

whole real line instead of positive reals contemplated in reliability characterizations will 

give provision for the inclusion of the large number of distributions into the new format. 

Further our aim is to bring the entire results in the two streams of characterization 

mentioned above under a uniform framework. The variance bound so obtained is 
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applicable to estimation theory once the random variable becomes the estimators and the 

corresponding distributions become the sampling distributions. Thus a new methodology 

for unbiased estimation can be chalked out. When this happens it becomes mandatory to 

compare it with the existing results in classical theory such as the Cramer- Rao, Chapman 

Robbins bounds and evaluate its performance with the classical counterparts. These 

considerations form the core themes in the present investigation. The work done in this 

direction is organized in to five chapters in the present thesis. 

After describing the origin and development of Chemoff- type inequalities an 

attempt is made in Chapter 2 to review the two areas of characterizations mentioned 

above. Tn Section 2.2, a detailed study is carried out to describe the various extension of 

( I. 1) and its applications. Characterizations based on various extension of (1. I) are 

reviewed in Section 2.3 and those on the relationships between conditional expectations 

and failure rate or reversed failure rate are given in Section 2.4 so that the results given in 

this chapter form the background material for the deliberations in the succeeding 

chapters. 

The work done in the Chapter 3 revolves around a general theorem linking the 

variance bounds and relationship between conditional expectation and failure rates. In 

Section 3.2, we present the main result that obtains the identities connecting (reversed) 

failure rates and (right) left truncated means as necessary and sufficient conditions for the 

existence of lower bound to the variance. Since the families of distributions are most 

useful in modelling and cover a large number of potential individual distributions, the 

expression for the lower bound is calculated for the distributions belonging to the 

exponential, Pearson, generalized Pearson families, which cover most of the lifetime 

models used in practice. Section 3.3 explains the application of the results in unbiased 

estimation of parametric functions in the models involved in the above families. It is 

shown that the bound obtained in Section 3.2 contains the Cramer-Rao and Chapman­

Robbins inequalities as particular cases and further that it compares favourably the 

Cramer- Rao inequality in non- regular cases. In Section 3.4, we discuss the role of the 

identity (3.2.1) in reliability modelling. Finally in Section 3.5, the application of our 

results in the new area of catastrophe theory is pointed out. 
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A discrete analogue of the results in the continuous case presented in Chapter 3 is 

described in Chapter 4 to take the advantage of potential use of the results in analyzing 

discrete data. Exact expression for lower bounds to the variance is calculated for 

distributions belonging to the modified power series family, Ord family and Katz family. 

It is shown that the bounds obtained here contain the Cramer-Rao and Chapman-Robbins 

inequalities as special cases. Application of the result is illustrated through real data. In 

conclusion, this chapter arrives at the class of discrete probability distributions that can be 

used for reliability modelling in terms of characteristic properties represented in terms of 

reversed failure rate (or failure rate) and right (or left) truncated expectations. 

The study on truncated random variables is particularly important in reliability 

and in survival analysis when the device or system under consideration has lived through 

a specified time period and the remaining life time is of main concern. In this context the 

conditional variances play the same role as the variances in usual modelling and analysis 

of statistical data. The variance residual life pays an important role in identifYing life 

distributions through characterization based on its functional form and in distinguishing 

appropriate models through criteria for aging and its relationship with failure rate has 

received considerable attention recently. In Chapter 5 we study the properties of 

conditional variance and their applications. A new characterization based on variance 

residual life is established in which it is shown that, the same relationship between the 

conditional expectations and failure rates used in developing the main results in Chapter 

3 has the potential to derive lower bounds on conditional variance as well. Following the 

methodology by Cacoullos and Papathanasiou (1997) a lower bound to the conditional 

variance is also established. The bound developed here is compared with Cramer- Rao 

and Chapman Robbins inequality so that construction of minimum variance unbiased 

estimators of relevant parametric functions in truncated distributions is made possible. 

Recently Arishi (2005) characterized exponential family of distributions by an 

identity connecting conditional variance and failure rate and deduced some results for 

binomial and Poisson random variables. This leaves scope for studying the 

characterization problem addressed by Arishi (2005) in a more general setup. In 

continuation of the work done in the previous chapters we discuss the properties of 

conditional variance for a non- negative integer valued random variable in Chapter 6. An 
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identity connecting conditional variance and failure rate is established for the class of 

distributions satisfying (4.2.1) so that the work by Arishi (2005) on binomial and Poisson 

random variables are special cases of our findings. Application to unbiased estimation is 

also discussed. 

The thesis is concluded in Section 6.4 with the identification of the problems of 

future interest that have surfaced during the course of the present study. 
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2.1 Introduction 

Chapter 2 

Review of literature· 

In the presentation of the research problems considered in our study, it was 

mentioned that one of the objectives is to unifY two important streams of characteriza­

tions viz. those based on variance bounds and relation between conditional expectations 

and failure rates. The basic aim of such a venture is to enrich each stream by exploring 

new characterization theorems that will enable application of the results to a variety of 

fields hitherto not covered by the existing results. In doing so, frequent references to the 

literature on both streams of characterizations appears to be essential and accordingly the 

present chapter is devoted to a discussion of the important results related to Chemoff­

type inequalities as well as those on relation between various reliability concepts. Upper 

variance bounds derived by Chemoff (198 I) to the normal random variable paved the 

way for other researchers in the earlier part of the work to find the similar bounds for 

other distributions as well as higher dimensional extensions. However, lower bound to 

the variances being of more interest to statistical inference, this aspect is pursued in the 

present study and as such the literature survey takes care of results in this direction more 

intensively. Other results are only mentioned or references are provided for the sake of 

completion. 

2.2 Variance bounds 

By way of the history of the subject, we mention that, although most work on 

variance bounds cite Chemoff inequality as the starting point and the terminology 

• Part of the material in this chapter is reported in Nair and Sudheesh (2007). 
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'Chemoff- type inequality' is used by various authors to denote them, Houdre and Kagan 

(1995) noted that the same inequality was obtained much earlier by Nash (1958) in a 

discussion on continuity of solutions of parabolic and elliptic equations. Another 

important reference that has precedence over Chemoff (1981) is Brascamp and Lieb 

(1976) in which they have proved that for a log concave density 

f ( x) = exp [ -~ ( x ) ] ' 

V(c(X))::; E[ c'(X)/ r(X)r 

which contains (1.1.1) as a special case when 

~(X)=~X2 . 
2 

(2.2.1) 

We also note that (2.2.1) is a more general result than (1.1.1), but the methods of proof in 

the two cases are different. 

Before taking up the survey of literature we introduce a few notations to bring 

some uniformity in the presentation of the materials drawn from different sources that 

vary considerably in description. Let X be a random variable (discrete or continuous as 

the case may be) with distribution function F ( x) and density function f ( x), whenever 

it is assumed to exist, in the range -<X:J::; a < b ::; 00 in the continuous case or probability 

mass function p(x) in the range N =(0,1,2, ... ) when X is discrete. A is the class of 

absolutely continuous functions with c (x) E A such that the function c (X) has finite 

variance. Differentiation will be denoted by primes. 

Chemoff(1981) makes use of the expansion of c(x) in orthonormalised Hermite 

polynomials with respect to a normal density 

c(x) = ao +a1H1 (X) +aZH2 (X)+ ... 

with probability one, so that we have 

where 

{
o i 1: j 

/j -
,,- 1 i=j 
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Hence, 

dH,(X) r: () -----'---'-- = -...j 1 H 1 X dx ,-

and 

These give, 

>C. 

V(C(X))= La,2 
,~l 

and 

c, ,(X) = t fi (J,H,_1 (X) + R" (X) 
1=1 

with Ho = 1 and R" is the remainder. Assuming E ( c' ( X) f < 00 , one can see that 

E(c'(X)f = fia,2 ~ V(c(X)). 
;=1 

The proof is indicated here because of its novelty and later reference in the development 

of a matrix variance inequality. Variance bounds are traditionally established first by 

developing some covariance identity and then using the Cauchy- Schwarz inequality (e.g. 

Cramer- Rao Theorem). This was the technique employed by Chen (1982) when he 

considered independent and identically distributed N (0,1) random variables 

Xl'X2""'X. and real valued Borel measurable functions cl'c2 , ... ,Ck defined on Ri such 

that 

X; 

c(Xl'X2"",Xi ) = fC j (XI ,,,,,xi-! ,t, X1+1 , ... ,x.)it + c j (XI'""X;_I' O,xl+l , ... ,xi ) 

o 

for i = 1,2, ... , k and proved that 

k 2 

V(c(X!,X2 , ... ,Xk )) ~ LE[ C, (XI ,X2 , ... ,Xk )] (2.2.3) 
;=1 

with equality in (2.2.3) holding good if and only if c is linear in Xp X2 ' ... 'Xk • Notice 

that c, ( ~, X2' ... , Xi ) = dc and hence for k = 1 , we have the Chemoff's inequality, thus 
dx, 
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providing (2.2.3) as multivariate extension of (1.1.1) for independent and identically 

distributed standard nonnal variates. A further generalization of (2.2.3) covering non­

nonnal cases also is available in Cacoullos (1982). Defining random variables 

(2.2.4) 

where 

k 

E, (c) = E, (c(X)) = Jc(,!) n In (Xk )dxk 
n=I+1 

and X = ( Xl' X 2' •.. ' X t ) are independent random variables with joint density 

and 

with the c functions as defined to arrive at (2.2.3), it is easy to see that 

(2.2.5) 

If the random variable X, has mean 11, and V(E;(c(X)))<oo, Cacoullos (1982) bound 

IS 

t '" 2 t 

V(c(X)) s l:E J E; [c; (XI' ... ,X;_I'I,X,+I' ••• 'Xt )] J (11; -xJ,t; (x;)dx;dt (2.2.6) 
;=1 --<Xl --:(I 

with equality if and only jf c is linear in xl' x2 ' ... , xk • It is readily seen that when the 

X;'s are independent and identically distributed as N (0,1), inequality (2.2.3) results. 

The paper also presents a discrete analogue when XPX2, ... ,Xt are independent defined 

on N and c is a real valued function on N k 
, stating 

(2.2.7) 

with ~;, the forward difference operator 
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Cacoullos (1982) also obtained the expression for the lower bound using a version of the 

Cramer- Rao inequality and further proposed the upper bound 

V( c( X)) ~ r f xl(x)[ c'(t) J dxdt - 1" L xl(x)[ c'(t) J dxdt (2.2.8) 

under the assumption of existence of the density I (x), finiteness of variance of c (X) . 

The discrete analogue of (2.2.8) for X defined on N is 

(2.2.9) 

The importance of the above paper (Cacoullos (1982» is that for the first time the focus 

of attention was shifted from distributions of X other than the normal including the 

discrete case. However, as we will see later, these bounds can be improved further. 

A series of papers published by Cacoullos and Papathanasiou (1985, 1989, 1992, 

1995, 1997), abbreviated as C- P in this review, gave a new dimension to the research on 

the topic of variance bounds in the form of several theoretical results and applications. 

For the sake of continuity and uniformity of the subject matter, we slightly deviate from 

the chronological order and discuss the major results in the above papers. C- P (1985) 

made use of Le grange's identity 

applied to V ( c (X)) with 

~ = c(x)JI(x) and ~ = JI(x) 

the Cauchy- Schwarz inequality for (f c'(t}itf and fmally Fubini's Theorem to arrive 

at 

v( e( Xl), 1[ e'(X)]'O (p -t)f(t)dt)dx, 

~ 1[ e'(x)], (f(t -I' )f(t)dt)dx, (2.2.11 ) 

where j.i = E( X). We may note that the random variable X has zero mean, the bounds 

(2.2.8) and (2.2.10) remains the same, but for X 2: 0, the former exceeds the latter by 
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2 r[ C'(X) ] (1- F(x))dx > O. 

The discrete version ofthe (2.2.11) is 

The improved bounds in the case of the nonnal, exponential, gamma, 1, Poisson, binomial 

and Pascal distributions were also presented in C- P (1985), correcting the results in 

Cacoullos (1982). C-P (1989) is of special significance in that for the first time a rigorous 

proof of the lower bound to variance of c(x) E A is presented in tenns of a special 

function w ( x) defined by 

x 

cr2w(x)f(x) = feu -t)f(t)dt (2.2.13) 

in the continuous case and 

x 

cr2w(x)p(x) = ICu -k) p(k) (2.2.]4) 
k:O 

in the discrete case, where cr2 
= V ( X) . After establishing a pivotal covariance identity 

'" 
Cov(X,c( X)) = cr 2 f c'(x)w(x)f(x)cU (2.2.15) 

they use Cauchy-Schwarz inequality to show that 

inf V{c(X)) = 1 

cEA V(X)E2(C'(X)w(X)) 
(2.2.16) 

under suitable assumptions on the existence of the expectations involved in (2.2.16). 

When X is discrete defined on N , 

(2.2.17) 

with w(.) as in (2.2.14). It is infonnative to note that the upper bound (2.2.11) is also 

expressible in terms ofthe w(.) function so that one can write 

(2.2.18) 

and a similar expression for the discrete case replacing e' ( x) by de (x). The lower 
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bounds corresponding to (2.2.6) and (2.2.7) in the multivariable cases involving the w 

functions are respectively 

" v( c( X)) ~ L(j,2 E2 (Wi (Xi )Ci '( X)) (2.2.19a) 
i=1 

" V(c(X)) ~ L(j,2 E2 (w, (XI )~iCi (X)) (2.2.19b) 
1=1 

for the continuous and discrete cases, where 

x, 

(j12 WI (X,)};(xi ) = J (f.J1 -t)};(t)dt 

in (2.2.19a) and 

0"1
2WJXJPI(XJ = I(f.Ji -k) Pi (k) 

k=O 

in (2.2.19b) and the subscript i in all the expressions indicating that they correspond to 

the random variable Xi' i = 1,2, .. " n in a set of independent random variables 

As a further generalization, C-P (1992) drops the assumption of independence in 

the above results and consider X=(XI'X2 , ... ,Xn ) as a random vector in the n-

dimension rectangle ai < Xi < bj , - et) S a j < b, set), i = 1,2, .. , n with dispersion matrix 

L > O. They define functions w
i (x) by 

(2.2.20) 
a, 

and 

qi (x) = IO"ij\, 
i=l 

where 

to obtain the relationship 

COV(qi (X),c(X)) = E( wi (X)cj (X)) 
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with c (x) , a real valued function on the range of X satisfying 

and w i (x) f (x) ~ 0 monotonically as x approaches any boundary points of the 

rectangle along the coordinate axes. Then (T denote the transpose of the vector) 

(2.2.21 ) 

with equality holding good if and only if c(x) is linear. We may remark in this 

connection that the assumption w' (x) f ( x) ~ 0 is not satisfied by many distributions 

and as such the question of lower bounds in such cases is still an open problem. Another 

problem of natural interest when lower bound to variance is prescribed is that of finding 

the form of probability distributions admitting such bounds. For example, since w( x) 

appearing in (2.2.13) is unique for each distribution, differentiating (2.2.13) and assuming 

tim xf(x) = 0 we get 
-"-+-«> 

(w(x)f'(x)+ w'(x)f(x))a2 = (,u-x)f(x). 

Rearranging terms 

f'(x) ,u -x-a2w'(x) 
f(x) == a 2w(x) 

(2.2.22) 

which provides the distribution of X. On the other hand, in the multivariate case the 

problem is a little more difficult as the solution of the system of partial differential 

equations 

~(Wi (x)1( x)) = (,ui -q' (x))1 (x), i = 1,2, ... ,n 
oXi 

(2.2.23) 

seems much more complicated except in cases where wi (x) has simple functional forms 

such as for normal, Dirichlet and certain forms of exponential distributions. 

For an absolutely continuous function h(x) of the random variable X defined on 

an interval (a, b) on the real line where a may be -00 and b may be +a:J, C- P (1997) 

has the following results 

Cov(h(X),c(X)) = E(z(X)c'(X)) 
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where 

and 

., 

z(x)f(x):::: fCE(h)-h(t)f(t)dt 
a 

V(c(X))~ E2(Z(X)C'(X)) 
E(z(X)h'(X)) 

(2.2.24) 

(2.2.25) 

with the equality sign holding good if and only if C (x) = Cl h (X) + C2. There are several 

particular cases of interest. Obviously when, h (x) :::: X and z ( x) :::: (1"2 W ( x) equation 

(2.2.16) derives. Setting 

h(x)::::-f'(x)/ j(x), z(x)::::1 

and whenever the density vanishes at a or b, 

v(C(X)) ~ cE(c'(X)f 

which is the Brascamp and Lieb (1976) bound mentioned earlier. Further, taking 

h (X) :::: X, X become normally distributed, C = (1"2 so that we reach at the classical 

Poincare inequality of Chen and Lou (1987). In the discrete case, corresponding to 

(2.2.24) and (2.2.25) we have 

and 

x 

z(x)p(x):::: L(E(h)-h(k)pCk) 
k=O 

E2(Z(X)fic(X)) 
V(c(X))~ E(z(X)~h(X)) . 

(2.2.26) 

(2.2.27) 

An interesting feature of the above results is that there exist some nice functional forms 

for z ( x) (or w ( x ) that characterize continuous and discrete distributions possessing 

lower variance bounds. Also equations (2.2.24) and (2.2.26) are of fundamental 

importance in reliability modeling. These aspects are discussed in the next Chapter. 

For some other works on Chemoff- type inequalities left out in the chronological 

sequence in a somewhat different direction we refer to Vitale (1989), Prakasa Rao 

(1992), Hu Chin Yuan (1986), Iohnson (1993) and Prakasa Rao and Sreehari (1997). 

These are in the form of variance bounds for infinitely divisible distributions, bivariate 
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distributions with specific conditionals such as normal, gamma, binomial, negative 

binomial and Poisson laws, inequalities for non- linear functions of stochastic integrals, 

inequalities involving uniform distributions and functions of Pearson variates. Klassen 

(1985) provides upper bounds to variances of Laplace, logistic, gamma and double 

Weibull distributions. Some involved extensions covering convolution of probability 

measures and infinite divisible law in the form of Poincare type inequalities are also 

considered in Chen (1985). With a shift in the domain of the c (x) function from real 

values to complex values and assuming the existence of the kth derivatives C(k) (x), 

Houdre and Kagan (1995) show that 

and for n = I, 

(see also Houdre and Perez (1995)). 

Papadatos and Papathanasiou (1996) obtained upper and lower variance bounds of 

random variable in terms of the quanti le density function. Starting from the expression 

for the upper bound in (2.2.18) (the case of lower bound is similar) with c = F- l (H) , 

where H is the distribution function of the random variable Y, we have identical 

distribution for X and c (Y) and hence from (2.2.18) 

(2.2.28) 

where cr and ex becoming quantile density function of Y and X. Equation (2.2.28) 

generalizes the results of Amold and Brocket (1988) which states that for a random 

variable Y in (0,1) and differentiable function c (.) on (0,1) 

where H(l) is the distribution function corresponding to the first moment distribution of 

Y, by removing the restriction on the range of Y. 
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Let X, Y and Z be independent exponential random variable and e, hE A such 

that Ec 2
, Eh2 are finite. Then Bobkov and Houdre (1997) shows that 

Cov(c(X),h(X)) = E(e'(X + Y)h'(X + Z)) 

Further if c and hare non- decreasing convex function on the real line 

and 

Cov(e(X),h( X));::: kE( c'(X) h'(X)), k > 0 

v( c( X));::: kE(e'(X))2 

V(X -ay- ;:::kP(X~a), 

for any real a. For any convex function c, for the standard double exponential 

distribution with 

j(x) = 2-1 exp[ -Ixl] , 

E(c'(X)f ~ V( e(X)) ~ 4E(e'(X))2. 

The paper by Arakelian and Papathansiou (2004) has its main focus on bounds on 

absolute deviations, but has some implications on variance as well. They provide a 

sharper bound to E (le (X)J) than the traditional 

1 

E(lc(x)I)~[ E(c(x)f]2 

by using Hovenier's (1994) inequality for integrable functions ~ (x), hz (x), viz. 

for the choice of 

~ = c ( x ) ~ j ( x) and ~ = ~ j ( x) 

to end up with 

E(le(X)1) ~ F(r)(E(e(X) I X < r))+ F(r)( E(e2 (X) I X ~ r)f· (2.2.29) 

Writing U (r) for the square of the expression on the right of (2.2.29) 
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so that 

v( c(X)) ~ U(a)-U(r), 

an inequality of some interest. When the point of truncation r becomes the mean f.i of 

I 

(T2 ~ F ()J ) [ E ( (X - )J ) 
2 I X < f.i ) ] + F ()J ) [ E ( (X - )J ) 

2 I X ~ f.i ) J2 . 
Similar results for the discrete random variable X derive from the use of the inequality 

and we obtain (2.29) with r replaced by m. Borzadaran and Shanbhag (1998b) also 

provide similar kind of results about the bound on absolute deviation. 

The method of deriving variance inequality with the aid of the Hennite 

polynomials as discussed at the beginning of this section is recaIled in Olkin and Shep 

(2005) to obtain a matrix variance bound. They illustrate the bivariate case that easily 

extends to the multivariate version by simply increasing the number of components. The 

expansion (2.2.2) applied to two functions c (X) and h (X) with bi replacing aj in 

(2.2.2) in the expansion for h( X) , 

Xl 

V(c(X))= L:a/, 
i~1 

'" 
V(h(X)):= L:b/ 

i~l 

and 

If H := (hij) and C = (cij) are k x k matrices, where 

and 
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we have 

so that 

H -C =(a,p)'(a,p) ~ 0 

with a, = M a, and P, = ~ b, . Some other results on the variance bounds which 

are in fact characterizations are discussed in the next section for convenience. 

2.3 Characterization by variance bound 

Characterization problems associated with variance bounds arising from 

Chernoff- type inequalities can be broadly classified into two categories- results that 

characterize specific probability distributions such as normal, Poisson etc or certain 

families and those concerned with a general class of distributions. The work on normal 

law (Borokov and Utev (1984)), multivariate normal (Prakasa Rao and Sreehari (1986)), 

Poisson distribution (Prakasa Rao and Sreehari (1987»), unifonn distribution 

(Purkayastha and Bhandari (1990», Pearson family (Korwar (1991 », Power series and 

factorial series families (Papathanasiou (1993» and normal laws with reference to central 

limit theorem (Cacoullos et. al. (1993, 1994», belongs to the first category. A further 

discussion of these results separately is not attempted here in view of the fact that most of 

them are subsumed in the general theorems that are taken up subsequently. 

Srivastava and Sreehari (1987) considered non-negative integer valued random 

variables with p(O) > 0 and E(X)2 < 00 and proved that 

(2.3.1 ) 

where T is the class of real valued functions c(.) such that E( c(X)(M(x)f) < 00 and 

for some g (x) with E (g ( X») = V (X) if and only if g satisfies 
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x 

ICu-k)p(k)= p(x)g(x). (2.3.2) 
k=O 

They also discussed the application of the results for some standard distributions. C- P 

(1989) characterized (2.2.16) and the discrete version in (2.2.19) provided that in the case 

of (2.2.16) that expression holds for some w( x) satisfying E( w(x)) = I (See also 

Srivastava and Sreehari (1990) for almost the same results). 

A more general result covering distributions that are not purely discrete or 

continuous, under a uniform framework, is presented in Alharbi and Shanbhag (1996). 

They considered a non- constant Lebesgue- Steilties measure function h (.) in R and a 

measure v on the Borel field of R determined by it such that E (h (X)) = J1 and 

E (h (X) )
2 

< 00 and Bore1- measurable function w (x) such that w (x) > 0 almost surely 

and E(w(X))=V(h(X)). For cEA, E(C(X))2 <00, O<E(w(X)(c'(X)f)<oo, 

and c I is the Radon- Nikodym derivative of c, they proved the following results. 

(i) (2.3.3) 

if and only if 

w(x)dF(x) = J (h(t)- Ji)dF(t)dv(x), x ER. (2.3.4) 
Ix."') 

(ii) If E(w(X)lc'(X)/) <00 and E(w(X)c'(X))#O then 

(2.3.5) 

if and only if (2.3.4) holds. It is interesting to note the comparison between (2.3.5) and 

results in (2.2.24) through (2.2.27) for the essential conditions for the latter results to be 

valid. Whenever h(x)=[xl, c'(x) in (2.3.3) and (2.3.4) becomes ~c(x) for each 

x=0,±I,±2, ... and 

OD 

w(x)p(x) = I(k- Ji)p(k). 
k=x 
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Several examples of distributions characterized through the forms of w( x) is given, for 

example, the Poisson or shifted Poisson has the characteristic property 

sup V(c(X)) 
c(x)EA V(X)E(~c(X)f :::1, 

improving upon the result of Prakasa Rao and Sreehari (1987). There IS also a 

representation of the distribution function in terms of the w (x) function viz. 

where 

dF(x) = a( w(x( )exp[ -H(x)],x ER 

H(x)= r(t-,u) dt 
)J w(t) 

with [ placed by - s: if x < ,u, a is a normalizing constant and 

{ 

c, ifx~ (l,r) 
W x = t-,u f t () f ( ) () dt, other wise 

[x,,,) j(x) 

(2.3.6) 

(2.3.7) 

where I and r are the left and the right extremities of the distribution. Borzadaran and 

Shanbhag (l998a) in a further refinement of the results mentioned in (2.3.4) through 

(2.3 .6) use a function a (X) of the random variable with finite mean ,u ° satisfYing 

inf (a(x)- ,u0) > 0 as x ~ cQ if r::: cQ and inf (,u. -a(x)) > 0 as x~ --00 if 1=--00. 

Their results are 

Cov(c( X),a( X))::: E( w( X)c'(X)) (2.3.8) 

for all cEA with Elw(X)c'(X)/<cQ, if and only if 

w(x)dF(x)::: { J (a(t)-I/)dFU)}dV(X), x ER. 
[x.",) 

(2.3.9) 

Further ifa(X) E A with respect to v and a(X) is square integrable such that 

V(a(X)) = E( w(x)a'(X)) and E(c'(x)w(X)) is defined and non- zero, then 
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(2.3.10) 

if and only if (2.3.9) is true. If h(.) is as in Alharbi and Shanbhag (1996), there results 

hold with h (.) = a (.) . One may note that the results of C- P (1995, 1997), now become 

special cases of(2.3.8), (2.3.9) and (2.3.10). 

Referring to the multivariate case, there are two important characterizations. 

Retaining the notations in C- P (1992) refered to earlier, they showed that if the 

inequality (2.2.21) holds for every real valued function c (x) with the equality if c is 

linear and w'f vanishes at the end points ai' hi for i:l,2, ... ,n, then w'x and f(x) are 

related through (2.2.20) and the w' x characterize the distribution of X. Papadatos and 

Papathanasiou (2003), choose h(x)={hl(x), ... ,hn(x)) in which X is supported by a 

convex open subset Cn of Rn with norm E Ilh( X)II = t E (hi (X)) < <Xl and define 
i=1 

Z(X)=(ZI(X), ... ,zn(x)):Cn ~Rn by 

x, 

Zi (x)f(x) = J( E (hi (X)) - hi (ui,ti, Vi) )f(ui,tp v,)dt, . (2.3.11) 
u, 

Assuming z'(x)f(x)~O as x, tends to Qi or h" Elhi(X)-E{hi(X)c(X))I<<Xl, 

E( Zi (X)ci (X)) < <Xl and c(x) is the indefinite integral of its partial derivative 

then the following results hold. 

(2.3.12) 

and if h: Cn ~ Rn is an arbitrary function with Ellh( X)ll < <Xl with (2.3.12) holding for 

every bounded function c: Cn ~ Rn which are indefinite integrals of their partial 

derivatives and 
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then (2.3.11) is true. Equation (2.3.12) provides an extension of the Steins- type identity 

for continuous muItivariate exponential families established by Chou (1988). Papadatos 

and Papathanasiou (2003) points out the applications of (2.3.12) in inference problems 

involving nonnal order statistics. 

Before concluding this section, some related problems that have generated interest 

in other areas also need mention. One of these relates to order statistics. Balakrishnan and 

Subramonian (1993) shows that the Papathanasiou (1990) bound 

1 
COV(XJ2'X22) S CJ2 (2.3.13) 

concernmg order statistics of a sample of size 2 from an absolutely continuous 

distribution F with variance CJ2 is equivalent to Hartely and David (1954) and Gumbel 

(1954) bound for E (Xn) and improves (2.3.13) to 

COV(Xl2'X22) S CJ2 (1 + p) 

when Xl and X 2 are identically distributed but not necessarily independent. 

Papathanasiou (1990) discuss a case in which Xl"'" X. are independent and identically 

distributed with strictly monotone F and h (u ) = F-I 
( u) to derive 

with equality if and only if F is unifonn. Another general result due to Papadatos and 

Papathanasiou (1996) is 

( ) n!V(Yc,)) r ( _'( ))(hY(U))2 i-l( )"-i 
V Xli) S (i-l)!(n-i)! 1 Wi G u hx (u) U I-u du 

where G is the distribution function of another population generated by a random 

variable Y. Other applications relate to Probability Theory, where infinite divisibility, 

central limit theorem, stochastic convergence etc are discussed in relation to the variance 

bounds and we refer to Vitale (1989), C- P (1997), and Cacoullos et. al. (1993, 1994) for 

details. 
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2.4 Characterizations by relationships between reliability measures 

The first characterization directly connecting the failure rate and conditional 

expectation appears to have been introduced by Nassar and Mahmoud (1985) when they 

characterized the mixture of exponential distributions, each with means !1J and j.J2 by the 

relation 

where m,(x) "" E[X I X > x] and k(x) is the failure rate. However the flow of work in 

this area was spurred by Osaki and Li (1988) when they characterized the gamma 

distribution with parameter (rn, p) by means of the identity 

x 
rn, (x) = j.J + - k ( x ), for all x > 0 

rn 

and negative binomial distribution with parameters rand p by 

(x+ I-r) 
m,(x)=j.J+ k(x+l),forall x~r-I, 

p 

where j.J stands for E(X). Following Osaki and Li 0988) similar results were 

developed for other individual distributions as well as for classes of probability 

distributions and we discuss them in a chronological order. Adatia et. al. (1991) gave a 

necessary and sufficient condition that a continuous, positive random variable foIlow a 

gamma distribution with parameters (a,p) in terms of conditional moments and an 

expression involving its failure rate in the form 

_(P+k-I}(P+k-2) ... (P+l)P ~(P+k-l)(P+k-2) ... (P+i)P I ( ) 

mk(x) - k + L..- hl-i X k x 
a ~ a 

(2.4.1 ) 

where 

The result was then used to develop a characterization of a mixture of two gamma 

distributions. Characterizations of beta, binomial, and Poisson distributions were 
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presented by Ahmed (1991). He showed that for the Pearson type I distribution with 

probability density function 

(x-at-1 (b-xt1 
f (x) = p+q_' ' a < x < b, a ~ 0, h, p, q > 0, 

B(p,q)(b -a) 

rn, (x) == ,U (I + (x - a )( b - x) k (x)), for all a::; x ::; b , 
aq+bp 

and in particular the beta distribution is uniquely determined by the relationship 

(2.4.2) 

obtained by setting a = 0 and b = 1 in (2.4.2). Further by setting q = 1 , the result for the 

power distribution follows as 

() ( 
X(l-X)k(X)) 

rn, x =!1 1 + , 
rn 

with !1 = -( p ). Ahmed (1991) also established that X is distributed as binomial 
p+1 

probability mass function 

p(x) = (: )p" (1- pr, X= O,l, ... ,n 

if and only if 

rn, (x) ==,U + (1 +x)(l- p)k (x+ I) 

and X is Poisson with probability mass function 

if and only if 

e-A A:" 
p(x)==--, x=O,1, ... 

x! 

rn, (x) == !1 + (1 + x) k ( x + 1), for all integers x > 0 . 

In a more general framework Nair and Sankaran (1991) showed that the distribution of 

X belongs to the Pearson family specified by 

(2.4.3) 

if and only if 
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(2.4.4) 

where 

provided that lim x2 f(x) = O. As a discrete analogue of (2.4.3) they also proved that in 
x-->a 

the support of the set of integers X has distribution in the Ord family satisfying 

if and only if 

where 

c,=O-2a2 r'a" az-::F-J.., ;=0,1,2 
2 

(2.4.5) 

(2.4.6) 

and deduced the formulas of the earlier researchers as a particular cases. Another 

extension of (2.4.4) for the Pearson family by Glanzel (1991) involved higher order 

conditional moments resulting in the characteristic property 

where P(x) and Q(x) are polynomials of degree at most one with real coefficients. 

Characterization ofKoicheva (1993) about gamma distribution also involved higher order 

moments and failure rate. 

Ruiz and Navarro (1994) established that the class of distributions satisfied by 

the differential equation of the form 

/'(x) c-x-q'(x) 
f(x) = q(x) 

(2.4.7) 

is characterized by the identity 

m1 (x) = c + q ( x ) k ( x) , (2.4.8) 

where c is a constant, q (x) is function satisfying Hm q (x) f (x) = 0 with end point 
x-->h 

a and b in the support of X and r q '( x) f (x)dx < 00. The results of Shanbhag (1970), 
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Osaki and Li (1988), Ahmed (1991), Nair and Sankaran (199 J) are special cases of 

(2.4.7) and (2.4.8). The discrete analogues of the above results are also given through 

illustrative examples. 

Consul (1995) obtained a general theorem, based on conditional expectation, for 

the exponential class of distributions. The theorem is then applied to numerous discrete 

and continuous probability distributions of the exponential class providing specific 

characterizations for each one of them. He showed that the random variable X, 

continuous or discrete, has a distribution belonging to the exponential class of the fonn 

f(x;B) == exp[ xQ(B) + T(x)+ S(B)], (2.4.9) 

where T(x) are real valued measurable functions, Q(B) and S(B) are real functions on 

lR with Q(B) having continuous non-vanishing derivatives in IR., if and only if 

I 0 ( - ) mr (x) =,u + (Q'(B)f oB 10gF(x) 

Note that the equation (2.4.10) can be written as 

( 
-loF(x) 

rn l (x) ::: ,u + f ( x ) Q '( B) ) -- k ( x ) , 
aB 

(2.4.10) 

so that the characterization of exponential family is in fact in tenns of failure rate and 

conditional expectations. The characterizations for individual distributions including 

Lagrangian Poisson, generalized Poisson, Poisson, Borel-Tanner, generalized negative 

binomial, negative binomial, binomial, Geeta and gamma distributions were deduced 

from the above results. Of these, characterization for negative binomial and gamma were 

discussed by Osaki and Li (1988) and for the Poisson case by Ahmed (1991). 

Ghitany et. at. (1995) established a characterization result for an absolutely 

continuous random variable X whose density function is of the fonn 

f(x)=exp(-q(x,B)), xcO, BEE>, (2.4.11) 

and q(x,B) is a real valued function with q'(x,B);t: 0 and q"(x,B) exist on (0,00) for 

all BEe, by the identity 

E[1+ q"(X)2 S (X)- S'(X)\X2X]= s(x) k(x), 
(q'(X)) q'(X) q'(x) 

(2.4.12) 
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where s(x,O);tO is a real valued function with existing s'(x,e) on (0,00) for all 

e E e. Particularly for gamma distributions 

E [ X'-' ( X _ A + ; -1 } X ~ x] = ~ k (x) (2.4.13) 

and putting k = I it reduces to the results of Osaki and Li (1988). The distribution of X 

follows Weibull with probability density function given by 

f (x) = li.BxP-
1 exp (-AXP ), X;:: 0, A,j3>O 

if and only if 

(2.4.14) 

holds for all x;:: 0 . And for the Gompertz distributions with probability density function 

given by 

f(x)::OAexp(.Bx)exp[-~[exp(.Bx)-IJl x;:: 0, )..,j3>0, 

the identity (2.4.12) reduces to 

E[ exp(.BX) I X;:: xJ::o ±[[ l-exp(.Bx) Jk( x) + Ii +.B J. 

The corresponding results for exponential and Rayleigh distribution derives as special 

cases of (2.4.14). Navarro et. al. (1998) gave a general method to obtain a distribution 

function F ( x) through the moment of the residual life defined by 

mk * (x) = E [ (X - x)* I X > x ] and studied the characterization using the relation of the 

form 

mk(x)::o c+ g(x)k(x), (2.4.15) 

where 

mk(x) = E[ Xk I X > x] for k = 1,2,3, ... 

and c is a constant. Extending the results given in Adatia et. al. (1991), Koicheva (1993) 

and Ghitany et. al. (1995) they showed that the random variable X with differentiable 

density in its support (a, b) is of the form 
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l' ( x ) ( c - g' ( x ) - x' ) 

j(x) = g(x) 
(2.4.16) 

if and only if 

where c is a constant and g (x) is a real function satisfying tim g (x) f(x) = O. For 
x-,>b 

k = \, we obtained Theorem 3 given in Ruiz and Navarro (1994) for relations of type 

(2.4. 7), as well as particular characterizations given in Kotz and Shanbhag (1980), Osaki 

and Li (1988), Ahmed (1991) and Nair and Sankaran (1991) for some usual distributions. 

In a similar direction, Sankaran and Nair (2000) obtained a further extension of their 

(Nair and Sankaran (1991)) and Glanzel (1991) characterizations for Pearson family. 

They gave a necessary and sufficient condition for the distribution of X belongs to the 

Pearson system specified by (2.2.3) given by 

m. (x) = (ao,r + a1,rx + az,rxz )xr-'k(x) + drm.(x) + aO,r (r -\) mk_Z(x) 

provided that tim x' f(x) = 0, where 
x-,>a 

and 

al,r =b,( 1-(I+r)bz)", i=0,1,2. 

Nair et. al. (1999) obtained a relation of the form 

to characterize the mixture of geometric law with probability mass function 

P ( x) = a PI (I - PI r + (1- a) pz (1- P2) x , 0 < a < I . 

They also proved similar results for Waring distribution, and extended this approach in 

several directions which include the higher order moment and factorial moments. 

Abraham and Nair (2001) established an identity connecting the failure rate and mean 

residual life to characterize a class of continuous distributions containing finite mixtures 

of exponential, Lomax and beta distributions. The identity 
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is satisfied for all x for a random variable X with density 

l(x)=pJ;(x)+(J-p)J;(x), O<p<J 

if and only iffor i = 1,2, the component densities are 

f,(x) == A, exp(-A,X), A, >O,x>O, forQ=O 

.f (x) = a,Jr· (x+ pr(U'·+I), ai' P> O,X > 0, for Q > 0 

Of these, the results in the exponential case appeared in Nassar and Mahmoud (1985) is 

contained in the above formulation. A further generalization aimed at including more 

distributions than in (2.4.3) has appeared in Sankaran et. at. (2003) who extended the 

Pearson family by replacing the linear functions in the numerator on the right of (2.4.3) 

with a quadratic function bo + bjx + b2x2 to claim the characteristic property 

E [ ( b2X
2 + (bl + 2Q2)X + ba + QI) ! X > x ] + ( Qa + Q1 X + Q2X2) k( x) = 0 , 

provided that lim x'/(x) = 0, r = 0,1,2 so that for a choice of 
x-+h 

hex) = px2 +qx+r 

with 

p = bz, q == bl + 2Q2 and r == ba + Qj + j.J , 

the above equation can be written 

m(x) = E(h(X)! X > x) = j.J+ g(x)k(x), 

where 

(2.4.17) 

Sindhu (2003) gave the discrete analogue of the (2.4.17) which states that the random 

variable X belongs to the family of distributions satisfying 

p(x+l)-p(x) _ -(bo+b1x+b2x2) 

p(x) aO+~x+Q2X2 
(2.4.18) 

if and only if 
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m) (x) = fJ + g ( x) k (x + I) , 

where 

and 

hex) 0= Px2 + Q:n R 

with 

P = b2 , Q = bl + 2a2 and R = G[ - a2 + fJ . 

More recently, Gupta and Bradley (2003) characterized the class of distributions 

satisfYing 

f'(x) (fJ-x) g'(x) 
j(x) g(x) g(x)' 

(2.4.19) 

where fJ is a constant and g satisfies the first- order linear differential equation, 

f'(x) 
g'(x)+ j(x) g(x)=fJ- X , 

with the identity given by 

m[ (x) = fJ + g ( x) k ( x ) . (2.4.20) 

The characterizations based on (2.4.19) and (2.4.20) were discussed in Ruiz and Navarro 

(1994) but Gupta and Bradley (2003) also emphasized the ageing behaviour concerning 

the family (2.4.19). 

Nair et. at. (2005) developed a characterization for continuous probability distri­

butions using the relationship between the reversed failure rate and conditional 

expectations. Related results using the failure rate and the conditional expectations are 

also given, which generalize the results of Ruiz and Navarro (1994). A continuous 

random variable X in the support of ( G, b) has a probability density function of the 

form 

c [rh(t)-Ji 1 f ( x) = g ( x) exp - Jig (t) dt , (2.4.21 ) 

where g(x) is a real function and c is a constant which makes f(x) a density, if and 

only if 
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r(x) = ,u(l- g(x)--t(x)), (2.4.22) 

provided !~g(x)f(x)=O, where h(x) is function such that E(h2(X»)<OO and 

E(h(X)) =,u. The discrete analogue of the above work has been introduced by Gupta 

et. al. (2005) and applied to Ord family and modified power series family for 

characterizing them. Let X be discrete random variable defined on N with 

,u=E(h(X»)<oo, where h(.) is a real function, then for a real function g(x) with 

lim g (x) p(x) = 0, the condition 
.r4~ 

r(x) = ,u(1- g(x)--t(x)) (2.4.23) 

is satisfied for all x in N if and only if the probabi lity mass function p (x) of X 

satisfies the difference equation 

p(x+I) _ ,ug(x) 
p(x) - h(x+l)-,u(l-g(x+I»)" 

(2.4.24) 

The results of Nair et. al. (2005) and Gupta et. al. (2005) subsumes all the available 

results in literature discussed in this context for specified values of h(x) and g(x). And 

further they en lighten the role of reversed failure rate and the right truncated expectation 

of h(X) in characterizing life distributions, which was not considered by the earlier 

authors. 

The research problem considered in Chapter I will be addressed for possible 

solutions in the subsequent chapters taking advantage of the above results as background 

material. 
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Chapter 3 

Characterization of Continuous Distributions by Variance Bound and 

Its Implication to Reliability Modelling· 

3.1 Introduction 

The significance of the lower variance bound in the inference procedure and in 

characterization problems were discussed in the previous chapter. Taking this into 

account, the present chapter attempts to establish lower bounds to the variance of 

functions of random variables that characterize a wide class of probability distributions, 

by extending some results from literature. In the process, as mentioned in the research 

problem, a link is established between these characterizations and those based on 

relationship between conditional expectations and failure (reversed failure) rates 

developed during the last decade. This approach has useful implication to reliability 

modelling and minimum variance unbiased estimation, through Cramer-Rao type 

inequalities. Our work subsumes the existing results and unifies two topics in 

characterization theory that were independently carried out. Application of the results to 

the catastrophe theory is also pointed out. 

3.2 Characterizations 

The background material required for the work in this chapter consists of a 

random variable X supported by the interval (a, b), -00 ~ a < b ~ 00 with absolutely 

continuous distribution function F and density function f. We denote by A, the class 

• Part of the work done in this chapter was published in Nair and Sudheesh (2006). 
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of absolutely continuous distribution functions and by 23, the set of absolutely 

continuous functions of the random variable X. 

Let h( X) be a Borel- measurable function of the random variable X such that 

E ( h2 (X) ) < 00. We define the conditional expectations 

m(x)=E[h(X)IX>x] 

and 

r(x)=E[h(X)IXS;x] 

so that when h(x) = x , they become closely related to the mean residual life function 

E (X - x I X > x) = m) (x) - x 

and the reversed mean residual life function 

E(x-X [X S; x) = x-1j(x) 

where 

Since mJ(x), lj(x), the failure rate k(x) and the reversed failure rate .,l(x) uniquely 

determine the distribution of X , their functional forms are extensively used in modelling 

lifetime data. However, for many distributions the expression for these functions are not 

in simple closed forms and this has prompted reliability analysts to develop relationship 

between k(x) and m(x) or .,l(x) and r(x) that characterize different lifetime models. 

The major results in this context were reviewed in Chapter 2. We first establish a 

characterization theorem that brings the equivalence of these characterizations with those 

based on variance bounds in a more general framework, and show that many of the 

earlier results in both steams of characterizations can be unified into a single format. 

Theorem 3.2.1: 

For a random variable X with support (a,b), -00 S; a < b S; 00 with distribution 

function F(x) E A and functions c(.) and g(.) belonging to s:B such that c'(.) exist on 

(a,b) with E( c'(X).g(X)) < 00, the following statements are equivalent. 
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, 
(i) J(,u-h(t»)f(t)dt = ag(x)f(x) 

a 

(ii) V(c(X)) ~E2(C'(X)g(X)) 

with 0" = E( h'(X)g( X)) < CO 

(iii) r(x) = ,u-aA,(x)g(x) or m(x)::: p+ ak(x)g(x) 

(iv) 
f'(x) g '(x) ,u - h(x) 
--=---+---
f(x) g(x) ag(x) 

provided that both g and f are differentiable almost everywhere in (a,b). 

(3.2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 

Here h(x) stands for a Borel measurable function satisfYing E (h2 (X)) < co with mean 

,u and variance a 2 
• 

Proof: 

(i) => (ii) 

The covariance between the functions h(X) and c( X) can be written as 

b 

Cov(h(X),c(X))::: f(h(x)- ,u)(c(x)-c(,u»)j(x)ta 

by Fubini's Theorem. Using (3.2.1) 

a 

~ f( h(x)-P)(jC'Ct)dt )f(X)dx 

~ fC'Cx{j(P-h(t))fCt)dt)dx 

b 

Cov(h( X),c(X)) = a fc'(x)g(x)f(x)ta 
a 

= aE(c'(X)g(X)) 

Applying Cauchy- Schwartz inequality 

Cov2 (h (X),c( X)) ~ V(h(X)).v( c( X)) 

in (3.2.5), we get (3.2.2).To prove the second part of (ii) we note that 
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b 

E(h'(X)g(X») = Jh'(X)g(x)f(x)~ 
a 

b ( 1 x 1 = fh'(X) a !(Jl-h(t»f(l)dl dx. 

Integrating by parts 

= ~ [ { h(x) [(I' -h(1) )f(I)d{ 

- }(I'-h(X»)h(r)f(x)d< J 
The first term vanishes since E(h'(X)g(X») < 00 and the second tenn is 

(ii) => (iii) 

1 h 1 
-- J(Jl-h(x»h(x)f(x)~ = --[JlE(h( X»)- E( h2 (X)} ] 

aa a 

1 2 
=-a =a. 

a 

For an arbitrary real () choose c(x)=h(x)+Op(x) such that C(X)EI.E. Then 

and 

E2 (c'(X)g(X)} = {E[h'(X)g(X)+(}P'(X)g(X)Jr 

= E2 (h'(X)g(X»)+(}2 E2 (P'(X)g(X») 

+2(}E( h'( X)g( X»).E(p'(X)g( X») 

=a2 
+(}2 E2 (p'( X)g(X») + 2(}aE(p'( X) g(X») 

(3.2.7) 

When (3.2.2) is true, substituting (3.2.6) and (3.2.7) in (3.2.2) and rearranging tenns, 
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82 [V(p( X))-E 2 (p'( X) g( X)) J+ 28[ Cov(h( X),p( X))-O"E(p'( X)g (X)) ] 2 O. 

(3.2.8) 

Since the first tenn is always positive, for (3.2.8) to be non-negative for all real 8 one 

must have 

or 

Setting p(x) = costx 

28[ Cov(h( X),p( X))-a E(p'(X) g( X)) ] = 0 

Cov(h (X),p( X)) = aE(p'(X) g( X)) 

I> (X ) b 
fp'(X) jcu-h(t))f(t)dt dx = a fp'(x)g(x)f(x)dx. 

h (X 1 h - ftsintx fcu-h(t))f(t)dt dx = -0" ftsintx.g(x)f(x)dx. 

Similarly when p(x) = sin tx 

h (X ) b pcostx f(,u-h(t))f(t)dt dx=O"pcostx.g(x)f(x)dx. 

Hence from the last two equations 

h (X ) h t f( costx + isintx) f(,u- h(t))f(t)dt dx = ta f( costx + isin tx) g(x)f(x)dx 

or 

b (X ) b 
fe

ilx 
!(,u- h(t))f(t)dt dx = 0" fe"" g(x)f(x)dx , 

which is the same as 

fe ia (y,u-h(t))f(t)dt)f(X)dx = 0" fe iU g(x)f(x)dx. 
a a f(x) a 

By the uniqueness of Fourier transfonns 

Xf(,u- h(t))f(t)dt ( ) 
=O"g X 

a f(x) 

x I X 

~ ff(t)dt-~ fh(t)f(t)dt = O"g(x) 
f(x) a f(x) a 

37 

(3.2.9) 



.tL F(x) -E(h( x)1 X S; x) F(x) == ag(x) 
f(x) f(x) 

,U-E(h(X) I X s; x) == ag(x)2(x) 

r(x) =,U -ag(x)2(x). 

Further, since E ( h ( X) ) =,U we can write 

or 

x h 

fh(t)f(t)dt+ fh(t)f(t)dt = ,U[F( x) + 1- F(x)] 
a x 

F (x)r(x) + [1- F (x) ]m(x) =,U[ F (x) +(I-F(x)) J, 
F(x)(r(x)-,U) ~ (1- F (x ))(,U -m(x)) 

f(x) (r(x)-,U) = f(x) (,U-m(x)) 
2(x) k(x) 

which leads to the identity 

m(x)-,U _ ,U-r(x) 
k(x) - 2(x) , 

this establishes the equivalence of the two expressions in (3.2.3) and the implication 

(ii) ~ (iii). 

(iii) ~ (iv) 

We rewrite the second equality in (3.2.3) as 

b 

fh(t)f(t)dt ~,U[ I-F(x) ] +0-f(x)g(x). 
x 

Differentiating and assuming lim h (x) f(x) = 0 
x-->h 

h(x)f(x) = ,Uf(x) - a (f(x)g '(x) + f'(x)g(x») (3.2.10) 

from which (3.2.4) results. 

Finally, to establish the equivalences stated in the Theorem we complete the chain 

of implications by showing that (iv) => (i). Assuming (3.2.4) we can reach at (3.3.10). 

Now from (3.3.10), 

38 



a d(f(~g(x») =(,u-h(x»)f(x), 

and the integration with respect to x from a to x gives the identity (3.2.1) so that the 

proof of the theorem is completed. 

Remark 3.2.1: The value of g(x) is unique for a particular choice of h(x). But we can 

have different forms for g (x) for the same distribution, when h (x) is different. For 

example, in the case of Maxwell distribution with 

and 

g(x)=_!" when h(x)=-2.h2 +3+,ll 
a 

g(x)=_l (l+~) when h(x)=x. 
2A. A.X 

Remark 3.2.2: The results in Cacoullos and Papathanasiou (1989) and Srivastava and 

Sreehari (1990) are special cases of Theorem 3.2.1 when h(x) = x. To realize 

characterization of distributions by the lower bound attained by a particular absolutely 

continuous function in 115, it is necessary and sufficient that (i), (iii) or (iv) is satisfied. 

This is equivalent to finding a unique g(x) that satisfies one of these identities. The 

earlier papers look at h(x) = x and the g(x) values corresponding to E( X I X > x), that 

limits characterizations to a class of distributions for which 

E(X I X > x) = ,u+ak(x)g(x). 

Our generalization enables characterization through the variance of a wider class of 

functions through a simple calculation of g(x) implied by (3.2.4), as illustrated through 

the following theorems. Since for modelling and inference, families of distributions are 

more desirable and results for individual distributions can be easily deduced, we look at 

the exponential family, Pearson family and the generalized Pearson family. 

39 



Theorem 3.2.2: 

The distribution of X belongs to the Pearson family specified by (2.4.3) if and 

only if 

inf V(c(X)) = 1 

C(X)E!l3 E2 (bo +btX +h:X2) 
(3.2.11) 

where 

provided that Iim x2 f(x) = 0 . 
X--'fb 

Proof: 

From (2.4.3) we have 

(ao + atx+ a2x
2)f'(X) = -(x+ d)f(x) 

(ao + alx + a:x2 )f'(x) + (al + 2azx)f(x) = -{x + d)f(x) +( at + 2a:x) f(x), 

that is 

~ [( aD + ~x+a2x2)f(x) ] = (al -d)f(x)+ (2a: -1)xf(x). (3.2.12) 

Integrating with respect to x from t to b, we get, 

dividing through out by R(t) (2a: -1) we get 

(ai-d) (ao +a/+af)k(t) 
E(XIX>t)=( )+ ( ) 1-2a2 I-2a2 

or 

(3.2.13) 

Assuming limx 2f(x) = 0 and integrating both side of(3.2.12) with respect to x over 
X--'fQ 

the whole range we get 
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or 

Now comparing (3.2.13) with second inequality in (3.2.3) 

E (X I X > x) = f.l + a g ( x) k( x) , 

where 

and 

with bi values as sated in the theorem. Substituting for g (x) in Theorem 3.2.1 we arrive 

at (3.2.11) 

The following examples provide the values of g(x) for the different members of 

the Pearson family 

Example 3.2.1: Consider the gamma distribution with probability density function 

then 

J'(x) -(mx+l-p) -(x+(I-p)/m) 
f(x) x x/m 

so that ao = a2 = 0 and aI = m-I, hence g (x) = (am t x. Substituting this value of 

g(x) in (3.2.3) we get the result ofOsaki and Li (1988) stated in Section 2.4 and that of 

Adatia et. al. (I 991) in equation (2.4.1) when k = I. The lower bound for the gamma 

distribution derived in Srivastava and Sreehari (1990) is a special case of (3.2.11). 

EumpJe 3.2.2: For the normal random variable with probability density function 

1 JX-Jl)' 

f(x) = --e 2eT' ,-<:I) < X < r:IJ, 
.J2;a 

we have 
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( )'x-fJ
logf(x) = logk- 2

2a

differentiating

f'(x) -(X-fJ)
f(x) = a 2

so that a, = a, = 0 and ao = a' , hence g (x) = a. The relationship between failure rate

and E(Xlx>x) stated in Kotz and Shanbhag (1980) is a special case of (3.2.3) when

g (x) = a . Further, the corresponding lower bound to the variance given in Cacoullos and

Papathanasiou (1989) also drawn from (3.2.11).

Example 3.2.3: Consider the beta distribution with probability density function

( ) I 1 ( rf x = ( ) xp
- 1- x , x » 0

B p,q

then

f'(x)

f(x)

(p-I)(I-x)-(q-I)x

x(1-x)
-(x(p+q-2)- p+ I)

x(l-x)

-I -I 1

( )
, hence ag(x)=(p+qf x(l-x).

p+q-2

Now the equation (3.2.3) becomes a generalization of the result for the beta distribution

proved in Ahmed (1991) and the lower bound in Srivastava and Sreehari (1990).

Example 3.2.4: Consider the Pearson type 11 distribution with probability density

function

f(x) = k(l-x' I a2),_a < x< a.

Then

f'(x)

f(x)

-k2x
a'k(l-x2 la')

-2x

(a'-x')

so that ao = ~' , al = oand a2 = ~1, hence ag(x) =4-1 (a' -x').
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Example 3.2.5: The Pears on type IV distribution with probability density function 

j ( x) = k(l + x 2 
/ a 2

) exp ( -c tan -I x / a), ---«I < X < 00. 

or 

has 

Example 3.2.6: Consider the Pearson type VI distribution with probability density 

function 

Then 

f'(x) k(x-a)h-I x-c (b-cx-1 (x-a)) -( b + c) x + ac 

j(x) = k(x-atx-c = x(x-a) 

-a -1 -I 
so that ao = 0, a l = -( --) and Cl2 = -( --, hence o-g(x) = -(b+c+2) x(x+a). 

b+c b+c) 

Example 3.2.7: For the Pearson type VU distribution with probability density function 

j(x)=k(1+x2/a2 rm, -oo<x<oo, 

f'(x) _km(1+x2 /a2 )-{m+I)2a-2x -2mx 

j ( x) = k(1 + x 2 
/ a2 rm = a2 + x2 

a
2 

1 () 1 ( )-1 (2 ) so that ao = 0, ~ = - and a2 = -, hence o-g x = 2- m -1 x a + x . 
2m 2m 

Example 3.2.8: Consider the Pearson type VIII distribution with probability density 

function 

j(x) = k(l+x/ a)-m,_a < x < O. 

then 
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f'(x) km(l+xlar(m+t) 

j ( x) = - ka (I + x I arm 
mx 

so that ao = 0, at = ~ and Q2 = ~,hence O"g(x):::::: (m-2t x( a+x). 
m m 

Example 3.2.9: Consider the Pearson type IX distribution with probability density 

function 

f (x) :::::: k(l + x I a)m, -a < x < 0. 

then 

f'(x) _ km(1 + xl ar- l 

= mx 

j(x) ka(l+xlar x(a+x) 

-a -I 
so that ao = 0, at = -and a2 :::::: -, hence O"g(x) = -(m+2r' x(a+x). 

m m 

Example 3.2.10: The inverted gamma distribution (Pearson type V) with probability 

density function 

has 

f'(x) 
j(x) 

-I t 2 
so that ao = at :::::: 0 , and a2 = - , hence 0" g ( X ) = -(p + 2t x . 

p 

The values of g (x) for various distributions covering under Theorem 3.2.2 IS 

summarized in Table 3.2.1 for easy reference. 

In an effort to improve the richness in members of the Pearson family and there 

by extend the domain of application, Sindhu (2003) has replaced the linear term in the 

differential equation of (2.4.3) by a quadratic, obtaining 

dlogj(x) _ (ho +htx+h2x2) 

dx ao + atx + a2x
2 
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Table 3.2.1 

Values of g(x) for members of Pears on family 

Distribution f(x) ag(x) 

*Beta x p
-
I (1- x )q-I , 0 < x < 1 (p+Qr 1x(l-x) 

Type II k(l-x2 1 a 2 ),-a < x < a 4-1(a2 _x2 ) 

**Gamma ke-nux P-
1,x>O -I m x 

k(1 + xli a 2 )exp( -c tan- I x I a) -4-I(a2 +X2) 

Type IV 
~<x<Cl) 

Inverted /ex-Pe-qlx ,x> 0 -(p+2r1x 2 

Gamma 

Type VI k(x-at x-c,x > a -(h+c+2t x(a+x) 

Type VII k(1 + x 2 I a2 rm ,-c() < x < Cl) TI (m-I( x(a2 +x) 

Type VIII k(l + x I arm, -a < x < 0 (m-2t x(a+x) 

Type IX k(l+xlat,-a<x<O -(m+ 2r1 x(a+ x) 

Normal 
kexp[ -(;;2,u) ]'-00 < x < 00 a 2 

* Power distribution when p = 1 or Q = 1 and uniform when p = Q = 1 . 

** Exponential distribution when p = I. 
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Besides containing all the members of the Pearson family (corresponding to b2 = 0), this 

extended Pearson system consists of many new members like the inverse Gaussian, 

random walk, Maxwell and Rayleigh models. It is also shown in the study by Sindhu 

(2003) that the new system is quite useful in reliability modelling and analysis by virtue 

of several characterizations in terms of reliability concepts and also through several 

interesting ageing properties the members of the family posses. Our next theorem extends 

the result of Theorem 3.2.2 to the extended family. 

Theorem 3.2.3: 

The density function f(x) satisfies the differential equation 

(3.2.14) 

if and only if 

inf (}"2V(C(X)) =1 

C(X)E!B E2 [c'(X)(Qo +Q,X +azX2)] 

for a choice of 

h( x) = px2 + qx + r 

with 

provided that lim x2 f(x) = 0 . 
:r-->h 

Proof: 

From (3.2.14) 

f'(x) ( ao + Q,X+ a2xZ) +( ~ + 2a2x) f(x) = (a, +bo + 2a2x+b,x+ b2x2 )f(x) 

Integrating with respect to x from t to b, we get 

- f(t)( ao + a/+ ai2
) = (a, + bo)R(t)+(2a2 +b, )R(t)E(X I X > t)+ R(t)b2E( X 2

1 X > t). 
Dividing through out by R (t) we get 
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or 

E( (b2X 2 + (bJ + 2a2)X +bo + aJ +,u) I X > x) == ,u-( ao +aJx+a2x
2)k(x). 

Taking h(x) as stated in the theorem, the above equation can be written as 

E( h( X) I X> x) ==,u -( ao + a1x+ azx
2 )k(x). 

Comparing with second inequality in (2.3) we get 

g(x) = _0'-1 (aD + alx + a2x
2). 

The rest of the proof of the theorem follows from Theorem 3.2.1. 

Example 3.2.11: Consider the Rayleigh distribution with probability density function 

2 _-<x' f(x) = A-xe , x> 0, A- > 0, 

then 

f' ( x) 2A-e-).x' (1- 2A-X2 ) (1- 2J.X2) 

f (x) = 2J.xe-).xl = x 

so that aD =al =0, and az =1, bo =2, bl =0 and bz =-2J. ,hence O'g(x)=-x with 

h(x) = _2A-X2 + 2+,u. 

Example 3.2.12: For the inverse gaussian distribution with probability density function 

~ [
-A-(x-al] f(x) = ~-3 exp 2' x> 0, J. > 0, 

2JZ"X 2xa 

we have 

-~ J.(x-a)2 
log f (x) == log k + log x 2 - 2' 

2xa 

differentiating 

f'(x) 3 A-(x-a)(x+a) _ -J.x2-3a2x+A-a2 
--=---
f(x) 2x 
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Example 3.2.13: Consider the Maxwell distribution with probability density function 

f{x) = 4j!?x2e-
AX1

, x> 0, A- > 0. 

then 

f'(x) 

f{x) x 

so that ao =aJ =0, az =1, ho =1, hJ =0 and hz =-2A, hence ag{x)=-x with 

h{x) = _2A-Xl +3+ p. 

Example 3.2.14: For the random walk distribution with probability density function 

g;; [-A-(xa -1)2] 
f{x) = - exp 2' x> 0, a, A> 0, 

2:rx 2xa 

we have 

-~ A(xa-I)2 
10gf{x)=logk+logx 2 - 2 ' 

2a x 

differentiating 

f'{x) I A(xa-l)(xa+l) _ -AaZx 2 -a2x+A 
f{x) = 2x - 2a2x - 2a2 x 

Table 3.2.2 shows some of the distributions satisfying (3.2.14) and the corresponding 

g(x) values that enable to obtain individual bounds for these distributions. 

The one- parameter exponential family is extensively used in classical as well as 

in Bayesian inference in view of the pleasant properties it posses in developing optimal 

estimators and tests. The completeness property of the family is widely exploited in 

unbiased estimation problem. In the case of a likelihood which belongs to the exponential 

family there exists a conjugate prior, which is often in the exponential makes easy 
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Table 3.2.2 

Distributions in the extended Pearson family with h(x) and g(x) values 

Distributions f(x) h(x) -O"g(x) 

~ [ -A(X-a)2] --exp 
2 2 2 Inverse 27l'x3 2xa2 

_AX2 +a2x+ Aa 2 + J.i ax 

Gaussian x> 0,,,1 >0 

Rayleigh 2Axe-J.x' ,x> 0,,,1 > 0 -2AX" + 2 + J.i x 

4J3; 2 _~x' -xe 
Maxwell 7l' -2AX2 + 3 + J.i x 

x> 0,,,1 >0 

Random 
~ [-A(xa-1l] --exp 

27l'x 2xa2 
_Aa2x 2 +3a2x+ A+ J.i 2a2x 2 

Walk x>O,a,A>O 
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analysis of the model in Bayesian setup. A probability density function !(x,B) is said to 

belong to the one- parameter exponential family of distributions defined over a measure 

space (O,~, v), if it can be written in the form 

f( x,B) = exp(T(x)Q(B) + P( x) + s( B)) (3.2.15) 

where p(x) and T(x) are real valued measurable functions over .Q and Q(B) and 

S (B) are real functions on lR with Q( B) having continuous non-vanishing derivatives 

in IK. If the probability density function of a random variable X belongs to an 

exponential family expressed in the above form, then 

and 

S'(B) 
E(T(X))=,u=- Q'(B) 

Q"(B)S'(B)-Q'(B)S"(B) 1 op 
V(T(X))= (Q'(B))3 =- Q'(B) oB' 

Now we look at the application of the Theorem 3.2.1 to exponential family of 

distributions. 

Theorem 3.2.4: The distribution of X belongs to the exponential family specified by 

(3.2.15) if and only if 

in! V ( c ( X)) _ 1 

C(X)E~ E2[g(X)C'(X)]-
(3.2.16) 

with 

1 aF(x) 
g(x) = (J' !(x)Q'(B) aB 

where F ( x) = 1- F ( x ) . 
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Proof: 

For the family (3.2. I 5) we have, 

10gf(x;B) = P(x)Q(B)+T(x)+S(B). 

Differentiating with respect to B, 

I' '(x'B) 
Je ' =P(x)Q'(B)+S'(B). 
f(x;B) 

Integrating with respect to x form t to b 

Rearranging, 

dF(t) = Q'(B) r P(x) f( x;B)dx+ S'(B) 1 (t), 
dB J 

d1(t) = Q'(B)F(/)E( P(X)X > t)+s'(B)1(t). 
dB 

S'(B) dF(x) 
E(P(X)IX>x)=--+ () () k(x). 

Q'( B) Q' B f x dB 

Now taking p( X) '" h( X) for applying Theorem 3.2.1, so that the above equation can be 

written as 

where 

1 dF(x) 
E (h( X) I X > x) = ,L1+ () () k (x) , Q' B f x dB 

S'(B) 
,u=E(P(X»)=--. 

Q'(B) 

Comparing with the second identity in (3.2.3), we have the value of g(x) as 

I of(x) 
g(x) = of(x)Q'(B) oB 

Substituting (3.2.18) in (3.2.2) the conclusion (3.2.16) of the Theorem follows. 

(3.2.17) 

(3.2.18) 

So far we have specialized Theorem 3.2.1 to some families of distributions that 

include many of the continuous distributions used in reliability studies. However there 

are some important distributions like the Weibull, Burr that are not members of these 

families, and at the same time quite useful in lifetime models. Our general framework in 
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the Theorem 3.2.1 permits us to include them also with appropriate choice of h(x) tn 

each case and this is illustrated by the following example. 

Example 3.2.15: For the WeibulI distribution with probability density function 

we have 

f'(x) (a-I) a a-I 
--=----x 
I(x) X f3" 

or 

xl' (x) = ( a - t) I ( x ) - ; xa I ( x) . 

Integrating with respect to x from 1 to 00 and assuming lim xl(x) = 0, we get 
x-->-X' 

-tJ(t) -R(/) = (a -l)R(/) -.!!....-R(/) E[ xa I X > tJ. 
f3" 

Multiplying through out by /ra-1K1 (I) and rearranging 

or 

which gives 

E [ x a + jJ - f3" I X > x ] = jJ + f3" xk ( x ) . 
a 

Hence the Weibull distribution has 

3.3 Application to unbiased estimation 

The data arising from some stochastic phenomena is often modelled by a 

distribution function that involves some unknown parameter e. The aim of the analysis is 
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to describe the essential characteristics of the phenomenon that generated the data, which 

is generally expressed in terms of B. This raises the problem of specifYing a plausible 

value for B that is consistent with the observations. Such a value is generally obtained by 

considering a suitable function of the observations called estimators. In general infinite 

number of functions can be proposed as estimators of B, with the property that some 

estimators far better than the others for certain values of B. The property unbiasedness is 

used to restrict the class of estimators in to a smaller one. An estimate T is said to be 

unbiased for B if, for every BEe, E(T) = B. This condition ensures that in a long run 

the estimated value will be correct "on the average". For detailed discussions on 

unbiasedness one can refer to Chapter 2 of Lehman and CaselIa (1998). There may be 

more than one unbiased estimators for a given parametric function and that leads to 

finding a best estimator from the class of unbiased estimators. An unbiased estimator 

with uniformly minimum variance (UMVUE) is considered to be the best estimator. This 

has led to the derivation of expressions for the lower bound of the variance of an 

unbiased estimator. The following theorems provide two important results in this 

connection. 

Theorem 3.3.1 (Cramer (1946) - Rao (1945) Inequality) 

Let e ~ R be an open interval and suppose that the family {x: le (x) > o} has a 

common support which does not depends on B and satisfies the regularity conditions. 

i) F or any statistic h with E ( h ( X) ) < 00 for all B, then 

ii) 

~ Jh(x)io (x)dx = Jh(x)~ io (x)dx. aB oB 

F or all B, the derivative ~ log io (x) dx exist and finite. 
oB 

If T(x) be an unbiased estimator of g(B), then 

V(T(X))~ (g'(B)f 2. 

E(:B logio (X)) 

The equality holds if and only if T(x) is a UMVUE of g(B). 
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Theorem 3.3.2 (Chapman Robbins ( 1951) lnequal ity) 

Let e~R and {x:/t/(x»O} be the class of probability density (mass) 

functions. Let T (x) be an unbiased estimator of IjI (t9) with Eo (T)2 < OC) for all t9 E e . 

Assume that rp 7: t9 E e such that j~ ( x ) and .t;, (x) are different satisfy ing 

{/o (x) > o} =:J {I", (x) > o} , then 

V(T(X))~ sup [1jI(rp)-IjI(t9)T, 
{w{J;,(x»o}=>(J,(x»oll V (I", (X) / fa (X)) 

for all t9 E 8. 

The one parameter exponential family plays an important role in statistical 

inference, being a class of distributions which admits many desirable properties that lead 

to optimum inference procedures. Our main theorem (3.2.1) speaks of lower bound to the 

variance of a function of the random variable and this result as shown to hold for the one 

parameter exponential family. When the random variable in the Theorem 3.2.1 is 

replaced by a statistic, the results is transfonned to the variance of a statistic whose 

bounds are of special interest in unbiased estimation. Since there are many types of lower 

bounds under different conditions, available in the theory of unbiased estimation, it is of 

interest to compare them with the bound we have obtained in Theorem 3.2.1. First we 

look at the Cramer- Rao bound. 

3.3.1 Comparison with the Cramer- Rao lower bound 

[n the light of the relationship between conditional expectations and failure rates 

derived for the one parameter exponential family and the consequent lower bound for the 

variances it is infonnative to look and this bound from the estimation point of view. In 

the search for UMVUE, one criteria that is often used to check whether the estimator 

chosen satisfY the lower bound prescribed by the Cramer- Rao inequality. The 

exponential family is one in which the regularity conditions of the Cramer- Rao Theorem 

is satisfied and offer cases in which the lower bound is attained. Therefore, we continue 

our discussion with the one parameter exponential family. 
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Under the conditions on the density (3.2.15) Theorem 3.2.1 apply to f(x;B) , we 

can write by taking heX) = p(X), 

m(x):::: f.J + a-k(x)g(x) , 

where g(x) is given by (3.2.18) and 

0'2::::V(p(X))=df.J/ Q'(e) f.J=- s'(e). 
de ' Q'( B) 

When (3.3.1) holds, it is equivalent to 

h 

f h(t)f(t)dt :::: f.JF(x) + 0' f (x) g (x) . 
. t 

On substituting (3.2.18) for g(x) in the last equation we have 

hf - [ J-10F(x) h(t)f(t)dt:::: f.JF(x) + Q'( e) --
x oB 

or 

h b a b 

fh(t)f(t)dt:::: f.J Jf(t)dt+[Q'(B)r oB Jf(t)dt. 
x x x 

Differentiating and assuming Hm h( x) f(x):::: 0 gives 
x->b 

h(x)f(x)::::f.Jf(x)+[Q'(B)r ofe(x). 
aB 

Dividing through out by f(x) and rearranging 

ologf(x) ::::Q'(B)(h(x)-f.J). 
oe 

Thus the Cram er- Rao lower bound becomes 

(~f _ (~)2 
E( alO~~(X) J -[Q'( B) J2 .,-2 

=(?e}QI(B). 

Also, assuming limh(x)f(x):::: o and using the value of g(x) given in (3.2.18) 
x->a 
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Integrating by parts gives 

rrE(g(X)p'(X)) = '''faf(t) dl.h(x)]b +~( ) bJaf(/) h(x)dx 
at Q' e ae 

x u Cl 

I hfaf(x) 
= Q' ( e) a ----ail h( X )dx 

1 a [h ] 
= Q'(B) ae fh(X)/(X)dx 

= (~~ }Q'(B). (3.3.3) 

Substituting (3.3.3) in the expression (3.2.2) 

so that the Cramer- Rao bound is attained at the same value where the equality in (3.2.2) 

is holding. Thus in cases where regularity conditions of Cramer- Rao inequality are 

satisfied the two bounds are equal. 

Now we examine the non-regular cases with the aid of an example. When X is 

unifonn over (0, e) and E> = (0,00), it is well known that the estimator T = n + I X(n) is 
n 

unbiased for e, where X(n) is the largest order statistics in a sample of size n from 

U (0, e). The distribution of T is given by 

nnTl t n
-

I 
n + I 

/(/)= ,o<t<-e. 
(n + IY en n 

Thus 
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so that from (3.2.3) 

V (T) :oc E (T2) _ E2 (T) = (n + 1)28
2 

n(n+2) 

f¥+2t( n) g(t)= -- 8--1 . 
n 8 n+1 

Taking T as the random variable and c(T):oc T we see that the equality in (3.2.2) is 

attained. The corresponding value is 

fi 
V(T):oc E(g(T)) = -n(-n-+2-) 

which is infact the actual variance of T. Thus there are situations in which our bound is 

sharper (infact is the minimum variance) than the Cramer- Rao bound. 

3.3.2 Comparison with the Chapman- Robbins inequality 

Here we compare (3.2.2) with Chapman- Robbins inequality. Assuming 

E(h(X))=,u(8), 8EE>cRand qJEE> such thatfo(x) and Iq> (x) are different 

satisfying {/o ( x ) > O} => {Iq> (x) > O} , we set 

c(x) = (Iq> (x) -1) 
10 (x) 

so that (on using (3.2.1)) 

E [c'(X)g(X) ]=er-I I: c'( x) J: (,u - h( t ))10 (t)dtdx 

= er-IS: c(x)(h(x)- ,u)flJ (x)dx 
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Substituting (3.3.4) in (3.2.2) 

~ ,,-' !:( I. (;, (~(Xl} h( x )-Il)/, (x)dx 

=0--
1 l(f,. (x)-.fe (x))(h(x)-Ji)dx 

V(c(X)) 2: [,u(Q1)- ,u(8)J I V( h(X)) 

or 

which is the Chapman-Robbins inequality. 

(3.3.4) 

The different conditions under which the bounds discussed here hold fonn an 

interesting aspect to be considered in actual minimum variance unbiased estimation 

problems. Our conclusion is that when the regularity condition of Cramer-Rao inequality 

are met, the bounds obtained there is identical with (3.2.2) and in addition in non-regular 

cases latter may provide better bounds than the fonner. The generalization attempted here 

paves way for UMVUE's for many parametric functions than in the existing results. The 

Chapman- Robbin's inequality is obtained as a particular cases of (3.2.2), when the 

conditions for the fonner inequality are met in our general framework discussed for the 

latter. In the sense we have discussed it appears that the Chemoff- type inequality is a 

more general result and could be employed to extract minimum variance unbiased 

estimators. Though relationships between failure rate and conditional expectations are 

necessary and sufficient conditions, it is only the g(x) value that matters in the inference 

situations. The method discussed here provides an alternate methodology to arrive at 

UMVUE's. 

3.4 Application to reliability modelling 

We now examine some implication of the above theorems in reliability modelling. 

In the following X is restricted to be a non- negative random variable representing the 

lifetime so that F (0 - ) = 0 satistying the other conditions of Theorem 3.2.1. The 
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expression for g(x) satistying (3.2.3) is unique for a given distribution and one of the 

expressions in (3.2.3) depending on whether data is left or right truncated, can be used to 

find g(x) based on the observations. Then equation (3.2.4) enables to identity the 

appropriate model followed by the data. With suitable choice of h(x) for a desired J.i, 

one can also obtain estimate having minimum variance. In other words, the Theorem 

3.2.1 enables model identification as well as choice of estimator for a given parametric 

function. In respect of the families mentioned in Theorem 3.2.2 and 3.2.3 the form of the 

distribution depends on the nature of the roots of the equation ao + aJx + a2x
2 

= O. Since 

g(x) = 0 has the very same roots as ao + (J\x + a2x 2 = 0, the distribution can be identified 

from g(x) itself, without going through the integration involved in (3.2.4). Further the 

solutions derived from f'(x) and g'(x) end up with the same form of distributions, 
I(x) g(x) 

except for a possible change in the parameters. The identity (3.2.4) is more helpful while 

finding the monotoncity of probability distributions using the well known results of 

Glaser (1980). 

3.5 Statistical catastrophe 

In a broad sense catastrophe theory describes how small changes in the control 

parameters (viewed as independent variables that affect system) can have sudden 

discontinuous effects on the dependent variables. The theory is extensively used in 

ecology, biology, physics, chemistry, economics and psychology. 

Stochastic catastrophe models are governed by the differential equation 

dx = _ ou + ~ g(x) dw(t) 
dt ox dt 

(3.5.1) 

where x is a real valued state variable, w(t) is the standard Weiner process, and g(x) 

that controls the random input is called the infinitesimal variance function. The dynamics 

of X (I) are controlled by the function U (x) and the statistical catastrophe theory 

studies the behaviour of (3.5.1) at theoretical points for which 

ou = 0 and a
2

u "'" 0 . 
ax 8x2 
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If f (u, t, xo) is the probability density function of the random variable X at t, given 

an initial position xo' it satisfies the differential equation 

8f 8(gf) 1 ii (gf) 
-=--~+~-~-'-at 8u 2 8u 2 

• 
(3.5.2) 

As t --)- 00. f converges to stationary for f such that 8f = 0 , and takes the form at 

f (x) = K exp - d~ . , ( r2m (x)-g'(S) 1 
g(s) 

(3.5.3) 

Identifying 2m (x) with - 8u , the function f' (x) will be the theoretical probability 
8x 

density function for use in statistical catastrophe theory. We can write (3.5.3) as 

If we denote 

dlogf' =_~(8U + ag ). 
dx g 8x 8x 

au 8g 
v(x)=-+-, 

ax 8x 

the equation (3.5.4) becomes 

dlogj" v(x) 
= 

dx g(x) 

or f' ( x) has the form 

(3.5.4) 

(3.5.5) 

in which v(x) is called a shape function (See Cobb (1981) for details). It is observed in 

Cobb (1981) that apart from a constant, the values 1, x and 1 - x provide reasonable 

catastrophe models (normal, gamma and beta) corresponding to a linear v(x) in equation 

(3.5.5). It is evident that his g(x) functions coincide with g(x) in Table 3.2.1 and the 

form of the density in Theorem 3.2.1 and the characterization thereof, provides a 

statistical basis for generating catastrophe models. Moreover Theorem 3.2.1 and Table 

3.2.1 throw up more plausible models. Catastrophes densities correspond to v(x) that are 

quadratic or higher. Table 3.2.2 presents g(x) that conforms to quadratic v(x). In 
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general, it is easy to convert (3.5.5) into the form of (3.2.3) using the methods described 

earlier for any functional form of vex) and g(x) to derive general form of density 

f' (x), that is appropriate for a given data situation. 

An important aspect of statistical catastrophe theory is the estimation of the model 

parameters. Our discussions can also help to find UMVUE's of desired parametric 

functions. 
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Chapter 4 

Characterization of Discrete Distributions by Variance Bound" 

4.1 Introduction 

The literature on reliability theory mainly deals with non- negative absolutely 

continuous random variables. However, quiet often we come across with situations where 

the product life can be described through non- negative integer valued random variable. 

For example (i) a device can be monitored only once per time period and the observation 

is taken as the number of time periods successfully completed prior to the failure of a 

device and (ii) a piece of equipment may operate in cycles and we measure the number of 

cycles completed prior to failure. Reliability theory, therefore, needs to be developed for 

discrete description of life maintaining similarity with the continuous counterpart. Salvia 

and Bollinger (1982) and Xekalaki (1983) pointed out situations where the product life is 

discrete in nature and gave characterization results concerning the geometric, Waring and 

negative hyper geometric distributions in terms of failure rates. The topic of 

characterization based on discrete reliability concepts is discussed subsequently in many 

papers by Nair (1983), Hitha and Nair (1989) and Nair and Hitha (1989). For surveys of 

discrete concepts and distributions one can refer to Pudget and Spurrier (1985), Ebrahimi 

(1986), Guess and Perk (1988) and Bracquemond and Gaudoin (2002). Recently, Kemp 

(2004) exhaustively studied the ageing behaviour of discrete life distributions and gave 

some new results in this direction. 

In this chapter, as a continuation of the work done in Chapter 3, a general theorem 

that links characterizations of discrete life distributions based on relationship between 

failure rate and conditional expectations with those in terms of Chernoff-type inequalities 

• Part of the work done in this chapter is to appear in Nair and Sudheesh (2007). 
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is proposed. Exact expressIOn for lower bounds to the vanance IS calculated for 

distribution belonging to the modified power series family, Ord family, Katz family and 

mixture geometric models. It is shown that the bounds obtained here contain the Cramer­

Rao and Chapman-Robbins inequalities as special cases. An application of the results to 

real data is also provided. 

4.2 Main result 

Several papers In literature address the problem of characterizing probability 

distributions through Chernoff-type inequalities satisfying specific conditions when the 

domain of application is measured in continuous scale and the results in discrete setup is 

established as analogous results of continuous counterpart. Alharbi and Shanbhag (1996) 

address the same problem with measure theoretical framework and pointed out the 

application of the results in characterizing life distributions through a result similar to 

Cox representation of the survival function in terms of failure rate and suggest cases of 

some continuous distribution as illustrations. In the present chapter we establish a general 

characterization theorem that combines the results available in the two approaches 

described in Sections 3 and 4 of Chapter 2. 

The concepts and definitions required for the work in the subsequent sections 

consist of a class of discrete probability distributions supported by the set N of non­

negative integers, the set <t of real valued functions c(.), of a random variable X 

defined on N having finite variance along with 

m(x) = E(h(X)1 X> x) 

r(x)=E(h(X)IX~x) 

for a function h (X) E <t such that 

In the above formulation p(x), F(x) and R(x)=P(X~x) denote respectively the 

probability mass function, distribution function and survival function of X so that 

and 

k(x)= p(x) 
R(x) 
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"l(X) == p(x) 
F(x) 

are the failure rate and reversed failure rate of X respectively. Note that in discrete setup 

the failure rates and the reversed failure rates are probabilities which is not the case in the 

continuous domain. 

Next we present a general result that meets the objective and also subsumes most 

of the existing results that were taken up in the two streams of characterizations 

mentioned above. 

Theorem 4.2.1: 

Let X be a discrete random variable supported on N or a subset thereof and 

g(.), c(.), h(.) be functions in ~ such that E(c2 (X))<oo, E(g(X)i1c(X))<oo and 

E(h2(X))<oo. Then for every C(X)E~ and some g(x) and h(x), the following 

statements are equivalent. 

(i)P(x+\)== O'g(X) , x==O,I,2, ... 
p(x) O'g(X+ 1)-,lH h(x+ 1) 

(4.2.1) 

"-

with g(O) == (.u-h(O))/ 0' and p(O) is evaluated from LP(x) == I. 
o 

(ii) r(x) == .u -O'"l(X)g(X) (4.2.2) 

( 
... ) () O'k(x)g(x) 
III m x =.u + -...;.....;..=-"'--'-

l-k(x) 
(4.2.3) 

(iv) V(c(X)) ~ E2 (g(X)i1c(X)), (4.2.4) 

provided 

E(g(X)i1h(X)) == 0'. (4.2.5) 

Here .u and 0'2 denote respectively the mean and varIance of h(X) and 

i1c(x) = c(x+ I) -c(x). 

Proof: 

Assuming (4.2.1) we have 

O'g(X + I)p(x + I) -.uP (x + I) + hex + I)p(x + I) = O'g(X)p(x) 
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or 

(,u - h(x») p(x):= a p(x)g(x)-a p(x-l)g(x -I). 

Summation from I to x and the use of the values of g (0) from (i) leads to 

x 

ap(x)g(x) = 2:Ju-h(y))p(y) (4.2.6) 
o 

or 

ap(x)g(x) = ,uF(x)- F(x)r(x). 

Dividing by F( x), we reach (4.2.2). Retracing the steps we get (4.2.1). Thus (i) <=> (ii). 

Now, from 

r(x)F(x)+m(x)(l-F(x)):=,u 

one can solve for F ( x) and R (x), and then use the definition of failure rate and 

reversed failure rate to reach the identity 

,u-r(x) _ (m(x)-,u)(I-k(x)) 
A(X) - k(x) 

which proves the equivalence of (ii) and (iii). From the results of Cacoullos and 

Papathanasiou (1997) stated at (2.2.24) and (2.2.25), we take z( x) = ag( x) and obtain 

V(c(X)) ~ aE2(g(X)fic(X)) 
E(g(X)M(X)) 

if and only if (ii) or equivalently (iii) is satisfied. Further 

cO 

E(g( X)Llh( X)) = I(h(x + I) -h(x))g(x) p(x) 
o 

'" =a-1 Ih(x)(h(x) -,u )p(x) 
o 

This proves that (ii) <=> (iii) <=> (iv). Since (iv) => (ii) => (i), the chain of implications in 

the Theorem is complete. 
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Remark 4.2.1: The equality in (4.2.4) holds ifand only if c(x) is linear in h(x). 

Remark 4.2.2: The results of Cacoullos and Papathanasiou (1989, 1997) and Ruiz and 

Navarro (1994) are special cases of Theorem 4.2.1 

Remark 4.2.3: E(g(X)) = a-1Cov(X,h(X)). 

This follows from 

'" , 
E(g(X)) = a-1II(,u-h(y))p(y) 

X;O y;O 

:x.: l. 

=a-II L (h(y)-p)p(y) 
{;O y;x+l 

X> 

= a-1Ix(h(x) - ,u)p(x). 
x=o 

Remark 4.2.4: For a given h( x) the value of g(x) characterizes the distribution of X. 

Thus for h(x) = x, the random variable X has the Poisson distribution in the class of 

discrete probability distributions supported by the set N of non- negative integers if and 

only if g(x) == A,l!~ for all x. 

We now consider some illustrations of the above results to probability modelling. 

Since the modified power series family, the Ord family and the Katz family \\ihich 

together covers most of the discrete life distributions in common use we find the 

characterization results for the same families. And then provide some examples of 

individual distribution to check the validity of the results. 

The power series distributions is specified by the probability mass function 

a(x) B' 
p(x)= A(8) , x=1,2, ... ,8>0 (4.2.7) 

>: 

where a(x)zO, Ia(x)8 X =A(B), contains several discrete life distributions used in 
x=O 

practice. Patil (1961, 1962) allowed the set of values that the variable can take to be any 

non- empty enumerable set S of non- negative integers and called the resulting 
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distribution as generalized power series distributions. Gupta (1974) replace (Y in (4.2.7) 

by (u (B) r to obtain the modified power series distributions. This distributions is also 

called linear exponential and it admits several desirable properties helpful in inference 

problems. 

Theorem 4.2.2: 

The distribution of X follows the modified power series distributions specified 

by 

(x)= a(x)(u(B))' 
P A(B) , (4.2.8) 

where X EN, a( x) :? 0, u (B) and A (B) are positive, finite and differentiable if and 

only if 

with 

g(x)=- ~(B) _1_oF(x). 
U (B) O"p(x) oB 

Proof: 

From (4.2.8) 

A(B)F(x) = Ia(y)(u(B)Y , 
y=O 

differentiation with respect to B yield 

or 

u'(B) X 

A'(B)F(x)+A(B)F'(x)= u(B) ~ya(y)(u(B)r 

, 1 

A'(B)+A(B)(logF(x)) =u'(B)(u(B)f r(x). 

Using the expressions for E(X) (see 10hnson et. al. (1992» 
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(4.2.1 la) 

the equation (4.2.1 I) reduces to 

or 

( 
A'(B) I aF(X)) 

r(x) =,u 1 + A(B) F(x) ---aB ' 

when h(x)=x and comparing with (4.2.2), 

g(x)=_,u A,(B) _1_ BF(x) 
a A (B) p(x) aB 

u(B) 1 BF(x) 
--,-----. 

u(B)ap(x) aB 

Then the prooffollows from Theorem 2.1 with g(x) values as stated in (4.2.12). 

(4.2.12) 

Remark 4.2.5: Differentiating (4.2.10) again with respect to B , by similar way as above 

we can arrive at 
, , 

r(x) = (log F)' (Iogp') + 2(log P)' (log A( B))' + (IOgA' (B)) (logA( B))' 

when 
, , 

h(x) = (Iogu' (B) r x(x-l) + (logu' (B)) (Iogu( B))' x-( log A' (B)) (log A( B))' 

and 

g(x) = 1 (a
2 
F(x) +2 A' (B) aF(X)) , 

ap(x) aB2 A(B) aB 
(4.2.13) 

since in that case E(h(X)) =,u = 0 and this shows that we can have different vales of 

g (x) for different choice of h ( x) . 
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Remark 4.2.6: When u (B) = B in the above discussion, the results for the sub-class of 

generalized power series distributions can be obtained. 

The results given in the Theorem 4.2. J suggest that the characterizations in terms 

of relationship between failure rate and mean residual lives are not independent of those 

between the corresponding reversed concepts. But the two sets of results are useful in 

their own right depending on whether the data is left or right truncated. It may be noted 

that, though (4.2.12) appears to be complicated, it ends up with a simple forms for 

various members and can be verified from the following example. 

Example 4.2.1: Consider the Poisson distributions with probability mass function 

then 

Hence 

and 

e-,l A;' 
p(x}=--, x=O,1,2, ... 

x! 

dF(x) = .!!...-[i: e-
A 

A,' 1 
dB dB 0 x! 

g(x)=- U,(B) I aF(x) =.1"2 
u(B)O"P(X) aB 

in! V ( c ( X) ) = 1 
C(X)E! A.E2(~C(X)) . 

Substituting the value of g(x) in the identity (4.2.3) we have the result of Ahmed (1991) 

about the Poisson distribution. 

The Ord family of distributions is considered as a discrete analogue of Pearson 

system where /'(x) in the equation (2.4.5) is replaced by ~!( x) = !(x+ 1)-!(x) and 

the probability mass function satisfies the difference equation (2.4.13). Most of the 
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discrete distributions even if do not belong to the modified power series family are the 

members of the Ord family. 

Theorem 4.2.3: 

The distribution of X follows the Ord family of distributions specified by (2.4.5) 

if an only if 

where 

Proof: 

In analogy with (4.2.3) the equation (2.4.5) can be written as 

p(x + 1) _ (ao -d) +(al -I)x + a2x
2 

p(x) aO +a1x+a2x 2 

ag(x) 
=------~--------

ag(x + I) - JL + h(x+ I) 

(4.2.14) 

(4.2.15) 

Obviously, g (x) must be a quadratic function of x of the form g (x) = bo + b!x + b2x2 for 

h (x) = x. Substituting in to the above equation and identifying the coefficient of x we 

get the values of hi' i = 1, 2, 3 as stated in the Theorem. Then applying Theorem 4.2.1 we 

have the result (4.2.14). 

Remark 4.2.7: The results stated in Theorem 4.2.3 can be compared to that of Korwar 

(1991) where he discussed the characterization of Ord family by variance bound and 

hence is a special case of Theorem 4.2.1. Further, the results ofNair and Sankaran (1991) 

about the same family is also a special case of Theorem 4.2.1 where they characterize 

(2.4.5) by the identity (2.4.6). 

Example 4.2.2: Consider the binomial distributions with probability mass function 
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then

so that

p(x+1)- p(x)
p(x)

(n-x)p
(x+I)(I-p)

(n-x) p-(x + 1)(1- p)
(x+I)(I-p)

(n -x) p-(x+ 1)(1- p)
- (x+l)(l-p)

(n-x) p-(x+ 1)(1- p)
(x+I)(I-p)

and

hence

ao=a, =(l-p), a, =0

ag(x) = p(n-x),

rn, (x)= ,u+(I+x)(l- p)k(x+ I),

in! ~_V,--'(,---C(,--;-X-,-,)),-;--:-:" _ I
C(X)EI1: £2 (p(n-x)t>c(X)) - .

The characterization of binomial distribution by the relation between failure rate and

conditional expectation obtained by Ahmed (1991) is identical with the above result.

Pearson (1895) use the Jifference equation

p(x)- p(x-I)
p(x-I)

(a-x)

as the starting point for obtaining the differential equation defining the Pearson system of

continuous distributions. Katz's (1946) restriction b2 =0, bo = b, gives rise to the Katz

family of distributions and the following theorem is the application of the Theorem 4.2.1

to the same family.
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Theorem 4.2.4: 

The distribution of X follows the Katz family specified by 

p(x+I)_a+fJx 

p(x) 1 +x 

if and only if 

In! a
2
(I-fJ)V(c(X)) =1 

C(X)E<t E2((a+fJX)t.c(X)) . 

Proof: 

When h(x) = x, comparing (4.2.16) with (4.2.3) we have 

ag(x) a+ fJx 
------..-::::....:....-~--=--

ag(x+l)-,u+(l+x) I+x 

(4.2.16) 

(4.2.17) 

Clearly g(x) is linear function of x, substitute g(x) = ao + a1x in equation (4.2.17) we 

have 

a(ao+a1x) a+fJx 
--;-----'--.,----'-------=--"--
a (ao + a1 (1 + x)) - ,u + (I + x) l+x 

Comparing the coefficient gives 

a - a and a _ fJ 
0- a(l-fJ) 1- a(l-fJ) 

Now the proof fo Ilows from Theorem 4.2.1. 

Example 4.2.3: For the negative binomial distribution with probability mass function 

(
k+X-l) k f ( x) = P (1- pr , x E N 
k-I 

we have 

p( x + I) _ (1- P )( k + x) 
p(x) - (1 +x) 

Comparing with (4.2.16) gives 

a = k (1- p) and fJ = (1- p) . 

Hence the value of g (x) is given by 

(1- p) 
ag(x)=--(k+x) 

p 
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and 

inf 0"2(1-P)V(c(X)) =1 
C(X)E~ E2((a+pX)ilc(X)) . 

The result of Osaki and Li (1988) about the negative binomial distribution can be had 

from the identity (4.2.3) by means of g(x) value given above. 

We now show that Theorem 4.2.1 can be applied to some finite mixture of 

discrete distributions as well. The mixture of geometric laws 

p(x)=ap,q,X+(I-a)P2Q/, O<p,<I, q,=(I-PI)' i=I,2;Osasl; XEN 

is characterized by (Nair et. al (1999)) 

E(X -xl X > x) = PI + P2 _l_k(x+ I) 
P,P2 P,P2 

so that by taking h (X) = X - x and comparing with (4.2.3) 

Table 4.2.1 shows the values of g (x) for some well known discrete distributions so that 

the characterizations in terms of (4.2.2), (4.2.3) and (4.2.4) can be easily deduced from 

the Theorem 4.2.1. 

4.3 Unbiased estimation 

The present section is a discussion of the implications of Theorem 4.2.1 to 

unbiased estimation and a comparison of inequality (4.2.4) with the Cramer-Rao and 

Chapman-Robbins lower bounds to the variance of an unbiased estimator. First we 

takeh(x)=x and note that h(X)E~. The lower bound in (4.2.4) is attained when 

c ( x ) = h ( x) , in which case 

(4.3.1) 

A necessary and sufficient condition for this is 

r(x) =,tJ- o"A,(x)g(x) , 

which is equivalent to 
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Table 4.2.1 

Values of g(x) for some discrete distribution. 

Distribution p(x) ag(x) 

Uniform (n+l( ,l1n-l (n-x)(x+ I) 

Binomial 
( : ) pX (1- P r-x p(n-x) 

Poisson (x!)e-~AX A 

Negative ( k + x -1) pX (I _. p )*-x (1- p) 
--(x+k) 

binomial k-l p 

Hypergeometric 

(:)(n~x}( a:b) 
,l1 ( na) I [ x2 + ( n - a) x ] + ,l1 

Yule P( P!)x!/(x+ P + I)! ,l1 ( x2 + 2x + 1 ) 

Waring ( c - a) ( a) x I ( c) HI ,l1a-1 (X2 +(l+a)x)+,l1 

Discrete 

a[U!U +x+a)' +b'l r -(4krl,{2aki -(1+a)(2a+k)x} 
student's I 

1-(4krl .u(2a+k)(k2 +2k+i -a) 

Lagrangian (x!fl (1 +axtl (}xe-/J(I+ax) ,l1 of 
---

Poisson f o() 
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x x A(8) 0 x 

Lh(t)p(t) = ,uLP(t)+ ,u-;-( )-LP(t) 
o 0 A 8 08 0 

on using (4.2.12). From (4.3.2), 

A(B) op(x) 
h(x)p(x) = ,up(x)+ ,u---­

A'(B) 08 ' 

dividing through out by p(x) and using the relation (4.2.11a) we have 

ologp(x) = u'(8)( ( )_ ) 
()

hx ,u. 
aB u 8 

Now the Cramer-Rao lower bound for unbiasedly estimating ,u using h(x) is 

v(c(X))= [,u'(8)]" 2 

E( OI;~P) 

u(8) 8,u 2 =---=a. 
u'( B) a8 

(4.3.2) 

(4.3.3) 

Hence the two bounds in (4.3.1) and (4.3.3) are equal. Notice that modified power series 

distribution is linear exponential and hence include cases in which the Crarner-Rao lower 

bound is attained, under regularity conditions. 

Second popular lower bound to the variance of an unbiased estimator is provided 

by the Chapman-Robbins inequality. When E (h (X)) = ,u (8) where 8 EeC R and 

rp E e such that Po (x) and PII' (x) are different, satisfying {Pe (x) > o} ::::J {P(l' (x) > o} , 

we can set 

c(x)=(Ptp(X) -1) 
Po (x) 

in (4.2.4). Now consider 

'" ( x )(p (x+l) p (X)) 
E(g(X)~c(X)) = a-If.; ~(,u-h(Y))p(y) P: (x+ 1) P: (x) (4.3.4) 
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~ ,,-' {t.[~(}J-h(Y)) p, (Y)~: ~ ;~)­

~(~(/l-h(Y)) p, (Y)~: ~;~)} 
, 

= _a- I I(,u -h( x)) PI' (x) 
o 

Inequality (4.2.4) then reduces to 

or 

V(h(X))~ [,u(lP)-,u(B)T , 
v(Pq> (x)/ Po (X)) 

which is the Chapman- Robbins inequality. It is well known that this bound does not 

require the regularity conditions of the Cramer-Rao inequality, is valid when e is 

discrete and provides bounds sharper than the latter. The last statement is also true for the 

Chernoff-type inequality (4.2.4) derived in Theorem 4.2.1, which is more general. 

Moreover, (4.2.4) provides a more general alternative methodology to extract UMVUE's 

when h(x) is taken as a statistic that is unbiased for ,u. 

4.4 Illustration 

Although the above deliberations were essentially directed towards modelling and 

inference of lifetime data, the methodology is applicable for identification of distribution 

and estimation of parameters in other contexts as well. We iJlustrate the procedure for the 

data on the count of alpha particles giving rise to Poisson distribution reported in Mould 

(2005) 

X o 2 3 4 5 6 7 8 9 10 

Frequency: 57 203 383 525 532 408 273 139 45 27 10 
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The failure rate, mean residual life (which has no physical interpretation in the present 

data) and g(x) are plotted in figures 4.4.1, 4.4.2 and 4.4.3. Values of g(x) 

corresponding to x from 0 through 12 are respectively 2.00, 2.06, 2.07, l.96, 1.87, 1.85, 

1.65, 1.61, 2.8 I, 2.01, 2.23 and 2.12. Except for a small aberration around the value 2.81 

(Caused due to the observed frequency 45 at x = 8 which in the Poisson fit gives a clear 

distant theoretical value of 60. It is also seen from the graph of the failure rate that at this 

point the failure rate is decreasing which is not so for the Poisson model) g (x) remains 

constant about it average value 2.02 showing that Poisson model adequately describes the 

data. Ifwe consider the random variable as X, the sum of n independent and identically 

distributed observations following Poisson distribution so that E (X) = nA, n = 2608, 

from the results in Section 3, the UMVUE for A is 3.87. This is also very close to the 

unbiased estimate of A obtained from E (g ( X)) . 

If we look at the unbiased estimation of the probability mass function 

e-"- A' 
p(r)=- , 

rl 
r = 0,1,2, ... 

then for a real function h(x) we have 

E(h(X)) = e-A"t' 
r! 

which gives 

i: h(x)(nAf = i: [(n-l) AJ A' 
xl 0 x!r! o 

Comparing the coefficient of A·Hr we have 

h ( x + r) n.r+r ( n - 1 r 
(x+r)! x!r!' 

which on simplification gives 

(x)( 1 )' ( 1 )X-' h(x)= r ;; 1-;; 
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Taking in c(x) = h(x) in Theorem 4.2. I, equation (4.2. 2) can be written as 

x x 

Ih(y)/(y) = I/(r)/(y) -ag(x)f(x), 

and the value of g (x) is given by 

Xl x 

ag(x) = -' x I {/(r)-h(y)}(nA)' I y! 
(nA) y=o 

so that h(x) in (4.4.3) is unbiased for /(r) and attain the minimum variance bound 

(4.2.4). 

In conclusion, in this chapter we arnves at the class of discrete probability 

distributions typified by (4.2.1) that can be used for reliability modelling in terms of 

characteristic properties represented in (4.2.2) and (4.2.3) in terms of failure rate (or 

reversed failure rate) and right (or left) truncated expectations. The link established with 

Chemoff-type inequalities further enables to assist in the unbiased estimation of 

parametric functions with properties that subsumes some of the well-known results in the 

classical theory of estimation. 
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Chapter 5 

Characterization of Continuous Distributions by 

Properties of Conditional Variance 

5.1 Introduction 

In the preceding chapters we have discussed the properties of variance of a 

function of a random variable and its implications in reliability modeJing, with the main 

focus on the mean residual life (or reversed mean residual life) and the failure rate (or 

reversed failure rate). Other than the mean, a second characteristic of the residual life that 

plays a similar role in identifying life distributions and distinguishing them is the 

variance residual life (VRL) denoted by v(x) and is defmed as 

v(x) = V(X -xl X> x) = V(X > X)~E(X21 X> X)_E2(X I X> x), 

first discussed by Launer (1984) while classifying life distributions based on the 

monotonic behaviour ofVRL. Mukherjee and Roy (1986) used relations of the fonn 

v(x) = c(m\(x)-x) and h(x)(m\(x)-x) = c, 

c a real constant, to characterize the exponential, Pearson type XI and finite range 

distributions. As a discrete analogue of the results of Mukherjee and Roy (1986) Hitha 

and Nair (1989) showed that the relations 

v( x) = c(ml(x) -x)(ml(x)-x-l) and h(x}(mJ(x)-x) = c 

uniquely detennine geometric, negative hyper geometric and Waring distributions for 

c = 1, c < I and c > 1. Gupta et. al. (1987) have studied conditions under which the 

variance residual life function is monotone and showed that the DMRL (decreasing mean 

residual life) class is contained in the decreasing variance residual life (DVRL) class. 
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Gupta and Kinnani (1987) investigated the connection between MRL and VRL for the 

equilibrium distributions. Gupta (1987) studied the monotonic behavior of VRL in terms 

of the residual coefficient of variation defined by s(x)=~v(x)/m(x) while the square 

of the residual coefficient of variation is the interest of Gupta and Kinnani (1998). 

Bounds on the residual moments and residual variance are obtained by Gupta and 

Kirmani (1990) and some examples were furnished as illustrations. Gupta and Kirmani 

(2000) showed that v (x) and s (x) characterizes the life distributions in un ivariate as 

well as in bivariate case and proved that the constancy of v( x) characterizes the 

univariate exponential distribution. They also studied the monotonic behaviour of s (x) 

in terms of convex (concave) nature of mean residual life function. Gupta and Kinnani 

(2004) established that the ratio of failure rate and mean residual life characterized the 

distributions and result is then used to show that the second residual moment characterize 

the distributions. They also discuss the application of the results to non- homogeneous 

Poisson process. Defining two classes, decreasing variance residual life (VD) and 

increasing variance residual life (~), Stoyanov and AI- sadi (2004) discuss some ageing 

pattern of life distributions and then studied the properties of coherent system based on 

these classes. Kundu and Gupta (2003) gave two simple characterizations theorem on 

proportional (reversed) hazard model based on conditional variance. They proved that for 

any real number t such that Fx (I) > 0, Ax (I) = aAy (I) with a > 0 if and only if 

I 
V(-lnFx (Y)IY<t)=-2 ' 

a 

and for any real number t such that Fx (I) > 0, kx (I) = aky (I) with a> 0 if and only if 

V(-lnFx (Y)I Y> t) =~. 
a 

Recently, Arishi (2005) characterized exponential family of distribution specified 

by (3.2.13) by the identity 

(5.1.1) 
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As an illustrative example he proved that the random variable X follows binomial 

distributions if and only if 

V{X I X > x):= np(l- p)+{x+ 1)(1- p)(x+ 1- p(n + l))k(x+ I)-{x+ 1)2 k2 (x+ 1). 

(5.1.2) 

The Poisson random variable with mean f.i is characterized by the identity 

V(X I X> x):= A +(x+ l)(x+ 1-Je)k{x+ l)-(x+ 1)2 e (x+ 1). (5.1.3) 

A close examination of the properties of VRL and characterizations through its 

relationship with MRL so far studied in literature leaves scope for generalization of these 

results by forging an identity connecting VRL and MRL for a class of probability models. 

In this chapter we study the properties of the left and right truncated variance of a 

function of a non- negative random variable, that characterize a class of continuous 

distributions. These properties include characterizations by relationships the conditional 

variance has with truncated expectations and/or the failure rate as well as lower bound to 

the conditional variance. Various results in literature become special cases of our fonnula 

and consequently they produce characteristic properties of families of distributions as 

well as individual models. It is shown that the characteristic properties are linked to those 

based on relationship between conditional means and failure rates, discussed in the earlier 

chapters. The lower bound developed here compares favourably with that given by 

Cramer- Rao inequality so that the bound developed here can be utilized to find the 

UMVUE in the case of truncated random variable. 

5.2 Covariance identity and related characterization 

For the sake of continuity, through out this chapter we retain the notations 

described in Chapter 3. For a real function h (X) of X, from Theorem 3.2.1 we have 

seen that the density function f{x) satisfies the differential equation (3.2.4) if and only 

if (3.2.3) is satisfied. Utilizing conditions in (3.2.3) in deriving the necessary relationship 

between V (h(X) I X > x) and E(h(X) I X> x) will lead to a characterization of f(x) 

in tenns of(3.2.4). The advantages of using this approach are (i) a link can be established 
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between various characterizations of distributions by relationship between conditional 

expectations and failure rates so far discussed in literature and the present work (ii) A 

lower bound to the conditional variances can be obtained in the sense of Cacoullos and 

Papathanasiou (997). The study of the lifetime of a system after the elapse of a 

prescribed time is important in reliability theory and in this case, the conditional 

variances play the same role as the usual variances in other statistical models. (iii) While 

the results implied in (i) helps the identification of the appropriate distribution for the 

data through the characteristic property, (ii) provides construction of minimum variance 

unbiased estimators of relevant parametric functions through judicious choice of h (X) , 

where X is a statistic. 

Next we deri ve an expression for the covariance between c ( x) and h (x) 

conditioning on the random variable X in terms of m(x) and present it as the following 

theorem. 

Theorem 5.2.1: 

For every c(x) in ~ and all x>O satisfying E(g(X)lc'(X)1) <00, 

Cov(c(X),h(X) I X > x) = aE(c'(X)g(X) I X > x)+(JI- m(x))(a(x)-c(x)) 
(5.2.1 ) 

where 

a(x)=E(c(X)IX>x), 

if and only if 

m(x) = JI + ak(x)g(x). 

Proof: 

To prove the if part, we consider 

E[ c(X)(h(X) - JI) I X> x J=[F( x) r {r (c(t) -c(x))(h(t)- JI)j(t)dt 

+c( x) r (h(t) - JI) /(/) dt} 

(5.2.2) 

= [F( x)f r( i c'( u)du)( h(t) - JI)j(t)dt + c(x)E[ (h( X)- JI) I X > x] (5.2.3) 
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By changing the order of integration in the first tenn on the right of (S.2.3) and then on 

using (3.2.1), it becomes. 

[f'( x) r r c'( u)( [( h(t) -.u)f (t)dt )du = [f'( x) r r c'( u) (I (,u - h(t))f (t)dt )du 

= [f'(x)r r C'(u)O"g(u)f(u)du 

= O"E(c'(X)g(X) I X > x). 

Thus (S.2.3) reduces to 

E[ c(X)(h(X) -,u) I X > x J=O"E[ c'(X)g(X) I X > x] + c(x)(m(x) -.u) (S.2.4) 

or 

E[ c(X) h(X) I X > x] =O"E[ c'( X) g (X) I X> x] +c(x)( m( x) -,u) + ,ua(x). (5.2.S) 

By definition 

Cov(c(X),h(X) I X > x) = E(c( X)h(X) I X > x)- E(c(X) I X > x).E( h(X) I X > x). 

(5.2.6) 

Substituting (5.2.5) in (S.2.6) the identity (5.2.1) follows. 

Conversely assuming (5.2.1), we have (5.2.4) and hence 

E[( c(X)-c(x))(h(X)-,u) I X > x J = O"E[ c'(X)g(X) I X > x]. 

This is equivalent to 

[F(x)r r C'(u)([(h(t)-,u)f(t)dtYu=O"[F(X)r r c'(u)g(u)f(u)du. (5.2.7) 

F or any (a, b) contained in (0, OCI) , choose absolutely continuous c (x) such that 

{
I x E (a,b) 

c'(x) = ' 
0, x ~ (a,b) 

so that (5.2.7) simplifies to 

r ([ (h(t) - ,u)j(t)dt Yu = 0" r g(u)f(u)du 

or 

ag(b)/(b) = [(h(t)- ,u)f(t)dt, for all b. 
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Since E ( h ( X)) = J.1 the above equation can be written as 

o-g(b)f(b) = l(h(t)-fi)f(t)dt, for all b 

which is the same as (3.2.1) then from Theorem 3.2.1 we can arrive at (5.2.2) and this 

completes the proof of the theorem. 

Corollary 5.2.1: When h( X) E ~, 

v (h( X) I X> x) = a E[ h'( X)g(X) I X > x] + (J.1- m(x))(m(x) -h(x)) (5.2.8) 

if and only (5.2.2) holds. 

Prooffollows by taking c( X) = h(X) in (5.2.1). 

Using (5.2.2) we can write 

(m(x )-h(x)) = (m(x)- fi)- (h(x)- fi) = a-g( x)k( x)-(h(x) - J.1), 

hence from Corollary 5.2.1 we can deduce the following result. 

Corollary 5.2.2: When h ( X) E ~ , 

v( h(X) I X> x) = o-E[ h'( X)g(X) I X > x] + (h(x) - J.1 )o-g( x) k(x) _0-2g2 (x)e (x) 

(5.2.9) 

if and only (5.2.2) holds. 

Remark 5.2.1: We see from Corollary 5.2.1 that the conditions (5.2.8) and (5.2.2) are 

equivalent and the latter characterizes (see Theorem 3.2.1) the distributional fonn in 

(3.2.4). Now the equation (3.2.4) can be written as 

dlogf(x) dlogg(x) (J.1-h(x)) 
--~+ =--'.....-_-'---'-'-

dx dx o-g(x)' 

J ntegrating with respect to x from 0 to x and assuming lim g ( x ) f ( x ) = 0 
....... 0 

which can be written as 
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(5.2.10) 

Hence for a given functional fonn of g(x) that satisfies (5.2.2), the relationship (5.2.8) 

uniquely detennines /(x) as (5.2.10). Characterizations of probability distributions by 

means of relationships between conditional means and failure rates therefore extend to 

characteristic properties by relationships between conditional variances and conditional 

expectations. A further feature of Theorem 5.2.1 is that many existing characterizations 

proved separately for families and distributions by different methods can be brought 

under a single framework. These facts are illustrated in the following remarks. 

Remark 5.2.2: When h(X)::: X, from (5.2.8) we have characterization of distributions 

through relationships between VRL and the mean residual life mo(x)::: m(x)-x. 

In the above results g (x) for a particular choice of h (X) is unique and therefore, 

identifies the distribution. 

As pointed out in the introduction next we discuss the implication of the results 

with existing characterization theorems. 

Remark 5.2.3: Dallas (1981) proved that an absolutely continuous random variable 

distributed as 

F(x):::I-exp(-h(x)lk), a:5:X<c, k>O (5.2.11 ) 

where h(x) is strictly increasing from [a,c) to (0,00), twice differentiable if and only if 

V(h(X)JX>x):::e, for all x. 

Using the expressions 

k(x)=~(x) 
F(x) 

= h'~X) exp( - hr) }exp( - hr)) 

h'(x) 
=--

k 
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and 

1 [' m(x) "'~ h(x)j(x)dx 
F(x) 

= 2- [h(x) h'(x) exp(- h(X))dx 
F(x) k k 

= F(~) [h(X)exP( - h~X») I + r h'( x)exp( - h~X»)dx] 

= F;X)[ h(X)exP( - hr) )+kexp( - h~X»)] 

=h(x)+k 

,u=E(h(X))=k, 

from (3.2.3) one could find the value of g(x) as 

g(x)::o: m(x)-,u 
ak (x) 

k(h(x)+k-k) 
ah'(x) 

kh(x) 
ah'(x)' 

so that the substitution of these in (5.2.8) gives 

V( h(X) I X > x) = km( x) +(,u-m( x))( m( x)- h(x)), (5.2.lla) 

The result by Dallas (1981) now follows from (5 .2.11 a). Assuming (5.2.11) and 

substituting the values of m(x), ,u and h(x) on the right side of (5.2.1 la) gives the 

value k2
• Conversely if the conditional variance is e, from (5.2.1 la) we get ,u = k by 

letting x tend to zero. Further (5.2.1 la) simplifies to 

(m(x)-k)(m(x)-k-h(x)) = 0, 

giving solutions m(x)=k or k+h(x). The first solution is inadmissible and second 

leads to (5.2.11). This completes the proof. The characterization results in Nagaraja 
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(1975) for the exponential distribution by the constancy of the conditional variance is 

further special case when h( X) = X . 

Remark 2.5: The random variable X belongs to the exponential family specified by 

(3.2.15) ifand only if 

V(P(X)IX>x)=[Q'(B)r am(x). 
aB 

(5.2.12) 

To prove the if part we observe from Theorem 3.2.4 that for the exponential family 

(3.2.15) 

[ 1
-1 a log F(x) m(x)=j.i+ Q'(B) 

aB 

when h(X) = P( X), so that 

[ ]

_1 aF(x) ag(x) = f(x)Q'(B) --. 
aB 

Now, assuming the differentiation under the integral sign, consider 

Now 

aE[P'(X)g(X)1 X> x] = [F(x)Q'(B) r aa
B 
r P'(t)F(t)dl 

=[F(x)Q'(B)r :B[ -F(x)P(x)+ r P(t)f(t)dtJ 

= [F(x)Q'( B)r :B [( F(x)m(x)- F( x) P( x)) ] 

= [F(x)Q'(B) r [F (x) a:~x) +( rn(x) -P(,.)) a:~x) l (5.2.13) 

[F(x)Q'(B)]-1 [( m(x) -P(x)) 8F( X)] = (m( x)- P(x))a[ a f( x)Q'( 0) r aF( x) ~((x)) 
a8 a8 F x 

= (m(x)- P(x))ag(x)k( x) 

= (m(x) -P( x))(m( x)- j.i), 

on using (5.2.2). Substituting in (5.2.13) gives 

aE[ P'( X)g( X) I X > x] = [Q'(B)J-l am( x) + (m(x)- j.i)( m(x) -P(x)). 
a8 
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Thus from (5.2.8) we have (5.2.l2). Conversely, if we assume (5.2.12), from the resulting 

equation by retracing the above steps we reach at 

a r P'(t)g(t)j(t)dt = [Q'(O).F( x) r :0 r P'(t)F(t)dt . 

Differentiating with respect to x we find ag(x) as stated earlier. Using g(x) in (5.2.11) 

we have 

or 

log[aQ'(O)t of(x) = r(aF(t))-1 (,u-P(t))Q'(O)j(t)dt. 
00 1 ao 

Differentiating with respect to x 

or 

(
aF(X))_1 aF(x) =[aF(X))_1 (,u-P(x))Q'(O)j(x) 

ao 00 00 

ologj(x) =(,u-P(x))QI(B). 
00 

Integrating with respect to 0, we have the exponential form and our assertion is 

established. 

Since for the family (3.2.13) 

m(x)=- S'(O) +_1_010gP(x) 
Q'(O) Q'(O) aB ' 

differentiation with respect to 0 gives 

am(x) =~[_ SI(8)l+~[_1_0l0gF(X)l 
08 08 Q'(8) 08 Q'(8) 00 

Q"S'-Q'S" Q" alogF(x) 1 0210gF(x) = --- + - -~-'--'-

(Q,)2 (Q,)2 08 (Q') 002 

Thus (5.2.12) takes the form 
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Q"S'-Q'S" Q" alogF{x) I a2 IogF(x) v(p{X)IX>x)= -- +----:-~ 
{Q,)3 {Q,)3 af} (Q't 8f}2 • 

which is the expression obtained by EI- Arishy (2005) when P{X) = X, using a 

completely different approach and was stated in (5.1.1). 

Remark 5.2.5: We note that when h{X) = xr, from (5.2.2), 

or 

E( X' I X > x) = E( xr)+ k{x)g' (x) 

where g'(x)=ag{x) and by Theorem 3.2.1 the corresponding form for f(x) IS 

obtained as 

f' (x) _ (c - g' • ( x) - x! ) 
j(x) - g'(x) 

which is the result in Theorem 5.4.1 ofNavarro et. a1. (1998) and was reported in (2.4.15) 

and (2.4.16). For the gamma distribution with probability density function 

m P 

logj(x) = log- +(p-I)logx-mx, 
fp 

differentiating with respect to x gives 

f'{x) (p-l) 
--=---m. 
j{x) x 

Multiplying throughout by xr and rearranging 

x' f'(x) = (p-l)x'-lf(x)-mx' f(x). 

Assuming lim x' f (x) = 0 and integrating with respect to x from x to 00 .... '" 
-x' f{x)- r rx'-If(x) = (p-l) r x'-lf(x)-m r x' f(x). 

Rearranging and multiplying throughout by (m.R (x) r we get 
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(5.2.14) 

Taking 

h () 
, r + p - I ,-1 

X =X - x 
m 

and comparing with (5.2.2) we find the value of g (x) as 

x' 
O"g(x) =- and J1 = O. 

m 

Applying the last fonnula (5.2.14) recursively for r, we can arrive at the identity (2.4.1) 

so that we find the characterization in Theorem I in Adatia et. a\. (1991) (see also 

Koicheva (1993». Now 

v ( X' I X > x) = E (x2r I X > x) - E2 (X' I X > x) . (5.2.15) 

Proceeding in similar way as to obtain (5.2.14), we have 

E( Xlr _ 2r+:-l X2r-1
1 X > x)= x: k(x) 

or 

E (X2r I X > x) = E ( 2r +: -1 X2r-1 I X > x ) + x: k (x) . 

Substituting the last identity in (5.2.15) 

V (X' I X > x) = 2r + p -1 E (X2r-1 I X > x) - E2 ( X' I X > x) + x2r k (x), 
m m 

and in particular 

p+1 x2 

V(XI X >x) =-~ (x)-~2(x)+-k(x), 
m m 

(5.2.16) 

where 

mt(x)=E(XkIX>x), k=I,2, ... , 

characterize the gamma distribution. When r = I in (5.2.14) we have the Osaki and Li 

(1988) characterization and the corresponding conditional variance is in (5.2.16). Further 

for r = 1 and g(x) = 0" in (5.2.16) the result ofKotz and Shanbhag (1980) for the nonnal 

distribution is obtained by relaxing the support X to be (-00,00). Since we are 
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considering only non- negative random variables, the truncated normal law with 

probability density function 

j(x) = d:- exp( (x- ~)2), x> 0 
v27!a 20' 

(5.2.17) 

has 

( )
2 

2 x-j..L 
logj(x) = log--- 2' 

-&0' 20' 

differentiating with respect to x gives 

/'(x) (x- J..L) 

j(x) = - 0'2 

or 

Assuming that the density function vanishes at the end point and integrating with respect 

to x from x to 00 we obtain 

Hence 

or 

Since E (X) = J..L + 0'2, comparing with (5.2.2) we have 

g(x)=a, 

so that (5.2.17) can be characterized by the conditional variance relationship 

Remark 5.2.6: Ghitany et. al. (1995) have shown that for a real valued function s ( x) * 0 

the identity (2.4.12) holds for all x ~ 0 if and only if the random variable X belongs to 

the class of absolutely continuous distributions with density (2.4.11). Taking 
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h(X)=[l+ q"(X)p(X) S'(X)] 
(q!(X)f q'(X) 

we have 

ag(x)= s(x)/q'(x) 

and hence the conditional variance characterization is valid according to (5.2.8). 

Remark 5.2.7: Our results hold for mixtures of distributions as well. Nassar and 

Mahmoud (1985) derives 

(5.2.18) 

as a necessary and sufficient condition for the distribution of X to be the mixture of 

exponentials 

J(x) = A.a! exp( -a!x) +(I-A. )az exp (-azx). (5.2.19) 

The g ( x) value worked out from (5.2.18) leads to 

V(XI X > x) = a1-
z +a2-

2 -(aIa2t h2 (x) 

as a characteristic property of (5.2.19). The Lomax and beta mixtures of Abraham and 

Nair (2001) and gamma mixture of Adatia et. al. (1991) also admits similar identities by 

adopting this procedure. 

Remark S.2.S: For the Pearson family of distributions specified by (2.4.3) from Theorem 

3.2.2 we have seen that 

with 

Consider 

aE(h'(X)g( X) I X > x) +(,u -m(x))(m(x)-h(x)) 

= E(bo +blX + bzX
2

! X > x)+,urn" (x)- ,ux-mI
2 (x) +xrn" (x) 

= [ bo + (bI + f.1 + x) rn" (x) - f.1x ] + b2"'-2 ( x ) - bz rn" 2 ( X ) - ( 1 - bz ) mI
2 

( X ) 
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= [ ho + (hi + )J + x) ml (x) - )JX ] + b2 V ( x I x > x) - (1- b2 ) ~ 2 ( X) . 

Accordingly we have from (5.2.8) 

V(X I X > x) = (1-b2 ( [bo +(bl +)J+ x)rnl (x)-)Jx J_rn1
2 (x). (5.2.20) 

Conversely, when (5.2.20) holds, we can work backwards to obtain 

or 

Differentiating, we get 

and by Corollary 5.2.1 

m(x) = )J+(bo +b1x+b2x2)k(x) , 

so that X belongs to the Pearson family by (2.4.3) and (2.4.4) (see Sankaran and Nair 

(1991 ». A special case is the beta distribution with probability density function 

f(x) = 1 xp
-

I (l-xtl 
B(p,q) 

considered in Ahmed (1991), for which (see Table 3.1) 

o-g(x)=(p+q( x(l-x). 

Using (5.2.8) 

V(X) X > x) = (p+ qrl ml (x)-rn2 (x)+(p+ q)()J- rn, (x))(rnl (x)-x) ] 

Hence 

= (p + q ([ m] (x)_m,2 (x) +m]2 (x)-m2 (x) + (p+ q)()J-ml (x))( ml (x) -x) ] 

= (p + q ( [ m] (x) - ml
2 (x) - V ( X I X > x)( p + q )()J - ml (x)) (m] (x) - x) ] . 

Further interesting special cases of the last result in reliability modelling are the power 

distribution ( q = 1) , finite range distribution (p = 1) and uniform distribution 
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(p = I, q = I). Results for some members of the family have already been covered and 

hence we have as additional illustration, the inverted gamma 

f(x) = cx- P exp(-qlx), x>o 

with (from table 3.2.1) 

a-g(X)=(p_2)X2 

and 

v (X I X > x) = [(p-2)m2 (x)- (p-2) mJ

2 (x) + (p- 2)m/ (x) + (,u- ~ (x))( ~ (x) -x) ] 

= [ (p - 2) V ( X I X > x) + (p - 2) m) 2 
( x) + (p- m) ( x ) ) ( m1 ( x) - x) ] 

or 

v(X I X> x) = (3- p}-l [(p_2)mI
2 (x)+ (p-m1 (x))(m, (x) -x)]. 

The Pareto model 

( )

-(a+l) 

f(x)=i i ' x>k 

has 

log f ( x) = log aka - ( a + I) log x . 

Differentiating with respect to x 

f'(x) -(a+l) -(a+l)x 
f(x) = x = x2 

Hence the given probability density function belongs to the family specified by (2.4.3) 

and the value of g ( x) is given by 

x2 

ug(x)=-( -). 
a-I 

Consider 

=_( 1 )E(X2IX>X)--( I )m/(x)+-( 1 )m/(x) 
a-I a-I a-I 
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=_( I )V(XIX>X)+-( I )m,2(x). 
a-I a-I 

Hence from 5.2.8 

I 
V(X I X> x) = -( -) (V(X I X> x)+m,z (x))+ j.1(m, (x)-x)+ (x-m, (x))m, (x) 

a-I 

= (a- 2t [ m,2 (x )+( a-I)j.1( m, (x)-x) +(x- m[ (x) )m[ (x) J. 

Remark 5.2.9: The generalization of the Pearson family given by (3.2.12) has (see 

Sankaran et. al. (2003» 

crg(x) = (co + c1x +C2X2) 

where co' Cl and c2 are the solution of 

for the choice h(x) = px2 +qx+r. We have already noticed that the family specified by 

(3.2.12), in addition to generating all members of (2.4.3), has provision for new members 

like the inverse Gaussian, Maxwell, random walk and Rayleigh distributions. The inverse 

Gaussian distribution 

f(X)=~ /3 3 exp[_f3(x~())2l' x>O 
2trx 2e x 

verifies 

for a choice of 

and hence 

V(X I X > x) == ()2fJl (/3+ ~ (x) +2X2k(x))_~2 (x). 

For the Rayleigh distribution 

f(x) = 2axexp( -ax2) , x> 0 

we observe that 

crg(x)=x 
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for choice of 

h(x) = 2ax2 -2 

and 

V(X! X> x) = (2a)-' (xk(x) + 2)_m,2 (X). 

For the Random walk distribution with probability density function 

g;; [-A,(Xa-l)2] 
f(x)= -exp 2' x>O, A" a>O, 

27rx 2xa 

we have 

for a choice of 

And 

v ( X I X > x) = (3 A,~ ( x) + 2A,x2 k (x) + a -2) - ~ 2 ( x) . 

Consider the Maxwell distribution with probability density function 

()! 2 

f(x)=4f;.-x2e-,u ,x>O,A,>O. 

then 

ag(x)=x 

with 

h(x) = 2A,x2 -3. 

Hence 

V(XI X> x) = (2A,)-1 (xk(x) +3)_~2 (x). 

These examples throw up sufficient illustration of the utility of our results in establishing 

characterizations by relationship the conditional variance has with conditional means that 

include mean residual life as well. Involving failure rates in these equations is easily 

accomplished by means of (5.2.2) or by Corollary 5.2.2 in all cases, though this is not 

explicitly stated. 
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5.3 Lower bound to the conditional variance 

The covariance identity in Section 2 provides scope for introducing bounds on 

variance using the traditional inequality between the covariance and the variances of the 

functions involved. We follow the methodology used to characterize distributions by such 

bounds in Cacoullos and Papathanasiou (1997). When the function c (X) appearing in 

the bounds are chosen as estimators of the desired parametric functions, the sampling 

distribution of X will detennine g (x) and the bounds have the potential to identify 

through a different approach, the minimum variance unbiased estimators obtained by the 

well known classical theorems. 

Theorem 3.1: 

Under the condition of the Theorem 5.2.1, for every c(x) in Sl), 

V(c(X) I X> x) ~ [V(h(X) I X > x)J' [(jE[c'(X)g(X) I X > x] 

+(J1-m(x))( a(x)-c(x)) T (5.3.1) 

if (5.2.2) holds, with equality whenever c( X) is a linear function of h( X). Conversely, 

if the conditional variance is (5.3.1), then (5.2.2) is true provided V(h(X)1 X > x) is as 

in (5.2.8). 

Proof: 
Since 

Cov2 (c(X),h(X)1 X> x) ~ V( c(X) I X > x)V(h(X) I X > x), 

using (5.2.1) we have (5.3.1). To prove the second part of the Theorem assume 

c(x) =h(x)+81(x) 

for some arbitrary real e. Then 

a(x) = m(x)+ eb(x) and b(x) = E(!(X) I X> x) 

so that (5.3.1) becomes 

V( h(X) I X > x)[V( h(X) I X > X)+&2V(I(X) I X > x) + 2eCov(l(X),h(X)1 X > x) ] 

~[(jE[ h'(X)g(X) I X > x] +aBE[I'(X)g(X) I X > x] 

+{ m(x)+ Ob(x)-h(x) -OI(x)}(J1-m( x)) J . 
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= [O"OE[I'(X)g(X)1 x > x J+O(b(x)-I(x))(,u-m(x))+V(h(X) I X > x)T, 

(5.3.2) 

using (5.2.8) and the inequality (5.3.2) simplifies to 

02 [V(h(X) I X > X)V(t(X) I X > x )-{ O"E[I'(X)g( X) I X> X] 

+(,u-m(x))(b(x)-/(x))}2 +20V(h(X) I X >x)[ COV(t(X),h(X)1 X > x) 

-{ O"E[/'( X)g( X) I X > x J+(,u-m(x))( b( x) -I (X))}}. O. (5.3.3) 

For (5.3.3) to be true for all 0, the coefficient of 0 must vanish and therefore, 

Cov(t (X),h( X) I X> x) = O"E[l'( X)g (X) I X > x] + (,u -m(x) )(b( x) -l( x)). 

Using the expression for the covariance the above identity reduces to 

or 

E(I(X)(h( X) -,u) I X > x) = O"E(t'(X)g(X)! X> x) +1(x)E(( h( X) -,u) I X > x) 

r (I (t) -I (x))( h(t) -,u )f(t)dt = 0" r l'(t)g(t)f(t)dt 

r ( i I ' ( u ) dU) ( h ( t ) - ,u) f ( t ) dt = 0" ri' ( t ) g ( t ) f ( t ) dt . 

The rest ofthe proof is as in Theorem 5.2.1 to arrive at (5.2.2). 

From the point of estimation, it is worth examining how our inequality compares 

with the lower bound of the variance in the Cramer- Rao theorem. Let X belong to the 

regular exponential family of distributions specified by (3.2.13). Then the random 

variable (X I X > t) has density 

J;(x;O) = exp [P(x)Q(O) + T(x)+S(O)-logF(t)] , x> t 

which is also of the exponential form so that the Cramer- Rao lower bound is attained for 

the unbiased estimation of 

This bound is 
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From the discussion on Section 3.3.1 we have 

hence 

which is also the bound obtained in (5.3.1). Thus in regular cases, the two inequalities 

produce the same result. 

To see the position in non- regular case, note that Theorem 5.3.1 does not require 

the regularity conditions of the Cramer - Rao Theorem and accordingly it is applicable in 

non- regular cases. Note that in the uniform distribution over (o,e) , the random variable 

( X I X > x) has the density f (x) given by 

• f(x) 1 e 1 
f (x) = R(x) =0 (e-x) = (e-x) . 

Taking (h(X)IX>x)=2X-x, 

E(2X -x) = (e~x) r (2t -x)dt 

=_I_[t2 -xtJ 
(e-x) x 

=_I_(e2 -ex) =e 
(e-x) 

and (h ( X) I X > x) = 2X - x is unbiased for e. The Cramer- Rao inequality provides the 

lower bound 

(5.3.4) 
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Now 

log.( (x) = -Iog( fJ-x), 

differentiating with respect to fJ gives 

oIogf'(x) ___ l_ 

aB (fJ-x) . 

Substituting in (5.3.4) we obtain the lower bound provided by Cramer- Rao inequality as 

Again 

and 

Hence from (5.3.5) 

V(h(X)1 X >x) =(fJ_X)2. 

E2 (h(X) I X > x) = (fJ+X)2 

E(h2(X)IX>x)= (B~X) r 4x2
dx 

1 [4 3]/J 
= (fJ-x) "3 x 

x 

__ I_[~fJ3 _~X3] 
- (fJ-x) 3 3 

= (fJ~x)[1(fJ-x)(fJ2 +X2 +fJx)] 

v (h(X) I X > x) = 1(fJ2 + x2 + fJx)-( fJ+ X)2 

=~[ 4(02 +X2 +Ox)-3(O+X)2] 

(fJ_X)2 
3 
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For the random variable c(X)=2X, now we consider the bound obtained by (5.3.1). 

From the identity (5.2.4) we have 

O"E(c'(X)g(X) I X >x)+(.u-m(x))c(x)=E[ c(X)(h(X)-.u) I X > x] 
= E[2X(2X -x-e)] 

=_( I ) {(4t2-2tx-2te)dt 
e-x 

=_I_(!(B3 -x3 )-BX(B-X)) 
(B-x) 3 

= 3( Bl_x) (( e -x)(B2 + x2 
+ Bx)-3ex( £1 - x)) 

_ (B_x)2 
3 

Hence the random variable c( X) = 2X attain the bound in (5.3.1) which is in fact the 

actual variance of h( X) given in (5.3.6), so that (5.3.1) improves upon the Cramer- Rao 

bound. 

Now we compare our bound with variance provided by Chapman- Robbins 

inequality. Let Eo(h(X)IX>x)=mo(x), where £1, qJE0cR such that fo(x) and 

f, (x) are different, satisrying {f. (x) > o} :::> (.r. (x) > o} , choosing c (x) ~ (1 i;~ -I) 

Consider 

aE[c'(X)g(X)IX >x J= F:X) r C'(u)g(u)fo(u)du 

= F~X) r c'(u)(I(.u-h(t))fo(t)dt)du 
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Interchanging the order of integration by using Fubini's Theorem 

aE[c'(X)g(X)IX>x]= F:X) [(h(t)-,u)(ic'(u)du)fe(t)dt 

= F~X) r C(t)(h(l)-,u)j~(t)dt~(x)(m(x)-,u) 
~ F;xl r(;,~:j -1}h(tl-,ul!.(tldH(x)(m(Xl-,u) 

= F:X) [(fl' (x)- j~(x))(h(t)-,u)dt~(x)(m(x)-,u) 

=[ mq>(x)-mt/(x)J-c(x)(m(x)-,u). 

Now the substitution in (5.3.1) gives 

or 

which is the Chapman-Robbins inequality. 

5.4 Reversed variance residual life 

Like the reversed mean residual life, we can define the variance of reversed 

residual life (RVRL) by 

V(X I X ~ x) = E[(X_X)21 X ~ x J-ro
2 (x) . 

. As before, defining 

r(x)=E(h(X)IX~x), 

covariance identity and variance bounds can be derived for V ( h ( X) I X ~ x) in tenns of 

r (x) and the reversed failure rate A (x) and we present it as following theorem. 
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Theorem 5.4.1: 

For every c( x) E IB and all t > 0 and h (x) satisfYing E( h2 (X)) < 00 , 

Cov(c(X),h(X) I X .:::x) = aE(c'(X)g(X) I X.::: x)+ (Jl-r(x))(b(x)-c(x)) (5.4.4) 

where 

b (x) = E ( c (X) I X .::: x) , 

if and only if 

ug(x).-l(x)=Jl-r(x), X>O. 

Proof: 

To prove the if part, we consider 

E[ c(X)( h(X)- Jl) I X.::: x J=[ F( x)r {r (c(t) -c(x))( h(t) - Jl )j(t)dt 

+c(x) r(h(t)-Jl)f(t)dt} 

= [F( x)f r (L c'(u )du )(h(t) - Jl )j(t)dt + c(x)E[ (h( X) - Jl) I X.::: x] 

= [F( x) r r (f c'(u)du )(Jl-h(t))J(t)dt +c(x) E[ (h( X)- Jl) I X.::: x] 

= [F(x)f r c'(u)( r (Jl-h(t))j(t)dt pu+c(X)E[(h(X)- Jl) I X.::: x] 

= [F( x)f r c'(u) ug(u) /(u )du + c(x)E[ (h(X)- Jl) I X.::: x], 

on using (3.2.1 ).Hence 

(5.4.5) 

E[ c(X)( h(X) - Jl) I X.::: x J= = O"E( c'(X)g( X) I X ~ x)+c(x)(r( x)- Jl) (5.4.6) 

or 

E[ c(X)h(X) I X ~ x J=O"E[ c'(X)g( X) I X.::: x J +c( x)(r(x) - Jl) + Jlb( x). (5.4.7) 

Now by definition 

Cov(c(X),h(X) I X.::: x) = E(c(X)h(X) I x.::: x)-E(c(X)1 X ~ x).E( h(X) I X ~ x). 

(5.4.8) 

Substituting (5.4.7) in (5.4.8) the identity (5.4.4) follows. 

Conversely assuming (5.4.4), we have (5.4.6) and hence 

104 



E[ (c(X)-c(x))( h(X) -,u) I x ~ x] = aE[ c'( X)g(X) I x ~ x J. 

This is equivalent to 

[ F ( x ) r r ( i c' ( u ) dU) ( h (t ) - ,u) j (t) dt ::: a [ F ( x ) r re' ( u ) g ( u) j ( u ) du 

or 

[ F ( x ) r r ( f c' ( u ) dU) (,u - h (t )) j (t ) dt = a [ F ( x) r rc' ( u ) g ( u ) j ( u) du 

and changing the order of integration on the right hand side of the last equation we have 

[F(x)r r ct(u)( r (,u-h(t))j(t)dt}tu = a[F(x)r r c'(u)g(u)j(u)du. (5.4.9) 

For any (a,b) contained in (O,co) , choose absolutely continuous c (x) such that 

C'(X)={I, xE(a,b) 
0, x~(a,b) 

so that (5.4.9) simplifies to 

r (r (,u-h(t) )j(t)dt}tu = a r g( u) j( u )du 

or 

ag(b)j(b) = r (,u-h(t»)j(t)dt, for all b. 

which is the same as (3.2.1) then from Theorem 3.2.1 we can arrive at (5.4.5) and this 

completes the proof of the theorem. 

Corollary 5.4.1: When h(X) E s:B, 

v (h(X) I X:o; x) == aE[ h'( X)g( X) I X:o; X J+ (,u-r( x»)(r (x)-h( x)) (5.4.10) 

if and only if (5.4.5) holds. 

Prooffollows by taking c( X) = h( X) in (5.4.4). 

Using (5.4.5) we can write 

(r(x)-h(x») = (r( x) -,u) -(h(x)-,u) = -ag(x)A(X )-(h(x)-,u), 

hence from Corollary 5.4.1 we can deduce the following result. 

105 



Corollary 5.4.2: When h ( X) E SE , 

V( h( X) I X:<::; x) = uE[ h'(X)g( X) I X:<::; x] -( h( x)- JL )ug( X)A( X)_u2g2 (x)A 2 (x) 

ifand only if(5.4.5) holds. (5.4.11) 

Remark 5.4.1: RVRL characterizing f(x) is a special case of(5.2.1O) or (5.2.11) when 

h(X)=X. 

Remark 5.4.2: Note that the g(x) function appearing in Theorem 5.2.1 and Theorem 

5.4.1 are the same and further the relationship (5.4.5) is equivalent to (5.2.2). Thus the 

distribution characterized by (5.2.1) and (5.4.4) have the same fonn (3.2.4). 

Theorem 5.4.2: 

Under the condition on c (X) in Theorem 5.3.1, if (5.4.2) is satisfied, then 

V(c(X)1 X :<::;x) ~ [V(h(X) I X:<::; x)T
1 

[uE(h'(X)g(X)1 X :<::;x)+(r(x)- JL)(b(x)-c(x))J (5.4.12) 

with equality whenever c( x) is linear function of h( x) .Conversely if v( h(X) I X :<::; x) 

is as in (5.4.10) and (5.4.12) holds then the equation (5.4.5) is satisfied for all x> 0 . 

Proof: 
Since 

Cov 2 (c(X),h(X) I X:<::; x):<::; v(c( X)I X:<::; x)v( h(X)1 X:<::; x), 

using (5.4.4) we have (5.4.12). To prove the second part of the Theorem assume 

c(x) = h(x)+BI(x) 

for some arbitrary real B. Then 

b(x) = r(x)+Be(x) and e(x) = E(I(X) I X:<::; x) 

so that (5.4.12) becomes 

V( h(X)1 X:<::; x)[V(h(X) I X :<::;X)+B2V(1(X)1 X :<::;x)+2BCov(1(X),h(X)1 X:<::; x)] 

~ [uE[h'(X)g(X) I X:<::;x ]+uBE[l'(X)g(X) I X:<::; x] 

+{r(x)+Be(x)-h(x) -Bl(x)}(JL-r(x))T. (5.4.13) 
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Using (5.4.10) inequality (5.4.13) simplifies to 

(/ [V( h( X) I X ~ x)V(/(X) I X ~ x)-{ aE[/'(X)g(X) I X ~ x] 

+(,u-r(x))(b(x)-/(x))r +20V(h(X)IX ~x)[ Cov(1(X),h(X)1 X ~x) 

-{aE[/'( X)g( X) I X ~ X J+ (,u -r( x))( e(x) -l(x))} ] ~ O. (5.4.14) 

For (5.4.14) to be true for all 0, the coefficient of 0 must vanish and therefore, 

Cov(1(X),h(X) I X s x) = aE[/'(X)g(X) I X ~ x J+(,u-r(x))( e(x)-/(x)). 

On using (5.4.4) the above identity reduces to 

E(/( X)(h( X)-,u) I X ~ x) = aE(t'( X)g( X) I X ~ x)+/(x)E((h(X)-,u) I X s x). 

This is equivalent to 

r (t (I) -I (x))( h(t) -,u)/ (t )dl = a r I'(t )g(t) / (I )dl 

or 

r (r 1'( u )du) (h(/) -,u) /(/) dl = a r 1'(/) g(t) /(/) dt 

or 

r (r 1'( u )dU) (,u -h(t)) / (/)dl = a r 1'(/) g(/)j (/)dl . 

The rest of the proof is as in Theorem 5.4.1 to arrive at (5.4.5). 
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Chapter 6 

Characterization of Discrete Life Distributions by Properties of 

Conditional Variance 

6.1 Introduction 

In continuation of the work done in the previous chapter here we discuss the 

properties of conditional variance for a non- negative integer valued random variable. 

First we establish a relation between VRL and conditional expectations or failure rate to 

characterize a general class of discrete life distributions and the results is then applied to 

families of distributions. It is shown that the recent work by Arishi (2005) on binomial 

and Poisson random variables are special cases of our findings. Also we discuss the link 

between the characterizations of distributions by relationship between conditional 

expectations and failure rates so far discussed in literature and the present work. A lower 

bound to the conditional variances is obtained in the sense of Cacoullos and 

Papathanasiou (1997) and compared with the minimum variance unbiased estimators 

obtained by the well known classical theorems on inference, when the function c (X) 

appearing in the bounds are chosen as estimators of the desired parametric functions. 

6.2 Main results 

Let h (X) be real valued non- constant function of a random variable X defmed 

on N such that E( h2 (X)) < 00. To obtain the variance expression for h (X) first we 

establish a covariance identity for a real valued function c (X) and h (X) in terms of 

m (x) and g (x), where g ( x) is a positive real function on N satisfying the condition 
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(4.2.6). From Theorem 4.2.1 we observed that the condition (4.2.6) is equivalent to 

(4.2.3) and the corresponding probability mass function satisfies the difference equation 

(4.2.1). Taking these in to account next we present a general theorem as a discrete 

analogue of Theorem 5.2.1, using the notations in chapter IV. 

Theorem 6.2.1: 

Let X be a discrete random variable supported on N or a subset thereof and 

g(.), c(.), h(.) be functions in Q: such that E(c2 (X))<oo, E(g(X)LlC(X))<cn, 

E(lc(X)h(X)I)<cn and E(h2(X))<OO. Then the probability mass function satisfies 

the equation (4.2.1) with g (0) and p (0) as stated in the Theorem 4.2.1, if and only if 

for every c(x) E Q: the covariance expression satisfies 

Cov( c(X), h( X)I X > x) = CTE(Llc( X).g( X) I X > x)+ (,u - m(x))( a( x) -c( x + I)), 

(6.2.1) 

where a(x)=E(c(X)IX>x). 

Proof: 

To prove the if part, we consider 

E[c(X)(h(X)-Ji)IX>x]=[R(X+I)r :t c(k)(h(k)-Ji)p(k) 
k=x+! 

~[R(x+ I)l' [c(x+ {t., (h( k )-1') p(!)- ,t., (h(k) -I') P(k)] 

+C(X+2{t (h(k)-I')p(k)-t (h(k)-I')p(k) ]+.] 

= [R(x+ I) l' [(C(X+ 2) -cl x+ 1))[1;, (h(k)-I')p( k)] 

+(c(x d)-c(x, 2))[t (h(k)-I')p(k) ]+ ... ] 
+c (x + I) ( m (x) - ,u ) 

109 



~ [R(x+ I) r [,t., L\C(Y).t.. (h(k)- Jl) p(k) J] +c(x+ I){ m(x)- Jl) 

~ [R(x+ I)l' [,t., L\c(Y)~(Jl-h(k)) p(k) J ]+c( x+ 1)( mix) - Jl). (6.2.2) 

since 

'" 
E(h(X)-,u)= I(h(k)-,u)p(k)=O. 

k~O 

Now, assuming (4.2.1) from Theorem 4.2.1 we have (4.2.6) and substituting in (6.2.2) we 

obtain 

E[ c(X)( h(X)- Jl) I X > x ] ~ [R (x+ I)l' [0" ,~, L\c(y ).g(y)P(Y)] +c(x t 1)( m(x)- Jl) 

= O"E[ ~c(X).g( X) I X > x] + c(x + 1)( m( x)-,u) (6.2.3) 

or 

E[ c(X)h(X) I X > x J=O"E[ ~c(X).g( X) I X > x] + c( x+ 1)( m(x)- ,u)+ ,ua( x). 

By definition 

Cov(c(X),h(X) I X> x) = E(c(X)h(X) I X> x)-E(c(X) I X > x).E(h(X) I X> x) 

=O"E[ ~c( X).g( X) I X> x] + c( x+ 1)( m(x)-,u)+ ,ua(x)- m( x) a(x) 

=O"E[ ~c( X).g(X) I X> x] +(,u-m(x))( a(x) -c( x+ 1)), 

which is the expression given in (6.2.1). 

Conversely assuming (6.2.1) and retracing the above steps we can arrive at 

(6.2.3). Now the left hand side of (6.2.2) and (6.2.3) are same so the right hand sides are 

equal, hence we have 

[R(x+ I)l' [1, L\c(Y)~(Jl-h(k ))p(k) J] ~ [R(x+ I) l' [0" 1, L\c(y).g(y)P(Y)]. 

Let c (x) = ()s' for some real () and 0 ~ s ~ 1 , then the above equation can be written as 

00 Y 00 

I sYI(,u-h(k))p(k)=O" I sYg(y)p(y) 
Y=Hl k=O Y~Hl 

or 
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Using the uniqueness of probability generating function, from (6.2.4) we can write 

I Y 

-I(,u-h(k)) p(k) = ag(y), for every y 
p(y) k=O 

or 

J: 

ag(x) p(x) = I(,u-h(k))p(k). 
4=0 

Multiplying by [F (x) r and rearranging we get 

r(x) = ,u - crg(x)A(x) , 

this is the same as (4.2.2), hence rest of the proof follows from Theorem 4.2.1. 

Corollary 6.2.1: When h ( X) E <t , 

V( h( X) I X > x) = crE[ ~h( X).g(X) I X > X J+ (,u -m(x))( m( x)-h(x + 1)) (6.2.5) 

if and only if (4.2.1) holds. 

The prooffollows from (6.2.1) by taking c (X) = h (X). 

Corollary 6.2.2: When h( X) E <t, 

V(h(X) I X > x) = crE[ M(X).g(X) I X> x] +(h(x+l)- ,u)ag(x)k(x)(l-k(x)t 

if and only if (4.2.1) holds. 

Proof: 

Using (4.2.3) we can write 

(,u-m(x))(m(x)-h(x+I)) = (h(x+I)-,u)erg(x) ( k(() ) 
l-k x) 

hence from Corollary 6.2.1 the result follows. 
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Remark 6.2.1: VRL characterizing p(x) is a special case of (6.2.5) or (6.2.6) when 

h(X)=::X. 

Next we look at the characterization results in tenns of(6.2.5) or (6.2.6) for the modified 

power series family, the Ord family and the Katz family of distributions which together 

cover most of the discrete probability distributions used in reliability modelling. And then 

give some examples of individual distributions to check the validity of the results. 

Theorem 6.2.2: 

The distribution of X belongs to MPSD with probability mass function (4.2.8) 

then the conditional variance satisfies 

Proof: 

u(8) am(x) 
V(XIX>x)=----. 

u'( 8) aB 
(6.2.7) 

From the proof of Theorem 4.2.1 we observed that for the family specified by 

(4.2.8) the value of g(x) is given in (4.2.12). Now consider 

Again 

o-E[.1.h(X)g(X))X>XJ=E[M(X). I -u(B) aF(X)IX>x], 
u (B)p(X) 08 

= I U ( B ) i .1.h ( k ). of ( k) , 
U (B)R(x+l)k=.r+l aB 

u( B) a [ '" ] =- I L .1.h(k).F(k) . (6.2.8) 
u (B)R(x+l) 08 k=.r+l 

<Xl '" 00 - L .1.h(k)F(k) = L h(k)F(k)- L h(k+l)F(k), 
k=;l:+l k=X+l K=Hl 

X· 

=h(x+l)F(x+l)+ L h(k)p(k), 
k=x+2 

112 



-<c' 

=h(x+1)F(x)+ L h(k)p(k), 
k=HI 

:::: m(x) R(x+ 1)+ h(x+ 1)F(x). 

Hence 

a [ '" ] a -- L i1h ( k).F ( k ) :::: - [ m ( x ) R ( x + 1) + h (x + 1) F ( x) ] ' 
ae k~HI ae 

am(x) aR(x+ 1) aF(x) 
=R(x+l)--+m(x) +h(x+ 1)--

ae ae ae ' 

am(x) of (x) aF(x) 
= R(x+ l)---m(x)--+h(x+ 1)--

ae ae ae ' 

Substituting (6.2.9) in (6.2.8) gives 

aE[ i1h(X).g(X)IX>x J= ,u(e) [R(X+ 1) am(x) +(h(X+l)_m(x))aF(X)] 
u (e)R(x+l) ae ae 

= ~(e) am(x) _ 1 of (x) (m(x)-h(x+ 1)), 
u (e) ae R(x+ 1) ae 

u(e) am(x) 
=-, ---+(m(x)-,u)(m(x)-h(x+l)) , 

u (e) ae 
(6.2.10) 

so that the identity (6.2.5) reduces to (6.2.7). 

Remark 6.2.2: When u (e) = e in the above equations, the results for the sub-class of 

generalized power series distributions can be obtained. 

Theorem 6.2.3: 

The distribution of X belongs to Ord family of distributions specified by the 

difference equation (2.4.5) if and only if 

where 
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Proof: 

Taking h (X) = X, from Theorem 4.2.3 we have obtained the values of g (x) for 

the family specified by (2.4.5) as 

o-g(x) = bo +b,x+b2x 2 

with bi 's as stated in the Theorem. Hence the proof follows from Corollary 6.2.1. To 

prove the converse supposes that (6.2.11) holds. Using the identity (6.2.5) we have 

or 

0- i g(k)j(k) = f (bo +b,k+b2e)j(k). 
k~.Hl k~x+' 

Changing from x + 1 to x in (6.2.12) and then subtracting (6.2.12) 

o-g( x)j( x) = (ba +brx+b2x
2 )j(X) 

or 

o-g(x) = (bo + b1x + h2X2) . 

(6.2.12) 

Hence by Corollary 6.2.1, (4.2.3) holds with the above g(x) value so that the 

distribution of X belongs to the Ord family by Nair and Sankaran (1991). 

Theorem 6.2.4: 

The distribution of X belongs to Katz family of distributions specified by 

(4.2.16) if and only if 

V(X I X > x) = (1- Pt (a+ Pm., (x))+ (,u-m., (x))(m, (x)-x-l). (6.2.13) 

Proof: 

We see from Theorem 4.2.4 that for the family specified by (4.2.16) the value of 

g (x) is given by 
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o-g(x) = (1-,B( (a + ,Bx). 

Substituting in the identity (6.2.S) we have the result stated in the theorem. Conversely 

suppose that (6.2.13) holds, using (6.2.S) we obtained 

0-E [ g ( X) I X > x ] = E [ ( (1- ,B) -I (a + ,Bml ( x) ) ) I X > x ] 

or 

0- f g(k).f(k)= :t (ba +btk+bi 2 ).f(k). (6.2.14) 
k=X+t k=x+l 

Changing from x+l to x in (6.2.14) and then subtracting (6.2.14) 

o-g(x).f(x) = (1-,B( (a + ,Bx).f(x) 

or 

o-g(x) =(I-,B( (a + ,Bx). 

Hence by Corollary 6.2.1, equation (4.2.3) holds with the above g (x) and therefore X 

has Katz family of distributions by results of Theorem 4.2.4. 

Example 6.2.1: For the binomial random variable with probability mass function 

p ( x) = ( : ) pX (1 - P r-x
, x = 0,1,2, ... , n 

the value of g(x) is given by (see Example 4.2.2) 

so that 

o-g(x) = p(n-x), 

m(x)-.u=(I-k(x)r' k(x)(n-x)p 

=(R(X)- p(X)]_1 p(x) (n-x)p 
R(x) R(x) 

=(n-x)p p(x) k(x+l) 
p(x+ 1) 

=(x+l)(l-p)k(x+l) 

and the variance expression using (6.2.5) is given by 
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v ( x I x > x) = np (1 - p) + ( x + 1) (1 - p) ( x + 1 - P ( n + I)) k ( x + 1) - ( x + 1) 2 
k 2 

( X + 1) 

(6.2.16) 

Example 6.2.2: For the Poisson distribution with probability mass function 

e-~A: 
p(x)=~-, x=0,1,2, ... , 

x! 

from Example 4.2.2 we found the value of g (x) as 

ag(x)=A, 

hence by using (4.2.3) 

m(x)=A+A(l-k(x)r' k(x) 

=A+A --[
R(X)- P(X)]-' p(x) 

R(x) R(x) 

=A+A ((x) )k(X+l) 
p x+ 1 

=A+(x+l)k(x+l), 

substituting in equation (6.2.5) gives 

(6.2.17) 

V(x I X> x) = A+ (x+ l)(x+ I-A)k(x+ 1)-(x+ If e (x+ I). (6.2.18) 

Remark 6.2.3: The characterizations by relationship between failure rate and conditional 

variance for the binomial and the Poisson random variables discussed in Example (6.2.1) 

and (6.2.2) are similar to those by respective identities (5.1.2) and (5.1.3). Hence the 

results given by Arishi (2005) for the binomial and the Poisson random variables are 

special cases of Theorem 6.2.3. Also the identities (6.2.15) and (6.2.17) provide the same 

characterization results of Ahmed (1991) concerning binomial and Poisson random 

variables. 

Example 6.2.3: For the negative binomial distribution with probability mass function 

(
k+X-l) k p(x)= p (I-pr, xeN, 
k-l 

(6.2.19) 
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we see from example (4.2.3) that the value of g (x) is given by 

Now 

(1- p) 
ag(x):::--(x+k). 

p 

m(x)::: p+ag(x)(l-k(x)t k(x) 

::: /-1+ (1- p) (X+k)(R(X)- p(X)]-1 p(x) 
p R(x) R(x) 

(1- p) p(x) 
::: jl+--(x+k) k(x+ 1) 

p p(x+l) 

( J-p) (x+l) 
:::jl+--(x+k) k(x+ I) 

p (I-p)(x+k) 

::: jl + p -1. (X + 1) k (x + I) 

Hence the conditional variance identity is valid and written as 

(x+l) (x+l- ) (x+1)2 
V(XIX>x):::jl+--k(x+1)+ jl k(x+1)- 2 e(x+l). 

p p p p 

A special case of (6.2.19) is the geometric distribution with probability mass function 

p(x)::: p(l- p)-', X::: 0,1,2, ... 

and 

ag(x) = jl(X+ I), 

hence we have 

=jl+(x+l) 

and the variance expression using Corollary 6.2.1 is given by 

V(X I X > X)= jl2 + jl(x+ 2)- jl(x+1) 

=q/ p2 = V(X). 
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It is interesting to note from the above that the conditional as well as unconditional 

variances are the same for the geometric distribution, a fact observed earlier as a 

characteristic property. 

6.3 Lower bound to the conditional variance 

As discussed in the previous chapter, here also we explore the scope for 

introducing bounds on variance using the methodology in Cacoullos and Papathanasiou 

(1997). The following theorem gives the analogues result of Theorem 5.3.1. 

Theorem 6.3.1: 

Under the condition of the Theorem 6.2.1, for every c (x) in ~, 

V(c(X)1 X > x) z [V(h(X)1 X > X)JI [aE[ ~c(X)g(X) I X > x] 

+(,u-m(x))(a(x)-c(x+I))J (6.3.1) 

if (4.2.3) holds, with equality whenever c (X) is a linear function of h( X) . Conversely, 

if the conditional variance is (6.3.1), then (4.2.3) is true provided V(h(X) I X> x) IS as 

in (6.2.5). 

Proof: 

Since 

Cov2 (c(X),h(X) I X> x) S V(c(X)/ X > x)V(h(X) I X > x), 

using (6.2.1) we have (6.3.1). To prove the second part of the Theorem assume 

c (x) = h (x) + Of (x) 

for some arbitrary real O. Then 

a(x) = m(x)+ Bb(x) , b(x) = E(!(X) I X > x) 

so that (6.3.1) becomes 

V( h(X)1 X > x)[V(h(X) I X > x)+02V(/(X) I X > x)+20Cov(/(X),h(X)1 X > x)] 

Z [aE[ ~h(X).g(X) I X >x J+aBE[ tll(X).g(X)1 X >x ] 

+{r(x) + Ob(x)- h( x+ 1) -t}/(x + l)}(,u -m(x)) J 
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= [a8E[ ~l(X).g(X) I X > x J+8(b(x)-l(x))(It-m(x))+V(h( X) I X > x) r. 
(6.3.2) 

Using (6.2.5), inequality (6.3.2) simplifies to 

82 [V(h(X) I X > X)V(t(X)1 X> x)-{aE[ M(X).g(X) I X > X] 

+(It-m(x)){b(x)-/(x+ 1))} 2J +28V(h(X) I X > x)[ Cov(/( X),h( X) I X> x) 

~{aE[ ~l( X).g( X) I X > x] + (It-m(x))(b(x) -/ (x+ 1 ))}] ~ O. (6.3.3) 

For (6.3.3) to be true for all 8, the coefficient of 8 must vanish and therefore, 

Cov(!(X),h( X) I X > x) = aE[ M(X).g(X) I X >x ] +(It-m(x)){b(x)-l(x+ I)), 

which on simplification reduces to 

E(/(X)(h(X)- It) I X >x) = aE(M(X).g(X)1 X > x)+/(x) E((h(X)- It)! X > x), 

which is similar to the expression (6.2.3), hence rest of the proof follows from Theorem 

6.2.1 and 4.2.1. 

As in the continuous case now we are examining how our inequality compares 

with the lower bound of the variance in the Cramer- Rao theorem and Chapman- Robbins 

inequality. 

Let X belong to the family specified by (4.2.8) which is also known as discrete 

exponential family, then the random variable (X I X > t) has density 

For this density the Cramer- Rao lower bound is attained for the unbiased estimation of 

of 

m(t)=E(h(X)IX>t) 

and this bound is 

119 



For the attainment of (6.3.1) a necessary and sufficient condition is (4.2.3), subsequently 

from the discussion of Section 4.3 we have the expression 

so that 

alogp(x) = u'(B)(h(x)_ ) 
aB u(B) f.J , 

E(')I0~;(X)IX>/)' ~(:'~n E((h(X)-p)' IX >1) 

t'~;J V(h(X)IX>I) 

Now the Cramer-Rao lower bound for unbiasedly estimating m(t) using h(x) is 

v(t)= ~ml(l)r 
(:'i:?J V(h(X)1 X >1) 

= [ m'(t)J 

(
U'(B))2 u(B) I 

u(B) u'(B) m (t) 

which is also the bound obtained by (6.3.1) and is given in (6.2.7). 

Now we compare our bound with variance provided by Chapman- Robbins 

inequality. Let Eo(h(X)IX>x)=mo(x), where B, rpE8cR such that Po(x) and 

PI" (x) are different, satisfying {Po (x) > o} ::J {p 9' ( x) > o} , choosing 

c(x)=(P9'(X) -1) 
Pe (x) 

and using the identity (6.2.4) 

crE[ 8C( X).g( X) I X> x] + c(x+ l)(m(x)- f.J )=E[ c(X)(h(X)-.u) I X > x] 
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"E[(~:~~~ -1}h(Xl-JJ)IX >x] 

= E[[Pq> (X) -1]h(X) I X > x] 
pIJ(X) 

= [ mq> (x)-mIJ (x) J. 
Now, the inequality (6.3.1) reduces to 

or 

which is the Chapman-Robbins inequality. 

In this chapter, some characterizations based on VRL is obtained. A lower bound 

to the variance proposed for the left truncated random variable can be utilized to find the 

UMVUE for the desired parametric functions. 

6.4 Some open problems 

The present thesis is concentrated on variance bounds in the discrete and 

continuous cases with respect to functions of a single random variable. As a natural 

extension, the possibility of similar results for the multivariate case is an open problem. 

Since definition of failure rate and mean residual life in multivariate case exist in more 

than one way, each case has to be dealt with separately. An important aspect of modelling 

using multivariate distributions is the dependency structure in the data. Hence covariance 

between residual lives also can play a significant role in the process. These and other 

concepts for the study of bounds for multi dimensional random variables will be taken up 

in a future work. 
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