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Chapter One 

Preliminaries 

1.1. Introduction 

Survival data IS a term used to refer the data measuring the time to 

occurrences of certain events. Such data are also referred to as lifetime data or 

failure time data. Survival data frequently come from medicine, but may come from 

other applied fields like demography, engineering, economics and social sciences. In 

the simplest case, the event of interest is death, but the term also covers other events. 

Survival analysis is the branch of statistics that deals with modeling and analysis of 

survival data. Some methods of dealing with lifetime data are quite old, but starting 

about 1970 the field expanded rapidly with respect to methodology, theory, and 

fields of application. 

By survival time, we mean a time from the start of an observation 

until the occurrence of an event. The event can be death of an individual or failure of 

some equipment. The following examples illustrate various types of survival data 

that arise in practical situations. 

Example 1.1: In medical studies, the proposed event may be the death of some 

individual or the occurrence of some disease, which is measured from the date of 

diagnosis or some other starting point. For example, if we consider the individuals 

who were diagnosed with AIDS, the event of interest is the time from infection to 

diagnosis of AIDS (the incubation period). 

Example 1.2: In industrial applications, the event is typically time to failure of a 

unit or a particular component in a unit. For example, Nelson (1972) considered a 

life test experiment in which specimens of a type of electrical insulating fluid were 

subject to a constant voltage stress. Then the length of time until each specimen 

failed or broke down is termed as the event. 

Example 1.3: Demographers and social scientists are interested in the duration of 

certain life 'states' for humans. Consider, for example, the marriages formed during 
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a period in a particular country. Then the lifetime of a marriage would be its 

duration; a marriage may end due to annulment, divorce, or death. 

1.2. Basic Concepts 

Let T be a non-negative random variable representing the time to occurrence 

of an event. Let F(t) be the distribution function of T, which is absolutely 

continuous with respect to a Lebesque measure and f(t) be the corresponding 

probability distribution function (p.d.f.). There are certain basic concepts that 

characterizes the distribution of T. Survival function, hazard function and mean 

residual life function are the three concepts, commonly used to explain the physical 

characteristics of T . 

1.2.1. Survival Function 

The basic quantity employed to describe time-to-event phenomena is the 

survival function, which is the probability of an individual surviving beyond time t. 

Thus the survival function of T, S(t), is given by 

Set) = P[T > tJ = 1- F(t). (1.1) 

When the probability density function of T, f(t) exists, Set) can be written as 

QO 

Set) == ff(u)du. (1.2) 

The survival function Set) is a monotone non-increasing, left continuous function 

with S(O)=1 and S(oo)==limS(t)=O. 

It may be noted that 

f(t) == _ dS(t) . 
dt 

I~QO 

(1.3) 

ill the context of analysis of industrial data, Set) is referred to as the reliability 

function. 
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1.2.2. Hazard Function 

One of the fundamental concepts in survival analysis is the hazard function. 

The hazard function of T is defined as 

l(t) = lim! P[t ~ T < t + tJ.t I T ~ t] . 
h~O h 

(l.4) 

The hazard function specifies the instantaneous rate of death or failure of an 

individual at time t given that the individual survives up to time t. Thus l(t),1.t IS 

the approximate probability of death in [t, t + ,1.t) , given survival up to t. 

When the probability density function (p.d.f.) f(t), exists, 

A(t) = f(t) = -dln[S(t)] . 
Set) dt 

(1.5) 

The l(t) indicates the way the risk of failure varies with age or time. Note that l(t) 

~ 

must be non-negative and JA(u)du = 00. 

o 

The cumulative hazard function I\(t) is defined as 

r 

I\(t) = JA(u)du =-In[S(t)]. 
o 

(1.6) 

It is well known that A(t) (I\(t») determines the distribution uniquely by the 

identity, 

S(t) =exp[-A(t)] =exp[ -t~(U)dU]' (1.7) 

The hazard function is also known as conditional failure rate in reliability, 

the force of mortality in demography, the intensity function in stochastic process, the 

age-specific failure rate in epidemiology, the inverse of the Mill's ratio in 

economics, or simply as the hazard function. 

1.2.3. Mean Residual Life (MRL) Function 

Another basic quantity of interest in survival analysis is the mean residual 

life function at time t. For a non-negative random variable T, mean residual life 

function of T is defined as 

met) = E[T -t IT> t]. (1.8) 

3 



The function met) represents the average lifetime remaining to a component which 

is survived up to time t. For a continuous random variable T, met) can be written 

as 

1 = 

met) = - fS(u)du. 
Set) t 

Note that 

= 

m(O) = JL = E(T) = fS(u)du. 
o 

The function met) is related to the hazard function A(t) by 

A(t) = l+m'(t) . 
m(t) 

It is shown that met) determine the distribution uniquely by the relationship 

m(O) [tf du ] S(t)=--exp - -- . 
met) 0 m(u) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

One set of necessary and sufficient condition for met) to be a MRL given by Swartz 

(1973), is the following 

(i) met) ~ 0 

(ii) m'(t)~-l 

and 

(iii) j~ should be divergent. 
o met) 

1.3. Censoring 

In survival studies, the data may be incomplete due to various reasons. One 

of the reasons of incompleteness is censoring. Censored data often arises in survival 

studies because the experimenter is unable to obtain complete information on 

lifetime of individuals. The study may have terminated before all subjects had 

experienced an event, or the particular subject may have been lost to the study at 

some point. The presence of censored observations complicates the analysis of 

lifetime data. The following are some examples of censored data. 
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Example 1.4: Censoring is common in clinical trials, since the trial is often 

tenninated before all individuals have failed (died). In addition, individuals may 

enter a study at various times, and hence may be under observation for different 

lengths of time. For example, Gehan (1965) has discussed the results of a clinical 

trial in which the drug 6-mercaptopurine (6-MP) was compared to a placebo with 

respect to the ability to maintain remission in acute leukemia patients. If the disease 

was still in a state of remission at the end of the study, those observations are said to 

be censored. 

Example 1.5: In the period 1962-77,225 patients with malignant melanoma (cancer 

of the skin) had a radical operation perfonned at the Department of Plastic Surgery, 

University Hospital of Odense, Denmark. The tumor was completely removed 

together with the skin within a distance of about 2.5 cm around it. All patients were 

followed until the end of 1977, that is, it was noted if and when any of the patients 

died. Then the lifetime of those individuals are known to be censored who were still 

alive at the end of 1977. 

Example 1.6: Bartholomew (1957) considered a situation in which pieces of 

equipment were installed in a system at different times. At a later date some of the 

pieces had failed and the rest were still in use, The first item was installed in June 11 

and data were collected up to August 31. At that time, three items had still not failed, 

and their failure times are therefore censored. 

There are three common forms of censoring VIZ., right censonng, left 

censoring and interval censoring, 

1.3.1. Right Censoring 

Right censored survival data is common in clinical trials where some 

individuals may be lost to follow up for various reasons. We know only the lower 

bounds on lifetime for those individuals. 

Suppose that n individuals have lifetimes represented by ~,T2, .. "Tn and the 

corresponding censoring times are Cl' C2 , .. " Cn • Then the observed data contains 

(tj' 8;) with tj = min(T;, Cj ) and the indicator function 
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{
I if T = t. 

0; =1(T; =t;)= . I r, i=1,2, ... ,n. 
o if T; > t; 

(1.13) 

This 8; is called the censoring or status indicator for t;, since it tells us if t; is an 

observed lifetime (0; = 1) or censoring time (8; = 0). There are different kinds of 

right -censored data as described below. 

1.3.2. Type I Censoring 

A Type I censoring mechanism is said to happen when each individual has a 

fixed censoring time C; > 0 such that T; is observed if T; S; Cj , otherwise, we know 

only that T; > Cj • Type I censoring often arises when a study is conducted over a 

specified time period. In clinical trials, there is often staggered entry of individuals 

to the study combined with a specified end-of-study date. 

Assuming that the lifetimes I;, T2 , • •• , TT! are independent and identically 

distributed (i.i.d.) random variables with common p.d.t. J(t) and survival function 

S(t), then the likelihood function L under Type I censoring is obtained as 

n 

L= ITJ(t;)''' S(t)I-O, . (1.14) 
i=1 

1.3.3. Type 11 Censoring 

Type II censoring refers to the situation where only the r smallest lifetimes 

t(l) S; t(2) S; ..• S; t(r) in a random sample of n are observed; where r is a specified 

integer between I and n. This censoring scheme arises when n individuals start on 

study at the same time, with the study terminating once r failures have been 

observed. Although some life tests are formulated with Type 11 censoring, they have 

the practical disadvantage that the total time l(r) that the test will run is random and 

hence unknown at the start of the test. 

With Type II censoring, the value of r is chosen before the experiment is 

performed, and the data consist of the r smallest lifetimes in a random sample 

I; ,T2 , ••• , TT!. When the lifetime random variable is continuous, we can ignore the 
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possibility of ties and denote the r smallest lifetimes as Yr.!) < Yr.2) < ... < Yr.r) . If the I; 

has p.d.f. f(t) and survival function S(t), then the joint p.d.f. of Yr.1),Yr.2) ... ,Yr.r) is 

given by 

L= ( :! ),[tIf(t)](S(t(r»)r-'. 
n r. 1=1 

(1.15) 

1.3.4. Progressive Type 11 Censoring 

Progressive Type II censoring is a generalization of Type II censoring. In this 

context, the first 1j failures in a life test of n items are observed; then nl of the 

remaining n -1j unfailed items are removed from the experiment, leaving n -1j - nl 

items still present when a further r2 items have failed, n2 of the still unfailed items 

are removed, and so on. The experiment tenninates after some prearranged series of 

repetitions of this procedure. 

Suppose the censoring has only two stages; at the time of 1j th failure, nl of 

the remaining n -Ij unfailed items are randomly selected and removed. The 

experiment then terminates when a further r2 items have failed. At this point there 

will be n - 'i - nl - r2 items still unfailed. The observations in this case are the 'i 

failure times Yr.1) < I;2) < ... < Yr.'!) in the first stage of the experiment, which we will 

denote by Yr.1)' < Yr.2)* < ... < Yr.rz)*· When the lifetimes are i.i.d. with common p.d.f. 

J(t) and survival function S(t), the likelihood function will be 

(1.16) 

where 

c= n!(n-Ij -n l )! 
(n-li)!(n-Ij -n,-r2 )!' 

1.3.5. Left Censoring 

In certain situations, study subjects have experienced the event before study 

commences. In such situations, we know only the upper bounds on lifetime for these 

subjects. For instance, we may know that a certain unit failed sometime before 100 
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hours but not exactly when it happens. In other words, it could have failed any time 

between 0 and 100 hours. 

Example 1.7: Baboons in the Amboseli Reserve, Kenya, sleep in the trees and 

descend for foraging at some time of the day. Observers often arrive later in the day 

than this descent and for such days they can only ascertain that descent took place 

before a particular time, so that the descent times are left censored (see Andersen et 

al., 1993). 

1.3.6. Interval Censoring 

Interval censoring occurs when it is not clear when the event occurred, all 

that is known is that the time to event occurred within some interval (~, T2 ] • Interval 

censored data reflects uncertainty as to the exact times the subjects failed within an 

interval. This type of data frequently arises from situations where the objects of 

interest are not constantly monitored. 

Example 1.8: A herd of cows tested bi-weekly for the onset of a disease. Subjects 

may be seen sporadically due to reasons beyond the investigator's control, such as 

HIV - positive patients "dropping in" to a health clinic when convenient. In addition, 

many datasets that have survival recorded in days, weeks, months, and so on, are 

actually interval censored. 

1.4. Truncation 

Individuals are sometimes selected and followed prospectively until failure 

or censoring, but their current lifetime at selection is not at t = 0, but some value 

u > O. The definition of a prospective study is that lifetime information after the 

time of selection forms the response. Selection of an individual at time uj thus 

requires that 1'; ~ up and the observed data for individual i consist of (Ui,tj'~), 

where tj ~ u j is a lifetime or censoring time. We say that the lifetime 1'; is left 

truncated at uj • Left truncation is very common in fields like demography and 

epidemiology. In many occasions, at least some of the data arises chronologically 

before the time the individuals are selected for the study. Then the individual is 
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included in the data when 1'; ~ Vj and we say that the individual is right truncated at 

Vi' Examples of left and right truncation are given below. 

Example 1.9: The data of diabetic nephropathy contains all the insulin-dependent 

patients treated at the Steno Diabetes Center, Denmark, since it opened in 1933 until 

1972. The patients were diagnosed between 1933 and 1972, and started treatment at 

the hospital between 1933 and 1981. They were followed from first visit at the 

hospital until death, emigration, or January 1, 1984. Thus data are left truncated, 

both when age and duration of diabetes are used as time scales. 

Example 1.10: Kalbfleisch and Lawless (1989) analyzed data on persons infected 

with HIV via blood transfusion, who were subsequently diagnosed with AIDS. The 

data were used to estimate the distribution of the time T between HIV infection and 

AIDS diagnosis. The study group was assembled in 1987 and consisted of 

individuals who had a diagnosis of AIDS prior to July 1, 1986. For each patient the 

date of HIV infection could also be ascertained, because the individuals selected 

were deemed to have contracted the HIV through a blood transfusion on a particular 

date. The condition for being included in the data set was therefore that 1'; ~ Vi' 

where Vi is the time between the individual's HIV infection and July 1, 1986. This is 

an example of right truncated data. 

1.5. Estimation Procedures 

One of the objectives in survival analysis is to estimate the survival function. 

For the estimation of the survival function, there are two common approaches, 

parametric and non-parametric. In parametric method, it is assumed that the survival 

time has certain probability distribution f (t, 8), where the functional form of f (.) 

is known, but the parameter 8 is unknown. There are different procedures for 

estimating the parameters of the model such as maximum likelihood, method of 

moments, Bayesian techniques etc. In survival studies, the commonly used 

parametric models are exponential, Weibull, Pareto, inverse Gaussian, gamma etc. 

For more details on the estimation procedures of parametric models, one could refer 

to Martz and WaIler (1982), Sinha (1986) and Lawless (2003). 
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In many situations in survival studies, the given data may not meet the 

assumptions of the parametric model. In medical studies, sample size may not be 

adequate for the determination of the parametric model. In addition, censoring and 

truncation makes problems for the analysis of data using parametric approach. 

Consequently, non-parametric approach is very common in survival studies. 

1.5.1. Non-parametric Estimation 

When the data is not censored, the empirical survival function S(t), is given 

by 

1\,.1-J-. of r.k~~":CX'E ~ t Set) = i'IUIJLO. \.UY:lVi.1U , t ~ 0 (1.17) 
n 

is employed to estimate S (t) . 

When there are censored observations (1.17) can not directly be applied and 

therefore, Kaplan-Meier (1958) suggested a new non-parametric estimator for the 

survival function. 

1.5.1.1. Kaplan-Meier Estimator 

Kaplan and Meier (1958) developed a non-parametric estimator for survival 

function from censored data. This estimator is also referred as the product limit 

estimator. 

Let (t;', oJ, i = 1,2, ... , n represent a censored random sample of lifetimes. 

Let d j =IJ(t;*=ti'O;=l) represent the number of deaths at tj' i,j=I,2, ... ,n, 

i *- j. Then the Kaplan-Meier estimator for SU) is defined as 

(1.18) 

where, nj = I I (t;" ~ tj) is the number of individuals at risk at t j , which is the 

number of individuals alive and uncensored just prior to t j • The estimate of the 

variance of Set) is given by 

Var[S(t)] = S(t)2 I d j 

)1<1 n.(n. -d.) 
I J.I .I 

(1.19) 
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which is referred to as Greenwood's formula. 

1.5.1.2. Nelson-Aalen Estimator 

From the identity (1.18). it follows that the estimate of the cumulative hazard 

function can be used for the estimation of the survival function. One could estimate 

the cumulative hazard function directly using the Nelson-Aalen (NA) estimator. If 

tl't2 ••••• t k represent the distinct lifetimes at which subjects fails. then the Nelson-

Aalen estimate of /\(t) is given by 

(1.20) 

where d j and n j are defined as earlier. 

This is sometimes called the empirical cumulative hazard function, but is more 

commonly known as the Nelson-Aalen estimate. having been proposed by Nelson 

(1969) and by Aalen in a 1972 thesis. 

The estimate of the variance of the A(t) is given by 

" d.(n.-d.) 
Var[A(t)] = L. ] ] 3 1 • 

j:I,$t nj 

From (1.7). the estimate of Set) given by 

S(t)==exp[-A(t)] . 

1.6. Regression Models 

(1.21) 

(1.22) 

In recent years, statistical literature gives considerable interest in specialized 

methods for the analysis of lifetime data. Much of this interest appears to have been 

stimulated by problems arising in medical research though rather similar problems 

arise, for example. in industrial life-testing and demography. A common research 

question in medical, biological or engineering (lifetime) research is to determine 

whether or not certain continuous (independent) variables are correlated with the 

survival times or lifetimes. There are two major reasons why this research issue 

cannot be addressed via straight forward multiple linear regression techniques. First, 
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the dependent variable of interest (survival time or lifetime) IS most likely not 

normally distributed. Second, there is the problem of censoring. 

The use of explanatory variables, or covariates, in a regression model is an 

important way to represent heterogeneity in a population. Indeed, the main objective 

in such studies is to understand and exploit the relationship between lifetime and 

covariates. For example, in a survival study for lung cancer patients, effect of 

factors, such as the age and general condition of the patient and the type of tumor in 

survival time is of interest. 

Regression models for lifetimes can be formulated in many ways, and 

several types are in common use. Regression analysis of lifetimes involves 

specifications for the distribution of a lifetime T, given a vector of covariates 1.. 

There are two types of covariates: time dependent and time independent. Sometimes 

a time-varying covariate may be linked physically with the lifetime process. For 

example, blood pressure may be linked to the time or age at which an individual has 

a first stroke. Such covariates are termed internal. A covariate which is independent 

of time is termed as external. Factors such as air pollution or climate conditions, or 

applied stresses such as voltage or temperature in life test experiments, are examples 

of such covariates. 

The common regression model used in survival studies is the proportional 

hazards (PH) model introduced by Cox (1972), in which the effect of covariates on 

the hazard function is studied. There is a vast literature covering the analysis of 

regression models. For more details, one could refer to Cox and Oaks (1984), 

Andersen et al. (1993), Klein and Moeschberger (1997), Oakes (2001), Kalbfleisch 

and Prentice (2002) and Lawless (2003). 

1.6.1. Proportional Hazards Model 

The proportional hazards model is the most commonly used regression 

model as it is not based on any assumptions concerning the nature or shape of the 

underlying survival distribution. Cox (1972) proposed the model as 

A(t 11.) = Au(t)r(1.) , t > 0 (1.23) 
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where r(z) and Au(t) are positive-valued functions and A(t I z) is the hazard 

function of T given the r -variate covariate vector z. The function Ao(t) is usually 

called the baseline hazard function, which is the hazard function for an individual 

whose covariate vector such that rCg;) = 1. A common specification for r(z) is e~'!.. . 

Then (1.23) becomes 

A(tlz)=Ao(t)et~, t>O. (1.24) 

where f3 is the vector of r - parameters. 

The name proportional hazards come from the fact that any two individuals 

have hazard functions that are constant mUltiples of one another. The model (1.23) is 

a semi-parametric since it incorporates the unknown baseline hazard function and 

parametric vector f3. The model specifies a multiplicative relationship between the 

underlying hazard function and the log-linear function of the covariates. This 

assumption is also called the 'proportionality assumption'. 

Cox's proportional hazards model is a well-recognized statistical model for 

exploring the relationship between the survival of a patient and several explanatory 

variables. The model provides an estimate of the treatment effect on survival after 

adjustment for other explanatory variables. Even if the treatment groups are similar 

with respect to the variables known to effect survival, using the Cox model with 

these prognostic variables may produce a more precise estimate of the treatment 

effect. Interpreting a Cox model involves examining the coefficients for each 

explanatory variable. A positive regression coefficient for an explanatory variable 

means that the hazard is higher and thus the prognosis worse, for higher values. A 

negative regression coefficient implies a better prognosis for patients. 

Suppose there are n individuals in the study. r;.,T2 .. I" indicates the lifetimes 

and Cl' C2 ... , Cn are the corresponding censoring times. Then the observed data 

contains (t;> ~) with t; = min(T;, C) and 8; the censoring indicator as described in 

Section 1.3.1 for i = 1,2, ... , n . 

The likelihood function for estimating the parameter vector f3, which is known as 

partial likelihood, as suggested by Cox (1972) is given by 

13 



(1.25) 

where Y; (t) = I (ti ;?: t), i = 1,2, ... , n is an indicator function. 

Then the estimation of f3 is obtained by maximizing the partial likelihood 

(1.25). The generalized Nelson-Aalen estimator is used as the estimator for baseline 

hazard function. 

For the properties of the estimators, one could refer to Kalbfleisch and 

Prentice (2002) and Lawless (2003). 

1.7. Competing Risks Models 

In many medical or industrial studies, there are several causes or modes of 

failure of individuals or components. Such data are commonly referred to as 

competing risks data, since each causes or modes of failure compete in some sense 

for the failure of the individual or the component. Following are some examples of 

competing risks data. 

Example 1.11: Consider an experiment in which new models of a small electrical 

appliance were being tested (Nelson, 1970). The appliances were operated 

repeatedly by an automatic testing machine. The lifetimes are the number of cycles 

of use completed until the appliances failed. There were many different ways in 

which an appliance could fail, which are different possible causes of failure for the 

appliances. 

Example 1.12: Hoel (1972) considered the survival times for two groups of 

laboratory mice, all of which were exposed to a fixed dose of radiation at an age of 5 

to 6 weeks. The first group of mice lived in a conventional lab environment and the 

second group was kept in a germ-free environment. The causes of death are 

classified as three for each mouse - thymic lymphoma, reticulum cell sarcoma or 

other causes. 

Two frameworks are used to deal with standard competing risks settings can 

be observed for an individual: 
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(i) Cause-specific hazard, Aj (t) , formulations, where 

X(t) == lim! P[t :-:; T < t + h, C == j I T ~ t], j = 1, 2, ... ,k 
J h...,O h 

(1.26) 

and 

(ii) Cause-specific sub-distribution function, Fj (t) , formulations, where 

Fj (t)==P(T5;,t,C==j), j==I,2, ... ,k. (1.27) 

Aj (t) represents the instantaneous rate for failures of type j at time t in the 

presence of all other failure types, that is, it specifies the rate of type j failures 

under study conditions. The function A./t) is termed 'decremental forces' by the 

English actuary Makeham (1874) and 'cause-specific hazard function' by Prentice et 

al. (1978). It is also known as 'force of mortality' and 'force of transition'. 

For more details on the analysis of univariate competing risks data, one may 

refer to Aalen (1976), David and Moeschberger (1978), Anderson et al. (1993), Lin 

(1997), Cheng et al. (1998), Gooley et al. (1999), Cronin and Feuer (2000), Farley et 

al. (2001), and Crowder (2001). 

When covariate vector ~ is present in the study, the cause-specific hazard 

and cause-specific sub-distribution functions are defined as 

A.(t) == lim!P[t:-:; T < t+h,C == j IT ~ t,~], j = 1,2, ... ,k 
}. h->O h 

(1.28) 

and 

F/t) = peT 5;, t, C = j 11,.), j = 1,2, ... , k . (1.29) 

The analysis of such data can be done by considering Cox proportional 

hazards model for different causes. The analysis of competing risks data in the 

presence of covariates were discussed in literature by different researchers (see 

Crowder (2001), Fine (2001), Andersen et al. (2002), Kalbfleisch and Prentice 

(2002) and Lawless(2003». 

1.8. Multivariate Lifetime Data 

Multivariate lifetime data arise when each study unit may experience several 

events or when there exists some natural grouping of subjects, which induces 
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dependence among lifetimes of the same group. These data are commonly 

encountered in scientific investigations because each study subject may experience 

multiple events or because the study involves several members from each group. 

Examples in biomedical research are the sequence of tumor recurrences or infection 

episodes, the occurrence of blindness in the left and right eyes, the development of 

physical symptoms or diseases in several organ systems, the onset of a genetic 

disease among family members, the initiation of cigarette smoking by classmates, 

and the appearance of tumors in littermates exposed to a carcinogen. Examples in 

other area include the repeated breakdowns of a certain type of machinery in 

industrial reliability, the experiences of different life events by each person m 

sociological studies, and the purchases of various products by each consumer in 

market research. 

In the bivariate case, let T = (~, T2 ) be a non-negative random vector having 

an absolutely continuous distribution function F (tl' t2 ) with respect to a Lebesgue 

measure. Then the bivariate survival function for T is defined as 

(1.30) 

(1.31) 

One can define hazard function of T in more than one way in the bivariate 

set up. Basu (1971) defined the bivariate hazard function as a scalar quantity and it 

is given by 

A(tl't2 ) = 1(t1't2 ) • 

S(tptz) 
(1.32) 

But, the major drawback of the hazard function (1.32) is that it does not determine 

the joint distribution uniquely. Later, 10hnson and Kotz (1975) defined the bivariate 

hazard function as a vector given by 

(1.33) 

where 
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(1.34) 

and 

~(tl't2) = V..Toi P[t2 5: T2 < t2 +h I ~ > tl'T2 ~ t2]· (1.35) 

A,(tl't2) is nothing but the instantaneous rate of failure of first individual at time tI 

given that he was alive at the time TI = tI- and the second individual T2 survived 

beyond the time T2 = t2 • The meaning of ~(tl't2) is similar. It is proved that (1.33) 

determine the joint distribution of T uniquely. 

Dabrowska (1988) provided a representation of bi variate survival function in 

terms of cumulative hazard function which is a vector of three components that 

correspond to single and double failures. The cumulative hazard function vector is 

defined as 

where 

with 

When T = (~ ,T2 ) has a joint density function, f (t I ,t2 ) , we have 

"I (dtl'tz) = A, (tl't2 )dtI 

"2 (tl' dt2 ) = ~ (tl' t2 )dt2 

and 

"3(dtl'dt2) = ~(tl't2)dtldt2 
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(1.37) 

(1.38) 

( 1.39) 



with 

~(tl't2) = lim!P[t] ~~ < tt +h,t2 ~T2 < t2 +hl ~ ~ tpT2 ~ 12], 
h ..... O h 

The hazard function ~(tl't2) is the instantaneous rate of failure of both the 

individuals given that the individuals survived at the time Tt = t.- and T2 = t2- • 

Then the bivariate survival function is uniquely represented as 

S(tl't2 ) = n (l-A/du,O»)n (1-A 2 (0,dv»)n (1- L(du,dv») 
~ ~ u~ 

v~t2 

where 

L(du, dv) = A] (du, v -) A2 (u- ,dv) - A3 (du, dv) . 

(1- A. (du, v-»)( 1- A 2(U- ,dv») 

(1.40) 

As a natural extension of the univariate definition, Buchanan and 

Singpurwalla (1977) defined the bivariate mean residual life function as 

But it does not satisfy the most essential property that it determines the distribution 

uniquely. A second definition for bivariate mean residual life function is provided by 

Shanbhag and Kotz (1987) and Arnold and Zahedi (1988), which determine the 

distribution uniquely. 

Estimation of the bivariate survival function when both study units are 

subject to random censoring in marginal data structures, without covariates, has 

received a considerable attention in statistical literature. Some of the proposed non­

parametric estimators of bivariate survival function are those of Campbell and 

Foldes (1982), Burke (1988), Dabrowska (1988), Pruitt (1991), Prentice and Cai 

(1992), van der Laan (1996) and Wang and Wells (1997). Dabrowska (1988), 

Prentice and Cai (1992) and Pruitt (1991) estimators are not, in general, efficient 

estimators. Van der Laan' s (1996) non-parametric maximum likelihood estimator is 

globally efficient and typically needs a larger sample size for good performance. 

Oakes (1989) and Wang and Wells (1999) proposed semi-parametric estimators for 

the survival function in the presence of covariates. A review on these estimators can 
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be found in Pruitt (1993) and van der Laan (1997). Quale et al. (2003) proposed a 

new estimator of the bivariate survival function based on the locally efficient 

estimation theory. Keles et al. (2004) proposed a bivariate survival function 

estimator for a general right censored data structure that includes a time dependent 

covariate process. van der Laan et al. (2002) proposed a locally efficient estimator 

for multivariate survival function when all the component lifetimes are censored by 

a common variable, independent of the lifetimes. Akritas and van Keilegom (2003) 

obtained path-independent bivariate survival function through the estimation of 

marginal and conditional distributions. Kalbfleisch and Prentice (2002) and Lawless 

(2003) also discussed different estimation procedures of the bivariate survival 

function. 

The analysis of multivariate lifetime data in the presence of covariates is 

complicated by the dependence of lifetimes. Lin (1994) provided a detailed 

description of multivariate lifetime data along with some real biomedical examples. 

The usual approach is to consider marginal proportional hazards model for each 

hazard function separately and then apply ideas from generalized estimating 

function to calculate an appropriate combination of marginal estimates. For the 

analysis of multivariate lifetime data in the presence of covariates, one could refer to 

Wei et al. (1989), Prentice and Cai (1992), Spiekerman and Lin (1998), Hougaard 

(2000), Lin (2000) and Prentice and Kalbfleisch (2003). 

1.9. Recurrent Event Data 

Many studies in survival analysis involve the recording of times to 

occurrence of two or more distinct events or failures on each subject. The failures 

may be repetitions of the same kind of event or may be events of different natures. 

Such data are referred to as recurrent event data. These multiple events data 

normally fall into one of two categories, 'parallel' and 'serial'. In the parallel 

system, several possibly dependent failure processes act concurrently, while in the 

serial system there is a natural ordering of times of occurrence of events. Medical 

examples of serial events include the recurrence of a given illness, such as infection 

episodes and the progression of a disease through successive stages, such as HIV 

infection ~ AIDS ~ death. Recurrent event data can also be regarded as a specific 
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type of correlated data. Such data are frequently encountered in health-related 

studies where longitudinal follow-up designs are commonly employed. In 

longitudinal follow-up studies, the observation of recurrent events could be 

terminated at or before the end of the study. Examples of recurrent events in the 

health and biomedical sciences are repeated hospitalization of patients with chronic 

diseases, epileptic seizures, multiple opportunistic infections in studies of acquired 

immunodeficiency syndrome (AIDS) and multiple injuries in ageing studies. In 

psychiatric studies, the onset of depression and dementia are instances of recurring 

events; in engineering and reliability setting, the breakdown of mechanical or 

electronic systems, computer software crashes, stoppages of nuclear power plants, 

and warranty claims for manufactured products are all examples of recurrent 

phenomena. Examples in sociology and economics include serious disagreements in 

a marriage, onset of labor strikes, and auto insurance claims. The development of 

stochastic models and statistical methods appropriate for the analysis recurrent event 

data is therefore of considerable importance. 

To analyze recurrent event data, the focus can be placed on two types of time 

scale; the time since entering the study and the time since the last event (gap time). 

For the situation where the time since study entry is of interest, a variety of 

statistical methods have been proposed, among them methods proposed by Prentice 

et al. (1981). Andersen and Gill (1982), Pepe and Cai (1993), Lawless and Nadeau 

(1995), Lin et a1. (2000), Wang et a1. (2001) and Pen a et a1. (2001). These methods 

consider individuals multiple events as the realization of a counting process and 

fonnulate their model based on either the intensity function or the occurrence rate 

function of the underlying event process (see Cai and Douglas, 2004). The non­

parametric estimation of bivariate recurrence time distribution is carried out by 

Huang and Wang (2005). In the presence of covariates, Chang and Wang (1999) 

developed inference procedures for the regression models of recurrent event data 

using conditional approach. Recently, Ebrahimi (2006) introduced marginal 

proportional hazards models for recurring event times with proper joint density 

functions. 

In many applications, the investigators are more interested in time between 

consecutive events (gap time) than the total time (Gail et al.1980). For example, 
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when evaluating the efficacy of a treatment on an episodic illness, it is often 

important to assess whether or not the treatment delays the time from the initiation 

of the treatment to the first episode as well as the time from the first episode to the 

second episode, and so on. The total time from the initiation of the treatment to the 

second episode is of less interest because a treatment, which delays the first episode, 

will inevitably lengthen the total time to the second episode even if it becomes 

ineffective after the first episode. When the study interest is placed on the gap times, 

the stochastic ordering structure of recurrent events generates challenges for 

statistical analysis, such as induced dependent censoring and sampling bias and 

consequently it hampers the development of statistical methods. When the recurrent 

events are of same type, Wang and Wells (1998) proposed a product limit estimator 

of the joint survival function of gap times which accounts for the induced dependent 

censoring. Wang and Chang (1999), then, developed a weighted moment estimator 

for the inter occurrence time distribution that ignores the last censored observation 

on all cases experiencing at least one event. Later, Lin et al. (1999) proposed a 

simple non-parametric estimator for the multivariate distribution function of gap 

times between the successive events when the follow up time is subject to right 

censoring. 

Recently, In the literature, various statistical methods have also been 

developed for estimating the joint survival function of series events when events are 

of different types. These methods can be used for the first pair of recurrent times but 

such an approach loses efficiency because bivariate recurrent times of higher orders 

are not used in the estimate. When the events are of different types, various non­

parametric methods such as Visser (1996), Hung and Louis (1998), Lin et a1. (1999), 

Huang and Wang (2005) as well as semi parametric methods such as Huang (1999), 

Chang and Wang (1999) and Chang (2000) have been developed. 

In the presence of covariates, Chen et al. (2004) considered the regression 

problem for gap times using marginal proportional reverse-time hazard function 

models; when the events are of same type. They used the concept of partial 

likelihood to develop inference procedures. Recently, Strawderman (2005) 

introduced an accelerated gap time model for the effect of covariates on the 

conditional intensity of a recurrent event counting process. For more details on this 
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topic, one could refer to Pepe and Cai (1993), Lin et al. (2000) and Cai and Douglas 

(2004). The analysis of multivariate lifetime data in the presence of covariates is 

usually done by assuming the marginal proportional hazards models for each hazard 

functions. This procedure would be appropriate in the case of homogeneity among 

regression coefficients. This brings in the relevance and need of development of 

new statistical models which are useful for the analysis of different kinds of 

bivariate (multivariate) lifetime data. 

1.10. Present Study 

The discussions in previous sections reveal that there has been much research 

on analyzing various forms of bivariate (multivariate) lifetime data. However, there 

are various occasions in survival studies where the existing models and 

methodologies are inadequate for the analysis of bivariate (multivariate) data. The 

marginal modeling technique existing in literature for the analysis of multivariate 

survival data is not sufficient to explain the dependence structure of pair of lifetimes 

on the covariate vector. The objective of the present study is to develop new 

regression models for the analysis of multivariate lifetime data, arising from 

different contexts in survival analysis. For simplicity, we consider the bivariate 

lifetime data, throughout the study. 

The thesis is organized as seven chapters of which first chapter is the 

introductory chapter, where we have pointed out the relevance and scope of the 

study along with a review of literature. In Chapter 2, we introduce a different 

approach for modeling bivariate (multivariate) lifetime data, using vector hazard 

function of 10hnson and Kotz (1975). We consider a proportional hazards model in 

which the covariates under study have different effect on two components of the 

vector hazard function. The proposed one will be useful in real life situations to 

study the dependence structure of pair of lifetimes on the covariate vector 1.. The 

univariate model (1.24) can be directly deduced as a special case of the proposed 

one. Various properties of the model are discussed. We then develop inference 

procedures for the model. We illustrate the method using two real life data. A 

simulation work is carried out to study the performance of the estimator. 
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In Chapter 3, we deal with the regression problem of gap times in which the 

marginal and conditional hazard functions depend on certain covariates. Since the 

covariates under study have different effect on marginal and conditional hazard 

functions, proposed model will be more useful to study the dependence of gap times 

on covariates. We introduce a bivariate proportional hazards model for gap times. 

Estimation of parameter vector and baseline hazard function is discussed and 

asymptotic properties of estimators are also studied. We carried out a simulation 

study to investigate the finite sample properties of the estimators and their 

robustness. Finally, we illustrate the procedure with a real life data. 

As mentioned earlier, in many fields of application, it is often of interest to 

analyze the mean residual life function to characterize the stochastic behavior of 

survival over time. In practical situations, the given recurrent event data may not 

meet the proportionality assumption among hazard functions. The analysis of gap 

times for recurrent event data using mean residual life function is an alternative 

method to analyze the data. In Chapter 4, we propose a bivariate proportional mean 

residual life model to assess the relationship between mean residual life function and 

covariates for gap time of recurrent events. Note that the focus will be on the 

development of the regression model of gap times, when the recurrent events are of 

same type. Estimators of the parameter vectors as well as baseline mean residual life 

function are discussed. We apply the model to a kidney dialysis data given in 

Lawless (2003). A simulation study is carried out to assess the performance of the 

estimators. 

The analysis of multivariate lifetime data is usually done based on the 

assumption that the lifetime vector and censoring vector are independent. The 

assumption of independence between the lifetime vector and censoring vector is a 

strong restriction to apply such models in real life situations. The analysis of 

duration times under dependent censoring in the presence of covariates is a topic of 

interest. Motivated by this, in Chapter 5, we consider the regression problem for 

duration times of successive events under informative censoring. The idea used in 

Braekers and Veraverbeke (2005) for the analysis of partially informative censored 

lifetime data in univariate set up, is extended to the analysis of duration times of two 

successive events. We introduce and study semi-parametric proportional hazards 
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models for duration times. We estimate the parameters and baseline hazard functions 

of the model and asymptotic properties of the estimators are studied. A simulation 

study is carried out to assess the performance of the estimates. We then illustrate the 

procedure using a real life data. 

In many survival studies, we may have multivariate survival data with more 

than one cause of failure. The analysis of such competing risks data in the presence 

of covariates is not yet addressed in literature. In Chapter 6, we propose bivariate 

proportional hazards models for the analysis of competing risks data in the presence 

of censoring, using vector hazard function of Dabrowska (1988). Estimation of the 

parameters as well as the cause-specific hazard function is done and various 

properties of the estimators are discussed. A simulation study is reported to study the 

finite sample properties of the estimator. The method is illustrated using a real life 

data. 

Finally, Chapter 7 summarizes major conclusions of the study and discusses 

future works to be carried out in this area. 
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Chapter Two 

Proportional Hazards Model for Bivariate Lifetime Data 

2.1. Introduction 

Many survival studies record the times to two or more distinct failures on 

each subject. The failures may be events of different natures or may be repetitions 

of the same kind. Multivariate lifetime data arise in various forms when individuals 

are followed to observe the sequence of occurrences of a certain type of event or 

correlated lifetime when an individual is followed for the occurrence of two or more 

types of events for which the individual is simultaneously at risk. The analysis of 

bivariate (multivariate) lifetime data is complicated by the dependence of related 

lifetimes. One useful approach is to analyze the data using proportional hazards 

model for marginal distributions (see Wei et al., 1989 and Lee et al., 1992). When 

each cluster consists of K lifetimes T..,T2' ... , TK with corresponding covariate 

vectors k, ~, ... , k ' Lin (1994) considered the marginal proportional hazards model 

and a general methodology adopted for analyzing such data, which is analogous to 

that of Liang and Zeger (1986) for longitudinal data analysis. Later, Cai and 

Prentice (1995) modified the approach in Wei et al. (1989) by introducing a weight 

function into the estimating function for the parameter to improve the efficiency of 

the estimate. Spiekerman and Lin (1998) extended the marginal modeling technique 

by allowing separate baseline hazard function among different strata and imposing 

same baseline hazard function within each stratum. Kalbfleisch and Prentice (2002), 

Lawless (2003) and Martinussen and Scheike (2006) provide a comprehensive 

review on this topic. 

In many practical situations, as shown in Section 2.2, the marginal modeling 

The results in this Chapter have been published as entitled "Proportional Hazards Model for 

Multivariate Failure Time Data", Communication in Statistics - Theory and Methods, 36(8), 1627-

1642 (see Sankaran and Sreeja (2007)). 
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technique is not sufficient to explain the dependence structure of pair of lifetimes on 

the covariate vector. Motivated by this, we introduce a different approach for 

modeling bivariate (multivariate) lifetime data using vector hazard function of 

Johnson and Kotz (1975). The univariate model (1.24) can be directly deduced as a 

special case of the proposed one. 

In Section 2.2, we introduce bivariate proportional hazards model and study 

various properties of the model. In Section 2.3, we develop estimation of the 

parameters of the model. Estimation of baseline hazard functions is given in Section 

2.4. Asymptotic properties of the estimators are discussed in Section 2.5. In Section 

2.6, a simulation work is reported to assess the performance of the estimator. We 

illustrate the method using two real life data in Section 2.7. Finally, Section 2.8 

summarizes major conclusion of the study. 

2.2. Bivariate Proportional Hazards Model 

Let T = (TI' T2) be a random vector representing lifetime of pair of study 

subjects. Let S(tpt2)=Pr(I; '?t1'T2 '?tz) denotes the bivariate survival function of 

T. Then the bivariate hazard vector of lohnson and Kotz (1975) for T = (Tp T2 ) is 

given by (1.33). The joint survival function of T = (T" Tz) can be represented by 

(2.1) 

and 

(2.2) 

where, 

" "I (t l ,t2 ) = J~(u,t2)du 
o 

and 

'2 
"2(tl,t2)= f~(tl'v)dv 

o 

are cumulative hazard functions. 
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Note that, right side of (2.1) and (2.2) are nothing but the product of marginal 

survival function of I; and conditional survival function 7; I Tj ~ t j , i, j = 1,2, 

i =t j. 

In many practical situations, the conditional hazard functions of 7; gIven 

Tj ~ tj (i, j = 1,2; i =t j) are better tools than the marginal hazard functions to 

explain the joint dependence structure of pair of lifetimes on the covariate vector. 

For an example, we consider the data on Australian Twin Study (Duffy et al., 1990). 

This study was conducted to compare monozygotic (MZ) and dizygotic (DZ) twins 

with respect to the strength of dependency of disease risk between pair members, for 

various diseases. Twin pairs over the age of 17 were asked to provide information 

on the occurrence, and age at occurrence, of disease- related events, including the 

occurrence of vermiform appendectomy. Respondents not undergoing 

appendectomy prior to survey, or suspected of undergoing prophylactic 

appendectomy, give rise to right- censored times. There are six types of zygosities; 

1 = Monozygotic Female-Female pair, 2 = Monozygotic Male-Male pair, 3 = 
Dizygotic Female-Female pair, 4 = Dizygotic Male-Male pair, 5 = Dizygotic Male­

Female pair and 6 = Dizygotic Female-Male pair. The data contains the information 

of 3808 complete pairs. We now consider two sets, zygosity 1 and 2; each consists 

of 100 pairs of individuals. T.. and T2 represents the two individual's age in the pair 

at the time of surgery to appendicectomy undergone. Using the method given in 

Dabrowska (1988), the estimators ;,.,/I)(tj,tj ) and A?l(tj,t) of l\;Ctj,tj), 

i, j = 1, 2, i =t j for the two sets are calculated and their ratio are given in Table 2.1. 
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Table 2.1. Estimates of the cumulative hazard functions, ;.../2) (I;, Ij ) 

(11' 12 ) 
A (I) 
1\1 

A (2) 
1\1 

A (I) 
1\2 

A (2) 
1\2 

A (1) /" (2) 
1\1 1\1 

" (I) /" (2) 
1\2 1\2 

(21,18) 0.1799 0.1183 0.1744 0.1319 1.5207 1.3222 
(21,0) 0.2754 0.1508 0 0 1.8263 0 
(0,18) 0 0 0.2607 0.1378 0 1.8919 

(25,25) 0.2149 0.1454 0.1934 0.1435 1.4779 1.3477 
(25,0) 0.3577 0.1830 0 0 1.9546 0 
(0,25) 0 0 0.3943 0.1926 0 2.0472 
(21,25) 0.1308 0.1248 0.2429 0.1799 1.0481 1.3502 
(25,18) 0.2569 0.1364 0.1308 0.1364 1.8834 0.9589 

The ratio of the marginal hazards for two sets is not constant. For example, 

the ratio of the marginal hazards for the sets (21,0) and (25,0) are different. The 

" (1)( ) 
• 1\; tj' t j d d 2 ratIo A (2) epen s on t j , i, j = 1, , i 1: j. Accordingl y, mode ling of 

1\; (ti'tj) 

conditional hazard functions is useful to explain the dependence structure of pair of 

lifetimes on the covariate vector. With this motivation, in the following, we propose 

a bivariate proportional hazards model. 

The bivariate proportional hazards model is defined as 

1 ( I) 1 ( ) A (1)1. • • 1 2 . . ''i tj>tj 1 =.lLjO Ij>tj e- ) ,I,} =, , 11:] (2.3) 

where, 1; is a rxl covariate vector, I!..; (t j ) is the rxl parameter vector, 

l, (t;, t j 11) is the hazard function of the pair of lifetimes T = (~ , T2 ) given the 

covariate vector 1 and A.o(tp tJ,i,j=I,2, i1:j is an unspecified baseline hazard 

function. When I!..j (t j) is a zero vector, the covariates has no effect on the hazard 

1.{t. t. 1 Z(l» 
functions. The model (2.3) implies that for Tj 2 t j , the ratio J J' J -(2) of the 

l,(tj,t j 11 ) 

hazard functions of two pairs with covariate vectors 1;(1) and 1;(2) does not vary with 

time t;, i, j = 1,2, i,* j. Accordingly, I!..i (t j ) depends on t j , but not on tj , 

i, j = 1,2, i 1: j. Thus the covariates under study have different effect on two 
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components of the vector hazard function. Hereafter, we denote I!...i (t j) as I!.j for 

i, j = 1, 2, i =t j. 

From (2.1), (2.2) and (2.3), we can represent survival function of T as 

S (tl't2 I ~J = exp[-"10 (tI'O)e~L'''' -"20 (1l't2 )e~2''''] (2.4) 

and 

S (l"t2 11J = exp[- "10 (11'12 )e~L'''' -"20 (0,1 2 )e~2''''] (2.5) 

where, ";0 (ti,lj) is the baseline cumulative hazard function corresponding to 

Aa (1., t .), i, j = 1, 2, i =t j . , 'J . 

When tj ~ 0, 1\0 (tj' t J ~ 0 and thus S (t., t2 l~) in (2.4) reduces to the univariate 

proportional hazards model for Tj ,i, j = 1,2, i =t j. 

2.3. Estimation of Regression Parameters 

In this section, we discuss the estimation of parameter vectors Pj, i = 1,2 

using Cox's partial likelihood. From (2.4) and (2.5), we can see that the parameter 

vector f!.; is associated with the conditional variable 1'; I Tj ~ t j' i, j = 1,2, i =t j. As 

in the univariate set up, we can employ the method of partial likelihood developed 

by Cox (1975) to estimate parameter vectors Pi' i = 1, 2. In the following, we give 

the procedure for the estimation of pj , i = 1,2 . 

We label n pairs (11 ,21) , (12,22) ... (In, 2n). For fixed I j , suppose that there 

are pairs satisfying the condition T > .. -1 2' . 
j - tj ,I, ] -, ,I =t ] . For 

Tj~tj,j=1,2 suppose that k i items labeled 1l,12, ... lk; give rise to observed 

lifetimes tn ~ t;2 ~ ... ~ t;k; of the i Ih component with corresponding covariate 

vectors b, ~ , ... , b k; ,i = 1, 2. Then the remaining ni - kj individuals of r;, i = 1,2 

are right censored. Following the approach gi ven in Kalbfleisch and Prentice 

(2002), for fixed T. ~ t. we can directly obtain the partial likelihood for pj as J ] _ 
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L([!;) = fI n. /Yz,m 
m=1 ~ y (t. ) e/!. ';"1 
~ 11 Im 

(2.6) 

1=1 

where, t:m ( tj ) = I (tjm ~ tj ) , m = 1,2, ... ni and h;m = 1, if tim is a lifetime and h;m = 0, 

if tim is a censoring time for i = 1,2 . 

Notethat,when tj=O, nj will be n, i,j=I,2, i*j, 

The maximum partial likelihood estimates of f3 i is the value of f3 j ,i = 1,2 that 

maximizing (2.6); which will be obtained through numerical methods. It is 

important to note that the estimates of the vector 13 may be different for different 

values of tp i = 1, 2 . 

As in the univariate set up, if there are a substantial number of ties, the 

discrete nature of the lifetimes should be considered. Suppose that, of n pairs under 

test, for Tj ~ t jm' dim units are observed to fail at t im , m::::: 1,2, ... , kj where, 

k, 

tH ~ t;2 ~ ... ~ tjki and Id;m =k;,i=I,2. 
m=1 

In this case, the likelihood of f3 i can be approximated by 

(2.7) 

dim 

where, Lm ::::: I Lm r is the sum of the covariate of individual observed to fail at 
r=l 

tim with ~ jm ,~( t jm ) and nj for i ::::: 1,2 are same as above. 

Thus we obtain estimates of [!;, i = 1, 2 by maximizing the likelihood (2.7). 
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2.4. Estimation of Baseline Hazard Functions 

In this section, we discuss the estimation of baseline hazard function. Since 

AiD (tj,tJ is the cumulative hazard function of random variable ~ 1 Tj ~ tj' 

i, j = 1, 2, i ;t. j, the estimate of baseline cumulative hazard function is given by 

~( ) L ~m A·o t.,l. = 
I I J ni. ... 

m:lin,~t; ""' y: (t. ) f!., '1.;/ L..J il om e 
1=1 

(2.8) 

When tj ~ 0, the cumulative hazard function AiO (tpO) for the random variable ~ 

can be estimate using the generalized Breslow (1974) estimator (see Kalbfleisch 

and Prentice (2002), p. 104). When~ =0,i=1,2, (2.8) reduces to Nelson-Aalen 

estimates of the cumulative hazard function in univariate set up. Then the survival 

function can be estimated either by 

SI (tl'l2 11..) == exp[- AIO (ll>O)e~I'~ - A20 (tl'l2 )e~2'~] 

or by 

S" ( I) [A ( ) p, '~ " (0 ) P2' ~ ] 2 tl'l2 L = exp -1\10 11'12 e- - A 20 ,t2 e- . 

(2.9) 

(2.10) 

The estimator of S (t"t2 11) obtained by (2.9) and (2.10) may be different. To get a 

unique estimator, we consider a convex combination of the two expressions (2.9) 

and (2.10). Thus the estimator of S (11,12 11) is given by 

(2.11) 

Expressions (2.9) and (2.10) are proper bivariate survival functions in the sense that 

they assign positive mass to any rectangle in the plane. Hence S (tl' 12 11) is also a 

proper bi variate survival function provided that a (tl ' t2 ) is a constant between 0 and 

1. S(tl't211) may assign negative mass to certain rectangles when a(tp t2 ) changes 

with (tl'tz). However, in practice, the weights are chosen in such a way that they do 

not make abrupt changes (Akritas and van Keilegom (2003)). Choose a (tp 12 ) in 
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such a way that the mean square error of 5 (t" t2 1 z) is minimum. Mean square error 

(2.12) 

where, Cfij is the asymptotic covariance between Sj (11' t2 ) and S j (I., t2 ) and J.L j is 

the asymptotic bias of S j (tl' t 2)' i, j ::::: 1, 2, i ;;t. j. Thus we can obtain a (tl' t2 ) 

which minimized the mean square error as 

(2.13) 

To ensure that 5 (t1'/2 1 z) belongs to the interval [0, 1], we replace a(tl't2) by 

min[l,max (a (It ,t2 ) ,0)]. 

In practical situations, we do not know j.l j and Cfjj • The simulations 

reported in Section 2.6 suggest that the bias of S (tl' t2 1 z) is negligible relative to 

the variance of 5 (II' t2 1 z). So we propose the estimate of a (tl' t2 ) by minimizing 

the average variance of 5 (t .. t2 I~) over the data points. This can be achieved by 

replacing the unknown quantities in the expression of the asymptotic variance of 

S (t .. tz II) by appropriate estimators. To estimate the variance, one can use the 

extension of Efron's (1981) bootstrap procedure for one dimensional censored data. 

Given the data (~i.T2i,~li,~Zj'~i)' i = 1,2, ... ,n , where ~ jj' j ::::: 1,2 is the censoring 

empirical distribution function 
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~ 

S(tl'l2) given in (2.11), obtained from a large number of resamples. Since the 

biases are negligible as shown in Section 2.6, we then find the weight a * (tl' tJ as 

• var( S2(tl't2)*) -cov( SI (tI'12)* ,S2(tp t2 )*) 
a (tl' tz ) = ( * ) ( • ) ( • *) . var Sj(tl'tz ) +var S2(tl't2 ) -2cov SI(tl't2 ) ,S2(tp tZ ) 

(2.14) 

2.5. Properties of Estimators 

In this section, we discuss various properties of estimators. The estimate of 

the variance of AiO (t l ,t2 ), i = 1,2 is obtained in the following way. 

From (2.6) the log likelihood function is obtained as 

(2.15) 

Define, for any tj ~ 0 

n, 

~):I (tj ) e!!'i liJ 1,;/ 

X(lj,pj) = --=--/~~O-...--__ _ 

- ~):I ( t; ) e!!'i 10, 
(2.16) 

J~t 

and 

S (0) ( R ) - ~ y ( ) !!'i liJ • -1 2 j t jm , I~.i - ~ i/ tim e ,I - , . (2.17) 
1~1 

Then as in the univariate set up, for fixed tj' we can prove that 

~[ A;o (t;, tj) - 1\;0 (t;, tj) ] has a limiting normal distribution with mean zero 

vector and variance np/ where a/ is given by 

(2.18) 

where, 

W (t jm ) = 
o X (t. , f3. ) 

Im Im -' .• 12' . 
(0) ( ) ,l,}= , ,l*}. 

S j t;m ' p; 

To study the asymptotic properties of §;, consider the score function, 
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(2.19) 

where, 

nj 

S (I) ( R ) - "y ( ) p'j"" '-1 2 
i ~i' tim - ~ il tim e kl ' l - , . 

/=1 

Then the maximum likelihood estimator §..j is the solution of the score function 

U (~,) = 0 and hence ~ is a consistent estimator for I!, i:::: 1,2. For large nj , the 

score statistic U (I};) is asymptotically r -variate normal with mean zero vector and 

with covariance matrix Ai (I!i) where, 

(2.20) 

with 

nj 

S (2) (/3 ) - "y ( ) I!.'j"" "-1 2 
i _i , tjm - ~ il tim e kd"I' l -, • 

1=1 

The covariance matrix can be estimated by substituting the estimate of I! in (2.20) 

for i = 1, 2, Thus e is asymptotically r -variate normal with mean vector I! and 

with covariance matrix Aj -
I (~i ) ,i :::: 1,2, The proof of the above asymptotic 

properties of the estimators follows from Lin (1994), 
A 

Asymptotic distribution theory of S (tp t2 I Z) IS difficult and the most 

attractive approach to variance and confidence interval estimation is through 

resampling method. The bootstrap procedure of resampling the observed data units 

with replacement, as discussed in Section 2.4, can be employed in such situations. 

2.6. Simulation Study 

We now carried out a simulation study to evaluate the performance of the 

aforementioned inference procedures, We consider a bivariate Dirichlet distribution 

with survival function 
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(2.21) 

For (2.21), the bivariate hazard function is given by 

(2.22) 

We consider the covariate vector ~ = (Zl ' Z2)' where covariate Zl is a binary 

variable having values 1 and 2 and it is generated with equal probability using 

Bemoulli distribution. The covariate Zz is generated from unifonn (0, 1). Then 

paired lifetimes are generated from bivariate Dirichlet distribution for a = 1.5 and 2 

with a1 = az = 1 and for various values of I!.i' i = 1, 2. The paired lifetimes are 

censored independently by a bivariate Dirichlet distribution (2.21) with a = 2 and 

a1 =a2 =1. We consider a(tl'tz)=0.5. We used the algorithm given in Gentle 

(1998, p.lll) for generating observations. We estimate the parameter vector and 

baseline cumulative hazard functions using the procedures given in Sections 2.3 and 

2.4. We then compute the estimate of S(tl'tzl~) for 1000 simulations and we 

calculate average bias and variance of the estimate. The bias and variance of the 

estimator ~ (tl' t2 I ~) for different combinations of n, I!.I and 1!.2 are given in 

Table 2.2. From Table 2.2, it follows that the bias of S(tl't2 I~) is decreasing in n. 

The variance of the estimate is small irrespective of the sample size. 

Next we consider a Gumbel's (1960) bivariate exponential distribution with 

survival function 

For (2.23), the bivariate hazard function is 

l(ti,tj)=l+ltj , i,j=1,2, i=t=j. 

(2.23) 

(2.24) 

The covariates are generated as in the case of bivariate Dirichlet distribution. 

We generated observations from Gumbel's bivariate exponential distribution for 

A =0.75 and A. =0.9 and for various values of f!.;, i = 1,2, using algorithm given in 

Devroye (l986,p.584). The paired lifetimes are censored by a Gumbel's bivariate 

exponential distribution (2.23) with A=O.l. We consider a(tl'tz ) = 0.5. We estimate 

35 



the parameter vector and baseline cumulative hazard functions using the procedures 

given in Sections 2.3 and 2.4. We then compute the estimate of S(tl't21~) for 1000 

simulations and we calculate average bias and variance of the estimate. The bias and 

variance of the estimator S (t[, t2 1 I) for different combinations of n, I![ and 1!2 

are given in Table 2.3, which shows that the bias of 5(tl't2 1 I) is decreasing in n. 

The variance of the estimate is small irrespective of the sample size. 

Table 2.2. Bias and variance of the estimator S (t[, t2 I I) for bivariate Dirichlet 

distribution at different time points 

I![ 1!2 (tl' t2 ) 
Bias Variance 

n 
a=I.5 a=2 a=1.5 a=2 

(-1, (-0.997, 
(0.13,0.12) 0.0622 0.0662 0.0326 0.0850 

0.005) -0.002) 
(0.05,0.14) 0.0398 0.0442 0.0818 0.0495 
(0.02, 0.09) -0.0680 0.0690 0.0253 0.0490 

(0.17, (0.32, 
(0.13,0.12) 0.0704 0.0152 0.0790 0.0247 

25 (0.05,0.14) 0.0232 0.0318 0.0650 0.0399 
-0.8) -1) 

(0.02, 0.09) -0.0317 0.0630 0.0734 0.0364 

(-0.03, (-0.8, 
(0.13,0.12) 0.0376 0.0702 0.0508 0.0820 
(0.05,0.14) 0.0816 0.0463 0.0474 0.0530 

-0.4) 2.68) 
(0.02, 0.09) 0.0440 0.0688 0.0560 0.0610 

( -1, (-0.997, 
(0.13,0.12) 0.0283 0.0259 0.0282 0.0287 

0.005) -0.002) 
(0.05,0.14) 0.0209 -0.0009 0.0084 0.0398 
(0.02, 0.09) 0.0249 0.0491 0.0202 0.0325 

(0.17, (0.32, 
(0.13,0.12) 0.0666 -0.0097 0.0525 0.0148 

50 (0.05,0.14) 0.0184 0.0265 0.0359 0.0362 
-0.8) -1) 

(0.02, 0.09) -0.0179 -0.0420 0.0274 0.0241 

(-0.03, (-0.8, 
(0.13, 0.12) 0.0285 0.0213 0.0445 0.0365 
(0.05,0.14) 0.0498 -0.0320 0.0295 0.0367 

-0.4) 2.68) 
(0.02, 0.09) 0.0370 -0.0400 0.0193 0.0233 

(-1, (-0.997, 
(0.13,0.12) 0.0160 -0.0160 0.0054 0.0112 

0.005) -0.002) 
(0.05,0.14) -0.0002 0.0008 0.0058 0.0231 
(0.02, 0.09) 0.0060 -0.0060 0.0073 0.0222 

(0.17, (0.32, 
(0.13, 0.12) 0.0232 -0.0073 0.0464 0.0135 

100 (0.05,0.14) 0.0067 0.0170 0.0296 0.0321 
-0.8) -1) 

(0.02, 0.09) 0.0054 -0.0350 0.0119 0.0155 

(-0.03, (-0.8, 
(0.13,0.12) 0.0009 0.0113 0.0202 0.0350 

-0.4) 2.68) 
(0.05,0.14) -0.0060 0.0131 0.0189 0.0134 
(0.02, 0.09) -0.0187 0.0188 0.0009 0.0172 
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Table 2.3. Bias and variance of the estimator S (tl' t2 Il.) for bivariate Gumbe1' s 

exponential distribution at different time points 

I!I 1!2 (tl' t2 ) 
Bias Variance 

n 
..1.=0.75 ..1.=0.9 ..1.=0.75 ..1.=0.9 

(-0.2, ( -1.3, 
(2, 1) 0.0230 0.0285 0.0184 0.0280 

0.1) 2.3) 
(1,3) 0.0276 -0.0520 0.0274 0.0387 
(2,2) 0.0380 0.0367 0.0820 0.0490 

(0.25, (-0.5, 
(2, 1) 0.0429 -0.0145 0.0560 0.0466 

25 
-0.4) 0.6) 

(1,3) 0.0870 0.0340 0.0704 0.0219 
(2,2) -0.0870 0.0460 0.0453 0.0276 

(-
(-0.31, 

(2, 1) 0.0594 -0.0610 0.0248 0.0378 
0.28, 

1) 
(1,3) 0.0200 0.0212 0.0258 0.0389 

0.9) (2,2) 0.0207 0.0161 0.0260 0.0151 

(-0.2, (-1.3, 
(2, 1) 0.0186 0.0111 0.0176 0.0096 

0.1) 2.3) 
(1, 3) 0.0192 0.0430 0.0242 0.0353 
(2,2) 0.0322 -0.0159 0.0113 0.0409 

(0.25, (-0.5, 
(2, 1) 0.0215 -0.0135 0.0114 0.0273 

50 -0.4) 0.6) 
(1,3) 0.0182 -0.0180 0.0338 0.0212 
(2,2) 0.0177 -0.0310 0.0126 0.0159 

(-
(-0.31, 

(2, 1) 0.0526 0.0051 0.0049 0.0201 
0.28, (1,3) 0.0180 0.0199 0.0239 0.0164 
0.9) 

1) 
(2,2) 0.0183 0.0054 0.0119 0.0092 

( -0.2, (-1.3, 
(2, 1) 0.0172 -0.0049 0.0170 0.0090 
(1,3) -0.0160 -0.0029 0.0121 0.0248 0.1) 2.3) 
(2,2) 0.0278 -0.0106 0.0037 0.0085 

(0.25, (-0.5, 
(2, 1) 0.0135 -0.0051 0.0009 0.0143 

100 
-0.4) 0.6) 

(1,3) -0.0126 -0.0117 0.0264 0.0167 
(2,2) -0.0003 0.0041 0.0055 0.0029 

(-
(-0.31, 

(2, 1) 0.0209 0.0015 0.0003 0.0179 
0.28, 1) 

(1, 3) -0.0102 -0.0058 0.0163 0.0080 
0.9) (2,2) 0.0062 -0.0027 0.0088 0.0085 

2.7. Data Analysis 

For the illustration of the estimation procedure we consider two real life 

examples. 

First, we consider a data on Kalbfleish and Prentice (2002, page 329). The survival 

times of closely and poorly HLA (human lymphocyte antigen) matched skin grafts 

on the same burned individual is considered as ~ and T2 • Amount of bum is 

considered as a covariate. The data is given in Table 2.4. 
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Table 2.4. Days of survival of closely and poorly matched grafts on the same person 

Case 
4 5 7 8 9 10 11 12 13 15 16 

number 
Survival 
of close 

37 19 57+ 93 16 21+ 20 18 63 29 60+ 
match 
graft 

Survival 
of poor 

29 13 15 26 11 15+ 26 19+ 43 15 38+ 
match 
graft 

Amount 
30 20 25 45 20 18 35 25 50 30 30 

of bum 

+ indicates censoring time. 

We compute the estimates Pi' i = 1,2 for observed pair of lifetimes, those are given 

in Table 2.5. 

Table 2.5. Estimates of III and 112 

(tp t2 ) 
(tl' 0) (0,t2 ) (t l given t2) (t2 given t1) 

P1 P2 PI P2 
(16, 11) -0.0777 -0.0706 -0.0777 -0.0706 
(19, 13) -0.0777 -0.0706 -0.0612 -0.0580 
(20,26) -0.0777 -0.0706 -0.0714 -0.0361 
(29, 15) -0.0777 -0.0706 -0.0411 -0.0562 

discussed in Section 2.4. The estimates of 1\0 (tp tj ), i, j == 1, 2, i =I: j are given in 

the Table 2.6. Based on boots trap procedure explained in Section 2.4, we obtain 

a(t.,t2 )= 0.5. Finally, Table 2.7 provides the estimates of S(II,t21~) 

Table 2.6. Estimate of the baseline cumulative hazard function 

(t .. t2) '\0 (tl't2) AIO (tl' 0) -\0 (t.,t2) -\0 (O,t2 ) 

(16, 11) 0.7322 0.7322 0.6152 0.6152 
(19,23) 1.2118 2.5881 0.5936 1.3389 
(20,26) 2.5938 3.8393 2.2886 8.1513 
(29,25) 1.4926 5.8962 2.1224 3.0959 
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Table 2.7. Estimate of the survival function 

(t"t2 ) SI (tl' t21.s;) S2 (t.,t21.s;) S(tl,t21.s;) 
(16, 11) 0.7373 0.7373 0.7373 
(19,23) 0.5054 0.4803 0.4928 
(20,26) 0.4061 0.4067 0.4064 
(29,25) 0.4461 0.3801 0.4131 

From Table 2.5, it is clear that P 's have negative values. From Table 2.7, it follows 

that, as the survival of closely and poorly matched grafts increases, the survival time 

of the corresponding individual's decreases. As amount of burn increases 

probability of survival decreases, as expected. Figure 2.1 shows the estimates of the 

bivariate survival function. 

0.7 

S(tl,tl) 0.6 

0.5 

2S 
0.4 

15 t2 

25 
30 

10 

Figure 2.1. Estimates of bivariate survival function 

Secondly, we consider the data on Australian Twin Study (Duffy et al., 

1990), explained in Section 2.2. The data contains the information of 3808 

complete pairs and from that we take only the first 250 pairs for the illustration 

purpose. 7; and T2 represents the pair of individual's age at the time of surgery to 

appendicectomy undergone. Zygosity is considered as covariate. The estimate of I!.I 
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and 1!2 are given in Table 2.8 and the estimates of baseline cumulative hazard 

function is given in Table 2.9. Since SI(tl't21~) and S2(t"t21~) are not very 

different; we take a(tl , ( 2 ) = 0.5 and the estimates are given in Table 2.10. 

Table 2.8. Estimates of I!I and 1!2 

(t,,12 ) (ZI' Z2) 
(tI'O) (0, t2) (t l given t2 ) (12 given t]) 

~I ~2 ~l P2 
(5, 7) (1, 1) -0.0424 0.0229 -0.0424 0.0204 
(9, 7) (1, 1) -0.0424 0.0229 ·-0.0424 0.0341 

(12, 12) (6,6) -0.0424 0.0229 -0.0644 0.0319 
(17,9) (5,5) -0.0424 0.0229 -0.0555 0.0325 
(8,24) (1, 1) -0.0424 0.0229 -0.1172 0.0324 
(21, 11) (1, 1) -0.0424 0.0229 -0.0694 0.0321 
(22,29) (1, 1) -0.0424 0.0229 -0.1495 0.0631 
(18,41) (5,5) -0.0424 0.0229 -0.0731 0.0382 
(4,49) (3,3) -0.0424 0.0229 -0.1393 0.0229 
(24,52) (4,4) -0.0424 0.0229 -0.2115 0.0876 

Table 2.9. Estimate of the baseline cumulative hazard function 

(tl't2) (ZI' Z2) ~O(tl,t2) ~O(tl'O) ~(tl't2) ~(0,t2) 
(5,7) (1, 1) 0.0136 0.0135 0.0269 0.0265 
(9,7) (1, 1) 0.0459 0.455 0.0227 0.0265 

(12, 12) (6,6) 0.0779 0.0879 0.0522 0.0658 
(17,9) (5,5) 0.1755 0.1775 0.0386 0.0499 
(8,24) (1, 1) 0.0413 0.0362 0.2097 0.2144 
(21, 11) (1,1) 0.2334 0.2319 0.0487 0.0572 
(22,29) (1, 1) 0.2154 0.2566 0.2287 0.3092 
(18,41) (5,5) 0.1378 0.1984 0.4277 0.4912 
(4,49) (3,3) 0.0334 0.0089 0.6567 0.6559 
(24,52) (4,4) 0.3699 0.3257 0.4876 0.6832 
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Table 2.10. Estimate of the survival function 

(t"t2 ) (Zl' Z2) .5[(tpt211;) .52 (tl,(211;) .5(tpt211;) 

(5,7) (1, 1) 0.9607 0.9605 0.9606 
(9,7) (1, 1) 0.9314 0.9351 0.9333 

(12, 12) (6,6) 0.8794 0.8768 0.8781 
(17,9) (5,5) 0.8279 0.8278 0.8278 
(8,24) (1, 1) 0.7739 0.7777 0.7759 

(21, 11) (1, 1) 0.7581 0.7614 0.7598 
(22,29) (1, 1) 0.6054 0.6129 0.6091 
(18,41) (5,5) 0.5239 0.5076 0.5157 
(4,49) (3,3) 0.4845 0.4910 0.4878 
(24,52) (4,4) 0.4035 0.3802 0.3919 

From Table 2.8, it is clear that PI'S have negative values and /12'S have positive 

values. It follows from Table 2.10 that as the time for undergoing surgery to 

appendectomy increases, the survival probability decreases. Figure 2.2 shows the 

estimates of the bivariate survival function. 
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S(tl,tl} 
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ss 
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Figure 2.2. Estimates ofbivariate survival function 
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2.8. Conclusion 

We developed a bivariate proportional hazards model using vector hazard 

function of 10hnson and Kotz (1975). Since the covariates under study have 

different effect on two components of the vector hazard function, proposed model 

will be more useful to study the dependence of lifetime on covariates. The 

estimators of the parameters as well as the baseline hazard function are developed. 

Simulation studies showed that the performance of the estimator is good. We 

illustrated the procedure using two real life data. 

The univariate proportional hazards model can be directly deduced as a 

particular case. Further, the model can be extended to the multivariate set up using 

multivariate version of vector hazard function of 10hnson and Kotz (1975). When 

~1 == ~2 == 0, the estimator of the bivariate cumulative baseline hazard function is the 

extension of the well-known Nelson-Aalen estimator of the hazard function in the 

univariate set up. 
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Chapter Three 

Proportional Hazards Model for Gap Time Distributions of 

Recurrent Events 

3.1. Introduction 

As mentioned earlier, in many survival studies, the investigators are more 

interested in the analysis of gap time than the total time. In these studies, 

investigators are often interested in the distribution of gap times and how this 

distribution depends on important predictor variables. The analysis of gap time data 

is usually done by assuming proportional hazards model for marginal hazard 

functions. In the present study, we deal with the regression problem for gap time of 

recurrent events in which the marginal and conditional hazard functions depend on 

certain covariates. Since the covariates under study have different effect on marginal 

and conditional hazard functions, proposed model will be more useful to study the 

dependence of gap times on covariates. 

In Section 3.2, we consider bivariate proportional hazards model for gap 

times. Estimation of parameter vector and baseline hazard functions is discussed in 

Section 3.3. Asymptotic properties of estimators are also studied. In Section 3.4, we 

carried out a simulation study to investigate the finite sample properties of the 

estimators and their robustness. In Section 3.5, we apply the new model to a real life 

data. Finally, we conclude our study in Section 3.6. 

3.2. The Model 

Suppose that an individual may experience k consecutive events at times 

X I < X 2 < ... < X k which are measured from the start of the follow up. We are 

interested in gap times 7; = Xl' T2 = X 2 - X I and ~ == X k - X k-J • We assume that 

The results in this Chapter have been communicated as entitled "Proportional Hazards Model for Gap 

Time Distributions of Recurrence Events" (see Sankaran and Sreeja (2008». 
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the follow up time is subject to independent right censoring by C which implied 

that (X l' X 2' ... X k) are independent of C. On the other hand, the gap time 1'; is 

subject to right censoring by C - Xi _, ' i = 2,3, ... , k, which is naturally correlated 

with 1'; unless 1'; is independent of Xi_,. We now consider the regression problem 

in which the marginal and conditional hazard functions of (~, T2 , ... Tk ) depend on 

certain covariates. We confine our study for k = 2. The extension to higher 

dimensions is direct. 

Suppose that Si (ti) = P[7; :::: tj 1 is the marginal recurrence survival function of 

I;, i = 1,2. Let S (t" t2 ) = P[~ :::: t" T2 :::: 121 be the joint recurrence survival function of 

~ and Tz• Our objective is to estimate S (tl ,t2 ) in the presence of covariates. For 

this, one possible method is to consider marginal hazard functions of ~ and T2 and 

then apply ideas from generalized estimating function to calculate an appropriate 

combination of the two marginal estimates. This can be done in the case of 

homogeneity of the two regression coefficients. Another technique, one could use, is 

to model :r. and then consider the conditional distribution of T2 given TI = t, . 

From Wang and Wells (1998), the survival function S(t"t2 ) is given by 

8(tI'12 )=- J P[T2 >t21~ =t,] SI(u)du 
u>t. 

=- J n (l-A"(U,12 »SI(u)du 
u>t1 U 

(3.1) 

where X (tp (2 ) is the hazard function of T2 given :r. = 11 , When X is continuous, 

estimating X (tp t2 ) requires special smoothing techniques and can be very 

complicated when the dependent censoring condition is taken into account (see 

Wang and Wells, 1998). 

In the following, we consider a simple method for the analysis using marginal 

hazard function of :r. and conditional hazard function of T2 given T,. :::: tl . 

Let ~ (t l ) be the hazard function of ~ , which is defined as 

(3.2) 
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~ (t l ) is nothing but the instantaneous rate of occurrence of the first event at time tl 

given that he was alive at the time TI ~ tl . 

Since T2 depends directly on ~, we consider the conditional hazard function of T2 

given ~ ~ tl , which is defined as 

(3.3) 

The meaning of ~ (tl' t2) is instantaneous rate of occurrence of the second event at 

The cumulative hazard functions respectively are denoted by "I (t l ) and "2 (tl' t 2 ) 

where, 

11 

"I(tl )= JAI(u)du 
o 

and 

12 

"2(tl't 2 )= JA 2 (tl'u)du 
o 

The survival function can be written as 

Now we define proportional hazards model for (~, Tz) as 

A1 (t 1 I .~.J = A 10 (t I ) e ~-' '",­

and 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3,8) 

where ~=(Zl'Z2, ... ,Zr)' isavectorofcovariates, /!.t' and 1l2' are r-component 

parameter vectors, independent of both 11 and t2 and ~o (tl ) and ~o (tl ,t2 ) are 

baseline hazard functions. The model (3.7) means that the ratio ~ (t l I ~:::) of the 
~ (t\ I ~ ) 

hazard functions of two individuals with covariate vectors ~(I) and ~(2) does not 

~(t t I z(1» 
vary with tl and the model (3.8) means that the ratio I' 2 -(2) of the hazard 

~(tl't2 I Z ) 
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functions of two individuals with covariate vectors 1(1} and 1(2) does not vary with 

both tl and t2 . 

From (3.7), it follows that the marginal hazard functions of ~ for two-individuals 

are proportional to one another. The model (3.8) implies that the ratio of conditional 

hazard functions of T2 given ~ ~ tl for two individuals are independent of both tl 

and t2 • 

In many situations, one may be interested in the joint survival function S(tl' t2 IX) of 

gap times. Using (3.6), (3.7) and (3.8), the survival function can be obtained as 

(3.9) 

3.3. Inference Procedures 

Suppose now that there are n independent subjects in the study so that 

(~i,T2i'Ci'k), i=1,2, ... ,n are n independent replicates of (~,T2,C,1) where 

~ = Xl and T2 = X 2 - Xl' In the presence of censoring, the observable data consists 

of where 

X2i = min(T2i , Ci - ~i)' t52i = I (T2i < Cj - ~i) and k is the covariate vector for 

i=1,2, ... ,n and j=I,2 with 1(.) as indicator function. First, we consider the 

estimation of regression parameters Il. and 1l2' 

The counting process NI (t.) = {Nu (tl ),/1 ~ D} given at time tl by 

NI(tI)=I(Xli5:tl'~=I) where XI=min(~,C) and t5l=J(~<C). For fixed t., 

we also define a counting process {N2(t1,12),t. ~D,t2 ~D}, given at time 12 by 

where 

82 = I (T2 < C - ~) . Then we have, for i = I, 2, ... , n , 

N1i(t.) = I(XIi :::; tl)~i 

and 

N21 Ul't2 ) = I (.fli ~ tp X 2i :::; t2 )t52i • 

Considerthe at-risk processes ~(t.)={~/t.),tl ~O} and 
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yz(tpt2 ) = {Y2Jtp t2 ),tl ~ 0,t2 ~ O}, where 

~j(tl) = I(Xlj ~ t1) 

and 

Then we can write 

and for fixed t l , 

E[N2i (tl'dt2 ) IlF - - ] = Y2i(tl , t 2 ) 1\2; (tl , dt2 ) 
I, .12 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where IF,, belong to the right -continuous filtration {IF,, : tl ~ o} and for fixed 11 ' lF1,.12 

belong to the right-continuous filtration {IF,,,12 : tl ~ 0, t2 ~ O} with IF,, and lF1,.t2 are 

defined by 

Ft, = O'{N\i(u),}'t;(U+),k : 0 ~ U ~ tpi = 1, 2, ... ,n} 

and 

I, 

Denoting M\i(tt) = NIi(tl )- fl't;(s) I\li (ds) 
o 

and 

/, 

M 2i (tl't2 ) =N2i (tl't2 )- JY2;(tl'S)1\2i (tl'ds) ,i=I,2, ... ,n, 
o 

martingale. 

Then the score function of I!I is given by 

where, 
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(3.17) 

(3.18) 

(3.19) 

(3.20) 



and 

St(l) (/!I,tU ) = I~I ((li )ee''t-<II kt· 
1=1 

The maximum likelihood estimator of I!.I is the solution of the score function 

To obtain the estimate of 1!.2 consider the score function 

(3.21) 

where, 

and 

As in the uni variate set up, we can obtain the estimate of 1!.2 by maximizing the 

score function (3.21). 

Now we discuss the estimation of baseline cumulative hazard functions I\IO(tl) and 

A (t) = If' I(~ (s) >A 0) dN (s), 
10 1 S (0) ( R ) 1 

o 1 S'~I 

(3.22) 

which can be written as 

"IO(tl) = I 
i:t]j ":'t1 

n • 

I YIl (tu )eLYk 
(3.23) 

1=1 

Similarly, by using the counting process approach, the estimator of 1\20(tl '(2) IS 

obtained as 
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~ ( ) = tJ2 I(Y2(tl' s) > O)d'N ( ) 
1\20 tp t2 (0) ~ 2 tl'S 

o S2 (tp S,1!2) 

which reduces to 

A20 (tl't2 ) = I 
i:tZi ~t2 

nz • 

I Y21 (tIi , t2Je!!.2 '1.[ 

1=1 

(3.24) 

(3.25) 

Now we discuss the asymptotic properties of I!I and 1!2' The asymptotic properties 

of ~I are well studied in literature (see Lawless, 2003, p.342). Precisely, §.I is 

asymptotically r -variate normal with the mean vector I!I and covariance matrix 

~ -I (f!I) where 

~ (1!1) =! f °1; {s,::: ~t"'~ ~ _ S,<'i i"'~' )S'<'} (}~' )'} 
ni=1 SI tli'_1 Sl()(tli'~I) 

(3.26) 

with 

JI 

S?) (tJj, I!l) = L 1';/ (t1j ) e/!\ Zi ~~ , • 
1=1 

For fixed t l , the maximum likelihood estimator §.2 is the solution of the score 

function U (1!2) = 0 and hence ~2 is a consistent estimator for 1!2' When tl is fixed, 

the score statistic U (1!2) is asymptotically r -variate normal with mean zero vector 

and with covariance matrix ~ (1!2) where, 

(3.27) 

with nz as the number of observed occurrence of the second event and 
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Thus /32 is asymptotically r -variate normal with mean vector 1!.2 and covariance 

matrix ~ -I (1!.2) . 

The asymptotic properties of A10(tI) are well discussed in literature (see 

Lawless, 2003, p. 353). Under the same set of regularity conditions, as required for 

the asymptotic normality of /32' the (A 20 (tl't2 )-"20(tl't2» converges weakly to a 

mean zero Gaussian process. In particular, for fixed t l , the variance of A20 (tl't2 ) 

can be consistently estimated by 

(3.28) 

where, 

with 

One may often be interested in estimating the survival function S(t l , t2 I kJ) 

of gap times with a fixed covariate ~. From (3.9), a natural estimate for S(tl' 12 I kJ) 

is given by 

(3.29) 

nonnal distribution with covariance matrix 

(3.30) 

where 
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with 

and 

W.2(tl't2) = E[rrC¥; (s) > 0) ICY2(tl'u) > 0) dNICS)dN2(tI'U)]. 
00 1'; (s) Y2 Ctp u) 

A straight forward application of functional delta method, then, establishes the 

asymptotic normality of S(tptz 11.0) with mean SCtl'tz 11.0) and variance that can be 

estimated as follows. 

From Andersen et al. (1993, p. 503), the covariance between ~. and "IOCtI) IS 

consistently estimated as 

~ z 
C; (t1'~1) = -~ -I (§.I) fSI(I)Cs'§.I)( S/U)(S'~l) r dNI (s) (3.31) 

° 
where 

n 

dNI (tl) = I dNJi (t. ) 
j~1 

with 

dNlj(tl) = IC~i E [tl,t. +AlI);~j = 1). 

On similar lines, we can also obtain the covariance between ~z and "ZO(tl't2) ' 

which can be consistently estimated by 

t, 

c; (tl ,tz' §.2) = -~ -\§.2) J S2 (I) (El' S'~2) (S/O) (tl' S, §.I) r2 dNz (tl' s). (3.32) 
o 
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The delta method is then used to estimate the covariance matrix of 

(~1'§.2,AIO(tl),A20(ti't2». But in practical situations an attractive approach to 

variance or confidence interval estimation is through resampling methods. The naive 

bootstrap procedure of resampling the observed data units (X Ii' X 21' 011 ' 8z; ,kJ ) 

with replacement will be satisfactory under fairly mild conditions (see Efron and 

Tibshirani, 1993). 

Remark 3.1. 

In the absence of covariates (/31 = 0, /32 = 0), the expressions (3.23) and 

(3.25) for cumulative hazard function will reduces to the non-parametric estimates 

of AI(t) and A2 (tl't2 ) given in Wang and Wells (1998). 

3.4. Simulation Study 

In this section, we carried out a simulation study to evaluate the performance 

of the aforementioned inference procedures. We consider a Gumbe1's (1960) 

bivariate exponential distribution with survival function . 
(3.33) 

with hazard functions 

(3.34) 

Two covariates ZI and Z2 are generated from uniform (0, 1) distribution. We 

generated observations from Gumbel's bivariate exponential distribution for 

different values of r using algorithm given in Oevroye (1986). Independent 

censoring times are generated from the uniform distribution (0, b), where the 

constant b is taken in such a way that 30% of the observations are censored. We 

compute estimates for 1000 simulations and we then calculate average bias and 

variance of the estimates of J!.I = (/3, P /312)' J!.2 = (/321' /322) and baseline cumulative 

hazard functions. The estimates are given in Table 3.1 to Table 3.3. As n increases, 

both bias and variance of the estimates decreases. 
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Table 3.1. Bias and variance of it and PI2 

Bias Var Bias Var 

flu PI2 r n PlI Pll PI2 Pl2 

0.7 
50 -0.0789 0.0716 -0.0819 0.0884 

250 -0.0486 0.0711 -0.0398 0.0113 
1.1 -0.8 

50 -0.0157 0.0671 -0.0807 0.0934 
0.8 

250 -0.0134 0.0525 -0.0754 0.0536 

0.7 
50 -0.0801 0.0579 -0.0433 0.0607 

0.7 0.9 
250 -0.0462 0.0444 -0.0102 0.0296 

0.8 
50 -0.0826 0.0618 -0.0499 0.0693 

250 -0.0493 0.0329 -0.0104 0.0475 

Table 3.2. Bias and variance of Al and P22 

Bias Var Bias Var 

J321 J322 r n P21 P21 P22 P22 

0.7 
50 0.0236 0.0282 0.0289 0.0575 
250 0.0210 0.0185 0.0287 0.0181 

1 -1.3 
50 0.0231 0.0297 0.0284 0.0368 

0.8 
250 0.0188 0.0118 0.0280 0.0157 

0.7 
50 0.0273 0.0313 0.0182 0.0339 

1.2 0.8 
250 0.0239 0.0183 0.0167 0.0275 

0.8 
50 0.0236 0.0281 0.0166 0.0162 
250 0.0224 0.0101 0.0153 0.0129 
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Table 3.3. Bias and variance of estimates of the baseline cumulative hazard 

functions 

PlI Pl2 P21 P22 (tl't2 ) 
Bias Var Bias Var 

r n 
AIO(t,) AIO(tI) ?-20(tl't2) Aw(tl't2 ) 

0.7 
50 0.0969 0.0691 -0.0685 0.0301 

(1,0.9) 250 0.0305 0.0101· -0.0275 0.0192 
50 0.0124 0.0289 -0.0636 0.0364 

0.8 
- - 250 0.0102 0.0184 -0.0543 0.0156 

1.1 
0.8 

1 
1.3 50 0.0322 0.0554 -0.0515 0.0307 

0.7 
250 0.0291 0.0161 -0.0448 0.0255 (0.8,1.1) 
50 0.0255 0.0197 -0.0567 0.0500 

0.8 
250 0.0105 0.0157 -0.0194 0.0454 

0.7 
50 0.0723 0.0769 -0.0522 0.0589 

(1,0.9) 250 0.0687 0.0656 -0.0293 0.0208 
50 0.0694 0.0736 0.0039 0.0764 

0.8 
250 0.0201 0.0438 0.0003 0.0658 

0.7 0.9 1.2 0.8 
50 0.0586 0.0432 -0.0279 0.0542 

0.7 
250 0.0524 0.0374 -0.0229 0.0129 (0.8,1.1) 
50 0.0308 0.0619 0.0126 0.0855 

0.8 
250 0.0127 0.0388 0.0015 0.0782 

3.5. Data Analysis 

For the illustration of the procedure, we consider a data given in Lawless 

(2003, p.531). This data show on the recurrent times to infection at the point of 

insertion of the catheter for 38 persons undergoing kidney dialysis. Data for the first 

two occurrences of infection are given; either one or both may be censored, because 

catheters were sometimes removed for causes other than infection. The two 

covariates considered are sex (1 == male, 2 = female) and kidney disease type (0 = 
glomerulo nephritis, 1 = acute nephritis, 2 = polycystic kidney disease, 3 == other). ~ 

and Tz represents the first two occurrences of infection. 

We compute the estimates of ~ = (PII' Pr2 ), §..2 = (P21' P22) by the method 

given in Section 3.3. The estimates §.I and §.2 are §., == (-1.5046, -0.2354), 

~2 = ( -0.5185, -0.1008) . It follows that both §., and §.2 have negative values. Thus 

the covariates in the study have negative effect on the recurrence time of the 

individuals. We then compute the estimates of baseline cumulative hazard functions 
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and survival functions. The estimates are given in Table 3.4. From Table 3.4, we can 

observe that II. IO (t1) is increasing in tl' as expected. However, both 1I.20 (tl't2 ) and 

S(tpt21~) are depends on tl and t 2 . Figure 3.1 shows the estimates of the survival 

function. 

Table 3.4. Estimates of baseline cumulative hazard functions and survival 

function 

(tl' t2 ) ~ II.IO (tl) 1I.20 (tl't2 ) 
A 

S(tl't2 I~) 

(2,25) (1,0) 0.3825 0.4547 0.7007 
(7,9) (1,0) 1.2435 0.1630 0.6885 

(7,333) (2,1) 1.2435 7.5370 0.0851 
(8,16) (1,3) 1.7286 0.3486 0.7097 

(12,40) (1,1) 2.2409 1.3795 0.3211 
(13,66) (2,1) 2.8038 1.9359 0.4820 
(15,154) (1,0) 3.9549 2.7114 0.0827 
(22,28) (1,3) 5.3857 0.6930 0.4085 

3 

S(tl,t2) 2 

1 

o 

Figure 3.1. Estimates of bivariate survival function 
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3.6. Conclusion 

In this chapter, we developed a bivariate proportional hazards model, using 

marginal and conditional hazard functions, for gap times of recurrent events. Since 

the covariates under study have different effect on marginal and conditional hazard 

functions, proposed model is more useful to study the dependence of gap times on 

covariates. The estimators of the parameters and the baseline cumulative hazard 

functions were developed. Asymptotic properties of estimators were studied. Then, 

we illustrated our procedure with a real life data, given in Lawless (2003). 
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Chapter Four 

Proportional Mean Residual Life Model for Gap Time Distributions 

of Recurrent Events 

4.1. Introduction 

In survival studies, it is often of interest to analyze the mean residual life 

function to characterize the stochastic behavior of survival over time. The mean 

residual life function m(t) defined in (1.8) is interpreted as the average remaining 

lifetime of an individual given that the individual has survived up to time t. 

Although the hazard function, mean residual life function and survival function are 

in one-to-one correspondence with each other, Muth (1977) considered the mean 

residual life to be a superior concept than the hazard function on the following 

grounds: 

a) Regarding the ageing phenomena the two concepts are not equivalent. A 

decreasing mean residual life does not imply an increasing hazard function, 

though the converse is true. Thus the decreasing mean residual life is more 

general in character. 

b) The hazard function accounts only for the immediate future in assessing failure 

phenomenon as described by the derivative of S(t), where as the latter is 

descriptive of the entire future implied through the integral of S(t) over t to 00. 

A consequence of this is that a component may experience deterioration though 

its hazard function may be zero at a certain point. 

c) It is advantageous to use the mean residual life function as a decision making 

criterion for replacement or maintenance policies. The expected remaining life of 

the component gives an indication of whether to replace or to re-schedule and 

The results in this Chapter have been published as entitled "Proportional Mean Residual Life Model 

for Gap Time Distributions of Recurrent Events", Metron, Vol. LXV, n.3 (see Sreeja and Sankaran 

(2007)). 
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this could be more useful than the hazard function to formulate maintenance 

policies. 

Oakes and Dasu (1990) considered a proportional mean residual life model 

as an alternative to Cox (1972) proportional hazards model to assess the effects of 

covariates on the survival time. The model is defined by 

met I z) == "'0 (t)ii';' (4.1) 

where met I z) is the mean residual life corresponding to the r -vector of covariates 

z, mu(t) is the unknown baseline mean residual life function when Z == 0 and I! is 

the vector of regression parameters. Generally, there is no direct relationship 

between the proportional mean residual life model and the Cox proportional hazards 

model. However, Oakes and Dasu (1990) proved that, when a model satisfies both 

the proportional hazards and the proportional mean residual life assumptions, its 

underlying distribution then belongs to the Hall-Wellner class of distributions with 

linear mean residual life function (Hall and Wellner, 1981). 

Previous work on the mean residual life has focused on single-sample and 

two-sample cases; see Oakes and Dasu (2003). In regression analysis, Robins and 

Rotnitzky (1992) and Maguluri and Zang (1994) developed estimation procedures 

for the model (4.1) under uncensored and censored set up respectively. Recently, 

Chen and Cheng (2005) developed semi-parametric inference procedures for the 

regression model (4.1) using martingale theory of counting processes, in the 

presence of censoring. Later, Chen and Cheng (2006) considered a linear mean 

residual life model and developed inference procedures under right censoring. The 

analysis of gap times for recurrent event data using mean residual life function is 

more appropriate in many practical situations, as seen in Section 4.5. Motivated by 

this, we propose a bivariate proportional mean residual life model to assess the 

relationship between mean residual life function and covariates for gap time of 

recurrent events. Note that the focus will be on the development of the regression 

model of the duration times, when the recurrent events are of same type. 

In Section 4.2, we introduce a bivariate proportional mean residual life 

model to assess the relationship between mean residual lifetime and covariates for 

gap time of recurrent events. Estimators of the parameter vectors as well as baseline 
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mean residual life function are discussed in Section 4.3. Asymptotic properties of 

the estimators are studied. A simulation study is carried out to assess the 

performance of the estimators in Section 4.4. In Section 4.5, we illustrate the 

procedure using kidney dialysis data given in Lawless (2003). Conclusions of the 

study is given in Section 4.6. 

4.2. Bivariate Proportional Mean Residual Life Model 

Suppose that an individual may experience k consecutive events at times 

XI < X 2 < ... < X k • Let ~,T2, ... ,TK represents the gap times where ~ = Xl' 

Tz = X2 - XI and Tk = X k - Xk- l • As in Chapter 3, we assume that the follow up 

time is subject to independent right censoring by C which implied that 

(XI'X2 , ... X k ) are independent of C. We now consider the regression problem in 

which the marginal and conditional mean residual lifetime functions of (~, T2 , ... Tk ) 

depend on certain covariates. We consider the case where k = 2. The extension to 

higher dimensions is direct. 

Let S(tl' t2) = P[~ "? tl' T2 "? 12 ] be the joint survival function of ~ and T2 • 

Let m. (tl) be the mean residual life function of ~ , which is defined as 

(4.2) 

In the context of recurrent events, m[ (t[) can be interpreted as the expected 

remaining gap time of ~ given that ~ is larger than or equal to t[. For the recurrent 

events, the occurrence of the second event depends on the occurrence of the first 

one. Accordingly, we can consider mean residual life function of T2 given 7; "? tl . 

The mean residual life function of T2 given ~ "? tl is defined as 

(4.3) 

The expression (4.3) can be interpreted as the average remaining gap time of T2 

given that 7; is larger than or equal to I[ and T2 is larger than or equal to t2 • We use 

the term mean residual life time for average remaining gap time through out this 

chapter. Note that (4.3) is the second component of the vector MRL in the bivariate 

set up, defined in Arnold and Zahedi (1988). 
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Then the survival function S(t"t2 ) can be determined from (4.2) and (4.3) by the 

identity 

(4.4) 

Note that the hazard functions given in (1.34) and (1.35), and mean residual life 

functions are related by the identities 

~(tl)= l+ml '(tl ) 
~(tl) 

and 

~( )=1+m2'(tl't2) 
~ G,~ . 

m2 (tl ,t2 ) 

(4.5) 

(4.6) 

where ml'(tl) is the derivative of ~(tl) with respect to tl and m2'(tl't2 ) is the 

derivative for ~ (tl , t2) with respect to t2 . 

For the analysis of gap times of recurrent event data using MRL, one 

possible method is to consider marginal mean residual life functions of ~ and T2 

and then apply ideas from generalized estimating functions to calculate an 

appropriate combination of the two marginal estimates. This can be done in the case 

of homogeneity among two regression coefficients. In many practical situations as 

shown in Section 4.4, the conditional mean residual life function of T2 given ~ 2: tl 

is meaningful than the marginal mean residual life function of T2 to explain the joint 

dependence structure of pair of lifetimes on the covariate vector. Accordingly, we 

define a bivariate proportional mean residual life model for ~ and T2 as 

~(tl I~) = ~oCtl)e~I'Z 
and 

mz(t1,t2 I~) = ~O(tl't2)e~2 'l.. • 

(4.7) 

(4.8) 

In model (4.7), ~ (tl I~) is the mean residual life function at time tl when the rxl 

covariate vector ~ is given and mlOCt,) is the baseline mean residual life function, 

which is the mean residual life function when ~ = O. Here I!.I and 1!.2 are rxl 
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· m,. (t I Z(I» . 
vector of parameters. For the model (4.7), the ratio 1 -(2) of the mean residual 

~(tll ~ ) 

life functions of two individuals with covariate vectors ~(I) and ~(2) does not vary 

residual life functions of two pairs of individuals with covariate vectors ~ (I) and 

&(2) does not vary with tl and t2 . 

Using (4.5), (4.6), (4.7) and (4.8), we can have 

~O(tI)1\1 (dtl)=e-~l·1..dtl +~o(dll) 

and 

(4.9) 

(4.10) 

where 1\1(t1) and 1\2(1"t2) represent the cumulative hazard functions corresponding 

(4.11) 

4.3. Inference Procedures 

The observed data set consists of n LLd. sets of (X ji' 0ji' k ), j = 1,2, where 

Xli = min(~i,Ci)' Xli = min(T2;, Ci - Xli)' 01; = I(~i < C .. ), 02i = I(T2i < Ci - Xli) 

and k is the covariate vector for i = 1,2, ... , n. Here I (.) is the indicator function. 

Given k, T,.j and C; 's are assumed to be independent. Let 

NIi(tI)=I(X1i ~fl)o;i' N2i(l"t2)=/(Xli ~II'X2i ~t2)02'" ~i(tl)=I(Xli ~tl) and 

Y2i(t"f2 ) = I(X,; ~ t" X2i ~ 12 ), i = 1, 2, ... , n. From Fleming and Harrington (1991), 

we can write 

(4.12) 

and for fixed 11 ' 
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(4.13) 

where IF,) belongs to the right-continuous filtrations {IF,) : t[ ~ O} and for fixed tl' 

IF,).t2 belongs to the right-continuous filtrations {IF,[h : t[ ~ 0,t2 ~ O} with 1Ft) and IF,).t2 

are defined by 

~) = O'{ N[Ju),r;; (u+ ),k : 0 $ u $ tpi = 1, 2, ... ,n} 

and 

~).t2 = a{ N 2;(tl' V)'Y2i(tl' v+ ),k : 0 $ v $ t2 ,i = 1, 2, ... ,n}. 

Denoting 

I[ 

Mli(tl,/!."fnto) = NJj(t[)- fr;;cs)l\li (ds'/!.l'fnto) 
o 

and 

t, 

M 2j(t[ ,t2 '/!.2' ~o) = N 2;(tl ,t2 ) - J f 2i (tl , S) 1\2; (t\ ,ds, /!.2' ~o) , i = 1,2, .... n, 
o 

is zero mean 1F, t martingale. Therefore the estimates of PI and mlO (11) are obtained 
['2 _ 

from the following partial score equations; 

t[ mlO (t\)N1Jdt1) - ~Jtl){ e -lr.<. dtl + fnto(dtt )}] = 0 
1=1 

(4.14) 

and 

n ", I Jk[ fnto(t\)NJj(dtj)-Yri(tt){e-1r'<'dt1 +fntO(dtj)}] =0. O$t[ < TI · 

1=\ 0 

(4.15) 

It is easy to note that. equation (4.14) is a first order linear ordinary differential 

equation in mlO(tI ) , which can be written as 

;=1 (4.16) 
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n 

~)';i (tl)e -~.t'1; 
where QI (tl' PI) = ....:..:i=::...1 -n---

- ~)~Jtl) 
i=l 

Then the solution of (4.16) is obtained as 

(4.17) 

where 

n 

t1 LN\j(du) 
-J i=ln du is the Nelson-Aalen estimator of the survival 

o IY;i(U) 
i=l 

function for the pooled observations. 

To estimate I!.l' we replace mlO(tl) with l1zIO (tI,I!.I) in (4.15) and then divide the 

resulting equation by n. This will leads to score function 

(4.18) 

n 

:LY;i(tt)k 
with Z; (tl ) = ....:..:i=:!...~ __ _ 

:LY;i(tl) 
j=l 

Here, m\O(tI) serves as a role similar to a weight function on each individual term in 

the summation. Then l!t is the solution of (4.18). From Chen and Cheng (2005), it 

follows that under some regularity conditions, the random vector n~ (l!t -I!.l) 
converges weakly to a r -vector normal variable with mean zero and covariance 

matrix A\-IV;AI- t , where matrices Al and V; are given as 

(4.19) 

and 
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(4.20) 

In addition, Al and ~ can be consistently estimated by the empirical counter parts, 

(4.21) 

and 

(4.22) 

respectively, where V®2 = vv' for a vector v. Inferences for I!I can then be made 

through this large sample distribution of I!I' As shown by Chen and Cheng (2005), 

one can increase the efficiency of the estimator of I!l by using the weighted version 

of the estimating equation. 

To estimate 1!2 and m20 (tp t2 ), for fixed t" the equations parallel to the 

partial score equations (4.14) and (4.15) are 

t[ m20 (tp t2 )N2i (t l ,dt2) - Y2i (tl , t2 ){ e -l!~ '1. dt2 + ~O(tl ,dt2 )} J = 0 
1=1 

(4.23) 

and 

n t2 

I J k [ ~o(tp t2 )dN2i (tp t2) - Y2i (tp t2 ){ e -l!2 '.z. dt2 + ~O(tl' dt2)}] = 0, 0 ~ 12 ~ 1"2' 
1=1 0 

(4.24) 

where for fixed t" 0 < 1"2 = inf {t2 : P [ X 2 > t2 IX, > t\]} < 00 • 

Similarly, from (4,23), we obtain the first order linear ordinary differential equation 

in m20 (tp t 2 ) as 

n 
(4.25) i=1 

IY2i (tp t2 ) 

i=1 

64 



11 

I YZi(tl' t2)e -/J/I. 

where Q2(tl ,t2'§.2) = ..:...i=....:..I-II----­

I Y2i (tl ,t2 ) 

i=1 

Thus, for fixed t1 ' the solution of (4.25) is given by 

n 

'2 I NZi(t1' du) -J ;=In du 

o I Y2i (1I'U) 
;=1 

From (4.24) and (4.26), for fixed t l , we obtain the score function as 

n 

I Y2i (tl ,t2}; 
with Z2(tl't2) = ....:...i=....:...~ ___ _ 

I Y2i (tl't2 ) 
i=1 

The solution of the equation (4.27) provides the estimate of §.2' 

(4.26) 

(4.27) 

For fixed t l , the asymptotic properties of §.2 and ~ (t\, t2 ) can be established 

by extending the proofs for §.I and m[ (tl) , given in Chen and Cheng (2005). To see 

this, let H (.) be the marginal distribution function of ~ and let S* (12111) be the 

conditional survival function of T2 given ~ ~ t l . Since ~o (tl , t2 ) is the mean 

residual life function of T2 given ~ ~ 11, it follows from Amold and Zahedi (1988) 

and (4.10) that 

Inzo (tl ,tz)S* (t2 1 t1 ,.d = e-.82'.<:mzo (tl ,12) S* (t21 tl'~) 

T2 

=e-.8z';,. JS*(ultl,~)du 

65 



for any possible Z = ~ E SUpp{ ~ E !RP; H (~)} . 

For fixed t1 , using Baye's theorem, 

1 1"2 , 

= *( f{S*(ultl,~)fe-.B2kdH(~IT2 ~u»)du. 
S t2 1 t l ) 12 z 

(4.28) 

If we replace S*(t2Itl) and Je-A;:dH(~IT2~U) with SN}2) (tpt2) and 
z 

as (4.26). As in the univariate case, under appropriate regularity conditions, any 

consistent estimates of these quantities will lead to a consistent estimator for 

Under certain regularity conditions, the random vector nYz (§..2 -1!2) is 

asymptotically r -vector normal with mean zero vector and covariance matrix 

Az -IV2Az -I, where the matrices ~ and V2 are given by 

(4.29) 

and 

V2 = 1 E [{ ~ - .ul2J (tl , t2 ) t2 sP) U1,12 1 ~)111z0(tl ,t2 ){ e -f!; 'z dt2 + 111zo(tl' dt2)}] (4.30) 
o 

with .u~2) (tl ,t2 ) is the limit of Zz (tl ,t2 ) as n ~ 00 • 

Then Az and V2 can be consistently estimated by their empirical counter parts, 

(4.31) 

and 
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respectively. 

One may often be interested in estimating the survival function S(tl't2 I~) of gap 

times with a fixed covariate ~. From (4.11), the survival function SUI' t2 I~) can 

be estimated as 

(4.33) 

Asymptotic distribution theory is difficult for non-parametric bivariate 

survival function estimates and the most attractive approach to variance or 

confidence interval estimation is through resampling methods. The naive bootstrap 

procedure of resampling the observed data units (X1j ,X2i ,Oli,02j'l.o) with 

replacement will be satisfactory under fairly mild conditions (see Efron and 

Tibshirani,1993). 

The most challenging part in this procedure is the tail due to potential 

censoring. If the underlying recurrence times are heavily right censored, it is not 

possible to estimate the mean residual life functions on the whole positive real line 

without additional assumptions. One possible approach is to modify the fully 

unspecified mW(tI) and m20 (tl't2) by including a parametric component in the tail. 

For example, when 1"0 is a pre-specified truncation time, we assume that 

(4.34) 

and for fixed t(, 

(4.35) 

where m1a and rnza are some positive constants. Thus the mlQ(tl) and rnzo(tl't2) are 

unspecified up to the time 'fo' while it becomes exponential after 1"0' so that the 

techniques discussed earlier can be extended to the whole positive real line. 
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4.4. Simulation Study 

In this section, we carried out a simulation study to evaluate the performance 

of the aforementioned inference procedures. We consider a Gumbel's (1960) 

bivariate exponential distribution with survival function 

(4.36) 

We considered a single covariate z, which is generated from uniform (0, 1) 

distribution. We generated observations from Gumbel's bivariate exponential 

distribution for different values of r using algorithm given in Devroye (1986). 

Independent censoring times are generated from the uniform distribution (0, b), 

where the constant b is taken in such a way that 30% of the observations are 

censored. We compute estimates of I!.I and 1!.2 for 1000 simulations and then 

calculate empirical bias and variance of ~I and ~2' which are given in Table 4.1 and 

Table 4.2. The empirical bias and variance of the estimates of the baseline mean 

residual functions along with coverage probabilities are given in Table 4.3 and Table 

4.4. As n increases, both bias and variance of the estimates decreases. 

Table 4.1. Bias and variance of A 
Bias Var Cov. 

PI P2 r n PI PI Prob 

0.6 50 -0.0448 0.0920 0.939 

0.5 0.6 
250 -0.0408 0.0545 0.949 

0.8 
50 -0.0376 0.0964 0.942 
250 -0.0355 0.0626 0.948 

0.6 
50 0.0577 0.0829 0.939 

-0.6 1.1 
250 0.0546 0.0412 0.941 

0.8 
50 0.0554 0.0499 0.938 
250 0.0525 0.0289 0.943 
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Table 4.2. Bias and variance of P2 

Bias Var Cov. 
/3. /32 r n P2 P2 Prob 

0.6 
50 -0.0487 0.0406 0.942 
250 -0.0241 0.0194 0.945 

0.5 0.6 
50 -0.0510 0.0461 0.946 

0.8 
250 -0.0498 0.0162 0.952 

0.6 
50 -0.0971 0.0631 0.939 

250 -0.0850 0.0422 0.941 
-0.6 1.1 

50 -0.0958 0.0756 0.948 
0.8 

250 -0.0897 0.0561 0.949 

/3. /32 
Bias Var Cov. 

t. r n 
mlO(tl) mlO(t.) Prob 

0.6 
50 0.0578 0.0206 0.943 
250 0.0102 0.0112 0.945 

0.05 
50 0.0989 0.0288 0.947 

0.8 
250 0.0539 0.0150 0.949 

0.5 0.6 
50 0.0526 0.0248 0.951 

0.6 
250 0.0101 0.0116 0.954 

0.09 
50 0.0955 0.0503 0.936 

0.8 
250 0.0499 0.0218 0.940 

0.6 
50 0.0587 0.0736 0.941 

250 0.0105 0.0166 0.950 
0.05 

50 0.0561 0.0197 0.942 
0.8 

250 0.0103 0.0135 0.953 
-0.6 1.1 

50 0.0581 0.0243 0.949 
0.6 

250 0.0105 0.0168 0.957 
0.09 

50 0.0992 0.0315 0.951 
0.8 

250 0.0558 0.0199 0.955 
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Bias Var Cov. 
PI P2 (tp t2) r n m20 (tp t2) ~O(tl't2) Prob 

0.6 
50 0.0232 0.0324 0.950 
250 0.0157 0.0129 0.952 

(0.05, 0.06) 
50 0.0163 0.0138 0.948 

0.8 
250 0.0123 0.0101 0.953 

0.5 0.6 
50 0.0223 0.0269 0.939 

0.6 
(0.09, 0.07) 

250 0.0144 0.0177 0.940 
50 0.0978 0.0216 0.935 

0.8 
250 0.0156 0.0102 0.939 

0.6 
50 0.0144 0.0226 0.942 

(0.05, 0.06) 
250 0.0105 0.0129 0.948 
50 0.0189 0.0990 0.947 

0.8 
250 0.0105 0.0231 0.955 

-0.6 1.1 
0.6 

50 0.0209 0.0239 0.950 
250 0.0134 0.0103 0.954 

(0.09, 0.07) 
50 0.0999 0.0162 0.955 

0.8 
250 0.0132 0.0109 0.963 

4.5. Data Analysis 

For the illustration of the procedure, we consider a data given in Lawless 

(2003, p.531). The data shows the recurrent times to infection at the point of 

insertion of the catheter for 38 persons undergoing kidney dialysis. Data for the first 

two occurrences of infection are given; either one or both may be censored, because 

catheters were sometimes removed for causes other than infection. The covariate 

considered in our study is kidney disease type (0 = glomerulo nephritis, 1 = acute 

nephritis, 2 = polycyst~c kidney disease, 3 = other). '" and T2 represents the first 

two occurrences of infection. 

We compute the estimates of §..I and §..2 by the method given in Section 4.3. 

The estimates §..l and §..2 are given in Table 4.5. We then estimate ~O(tl) and 

mZO (tl't2 ). Finally, we estimate S(tl't2 I~) by substituting the estimates of I!p 1!2' 

mLO(t1) and m20 (tl't2) in (4.33). The estimates are given in Table 4.5. From Table 

4.5, it is easy to see that the values of both §.l and §..2 are negative. The disease type 
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has negative effect on the first and second recurrence times of the individuals 

respectively. As expected, ~O(tl) is decreasing in t l • However, m20 (tl't2 ) depends 

both on 11 and t2 • 

There are natural restrictions on both mlO (tl) and m20 (tl't2 ) such that 

~o (tl ) must be monotonically non-decreasing in 11 and m20 (tl' (2 ) + t2 should be 

monotonically non-decreasing in 12 for every fixed tl • These constraints are 

satisfied in this data example. To check the model adequacy of (4.10) and (4.11), the 

estimated mean residual life functions of ~ and that of T2 given :r, ~ t l , without 

adjusting for any of the covariates and the estimated baseline mean residual life 

functions are plotted. On the log scale, their lowess curves are parallel to each other 

and their difference is roughly constant (see Figures 4.1 and 4.2). This suggests a 

reasonable goodness of fit of the proportionality assumption given in (4.7) and (4.8). 

Figure 4.3 shows the estimates of the survival function. 

Table 4.5. Estimates of §;, §'z, ~o (t l ) and ~o (tl , t 2 ) 

(t l ,t2 ) ~I ~2 I mlO (t\) ~O(tl,t2) S(tp 12 I z) 

(7,9) -0.0774 -0.0440 0 20.3853 11.5136 0.2965 
(8,16) -0.0774 -0.0440 3 19.6691 9.2308 0.2242 
(2,25) -0.0774 -0.0440 0 21.5899 6.1896 0.G108 
(30,12) -0.0774 -0.0440 3 13.7672 11.0371 0.0061 
(12,40) -0.0774 -0.0440 1 18.0828 9.5078 0.0012 
(34,30) -0.0774 -0.0440 I 13.2308 12.0054 0.0010 
(22,28) -0.0774 -0.0440 3 17.0786 3.5833 0.0001 
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Figure 4.3. Estimates of bivariate survival function 

4.6. Conclusion 

We introduced a bivariate proportional mean residual life model to asses the 

effect of covariates on the mean residual life function for the gap time distribution of 

recurrent events. The model is a transparent extension of the mean residual lifetime 

model developed by Chen and Cheng (2005) for univariate survival data. The 

estimation of parameter vectors and baseline mean residual life functions were done 

using counting process theory. The proposed method can directly be extended to the 

higher dimensions by considering the multivariate mean residual life function of 

Arnold and Zahedi (1988). 

The efficiency of the proposed method depends on the conditionally i.i.d. 

assumption on the bivariate recurrence times as well as the independent censoring 

assumption. In the presence of trend on the bivariate recurrence times, the i.i.d. 

assumption will be violated and therefore, the proposed method would not be 

appropriate. The independent assumption could also fail if the observed data is 

terminated by information drop out or a failure event. Both assumptions should be 

examined carefully when applying the proposed method. 
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Chapter Five 

Proportional Hazards Model for Successive Duration Times under 

Informative Censoring 

5.1. Introduction 

In the analysis of censored lifetime data, it is usually assumed that the lifetime 

variables are independent of the censoring variables to ensure identifiably of the 

marginal survival function. This assumption is referred to as 'non-informative 

censoring'. In many practical situations in survival studies, the 'non-informative 

censoring' assumption is not realistic. For example, in the analysis of duration times 

of two successive events, the length of the first duration affects the chance of the 

second duration being censored. In such cases, the two duration times are correlated 

and accordingly the second duration time is censored by a dependent variable related 

to the first duration time. Examples where successive durations arise are numerous. 

In reliability theory, the first duration might correspond to the time interval 

separating the moment a new machine starts operating and the moment a fault is 

'detected, and the secofJd duration to the subsequent time interval between detection 

of the fault and failure of the machine. In economics, the first duration might refer to 

the time an individual is unemployed, and the second duration refer to the time the 

individual is employed. In biometrics, the durations might correspond to the 

successive stages of a disease, or to a sequence of repeated events such as certain 

cyclic movements in the small bowl. Wang and Wells (1998) provide non­

parametric estimation of successive duration times under dependent censoring in 

absence of covariates. The analysis of such data in the presence of covariate is not 

yet carried out. Motivated by this, we consider the regression problem for duration 

The results in this Chapter have been communicated as entitled "Proportional Hazards Model for 

Successive Duration Times under Informative Censoring" (see Sreeja and Sankaran (2008a)). 
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times of successive events under informative censoring. The idea used in Braekers 

and Veraverbeke (2005) for the analysis of partially informative censored lifetime 

data in univariate set up, is extended to the analysis of duration times of two 

successive events. 

In Section 5.2, we introduce and study semi-parametric proportional hazards 

models. We estimate the parameters and baseline hazard functions of the models in 

Section 5.3. In Section 5.4, asymptotic properties of the estimators are studied. A 

simulation study is carried out in Section 5.5 to assess the performance of the 

estimators. In Section 5.6, the procedure is illustrated using a real life data. Finally, 

we conclude our study in Section 5.7. 

5.2. The Model 

Let (XI'X2 ) be the duration times of two consecutive and adjacent events 

with joint survival function S(tl't2 ). Both XI and X2 are subject to right censoring 

by CL' Let ~ be the vector of r -covariates present in the study. Let C2 be a 

censoring time corresponding to X 2 in such a way that C2 relates to Cl by 

C2 = Cl - XI' One observes the random vector T = (~, T2 ) , where ~ = rnin(XI, Cl) 

and T2 = rnin(X2 ,C2 )l(XI :s; Cl)' with l(.) as the indicator function. Then the 

observed data is (~, T2 , o,~) where 0 ,the censoring indicator, is defined by 

{
I if 

0= 2 if 
3 if 

CI<X I 

X I :s; Cl < X I + X 2 • 

XI +X2 :S;CI 

(5.1 ) 

In the first regime, both durations are censored. In the second regime, XI is 

observed while X 2 is censored. In the third regime, both durations are observed. 

When 0 = 1 , there is no information available about X 2 • 

Let GI(tl ) denote the survival function of the censoring time Cl' Denote G2 (tl'tZ ) 

as the survival function of C2 given Cl> tl and G(tl't2 ) as the joint survival 

function of Cl and C2 • Let SI (tl) be the marginal survival function of Xl and 

S2(tl't2) be the survival function of X2 given Xl =tl · Suppose gl(tl), g2(tI,t2). 
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.h (t.) and 12 (t. ,t2 ) are the density functions of C.' C2 given C. > t., X. and X 2 

given XI > tl respectively. 

Under informative censoring scheme, we assume the following relationships 

(5.2) 

and 

(5.3) 

for some constants "L > 0, ~ > 0 depending on the covariate vector 1.. 

The parameters "L and lz satisfies a model 

(5.4) 

and 

(5.5) 

with tPl and tP2 are some known functions and 1J.o = (1/o1'···17or) and lo:: (YoP'''Yo,) 

are vectors of r unknown parameters. We assume that f/JI and f/J2 are strictly positive 

in a neighborhood of 1J.o and lo respectively and has partial derivatives of first and 

second order in its neighborhood, denoted as follows; 

'" ,_ dtP1 A. "_ d2~ "-1 
V'lj - --, V'lij - , 1, } - , ... , r . 

aT/oj a'!Oia'!Oj 
(5.6) 

"" dtP2 '" 11 a2tP2 .. 1 
V'2j = -::::l.-' V'2ij = -., -., , " J = , ... , r . 

oYOj oYOioYOj 

(5.7) 

From straight forward calculations we obtain, 

co 

p[ XI is observed I Z::~]:: JGI (u 11-.)f. (u 11-.)du 
o 

00 

:: J SI (u I ~)11 I. (u i1.)du (5.8) 

° 
00 

P [ X. is censored I Z :: ~] = J g 1 (u I ~)Sl (u 11-.)du 
o 

~ 

= 1J... J SI (u I ~)11 It (u 11.)du (5.9) 
o 
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p[ 8 = 21 ~ = z] = f If. (u 1 Z)S2(tp vi z)GI (u 1 Z)g2(t1' vi z)dudv 
o 0 

= ~ I If. (u 1 z)f2 (tl' vi Z)SI (u 1 z)'1. S2(tl, vi zf-J.dudv 
00 

and 

p[ 8 = 31 ~ = Z] = f Ifl(u 1 Z)!2(tP vi Z)GI (u 1 Z)G2(tp vi z)dudv 
00 

= J J It (u 1 Z)!2 (tl' vi Z)SI (u 1 Z)~ S2 (11' vi Z)'t-;. dudv 
00 

Thus the parameter vectors ~ in (5.4) and 0. in (5.5) can be interpreted as 

p[ XI is censored 1 ~ = z] 
"L = p[ XI is observed 1 ~ = Z] 

and 

(5.10) 

(5.11 ) 

(5.12) 

(5.13) 

Let ~ (tl ) be the hazard function of X I and A:z (t l ,12 ) be the hazard function of X 2 

Now we consider the proportional hazards models, 

fJ, • I. A, (tl 1 Z) = ~O(tl )e-I 

and 

~(tI,t2Iz)=Azo(tl,t2)e';·I. 

XI = tl and I!.I and 1!.2 are rx1 vectors of parameters. 

(5.14) 

(5.15) 

~ (t 1 z(1}) 
The model (5.14) means that the ratio I -(2) of the hazard functions of two 

~(tl 1 Z ) 

individuals with covariate vectors Z(1) and Z(2) does not vary with time t1 • The 

model (5.15) means that the ratio A:z(tpt2 1 I«~? of the hazard functions of two 
A:z(tl'/2 1 I ) 

individuals with covariate vectors I(l) and l2} does not vary with tl and 12• 
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In many situations, one may be interested in the joint survival function S (t1, t2 I r) of 

duration times. 

The survival function can be obtained as 

(5.16) 

~ h 

where "1O(t1) = J~o(u)du and "20(tl't2) = J~o(tp v)dv are baseline cumulative 
o 0 

hazard functions. 

5.3. Estimation Procedures 

Suppose now that (T;i,T2i ,8;,Z,.) , i=I,2, .. ,n are i.i.d. observations having 

the same distribution as (T;,T2 ,o,Z). The likelihood contribution of a pair i with 

I;i = t l ;, T2i = t 2;, 8; = d.. and the covariate vector ~ .. = L is given by 

{ 
8I(tli I Z..)SI(tli I L) if d; = 1 

L= ft(tJi II;)S2(tli,t2i IZ;)GI(tJi IL)82(tli ,t2i Ik) if di =2. 

f (tli' tZi I k )G(tli' t2i I k) if d; = 3 

Then the likelihood function can be written as 

L = IT 81 (tu I ~)SI (tli I~,.) I1 it (tu I ~,.)S2 (tI;, t2i I ~)GI (tli I ~)g2 (tli ,t2i I ~,.) 
<Ij=I 6,=2 

n f(tli,t 2i I ~)G(tli't2; I~,). 
0;=3 

Substituting (5.4), (5.5), (5.14) and (5.15) in (5.17) and simplifying, we get 

Taking logarithm on both sides of the expression (5.18), we obtain 

logL= ~)og~I(~i'17o) + ~)og~2(~i,rO) 
5;=1 5;=2 

+ I[ log AIO(tli) + I!I I ~i ] - t[ (~(~i ,T70) + 1) "10 (tJj )e!!' '~; ] 
~ i~ 
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+ l:[ log ~O(tti' t2i ) + 1!.2 I Zi ] -I [(fA (Z;, Yo) + 1) "20 (tli ,t2i )eI!2'~ ] . (5.19) 
.5; .. 1 J,*t 

By maximizing the expression (5.18), we get the estimators of 

I!t = (Ptp···.!3tr ), 1!2 = (P2 .. ···'P2r)' !la = (1701'"··,170,) and lo = (yoP···' YOr)' In 

ordinary Cox proportional hazards model, I!.t and 1!2 are estimated by maximizing 

partiallikelihood method. But in this situation, the partial likelihood analysis is not 

possible, due to the presence of unknown parameters !lo and lo. For the estimation 

of higher dimensional parameters in the semi-parametric models, we can use profile 

likelihood method as discussed in Murphy and van der Vaart (2000). We first 

estimate the baseline cumulative hazard functions "to (tt) and "20 (tl' t 2 ). Consider 

the case of estimation of "to(tt). Let XlI < ... < XINI be ordered observed first 

duration times and let i 2t < ... < X 2N! be ordered observed second duration times 

given tti = Xti . As in the classical Cox model (see Andersen et al., 1993 and 

Murphy and van der vaart, 2000), maximization of the full likelihood over arbitrary 

"to(tt) leads to maximization over AIO(tt) which is a piecewise constant function 

with jumps at the observed deaths Xlj only. Thus the least infonnative non­

parametric estimator is given by 

NI 

AIO (~) = I ~/I (i E 9\1) (5.20) 
j=1 

where 9\lj = {i : ~i ~ X IJ is the risk set at X Ij - Similarly, we can obtain the 

N, 

A20(~i,T2) = L~/2(i E 9i2 ) (5.21) 
j=t 

(5.20) and (5.21), the log likelihood function (5.19) can be written as 

NI 

log L = ~]log~VZi'7]o)] + I[log~2(Z;, Yo) ] + I[logA,j + I!I 'Z(j) ] 
<5,=1 q=2 j=1 
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-t.[ ("(Z,, 7],) + l)e8 ", ~A,Ni E 9I,j)] + ~[IOg.:l,j + f!, 'Z;j) ] 

- I[(~2(Z;' rO) + 1 )eb'~itAz/2(i E 9t2j )] (5.22) 
~"I 1=1 

where Z(j); j = 1, ... , NI are the covariates associated with the ordered XII < ... < X IN. 

and Z~j);j=I, ... ,N2 are the covariates associated with the ordered X21 < ... <X2N2 

Maximizing (5.22) with respect to A,j' we get 

On similar lines, maximization of (5.22) with respect to Azj provides 

Substituting (5.23) and (5.24) in (5.22), we get the profile log likelihood as 

log Lp = I[log ~tCZi,1JO)] + I[ 10g~2(~;' Yo) ] 
",=1 8,=2 

(5.23) 

(5.24) 

which has to be maximized with respect to I!I' 1!2' '10 and la' This is of course 

equivalent to maximizing 
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(5.26) 

For j = 1, ... , r, the estimators ~l' ~2' 10 and io are solutions to the following 

equations 

(5.27) 

(5.28) 

(5.29) 

and 

(5.30) 

Maximization of the likelihood for a fixed value of J! = (J!I' J!2' Tjo' lo) provides the 

estimator for the cumulative hazard functions as 

(5.31) 

(5.32) 
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where §. = (~l ' ~2' ~o' to) is the estimate of I! = (I!l' 1!2 , "10' to) . 

From (5.16), a natural estimate for S(tl't2 I k) is given by 

(5.33) 

5.4. Properties of the Estimators 

To study the properties of the estimators, we define the following functions. 

For any continuous function p(.), denote 

El (p(~), t[) = J p(~)P(~ ?:11 I ~ = ~)q(~)d~ 

Elm (p(~), t[ ) = J p(~)P(~ ?:11, 8 = m I ~ = ~)q(~)d~, m = 1,2,3 

E/,3 (p(~), 1\ ) = f p(~)P(~ ?:11' 0 =t- 2 I ~ = ~)q(~)d~ 

E 2 (p(~), t2 ) = f p(~)P(T2 ?:12 I ~ == t[ , ~ = ~)q(~)d~ 

E2 m (P(~),t2) = Jp(~)P(7; ?:12, 0 = m I ~ = tl'~ = ~)q(~)d~ , m = 1,2,3 

and 

where q(IJ is the density function of the covariate ~. The empirical versions of the 

above functions will be denoted by E[ (p(~), t[), E[ I (p(~» t[) etc. For example, 

Now we define 

Then 

With the above notations, we can write (5.26) as, 

To 

+ flogEI (( ~(~,17o)+ l)ef?,'z ,11 )dQ\ (1\) 
o 

82 



To 

+ El (t!1 'r,o) + f1ogE2 ((~2(~*' Yo)+ l)e~ '.: ,t2 )dQ2(f2 ) 

o 

A 23 ( .) + E2 ' t!2' Z ,0 . 

Then the population version of (5.34) is, 

H(t!) = Ell (log~l(r,TJo)'O) +E12 (log~2(£' Yo),O) 

To 

+ f logEI ( ( ~l (z, TJo ) + 1) e§· '1. , tl ) dQI (tl ) 
o 

To 

+ El (t!1 'Z,O) + f1ogE2 {(~2(£' Yo)+ 1 )e§2 ' ... ' ,t2 )dQ2(t2) 
o 

Let I = I (t!) denote the information matrix of the function H (t!) . 

(5.34) 

(5.35) 

Furthermore, the first-order partial derivatives of the function H are zero at t!; 

which gives, for j = 1,2, .... r , 

(5.36) 

(5.37) 

(5.38) 

and 

(5.39) 

where Ta is some pre-specified time which in most cases represents the study 

period. 

Now, since 
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00 

p[1J ~ tl , 0 = 11 ~ =~] = ~e,e',·~ J p[1J ~ U,O = 11 ~ = ~JAto(u)du, we can write 
I, 

(5.40) 

Similarly, since 

00 

P[T2 ~t2,o;t:llI; =tl'~* = £]=(l+l ... ·)e,;·;.' JP[T2 ~ulI; =tl'~* = ~*~o(tl,u)du, 
I" 

we have 

(5.41) 

These representations can be used to study the asymptotic properties of the 

estimates. 

Theorem 5.1. 

Assume that I is positive definite at p. Assume that E I ~ I< 00 , E 1 ~* I< 00 

E [ ( ( f/J2 (~* , Yo) + I) e,e'" '1,' )
2

] are bounded uniformly in a neighborhood of I!.. Then 

there exists a sequence of solutions ~ of equations (5.27) - (5.30) such that ~ ~ I!. 
a.s. as n ~ 00. 

Proof. The positive definiteness of I at I!. implies that the function H(.) has a 

local maximum at I!.. For I!.* in a c -neighborhood of I!. (Ill!.' -I!. 115 c, with 11 11 

Euclidean distance) we have that 

H (I!.) - H (I!.' ) ~ 0 (5.42) 

with strict inequality if Ill!." -I!. 11= c . From the strong law of large numbers together 

with Lemmas Al and A2 in Tsiatis (1981), we get 

H (I!.) - iI Cl!.' ) ~ H Cl!.) - H (I!.') . (5.43) 

From (5.42) and (5.43), we can prove that, there exists an no such that for all n ~ no: 
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il Cl!) - il (f!.') > 0 for 11 f!.* - f!.1I= c . (5.44) 

Since iI is continuous and differentiable at f!., we get that il has a local maximum 

on 11 f!.* - f!.11~ c . Since the maximum cannot be on the boundary (11 f!.* - f!.1I= c), the 

first derivatives vanish somewhere on 11 P* - P Ik c. The value where 

ail ail aiI afI . 
- = -- = -- = - = 0, l = 1,2, ... r is the maximum likelihood estimate ~ . 
aPIi aPZi a170i arOi 
We can now repeat this argument for c decreasing with n. Thus, we get a sequence 

~n with ~n ---t f!. a.s. as n ---t 00, which completes the proof. 

Lemma 5.1. Assume that E[ (( tA(~,17o)+ l)e~' '?; )2] and 

E [ ( (ji, C{ , ro) + 1 ) ~ . "n are bounded uniformly in a neighborhood of I!.. If 

~ = (~I ' ~2' ~o' 2'.0) is any random sequence with ~ -4 f!. as n ---t 00, then 

and for fixed t1 ' 

Proof. First consider the case (i). From (5.40), it follows that 

Then 

We have 
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The first term tends to zero a.s. by Lemma Al in Tsiatis (1981). The second term 

tends to zero in probability since ~ ~ I!.. and since the function 

is continuous in §.. = (§.., ' §..2 ' ~o' fo) . This leads to 

~ sup } -dE/ (p(~),u) _ ts -dEll (p(~).U! 

o ~ tl ~ To 0 E[I (p(~)~ (~'llo)e§I'~ ,u) 0 E/ (p(~)~ (~,llo)e8'~ ,u) 

+ sup} -dE/(p(~),U! _} -dEII(p(~),u) 

o ~ tl ~ To 0 Ell (p(~)rp[ (~,llo)elJ.·~, u) 0 E/ (p(~)~ (~,1lo)e~1'~,u) 

which proves the case (i). 

Similarly from (5.41), we can have 

t2 -dQ (v) 
"20(tl't,)=f ( 2 P," I' 

o E2 (1+ lz)e-- ,t2 

Proceeding as above, we can prove (ii). 
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Theorem 5.2. Assume that I is positive definite at I!. . Assume that 

(I *15 ( * )2 2P 'Z') (21 I /3,'Z) E ~ f/J2(~ 'YO)+1 e _2 - , E ~ f/Jlj '(Z.,T/o) e-I - , 

E (Z*2IA. . '(Z* )1 ef!z .~. ) , E Y1j -' T/o Y1j' -,T}o e (
A. '(Z ).1. '(Z ) 2/!"'~J 

- '1'2) -' Yo A.(Z)2' 
'11 -' T}o 

are unifonnly bounded in a neighborhood of f3 for all j, j' = 1, ... , r. Then the 

solution /J given in Theorem 5.1 is asymptotically nonnal with mean vector zero 

and variance covariance matrix rl , where I is the infonnation matrix of the 

function H. 

Proof. We follow the general approach of Murphy and van der Vaart (2000) for 

verifying the validity of the profile likelihood method. In particular, we check the 

conditions of the Theorem 5.1, which guarantees that the profile likelihood allows 

an asymptotic expansion, which then leads to the asymptotic nonnality of the 

maximum likelihood estimator /J. The rest of the proof follows from Theorem 5.1 

given in Braekers and Veraverbeke (2005). 

In particular, the covariance matrix is I = (l ij)' i, j = 1, 2 .... r is obtained from the 

second derivatives of H with respect to the parameters and I is a positive definite 

matrix by assumption. The second derivatives H are as follows; 

El (~l (J".,1]0) + l) e.l!, ';. ,tl ) El (~I(J".,1]O) + 1 )e.l!,';'g',ll) 

a2H To -[ El (~I(J".'l1o)+t)e.l!'·;'J".,tl)r 
a/v = J -!:.--------~-------::2;----- dQl (tl) 

I} 0 [El(~I(J".'l1o)+I)e,lj";.,tl)] 
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(iH ::::; El (t/JI(l.,770)t/Jlj "(l.,770)-t/Jlj '(1.,770)2 oJ 
a 2 I 2' 1lo j f/JI(l.,T/O) 

E. (f/J, (.r,T/o) + I)ei!1 '.<;. ,t,) E, (f/J1j 1I(.r,T/o)ei!I'~ ,t,) 

To - [ E.( t/J1j '(.r,T/o )ei!1 '.<;., t,) r 
+ J 2 dQ, (t,) 

o [E,(f/J'(~,T/o)+l)ei!";',t,)J 

a2H ::::; E2 (t/J2(1.*, YO)f/J2j "(1.', YO)-t/J2j '(£, YO)2 oJ 
a 2 I dt (. )2 ' YOj 1"2 1. ,Yo 

E2 ( ( ~ (;.* , Yo) + 1) ei!2 '.<;.' , t2 ) E2 ( (~j "(1.*, Yo) + 1 ) e~2 'z' , 12 ) 

To -[ E2((~/(;.*'Yo)+1)e~2'Z·,t2)r 
+J 2 

o [ E2 (( f/J2(;.*' Yo)+ l)e~z'z' ,/2 )] 

E] ( (t/JI (l.. 170) + 1) e~' \ t] ) E] (( f/J1j '(l., T/o) + 1 ) e~' '.<;. l., t, ) 

a2 H (P) ::::; 1 -E. (( f/J] (l.. 170) + 1) e~' '~l., t, ) E. (( f/J1j '(.r, 170) + 1) e~' \ tl ) 

apliaT/Oj 0 [E] (~(l..17o)+l)e~"I..tl)r 
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"(fH(P) 
= 

OP2iOYOj 

E2 ( ( r/J2 (.z. * , Yo) + 1) e§.2 ' 1.' ,12 ) E2 ( ( r/Jz j '(.z. * , YO) + 1) e§.2 '1.' .z. * , t 2 ) 

TJ -E, (( 91,(,;', rO) + I)~" £ ,I, )E2 ((;'j '(£, rO) + 1) el'> " ,1,) 

o [ E2 ( ( r/J2 (~ * , Yo) + 1) e§.2 '£ ,t2 ) r 

The estimates of the covariance matrix, j is obtained by substituting the unknown 

quantities by their estimators. The well known functional delta method can be used 

to estimate the variance of the estimates (van der Vaart and Wellner, 1996). 

Obviously, the expressions for the variance of the estimates are complicated. In 

practical situations, an attractive approach to variance or confidence interval 

estimation is through resampling methods. The naive bootstrap procedure of 

resampling the observed data units (TJj' T2i' 0i' Zi) with replacement (see Efron and 

Tibshirani, 1993) will be satisfactory under fairly mild conditions. 

5.5. Simulation Study 

In this section, we carried out a simulation study to evaluate the performance 

of the aforementioned inference procedures. We consider Amold and Strauss (1988) 

bivariate exponential distribution with joint density function 

(5.45) 

where C is the normalizing constant. 

We generated a single covariate z from uniform (0, 1) distribution. We generated 

observations from Amold and Strauss (1988) bivariate exponential distribution for 

different values of r. 

We consider 1J.... = lx. = ea+bl.. We first estimate a and b and compute the average 

bias and variance of the estimates, for 1000 simulations, those are given in Table 5.1 

and Table 5.5. We then compute estimates of 121 and 122 and then calculate average 
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bias and variance of the estimates of /31 and /32' which are given in Table 5.2 and 

Table 5.6. The average bias and variance of estimates of baseline cumulative hazard 

functions are given in Table 5.3 and Table 5.7 and those of bivariate survival 

function are given in Table 5.4 and Table 5.8. As n increases, both bias and 

variance of the estimates decreases. 

A 

Table 5.1. Bias and variance of a and b when a = 0.5 and b = 1.5 

/31 /32 r Bias Var Bias Var 
n a a A 

b b 

0.7 
50 0.0432 0.0370 -0.0405 0.0276 

1.5 0.9 
250 -0.0324 0.0119 0.0110 0.0128 

0.9 
50 0.0454 0.0281 0.0129 0.0384 
250 0.0199 0.0189 0.0104 0.0113 

0.7 
50 0.0314 0.0370 0.0239 0.0314 

0.8 -1 
250 0.0145 0.0178 0.0196 0.0212 
50 -0.0323 0.0287 .0.0375 0.0261 

0.9 
250 -0.0191 0.0139 -0.0334 0.0129 

Table 5.2. Bias and variance of PI and P2 when a = 0.5 and b = 1.5 

/31 /32 
Bias Var Bias Var r n 

PI PI P2 P2 
0.7 

50 -0.0171 0.0383 -0.0344 0.0229 

1.5 0.9 
250 0.0149 0.0179 0.0305 0.0208 

0.9 
50 0.0197 0.0321 -0.0370 0.0253 

250 0.0168 0.0286 0.0340 0.0191 

0.7 
50 -0.0409 0.0133 0.0181 0.0274 

0.8 -1 
250 -0.0376 0.0115 0.0149 0.0167 

0.9 
50 0.0364 0.0177 -0.0181 0.0289 
250 -0.0248 0.0147 0.0162 0.0117 
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Table 5.3. Bias and variance of baseline cumulative hazard functions when a = 0.5 
and b =1.5 

/31 /32 
Bias Var Bias Var 

(tpt2 ) r n 
AIO{t,) AIO(tI) A20 (t" t2) 1\20 (t" t2) 

0.7 
50 -0.0395 0.0433 -0.0254 0.0239 
250 0.0251 0.0306 0.0244 0.0167 (1,1.5) 
50 0.0314 0.0291 -0.0285 0.0134 

0.9 
250 0.0119 0.0109 0.0260 0.0095 

1.5 0.9 
50 -0.0164 0.0157 -0.0264 0.0263 

0.7 
250 0.0148 0.0118 0.0213 0.0035 (2,1.1) 
50 -0.0158 0.0299 -0.0308 0.0287 

0.9 
250 0.0147 0.0209 -0.0200 0.0127 

0.7 
50 0.0304 0.0221 0.0255 0.0112 

(1,1.5) 250 0.0199 0.0192 0.0206 0.0017 
50 0.0337 0.0214 0.0283 0.0090 

0.9 
250 -0.0157 0.0164 -0.0180 0.0062 

0.8 -1 
50 0.0143 0.0134 -0.0257 0.0070 

0.7 
250 -0.0119 0.0113 0.0152 0.0042 (2,1.1) 
50 0.0145 0.0452 0.0308 0.0021 

0.9 
250 -0.0137 0.0235 0.0206 0.0015 

Table 5.4. Bias and variance of bivariate survival function when a = 0.5 and 
b=I.5 

Bias Var 
/3, /32 (t" t 2 ) r n A 

S(tpt2 ) S(tpt2 ) 

0.7 
50 0.0301 0.0366 

(1,1.5) 250 0.0296 0.0243 
50 0.0367 0.0254 

0.9 
250 0.0302 0.0121 

1.5 0.9 
50 0.0401 0.0218 

0.7 
250 0.0356 0.0100 (2,1.1) 
50 0.0378 0.0198 

0.9 
250 0.0322 0.0142 

0.7 
50 0.0299 0.0254 

(1,1.5) 250 0.0283 0.0122 
50 0.0351 0.0187 

0.9 
250 0.0316 0.0100 

0.8 -1 
50 0.0300 0.0123 

0.7 
250 0.0290 0.0098 (2,1.1) 
50 0.0288 0.0172 

0.9 
250 0.0275 0.0128 
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Table 5.5. Bias and variance of a and b when a = 1 and b = 0.8 

p, P2 
Bias Var Bias Var r n a ~ 

b 
~ 

a b 

0.7 
50 -0.0247 0.0291 0.0163 0.0359 

1.5 0.9 
250 0.0100 0.0268 0.0137 0.0116 
50 0.0150 0.0202 0.0364 0.0252 

0.9 
250 -0.0108 0.0193 -0.0163 0.0199 

0.7 
50 0.0362 0.0187 -0.0144 0.0284 
250 0.0306 0.0130 -0.0135 0.0198 

0.8 -1 
50 0.0392 0.0262 -0.0200 0.0395 

0.9 
250 0.0323 0.0135 0.0160 0.0281 

Table 5.6. Bias and variance of PI and P2 when a = 1 and b = 0.8 

Bias Var Bias Var 
A P2 r n PI p, P2 P2 

0.7 
50 0.0165 0.0241 0.0325 0.0218 
250 0.0151 0.0225 -0.0307 0.0195 

1.5 0.9 
50 -0.0157 0.0279 0.0347 0.0278 

0.9 
250 0.0102 0.0253 0.0324 0.0249 

0.7 
50 -0.0319 0.0194 0.0350 0.0335 

250 0.0247 0.0147 -0.0335 0.0156 
0.8 -1 

50 -0.0299 0.0252 0.0254 0.0143 
0.9 

250 -0.0178 0.0129 0.0148 0.0106 
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Table 5.7. Bias and variance of baseline cumulative hazard functions when a = 1 

and b=0.8 

A /32 (tl' t2 ) 
Bias Var Bias Var r n 

;'\0 (11) ;'\0 (tl) ;'20 (tl' t2 ) ;'20 (11' (2) 

0.7 
50 0.0297 0.0322 -0.0255 0.0363 
250 0.0169 0.0296 0.0150 0.0236 (1,1.5) 
50 -0.0261 0.0187 0.0285 0.0299 

0.9 
250 -0.0127 0.0156 0.0185 0.0231 

1.5 0.9 
50 0.0158 0.0272 0.0264 0.0258 

0.7 
250 0.0148 0.0235 -0.0216 0.0113 

(2,1.1) 
50 0.0138 0.0226 -0.0308 0.0265 

0.9 
250 -0.0120 0.0164 0.0201 0.0107 

0.7 
50 0.0378 0.0492 0.0255 0.0368 

250 0.0216 0.0308 0.0250 0.0339 
(1,1.5) 

50 -0.0299 0.0282 -0.0295 0.0107 
0.9 

250 0.0174 0.0137 -0.0280 0.0012 
0.8 -1 

50 0.0168 0.0337 0.0264 0.0356 
0.7 

250 0.0103 0.0205 -0.0164 0.0197 (2,1.1) 
50 -0.0146 0.0231 0.0308 0.0260 

0.9 
250 0.0119 0.0177 -0.0300 0.0223 

Table 5.S. Bias and variance of fivariate survival function when a = 1 and b = 0.8 

Bias Var 
/31 /32 (tl' t2 ) r n ~ 

5 (t1' t 2 ) 5(tl't2 ) 

0.7 
50 0.0389 0.0247 
250 0.0247 0.0229 (1,1.5) 
50 0.0301 0.0214 

0.9 
250 0.0292 0.0210 

1.5 0.9 
50 0.0258 0.0359 

0.7 
250 0.0221 0.0322 

(2,1.1) 
50 -0.0298 0.0301 

0.9 
250 0.0252 0.0254 

0.7 
50 0.0295 0.0347 
250 0.0243 0.0340 (1,1.5) 
50 0.0326 0.0258 

0.9 
250 -0.0301 0.0197 

0.8 -I 
50 0.0333 0.0219 

0.7 
250 0.0298 0.0156 

(2,1.1) 
50 0.0248 0.0300 

0.9 
250 0.0215 0.0271 

93 



5.6. Data Analysis 

For the illustration of the estimation procedure we consider an example of 

transfusion-related AIDS data given in Kalbfleish and Prentice (2002, page 385). 

The data gives the infection (transfusion) time in months with 1= January 1978, 

incubation time (time from infection to diagnosis of AIDS measured in months from 

time of infection) and the age of individuals at time of infection. We take ~ as 

transfusion time, T2 as incubation time and age as covariate. We consider 

7] = r = a+b1. ~ !....1. e . 

We compute the estimates a, b, p, and A by the method given in Section 

5.3. The estimates of a, h, A and P2 are a =-101.253, b=0.0009, p, =0.0027 

and P2 =-0.0070. We then estimate "1O(t,) , "20(t"t2) and S(tl't2), those are 

given in Table 5.9. We can observe that P2 has negative effect on the incubation 

time and p, has positive effect on the transfusion time. From Table 5.9, it follows 

that as t, increases, the estimate .A. 10 (t,) increases, but there is no specific pattern for 

both the estimates .A.2 (t" t2 ) and S (tl' t2 ) and it depends on both t, and t2 • Figure 

5.1 shows the estimates of the bivariate survival function. 
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Table 5.9. Estimates of bivariate survival function 

(tl' t2 ) A1O(tt) A20 (t1,t2 ) 
~ 

z S(t1't2 ) 

(87,9) 57 3.9516 0.0113 0.0098 
(12,60) 21 0.0186 3.5073 0.0475 
(17,53) 33 0.0328 2.9462 0.0932 
(27,59) 60 0.0969 3.0355 0.1217 
(72,24) 44 1.6988 0.2519 0.1223 
(71,29) 44 1.6351 . 0.2853 0.1283 
(36,60) 66 0.2258 2.6349 0.1454 
(71,8) 1 1.6351 0.0455 0.1855 

(67,14) 45 1.3526 0.1865 0.1890 
(65,23) 66 1.1706 0.3956 0.1918 
(58,41) 70 0.8326 0.9174 0.2082 
(52,48) 56 0.5696 1.2948 0.2149 
(33,41) 67 0.1605 1.9092 0.2502 
(40,39) 50 0.2968 1.4763 0.2517 
(58,13) 39 0.8326 0.2335 0.3316 
(50,24) 52 0.5520 0.6552 0.3358 
(56,17) 66 0.7220 0.3244 0.3433 
(23,27) 4 0.0717 0.9121 0.3832 
(48,15) 63 0.4976 0.3140 0.4525 
(36,18) 65 0.2258 0.4751 0.5651 

0.6 

0.4 

S{tl,t2) 

0.2 

60 
0.0 

t2 

80 

Figure 5.1. Estimates of bivariate survival function 
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5.7. Conclusion 

We introduced proportional hazards model for duration times under 

informative censoring. Estimators of the parameters and baseline hazard functions 

are developed and properties of the estimators are discussed. A simulation study is 

conducted to assess the performance of the estimators. We illustrated the procedure 

using a real life data. The proposed method is an extension of the work done in 

Wang and Wells (1998) to the situation where covariate is present, using the idea 

given in Braekers and Veraverbeke (2005). Obviously, the proposed method 

depends on the choice of 7];. and r.. . In a practical situation, one should find optimal 

choice for 7];. and L ' which is subject for future research. 
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Chapter Six 

Proportional Hazards Model for Bivariate Competing Risks Data 

6.1. Introduction 

In survival studies, when covariates are present, the standard analysis for 

competing risks data involves modeling the cause-specific hazard functions of the 

different failure types through proportional hazards assumption (see Lanson 1984; 

Kalbfleisch and Prentice, 2002 and Lawless, 2003). Gelfand et al. (2000) proposed a 

modified semi-parametric version of the proportional hazards models which include 

an arbitrary rich class of continuous baseline hazards, an attractive epidemiological 

interpretation of the hazard as a latent competing risks model and trivial handling of 

censoring. Fiocco et al. (2005) introduced a reduced rank proportional hazards 

model for competing risks and describe an algorithm for estimating the parameters 

of the model. Recently Gichangi and Vach (2005) provided a guided tour in 

analyzing competing risks data in medical research. 

The failure of systems in the multivariate situations can also classify into 

different modes. Accordingly, statistical analysis of multivariate competing risks 

models is a topic of recent interest in survival analysis (see DeMasi, 2000). Non­

parametric estimations of bivariate survival function and cause specific distributions 

under censoring were recently developed by Antony and Sankaran (2005), Sankaran 

et al. (2006), Sankaran and Antony (2008a) and Sankaran and Antony (2008b). The 

analysis of multivariate competing risks data in the presence of covariates is not yet 

discussed in literature. Motivated by this, we introduce multivariate proportional 

hazards models for the analysis of competing risks data in the presence of censoring. 

For simplicity, we confine our study to bivariate set up. 

The chapter is organized as follows. In Section 6.2, we introduce 

The results in this Chapter have been communicated as entitled "Proportional Hazards Model for 

Bivariate Competing Risks Data" (see Sreeja and Sankaran (2008b)). 
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proportional hazards models for bivariate competing risks data using vector hazard 

function of Dabrowska (1988). Estimation of the parameters as well as the cause­

specific hazard function is done in Section 6.3. In Section 6.4, various properties of 

the estimators are discussed. A simulation study is reported to assess the 

performance of the estimator in Section 6.5. In Section 6.6, we apply the models to a 

real life data that concerning the times to tumor appearance or death for 100 pairs of 

mice. Finally, the study is concluded in Section 6.7. 

6.2. Basic Concepts and Model 

Let T:::: (~ , T2 ) be a random vector representing the lifetime of pair of 

individuals. Let S(tp (2 ) :::: P[~ ~ 1 .. T2 ~ 12 ] be the joint survival function of T. Then 

Dabrowska (1988) defined a cumulative hazard function vector of T as given in 

(1.35). 

Let C:::: (Cl' Cl) be a set of causes corresponding to the lifetime vector 

T = (~ , T2 ). Suppose that there are kl causes of failure for ~ and k2 causes of 

failure for T2 . Then the cause-specific hazard functions are given by 

(6.1) 

(6.2) 

and 

p = 1,2, ... , kl' q:::: 1,2, ... , k2 . (6.3) 

Assume that the failure cause Cj must be a unique element of {I, 2, ... , kJ ,i :::: 1,2. 

Then the cumulative hazard functions in (1.36), (1.37) and (1.38) can be expressed 

in terms of cause-specific cumulative hazard functions as given by 

k, k, 1I 

"I (t1'12 ) :::: I "Ip (11' IJ :::: I J ~p (u, 12 )du (6.4) 
p=1 p=1 0 
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k2 k2 12 

1\2 (t.,t2) = LI\2Q(tl't2 ) = L f~q(tl'v)dv (6.5) 
q=l q=l 0 

and 

(6.6) 

Then the bivariate survival function can be written as 

(6.7) 

or 

(6.8) 

The cause-specific sub-distribution function Fpq (t., t2 ) III the bivariate case is 

defined as 

Fpq(tl't2)=P(7;'5:.tl,T2'5:.t2,Cl=P,C2=q), p=1,2, ... ,k1 , q=1,2, ... ,k2. (6.9) 

Fpq (tl't2 ) measures the probability that the failure of both the study subjects (7;, T2 ) 

due to the causes (p, q) prior to (t., t 2 ). In mortality studies, (6.9) is helpful to 

compare whether death of one is important for the partner's risk of death of other 

causes. 

We can write (6.9) in terms of cumulative cause-specific hazard function as 

Fp/dtl'dt2 ) 
1\ 3 ( dtl' dt, ) = --'-''------~-

pq - S(tl't2 ) 

which provides 

'I r2 

(6.10) 

Fp/t1,tz) = ffS(u,V)1\3PQ(du,dv). (6.11) 
00 

With covariates, one possible technique for the analysis of bivariate 

competing risks data is to model marginal cause-specific hazard functions for 7; and 

T2 and then apply ideas from generalized estimating functions to calculate an 

appropriate combination of the two marginal estimates. This can be done in the case 

of homogeneity of the two regression coefficients. 

We now consider a different approach for modeling bivariate competing 

risks data using vector hazard function of Dabrowska (1988). 
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We define proportional hazards models for (~, 1;) as 

~p(tl't2 I~) = ~PO(tl't2)el!IP'': 

~q (tl , t2 I ~) = ~qo (tl , t2 )ef!,.q'.: 

and 

~pq(tl' t2 I~) = ~pqO(tI' 12 ) e!!3pq'.: , p = 1,2, ... , k., q = 1,2, ... , k2 . 

(6.12) 

(6.13) 

(6.14) 

~pq (tl ' t2 I~) are the cause-specific hazard functions of T = (~ , T2) with r x 1 

covariate vector ~. ~po (t., t2), ~qO (tl , t2) and ~pqO (t., t2 I~) are the corresponding 

baseline cause-specific hazard functions and ~p' 1!.2q and 1!.3pq are rxl vector of 

parameters. 

Due to consistency conditions among bivariate vector hazard functions, 

aA,(tl't2 ) _ :l( ) 1( ) 1( ) .. -1 2' . . 
---'----'---"- - -"1 tl'12 "2 t" t2 -''3 tl't2 ' I, J - , , l *' J , 

at j 

we should have 1!.3Pq = I!.lp + 1!.2q • When f!.", i,= 1,2 is a zero vector, the covariates 

has no effect on the hazard functions. 

. A, (tp t) I ~(I) 
The model (6.12) means that for T2 ?t2 , the ratio p - (2) of the cause-

A,p (tl' t2 I ~ ) 

specific hazard functions of pair of two individuals with covariate vectors ~(I) and 

~(z) does not vary with t] and t z . Similar interpretation can be given to the models 

(6.13) and (6.14). The vector I!.IP depends on cause p and I!.Zq depends on cause q. 

Thus the covariates under study have different effect on the components of the 

vector hazard function. 

Under the model (6.12) and (6.13), the bivariate survival function can be written as 

k, k, 

S (tl,t z 1£) = exp[- I I\'Po(tI'O)e~'P'''' - L I\ZqO(tl't2)e~Zq''''] (6.15) 
p=l q=] 

and 
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k( k, 

S (tl,t2 I zJ = exp[-I "Ipo(tl'tz)e~(p'£ - L "2qO(O,t2)e~2.'l.] (6.16) 
p=1 q=1 

'( /2 

where "IPO(tptz) = J~po(u,tz)du and "2qO(tl't2 ) = J~qo(tp v)dv. 
o 0 

Then the expression for cause-specific sub-distribution function can be written as 

I( 12 

Fpq (tpt2 I z) = f fS(u, v I z) "3pq (du, dv I Z)· 
00 

6.3. Estimation Procedures 

(6.17) 

Suppose now that there are n independent pairs of subjects in the study so 

that (tli , tZi' 0li' 0Zi' Cli , C2i , k) , i = 1,2, ... , n are n ij.d. replicates of 

(t l , t2 , °1, O2 , Cl' C2 , z.) were t j = min(Tj' Lj ), j = 1, 2 with ~ and ~ are censoring 

times corresponding to ~ and T2 and 8., = I (~ ::; ~) and 02 = I (T2 ::; ~) are 

censoring indicators. To estimate the parameter vectors I!..IP' P = 1,2, ... , kl ' we have 

the score function for !!Jp as 

n 

Ulp (I!..IP) = I 5'IPj [z.j - Zip (tlj' tZj ,l!IP) ] (6.18) 
j=1 

where 

n . 

I 1't (tlj' t2j )e~l~ l.i Q 

- (t t R) 1=1 1 2 k ZIp Ij' 2j' ~Ip = n . ' P = , , ... , I' 

I 1't (tlj' t2j )e~IP~ 
1=1 

1't(tI,t2)=I(t1l~tl't2i~t2)' 1=1,2, ... ,n and S'IPI is the censoring indicator, 

S'IP/ =I(tl/ =I;l'CI/ = p), i=I,2, ... ,n. 

We now reformulate Ulp (I!.IP) in terms of counting processes. Let 

NIP;(tl't2 ) = I (I;i ::; tl ,TZi ~ tZ ,8.,Pi = 1),' p = 1, 2, ... ,kl , i = 1, 2, ... ,n. 

Then (6.18) becomes 

n ~ 

UIP(l!IP) = I ,[.&j - Ztp(u,t2,!!Jp) ] dNtPi (u,t2) 
j=l 0 
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Similarly, the score functions for P2 is 
-q 

n 

U 2/1!2q) = I 0* Iqj [ 1..j - ZIq (t1j , t2}, I!Iq) ] 
j~1 

where 

and 8' 2qj = I (lI} = T2j , CZl = q) is the censoring indicator. 

In terms of counting processes U 2q (1!2q) will be 

n ~ 

UI/I!Zq) = I J[ 1..j - Z2q(llj' v,I!Zq) ] dN2q;(t1j , v) 
j~1 0 

with 

N2q; (t" lz) = I (~; ? t" TZi ~ t2 , 0Iqi = 1), q = 1, 2, ... , k2' i = 1, 2, ... , n. 

Then we can write the score functions for I!.I and I!.z are, 

n 

Uj(l!lp) = I5'IPj [1..} - ZI/tlj,t2j'~P) ] 
j~1 

and 

n 

U Z (1!2q) = I 5' 2qj [1..j - ZIq (tlj' t2i' 1!.2Q) J, p = 1,2, ... , kl , q = 1,2, ... , k2 . 
j~l 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

The maximum likelihood estimators i!lP and i!2q for I!IP and 1!2q are solutions of 

We can find the generalized Nelson-Aalen estimate of the baseline cumulative 

cause-specific hazard functions as 

A1pO (tpt2 ) = I o"lpj 
(6.26) 

j:tJj ~tl .12j~t2 
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A2qO (tl't2 ) = 2: o*2QJ 
(6.27) 

j:',jSt,,'2j$t2 

and 

A3pqO(tpt2) = 2: (6.28) 
j:t, j 9"'2 j $/2 

with 

One may often be interested in estimating the survival function S(tI' t2 IlD) of 

lifetimes with a fixed covariate lD. A natural estimator for S(tl,t2IlD) is given by 

(6.29) 

and 

(6.30) 

The estimator of the survival function S(tl,t2IlD) obtained by (6.29) and (6.30) 

may be different. So as in Section 2.4, to get a unique estimator, we consider a 

convex combination of the two expressions (6.29) and (6.30). Thus the estimator of 

S (tl' t2 I~) is given by 

(6.31) 

Thus a (t] ,t2 ) which minimized the mean square error is 

(6.32) 

the asymptotic bias of S j (tl' t2 ) , i, j = 1, 2, i ;!:. j. 

To ensure that S (t" t2 I ~) belongs to the interval [0, 1], we replace a (tl' t2) by 

min[l, max (a{tl,tz ),0)]. 
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In practice. we estimate a (t1, t2 ) using the variance and covariance of the 

given by minimizing the average variance of 8 (tl • t2 I ~) over the data points. 

Simulation study reported in Section 6.5 shows that biases are negligible, To 

estimate the variance, we can use the extension of Efron's (1981) bootstrap 

procedure for one dimensional censored data. Given the data 

(tI' tz' 8 1, 8 z" C", Cz" Z), i = 1, 2, ... , n , where 8", J' = 1, 2 is the censoring indicator, 
" I, t, , r l -f }l 

distribution function 

For i = 1, 2 •...• n let Var(SIi (tl't2)*), Var(S2i(tl' tz)*) and COV(Sli(t1' tz)*, S2i (tl't2)*) 

be variance and covariance of the 8/t"tz) and 8z(t"tz) in the expression of 

8(tl'tz) given in (6.31), obtained from a large number of resamples. Since the 

biases are negligible as shown in Section 2.7, we then find the weight a*(tl'tz) as 

• var( Sz(t" (z)' )-COV(SI(tl't2)*, Sz(tl'tz)*) 
a (tl' t2 ) = ( • ) ( • ) ( • .) . var S,(tl't2 ) +var S2(tl't2 ) -2cov SIUl't2) ,S2Ul't2 ) 

(6.33) 

Substituting (6.28) and (6.31) in (6.17), the estimate of Fpq(tl'tJ will be obtained as 

I] 12 

Fpq (tp t2 I ~) = f f8(u, v I ~) A3pq (du, dv I~) , (6.34) 
00 

6.4. Properties of the Estimators 

Define for any 11, t2 ~ 0 

n , 

SIp (0) (t1, t2 , §.IP) = L ~ (t1, t2 )e~pl.! . (6.35) 
[=1 
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Then for fixed t, and for fixed p , we can easily prove that 

vector and variance na,2 where a,2 is 

(6.36) 

where 

k, 

Since A,0(ll't2) = IA,po(tI'12), the asymptotic normality of J;;[AIO(t"t2)-I\IO(t"t2)] 
p=l 

can easily be obtained. 

normal distribution with mean zero vector and variance na2
2 , where a2

2 is given by 

where 

n . 

S2q (0) (t\' t2 , 1!2q) = I Y21 (t1 ,t2 )ef!2Q .4 , for any t2 ~ 0 
1=1 

and 

k2 

Azo(tl'tz ) = I A2qO (t" t2 ) • 

q=l 

distribution with mean zero vector and variance na32 , where a3 z is given by 
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where 

with 

and 

n .. 

S3pq (0) (tp t2, §.IP ,f!.2q) = L l{ (tl' t2 )e[!IP ~+8qZt , p = 1,2, ... , k., q = 1,2, ... , k2 . 
1=1 

(6.38) 

Thus the asymptotic normality of .[,;["30(t.,t2)-A30 (tl't2)] can easily be 

established. 

We then study the asymptotic properties of l1.p and 112q. Using (6.25), the score 

function of /!..p can be written as, 

where 

n . 

Sip (I) (tl , 12, §.lP) = L l{(tl' t2 )e[!IPZt Q . 
1=1 

(6.39) 

Then the maximum likelihood estimator I1IP is the solution of the score function 

U\P (1!.p) = 0 and hence 111P is a consistent estimator for §..p . For large n, the score 

statistic U1p (1!.p) is asymptotically r -variate normal with mean zero vector and 

covariance matrix ~p (!!IP) where 
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with 

n . 

SIp (2) (t I ' t 2 ' ~! P ) = L Y/ (t! ' t 2 ) e i!1 P 1.t k k 1 -
l=! 

(6.40) 

Thus ~IP is asymptotically r -variate normal with mean vector I!.IP and covariance 

matrix ~p -I (I!IP ) . 

Similarly we have, 

(6.41) 

where 

n . 

S2q (1) (tl' t2, 1!2q ) = L 11 (t" t2 )ei!2Ql.i 14 . 
1=1 

Then P2Q is the solution of U2q (~2q) = O. Since ~2q is the maximum likelihood 

estimator, ~2q is a consistent estimator for 1!2q. For large n, U2q (~2q) is 

asymptotically r -variate normal with mean zero vector and covariance matrix 

~q (1!.2q ) , where 

with 

n . 

S 2q (2) (tl' t2, ~2q ) = L Y/ (tl , t2 )ei!2Q l.i kk ' . 
1=1 

(6.42) 

Thus ~2q is asymptotically r -variate normal with mean vector 1!.2Q and covariance 
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The well known functional delta method can be used to prove the asymptotic 

properties of S(t,,12 I~). Obviously, the expression of the variance of the estimate is 

complex. In practical situations, an attractive approach for variance or confidence 

interval estimation is through resampling methods. The naIve bootstrap procedure of 

resampling the observed data units (tli' t2i ,bli ,b2i , Cli , C2i ,~J, i = 1, 2, ... ,n with 

replacement will be satisfactory under fairly mild condition ( see Efron and 

Tibshirani, 1993). 

6.5. Simulation Study 

In this section, we carried out a simulation study to evaluate the performance 

of the aforementioned inference procedures. We consider a Gumbel's (1960) 

bivariate exponential distribution with survival function 

S (I" t2) = exp( -tl - t2 - rtI(2)' 11'12 > 0, 0::; r::; 1. (6.43) 

The model has hazard functions 

A;(tl ,(2 ) = (1 + rt j )tj , i, j = 1, 2;i * j . (6.44) 

For the simplicity of the analysis, we take only one covariate z. Covariate z is 

generated from uniform (0, 1) distribution. Corresponding to each ~ and T2 , we 

consider two causes say 1 and 2. The observations are generated from the model 

(6.43) with cause-specific hazard functions 

Alp (t1' 12 I ~) = (1 + rt2 )t1ef3I Pl. 

and 

A 2q (t" t2 I ~) = (1 + rt, )t2e i3ZQl. 

for various values of r, A. p and fJ2q' p, q = 1, 2. 

(6.45) 

(6.46) 

We used the algorithm given in Devroye (1986) for generating the observations. The 

paired lifetimes are censored by a Gumbel's bivariate exponential distribution (6.43) 

with A =0.6. We compute estimates for 1000 simulations for sample size n = 50 and 

n = 100 . Average bias and variance of the estimates of I!.I' 1!.2 and baseline 

cumulative cause-specific hazard functions are calculated and are given in Table 6.1 

to Table 6.10. Bias and variance of the estimates of bivariate survival function 

S(t"t2 I~) and cause-specific sub-distribution functions Fpq (t" t2 I Z), p, q = 1,2 are 
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given in Table 6.11 to Table 6.15. From the tables, it follows that as n increases, 

both bias and variance of the estimates decreases. 

Table 6.1. Bias and variance of A.I and PI2 

Bias Var Bias Var 

~I P12 r n PlI PII PI2 /312 

0.8 
50 -0.0541 0.0600 0.0549 0.0442 

1 -0.5 
250 0.0429 0.0553 0.0317 0.0416 

0.6 
50 0.0483 0.0389 0.0473 0.0591 

250 -0.0396 0.0301 -0.0400 0.0511 

0.8 
50 -0.0461 0.0403 -0.0391 0.0369 
250 0.0412 0.0392 0.0300 0.0297 

0.9 0.6 
50 0.0359 0.0421 -0.0522 0.0463 

0.6 
250 0.0321 0.0392 0.0425 0.0432 

Table 6.2. Bias and variance of /321 and P22 

P22 
Bias Var Bias Var 

/121 r n 
P21 P21 P22 /322 

0.8 
50 0.0491 0.0394 -0.0446 0.0511 
250 0.0372 0.0301 0.0411 0.0498 

0.8 1.2 
50 -0.0473 0.0395 -0.0368 0.0211 

0.6 
250 -0.0302 0.0286 0.0300 0.0203 

0.8 
50 0.0456 0.0400 0.5112 0.0483 
250 0.0325 0.0369 0.0458 0.0415 

-0.6 1 
50 0.0385 0.0421 -0.0369 0.0349 

0.6 
250 0.0289 0.0112 0.0257 0.0300 
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Table 6.3. Bias and variance of estimates of the baseline cumulative cause-specific 

hazard function 1\110 (t l ' t2 ) 

/311 /312 /321 /322 
Bias Var 

(11' (2) r n AllO (tl't2 ) AllO (tl't2 ) 

0.8 
50 0.0423 0.0221 
250 0.0325 0.0200 

(1,1.2) 
50 -0.0470 0.0329 

0.6 
250 0.0369 0.0228 

1 -0.5 0.8 1.2 
50 0.0226 0.0190 

0.8 
250 0.0189 0.0153 

(1.5,0.8) 
50 0.0358 0.0371 

0.6 
250 -0.0300 0.0254 

0.8 
50 0.0425 0.0221 

(1,1.2) 250 0.0301 0.0156 
50 0.0328 0.0221 

0.6 
250 0.0283 0.0200 

0.9 0.6 -0.6 1 
50 0.0344 0.0298 

0.8 
(1.5,0.8) 250 0.0226 0.0255 

50 0.0364 0.0211 
0.6 

250 0.0301 0.0177 

Table 6.4. Bias and variance of estimates of the baseline cumulative cause-specific 

hazard function 1\120(tl't2) 

/311 /312 /321 /322 (11'12 ) 
Bias Var r n 

\20(t1./2) A120 (t., 12 ) 

0.8 
50 -0.0559 0.0591 
250 0.0405 0.0301 (1,1.2) 
50 0.0324 0.0389 

0.6 
250 -0.0202 0.0144 

1 -0.5 0.8 1.2 
50 0.0322 0.0454 

0.8 
250 0.0271 0.0361 (1.5,0.8) 
50 0.0355 0.0297 

0.6 
250 0.0205 0.0147 

0.8 
50 -0.0523 0.0569 

(1,1.2) 250 0.0487 0.0356 
50 0.0694 0.0436 

0.6 
250 0.0401 0.0238 

0.9 0.6 -0.6 1 
50 -0.0516 0.0472 

0.8 
250 -0.0324 0.0174 

(1.5,0.8) 
50 0.0408 0.0419 

0.6 
250 0.0327 0.0308 
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Table 6.5. Bias and variance of estimates of the baseline cumulative cause-specific 

hazard function A2lO (t l , t2 ) 

/311 /312 /32l /322 (tl' t2 ) 
Bias Var 

r n A21O (tl't2 ) A210 (t\, t2 ) 

0.8 
50 0.0382 0.0339 

250 0.0167 0.0205 
0,1.2) 

50 -0.0350 0.0398 
0.6 

250 0.0230 0.0257 
I -0.5 0.8 1.2 

50 0.0441 0.0316 
0.8 

(1.5,0.8) 
250 -0.0240 0.0238 
50 0.0536 0.0302 

0.6 
250 0.0310 0.0285 

0.8 
50 0.0384 0.0428 
250 0.0280 0.0317 

(1,1.2) 
50 -0.0466 0.0305 

0.6 
250 0.0330 0.0266 

0.9 0.6 -0.6 1 
50 -0.0204 0.0568 

0.8 
250 0.0110 0.0357 

(1.5,0.8) 
50 0.0493 0.0409 

0.6 
250 0.0355 0.0305 

Table 6.6. Bias and variance of estimates of the baseline cumulative cause-specific 

hazard functions 1\220(1,,12) 

PIl /312 fJ21 fJ22 (tl' t 2 ) 
Bias Var r n 

A 220 (t" 12 ) A 220 (t., t2 ) 

- 0.8 
50 0.0516 0.0471 
250 0.0311 0.0428 (1,1.2) 
50 0.0411 0.0518 

0.6 
250 0.0302 0.0439 

1 -0.5 0.8 1.2 
50 -0.0505 0.0524 

0.8 
250 -0.0413 0.0441 

(1.5,0.8) 
50 -0.0489 0.0494 

0.6 
250 -0.0404 0.0346 

0.8 
50 0.0502 0.0594 

250 0.0396 0.0453 (1,1.2) 
50 0.0554 0.0521 

0.6 
250 0.0416 0.0505 

0.9 0.6 -0.6 1 
50 -0.0593 0.0478 

0.8 
250 0.0515 0.0329 

(1.5,0.8) 
50 0.0462 0.0511 

0.6 
250 0.0374 0.0408 
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Table 6.7. Bias and variance of estimates of the baseline cumulative cause-specific 

hazard function A3110 (tl' t2 ) 

fill fil2 fi21 fi22 (tl' t2 ) 
Bias Var 

r n 
A.311O (tl , t2 ) A.3110 (t" t2 ) 

0.8 
50 0.0554 0.0281 

(1,1.2) 
250 0.0429 0.0189 
50 -0.0519 0.0314 

0.6 
250 0.0426 0.0242 

1 -0.5 0.8 1.2 
50 0.0336 0.0394 

0.8 
(1.5,0.8) 250 0.0210 0.0202 

50 0.0473 0.0416 
0.6 

250 0.0334 0.0380 

0.8 
50 -0.0410 0.0328 

250 0.0329 0.0304 (1,1.2) 
50 0.0470 0.0239 

0.6 
250 0.0408 0.0196 

0.9 0.6 -0.6 1 
50 0.0339 0.0404 

0.8 
(1.5,0.8) 

250 0.0310 0.0359 
50 -0.0300 0.0209 

0.6 
250 0.0278 0.0196 

Table 6.S. Bias and variance of estimates of the baseline cumulative cause-specific 

hazard function "3120 (tl' t2 ) 

fill fil2 fi21 fin (tl' t2 ) r Bias Var 
n 

A3120 Up t 2) A3I20 (tp t 2 ) 

0.8 
50 0.0549 0.0479 

(1,1.2) 250 -0.0397 0.0321 
50 0.0486 0.0440 

0.6 
250 0.0398 0.0325 

1 -0.5 0.8 1.2 
50 0.0569 0.0299 

0.8 
250 -0.0489 0.0117 

(1.5,0.8) 
50 0.0679 0.0374 

0.6 
250 0.0486 0.0234 

0.8 
50 -0.0557 0.0507 
250 0.0433 0.0481 (1,1.2) 
50 0.0362 0.0317 

0.6 
250 0.0267 0.0263 

0.9 0.6 -0.6 1 
50 0.0408 0.0305 

0.8 
250 0.0375 0.0262 

(1.5,0.8) 
50 0.0479 0.0205 

0.6 
250 0.0321 0.0170 
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Table 6.9. Bias and variance of estimates of the baseline cumulative cause-specific 

hazard function "321O(t1' (2 ) 

/3ll /312 /321 /322 
Bias Var 

(t1'12) r n 
1\3210 (tl' t2 ) 1\3210 (tp t2 ) 

0.8 
50 0.0395 0.0333 

(1,1.2) 250 0.0201 0.0206 
50 0.0408 0.0521 

0.6 
250 -0.0306 0.0415 

1 -0.5 0.8 1.2 
50 0.0405 0.0312 

0.8 
(1.5,0.8) 250 0.0306 0.0217 

50 0.0304 0.0221 
0.6 

250 0.0299 0.0192 

0.8 
50 0.0357 0.0304 

(1,1.2) 250 -0.0218 0.0213 
50 0.0457 0.0314 

0.6 
250 0.0218 0.0310 

0.9 0.6 -0.6 1 
0.8 

50 0.0357 0.0264 

(1.5,0.8) 250 -0.0243 0.0134 
50 0.0306 0.0344 

0.6 
250 0.0191 0.0285 

Table 6.10. Bias and variance of estimates of the baseline cumulative cause-specific 

hazard function "3220(ll't2 ) 

/311 /3l2 /32l /322 (tl'l2) r Bias Var 
n 

1\3220 (tt ' 12 ) 1\3220 (tl' t 2 ) 

0.8 
50 -0.0347 0.0291 

(1,1.2) 250 0.0200 0.0208 
50 -0.0463 0.0459 

0.6 
250 0.0337 0.0316 

1 ..a. 5 0.8 1.2 
0.8 

50 -0.0307 0.0300 

(1.5,0.8) 
250 0.0235 0.0219 
50 0.0462 0.0387 

0.6 
250 0.0396 0.0230 

0.8 
50 0.0250 0.0352 

(1,1.2) 250 0.0108 0.0243 
50 -0.0333 0.0200 

0.6 
250 0.0202 0.0185 

0.9 0.6 -0.6 1 
0.8 

50 -0.0433 0.0400 

(1.5,0.8) 
250 0.0382 0.0355 
50 0.0363 0.0299 

0.6 
250 0.0207 0.0116 
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Table 6.13. Estimates of the cause-specific sub-distribution function F;2 (tl , t2 I z) 

Bias Var 
Pll PI2 P21 P22 (tp t2 ) r n 

1\2(tl't2) I ~ 1\2 (tl ' t2 I z) 

0.8 
50 -0.0577 0.0529 
250 -0.0546 0.0412 

(1,1.2) 
50 0.0359 0.0455 

0.6 
250 0.0243 0.0408 

1 -0.5 0.8 1.2 
50 -0.0601 0.0304 

0.8 
250 0.0545 0.0210 

(1.5,0.8) 
50 0.0496 0.0422 

0.6 
250 0.0394 0.0357 

0.8 
50 0.0457 0.0582 

(1,1.2) 
250 -0.0365 0.0482 
50 0.0577 0.0329 

0.6 
250 0.0506 0.0312 

0.9 0.6 -0.6 1 
50 -0.0360 0.0227 

0.8 
250 0.0353 0.0127 

(1.5,0.8) 
50 0.0260 0.0327 

0.6 
250 0.0153 0.0293 

Table 6.14. Estimates of the cause-specific sub-distribution function F21 (tl, t2 I z) 

Bias Var 
Pll PI2 P21 P22 (tl' t2) r n 

F21 (tp 12 I ~) F21 (tl , t2 I~) 

0.8 
50 0.0578 0.0406 

250 -0.0402 0.0312 
(1,1.2) 

50 0.0592 0.0315 
0.6 

250 0.0558 0.0299 
1 -0.5 0.8 1.2 

50 0.0439 0.0350 
0.8 

250 0.0326 0.0248 
(1.5,0.8) 

50 -0.0655 0.0503 
0.6 

250 0.0599 0.0418 

0.8 
50 0.0492 0.0415 

250 0.0358 0.0399 (1,1.2) 
50 0.0505 0.0229 

0.6 
250 -0.0489 0.0190 

0.9 0.6 -0.6 1 
50 0.0405 0.0529 

0.8 
250 0.0389 0.0490 

(1.5,0.8) 
50 -0.0232 0.0324 

0.6 
250 0.0157 0.0209 
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Table 6.15. Estimates of the cause-specific sub-distribution function F22 (tl • t2 I ~) 

P21 
Bias Var 

Pll A2 P22 (ti' t2 ) r n 
F22 (tl' t2 I ~) 

~ 

F22 (tt' t2 I ~) 

0.8 
50 0.0509 0.0495 

(1,1.2) 
250 0.0473 0.0418 
50 0.0395 0.0429 

0.6 
250 -0.0275 0.0373 

1 -0.5 0.8 1.2 
50 0.0605 0.0379 

0.8 
250 -0.0509 0.0220 

(1.5,0.8) 
50 0.0497 0.0412 

0.6 
250 0.0349 0.0336 

0.8 
50 0.0437 0.0502 

(1,1.2) 
250 0.0255 0.0462 
50 0.0509 0.0406 

0.6 
250 0.0415 0.0319 

0.9 0.6 -0.6 1 
50 0.0374 0.0301 

0.8 
250 0.0242 0.0215 

(1.5,0.8) 
50 -0.0384 0.0208 

0.6 
250 -0.0342 0.0195 

6.6. Data Analysis 

We now present a potential application of the proposed method to a litter­

matched time-ta-response data which is given in Mantel et al. (1977). Different 

versions of this data have been studied in Mantel and Ciminera (1979), Ying and 

Wei (1994), Kalbfliesh and Prentice (2002), Lawless (2003) and Sankaran et aL 

(2006). The purpose here is to illustrate a possible application of the proposed 

techniques rather than provide a definite analysis of the data. The study consists of 

300 rats divided into 50 male litters and 50 female litters, all litters of which were of 

size 3. In the data, ~ and T2 represent lifetimes (in weeks) for a pair of mice, and 

Cj (j = 1,2) indicates whether the failure was the appearance of a tumor (Cj = 1) or 

the occurrence of death prior to tumor appearance (Cj = 2). The censored 

observations are denoted by Cj =0. Since the study terminates after 104 weeks, 104 

is the common censoring time. Gender is considered as covariate ~. The data is 

given in Table 6.16. 
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We find the estimates using the procedure given in Section 6.3. The 

estimates of PIp and P2q' p, q = 1, 2 are given in Table 6.17. The estimates of 

baseline cumulative cause-specific hazard functions are given in Table 6.18 to Table 

6.20. Estimates of the bivariate survival function S(tl' t2 I~) are given in Table 6.21 

and the estimates of cause-specific sub-distribution functions are given in Table 

6.22. From Table 6.17, we can see that PIp has positive effect on "I pO (tl't2 ) , 

p = 1, 2 . However, P2Q has negative effect on "2QO (t l , t2 ), q = 1,2. From Table 6.18 

and Table 6.19, it follows that values of baseline cumulative cause-specific hazard 

functions corresponding to the causes (1,1) and (2,1) are negligible, but those 

corresponding to the causes (2,1) and (2,2) have high values for the most of the 

time pair. The estimator of the baseline cumulative cause-specific hazard function 

"3pqO (tp t2 ) has negligible values for the set of causes (1,2) and (2,1). From Table 

6.22, we can see that F;z (tl' t2 I~) and F22 (tl, t2 I~) have much larger values 

compared to F; 1 (tl' t2 I~) and F21 (tp t2 I ~); as expected from the data. Figure 6.1 

shows the estimates of the survival function. Figures 6.2 to 6.5 shows the estimates 

of cause-specific sub-distribution function for different causes. 

We then estimate trpq =p(C1 = p,C2 =q) as ftpq = Fpq(oo,oo). Since the several 

it 
pairs are censored, we normalize the estimate as ftpq* = LIitk! . We also estimate 

k I 

the marginal probabilities tr p (q} = PC C q = p), p, q = 1,2 using the estimate of the 

marginal sub-distribution function. The estimates it/q)' and itpq* are given in Table 

6.23, which shows that the two causes are not independent. 
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Table 6.16. Data concerning the times to tumor appearance or death for 100 pairs of 

nuce 

Litter 
~ r. Cl T2 C2 

Litter 
~ r. Cl T2 C2 no. no. 

01 2 49 1 104 0 02 1 104 0 102 2 
03 2 102 2 104 0 04 1 104 0 102 2 
05 2 104 0 104 0 06 1 62 2 77 2 
07 2 97 2 79 2 08 1 98 2 76 2 
09 2 104 0 104 0 10 1 104 0 98 2 
11 2 96 1 104 0 12 1 71 2 91 2 
\3 2 94 2 77 1 14 1 104 0 99 2 
15 2 104 0 104 0 16 1 88 2 85 2 
17 2 77 2 104 0 18 1 104 0 102 2 
19 2 104 0 77 2 20 1 104 0 102 2 
21 2 91 2 90 2 22 1 80 2 92 2 
23 2 70 2 92 2 24 1 104 0 101 2 
25 2 45 2 50 1 26 1 53 2 102 2 
27 2 69 2 91 2 28 1 104 0 91 2 
29 2 104 0 103 2 30 1 104 0 75 2 
31 2 72 2 104 0 32 1 100 2 102 2 
33 2 63 2 104 0 34 1 104 0 95 2 
35 2 104 0 74 2 36 1 104 0 102 2 
37 2 104 0 69 2 38 1 93 2 80 2 
39 2 104 0 68 1 40 1 98 2 83 2 
41 2 104 0 104 0 42 1 89 2 89 2 
43 2 104 0 104 0 44 1 32 2 51 2 
45 2 83 2 40 1 46 1 98 2 78 2 
47 2 104 0 104 0 48 1 104 0 102 2 
49 2 104 0 104 0 SO 1 104 0 94 2 
51 2 104 0 104 0 52 1 104 0 102 2 
53 2 104 0 104 0 54 1 91 2 102 2 
55 2 81 1 64 1 56 1 104 0 55 2 
57 2 55 1 94 2 58 1 104 0 102 2 
59 2 104 0 54 1 60 1 104 0 102 2 
61 2 87 2 74 2 62 1 104 0 102 2 
63 2 73 1 84 1 64 1 71 1 90 2 
65 2 104 0 80 2 66 1 51 2 102 2 
67 2 104 0 73 2 68 1 83 2 102 2 
69 2 79 2 104 0 70 1 104 0 96 2 
71 2 104 0 104 0 72 1 84 2 94 2 
73 2 104 0 104 0 74 1 104 0 99 2 
75 2 101 1 94 2 76 1 94 2 102 2 
77 2 84 1 78 1 78 1 103 2 102 2 
79 2 81 1 76 2 80 1 104 0 91 2 
81 2 95 1 104 0 82 1 98 2 102 2 
83 2 104 0 66 1 84 1 54 2 39 2 
85 2 104 0 102 1 86 1 84 2 54 2 
87 2 98 2 73 2 88 1 104 0 87 2 
89 2 104 0 104 0 90 1 82 2 102 2 
91 2 83 2 77 2 92 1 104 0 102 2 
93 2 104 0 104 0 94 1 89 2 77 2 
95 2 79 2 99 2 96 1 69 2 102 2 
97 2 91 2 104 0 98 1 75 1 64 2 
99 2 104 0 79 1 100 1 104 0 102 2 
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Table 6.17. Estimates of PI and P2 for different causes 

(tl' t 2 ) ~ PII /312 /321 /322 
(98,83) 1 1.393 40.02 -0.260 -1.102 
(84,94) 1 1.393 40.02 -0.260 -1.102 
(98,78) 1 1.393 40.02 -0.260 -1.102 
(89,89) 1 1.393 40.02 -0.260 -1.102 
(97,79) 2 1.393 40.02 -0.260 -1.102 
(93,80) 1 1.393 40.02 -0.260 -1.102 
(80,92) 1 1.393 40.02 -0.260 -1.102 
(98,76) 1 1.393 40.02 -0.260 -1.102 
(91,90) 2 1.393 40.02 -0.260 -1.102 
(88,85) 1 1.393 40.02 -0.260 -1.102 
(98,73) 2 1.393 40.02 -0.260 -1.102 
(94,77) 2 1.393 40.02 -0.260 -1.102 
(79,99) 2 1.393 40.02 -0.260 -1.102 
(89,77) 1 1.393 40.02 -0.260 -1.102 
(71,91) 1 1.393 40.02 -0.260 -1.102 
(84,78) 2 1.393 40.02 -0.260 -1.102 
(55,94) 2 1.393 40.02 -0.260 -1.102 
(70,92) 2 1.393 40.02 -0.260 -1.102 
(87,74) 2 1.393 40.02 -0.260 -1.102 
(71,90) 1 1.393 40.02 -0.260 -1.102 
(69,91) 2 1.393 40.02 -0.260 -1.102 
(73,84) 2 1.393 40.02 -0.260 -1.102 
(83,77) 2 1.393 40.02 -0.260 -1.102 
(81,76) 2 1.393 40.02 -0.260 -1.102 
(81,64) 2 1.393 40.02 -0.260 -1.102 
(84,54) 1 1.393 40.02 -0.260 -1.102 
(83,40) 2 1.393 40.02 -0.260 -1.102 
(62,77) 1 1.393 40.02 -0.260 -1.102 
(75,64) 1 1.393 40.02 -0.260 -1.102 
(54,39) 1 1.393 40.02 -0.260 -1.102 
(45,50) 2 1.393 40.02 -0.260 -1.102 
(32,51) 1 1.393 40.02 -0.260 -1.102 
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Table 6.18. Estimates of the baseline cumulative cause-specific hazard functions 

(tl' t2) ~ AIlO (tpt2) AllO(tI'O) A'20(tl't2) A'20(t, ,0) 
(98,83) 1 0.0031 0.0111 0.3355 0.7768 
(84,94) 1 0 0.0094 0.2066 0.3776 
(98,78) 1 0.0056 0.0111 0.2616 0.7768 
(89,89) 1 0 0.0094 0.2040 0.4625 
(97,79) 2 0.0056 0.0111 0.2102 0.6492 
(93,80) 1 0.0039 0.0094 0.1846 0.5524 
(80,92) 1 0 0.0055 0.1282 0.2611 
(98,76) 1 0.0056 0.0111 0.1560 0.7768 
(91,90) 2 0 0.0094 0.2262 0.5291 
(88,85) 1 0 0.0094 0.1610 0.4196 
(98,73) 2 0.0079 0.0111 0.1096 0.7768 
(94,77) 2 0.0039 0.0094 0.1850 0.5996 
(79,99) 2 0 0.0055 0.1278 0.2429 
(89,77) 1 0.0039 0.0094 0.1614 0.4625 
(71,91) 1 0 0.0032 0.0934 0.1724 
(84,78) 2 0.0039 0.0094 0.1191 0.3776 
(55,94) 2 0 0.0020 0.4491 0.0753 
(70,92) 2 0 0.0020 0.0933 0.1557 
(87,74) 2 0.0051 0.0094 0.1049 0.3985 
(71,90) 1 0 0.0032 0.0607 0.1724 
(69,91) 2 0 0.0020 0.0768 0.1393 
(73,84) 2 0 0.0043 0.0607 0.1895 
(83,77) 2 0.0025 0.0080 0.0991 0.3377 
(81,76) 2 0.0025 0.0080 0.0449 0.2611 
(81,64) 2 0.0060 0.0080 0.0449 0.2611 
(84,54) 1 0.0084 0.0094 0.0841 0.3776 
(83,40) 2 0.0080 0.0080 0.0347 0.3377 
(62,77) 1 0 0.0020 0.0607 0.0910 
(75,64) 1 0.0035 0.0055 0.0449 0.1895 
(54,39) 1 0.0010 0.0010 0.0154 0.0753 
(45,50) 2 0 0 0.0148 0.0295 
(32,51) 1 0 0 0.0147 0.0147 
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Table 6.19. Estimates of the baseline cumulative cause-specific hazard functions 

(tl' t 2 ) ~ A21O (tl't2 ) A210 (0,t2 ) A220 (11' t2 ) A220 (0,t2 ) 

(9&,83) 1 0 3.69 xlO-JO 0.7944 1.1608 
(84,94) 1 5.65 xlO-J ' 4.26 xl0-JO 0.8577 2.2217 
(9~,78) 1 0 3.18 xlO-JO 0.6151 0.9220 
(8~,89) 1 0 4.26 xlO-JO 0.5825 1.3532 
(97,79) 2 0 3.69 xlO-jO 0.5129 0.9807 
(93,80) 1 0 3.69 xlO-JO 0.5137 1.0997 
(8 ),92) 1 5.65 xl0-J ' 4.26 xlO-·m 0.5491 1.9126 
(c}, ),76) 1 0 2.22 xlO-jO 0.3955 0.6482 
(91,90) 2 0 4.26 xlO-Jb 0.7165 1.4871 
(88,85) 1 0 4.26 xlO-J{) 0.4629 1.2235 
(98,73) 2 0 2.22 xlO-J{) 0.2384 0.3878 
(94,77) 2 0 2.68 xl0-JO 0.4542 0.8648 
(79,99) 2 1.08 xlO-JO 4.26 xlO-JO 0.6420 2.7490 
(89,77) 1 0 2.68 xlO-jO 0.4542 0.8648 
(71,91) 1 2.04 xlO-JO 4.26 xlO-jO 0.3507 1.7632 
(84,78) 2 0 3.18 xlO-jO 0.3487 0.9220 
(55,94) 2 3.18 xlO-Jb 4.26 xlO-jO 0.1689 2.2217 
(70,92) 2 2.04 xlO-Jb 4.26 xl0-jO 0.2895 1.9126 
(87,74) 2 0 2.22 xl0-J{) 0.2389 0.4905 
(71,90) 1 2.04 xlO-J{) 4.26 x lO-JO 0.2127 1.4871 
(69,91) 2 2.04 xl0-jO 4.26 xlO-JO 0.2147 1.7632 
(73,84) 2 2.04 xlO-JO 4.26 xl0-JO 0.1457 1.-1608 
(83,77) 2 0 2.68 xlO-jO 0.3016 0.8648 
(81,76) 2 0 2.22 xlO-Jb 0.1933 0.6482 
(81,64) 2 0 1.45 X lO-JO 0.1404 0.2357 
(84,54) 1 0 1.07 xlO-Jb 01387 0.1387 
(8j,40) 2 0 3.50 xlO-J' 0.0452 0.0452 
(62,77) 1 1.60 xlO-JO 2.68 xlO-JO 0.1457 0.8648 
(75,64) 1 0 1.45 xlO-jO 0.1405 0.2357 
(54,39) 1 0 0 0.0452 0.0452 
(45,50) 2 3.57 xlO-J ' 7.08 xlO-j , 0 0.0452 
(32,51) 1 7.08 xlO- j , 7.08 xlO-J7 0.0464 0.0916 
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Table 6.20. Estimators of the baseline cumulative cause-specific hazard functions 

(11'12 ) ~ "311O(1I't2) "3120(tl't2) "3210 (tl' t2) "mo(tl't2) 

(98,83) 1 7.24xlO-jlS 0.0179 2.63 xlO-jb 1.3016 
(84,94) 1 1.16 xlO--H 0.0412 1.40 xlO-jb 0.9507 
(98,78) 1 7.24 xlO- jlS 0.0179 2.63 xlO-jb 0.9295 
(89,89) 1 1.16 xlO- j, 0.0179 1.40 xl0-Jb 0.8112 
(97,79) 2 7.24 xlO-JIS 0.0179 2.63 xlO-Jb 0.7025 
(93,80) 1 7.24 xlO-JIS 0.0179 1.40 xlO-J [) 0.6949 
(80,92) 1 4.32 xlO-JIS 0.0194 6.02 xlO- j, 0.6412 
(98,76) 1 2.92 xlO-jlS 0.0179 1.40 xlO-j [) 0.5354 
(91,90) 2 1.16 xlO- jl 0.0293 1.40 xlO-j [) 0.9357 
(88,85) 1 1.16 xlO- j, 0.0179 1.40xlO-jO 0.5895 
(98,73) 2 2.92 xlO-j (\ 0.0080 1.40 xlO-J6 0.3248 
(94,77) 2 2.92 xlO-.l!S 0.0179 2.63 xl0-J() 0.5769 
(79,99) 2 4.32 xlO-JIS 0.0313 6.02 xl O--f! 0.6699 
(89,77) 1 2.92 xlO-jlS 0.0179 1.40xlO-jb 0.5769 
(71,91) 1 0 0.0114 6.02 xlO-J' 0.4136 
(84,78) 2 7.24 xlO-JIS 0.0179 1.40 xl0-Jb 0.3832 
(55,94) 2 0 0.0119 6.02 xlO- jl 0.1296 
(70,92) 2 0 0 6.02 xlO- j, 0.4220 
(87,74) 2 2.92 xlO-.l1S 0.0080 1.40 xlO-.l[) 0.3055 
(71,90) 1 0 0.0114 6.02 xl0-·n 0.2074 
(69,91) 2 0 0 6.02 xlO-j, 0.3085 
(73,84) 2 4.32 xlO-jlS 0 6.02 xlO-j , 0.2074 
(83,77) 2 2.92 xlO-jlS 0.0179 1.40 xl0-jb 0.3001 
(81,76) 2 2.92 xlO-jlS 0.0179 6.02 xlO-j, 0.1296 
(81,64) 2 2.92 xlO-jlS 0.0080 6.02 xl0- j, 0.1296 
(84,54) 1 0 0 1.40 xlO-j [) 0.2128 
(83,40) 2 0 0 7.97 xlO-.l 1 0.0659 
(62,77) 1 0 0 6.02 xlO-.l 1 0.2074 
(75,64) 1 0 0.0080 6.02 xlO-J ' 0.1296 
(54,39) 1 0 0 0 0.0659 
(45,50) 2 0 0 6.02 xl 0--11 0 
(32,51) 1 0 0 0 0.0637 
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Table 6.21. Estimates of the bivariate survival function with a = 0.5 

(t" t2 ) ~ S(tl't2 I~) 

(98,83) 1 0.4611 
(84,94) 1 0.4745 
(98,78) 1 0.5084 
(89,89) 1 0.5503 
(97,79) 2 0.5613 
(93,80) 1 0.5615 
(80,92) 1 0.5732 
(98,76) 1 0.5799 
(91,90) 2 0.5806 
(88,85) 1 0.5929 
(98,73) 2 0.6042 
(94,77) 2 0.6139 
(79,99) 2 0.6152 
(89,77) 1 0.6160 
(71,91) 1 0.6438 
(84,78) 2 0.6595 
(55,94) 2 0.6774 
(70,92) 2 0.6805 
(87,74) 2 0.6911 
(71,90) 1 0.6939 
(69,91) 2 0.6954 
(73,84) 2 0.6976 
(83,77) 2 0.7005 
(81,76) 2 0.7514 
(81,64) 2 0.7666 
(84,54) 1 0.7762 
(83,40) 2 0.7769 
(62,77) 1 0.7985 
(75,64) 1 0.8438 
(54,39) 1 0.9477 
(45,50) 2 0.9550 
(32,51) 1 0.9664 
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Table 6.22. Estimates of the cause-specific sub-distribution functions Fpq (tl, t2 I r) 

(t .. t2 ) r ~1(tl't2Ir) F21 (tl , t2 I r) ~2 (tl' t2 I r) F22 (t l ,t2 1 r) 

(98,83) 1 3.34 xlO-.ilS 1.21 xlO- jtJ 0.0082 0.6002 
(84,94) 1 5.49 xlO-JIS 6.63 xlO-J ' . 0.0195 0.0451 
(98,78) 1 3.68 xl0-JIS 1.34 xlO-JtJ 0.0091 0.4725 
(89,89) 1 6.36 xlO-JIS 7.69 xlO-J ' 0.0098 0.4465 
(97,79) 2 4.07 xlO-JIS 1.47 xlO-Jb 0.0100 0.3943 
(93,80) 1 4.07 xlO-JIS 7.85 xlO-J ' 0.0100 0.3902 
(80,92) 1 2.48 xlO-JIS 3.45 xlO-J' 0.0111 0.3698 
(98,76) 1 1.69 xlO-jlS 8.11 xlO- j , 0.0104 0.3105 
(91,90) 2 6.71 xlO-jlS 8.12 xlO-j , 0.0170 0.5433 
(88,85) 1 6.86 xlO-jlS 8.29 x10- j , 0.0106 0.3495 
(98,73) 2 1.76 xlO-jll 8.45 xlO-·H 0.0048 0.1962 
(94,77) 2 1.79 xlO-j l\ 1.61 xlO-JtJ 0.0109 0.3542 
(79,99) 2 2.66 xlO-JlS 3.70 xlO-J' 0.0193 0.4121 
(89,77) 1 1.80 xlO-JlS 8.61 xlO-·f ' 0.0110 0.3553 
(71,91) 1 0 3.87 xlO-.i' 0.0074 0.2663 
(84,78) 2 4.78 xlO-JlS 9.22 xlO-·f ' 0.0118 0.2527 
(55,94) 2 0 4.07 xlO-J ' 0.0081 0.0878 
(70,92) 2 0 4.09 xlO·jl 0 0.2872 
(87,74) 2 2.02 xl0-jll 9.66 xlO-jl 0.0055 0.2111 
(71,90) 1 0 4.17 xlO- j , 0.0079 0.1439 
(69,91) 2 0 4.18 xlO-.i' 0 0.2145 
(73,84) 2 3.02 xlO-JlS 4.20 xlO-j , 0 0.1447 
(83,77) 2 2.05 x10-jlS 9.79 xlO-j , 0.0125 0.2102 
(81,76) 2 2.19 xlO-jlS 4.52 xlO-j , 0.0134 0.0974 
(81,64) 2 2.24 x10-jlS 4.61 xlO-j , 0.0061 0.0994 
(84,54) 1 0 1.09 xlO-jO 0 0.1652 
(83,40) 2 0 6.19 xlO- j , 0 0.0512 
(62,77) 1 0 4.80 xlO-j , 0 0.1656 
(75,64) 1 0 5.08 xlO-j , 0.0068 0.1094 
(54,39) 1 0 0 0 0.0624 
(45,50) 2 0 5.74 xlO-J ' 0 0 
(32,51 ) 1 0 0 0 0.0616 

Table 6.23. Estimates of li/q )* and lipq* 

~ (I)' ~ (I)' ~ (2)' ~ (2)' A • ~ . 
A * 

ft22 
• 

lil li2 lil li2 lill 1t'2 li21 

11 41 11 67 3 5 3 32 
- - - - - - - -
52 52 78 78 43 43 43 43 
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Figure 6.2. Estimates of cause-specific sub-<!istribution function for the cause (1, I) 
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Figure 6.5. Estimates of cause-specific sub-distribution function for the cause (2, 2) 

6.7. Conclusion 

This chapter has discussed statistical analysis of bivariate competing risks 

models in the presence of covariates. We introduced proportional hazards models for 

cause-specific hazard function. Estimation of regression parameters and baseline 

cause-specific hazard functions were developed using counting process approach. 

Strong consistency and asymptotic normality of the estimator were established. The 

proposed method can be extended to higher dimensions by considering the vector 

hazard functions of lohnson and Kotz (1975) in multivariate set up. The proposed 

method can also be extended to time dependent covariates. 

Cause-specific sub-distribution function is more helpful in many survival 

studies as it directly provides the failure probabilities due to a particular set of 

causes (Fine, 2001). The development of semi-parametric proportional hazards 

models for the cause-specific sub-distribution function, extending the model of Fine 

and Gray (1999) to the multivariate set up is a topic of further research. 
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Chapter Seven 

Conclusion 

7.1. Introduction 

Multivariate lifetime data arise in various forms including recurrent event 

data when individuals are followed to observe the sequence of occurrences of a 

certain type of event; correlated lifetime when an individual is followed for the 

occurrence of two or more types of events, or when distinct individuals have 

dependent event times. In most studies there are covariates such as treatments, group 

indicators, individual characteristics, or environmental conditions, whose 

relationship to lifetime is of interest. This leads to a consideration of regression 

models. 

The well known Cox proportional hazards model and its variations, using the 

marginal hazard functions employed for the analysis of multivariate survival data in 

literature are not sufficient to explain the complete dependence structure of pair of 

lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a 

bivariate proportional hazards model using vector hazard function of Johnson and 

Kotz (1975), in which the covariates under study have different effect on two 

components of the ve~tor hazard function. The proposed model is useful in real life 

situations to study the dependence structure of pair of lifetimes on the covariate 

vector ~. The well known partial likelihood approach is used for the estimation of 

parameter vectors. We then introduced a bivariate proportional hazards model for 

gap times of recurrent events in Chapter 3. The model incorporates both marginal 

and joint dependence of the distribution of gap times on the covariate vector ~. In 

many fields of application, mean residual life function is considered superior 

concept than the hazard function. Motivated by this, in Chapter 4, we considered a 

new semi-parametric model, bivariate proportional mean residual life time model, to 

assess the relationship between mean residual life and covariates for gap time of 

recurrent events. The counting process approach is used for the inference procedures 
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of the gap time of recurrent events. In many survival studies, the distribution of 

lifetime may depend on the distribution of censoring time. In Chapter 5, we 

introduced a proportional hazards model for duration times and developed inference 

procedures under dependent (informative) censoring. In Chapter 6, we introduced a 

bivariate proportional hazards model for competing risks data under right censoring. 

The asymptotic properties of the estimators of the parameters of different models 

developed in previous chapters, were studied. The proposed models were applied to 

various real life situations. 

7.2. Future works 

Multivariate lifetime data are frequently encountered in longitudinal studies 

when subjects may experience several events or when there is a grouping of 

individuals into a cluster. The heterogeneity among variables may be due to certain 

unobserved common risk factors present in the data. To model such unobserved 

factors, frailty models are usually employed in survival analysis. Frailty models are 

basically random effects models for survival data, where one of the random effects 

is specified by means of the hazard function. The extension of our models to frailty 

set up is an area for further research. As the literature on the analysis of multivariate 

data under informative censoring is limited, one can do further research on the 

development of new stochastic models based on the relationship between lifetime 

vector and censoring vector. In survival studies, the covariates under study may 

change their values over time. The extension of the models developed in previous 

chapters to the time dependent covariate set up is an area of research to be explored. 

Testing equality of survival functions in multivariate set up in the presence of 

covariates is not yet carried out. The non-parametric Bayesian estimation technique 

for the analysis of muItivariate survival data is a topic of research interest. In 

survival studies, there are situations where the exact lifetime of an event is not 

known, but it known to lie in some interval. A variety of univariate models have 

been developed for the analysis of such interval censored data. The analysis of 

interval censored data in the bivariate (multivariate) set up is complicated and the 

research work in this direction will be worth exploring. 
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In all the works mentioned in previous chapters, we have considered either 

proportional hazards model or proportional mean residual life model to study effect 

of covariates on lifetime. There are many life test situations in which these models 

are not adequate. The analysis of multivariate survival data using proportional odds 

and accelerated failure time models is an area of research to be explor&d. Apart from 

censoring, truncation is very common in life test experiments. As the literature on 

the analysis of truncated data in multivariate set up is limited, the extension of our 

models to the truncated case is a topic of future work. There are many situations in 

survival studies when the covariates in the study are missing and our models can be 

extended to this situation. In biostatistical applications, there are situations were one 

can only observe the lifetime T belongs to certain interval (O,C] or (C,oo) where 

C is known as status time. Then the data structure is called current status data. Very 

few works are done in multivariate current status data when covariates are present. 

The models developed here can be extended to this set up, which is not straight 

forward. There are situations in the analysis of competing risks data, where th~ exact 

failure cause cannot be identified. Then we say that the cause of failure is masked. 

The analysis of the model given in Chapter 6 can be extended to the masking 

situation, which is a topic of future study. 

130 



References 

1. Aalen, O. (1976) Nonparametric inference in connection with multiple 

decrement models, Scanadian Journal of Statistics, 3, 15-27. 

2. Akritas, M.G. and van Keilegom, LV. (2003) Estimation of bivariate and 

marginal distributions with censored data, Journal of the Royal Statistical 

Society B, 65, 457-471. 

3. Andersen, P.K., Abildstrom, S.Z. and Rosthoj, S. (2002) Competing risks as a 

multi-state model, Statistical Methods in Medical Research, 11,203-215. 

4. Andersen, P.K., Borgan, 0., Gill and RD., Keiding, N. (1993) Statistical Models 

Based on Counting Processes, Springer-Verlag, New York. 

5. Andersen, P.K. and Gill, RD. (1982) Cox's regression model for counting 

processes: a large sample study, The Annals of Statistics, 10, 1100-1120. 

6. Antony, A.A. and Sankaran, P.G. (2005) Estimation of bivariate survivor 

function under masked causes of failure, Journal of Statistical Theory and 

Applications, 4, 401-423. 

7. Arnold, B.c. and Strauss, D. (1988) Bivariate distributions with exponential 

conditionals, Journal of the American Statistical Association, 83, 522-527. 

8. Arnold, B.C. and Zahedi, H. (1988) On multivariate mean remaining life 

functions, Journal of Multivariate Analysis, 25,1-9. 

9. Bartholomew, DJ. (1957) A problem in life testing, Journal of the American 

Statistical Association, 52, 350-355. 

10. Basu, A.P. (1971) Bivariate failure rate, Journal of the American Statistical 

Association, 66, 103-104. 

11. Braekers, R and Veraverbeke, N. (2005) Cox's regression model under partially 

informative censoring, Communications in Statistics-Theory and Methods, 34, 

1793-1811. 

12. Buchanan, W.B. and Singpurwalla, N.D. (1977) Some stochastic 

characterization of multivariate survival, Theory and Applications of Reliability, 

1, Eds. c.P. Tsokos and I.N.Shimi, Academic Press, New York, 329-348. 

131 



13. Burke, M.D. (1988) Estimation of a distribution function under random 

censorship, Biometrika, 75, 379-382. 

14. Cai, J. and Douglas, E.S. (2004) Analysis of recurrent event data, Handbook of 

Statistics, 23, 603-623. 

15. Cai, J. and Prentice, RL. (1995) Estimating equations for hazard ratio 

parameters based on correlated failure time data, Biometrika, 82, 151-164. 

16. Campbell, G. and Foldes, A. (1982) Large sample properties of nonparametric 

bivariate estimators with censored data, Colloquia Mathemetica-Societatis, Janos 

Bolyai, 32, 103-121. 

17. Chang. S.H. (2000) A two-sample comparison for multiple ordered event data, 

Biometrics, 56, 183-189. 

18. Chang, S. H. and Wang, M. C. (1999) Conditional regression analysis for 

recurrence time data, Journal of the American Statistical Association, 94, 1221-

1230. 

19. Chen, Y.Q. and Cheng, S. (2005) Semiparametric regression analysis of mean 

residual life with censored survival data, Biometrika, 92, 19-29. 

20. Chen, Y.Q. and Cheng, S. (2006) Linear life expectancy regression with 

censored data, Biometrika, 93, 303-313. 

21. Chen, Y. Q., Wang, M.C. and Huang, Y. (2004) Semi parametric regression 

analysis on longitudinal pattern of recurrent gap times, Biostatistics, 5, 277-290. 

22. Cheng, S.C., Fine, J.P. and Wei, L.1. (1998) Prediction of cumulative incidence 

function under the proportional hazards model, Biometrics, 54, 219-228. 

23. Cox, D.R (1972) Regression models and life tables (with discussion), Journal of 

the Royal Statistical Society B, 34,187-220. 

24. Cox, D.R (1975) Partial likelihood, Biometrika, 62, 269-276. 

25. Cox, D.R and Oakes, D. (1984) Analysis of Survival Data, Chapman and Hall, 

London. 

26. Cronin, K.A. and Feuer, E.J. (2000) Cumulative Cause-Specific mortality for 

cancer patients in the presence of other causes: A crude analogue of relative 

survival, Statistics in Medicine, 19, 1729-1740. 

27. Crowder, M. (2001) Classical competing risks, Chapman and Hall, London. 

28. Dabrowska, D.M. (1988) Kaplan- Meier estimate on the plane, The Annals of 

Statistics, 16,1475-1489. 

132 



29. David, H.A. and Moeschberger, M.L. (1978) Theory of Competing Risks. 

Griffin, London. 

30. DeMasi, RA. (2000) Statistical methods for multivariate failure time data and 

competing risks, Handbook of Statistics, 18, 749-781. 

31. Devroye, L. (1986) Non-Uniform Random Variate Generation, Springer-Verlag, 

New York 

32. Duffy, D.L., Martin N.G. and Matthews, J.D. (1990) Appendectomy in 

Australian twins, The American Journal of Human Genetics, 47, 590-592. 

33. Ebrahimi, N. (2006) Models for recurring events with marginal proportional 

hazards, Biometrika, 93, 481-485. 

34. Efron, B. (1981) Censored data and the bootstrap, Journal of the American 

Statistical Association, 76, 312-319. 

35. Efron, B. and Tibshirani, RJ. (1993) An introduction to the bootstrap, Chapman 

and Hall. 

36. Farley, T.M., Ali, M.M. and Slaymaker, E. (2001) Competing approaches to 

analysis of failure times with competing risks, Statistics in Medicine, 120, 3601-

3610. 

37. Fine, J.P. (2001) Regression modeling of competing crude failure probabilities, 

Biostatistics, 2, 85-97. 

38. Fine, J.P. and Gray, RJ. (1999) A proportional hazards model for the sub 

distribution of a competing risk, Journal of the American Statistical Association, 

94,496-509. 

39. Fiocco, M., Putter, H. and Van Houwelingen (2005) Reduced rank proportional 

hazards model for competing risks, Biostatistics, 6, 465-478. 

40. Fleming, T. Rand Harrington, D. P. (1991) Counting Processes and Survival 

Analysis, Wiley, New York. 

41. Gail, M.H., Santner, TJ. and Brown, C.C. (1980) An analysis of comparative 

carcinogenesis experiments based on multiple times to tumor, Biometrics, 36, 

255-266. 

42. Gehan, E.A. (1965) A generalized Wilcoxon test for comparing arbitrarily 

singly-censored samples, Biometrika, 52, 203-233. 

133 



43. Ge1fand, A.E., Ghosh, S.K., Christensen, c., Soumerai, S.B. and McLaughlin, 

TJ. (2000) Proportional hazards models: a latent competing risk approach, 

Applied Statistics, 49, 385-397. 

44. Gentle, J.E. (1998) Random number generation and Monte Carlo methods 

(Statistics and computing), Springer-Vedag, New York. 

45. Gichangi, A. and Vach, W. (2005) The analysis of competing risks data: A 

guided tour. Technical report, Department of Statistics, University of Southern 

denmark, Campusvej 55, 5230 Odense M, 5000 Odense C. Denmark. 

46. Gooley, T.A., Leisenring, W., Crowley, J. and Storer, B.E. (1999) Estimation of 

failure probabilities in the presence of competing risks: New representations of 

old estimators, Statistics in Medicine, 18, 695-706. 

47. Gumbel, E.J.(1960) Bivariate exponential distributions, Journal of the American 

Statistical Association, 55, 698-707. 

48. Hall, W.J. and Wellner, J.A. (1981) Mean residual life. In Proceedings of 

International Symposiam on Statistics and Related Topics, Ed. M. Csorgo, D.A. 

Dawson, J. N. K. Rao and A. K. Md. E. Saleh, pp. 169-181, Amsterdam: North­

Holland. 

49. Hoel, D.G. (1972) A representation of mortality by competing risks, Biometrics, 

28, 475-488. 

50. Hougaard, P. (2000) Analysis of Multivariate Survival Data, Springer-Vedag, 

New York. 

51. Huang, Y. (1999) The two-sample problem with induced dependent censorship, 

Biometrics, 55, 1108-1113. 

52. Huang, Y. and Louis, T.A. (1998) Nonparametric estimation of the joint 

distribution of survival time and mark variable, Biometrika, 85, 785-798. 

53. Huang, c.Y. and Wang, M.C. (2005) Nonparametric estimation of the bivariate 

recurrence time distribution, Biometrics, 61, 392-402. 

54. Johnson, N.L. and Kotz, S. (1975) A vector valued multivariate hazard rate, 

Journal of Multivariate Analysis,S, 53-66. 

55. Kalbfleisch, J.D. and Lawless, J.F. (1989) Inference based on retrospective 

ascertainment: An analysis of the data on transfusion-related AIDS, Journal of 

the American Statistical Association. 84, 360-372. 

134 



56. Kalbfleisch, I.D. and Prentice, R.L. (2002) The Statistical Analysis of Failure 

Time Data, 2nd ed., John Wiley and Sons, New York. 

57. Kaplan.E.L. and Meier, P. (1958) Nonparametric estimation from incomplete 

observations, Journal of the American Statistical Association, 53, 457-481. 

58. Keles, S., van der Laan, MJ. and Robins, J.M. (2004) Estimation of the bivariate 

survival function with generalized bivariate right censored data structures, 

Handbook of Statistics, 23, 143-173. 

59. Klein, J.P. and Moeschberger, M.L. (1997) SUlilival Analysis. Springer-Verlag, 

New York. 

60. Lanson, M.G. (1984) Covariate analysis of competing risk models with long 

linear models, Biometrics, 40, 459-469. 

61. Lawless, J.F. (2003) Statistical Models and Methods for Lifetime Data. 2nd ed., 

John WHey and Sons, New York. 

62. Lawless, J.F. and Nadeau, C. (1995) Some simple robust methods for the 

analysis of recurrent events, Technometrics, 37, 158-168. 

63. Lee, E.W., Wei, LJ. and Amato, D.A. (1992) Cox-type regression analysis for 

large numbers of small groups of correlated failure time observations, in 

Survival Analysis: State of the Art, eds. J.P.Klein and P.K. Goel, Dordrecht: 

Kluwer Academic:237-247. 

64. Liang, KY. and Zeger, S.L. (1986) Longitudinal data analysis using generalized 

linear models, Biometrika, 73: 13-22. 

65. Lin, D.Y. (1994) Cox regression analysis of multivariate failure time data: The 

marginal approach, Statistics in Medicine, 13: 2233-2247. 

66. Lin, D.Y. (1997) Non-parametric inference for cumulative incidence functions in 

competing risks studies, Statistics in Medicine, 16,901-910. 

67. Lin, D. Y. (2000) Linear regression analysis of censored medical costs, 

Biostatistics, 1, 35-47. 

68. Lin, D. Y., Sun, W. and Ying, Z. (1999) Nonparametric estimation of gap time 

distributions for serial events with censored data, Biometrika, 86, 59-70. 

69. Lin, D.Y., Wei, L.J., Yang, I. and Ying, Z. (2000) Semi-parametric regression 

for the mean and rate functions of recurrent events, Journal of the Royal 

Statistical Society B. 62, 711-730. 

135 



70. Maguluri, G. and Zhang, C.H. (1994) Estimation in the mean residual life 

regression model, Journal of the Royal Statistical Society B, 56,477·489. 

71. Makeham, W.M. (1874) On an application of the theory of the composition of 

decremental forces, Journal of the Institute of Actuaries (London), 18, 317·322. 

72. Mantel, N., Bohidar, N.R. and Ciminera, J.L. (1977) Mantel·haenszel analyses 

of litter-matched time-to-response data, with modifications for recovery of 

interlitter information, Cancer Research, 37, 3863-3868. 

73. Mantel, N. and Ciminera, J.L. (1979) Use of log rank series in the analysis of 

litter-matched data on time to tumor appearance, Cancer Research, 39, 4308-

4315. 

74. Martinussen, T. and Scheike, T.R. (2006) Dynamic Regression Models for 

Survival Data, Springer verlag, New York. 

75. Martz, H.F. and Waller, R.A. (1982) Bayesian Reliability Analysis, John Wiley 

and Sons, New York. 

76. Murphy, S.A. and van der Vaart, A.W. (2000) On profile likelihood, Journal of 

the American Statistical Society, 95, 449·485. 

77. Muth, EJ. (1977) Reliability models with positive memory derived from the 

mean residual life function, In theory and applications in reliability, eds. c.P. 

Tsokos and I.N. Shimi, Academic Press, New York. 

78. Nelson, W.B. (1969) Hazard plotting for incomplete failure data, Journal of 

Quality and Technology, 1, 27-52. 

79. Nelson, W.B. (1970) Hazard plotting methods for analysis of life data with 

different failure modes, Journal of Quality and Technology, 2, 126-149. 

80. Nelson, W.B. (1972) Graphical analysis of accelerated life test data with the 

inverse power law model, IEEE Transactions on Reliability, 21, 2-11. 

81. Oakes, D. (1989) Bivariate survival models induced by frailties, Journal of the 

American Statistical Association, 84,487-493. 

82. Oakes, D. (2001) Biometrika centenary: Survival analysis, Biomatrika, 88, 99-

142. 

83. Oakes, D. and Dasu, T. (1990) A note on residual life, Biometrika, 77, 409-410. 

84. Oakes, D. and Dasu, T. (2003) Inference for the proportional mean residual life 

model, In crossing boundaries: Statistical essays in honor of Jack Hall, Institute 

136 



of Mathematical Statistics lecture notes monograph series, 43, Ed. J. E. Kolassa 

and D. Oakes,. Hayward, CA: Institute of Mathematical Statistics, 105-116. 

85. Pena, E.A., Strawderman, R.L. and Hollander, M. (2001) Nonparametric 

estimation with recurrent event data, Journal of the American Statistical 

Association, 96, 1299-1315. 

86. Pepe, M.S. and Cai, J. (1993) Some graphical displays and marginal regression 

analyses for recurrent failure times and time dependent covariates, Journal of the 

American Statistical Association, 88, 811-820. 

87. Prentice, R.L. and Cai, J. (1992) Covariance and survival function estimation 

using censored multivariate failure time data, Biometrika, 79, 495-512. 

88. Prentice, RL. and Kalbfleisch, J.D. (2003) Aspects of the analysis of 

multivariate failure time data, Statistics and Operations Research Transactions, 

27,65-78. 

89. Prentice, RL., Kalbfleisch, J.D. , Peterson, A.V., Floumoy, N., Farewell, V.T. 

and Breslow, N.E. (1978) The analysis of failure times in the presence of 

competing risks, Biometrics, 34, 541-554. 

90. Prentice, RL.,Williams, B.J. and Peterson, A.V. (1981) On the regression 

analysis of multivariate failure time data, Biometrika, 68, 373-379. 

91. Pruitt, R.c. (1991) Strong consistency of self-consistent estimators: general 

theory and an application to bivariate survival analysis, Technical Report 543, 

Univarsity of Minneapolis, U.S.A. 

92. Pruitt, R.C. (1993) Small sample comparisons of five bivariate survival 

estimators. Journal of Statistical Computing and Simulation, 45,147-167. 

93. Quale C.M., van der Laan M.I. and Robins I.M. (2003) Locally efficient 

estimation with bivariate right censored data. University of California, Berkeley, 

Department of Statistics, Technical Report. 

94. Robins, I.M., Rotnitzky, A. (1992) Recovery of information and adjustment of 

dependent censoring using surrogate markers. In AIDS Epidemiology. 

Methodological issues, Ed. N.PJewell, K. Dietz and V. Farewell, 297-331. 

Boston: Birkhauser. 

95. Sankaran, P.G. and Ansa, A.A. (2008a) Non parametric estimation of lifetime 

distribution of competing risk models when censoring times are missing, 

Statistical Papers (to appear). 

137 



.. 

96. Sankaran P.G., and Ansa, AA. (2ooSb) Non-parametric estimation of bivariate 

survivor function under masked causes of failure, Journal of Nonparametric 

Statistics, 20, 77-S9. 

97. Sankaran, P.G., Lawless, J .F., Abraham, B. and Ansa, A A. (2006) Non­

parametric estimation of distribution functions in bivariate competing risk 

models, Biometrical Journal, 48(3), 399-410. 

98. Sankaran, P.G. and Sreeja, V.N. (2007) Proportional hazards model for 

multivariate failure time data, Communications in Statistics-Theory and Methods 

36(8), 1627- 1642 . 

99. Sankaran, P.G. and Sreeja, V.N. (2008) Proportional Hazards Model for Gap 

Time Distributions of Recurrence Events, Communicated. 

100. Shanbag, D.N. and Kotz, S. (1987) Some new approaches to multivariate 

probability distributions, Journal of Multivariate Analysis, 22, 189-211. 

101. Sinha, S.K. (1986) Reliability and Life Testing, Wiley Eastern Limited, New 

Delhi. 

102. Spiekerman, C.F. and Lin, D. Y. (1998) Marginal regression models for 

multivariate failure time data, Journal of the American Statistical A~sociation, 

93, 1164-1175. 

103. Sreeja, V.N. and Sankaran, P.G. (2007) Proportional Mean Residual Life Model 

for Gap Time Distributions of Recurrent Events, Metron, LXV, n.3 (to appear). 

104. Sreeja, V.N. and Sankaran, P.G. (200Sa) Proportional Hazards Model for 

Successive Duration Times under Informative Censoring, Communicated. 

105. Sreeja, V.N. and Sankaran, P.G. (200Sb) Proportional. Hazards Model for 

Bivariate Competing Risks Data, Communicated. 

106. Strawderman, R.L. (2005) The accelerated gap times model, Biometrika, 92, 

647- 666. 

107. Swartz, G.B.(1973) The mean residual life time function, IEEE Transactions on 

Reliability, 22, 1 OS. 

lOS. Tsiatis, AA (1981) A large sample study of Cox's regression model, The 

Annals of Statistics, 9, 93- 108. 

109. van der Laan, M. J. (1996) Efficient estimation in the bivariate censoring model 

and repairing NPMLE, The Annals of Statistics, 24, 596-627. 

138 



110. van der Laan, M. J. (1997) Non parametric estimator of the bivariate survival 

function under random censoring, Statistica Neerlandica, 51, 178-200. 

111. van der Laan, M. J., Hubbard, A.E. and James, M.R. (2002) Locally efficient 

estimation of a multivariate survivor function in longitudinal studies, Journal of 

the American Statistical Association, 97,494-507. 

112. Visser, M.(1996) Nonparametric estimation of the bivariate survival function 

with an application to vertically transmitted AIDS, Biometrika, 83, 507-518. 

113. Wang, M. C. and Chang, S. H. (1999) Nonparametric estimation of a recurrent 

survival function, Journal ofthe American Statistical Association, 94, 146-153. 

114. Wang, M. C., Qin, J. and Chiang, C. T. (2001) Analyzing recurrent event data 

with informative censoring, Journal of the American Statistical Association, 96, 

1057-1065. 

115. Wang, W. and Wells. M.T. (1997) Non-parametric estimators of the bivariate 

survival function under simplified censoring conditions, Biometrika, 84, 863-

880. 

116. Wang, W. and Wells, M.T. (1998) Nonparametric estimation of successive 

duration times under dependent censoring, Biometrika, 86, 59-70. 

117. Wang, W. and Wells. M.T. (1999) Semi-parametric estimation of the bivariate 

survival function, Technical Report, Institute of Statistics, Academia Sinica, 

Taipei. 

118. Wei, L.J., Lin, D.Y. and Weissfeld, L. (1989) Regression analysis of 

multivariate incomplete failure time data by mode ling marginal distributions, 

Journal of the American Statistical Association, 84, 1065-1073. 

119. Ying, Z. and Wei, L.1. (1994) The Kaplan-Meier estimate for dependent failure 

time observations, Journal of Multivariate Analysis, 50, 17-29. 

139 


	Title
	Certificate
	Declaration
	Acknowledgements
	Contents
	Chapter One
	Chapter Two
	Chapter Three
	Chapter Four
	Chapter Five
	Chapter Six
	Chapter Seven
	References

