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(ANNs) are relatively new computational tools that have found extensive
utilization in solving many complex real-world problems. This paper describes how an ANN can be used to
identify the spectral lines of elements. The spectral lines of Cadmium (Cd), Calcium (Ca), Iron (Fe), Lithium
(Li), Mercury (Hg), Potassium (K) and Strontium (Sr) in the visible range are chosen for the investigation. One
of the unique features of this technique is that it uses the whole spectrum in the visible range instead of
individual spectral lines. The spectrum of a sample taken with a spectrometer contains both original peaks
and spurious peaks. It is a tedious task to identify these peaks to determine the elements present in the
sample. ANNs capability of retrieving original data from noisy spectrum is also explored in this paper. The
importance of the need of sufficient data for training ANNs to get accurate results is also emphasized. Two
networks are examined: one trained in all spectral lines and other with the persistent lines only. The network
trained in all spectral lines is found to be superior in analyzing the spectrum even in a noisy environment.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Spectrum of various compounds and elements are taken up for
spectroscopic studies. In spectroscopic studies, the spectrum of the
sample, taken using a spectrometer, is plotted on a graph and the
various photo-peaks are identified. The spectrum of a sample contains
the characteristic spectral lines of all the elements present in the
sample. Thus, it is a linear superposition of the spectral lines of the
elements present, but scaled. Even the weak spectral line of a
particular element is obtained if the concentration of that element in
the sample is high. Also, the strongest line of an element becomes
unobservable if its concentration is very low. Under such conditions,
only persistent lines are obtained. Hence a spectrum is a linear su-
perposition of all the weak, strong and persistent lines of all the
elements present in the sample. Usually a spectrum contains spurious
peaks over and above the original peaks. The photo-peaks obtained for
the sample help to identify the elements present in the sample and
also to test the purity of the elements. In this paper, the possibility of
using ANNs to identify the spectral lines of the elements even in the
presence of spurious signals has been explored.

Keller and Kouzes have shown that Gamma spectral analysis can be
successfully done using ANNs [6]. Also the same team has done an
identification of the nuclear spectrum forwastewaterhandling [7]. Olmos
has also suggested an automation analysis of radiation spectrum using
ANNs [4] and [5]. All these researchers have suggested that trained ANNs
can be used for automation of specific types of spectrometers. Keller and
91 484 2576714.
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Kouzes used data generated by Monte Carlo simulations and automated
the spectrometer. The input to the ANN is provided by the different
channels of the spectrometer without giving any specifications to the
wavelengthof theobtainedspectrum.Here, anattempt isdone to take into
consideration the characteristic spectral lines of elements and their
wavelength and intensity in the whole visible range. The spectral lines in
the visible range of Cadmium, Calcium, Iron, Lithium, Mercury, Potassium
and Strontium are chosen for the studies. Also the performance of the
system with respect to intensity variations and different noise levels are
evaluated. This technique can be used with any type of spectrometer.

2. Artificial neural networks

ANNs are used in a wide variety of data processing applications
where real-time data analysis and information extraction are
required. One advantage of the neural network approach is that
most of the intense computation takes place during the training
process. Once the ANN is trained for a particular task, operation is
relatively fast and unknown samples can be identified [6]. Here an
automatic approach for peak identification is discussed using artificial
neural networks (ANN).

Work on artificial neural networks (ANN) has beenmotivated right
from its inception because of the understanding that human brain
works in an entirely different way from conventional digital computer.
The brain is a highly complex, nonlinear and parallel information
processing system. It has the capability to organize its structural con-
stituents, known as neurons, so as to perform certain computations
many times faster than the fastest digital computer in existence today.

An ANN is a massive parallel distributed processor made up of
simple processing units which has a natural propensity for storing

mailto:saritha_madhu@rediffmail.com
mailto:nampoori@gmail.com
http://dx.doi.org/10.1016/j.microc.2008.10.006
http://www.sciencedirect.com/science/journal/0026265X


Fig. 1. A neuron model.
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experimental knowledge and making it available for use. It resembles
brain in two aspects: Knowledge is acquired by the network from its
environment through a learning process. Interneuron connections,
known as synaptic weights, are used to store the acquired knowledge.
The procedure used to perform the learning process is called a
learning algorithm, the function of which is to modify the synaptic
weights of the network in an orderly fashion to attain a desired design
objective.

A neuron, shown in Fig. 1, is an information processing unit that is
fundamental to the operation of a neural network. Each intercon-
nected node, or neuron, is defined as a simple processing element
whose output y is given by

yk =Φ ∑
n

j = 1
wkjxj

 !
ð1Þ

where x1, x2,…xn are the inputs to the neuron,wk1,wk2,……wkn are the
synaptic weights, and Φ(.) is known as an activation function. The
activation function is the key to the behavior and performance of
the network. The activation function is for limiting the amplitude of
the output of the neuron. The activation function is also referred to as
a squashing function as it squashes the permissible amplitude range of
the output signal to a finite value.

The purpose of the learning algorithms is to find the synaptic
weight wkj suitable to handle the given problem. There are two
fundamental learning paradigms: learningwith a teacher and learning
without a teacher. Learning with a teacher is known as supervised
Fig. 2. Spectral lines of elements with (
learning and the other unsupervised learning. Here, a feedforward
ANN with a supervised learning is discussed. In supervised learning,
the system is provided with a target output, T. The aim of the learning
algorithm is to adjust the synapticweights in such awayas tominimize
the error between the output of the network Y and target output, T.

Problem specifications help to define the network in the following
ways: the number of neuron in the input layer is the same as the
number of inputs for the problem, the number of neurons in the
output layer is determined by the required number of outputs for the
problem and the choice of the activation function is partly determined
by problem specification of the output. If the response of the system is
linear usually linear activation functions are selected. Otherwise non
linear functions are taken [2] and [3].

3. Modelling issues

The development of a successful ANN project constitutes a cycle of
six phases [1]. The first phase is the problem definition and for-
mulation. In the present case, the problem is to identify the spectral
lines in of seven elements namely Cadmium, Calcium, Iron, Lithium,
Mercury, Potassium and Strontium in the visible range. Second is the
systemdesignphase. Usually supervised learning is suitable. Analyzing
the spectrumof elements taken, fromdatahand-book, it is evident that
the spectral lines occur in discrete values at differentwavelengths as in
Fig. 2. These consist of strong, persistent and weak lines.

In spectroscopic observations made with low concentrations of a
particular element relative to the other elements in the sample, the
number of observable lines of the element is found to decrease with
decreasing concentration until only the most “persistent” or “sensitive”
lines remain. Some authors refer to these lines as the ultimate lines.
Although the ultimate lines depend in principle on the sample, the
spectrometer, and other features of the experiment, a relatively small
group of lines can be specified for each element that will include the
ultimate lines as observed over a broad range of experimental
conditions. These lines are designated as “persistent lines” [8].

Spectrum require for the investigation is recorded using a CCD
camera. They consist of various photo-peaks which are characteristic
a) all lines and (b) persistent lines.



Fig. 3. An ANN to identify the elements.

Fig. 4. Plot to find the number of inputs.
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spectral lines of the elements which constitute the sample. Also it is
not necessary that all characteristic lines of each constituent element
be found in the spectrum. But the probability of occurrence of the
persistent lines of the elements is very high. Thus the spectrum taken
is a linear superposition of the spectra of the constituent elements in
the sample. Indeed, the photo-peaks do not have the same relative
intensity as specified in the data handbook. They are scaled. So, if ei
represents the spectrum of element i in the sample, then the intensity
of the characteristic line of the sample S can be given as:

S = ∑
i
αiei ð2Þ

where αi is the scaling factor of the relative intensity of the spectral
lines of element i.

The output has a linear response with the input. Therefore, the
classification system should have a linear response with respect to the
input. An ANN designed to have a linear response employs linear
activation functions. A feedforwardANN that implements linear activation
function can be reduced to a networkwith a single input layer and a single
output layer. The ANN used in the present application has a single input
and a single output layer as illustrated in Fig. 3. This can be trained using
linear perceptron models or using optimal linear associative memory
(OLAM) algorithms. A linear perceptron does not converge to accurate
results and OLAM is most suited for such applications as shown by Keller
and Kouzes [6].

The optimal linear associative memory (OLAM) approach is based
on a simplematrix associativememorymodel. It was developed in the
early 1970s as a content addressablememoryand is useful in situations
where the input consists of linear combinations of knownpatterns. It is
Table 1
The characteristic spectral lines for cadmium in the range 400–500 nm

Relative intensity Wavelength in Å

200 4134.768
1000 4415.63
100 4678.149
150 4799.912
an improvement over the original matrix memory approach in that it
projects an input pattern onto a set of orthogonal vectors where each
orthogonal vector represents a unique pattern. With linear activation
functions, the training is a straight forward matrix orthogonalization
process where each pattern from the training set is made to project
onto a separate, unique orthogonal axis in the output space [6].

3.1. OLAM weight specification

Step 1. Form matrices of spectra. Arrange spectra as columns in an
n×p dimensional matrix X

j
, where n is the number of inputs and p

is the number of elements and target as columns in a p×p
dimensional matrix Tj.
Step 2. Generate inverse of the spectral matrix X

j
. Since X

j
is

generally not a square matrix, a pseudo-inverse technique is used
to generate X†j.
(† indicates pseudo-inverse)
Step 3. Form the synaptic weight matrix.
Wj=TX†j
The third phase of an ANN development project is system

realization. The spectral lines data from the handbook for each
element is as shown in Fig. 2. In the system realization phase, the
number of input neurons and the number of output neurons are to be
determined. The problem specification determines both. Usually the
number of output neurons is taken as the number of outputs required
for the problem. Since there are seven elements to be identified in this
study, the number of output neurons is taken as seven. Next phase is
to determine the number of input neurons. In this particular study the
number of input neurons is determined by training and testing. Two
sets of data are given for testing: One, a set of noisy data and other the
persistent lines. As the probability of occurrence of persistent lines
(ultimate lines) is the highest, they should be identified in any worse
condition, even though they are few in number.

The spectral data is scanned with a resolution of 1 Å. This is to
ensure discretion with spectral lines which are very close to each
other. In the nanometer scale, they are treated as the same line. There
are about 3000 wavelength points with their intensities. As seen in
Fig. 2, most of these points have intensity values of zeroes. To be more
precise, consider the element Cadmiumwith its characteristic spectral
lines in the range 400–500 nm, given by Table 1.

When scanned with a resolution of 1 Å, up to a wavelength 4134 Å,
the intensity value is zero and at 4135 Å it is 200, then up to 4415 Å it is



Fig. 5. Output of the ANN for different samples.

Table 2
Output obtained for the various samples by the two ANNs

Cd Ca Fe Li Hg K Sr Error

A mixture of Fe and Hg
ANN1 0 0 1 0 1 0 0 0
ANN2 0 0.01 1 0 1 0 0.03 0.001

A mixture of Hg and Sr
ANN1 0 0 0.01 0 0.99 0 0.99 0.0003
ANN2 0 0 0 0 1 0.02 0.99 0.0005

A mixture of Cd and Sr
ANN1 1 0 0.01 0 0.01 0 1 0.0002
ANN2 0.99 0.02 0 0 0.01 0.03 1 0.0015

A mixture of Ca and Li
ANN1 0 1 0 1 0.01 0 0.01 0.0002
ANN2 0.01 0.99 0.01 1 0.01 0 0.13 0.0173

A mixture of Li and K
ANN1 0.01 0 0 1 0 0.8 0.02 0.0405
ANN2 0.23 0.01 0.11 0.99 0 0.8 0.23 0.1581

A mixture of Ca (peak reduced to 80%) and Hg (peak reduced to 70%)
ANN1 0 0.8 0 0 0.69 0 0.01 0.0002
ANN2 0.01 0.79 0 0 0.73 0 0.11 0.0132

Each column represents different elements. RMS error is given in the right hand
column.
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again zero and at 4416 Å it is 1000 and so on. When most of the data
contains very low values or zeroes, the learning algorithms will not
converge to accurate results. So a reduction in data is required. The
most common method in data reduction is to find the area under the
curve formed by the data points which form a polygon. It is to
determine the optimum number of wavelength points that is required
to make the polygon so as to get a better result from the trained ANN.
The data is divided into equal parts and the area is taken for each
segment. As an example, consider that the data is segmented into 150
equal parts each of 20 wavelength points and their intensities. Area is
taken by considering the polygon with these 20 points. Therefore the
data is now reduced from 3000 data points to 150 data points. The
data is then normalized, so that there are now 150 input nodes with
normalized data. This kind of data reduction is done for each element
and is arranged in a matrix form. The matrix, X (as in the OLAM
algorithm), is now having 150 rows and 7 columns, each column
specifying an element. Since 7 elements are to be identified, the target
matrix T is a 7×7matrix. By taking the pseudo inverse of X, it becomes
a 7×150 matrix. The weight matrix, 7×150, is calculated as per the
OLAM algorithm given. Testing of the result is donewith the persistent
line data and the noisy data. For the persistent line and noisy data
of each element, the data is again scanned with 1 resolution and is
segmented into 150 equal parts, area is evaluated and is normalized.
The output is verified for these inputs as per Eq. (1) and the error is
calculated. This is done for segments of varied lengths. For noisy data,
the error goes on decreasing as the number of input nodes increases.
But when the number of input segments is 200, the system has
minimum error for the identification of persistent lines as shown in
Fig. 4. Therefore, the number of inputs to the system is 200. Thus the
network is ready for training.

The goal of the training is to learn an association between the
spectra and the labels representing the spectra. The training process
for the OLAM is a non-iterative process and it converges very fast. The
weight matrix is obtained using pseudo-inverse rule. Two types of
ANNs are trained, one with all the spectral lines (ANN1) and the latter
with the persistent lines (ANN2) alone. Only the visible range (400–
700 nm) of the spectrum is considered in our studies. The persistent
lines are very few in number. For elements like potassium there are
only two persistent lines in the required range, as shown in Fig. 2,
whereas, there are about 44 spectral lines for potassium in the



Fig. 6. Root mean square error plots for (a) different intensities (b) noise level.
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visible range. The ANNs are tested with known samples and unknown
samples.

4. Results and discussions

Now the system is to be tested. Spectra of mixtures were generated
by combining spectra of different elements. Random noise is also added
to the spectra of the mixture. The data is scanned with a resolution 1
and is segmented into 200 equal parts and the area is evaluated. Thedata
thus got is normalized and fed to the system. The output obtained for
eachANNfor 3differentmixtures is as shown in Fig. 5. Thefirst sample is
a mixture of calcium and iron in pure form without any noise. But the
other two samples, one a mixture of lithium and strontium and other a
combination of mercury and potassium, are noisy data. ANN1 gives a
consistent performance than ANN2 even in noisy environment. This is
because the number of observable spectral lines in the visible range is
very high compared to the persistent lines. For the third samplewhich is
a mixture of Hg and K, ANN1 gives more accurate result than ANN2. For
K, there are only two persistent lines in the visible range and these lines
are very close to each other also. To identify K with ANN2 is a very
tedious task and most of the time it leads to errors. ANN1 on the other
handgives averyconsistent result. In this context, theneed for sufficient
spectral lines in the required range for training is emphasized.

More results are shown in Table 2 also. The identification of the
spectral lines of Fe also gave some errors evenwith ANN1. From Fig. 2,
the highest relative intensity of Fe is only 400when compared to other
elements having highest value of 1000. In the training phase, since
the data is normalized, Fe requires no enhancement. But when the
spectrum of Fe is combined with that of others, the intensity of the
spectral lines of Fe becomes very low. So the spectrum of Fe is
enhanced before combining with that of others.

ANN1 correctly identifies most of the spectral lines of elements fed
to it. But ANN2 had hard times in differentiating potassium with
strontium. In certain cases, ANN1 shows presence of mercury, which is
not present. Hg has only 15 spectral lines in the visible range andmost
of them have very low intensity. Certain spectral lines of Hg coincide
with the spectral lines of elements like K. However, the errors with
ANN1 were always smaller than that with ANN2.

The performance of the networks with varying relative intensities
and noise levels was carried out. First the intensities of the lines were
reduced. Here, no noisewas added and all the spectral lines in both data
sets were considered but with reduced intensity. With the intensity as
the original, the outputs of the ANNs were 1. When the intensity was
reduced, the output also correspondingly reduced. As shown in Table 1,
when the intensity of the spectral lines of Ca was reduced to 80%, ANNs
output was only 0.8. The error plot for the output obtained for different
intensity levels are shown in Fig. 6(a). It is seen that the performance of
both thenetworks are the samewhen the intensity is reduced.When the
intensity is reduced below 70% of the original relative intensity value,
the network gives errors. Here, it is worthwhile to note that all spectral
lines in the visible range are considered.

The networks are now tested with different noise levels. The
output for different noise levels are shown in Fig. 6(b). Random noise
is added to the data at different noise levels. The graph shows the
average error for 1000 such data. Here the performance of ANN1 is
better than ANN2. This can be seen in Fig. 5 also.When the noise levels
are very low, the network output is not affected. But as the noise levels
are increased, the output of the network shows errors. As shown in the
Fig. 6(b), noise levels cannot be increased beyond a factor of 7 for both
ANNs. Noise levels in practical cases will not be very high. From this it
is clear that random noise with normal distribution will not affect the
performance of the network. Only if the noise amplitude is increased
to 7 times its original value, some error occurs, which is not a practical
case. Thus ANN1 is preferred over ANN2.

5. Conclusion

The initial results of our research have demonstrated the pattern
recognition capabilities of the neural networks. It has also emphasized
the need for a large number of spectral lines in the desired range for
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the accurate classification of elements. ANN1, which is trained with
more number of spectral lines than ANN2, gives a better performance.
This is because ANNs can easily generalize when data is large. The
classification is attributed to the orthogonalization process used by
the OLAM during training. Since this training is a non iterative process,
the OLAM offers a substantially shorter training time. One of the
disadvantages of the OLAM, is that all the spectral lines of each
element – weak, strong and persistent within the visible range – are
used for training. Good results are obtained when all the lines are
considered. But in a practical case, it is not possible to obtain all the
spectral lines in a given range. Further work has already been initiated
to train a network with the characteristic lines of the elements and to
observe the performance of the network in practical situations.
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