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be a fIfteen-digit number such tbat 1031N, Ht f N. But 
N is generated by 8(9ho6880. 

Also, (8)s(9)6000, 4O(9hoOOO are generated by 
(8)s (9)5 8890 and 40(9)98890 respectively. 

The above examples show that theorem (1) is not 
true for numbers > 1013 though they satisfy all other 
given conditions. In other words, I have indirectly 
shown that this theorem cannot be extended further 
without imposing extra conditions. 

Proof of theorem (2) 

12 

Let N= " a"IOi 
~ I , (2.1) 

i-4 

where 0< a4 :::;9, O:::;al :::;9, for i =5 to 12 
(:. d(N):::;74) and d(N)==8(mod 11). 

If possible, let it be generated by 
12 

M=" b··l(y L.. I , (2.2) 
icO 

where O:::;bj:::;~ and bi #:0 for at least one i =0 to 12. 
N=M+d(M) 

12 

= L bi(lOi+I). (13) 
i=O 

Since 10"1 N, i.e. N == 0 (mod Ht), 
12 

L bj + lOOOb3 + IOObl + lObI +bo :O(mod 10"). 
'-0 

12 

L bj + 1000b) + lOOb1 + lObi + bo = 104
• 

j=O 

(2.4) 
Substituting (2.4) in (2.3), we get 

N=b12·1012+bll·1011+ ... +(b4 +1}t04 , (2.5) 
where b4 + 1 #:0 for 104 

( N. 
Hence, from (2.1) and (2.5), 

Q j = bi for 5:::; i:::; 12 
and a4 =b4 + 1. 
Again, from (2.4) and (2.6) we get, 

d(N)+ loo1b3 + 101b2 + 11b1 +2bo= 10001. 

:. bo + b2 : 8(mod 11). 
Since 0:::; bo + b2 :::; 18, we must have bo + b2 = 8 

:::.bo :::;8 and bz :::;8. 
From (2.7), 

(2.6) 

(2.7) 

10001 = d(N) + 1001 b3 + 99b2 + II b1 + 2(bo +b2) 

:::;74+ 9009+(99 x 8)+ 99+ 16=9980, 
which is false. 

Therefore, bo + b2 = 8 is also not possible, which 
shows tbat the solution of (2.1) for equation (2.3) does 
not exist. 
This completes the proof of theorem (2). 

Counterexamples outside the range 0 ~ N ~ 10 13 

in at most 13 digits. Hence the range of N is the 
theorem is 0< N < 1013. Beyond this range, though the 
number satisfies all other conditions, it may not be a 
self-number. To show this I give the following counter
examples. Here (a)" means a repeated k times in a row. 

Example 1. Let N = (9)8850000, deN) = 85: 8(mod 11) 
be such that 104

\ N, 105 r N. But N is generated by 
(9)8849890. 

Example 2. Let N = (9)1060000, deN) = 96: 8 (mod 11) 
be such that 104 1 N, 105 r N. But N is generated by 
(9)10 59880. 

Example 3. Let N = 6(9)852(0)4' d(N) = 85 == 8(mod Il} 
be such tbat lQ4IN, IOs r N. But it is generated by 
M = 6(9)8519890. 

Thus tbe above examples show that theorem (2) is 
not true for numbers> 1013

, though they satisfy all the 
other given conditions. . 

In other words, I have shown that this is the best 
possible range. 
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We discuss how tbe presence of frustration brings about 
irregular behaviour in a pendulum with noolinetr 
dissipation. Here frustration arises owing to lilt 
particular choice of the dissipation. A prelimiaary 
numerical analysis is presented which indicates .
transition to chaos at low frequencies of the driving fom. 

FRUSTRATION is a phenomenon encountered in systems 
with two competing interactions I. In many physical 
systems such as magnetic systerns2, amorphous pack· 
ing, random networks and neural systems, frustration 

For a number N, d(N): 8(mod 11) such that 104 1N, leads to interesting and novel consequences3. In (his 
lOSt N, and if d(N) is at most 74, only then is it a self- 200 paper we introduce a system in which the presence of 
number. In this case, since d(N) = 74, N can be placed frustration precedes the transition to chaotic behaviour. 



be system we consider is a nonlinear pendulum 
en by a sinusoidal force and subjected to a damping 
I depends both on the velocity and the coordinates. 
: onset of chaotic behaviour in such a system has 
I studied recently4 using Melnikov analysis as well 
IwnericaJ methods. However, it appears that the 
le to chaos in such a system is not clearly 
mtood. In this communication we discuss how 
linear dissipation is of crucial significance in the 
~ of frustration and irregular behaviour in this 
lID. 
I ordinary pendulum, with the usual type of dissi
On in which the dissipative term depends lin~r1y on 
1'3ty, has been studied extensivelys. Such a system is 
IIibed by an equation of motion, 

i= -sinx-gx+Asinwt. (1) 

lis found to undergo a cascade of period-doubling 
~tions, which is generic, occurring in both the 

~
ing and rotating regimes. Chaotic behaviour also 
as a result of random transitions between two 

-locked states that have 1Secome unstable. Tn this 
it is the interplay between the driving force and 

· g term that leads to limit cycles as well as 

f,
oCked states, which then undergoes period 

· g. 
Iimit-cycle behaviour is considerably altered 

we consider a system that is described by the 

i= - sin x - gx(x2 -1) + If sin wt. (2) 

clear from (2) that the nature of the velocity
t term is decided by whether Ixl> 1 or Ixl < 1, x 

· g sign as it crosses the value of unity. This 
of sign causes qualitatively different asymptotic 

.' ur. As the system evolves in time, whenever Ixl 
s beyond 1, the dissipation due to the second 

brings the trajectory inwards, decreasing the value 
below 1. Then., instead of dissipation, we have a 
. g solution taking the system to values of x above 
or low values of the driving amplitude and 

cy, the system therefore does not settle down to 
imit cycle asymptotically but goes over a set of 
ories resulting in a band-like limit cycle, which 
'frustrated limit cycle'. In Figure 1, we illustrate 

r values of w = 0.4, A = 0.2 and g = 0.2. 
power spectrum, obtained using the fast F ourier 
rm (FFT) corresponding to these values of w, A 
shows four dominant but broad peaks (Figure 2). 

is in contrast to the FFT for quasiperiodic motion, 
gives rise to sharp peaks. The broadening of the 
arises as a result of the band-like nature of the 

cycle. As A is increased additional peaks appear in 
, indicating the presence of more frequencies, 

at A =0.26 we have ~ chaotic power spectrum 
3). We calculated the maximum Lyapunov 

nt A.max• The variation of A.max with A is given in 
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FiCurc I. The frustrated limit cyclc (,r the Ilonlinc:lr 11oI.-n.1\l11I11I I,., 
w=O.4, g=0.2 and A =0.2 
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F'tpft 2. Power spectrum using FFT corrC:lIpondinll tu ft' - Cl 04. 
g=O.2 and A "0.2. 

Table 1. We find that l".u becomes positiVe! at A -, 0.21. 
None of the general routes to chaos with which wc: 

are familiar seems to describe this transition. IncreOlSintt 
the value of A increases the frustration in the sYMcm. as 
indicated by the presence of additional frequencit.:s in 
FIT and positive Lyapunov exponent. This cun finally 
lead to chaotic behaviour before the trajectory CSCllpt:S 

from the first potentional well. This type of beh~lVi()ur is 
found to occur in the frequency range ().O~ < (11 <. I. 
When w> 1 the frustrated limit cycle exists for small 
values of A. As A is increased, the band splits up into 
periodic cycles. However. this is not followed in any 
sequence and only isolated periodic bands arc (lhscrvcd. 
For large enough values of A, the system asympt()tic;!llv 
setJIC;s down to a limit cycle with the periodicity of th~ 
appqled force. 
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Figure 3. Power spectra showing that as A is increased additional frequencies appear in the system. In b (A =0.26), the system 
shows chaotic behaviour. 

We feel that the frustration makes the system 
extremely sensitive to changes in the external para
meters, so that a small change in the control parameter 
can drive the system to the chaotic state. More detailed 
investigations are necessary before one can make 

Table I. The maximum Lyapunov 
exponent A..-.for the system when 

w"0.4, g=O.2, and A is varied. 

A A.... 
O.lS -2.338065 x 10- 1 

0.2 -6.341918 x 10-4 

0.21 5.757624 x \0-4 
0.22 1.253144 x \0-3 
0.24 1.979667 x 10- 1 

0.26 3.467343 x 10 - 3 

0.28 3.55532 x lO-l 
0.3 4.432041 x 10- 3 

definite predictions regarding the nature of the 
transition to chaos. We are currently investigating this 
and the results will be presented elsewhere. 
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We bave carried out systematic measurements of llop. 
fallout over a period of about 100 years at Dye-3 station 
in Greenland using a precisely dated 77-m deep ice core. 
The core was dated using data on 8Mual cyclic 
variations in b180, artificial radioactivity and elevateil 
levels of acidity due to major volcanic eruptions. The 
results indicate that the faHout of 21tpb has not remained 
constant over the last century and was higher by a factor 
of about two during 1885-1920 than iD 192~1975. 
Possible causes for the changes in fallout due to volcuic 
eruptions and nuclear explosions are discussed. If Iht 
observed trend is valid on a global scale, it raises serious 
doubts about the basic assumption of 118pb geochronology. 

PAST records of climatic changes, atmospheric and 
nuclear fallouts, ,volcanic debris and a wealth of 
other information are preserved systematically in polar 
glaciers and ice sheets. Favourable areas for studying 
such deposition events are the high-latitude regions of 
large ice sheets, such as Greenland in the northern 
hemisphere, which is fed by relatively frequent and 
heavy snowfalls l

. Greenland ice cores are most suitable 
for dating the annual layers of snow deposition using 
very sensitive bl80 and past-acidity records2• The 
natural 210Pb background in Greenland being low 
compared to that in other locations in the northern 
hemisphere because of its remoteness from natural 
sources, it is easy to observe even small changes in the 
deposition nux of 21°Pb caused by natural or artificial 

262ents, such as volcanic eruptions or thermonuclear 
explosions. Analytical study of a well-dated core from 




