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It is shown that the invariant integral, viz~ the Kolmogorov second entropy, is eminently suited 10 
characterize EEG quantitatively. The estimation oblained for a ~c1inically normal~ brain is compared with 
a previous result obtained from the EEG of a person under epileptic seizure. 
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Human brains with IOw neurons exhibit a wide variety of responses for a given 
stimulus, so much so that it is diffICult to identify a cause-and-effect framework 
which will eventually lead to neural modelling. The various attempts till 1975 are 
given by MacGregor and Lewis (1977). It is increasingly becoming evident that 
mechanisms which play in different responses are different. A recent review on 
neural mechanisms in cognition has been given by Harth et a1. (1987). A general 
model of evolution in a neural network has been given by Parikh and Pratap 
(1984). It is also realized that the processes that are capable of explaining higher 
functions of brain are highly nonlinear and non-Marcovian (Pratap, 1987) resulting 
in collective and synergic modes. 

While extensive experimental studies have been conducted to understand the 
properties of individual neurons, it is only recently that attention has been directed 
to the investigation of collective modes by the study of electroencephelogram 
(EEG). In this paper, we propose to give an account of our study of EEG of a 
"clinically" normal brain and compare the results with that obtained from the study 
of a brain during an epileptic seizure (Varghese, et al., 1987). The significant results 
are: (a) the system acts as an attractor of dimension about 5 embedded in a 
subspace of dimension 10 to 15 in an infinite dimensional phase space. (b) The 
second Kolmogorov entropy is a sensitive parameter and can be used with profit to 
classify neural systems. This parameter is found to be higher for "nonnal" brains as 
compared to one subjected to seizure. (c) We have also observed that in some 
"clinically normal" neural networks when subjected to Fourier analysis, there exists 
only odd harmonics. This conspicuous absence of even harmonics is also observed 
in optical bistability in lasers. This aspect is not elaborated here, as this requires a 
more extensive study. As the system is a multifaceted one, it is still not known why 
in some cases we observed this and in others not. Probably this may be due to 
psychological conditions which differ from patient to patient depending on the 
environment, genetic factors etc. (d) The second Kobnogorov entropy as a global 
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property is found to he a sensitive parameter and hence can he used as a diagnostic 
tool to study the neural systems, and since this is a dynamic parameter. this also 
indicates the existence of mUltiple time scales in the system resulting in synergism 
(Patro, 1982; Patro & Pratap, 1983). 

Studies of nonlinear dynamical systems have evolved significant methods of 
analysis of time series. Nonlinear effects in dynamical systems can arise in two 
different ways: a system having a single fundamental characteristic frequency can 
have various higher harmonics in the system which can interact amongst 
themselves nonlinearly producing coherence. On the other hand. if there exists 
more than one characteristic frequency in the system, which arc incommensurate. 
this would produce synergism (Schwinger et al., 1976). The only condition for this 
mechanism is that these frequencies should be close hy. In the present study. we 
have shown the existence of multiple time scales from the study of dimensionalilY 
of the attractor. 

ANALYSIS 

In the study of time series, one recognizes two invariant quantities which arc 
independent of the nature of interaction.<; in the system: characteristic 
dimensionality of the attractor is a static invariant and Kolmogorov entropy is a 
dynamic invariant. and hence they depend on time scales in the system. In the 
present discussion, we shall follow the definitions given by Atmanspacher and 
Scheingraber (1986). We shan adopt the method developed by Abraham et al. 
(1987) which is specially suited for small data sets. 

The EEG amplitudes, considered as a time series, can be measured at various 
times /1 .•• IN and this is given by 

X(t)=!X(t.}, X(/~), ... X{t",)j. (I.l 

We can now construct additional data sets by introducing a time delay 1" which can 
be written as 

X(tJ! ....... X(l'll)' 

X(/, + -r) .•..•.• X((, + T), 

X(/I + rd) ....... X(I., + rd). (2) 

where d is an integer. The above matrix which is rectangular, can be considered as 
a set of N vectors, each column being a vector of d dimension-or (2) gives a set of 
N vectors defined in a d dimensional space and this can be written as 

X(/i)=/X(I;) ... X(l;+ rd)j. (3) 

Figure 1 is a Poincare plot of the data set (I). We have plotted only 40 points as 
X •• 1 against X". This gives the intersection of the Poincare surface by the plane 
(X •• " X,,). One may observe that the trajectories do not show a tendency to retrace 
their paths thereby implying the existence of an attractor. One could plot X". I 
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against X", and it is known that the diagram becomes narrower for larger j-j being 
an integer. As one can easily see, this set of vectors is topological\y equivalent to 
the data set ( 1 ). 

x •. , 

X. 

FIGURE I fuincarc plot of the dala !\Cl used in the analysis. The plot is X •• , again~1 X .. Thi.~ is tbe 
intersection of the surface with the plane. 

We can now define a correlation integral in its discrete fonn as 

CJ= N- 2L:9(e-1 X;- X;I), (4) 
ij 

where N is the number of data points and e is the Heaviside function which is zero 
when the argument is negative and is unity if it is greater than zero. Hence (4) gives 
the number of pairs of points whose absolute distance is less than £-a preassigned 
quantity. The correlation function (4) is plotted in Figure 2, for the various values 
of d, for a normal brain. The plots have been made up to d= 20, and the higher 
ones get more and more crowded. There seems to be a tendency for bunching up 
of the curves. 

For sufficently large data sets, and for large embedding dimension d, it is shown 
(Grassberger & Procaccia, 1983) that 

(5) 
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FlGU RE 3 Slope versus dimension. The dash curve is for the normal brain and t~ solid ~'urw 
is for the one under epileptic seizure. Both curv~lajn saluration around dimension 10. 
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and hence a plot of log[ed( E)] against log{ £) would give a slope v. v is called the 
correlation exponent or correlation dimension. Figure 3 gives the plot of slope 
against dimension d. We have given along with this the curve for the Grand Mal 
epileptic case (Varghese et al., 1987) for comparison. It may be observed that the 
asymptotic line gives the same correlation dimension value as 4.5. This could very 
well be expected as the characteristic dimension of the attractor is a static invariant 
and hence independent of time scales. In their analysis of EEG of a person with 
mental activity also Dvorak and Siska (1986) get the same result. However, they get 
different asymptotic limits depending on the choice of data set, which seems to he 
peculiar. In the study of Petit Mal epilepsy considered by Babloyantz and Dastexhe 
( 1986), a limiting value of about 2 is obtained. It may well be realized that 
classification of various of epilepsy is qualitative and that causes for different kinds 
may indeed be different. Hence, various cases of different values could be 
indicative of different origins of these malfunctionings. 

The second invariant quantity is the Kolmogorov entropy K1, which is defined as 

Kz= Lt r- I Log[Cd{E)/C"-I(c)J. 
£ .... 0 
d-oo 

(6) 

This is ~ dy.namical invariant and is sensitive to time scales within the system. 
Kz = 0 .mp/res a completely ordered system, while K, = co indicates total 
randon:ness. A finite K2 is a sufficient condition for deterministic chaos. In Figure 
4 we gIve the plot of K1 for a normal brain and for comparison we give the same 
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F1~lJRI5 4 The Kolmogomll sec~md entro~y given a~ a funclion of dimension. I\s)mptotl~'ally. ": 
attams dIfferent values therehy showmg the vana~ba'. (a) Normal hrain. (h) epileptic case. 
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for the Grand Mal epilepsy (Varghese et al., 19H 7). The present value of K ~ is about 
72, while for the epileptic case it is only 6. It becomes obvious that K~ depends 
critically on the state of the system. The dependence of time scales and hence K2 
on the dynamics of the system requires a deeper understanding of the mechanism 
in the system. Hence, these results should be considered only as preliminary. But 
the result gives sufficient indication to show that this should be the parameter 
which could be considered as one for classifying the various neural systems. 

CONCLUSIONS 

The most significant result in this paper is the identification of the Kolmogoro\i 
second entropy a" a parameter to characterize a neural system. It ha" recently bcen 
shown (Caputo & Atten, 1987) that of all the Kolmogorov entropies, Kz is the most 
significant onc. Furthermore, K~ depends on time scales within the system and that 
the variations of K~ with the normal and epileptic cases indicate that different time 
scales play significant roles in this malfunction of the neural system. Again, K~ in 
the casc of epilepsy, with less SC"dtter and lower in value, signifies that the system is 
more ordered (in the information sense) than the normal case. In the normal case. 
K2 exhibits a small oscillatory behavior in the asymptotic limit, which probably 
could be traced to spontaneous firings of the neurons. If this is so, then these firings 
get suppressed in the epileptic case and this needs further investigation. 

The characteristic dimen."ion of the attractor has been found to be more or less 
stationary in our case, while in cases reported elsewhere. they have found 
significant variations. In th~ present case we found an attractor of highcr dimension 
5, while in others. the attractor has been traced to lower dimension 2. This 
indicates that the present classification of EEGs is more heuristic and that a more 
rigorous classification is needed. This work is in progress and we shall be reporting 
Ihis elsewhere. We have. however, shown that Kolmogorov second entropy could 
be used as a diagnostic tool in the study of EEG. It is also increasingly felt that the 
Kernal function G given in the general evolution equation of Parkh and Pratap 
( 1984) would take different forms for diffcrent processes. Hence G should be 
considered as a class of functions in cxplaining the higher processes of brain, rather 
than a unique function to explain all the different pattern formations in the neural 
system. This obviously is true. since various time scales in different combinations 
are responsible for the various functions of the brain, and this is detailed in Pratap 
(J 9H7). 
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