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A study of hydrodynamic turbulence using laser transmission 
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Abstract. Using laser transmission. the characteristics of hydrodynamic turbulence is 
studied following one of the recently developed technique in nonlinear dynamics. The 
existence of deterministic chaos in turbulence is proved by evaluating two invariants viz. 
dimension of attraclor and KoImogorov entropy. The behaviour of these invariants indicates 
that above a certain strength of turbulence the system tends 10 more ordered states. 
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I. Introduction 

Turbulence is a highly nonlinear phenomenon obeying Lorentz equations (Lorentz 
1963) and show instabilities which are formally equivalent with thermodynamical 
phase transitions if they are continuously driven away from thermal equilibrium. Due 
to fundamental fluctuation-<iissipation relations, stochastic forces are imposed on the 
dynamical behaviour of nonequilibrium systems. These forces give rise to fluctuations 
which are purely of stochastic character. Furthermore, in certain parameter ranges, 
nonlinear systems can behave in a way which is known as deterministic chaos if they 
have at least three degrees of freedom (New house et at 1978). 

Experimentally there are two standard methods to get clear evidence for chaotic 
behaviour. One is to observe one of the commonly known transition scenarios to 
chaos. The other method is to determine the invariants of the system which directly 
characterize the chaotic behaviour. Two such invariants are easily extractable from 
the experimental data They are (i) the dimension of the attractor of the system in 
phase space and (ii) the entropy which is connected. with the evolution of the system 
in phase space. These invariants may change if some control parameter of the system 
is varied. Recently, Atmanspacher and Scheingraber (1986) described a method to 
determine the dimension of an attract or and corresponding entropy from the measur
ements of time series of a single variable of the system in the context of the study of 
dynamical instabilities in multimode laser. This technique was applied recently to 
study the dynamics of neutral systems from the analysis of EEG of human brain 
(Varghese et al 1987). 

The aim of the present work is to extend this technique to study the nature of the 
attractor underlying the hydrodynamic turbulence. The behaviour of the invariants 
with the increase in the strength of turbulence is studied. 
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2. Cakulation procedure 

The dimension of the attractor and the corresponding second order entropy are 
estimated from a measure of time series of a single variable of the system using the 
method reported by Atmanspacher and Scheingraber (1986). In the present case, the 
measured variable is the intensity of a laser beam propagated through a turbulent 
liquid medium. The refractive index of the medium will have spatial and temporal 
fluctuations due to the turbulent motion of the liquid. Therefore the propagated laser 
beam will have temporal fluctuations in the intensity. The nature of these fluctuations 
will contain certain infonnation about the dynamics of the turbulence. 

Let {Xo(t)} be the original time series. Then d additional data sets (d= 1, 2, 3, ... ) 
are obtained by introducing a time delay (dAt). From the resulting data sets, d 
dimensional phase space is constructed such that d is greater than the dimension of 
the actual phase space. From the analysis, as described in the following section, one 
can obtain the number of independent degrees of freedom which will describe the 
dynamics. 

If each data set contains N values spaced by a time increment T, then the following 
data sets can be obtained for various values of d. 

Xo(t 1)··· XO(tN ) 

XO(t l + At) ... Xo(tN+At) 

such that t l = tl +(;-1) •. 
Within the vector representation, 

(1) 

and the total set becomes 

where XI is a point in the constructed d dimensional space and we can detennine the 
distance IXi-Xjl which is the usual Euc1idean nonn. 

Then the correlation function can be calculated as 

1 N 
C(r)= lim NZ > H(r-IX/-X}I), 

N-+ao I.J= 1 
(2) 

where H(X) is the Heaviside function. H(X)=O for x<O and H(X) = 1 for X >0. The 
function qr) counts the number of pairs of those points with a distance lXi-Xii 
smaller than r. When the distances between all the pairs of points are less than r, then 
C(r)= 1. 

Grassberger and Procaccia (1983) introduced a second order dimension 

D
z 

= tim log C(r) , 
,-+0 logr 
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D z is a very useful parameter for estimating the information dimension and the fractal 
dimension of an attractor. When D2 is an integer the system is regular, and when it is 
fractal the system is chaotic while when D2-+d, the dimension of the constructed 
space, the system behaviour is stochastic. 

This dimension of the attractor is a static invariant since they do not depend on any 
time scale. But the entropy of a system is always a quantity which has to be specified 
per unit time. Therefore it is a dynamic invariant describing the properties of the 
considered process. 

Similar to the second-order dimension D2 , a second-order entropy K2 can be 
defined as 

I. I' 1 I C,,(r) 
K 2 = Im lm - og -C -()' 

.-0 " .. "" 't" 4+ 1 r 
(4) 

where logarithm is to the base 2. 
K 2 = 0 characterizes a regular system and K 2> 0, corresponds to a chaotic system 

while K 2 -+ co describes completely stochastic system. 

3. Experimental 

A 5 m W He-Ne laser beam expanded to 15 mm was passed through a glass water tank 
(SO x 20 x 15 cm) which was uniformly heated from below. The upper layer of water 
was cooled by circulating cold water through a set of parallel copper tubes placed just 
below the water surface. The temperature gradient so formed, generates turbulent 
motion in the medium. The resulting temperature fluctuations give rise to refractive 
index variations, which affects the intensity of the propagating laser beam. 

The temporal intensity fluctuations ofthe propagated laser beam was detected by a 
photodiode and fed to a data logger. The strength of turbulence was varied by 
changing the heater power. Measurements were taken for a path length of 200 cm by 
multipass arrangements. Intensity fluctuations were sampled at 10 ms interval for 
lower turbulence strengths (up to a heater power -847 W) and at 5 ms interval for 
higher turbulence strengths. 

Figures 1 and 2 show typical examples of the time series over 2·5 s, Cor two heater 
powers 210 Wand 1323 W respectively. Recently we had shown that the intensity 

>. -ut 
C ., -.5 

Figure I. Temporal evolution of the intensity of the laser beam propagated through the 
turbulent medium. Heater power = 210 W. 
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(------1 Sec------) 

F"JlUFe 2. Same as in figure I. H~at~r power = 1323 W. 
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Fiaure 3. Log-log plot of correlation integral C(r} vs distance: r, for dilTerent dimc:nsiolll d. 
for the time series shown in figure L 

fluctuations of the transmitted laser beam agrees quite well with the results for 
atmospheric scintillations (Reghunath and Nampoori 1986). 

The correlation function qr) calculated was at l\t='C= 10 ms and N =210 points 
for lower turbulence strengths, while it was at 'C = l\t = 5 ms and N = 450 points for 
higher turbulence strengths. 

The time series obtained was first normalized to the maximum intensity within tbe 
considered time interval. 

4. Results and discussion 

The curves of log C(r) vs log T for different d are shown in figure 3 for the case of lowest 
heater power. As tne dimension d of the constructed phase space increases, the slope v 
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converges to a limiting value. This is illustrated in figure 4. The converging value of 
the slope is the dimension D2 of the attractor. The line v = d denotes complete 
stochastic behaviour. The fractal or noninteger values of D2 is a sufficient criterion for 
contribution of deterministic chaos to the behaviour of the system. 

From the value of D2 it is possible to extract the number of degrees of freedom of 
the system. The dimension d of the constructed phase space is usually larger than the 
actual number of degrees of freedom of the system. The obtained value D2 = 2·69 
indicates that the investigated process needs only next higher integer number of 
degrees of freedom (i.e. three) to be successfuny modelled. 

3 

2 

D,? = 2·694 ± 0-016 

4 8 12 16 20 24 28 32 

Ficlll'c 4. Slope .. in the linear range of the different curves in figure 3, as a function of the 
dimension d of the constructed phase space. The limiting value of slope gives the second order 
dimension 0 1 = 2-694 ±(H)16. 
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Kz: 10·41:t 0- 31 

d 
F'1pft~. Mean value of lIt log (Cl(r)/CI+ I (r» as a function of d, obtained from the linear 
range of CUO'Cl in figure 3. The limiting value for large d gives the second order entropy 
K2 =lo-42±o-31. 
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Figure 6. The behaviour of tbe second order dimension Dl and second order entropy Kz 
for different heater powers (turbulence strengths). 

In certain cases, the statistical error prevents the discrimination between an integer 
or a fractal value Dz. This was observed for the case .. where the heater power was 
375 w. In such cases, the second order entropy turned out to be useful since it 
provides an additional sufficient condition for chaotic behaviour, namely Kz> O. 

K 2 is estimated from the vertical distance (identical r) between curves belonging to 
successive dimensions d. In figure 5 it is shown how Kz approaches a limiting value 
for high dimension d. The indicated values for each particular d have been calculated 
for the mean value of Cd(r)/C4 + 1 (r) over the linear range of r. Compared with the case 
for Dz• a considerably higher value of d is needed for the convergence of Kz. 

The obtained values of Dz and Kz for different turbulence strengths are calculated 
and are shown in figure 6. The Dz increased steadily with the strength of turbulence 
up to a heater power of 1072 W, after which it showed a decrease. A similar behaviour 
was observed for Kz, though the decrease in its value above 1072 W was not as 
pronounced as that for Dz. 

S. Conclusions 

The two invariants viz. the dimension of the attractor of the system and the entropy 
connected with the evolution of the system are studied for different turbulence 
strengths. The noninteger values of attractor dimension Dz and nonzero values of 
entropy K 2 confirm the contribution of deterministic chaos to the behaviour of the 
system. 

The steady increase of Dz with turbulence strengths shows that the minimum 
number of variables which are needed to successfully model the system is increasing. 
Evidently the number of degrees of freedom of the system is increased. In other words 
the complexity of the system increases. This is substantiated by corresponding 
increase in second order entropy K 2. 

The decrease of D2 after a particular healer power (turbulence strength) implies a 
simplification of the turbulence, by reducing its degrees of freedom. Similar results 
were obtained by Atmanspacher and Scheingraber (t 986) for the studies on dynamical 
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instabilities in a multimode CW dye laser. The reduction in the complexities of the 
system is iurther confirmed by the decrease in K1 . This leads to the conclusion that 
beyond a critical turbulence strength, a hydrodynamic turbulent system can be 
represented in a lesser dimensional space. At this region the complexity of the system 
is reduced. In other words the system tends to more ordered states above a critical 
turbulence strength. 
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