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Chapter One 

Preliminaries 

1.1 Introduction 

Lifetime data is a tenn used for describing data that measures time to 

occurrence of some event. The event may be death, appearance of some disease, 

relapse from remission, equipment breakdown etc. The development of models 

and methods to deal with lifetimes took place in the second half of the twentieth 

century. The development proceeded into two main inter mingling streams; viz 

reliability theory and survival analysis. The reliability theory concerns with 

models for lifetimes of components and systems in the engineering and industrial 

fields and the survival analysis concerns with medical and similar biological 

phenomena. 

Lifetime or time to event is usually considered as a positive real valued 

random variable having a continuous distribution function. The definition of 

lifetime includes a time scale and time origin, as well as specification of the event 

that determines lifetime. In some instances, time may represent age, with the time 

origin as the birth of the individual. In other instances, the natural time origin may 

be occurrence of some event such as entry into a study or diagnosis of a particular 

disease. In some situations, it is difficult to say precisely when the event occurs, 

for example, the case of appearance of tumour. The time scale is not always real 

or chronological time, especially where machines or equipments are considered. It 

could be the number of operations a component performs before it breaks down. 

The following examples illustrate various types of lifetime data that arise in 

practical situations. 
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1. Manufactured items with mechanical or electric components are often 

subjected to life tests in order to obtain information on their durability. This 

involves putting items in operation, often in laboratory setting and observing 

them until they fail. It is common here to refer to the lifetimes as 'failure 

times' since when an item ceases operating satisfactorily, it is said to have 

'failed'. 

2. In medical studies dealing with potential fatal diseases, one is interested in the 

survival time of individuals with disease, measured from the date of diagnosis 

or some other starting point. For example, it is common to compare treatments 

for a disease at least partly in terms of survival time distributions of patients 

receiving the different treatments. 

3. A standard experiment in the investigation of carcinogenic substance is one in 

which laboratory animals are subjected to doses of the substance and then 

observed to see if they develop tumours. The main variable of interest is the 

time to appearance of a tumour, measured from when the dose is administered. 

4. In remission period of leukemia patients, the patient, though not free of 

disease, is free of symptoms. The length of remission period is a variable of 

interest in this study. The patients in the state of remission are followed over 

time to see how long they stay in remission. 

In survival studies, many subjects fail to continue to be in the study till the 

event of interest occurs. This leads to incomplete data due to censored 

observations. The analysis of lifetime data under censoring is a major issue in 

survival studies. 

1.2 Censoring 

Censoring is inevitable in survival and reliability studies because the 

experimenter is unable to obtain complete information on lifetime of individuals. 

For example, patients in a clinical trial may withdraw from the study, or the study 
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may have to be tenninated at a prefixed time point. There are various categories of 

censoring such as right censoring, left censoring and interval censoring. 

1.2.1 Right Censoring 

In both engineering and medical applications, right censoring is the most 

common form of censoring with lifetime data. In right censoring only lower 

bounds on lifetime are available for some individuals. Right censoring arises in 

certain situations because some individuals are still surviving at the time that 

study is tenninated. In other instances, individual may move away from the study 

area for reasons unconnected with the study, so contact is lost. In some other 

situations, individuals may be withdrawn or decide to withdraw from the study 

because of worsening or improving prognosis. 

Two types of right censoring are built into the design of experiments to 

reduce the time taken for completing the study. 

Type I censoring: Sometimes experiments run over a fixed time period in such a 

way that an individual lifetime will be known exactly only if it is less than a 

predetennined value. In such situations the data are said to be Type I or time 

censored. For example, in a life test experiment n items are simultaneously put 

into operation. The study is terminated at a predetermined time to' Suppose that r 

items are failed by this time and the remaining n - r items are operative. Then 

there are n - r censored items and the data consist of lifetimes of r failed items 

and the censoring time to for the remaining n - r items. Type I censoring occurs 

frequently in medical research when a decision is made to tenninate a study at a 

date on which not all individual's lifetime will be known. 

Type 11 censoring: The term type II censoring refers to the situation where n 

individuals start on study at the same time, and the study tenninates once k 

lifetimes have been observed. Thus only the smallest k lifetimes, in a random 

sample of n, are observed where k is a specified. integer between I and 11. This 

type of censoring is also known as order censoring or failure censoring. 

3 
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1.2.2 Left Censoring 

Left censoring occurs in life test applications when a unit has failed at the 

time of its first inspection; we know only that the unit failed before the inspection 

time. In other situations, left censored observations arise when the exact value of a 

response has not been observed and we have, instead, an upper bound on that 

response. Consider, for example, a measuring instrument that lacks the sensitivity 

needed to measure the observations below a known threshold. When the 

measurement is taken, if the signal is below the instrument threshold, we know 

only that the measurement is less than the threshold. 

The data set may contain both left and right censored observations and in 

that case lifetimes are known as doubly censored. A psychiatrist collected data to 

detennine the age at which children have learned to perfonn a particular task. The 

lifetime was the time the child has taken to learn to perfonn the task from date of 

birth. Those children who already knew how to perform the task, when he started 

the study were left censored and those who didn't learn the task even by the time 

the study ends were right censored observations. 

1.2.3 Interval Censoring 

Interval censoring is still another type of censoring which occurs when the 

lifetime is only known to occur within an interval. Such pattern occurs when 

patients in a clinical trial have periodic follow up and the patient's event time is 

only known to fall in an interval. A comprehensive review on different type of 

censoring is available in Lawless (2003). 

Another fonn of incomplete data that arises 10 survival and reliability 

studies is truncation. 

1.3 Truncation 

Truncation occurs when only those individuals whose lifetime lies within 

a particular range are observed. An individual whose lifetime is not in that certain 

4 
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range is not observed and no information on this subject is available to the 

investigator. Truncation is different from censoring, because in censoring there is 

at least partial information on each subject. 

Left truncation occurs when we observe only those individuals whose 

lifetime exceeds the truncation time. A common example of left truncation is the 

problem of estimating the distribution of the diameters of microscopic particles. 

The only particles big enough to be seen based on the resolution of the microscope 

are observed and smaller particles do not come to the attention of investigator. In 

survival studies, the truncation event may be exposure to some disease, entry into 

retirement home, occurrence of some intennediate event etc. As an example, 

consider the study on ages at death of residents of retirement home. The ages at 

which individuals enters to the retirement home is the truncation time. Since an 

individual must survive to a sufficient age to enter the retirement home, all 

individuals who died earlier have no chance to be in the study and are considered 

as left truncated. In this type of truncation, any subjects who experience the event 

prior to the truncation time are not observed. The truncation time is often called 

the delayed entry time since we only observe subjects from this time until they die 

or are censored. 

Right truncation occurs when we observe the lifetime only when lifetime 

is less than or equal to the truncation time. Right truncation arises, for example, in 

estimating the distribution of stars from the earth, in that stars too far away are not 

visible and are right truncated. Another example is mortality study based on death 

records. Right truncated data is particularly relevant to the studies of AIDS. As an 

example, Kalbfleisch and Prentice (2002) gives data on transfusion related AIDS 

cases in the United States. The study contains those individuals who were 

diagnosed with AIDS prior to 1988 and for whom the mode of infection was 

determined to be by blood transfusion. The distribution of the time from infection 

to diagnosis of AIDS (incubation period) is of interest. In this study, the lifetimes 

included in the study are subject t<? very strong selection favouring the shorter 

incubation times and individuals whose diagnosis occurs after the end of the study 
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period are not included in the study (thus right truncated). For elaborate discussion 

on truncation, one could refer to Lawless (2003) and Klein and Moeschberger 

(2003). 

1.4 Basic Concepts 

Let T be a nonnegative random variable representing lifetimes of 

individuals having absolutely continuous distribution function F (.) with respect 

to the Lebesgue measure. Let f (.) denote the probability density function (p.d.f.) 

of T . All functions, unless stated otherwise, are defined over the interval [0,00). 

1.4.1 Survivor Function 

A basic function that describes lifetime data is the survivor function, which 

is defined as 
00 

S(t)=P(T~t)== Jf(x)dx. 
, 

The survivor function S (t), is the probability of an individual surviving beyond 

time t. In the context involving lifetimes of systems or manufactured items, S (t) 

is referred to as the reliability function. S ( t) is a non-increasing continuous 

function with S (0) = 1 and lim S (t ) = o. The p.d.f. of T may be represented as 
1---)" 

1.4.2 Hazard Rate 

f ( t ) = _ dS ( t) . 
dt 

An important function that characterizes lifetime distributions is the hazard 

rate h ( t ) , defined as 

p(t~T<t+.MIT~l) 
h{t)=lim . 

I'.HO Ilt 
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The hazard rate specifies the instantaneous rate of death or failure at time t, given 

that the individual survives up to time t. Thus h (t) M is the approximate 

probability of death in the interval [t,t+~t), given survival up to time t. The 

hazard rate is also known as conditional failure rate in reliability, the force of 

mortality in demography, the intensity function in stochastic processes, the age­

specific failure rate in epidemiology, the inverse of Mill's ratio in economics or 

simply the hazard function. When the p.d.f. of T, .f (t) exists, then the hazard 

rate is expressed as 

h(t)=!(t) 
S (t) 

d log S (t) 
= 

dt 

(1.1 ) 

The hazard rate fully specifies the distribution of T and determines the survivor 

function. Integrating (1.1) with respect to t and using S (0) = 1 , we obtain 

(1.2) 

The p.d.f of T can be obtained from (1.1) and (1.2) as 

f (t) = h(t).exp{ -fh(X)dx}. 

A related function is cumulative hazard rate H (t) , defined as 

, 
H (t) = Jh(x)dx. (1.3) 

o 

S ( t) can be represented in terms of H ( t) as 

S (t) = exp { - H ( t )} . (lA) 

7 



Preliminaries 

1.4.3 Reversed Hazard Rate 

Recently, another concept, that is useful in the survival studies, is 

developed which is referred as reversed hazard rate. The reversed hazard rate 

(RHR) of T is defined as 

1. P(t-~t < T ~ t IT St) 
m(t) = Im . 

AI->O ~t 
(1.5) 

The reversed hazard rate specifies the instantaneous rate of death or failure at time 

t, given that it failed before time 1. That is, in a small interval, III (t) ~t is the 

approximate probability of failure in the interval (t - ~t, t]' given failure before 

the end of the interval. Reversed hazard rate was proposed as a dual to the hazard 

rate by Barlow et al. (1963). When the p.d.f. of T, .f (t) exists, (1.5) is expressed 

as 

( )_ J(t) _ dlogF(t) 
mt- ()- , 

F t dt 
(1.6) 

where F (t) is the distribution function of T. The RHR, m(t) determines the 

distribution function uniquely by the relationship 

F(I) =exp{ - jm(U)dU}. 

which was given by Keilson and Sumita (1982). The p.d.f of T can be obtained 

from m(t) using the relationship 

f (I) = m(1 )exp{ - jm( U )dU}. 

Ware and DeMets (1976) used RHR for the estimation of the distribution 

function in the presence of left censored observations. Shaked and Shanthikumar 

(1994) presented several results based on reversed hazard rate ordering and 

characterization of lifetime distributions based on RHR. Block et al. (1998) 

pointed out that there is no non-negative random variable having an increasing 
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RHR distribution and observed that increasing hazard rate distributions like

Weibull, gamma and lognormal distributions are decreasing reversed hazard rate

distributions. Block et al. (1998) characterized properties for k out of n systems

in terms of RHR. Finkelstein (2002) expressed the relation between hazard rate

h(t) andRHR met) as

met)
h(t)S(t)

F(t)

h(t)

Lawless (2003) developed nonparametric estimators of S(t) for the right

truncated observations using reversed hazard rates. Chandra and Roy (2005)

defined classes of distributions based on RHR and studied their implicative

relationship. RHR is useful in forensic science and in actuarial science, as the time

elapsed since failure is a quantity of interest in order to predict the actual time of

failure. For more properties and applications of RHR function, one could refer to

Kalbfleisch and Lawless (1989), Gupta and Nanda (2001), Chandra and Roy

(2001), Gupta and Wu (2001), Nair and Asha (2004), Nair et al. (2005),

Bartoszewicz and Skolimowska (2006) and Sankaran and Gleeja (2007a).

The cumulative reversed hazard rate M (t) is defined as

M (t) = fm(x)dx.
t

F (t) can be represented in terms of M (t) as F (t) =exp{-M (tll.

1.4.4 Mean Waiting Time

RHR is closely related to another important concept known as the mean

waiting time. The mean waiting time (MWT) of an item failed in an interval [O,t]

is defined as

t

fF (u)du
Jl(t) ~ E (t - TIT ~ t) =",-0-,------,----­

F (t)

9
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MWT is also known as expected inactivity time (EIT) or mean past lifetime 

(MPL). Assuming ,u(t) as differentiable, MWT is related to met) through the 

relationship 

l-,u'(t) 
m{t)= ,u(t) , 

where ,ll'(t) = d,u(t) . The distribution function can be uniquely determined from 
dt 

relation 

Chandra and Roy (2001) studied various properties of mean waiting time 

with respect to RHR. Finkelstein (2002) focused the importance of MWT in 

defining RHR and studied its properties. Li and Lu (2003) established some 

stochastic comparisons on MWT and residual life of series and parallel systems 

and presented some applications based on these comparisons. Reliability 

properties of MWT are given in Nanda et a1. (2003). Asadi (2006) studied 

properties of MWT for components of parallel system. One could refer to Kayid 

and Ahmad (2004) and Nanda et a!. (2006) for further properties of MWT. 

1.5 Estimation 

One of the basic objectives in lifetime data analysis is to estimate the 

distribution function F (t) or the survivor function S (t). The two common 

approaches used in such contexts are parametric and non-parametric approaches. 

In parametric method, we assume that the random variable T follows some p.d.f. 

f (t; B) where the functional form of f (t; e) is known but the parameter e is 

unknown. Continuous distributions such as exponential, Weibull, lognormal, 

loglogistic, Pareto and inverse Gaussian are commonly used for modelling 

lifetime data. For estimation of parameters, we can employ different procedures 

such as maximum likelihood, method of moments, Bayesian techniques etc. For 
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more details on parametric lifetime models and their estimation, one may refer to 

Martz and WaIler (1982), Sinha (1986) and Lawless (2003). 

In many practical situations, the functional fonn of f (t ) is seldom 

known. In such situations, the estimation of F (t ) or S (t ) is done using 

nonparametric methods. The non-parametric methods for the estimation of 

distribution function or survivor function have become popular within survival 

studies for several reasons. In many occasions, the sample size is not enough to 

detennine the parametric model associated with given data. Further, lifetime data 

often have some features that can not be easily explained by parametric models. 

Censoring and truncation cause problems for the detennination of appropriate 

parametric model for the given lifetime data. If there are no censored 

observations in a sample of size n, S (t) can be estimated by the empirical 

survivor function, defined as 

SA () = Number of observations;;:: t > 0 
f,SF t , t - . 

n 

When there are right censored observations, some modifications are 

necessary. Accordingly, Kaplan and Meier (1958) defined the product-limit 

estimator for the survivor function S (t). 

1.5.1 Kaplan-Meier Estimator (Product-Limit Estimator) 

Suppose that n individuals have lifetimes represented by random variables 

I;, T2 , ... , I;, which are subject to right censoring. Let Cl' C2 , "', C'I be the 

corresponding censoring times. Then the observed data consist of (1;, ~), where 

1; = min (T;, Cj ) and ~ = 1 (Y; = 1; ), i = 1,2, .. , n with [(.) as the usual indicator 

function. Suppose that there are k (k:5 11 ) distinct times tl < t2 < ... < tk at which 

11 
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n 

death occur and d j = L I (1; = 1j' ~ = 1) represent the number of deaths at 1j" 
i=l 

Then the product limit estimator of S (1) is defined as 

(1.7) 

n 

where n j = L I (t; ~ tJ is the number of individuals at risk at t j' which is the 
i=l 

number of individuals alive and uncensored just prior to t}. The product-limit 

estimator does not change at censoring time points. The product-limit estimator 

can be derived as a nonparametric maximum likelihood estimator. When there are 

no censored observations, it reduces to empirical survivor function. 

Another approach is to develop nonparametric estimator of S (t) using the 

estimator of cumulative hazard rate. Accordingly, a nonparametric estimator of 

H (t) was proposed by Nelson (1969) and then independently by Aalen in his 

doctoral thesis in 1972. 

1.5.2 Nelson-Aalen Estimator 

The estimator of the cumulative hazard rate corresponding to (1.3) is given 

by Riemann-Stieltjes integral as 

I 

H(t)= JdH(u). 
o 

Thus the estimator of H (t) is given by 

" " d. H(t)= ~ _1. 

j:l,SI nj 

(1.8) 

This is called the empirical cumulative hazard rate but is more commonly known 

as the Nelson-Aalen estimator. 

Thus from (lA), S ( t) can be estimated by 
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S (t ) = exp { - iJ (t )} . 

Both the Kaplan-Meier and Nelson-Aalen estimators possess desirable 

large sample propelties like strong consistency and asymptotic normality. It is 

important to note that both fI (t) and S (t) are nonparametric maximum 

likelihood estimators. For more properties of 0.7) and (l.8), one may refer to 

Lawless (2003). 

When there are left censored observations, Ware and DeMets (1976) 

developed the estimator of distribution function by reversing time. 

1.5.3 Estimation of Distribution Function for Left Censored Data 

Suppose that events occur at times tl < t2 < ... < tk and let 1j be the number 

of events occurring at tj and nj be the number of observations (censored or not) 

less than or equal to t j , and define 

nj - r; . 1 2 k Pj =--, 1=, , ... , . 
nj 

Then estimate of distribution function is given as 

{ll P.' A I 

F (t) = ;:1,>1 

I, 

For more properties of F (t) , one could refer to Ware and DeMets (1976). 

1.6 Regression Models 

An important way to represent heterogeneity in a population is the use of 

explanatory variables or covariates or risk factors. The explanatory variables can 

be basic variables like gender and age; they can be factors of particular interest. 

like treatment in a drug trial; or they can be nuisance variables, which are helpful 

to include in order to describe the risk of events as precisely as possible, but 

whose effect we are not directly interested in. 

13 



Preliminaries 

Consider lifetime variable T > 0, and suppose that a vector of explanatory 

variables i = (Xl'X2,···,xp ) is available on each individual, their measurements 

having been taken at the beginning of the study. Thus, :! may include quantitative 

variables (such as blood pressure, temperature, age and weight) and qualitative 

variables (such as gender, race, treatment and disease status). Sometimes, it is of 

great interest to ascertain the relationship between the lifetime variable T and one 

or more explanatory variables. This would be the case if one were comparing 

survivor functions for two or more treatments. to detelmine the prognosis of a 

patient with various characteristics, or identifying pertinent risk factors for a 

particular disease, controlling for relevant confounders. The main aim in such 

contexts is to understand and exploit the relationship between lifetime and 

covariates. One way to achieve this is through regression models, in which the 

dependence of lifetime in covariates is explicitly recognized. The most commonly 

used regression model is Cox (1972)'s proportional hazards model. 

1.6.1 Proportional Hazards Model 

Cox (1972) defined proportional hazards model as 

h(t)=;hu{t) (1.9) 

where hu (t) is an arbitrary baseline hazard rate and ; is some real constant of 

proportionality and is a measure of relative risk. If :! is a column vector of 

covariates and I!. is a column vector of parameters, then fjJ = ef!.',J. • and the model 

can be represented as 

h ( t I :!) = ell''! flu (t ) . (1.10) 

The model (1.10) is called proportional hazards model, since the ratio of 

hazard rates 

(1.11) 
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for two individuals with covariate vector .:! and l, is independent of time. The 

identity (1.11) is called the relative risk (hazard ratio) of an individual with risk 

factor.:! having the event as compared to an individual with risk factor .:!* . 

From (l .9), the survivor functions can be related as 

S (t) = [ So (t) J ' 
where So (t) is the baseline survivor function. The class of models provided by 

this process is sometimes referred to as the Lehmann class (Lehmann, 1953). For 

a comprehensive review on this topic, one can refer Kalbfleisch and Prentice 

(2002) and Lawless (2003). 

1.6.2 Proportional Reversed Hazards Model 

Gupta et al. (1998) proposed a dual model called proportional reversed 

hazards model, which is expressed as 

(1.12) 

where 8 > 0 and mo ( t) is the baseline reversed hazard rate. Then the relation 

between distribution functions can be expressed as 

where Fa (t) is the baseline distribution function. 

The proportional reversed hazards model has strong similarity with the 

proportional hazards model, but is applicable in situations where proportional 

hazards model becomes inappropriate. For example, the model (1.12) is useful in 

the analysis of left censored or right truncated data. Gupta et al. (1998) and Gupta 

and Gupta (2007) studied the monotonicity of hazard rate and reversed hazard rate 

of the model (1.12). The properties based on stochastic comparisons and results 

related to ageing notions of random lifetimes are given in Crescenzo (2000). Chen 

et al. (2004) employed the proportional RHR models to study the longitudinal 
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pattern of recurrent gap times. Further, Chen et al. (2004) introduced the concept 

of frailties in proportional RHR models. The applications and methods of 

inference of the model (1.12) are investigated in Sengupta et al. (1998) and Gupta 

and Gupta (2007). 

1.7 Multivariate Lifetime Data 

Multivariate lifetime data arise when each study subject experiences 

several events or when we study repeated occurrence of the same event or when 

there exists some grouping of subjects which induces some dependence among 

lifetimes of the same group. The OCCUlTence of blindness in the left and right eye 

of a person, the sequence of tumour occurrence and the onset of genetic disease 

among family members are some examples of such situations in biomedical 

research. 

Hougaard (2000) provides an extensive treatment on the analysis of 

multivariate lifetime data. Hazard rates and other related functions discussed in 

the case of univariate lifetime data can be defined in various ways for multivariate 

lifetime data. For simplicity, we confine our discussions to bivariate lifetime data. 

1.8 Bivariate Lifetime Data 

In many practical situations, one may have paired lifetime data. For 

example, times to death or times to initial contraction of disease may be of interest 

for littermate pairs of rats or for twin studies in humans. The time to deterioration 

level or time to reaction of a treatment may be of interest in pairs of lungs, 

kidneys, eyes or ears of humans. In reliability, one may be interested in the 

distribution of the life lengths of a particular pair of components in a system. 

Let T = (7;,7;) be a non-negative random vector admitting an absolute 

continuous distribution function F (1" (2 ) with respect to the Lebesgue measure. 

Then the survivor function of T , denoted by S (1\,12 ) , is given by 
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which is related to F ( 11,/2 ) as 

If the density function of T, f (/1,12 ) , exists, then we have 

1.8.1 Bivariate Hazard Rate 

In the bivariate set up, we can define the hazard rate in more than one way. 

The first definition of bivariate hazard rate was given by Basu (1971). 

Basu (1971) defined the bivariate hazard rate as a scalar quantity given by 

Unlike the univariate case, h(tp t2 ) , in general, does not determine the bivariate 

distribution uniquely. 

A second approach in defining bivariate hazard rate is provided by 

10hnson and Kotz (1975). 10hnson and Kotz defined bivariate hazard rate as a 

vector given by 

(1.13) 

where 

1j (tp t2 ) is the instantaneous rate of failure of I; at time 11 given that I; was alive 

at time I; = t1 - and that T2 survived beyond time T2 = 12 • The meaning of 
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When components 1j (t, ,t2 ), i = 1,2 exists and are continuous in the open 

set containing R; = { (tl ' t2 ) I tj > 0, i = 1,2} by choosing a path orthogonal to the 

axis connecting ( 0, 0) and (t, ,t2 ) in R;, we have the representation from 

Galambos and Kotz (1978) as an extension of the one dimensional relationship 

(1.2). Accordingly, S (("t2 ) can be determined from (1.13) as 

S (I"t,) = exp{ -'1" (u,O)du -Jr, (I"U )dU} (1.14) 

or 

S (1,,1,) = exp{ -'1" (u,t,)du - J r, (O,u )dU}' (1.15) 

Thus, the vector r (t l ,t2 ) uniquely detennines the distribution of T through (1.14) 

and (1.15). 

Darbowska (1988) provided representation of bivariate survivor function 

in terms of cumulative hazard rate which is a vector of three components that 

correspond to double and single failures. The cumulative hazard rate vector is 

defined as 

The bivariate survivor function is uniquely represented using A (t" t2 ) as 

S (t"t2 ) = TI (1- AIO (du,O))TI(I- AOl (O,dv))TI (1- L(du,dv)) 
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(d ) AIO (du, v-)AOl (u-,dv) - All (du,dv) 
where L u, dv = ----':::--'----'----=--'-;---;----=--.....:..:...-'-----,---=-

(1- AIO (du, v-))( 1-AOl (u-,dv)) 

Darbowska (1988) also provided an extension of the above representation 

to the right censored set up. Cox (1972), Marshall (1975), Shanbag and Kotz 

(1987) Basu and Sun (1997) and Finkelstein (2003) have also discussed different 

versions of hazard rate in the bivariate (multivariate) set up. The various 

definitions of reversed hazard rate in bivariate set up will be discussed in 

Chapter 2. 

1.9 Frailty Models 

Consider lifetimes of several individuals, which can not be assumed to be 

independent, because they are related in some way. A prototype bivariate example 

is twins where monozygotic (identical) twins have all their genetic material in 

common and the dizygotic (fraternal) twins have a part of their genetic material in 

common, like other siblings. However, both types of twins share the same 

childhood environment, including particular pre-birth period, and therefore are 

more like each other than other siblings. Another example is ordinary siblings 

where siblings share some genes and a part of childhood environment. Other 

examples are married couples who share a common unmeasured environment, the 

group life insurance of employees sharing a common environment at their 

workplace and the times to occurrence of different nonlethal diseases within the 

same individual. In each of these situations, there is some association within the 

groups of lifetimes. 

A model that is increasingly popular for modelling association between 

individual lifetimes within subgroups is the frailty model. The notion of frailty 

was introduced by Vaupel et al. (1979). It provides a convenient way to introduce 

random effects, dependence and unobserved heterogeneity into the models for 

lifetime data. For example, in clinical studies, the effect of a drug or a treatment 

may differ substantially between subgroups of patients. In such contexts,­

individuals posses different frailties and that those patients who are most frail will 
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die earlier than others. The most common model for the frailty is a common 

random effect that acts multiplicatively on the hazard rates of all subgroup 

members. The model assumes that the hazard rate for lifetime T gIven an 

unobservable random variable W is 

h(t)=Who(t), (1.16) 

where ho (t) is the baseline hazard rate. The group variation is described by the 

random variable Wand is common to individuals in a group and constant over 

time. The survivor function corresponding to (1.16) can be represented as 

S (t) = [ So (t) r ' (1.17) 

where So (t) is the baseline survivor function. From (1.17), it is clear that frailty 

models are extensions of proportional hazards model of Cox (1972). 

The most widely used frailty model is shared frailty model in which one 

assumes that the hazard rate for lifetime Tj given W is given as W hj (t) for 

j = 1,2. Then bivariate survivor function for (~,T2) given W is 

I j 

where Hj(tj }= Ihj(u)du,isthecumulativehazardrate Tj given W for j=I,2. 
o 

The bivariate survival function is then given by integrating out W as 

S (tl ,t2) = E( exp{-W[ HI (tl )+ H2 (t2 )]}) = L( HI (tl)+ H2 (t2))' (l.t8) 

where E (.) denotes the mathematical expectation and L ( s ) = J e -sw dO ( w) is the 

Laplace transform of the distribution of W, with G( w) as the distribution 

function of W. Klein (1992) pointed out that if the realization of W is less than 

one, then all the members of the group tend to experience the event of interest at 

an earlier time, where as opposite occurs if W is greater than one. Therefore 

positive association between group members is induced by frailty. 
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One important problem in the area of frailty models is the choice of the 

frailty distribution. The most common choice of distribution for W is gamma 

distribution with mean one and unknown variance e > O. Then, for the shared 

frailty model, the survival function (1.18) is obtained as 

I 

S{tp t2 )=[s,{t,fO +S2(t2 rO -lJ9. 
When e = 0, lifetimes ~ and T2 are independent and high value of e 

indicates a high correlation between lifetimes. Frailty model with gamma 

distribution has been studied in Vaupel et a1. (1979), Oakes (1982), Clayton and 

Cuzick (1985), Klein (1992) and Andersen et a1. (1993). Balakrishnan and Peng 

(2006) discussed frailty model with generalised gamma distribution. Other 

choices for distribution of frailty like positive stable, Weibull, lognormal etc. are 

discussed in Hougaard (2000). 

For the analysis of shared frailty models, one could refer to Clayton 

(1978), Clayton and Cuzick (1985) and Hougaard (2000). Maximum likelihood 

estimation of the parameters of the model via the EM algorithm was studied by 

Nielsen et al. (1992). Murphy (1994, 1995) proved the consistency and asymptotic 

normality of the maximum likelihood estimators. 

The shared frailty model explains association within groups (family, litter 

or clinic) or for recurrent events facing the same individual. However, this 

approach has some limitations. First, it forces unobserved factors to be same 

within group, which is not acceptable. For example, sometimes it may be 

inappropriate to assume that both partners in a twin share all of their unobserved 

risks. Second, the dependence between lifetimes within group is based on 

marginal distributions. However, when covariates are present in proportional 

hazards model with gamma distributed frailty, the dependence parameter and the 

population heterogeneity are confounded (Clayton and Cuzick. 1985). This 

implies that the joint distribution can be identified from the marginal distributions 

(Hougaard, 1986). Third, in most cases, shared frailty will only induce a positive 
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association within the group. However, there are some situations in which 

lifetimes for subjects within the same group are negatively associated. For 

example, this applies to growth rates for animals in the same litter that have 

limited food supply. 

To avoid these limitations, correlated frailty model is developed for the 

analysis of bivariate lifetime data, in which two associated random variables are 

used to characterize the frailty effect for each pair. Assuming gamma distribution 

as the distribution of frailty random variables and by splitting, the frailty for an 

individual in a group, into two components, Yashin and Iachine (1995) introduced 

correlated gamma frailty model. For example, for the twin data, the frailty of the 

first twin in a pair consist of Yo + 1'; and the frailty of the second twin consist of 

Yo +Y2' where Yo'~ and Y2 are independent gamma distributed random variables. 

The frailties of the two twins are then correlated by the shared part of the frailty 

Yo' which describes the common genes and environment. ~ and Y2 describes the 

possible heterogeneity between the individuals after having accounted for 

common genes and environment. The identifiability of the model is described in 

Yashin and Iachine (1999 b) and the analysis of the model is discussed in Pamer 

(1998). Yashin and Iachine (1997), Yashin and Iachine (1999 a), Iachine (2001), 

Wienke (2003) and Wienke et a1. (2005) also investigated various properties of 

the correlated frailty model and a comparison of shared frailty and correlated 

frailty model is discussed in Zdravkovic et al. (2004). 

1.10 Association Measures 

Time dependent association measures play a vital role in the analysis of 

bivariate survival data. For example, in a genetic study researchers wish to know 

the degree to which genetic factors influence life span. To measure the degree of 

association, one can examine monozygotic (MZ) and dizygotic (DZ) twin data. 

The difference in strength of association between MZ and DZ twin measures the 

genetic impact. Many researchers believe that important genetic influences may 

exist only in old age. Thus association measures indexed by age or time provide a 
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means of detecting such a difference. Accordingly, several such measures indexed 

by time have been proposed in literature to assist modelling and analysis of 

bivariate survival data. 

Let T = (1) , T2 ) be a nonnegative random vector representing dependent 

life spans, having an absolutely continuous survival function 

S (tp t2 ) = P (1) > t l , T2 > t2 ) with respect to the Lebesgue measure. For example, 

T could be considered as cohort study ages at diagnosis of breast cancer of 

mother and daughter. Clayton (1978) introduced a measure of association as 

(1.19) 

The measure (1.19) can be interpreted as the ratio of the hazard rate of conditional 

distribution of 1) given T2 = t2 to that of 1) given T2 > t2 . Associated with (1.19), 

8(t t )-1 
Dakes (1989) defined a measure of association, g (t1, t2 ) := (I' 2 ) , which is a 

8 t\,t2 +1 

conditional version of Kendall's (1938) concordance coefficient. It is to be noted 

that 8(II,t2)=1 (g(t\,t2)=0) if and only if the variables 1) and T2 are 

independent. Later, Holland and Wang (1987) proposed a measure of association, 

(1.20) 

where f (11' t2 ) is the joint density function of T, to quantify the dependence 

between 1) and T2 at different time points. Note that measure (1.20) is a natural 

continuous analogue of the local cross product ratios for bivariate discrete data. 

When p (t] ,t 2) = 0, 1) and T2 are independent and conversely. Anderson et al. 

(1992) defined two association measures, one based on the joint and marginal 

survival functions of 1) and T2 , which is given by 

(1.21) 
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where Si (t j ) is the marginal survival function of ~, i = 1,2. Obviously, 

f//( t), t 2 ) = 1 if and only if 7; and T2 are independent. Instead of using survival 

function in (1.21), we can use the mean residual life in studying association as 

proposed by Anderson et al. (1992) through 

(1.22) 

or 

(1.23) 

where 'i * (t[ ,t2 ) = E( ~ -li 17; > t[, T2 > t2 ), i = 1,2 is the ith component of vector 

mean residual function given in Arnold and Zahedi (1988). Recently, Fan et al. 

(2000) have proposed a general class of measures which include as special cases 

the two non-parametric measures given in Fan et al. (1998). Based on the 

deviations from the conditional expected values, Bairamov et al. (2003) has 

suggested a new measure of linear dependence which is closely related to the 

correlation curve of Bjerve and Doksum (1992). Gupta (2003) provides a detailed 

analysis of association measures (1.19), (1.21), (1.22) and (1.23) by establishing 

their interrelationships, characterizations and some interesting identities useful for 

the reliability modelling. Recently, Nair and Sankaran (2008) introduced a new 

measure of association for bivariate survival data using product moment of 

residual life given in N air et al. (2004) and the mean residual life functions. The 

measure (1.20) is defined only when the joint density function 1(/1'/2 ) exists. 

The measures described above except (1.20) are useful for right censored data as 

they are based on residual lifetimes of 7; and T2 • 

Though there has been much research on analyzing bivariate (multivariate) 

lifetime data under right censoring, very little has done for the analysis of left 

censored or right truncated lifetime data. As pointed out in Lawless (2003), 

reversed hazard rate, instead of hazard rate, would be more appropriate for the 
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analysis of such data. This brings in the relevance and need for development of

new stochastic models based on reversed hazard rates, which is the focal theme of

the present study. The results obtained here are of interest in their own right in

survival analysis and also in various applied studies where concepts in survival

analysis are used with differing interpretations.

1.11 Present Study

In studies involving lifetime, there are many situations where data is left

censored. For example, in the univariate set up, Baboons in the Amboseli Reserve,

Kenya, sleep in the trees and descend for foraging at some time of the day.

Observers often arrive later in the day than this descent and for such days they can

only ascertain that the descent took place before a particular time, so that the

descent times are left censored (Andersen et al., 1993). In the multivariate set up,

consider the lifetime data on patients of Fibrodysplasia Ossificans Progressiva

(FOP), discussed in Jones and Rocke (2002). In 1992,44 patient members of the

International FOP Association responded to a postal survey of the age at onset of

heterotopic ossification at each of 15 anatomic sites. For each patient in the

survey, and for each anatomic site, the patient was asked to record the date at

onset of heterotopic ossification. The data is multivariate, with 15 observations on

each subject corresponding to the status of each of 15 anatomical sites. Left

censoring occurred when the patient replied that a joint was already involved but

they could not provide the date of onset. From the 660 onset times in the survey,

41 were left censored. As mentioned earlier, reversed hazard rate is more

appropriate for the analysis of left censored or right truncated data. The analysis of

bivariate right truncated data, using reversed hazard rate, is discussed in Gurler

(1996).

Reversed hazard rate plays a vital role in the analysis of parallel systems,

in reliability and survival analysis. For example, in certain systems or situations,

sometimes the failure is prevented through numerous safety measures. Then actual

failure can only occur when all lines of defence have been breached. This

describes a parallel system and the parallel structure with n components works if
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at least one of the components works. Examples of parallel system include 

automobile head lights, overhead projectors with backup bulb etc. For a system 

with n independent parallel components, let T denotes lifetime of the system and 

11 ,T2 •.•• , Tn denote the lifetimes of its components. Then, the distribution function 

of the system is 

n 

FT{t)= I1 ~(t), 
i=1 

where F; (t) is the distribution function of the i'h component. Then, the system 

reversed hazard rate is the sum of the component reversed hazard rates, expressed 

as 

n 

lnT ( t) = I mi ( t ) , 
i=1 

where 1nr (t) denotes the system reversed hazard rate and mj (t) denotes the 

reversed hazard rate of the ith component. When the components are i.i.d., 

reversed hazard rate of the system is the product of the reversed hazard rate of any 

component and the number of components. Sengupta et al. (1998) applied the 

proportional reversed hazards model for the analysis of data on parallel systems 

and Asadi (2006) discussed mean past lifetime of parallel system. 

Motivated by the growing importance of reversed hazard rate in the 

anal ysis of left censored or right truncated lifetime data, we introduce new 

statistical models using reversed hazard rates for the analysis multivariate lifetime 

data. The thesis is organized into six chapters. After this introductory chapter, 

where we have pointed out the relevance and scope of the study along with a 

review of literature, the remaining chapters are addressed to some new results. In 

Chapter 2, we discuss various definitions of bivariate reversed hazard rate, 

existing in literature, which are useful for the analysis of dependent data. A unique 

representation for bivariate distribution function, using bivariate reversed hazard 

rates, is introduced. Based on this unique representation a class of bivariate 

distributions is proposed. Applications of the proposed class of distributions are 

also discussed. 
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Frailty models using reversed hazard rates are extensively studied in 

Chapter 3. Chen et al. (2004) used the concept of frailty with RHR to account for 

heterogeneity of gap times, in the analysis of longitudinal pattern of recurrent gap 

times. We used the concept of frailty to incorporate the unobserved heterogeneity 

in left censored situations. After discussing the univariate reversed hazards frailty 

model, we extend the reversed hazards frai1ty models to bivariate situation. The 

shared gamma frailty reversed hazards model is studied and the estimation of the 

parameters of the model using maximum likelihood method via EM algorithm is 

explored. The shared gamma frailty reversed hazards model with covariates is 

also discussed. Finally, we illustrate the applicability of the model with Australian 

twin data given in Duffy et al. (1990). 

Bivariate correlated reversed hazards frailty model becomes useful if the 

individual frailties are correlated. In Chapter 4, we developed bivariate correlated 

gamma frailty reversed hazards model, to consider the left censored situations 

where the individual frailties are correlated. The model is extended to the 

multivariate set up also. The estimation of the parameters of the model via EM 

algorithm is investigated. Finally, we illustrate the importance of the model with 

the DZ Australian twin data in Duffy et al. (1990). 

As mentioned in Section 1.10, time dependence measures are useful for 

the analysis of bivariate lifetime models. Accordingly, in Chapter 5, association 

measures using distribution functions and reversed hazard rates are discussed. We 

introduce four association measures to examine dependence among variables and 

study their properties. The association measures are also investigated in terms of 

frailty. Non-parametric estimation of association measures is discussed and the 

asymptotic properties of the estimators are studied. The importance of these 

association measures is illustrated using real life examples. 

Finally, Chapter 6 summarises major conclusions of the present study. 

Certain open problems and suggestions for future study are also presented. 
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Chapter Two 

Bivariate Reversed Hazard Rates· 

2.1 Introduction 

The reversed hazard rate plays a pivotal role in modelling and analysis of 

left censored lifetime data. Unlike the univariate set up discussed in Chapter one, 

there are more than one definition for reversed hazard rate in the multivariate 

setup. Gurler (1996) introduced reversed hazard rate as a three component vector 

in the bivariate set up, which is analogous to bivariate hazard vector given in 

Darbowska (1988). The reversed hazard rate vector is used for the estimation of 

distribution function when the data is right truncated (see Gurler (1996, 1997)). 

Roy (2002) defined bivariate reversed hazard rate as a two component vector and 

studied its properties. Further, Roy (2002) introduced a class of bivariate 

distributions using reversed hazard rate vector. It is proved that if both the 

marginal distributions belong to decreasing reversed hazard rate class, then the 

bivariate distribution belong to a class of distributions having bivariate decreasing 

reversed hazard rate property. Later, Bismi (2005) introduced a scalar definition 

of bivariate reversed hazard rate and used it to characterize bivariate Burr 

distributions. However, a systematic study on various definitions and properties of 

bivariate reversed hazard rate has not been carried out so far. Motivated by this, 

we discuss various definitions of bivariate reversed hazard rates, study their 

properties and propose a general class of bivariate distributions that extend the 

model given in Roy (2002). 

,. Published some results in the Journal of the Japan Statistical Society (see Sankaran and Gleeja 
(2006» and some other results in the journal Metrika (see Sankaran and GJeeja (2007b) 
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The chapter is organized as follows. In Section 2.2, we gIve various 

definitions of bivariate reversed hazard rates and discuss their properties. An 

exponential representation of bivariate distributions using bivariate reversed 

hazard rates is given in Section 2.3. In Section 2.4, we develop a new family of 

bivariate distributions and study its properties. Various special cases of the family 

are pointed out. The parametric analysis of a model which belongs to the proposed 

family is given in Section 2.5. In Section 2.6, a bivariate propOltional reversed 

hazards model is derived from the proposed class of distributions. Various 

applications of the new class of distributions are pointed out in Section 2.7. 

Finally, Section 2.8 gives conclusion of the chapter. 

2.2 Bivariate Reversed Hazard Rates 

Let T = ("', T2 ) be a nonnegative random vector representing lifetimes of 

two components of a system with an absolutely continuous distribution function 

F(tl't2) in the support of D=[OA]x[O,b21 where (bp b2 ) is such that bj <00 

and bj = inf (t I Fj (t) = 1), j = 1,2. Suppose that the probability density function 

(p.d.f.) of T , f (tl' t2 ) exists. As mentioned in Section 2.1, in the bi variate set up, 

reversed hazard rate can be defined in more than one way. 

Gurler (1996) defined bivariate reversed hazard rate as a three component 

vector given by 

The vector A (tl' t2 ) is used for the estimation of F (t" t2 ) when the lifetime data 

is right truncated. 
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Roy (2002) defined reversed hazard rate as a two component vector given, 

by 

where 

For i = 1, k) (t], t2 ) dt], is the probability of failure of the first component in the 

interval (t) - dt], t]] given that it has failed before t] and the second has failed 

before t2 • The interpretation for k2 (t], t2 ) is similar. From Roy (2002), it follows 

that kj (1], t2 ) detennine F (t], t2 ) uniquely by the relationships 

(2.2) 

or 

(2.3) 

where k( (t], b2) = nI] (t)) and k2 (b), t2) = m2 (t2) are the marginal reversed hazard 

rate of ~ and T2 respectively. 

Later, Bismi (2005) defined bivariate scalar reversed hazard rate as 

(2.4) 

It can be easily seen that (2.4) is a natural extension of the univariate reversed 

hazard rate given in (1.6). m(tl't2 )dt)dt2 + o (AtI' dt2 ) can be interpreted as the 

probability of failure of components 1 and 2 in intervals (t) - M] ,t] ] and 

(t2 -M2,t2] respectively, given that they failed before (tI'12)' 
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It can be seen that AI2(dtpdt2)=m(tl't2)dt,dt2' Al(dtl't2)=k,(tl't2)dt, 

and A2 (t1 ,dt2 ) = k2 (tl ,(2 ) dt2 . 

A third definition of reversed hazard rate that play vital role in the analysis 

of dependent data, is defined as 

where 

(2.5) 

with t(tilTj =t j ) as the conditional density function of I; given Tj =tj and 

F(I;ITj =Ij ) as the conditional distribution function of I; given Tj =Ij , i,j=1,2, 

i=t:j. Thus the definition (2.5) is nothing but univariate RHR of conditional 

variable I; given Tj = t j • Since conditional distributions, in general, does not 

uniquely detennine the joint density, (2.5) does not provide F (t l ,t2 ) uniquely. 

2.3 Exponential Representation 

From (2.2) and (2.3), it follows that F (t"t2 ) can be represented by 

kj (1,,12 ), i = 1,2 in two different ways. In the following. we give a unique 

representation for F(t,,12) in tenns of bivariate reversed hazard rate given in 

(2.1) and (2.4). 

Theorem 2.1 

The distribution function of T = (~ , Tz) can be represented in terms of 

reversed hazard rates as 
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F(tl,t2) = exp{-t ~ (u ) dU} exp{-r m2 (v)dv} 

exp{f I( m( u, V) -k, (u, V) k, (u, V ))dVdU}. (2.6) 

Proof 

The bivariate distribution function F(tl't2) of T=(I;,T2 ) can be written 

as 

(2.7) 

The function A (t) , t2 ) can be viewed as a measure of dependence between I; and 

bl b! 

I; and we can write A(tl't2) = J J;(u,v)dvdu, where ;(u,v) is some bivariate 

function. 

Consider the representation 

(2.8) 

where 

~ ~ ~~ 

H (tl ,t2 ) = fm l (u )du + fm2 (v )dv- J J;(u, v )dvdu. (2.9) 

The representation (2.8) can be viewed as a generalization of the univariate 

exponential representation to the bivariate case. 

Now consider 

Differentiating both sides of (2.10) we get 

a2 A (tl' t2 ) .f (tl' t2 ) a log F (tl' t2 ) a log F (tl' t2 ) 
--'--'-~ = ----'-~:..:... 

atJat2 F (t1 ,t2 ) atl at2 
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which gives 

9>(u, v) = m(u, v)- kJ (u, V)k2 (u. v). 

Thus from (2.8), (2.9) and (2.11). we obtain (2.6). 

Remark 2.1 It may be noted that (2.6) can be written as 

F(tl't2) =exp{-t kJ (u,b2)du}exp{-r k2 (bp v)dv} 

(2.11 ) 

exp{! I( m(u, v) -k, (u, v)k, (u, v ))dvdU} 

Remark 2.2 If m(u, v)-kt (u. V)k2 (u, v) =-yml (u )1112 (v), 0 $ y$l, then (2.6) 

reduces to the model given in Roy (2002), 

Of,{u)f2{V) 
Remark 2.3 If m (u. v ) - kl (u, V ) k2 (u, v) = 2 • where 

[1 + O( 1- 1<; (u))( 1- F2 (v))] 

-1 $ 0 $1, then (2.6) reduces to Morgenstem (1956)'s family given by 

Example 2.1 When 1<; (t) ) = 1-e -11 • F2 (t2 ) = 1-e -12 , where t l • t2 > 0 , and 

Be-<u+I') 
m{u.v)-kJ {u,v}k2 (u,v)= 2 with -1$0$1, then (2.6) reduces to [1 + Be-<u+v) ] 

model II of bivariate exponential distribution, 

by Gumbel (1960) as a special application of Morgenstem (1956). 
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m{ u, v) - k, (u, V)k2 (u, v) = e-<"+v) (I + e-K + e-~ r2
, then (2.6) reduces to standard 

bivariate logistic distribution by Gumbel (1961), 

111 (u, v) - k, (u, v) k2 (u, v) = -

[8+ eu+fJ/lV8(u + uv8-1) + e,'+9I1V8 ( v+ uv8-1) 

- eu+>,+8ul' ( 1 + (u + v -1) 8 + uv82 ) + eU+1'+2 euv ] 

( eu+fJuv + el.+eul' - e"+>,+9ul' -1 t 
where 0 ~ 8 ~ 1 , then (2.6) reduces to model I of bivariate exponential distribution 

by Gumbel (1960) with distribution function, 

m (u, v) - kl (u, v) k2 (u, v) = -82 , where 0 ~ 8 ~ 1 , then (2.6) reduces to bivariate 
(uv) 

inverse exponential distribution given by 

Now we study properties of bivariate reversed hazard rates (2.1), (2.4) and 

(2.5). We can prove that m (tl' t2) = m, (tl) 1112 (t2) implies the independence, where 

mi ( ti ) is marginal reversed hazard rate of 1';, i = 1,2 . 

Theorem 2.2 

The variables ~ and T2 are independent if and only if 

(2.12) 
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Proof 

When ~ and T2 are independent, we have 

where ,I; (li) and F; (1;) respectively denote the marginal density and distribution 

functions of T;, i = 1,2. Thus from (2.4), we can easily obtain (2.12). 

To prove the converse, from (2.4) and (2.7), we have 

which gives 

(2.13) 

Now differentiating (2.7) with respect to 11 , we get 

(2.14) 

Also we have 

(2.15) 

Now using (2.13) in (2.15), we get 

aF(tpt2) () ( ) 1! () ( )aA(tpv) -~.....::....:... = ~ tl F ti'12 - ml tl F 11' V dv. (2.16) 
atl av 

Equating (2.14) and (2.16), we get 

(2.17) 

Similarly. we get 

(2.18) 
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Substituting (2.10) in (2.17) and (2.18). we get 

(2.19) 

and 

Dividing (2.19) by (2.20), we get 

Now, using (2.10) in (2.21), we get 

ml (t. )k2 (tl'lz) F (tl't2 )-ml (tl )k2 (tl ,t2 ) f F (tl' v) aA~~' v) dv 

=m2 (tz)kl (tl'tz)F(tl't2)-m2(t2)kJ (tI'12) rl F(u,tz ) aA(u,t2 ) du 
.b au 

or 

(2.22) 

The equation (2.22) is satisfied for all (t(, t2 ) E D if either 

(2.23) 

or 

(2.24) 

If possible, suppose that (2.23) is true. Then, differentiating (2.23) with respect to 

( ) aA (tl' tJ ( ) () .. ( ) 
12 , we get kz 11'12 = at =k2 tl'l] -mz t2 ,whIch gIves mz t2 =0 and 

2 
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similarly, if we differentiate (2.23) with respect to I\, we get m. (t. ) = O. But 

ml (t. ) = m2 (t2) = 0 is not valid. So the identity (2.23) is not true. 

Now, if (2.24) is true, then k2 (t»t2) = mz (t2) and kl (tpt2) = 1n. (tl ). Thus from 

(2.12), we obtain 

(2.25) 

Substituting (2.25) in (2.6), we get F (tp t2 ) = F; (t. ) Fl (tJ, which completes the 

proof. 

Theorem 2.3 

~ and T2 are independent if and only if 

(2.26) 

Proof 

When ~ and T2 are independent, 

where J; (t;) and F; (t;) respectively denotes the marginal density and distribution 

functions of I;, i = 1,2. Thus, we obtain (2.26) from (2.5). 

To prove the converse, note that (2.26) can be written as 

which gives 

- log I' 2 == ' I ,i, j = 1,2, i =1= j. (2.27) 
a ( aF(t t)J alogF(t.) 

at; atj at; 
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Integrating (2.27) with respect to t;. we get 

(2.28) 

where B(tj ) is a function independent of t i • Since F; (bi ) = 1 and 

F (bj,tj) = Fj (tj)' when tj ~ bi in (2.28), we get 

Now, integrating (2.28) with respect to tj , we obtain 

where C (t j ) is a function independent of t j • When tj ~ bj in (2.29), we get 

C (t j ) = O. It follows that ~ and T2 are independent. 

Theorem 2.4 

I; and T2 are independent if and only if 

(2.30) 

Proof 

When r; and T2 are independent, F (tJ ,t2 ) = F; (tJ ) F2 (t2 ). Then, from 

(2.1) we get (2.30). The converse part can be proved by substituting (2.30) in 

(2.2) and (2.3). 

Theorem 2.5 

I; and T2 are independent if and only if 

(2.31 ) 

Proof 

When I; and Tz are independent, equating (2.26) and (2.30), we get 

(2.31). To prove the converse, note that (2.5) can be written as 
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(2.32) 

i,j=1,2, i1:.j. (2.33) 

Dividing (2.33) by F(tl't2 ), we obtain (2.25). Then by substituting (2.25) in 

(2.6), we get F (t(, t2 ) = F; (1() F2 (12) , which completes the proof. 

Theorem 2.6 

~ and T2 are independent if and only if 

Proof 

When ~ and ~ are independent, from (2.12) and (2.30), we obtain (2.25). 

The proof of the converse part follows from (2.6) and (2.25). 

2.4 A New Family of Bivariate Distributions 

On the basis of (2.6), we construct a new class of bivariate distributions. 

Theorem 2.7 

Let F (tl' t2 ) be a bivariate distribution function defined by exponential 

representation (2.6). Assume that 

(I) a j > 0, /J; ~ 0, i = 1,2 

(Ill) a; - P2 ~ 0, i = 1,2 and (IV) Am(u, v) ~ P2k( (u, V)k2 (u, v), u, v ~ O. 

Then 

Fa,.a2 .fJ,,fJ2 (tl'l2) = (F; (t()r' (F2 (t2)t exp{ t t (Am(u, v)- P2k( (u, V)k2 (u, v))dvdu} 
. . 

(2.34) 

39 



Bivariate Reversed Hazard Rates 

defines a class of bivariate distribution function for some lifetimes (I;, T2 ) with 

Proof 

Condition (IV) is just a stronger version of ~ (u, v) 2! 0 on a parental 

distribution F (t], (2)' When p] = P2' condition (IV) reduces to the condition 

~(u, v) ~ O. Obviously, due to conditions (I) to (IV) of the theorem, the 

cOITesponding boundary conditions trivially hold. Thus, 

To check the non-negativity of the joint probability density function, we 

differentiate (2.34) twice. Differentiating (2.34) with respect to 12 , we get 

aF (tl,12) = [F; (t])J' [F2 (t2)r2 exp{ r f (p]m(u, v) - p2k] (u, V)k2 (u, v))dvdu} 
a~ , -

[a21n2 (tJ- t(Plm(u,12)-P2kl(u,t2)k2(U,t2})du 1 
(2.35) 

Now, differentiating (2.35) with respect to tl , we obtain the joint p.d.f. as 

fa"a2 .P"fJl (t1'12) 

= [F; (tl)J' [F2 (12 )T2 exp{ r r (Plm(u, v)- P2kl (u, V )k2 (u, v))dvdu} 

{ala2ml (1] )mz (tZ )+aZm2 (t2 )[ - r- (Plm{tl, v)- P2kl {II' v}k2 (tl' v))dv ] 

+alml(I])[ - r(Plm(u,t2)-P2kl(U,t2)k2(U,t2))du ] 

+[ -r- (Plm(tl' v)- P2kl (11' V )k2 (tl' V ))dv ] 

[- t (Plm(U,t2 )- pzkl (u,t2 )k2 (u,t2 ))du ] 

+ [Plm (tl' t2 ) - ,82kl (11' tJ k2 (tl' 12 )]} 
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= Fa"a~,fl..,/l2 (t(.12 ){[ a(~ (t() - t (p(m (t(. v) - P2kl (t(, v) k2 (t(, v)) dV] 

[a2m2 (t2)- t(J~m(u.t2)-P2kl (u,t2)k2 (U,t2 ))dU]} 

+ Fa"a~A~ (t( ,t2) [Am (11' t2) - P2k} (tp t2 ) k2 (tl'tz ) J. 
(2.36) 

Now using assumptions (I) to (IV), we get 

[ a} m} (t l ) - t (p}m (tp v) - p2k( (tl' v) k2 (tp v)) dV] 

Similarly, 

;::: [ a} ml (tl ) - P2 t ( m ( tl ' V ) - k( (tl ' v) k2 (t(, v ) ) dv ] 

= [ a}ml (t()- P2 t ~(tl' V)dV] 

= [ a,m, (1,)-p, ilA~;:I')] 

= [ a(~ (tl ) + P2 ( kl (tl , t2 ) - ml (t( ) ) ] 

= [( al - (2)m( (t()+ P2kl (tl't2 )J ~ O. (2.37) 

[ a2m2 (t2)- t (Plm(U,t2) - P2k1 (u,t2)Is (u,t2 ))du ] 

~ [( a2 - P2) m2 (t2) + P2k2 (t), t2 ) ] ~ 0 . (2.38) 

Now substituting (2.37), (2.38) and the assumption (IV) in equation (2.36), we get 

faJ.al,p,,/ll (t\,12) ~ 0, which completes the proof. 

Remark 2.4 For i = 1,2, ai = a and Pi = p, the model (2.34) reduces to 

Remark 2.5 If a j = pj = a, i = 1,2, conditions (I) to (IV) reduce to a > 0 and 

~(u,V»O. 
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Remark 2.6 Let the dependence structure of the parental distribution function 

F (tp t2) be such that k/ (tp t2) = (1 + B) kj (t1' 12 ), for B > O. Then, the bivariate 

distribution function is 

(2.39) 

Now, Am( u, v) - p,k, (u, v )k, (u, v) = m(u, v {p, - (1!'0)] 

= (1:0)( A (1!'II)]"(U,V) =p~(u,v), (2.40) 

where p = (1:0) (p, - (1 !'IIJ Using condition (IV), (p, (1 + 11) - p,) ,,0. 

Now (2.39) can be generalized using (2.40) as 

The bivariate model (2.39) is analogous to the Clayton copula model (Clayton and 

Cuzick, 1985) based on cross ratio function. 

Remark 2.7 When a j == A = I, i == 1,2, from Examples 2.1 and 2.2, it is obvious 

that model 11 of bivariate exponential distribution by Gumbel (1960) and standard 

bivariate logistic distribution of Gumbel (1961) belong to the class of distributions 

given in (2.34). 

Example 2.5 When A == B, a j == 1, i == 1,2, F; (t) ) = exp{ -e -', } , 

(2.34) reduces to the bivariate extreme value distribution 

_ _ -,, _ -,~ ','2 < < { ( )-)} F (t1 ,12 ) - exp e e + B e + e , 0 _ B_1, t), t2 > 0 . 
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Remark 2.8 The assumption (IV) is not a necessary condition of the model (2.34). 

If ai = Pi = k , i = 1, 2 and m (u, v) - kl (u, v) k2 (u, v) = -rml (u ) m2 ( v) for 

o ~ r::s; 1, then (2.34) reduces to the bivariate model of Roy (2002) given by 

F,.w (I,.t,) = (1'; (I,))' (F, (I,))' exp{ -( ~}Og( 1'; (t,)), .log ( 1'; (I,))'}. 

The bivariate inverse exponential distribution with distribution function 

is also a member of the family (2.34) with PI = P2 = p. 

The model (2.39) can be derived analogous to Clayton and Cuzick (1985). 

Theorem 2.8 

Assume that H (tp t2 ) is twice continuously differentiable with H (bp b2 ) = 0, 

marginal cumulative reversed hazard rates of ~ and T2 respectively. Then the 

unique solution of 

is given by 

Proof 

From (2.1), we note that 

Hi:::: aH(tpt2) =-k;{tl't2), ;=1,2. 
at; 
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For () = 0, ~ and Tz are independent and F (tl ' t2 ) = F; (11) .F2 (t2 ) . 

For () > 0, from (2.42) we can write, 

H) =-B-I H\2 =-0-1 alogH2 
H2 at) 

(2.43) 

Integrating (2.43) with respect to tJ , we get 

for some function C ( .). As t) --7 bl ' we obtain 

Therefore, 

H (tl ,t2 ) = -B-1 log H 2 + M 2 (t2 ) + B-1 log M 2' (t2 ) , 

which gives 

(2.44) 

which provides, 

(2.45) 

for some function B (.) . For t2 --7 b2 , we get 

Therefore, we can write (2.45) as 

or 
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2.5 Parametric Analysis 

Let us consider the parametric analysis of the model (2.39) where marginal 

distribution functions F; (11) and Fz (t2) are specified up to Lehmann alternatives. 

Fm (12) are known distribution functions and Yt > 0 and r2 > 0 are known 

parameters. Then we have the joint p.d.f. of (7;, T2 ) as 

,8>0, 

where 101 (tl) and 102 (t2) are probability density functions corresponding to the 

distribution functions FOI (tI) and F02 ( t2 ) . 

Let us consider the transformation ~ = -log FOl (7; ) and 

V2 = -log F02 (Tz) • Then the joint density of (~, V1 ) becomes 

Consider n independent and identically distributed (i.i.d.) samples 

(VIi' V 2)' i = 1,2, ... ,11 from (VI' V2 ) • Then the likelihood function is 

To obtain the maximum likelihood estimates of e, Yt and r2 , we take the first 

order derivatives of the log likelihood function with respect to (}, 'Yt and r2 , 

which are obtained as 
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(2.46) 

(2.47) 

and 

(2.48) 

Equating (2.46), (2.47) and (2.48) to zero and solving the equations usmg 

numerical techniques, we can obtain maximum likelihood estimates of the 

parameters 8, r; and Y2' 

To obtain information matrix of the estimates of 8, r; and Y2' we find the second 

order derivatives of log likelihood function as 

-:l2} L(L1 ) _ n 11 ( 2 ) [e"lirloV .0/ +eV2 ,r20v .r ] o og u,r;'Y2 n "( ) " Ill! 21 2 

d82 = (I+8)2 +f:t vli r;+V2i Y2 +f:t 82 [eVliy,8+ev2ir2°_I] 

11 (2) [, , ] 11 (1 ) [e"I'}\O {Vli}'])2 +e
V2

,Y2
8 

(V2i Y2)2] 
-" - log e'''Ylo + el"y,£} -1 -" - + 2 

f:t 83 f:t B [e"I,no + e"2,Y28 -1] 

(2.49) 

(2.50) 
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(2.51) 

(2.52) 

(2.53) 

and 

(2.54) 

Consider the transfonnation Y = [eVIYIO + eV'y,O -1] ' then 
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Now, we can obtain 

Considering the transformation, VI = eVIYlo and V 2 = e V2Y"o , we get 

E( log [eVIYIO + eV2Y20 -1 J) = j }lOg [ul + u2 -1] (1 ;28 ) [ul + u2 -1]-(~)-2 du2du I 

I I 

28+82 

=---
1+8 

(2.55) 

Considering the transformation, VI = eV1Yi(J and U2 = e VZY2(J, we get 

1+8 
= 

1+28 
(2.56) 

Similarly, we obtain 

(2.57) 

and 
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= p( 8) (say). (2.58) 

Now, using (2.49) - (2.54) and (2.55)-(2.58), we get 

-1 E(aZ log L(8,Yt'Y2»)_ 1 + 2 4(1+8) 2(1+28)p(8) 
--;; a82 - (1 + 8)2 8(1 + 8)(1 + 28) (1 + 38) B 

-1 E(d210gL(~,Yt'Y2»)=_1 [1+ 2(1+8)8Z
], i=I,2, 

n d/j- Y/ (1+38) 

and 

-1 E(dZ lOg L(8,Yt,Yz»)= -(1+28)8p (8), 
n dYidY2 Ytr2 

which are the elements of the information matrix. The variance of the estimate of 

B can be obtained from the information matrix. 

Now we consider the case when B ~ o. First we consider the first order 

derivatives when B ~ o. Using L-Hospital's rule. we have 

um(_l ) log [eVIi 1'i8 + eV2ir28 -IJ = -v.v .r; rand 
8-+0 82 I. 2. 1 2 

Therefore as B ~ 0, (2.46). (2.47) and (2.48) reduces to 

alogL(8']'!'Y2)_" 11 11 

--=----'---'--'--~ -11- 2:( vliYi + VZiYz) - 2:( V1i/'lV1iYZ) + 22::( VIiYiV1iYZ) 
dB 1=1 ;=1 ;=1 

n 

-22:( v1;Yt +V2;Y2)' 
;=1 

11 

= 2:(v1;/'l-1)(V2;Y2 -1), 
;=1 
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(2.60) 

and 

alogL(O, Yt, Y2) =!!....- i>2i' 
aY2 Y2 i=1 

(2.61 ) 

The estimates of YI and Y2 are obtained from (2.60) and (2.61) by equating to 

zero. 

To obtain the variance covariance matrix as 0 ~ 0, we need to find E (~Vz ), 

E(~V2) = ii VIV2YIY2 (1 + e) el'lY18+1', Y28 [ el'iY18 + e''lYlll -1 J(i}2 dv2dVI . 
o 0 

Considering the transfonnation, UI = e"lYl0 and U2 = eV,y,O, we get 

= 

As 0 ~ 0, E (~V2 ) = _1_. In similar steps, as e ~ 0, we obtain 
YtY2 

( 2) 2 ( 2) 2 ( 2 2) 4 E 1-'; V2 =-2 -, E V;V2 =--2 and E V; V2 =--2' 
YI Y2 YtY2 YIY2 

Now we can obtain the elements of variance covariance matrix. From (2.59), we 

get 

E( aIOgL~~ r., y,) J = E( ~(V"r. - 1)(V"r, -I) J 
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Substituting the values of E(~), E(VJ. E(~2), E(V/), E(~V2)' E(~2V2) 

d E(v.2V2) b· E(a1og L(8,Yj'Y2))2 -- S··I 1 f (259) an I 2 • we 0 tam n. Imt ar y, rom . • a8 
(2.60) and (2.61), we get 

=0 

and 
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E(dlOg L(8, r;, r2) diog L(8, rI, Y2)J = E((~-t ~iJ(~- tV2i J) 
dr; dY2 r; i-I Y2 i-I 

n n 

2 nLV2i nIlr;i 11 n /I 

=E 
n i-I i-I + I\I;Y2i+ L I V1Y2j =0. 

r;Y2 r; Y2 i-I i-I i*j j-l 

S· '1 I E(d log L(B, r;, Y,) d log L(B, r;, yJJ 0 Th . 
Iml ar y - - =. us we get vanance 

d8 dY2 
covariance matrix of the log likelihood, when B -t 0, is diagonal with elements 

n n 
n, 2' -2' 

r; Y2 

2.6 Bivariate Marginal Proportional Reversed Hazards Model 

Let (~, T2) be a random vector with the support 0 < tl < t2 < 00. Let 

marginal reversed hazards satisfy proportional reversed hazards property for some 

baseline reversed hazards mOl (t1) and mm (t2 ). Then, we can obtain families of 

distributions for the random vector (7;, I;) as a special case of (2.34). 

1. When a l = B1, a2 = B2 and f3.. :::::: P2 = 82 the conditions (1) to (IV) becomes 

(2.62) 

where the marginal distribution functions are [F; (tl ) rand [F2 (t2) r . 
2. For a l = 81, a2 = 82 and PI = P2 = ~ the conditions (I) to (IV) becomes 81 > 0, 

B2 >0, ~ ~B2 and m(u,v)::2:kl(U,v)k2(U,V), u,v::2:0 and we get 

(2.63) 

where the marginal distribution functions are [F; (tl ) JI and [F2 (t2) J2 . 
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3. When a l = 8, a2 = 8 and PI = P2 = 8 the conditions (I) to (N) becomes 8> 0 

and m{u, v) ~ kl {u, v}k2 (u, v), u, v ~ 0 and hence we obtain 

(2.64) 

with the marginal distribution functions as [F; (1J ) J and [F2 (t 2 ) J . 

The distribution functions (2.62), (2.63) and (2.64) satisfies 

(2.65) 

where mj (t j ) represents the RHR of marginal distribution function of I; and 

InOj (Ij) represents the baseline RHR of marginal distribution function of I; for 

i =1,2. 

In the following, we give two examples of families of distributions 

F(tl ,t2 .81,82 ) • 

Example 2.6. Suppose that Y and Ware two independent nonnegative random 

variables such that Y has distribution function Q ( .) and density function q (.) 

and W has distribution function G (.) and density function g (.) . Let ~ = Y and 

11 

~ ::::Y+W. Then and F (11,12) = f q (u ) G (t2 - U )du , 
o 

0< t1 < t2 < 00. From (2.62), (2.63) and (2.64), we get 

[Q (I, J]--. [Iq (u)G (I, -u)du r · 8,? 8, 

F (1,.1,.8,.8,) ~ D q (u)G (I, - u )du r-- [Iq (u)G (I, - u )du r .0. ,,8, 

Dq(U)G(I,-U)dU)'. 8,~8,~8 

(2.66) 
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If q (I) = g (I) = e-' , (2.66) can be written as,

[I -', J~-e, [I -, -, Je,
n > n- e - e I - tie 2, U

1
_ U

2

F(t"/,,~,8,) = [1-(1+/2)e-" J'-~ [I-e-" -/le-" J' ,81 ~ 8,

[1-e-"-t1e-"J, ~=82=8.

When q(t)=e-' and G(/)=I-{I-H'(/)}e-H
(<) , where H is twice

continuously differentiable function on [0,00] satisfying H (00) =00,

() () ( ) ( ) H '(t) __ dH (t)H 0 =H' 0 =0, 0 ~ H' I s I and H" I <:: 0 with
dl

d'H (t)
H "( t) = ,. Then (2.66) reduces to

dr

and

[I-e-" J~-o, [I-e-" (l+e-HI"-',))_e-HI"l]"', 8
1

<:: 8,

F(/"I"B"B,)= [I_e-H(',I]"'-o, [I-e-" (I+e-H("-',))-e-H("lr ,B1~B,

[I-e-" (I + e-H("-',))_e-H(',l]" , B1=B, =B.

If we make monotone transformations L(I;) and L(T,) of T\ and T, with

dL(/)
L (0) =0, L (00 ) =00 , and -- > 0 , then equation (2.66) becomes

dl

[1- e-L(',) r-e, [I-e-LI',) (I + e-H(L(',I-L(',))) - e-H(LI',))r, ~ <:: 8,

F (I" I, A, 8,) = [1- e-II(L(',)) r-~ [1- e-LI',) (I +e-II(L(',I-LI',))) - e-II(L(,,))r'8
1
~ B,

[1_e-LI"I(I+e-H(LI,,)-LI',)))_e-Il(LI"))J, ~ =B, =B.

(2.67)

When H (I) =t -logO + t) and L(t) =IY , with r> 0, (2.67) reduces to
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[l-e-'/J!-~ [1_e-r\T +t/e-t
/ -2e-r/ (1+t/)J2, B, ~B2 

F(tl't2,8p B2)= [l-e- I
/ (l+t/)r'-o\ [l-e- I

/ +t/e-r
/ -2e-t

/ (l+t/)f ,8, 5.B2 

Finally, if J is another function that satisfies ] (0) = 0, J (=) = = and 

dJ (t) dL{t) 
-- ~ -- where for all t ~ 0, then we get a family of distributions as 

dt dt 

[l-e -}(Id r-H2 
[l-e -}(Id (1 + e-H(L(lz)-L(r!ll) _e-H(L(tz)) r, ~ ~ 8

2 

F (tl't2' ~,(2 ) = [l-e -H(r~12)) r-o
! [l-e -J(ttl (I +e -H(L{rz)-L(ld)) -e -H(L(tz)} r ,~ 5. 8

2 

Example 2.7 Let Z be a nonnegative random variable with continuous density 

function f (z) . Suppose that Z and (~, Y2) are independent. Let 

.1'1 

F (yp Y2) = Iq(U)G(Y2 -u)du. Then ~ = ~ + Z and T2 = Y2 + Z has joint 
o 

distribution function, 

I1 tl-l 

F(tl't2)= I I q(U}G(t2 -z-u)f(z)dudz. (2.68) 
o 0 

e-' za-I 
Suppose that q(t)=g(t)=e-r 

and f(z)=[r{a}], O<z<=, a>O, then we 

can obtain (2.68) as 

I1 -~ a-I -/, a+I -tj a 
F ( ) J e Z de· tj e tJ (2 69) 

tl'12 = 0 {r(a)} z- {r(a+2)} - {r(a+l)}' . 

with marginals 
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(2.70) 

and 

(2.71 ) 

Then the joint density function of (~. T2 ) is 

and thus (~.7;) has a bivariate gamma distribution proposed by McKay (1934). 

Substituting (2.69). (2.70) and (2.71) in (2.62). (2.63) and (2.64). we can obtain 

F (t l • t2 , ()I' ()2) which satisfies (2.65). 

2.7 Applications 

The class of models (2.34) can be used to represent the lifetime of a 

parallel system in reliability analysis. Suppose that there are k - identical systems, 

each has two components. Let r; = (~i' T2i ) be the lifetime vector of the i rh 

system, i = 1, 2, ... ,k. Consider a parallel combination, as collection of two parallel 

connections, the first one with all the first components and the second one with all 

the second components. Thus the bivariate lifetime vector of the parallel 

combination is given by V = (VI'V2 ). where VI = max(~) and V 2 = max(T2). 

i = 1.2, ...• k. When the distribution of T = (~,T2) is of the fonn (2.34), the 

distribution of U = (UI'U2 ) is obtained as 

Thus, we have a closure property of the model (2.34) under a bivariate parallel 

combination. 
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The bivariate lifetime model (2.39) can be used as a lifetime model 

induced by frailties in the following way. 

Suppose that T = (~,T2) represents the lifetimes of a two component 

system. Suppose that there exists a positive random variable W such that the 

conditional distribution function of I; given W = w is 

(2.72) 

and that given W = w, Tr and T2 are conditionally independent. Then (2.72) can 

be considered as a frailty model in the univariate setup. Then a bivariate frailty 

model is given by F(tl't2 ) = f(F;(tI)F2 (t2 »lVdG(w) , where F;(tl ) and F2 (t2 ) are 

some baseline distribution function of ~ and T2 respectively and G (w) is the 

distribution function of W. The model (2.72) is also equivalent to proportional 

reversed hazards model of Gupta et a1. (1998). If F; (t;) is a distribution function, 

so also is 

A random effects interpretation of the model (2.39) can be given in terms 

.!..-I 
of F;* (t;), i = 1,2. Let W have a gamma density with p.d.f. g(w) oc e-WwB 

and suppose that conditionally on W = w, Tr and T2 are independent with 

distribution functions F;" (tl rand F2' (t2r respectively. Then it is easy to see 

that, unconditionally, T. and T2 have joint distribution function (2.39). This gives 

another interpretation of the model (2.39). Further, this representation gives a 

convenient method for simulating T. and T2 • As B~O, F(tl'r2)~F;(tI)F2(t2) 

corresponding to ind~pendence between T. and Tz . 
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The joint p.d.f. of 1; and T2 is 

[ (\ + (J) I, (I,) I, (t,)K (t, • t,) -'i'" ] 
f (t ,t ) = =----;=----------",;----= 

1 2 [(~ (t l )F2 (t2 »(1+0) ] 

where K(t .. t2 ) = (F;(tI)r8 + (F2(tJr8 -1. 

We can generalize (2.39) by considering the distribution function of 'F;, 

given W = w as F; (t j r; F;' (tj)W, i = 1,2 where rj is an additional parameter and 

the distribution of W is gamma with shape parameter fJ / (}. In this case, the joint 

distribution of r; and T2 will be of the form (2.41) with a j - fJ = 'Yi, i = 1,2. 

Thus, when two observed lifetimes r. and ~ each depend on the same 

unobserved frailty via a proportional reversed hazards model, then this common 

dependence induces an association between the observed times. 

2.8 Conclusion 

In this chapter, various definitions of bivariate reversed hazard rates were 

studied and then a unique representation of bivariate distribution function in terms 

of bivariate reversed hazard rates was introduced. Based on the exponential 

representation of bivariate distribution function, a new class of bivariate 

distribution functions was developed. It was also proved that class of distributions 

given in Ray (2002) is a special case of the proposed class of bivariate 

distributions. A bivariate proportional reversed hazards model was also derived 

from the proposed class of models and some examples were given. The 

application of the model in the analysis of parallel system was discussed. Frailty 

models could be derived from the proposed class of models. 
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Chapter Three 

Proportional Reversed Hazards Frailty Modelst 

3.1 Introduction 

Frailty models are widely employed in bivariate survival data as they 

allow us to model the dependence through common random effect. For example, 

in survival studies of two related individuals, the lifetimes or ages at onset of 

disease depend on common unobserved risk factors such as genotypes, 

susceptibility to some disease or condition and genetic transmission in a family 

tree etc. Frailty models for such bivariate data are derived under conditional 

independence assumption by specifying latent variables that acts multiplicatively 

on the baseline hazard rates. But in many practical situations, reversed hazard rate 

is more appropriate to analyze the survival data. Andersen et a1. (1993), Gurler 

(1996) and Lawless (2003) discussed the use of reversed hazard rates for the 

analysis of left censored or right truncated data. Duffy et a1. (1990) considered 

Australian Twin data which consist of information on the age at appendectomy of 

monozygotic (MZ) and dizygotic (DZ) twins. There were 21 pairs with missing 

age at onset and therefore the data contains left censored observations. However, 

Duffy et a1. (1990) excluded these left censored observations in the analysis. It is 

therefore, appropriate to model common random effect by including those left 

censored observations, which can be done by developing frailty models using 

reversed hazard rates. Accordingly, in this chapter, we introduce a class of frailty 

models, which will be useful for the analysis of left censored data. 

f Results are summarized in Sankaran and Gleeja (2008b) and communicated. 



Proportional Reversed Hazards Frailty Models 

The chapter is organized as follows. Section 3.2 introduces the 

proportional reversed hazards frailty model. The univariate gamma frailty 

reversed hazards model and shared gamma frailty reversed hazards model are also 

discussed. The estimation of the parameters of shared gamma frailty reversed 

hazards model, by maximum likelihood method, using EM algorithm is presented 

in Section 3.3. The properties of the estimators are also discussed. The shared 

gamma frailty reversed hazards model with covariates is discussed in Section 3.4. 

In Section 3.5, we apply the models to a real data set. A brief conclusion of the 

chapter is given in Section 3.6. 

3.2 Proportional Reversed Hazards Frailty Models 

PropOltional reversed hazards frailty models for the lifetime data are 

derived under the conditional independence assumption by specifying the frailty 

random variables that acts multiplicatively on the baseline reversed hazard rates. 

3.2.1 Univariate Frailty Reversed Hazards Model 

Let T be a nonnegative random variable representing lifetimes of 

individuals having absolutely continuous distribution function F(.) with respect 

to the Lebesgue measure over the interval (0, b) where b = sup{t I F (t) < I} . Let 

Z be the frailty random variable. Then RHR of T given frailty Z be 

m(Z,t) = Zmo (t), 

where mo (t) is the baseline RHR of T . The conditional distribution function of 

T given Z is 

b 

where Mo (t) = J mo (u ) du is the cumulative baseline RHR of T . 
I 

Thus unconditional distribution function of T is 
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F(t) = E( F(t I Z)) = E( exp{-ZMo (t)}) 

= Jexp{-zMo(t)}dG(Z) =L(Mo(t)), 

where E(.) denotes the mathematical expectation and L( s) = Je-of<dG( z) is the 

Laplace transform of the distribution of Z, with G( z} as the distribution function 

of Z. 

3.2.1.1 Univariate Gamma Frailty Reversed Hazards Model 

When the frailty random variable Z follows Gamma ( ~ , ~ ) , we get 

1 

F{t) =[l+BMo(t)Jo. 

Univariate frailty reversed hazards models without observed covariates 

and without any parametric assumptions on 1no (t) are not identifiable from 

lifetime data, as it is not possible to divide the variation into that within and that 

between individuals, if there is only one observation per individual. Consequently, 

univariate frailty models are not much helpful for the analysis of lifetime data. 

3.2.2 Bivariate Frailty Reversed Hazards Model 

Let T = (~ , T2 ) be a nonnegative random vector representing 

lifetimes of two related individuals with an absolutely continuous distribution 

function F(tpt2) in the support of D=[OA]x[O,b21 where (bpb2 ) is such that 

bj<oo, and bj =inf{tIFj {t}=l}, j=1,2. Let mj(Zj,tj)=ZjmOj(tJ, j=1,2 

be their individual RHRs given frailties ZI and Z2' where mOj (t j ) are the 

baseline reversed hazard rate of Tj , j = 1, 2. We assume that lifetimes (~,T2) are 

conditionally independent given frailties ZI and Z2' Then the distribution 

function of (I;,T2 ) given frailties ZI and Z2 is 
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hj 

where M OJ (1 j ) = f mOj (U ) du is the cumulative baseline RHR of Tj , j = 1, 2 . 
I j 

If g (Zl' zz) is the joint density function of (ZI' Z2 ) , then the bivariate 

distribution function of (~, Tz) is 

= E( F (t1,t2 1 Z) ,Z2)) = E( exp{ -Z)M 0) (t)) - Z2M02 (t2 )}) 

= L ( MOl (1) ) , M 02 ( t2 ) ) , 

where L ( SI' S2) is the Laplace transform of (ZI' Z2 ) . 

The marginal distribution function of 1; is 

where G; (Zj) is the distribution function of Zj' i = 1,2. 

(3.2) 

(3.3) 

Retaining the notations in Chapter 2, we can obtain marginal RHR and 

bivariate RHR in terms of frailties as 

(3.4) 

(3.5) 

and 

We can also see that 
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The model corresponding to ZI = Z2 = Z is called shared frailty reversed 

hazards model. 

3.2.2.1 Shared Gamma Frailty Reversed Hazards Model 

For the shared frailty reversed hazards model, we have 

1ni(Z,tj) = ZmOj (t j ) asindividualRHRsgivenfrailty Z where 1110j (t i ) , j=1,2 

are the baseline reversed hazards. We assume that lifetimes (~ , Tz ) are 

conditionally independent given frailty Z . Then distribution function of (~, Tz ) 

given frailty Z is 

If G (z) is the distribution function of Z , then the bivariate distribution function 

of (~,T2) is 

F(tl'tz) = fF(tl,tzlz)dG(z) =E(F(tl't2IZ)) 

The marginal distribution function of Tj is 

(3.7) 

Assume that Z is an i.Ld. random variable following gamma density 

(1/8)-1 { /8} ( ) = z exp -z 
g z 8(1/8)r(l / 8) , 

0>0, (3.8) 

with mean 1 and variance o. Then, using (3.8) in (3.6), we get 

(3.9) 
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as the distribution function of (7; ,T2 ), where MOl ( t1 ) and M 02 ( t2 } are the 

cumulative baseline reversed hazard rates. The marginal distribution functions 

(3.7) are obtained as 

We can also represent (3.9) as 

(3.10) 

The model (3.10) is gamma frailty reversed hazards model using marginal 

distribution functions, which is analogous to the model given by Clayton (1978). 

Remark 3.1 The condition k/ (t.,12 ) = {1 + 0) k; (1I't2 ) , uniquely determines the 

joint distribution function (3.10). 

Identifiability of the model is established by the following theorem. 

Theorem 3.1 

Let F (11' t2 ) be a known distribution function given by (3.10) and 0 > 0, 

and let m; ( h; ) '# 0, i = 1,2. Then the model is identifiable. 

Proof 

From (3.1 0), we obtain the joint density function as 

Since 111;( hi) '# 0 and F; (bJ = I , i = 1,2, we have 

From the above expression it is clear that the identified value is unique. 
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3.3 Estimation of Shared Gamma Frailty Reversed Hazards Model 

As mentioned earlier, shared gamma frailty reversed hazards model is 

useful for the analysis of left censored data. So we consider the estimation of 

shared gamma frailty reversed hazards model, when the lifetime data is left 

censored. Let the lifetimes T = (7;, T2 ) and censoring times V = (VI' V 2) be 

defined on a common probability space (n,;J, p). Assume that T and V are 

independent. Then the observable random vectors are given by T = (i;, T2 ) and 

O={~,02) where Tj =max(Tj,VJ and OJ =l(Tj =TJ, j=1,2. Suppose now 

that f; = (i;i' T2i ) and 8; = (~i' 02i ), i = 1,2, .. " 11 is an i.i.d. sample, each (f;, 8;) 

having the same distribution as (T, 0) . 

Let Yij(t)=l{f;j~t} and Nij(t)=l{f;j~t'~j=l}, i=1,2, ... ,11 and 

j=1,2. We define the counting process Y{t} as Y(t)=(t:(t), i=I,2, ... ,n), 

where r; (t ) = L r;j ( t) , the total number failed or censored before time t and in 
j=1.2 

the time interval (t - dt,r] in the i1h sample. Consider N as a multivariate 

counting process with components Ni' where components with the same value of 

the first index i share the same frailty variable Zi' The counting process 

N(t)={N;{t), i=1,2, ... ,n), counts the observed failures N;(t)= L Nij{t) by 
j=1.2 

the time t in the ith sample, Thus N (t) = (Ni (t), i = 1,2, ... , 11) is a multivariate 

counting process with intensity process mi (t) satisfying 

where 1110 (t) represents unknown baseline reversed hazard rate and Z; is 

unobservable i.i.d. random variable with Gamma(l / 8, 11 B) distribution. We 
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consider maximum likelihood estimation of the parameter. 0 and the cumulative 

b 

baseline reversed hazard rate Mo ( t ) = f mo (s ) ds , where b = M ax ( bl ' b2 ) • 

I 

Since censoring is independent of lifetime, the partial conditional 

likelihood based on N (t) is given by the product integral 

(3.11 ) 

11 

where N (t) = :L N; (t) and m. (t) = :Lmj (t). Considered as a function of Z, 
; i=1 

(3.11) is proportional to conditional density of the data (N (t ) , Y (t )) given 

Z = z. Substituting the specification of mj (t) and evaluating the product integral, 

we get 

{ 
(1/8)-1 { 0 [ b ]} _ z; exp -z; / } LW,(r) 

L(O)- I1 (118) I1(z)~(t)dMo(t)) exp -Z; J~(s)dMo(s) . 
; 0 r(1I0) t 0 

(3.12) 

Conditional on the data, Z; are still independent and gamma distributed with 

b 

parameters (1I0)+N;(h) and (1/0)+ J~(s)dMo(s). Integrating out Z in 
o 

(3.12), we get the marginal partial likelihood as 

We take (3.13) as the likelihood function in which cumulative baseline RHR 

Mo (t) is not necessarily absolutely continuous. The maximum likelihood 
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estimator for Mo (t) will be discrete with jumps at jump times of N only. So its 

computation comes down to maximizing (3.13) over such Mo (t ), replacing 

dM 0 (t) by the jump of Mo (t) at that time point. The estimates of the parameters 

which maximises (3.13), maximises (3.12) also. We use the EM algorithm to 

maximize (3.13). The E step is to estimate Zi' 

(l/8)+N;(h) 
Zj = b 

(1/8)+ ff; (s )dMo (s) 
o 

The M step is then to calculate B. the maximum likelihood estimator for B from 

(3.13), and 

By general theory of EM algorithm, if this algorithm converges, it 

converges to a stationary point of log L ( 8) . 

Testing of independence between individuals within a pair can be done 

based on likelihood ratio test, where the null hypothesis is Ho: 8 = O. This null 

hypothesis is tested using Z2(1) approximation to the likelihood ratio test statistic, 

-210g Q = 2 (log L(B)-log L(O). 

Now we discuss the asymptotic properties of the estimators. The 

consistency of the estimators is established in Theorem 3.2. 

Let J; be the first jump of N , ~) lies in a known interval [0, S] and true 

cumulative baseline reversed hazard Moo be strictly decreasing and continuous on 

[0, bJ for b<oo. 

67 



Proportional Reversed Hazards Frailty Models 

Theorem 3.2 

Assume that 

I. Y is a non-decreasing step function and P (Y ( t ) ~ 1) has at most finite 

number of discontinuities in t E (O,b), 

11. In! E (Y (u )) > 0 , 
liE (O.b) 

then Sup IM 0 (t) - Moo (t )1-) 0 almost surely (a.s.) and 10- 801-) 0 a. s. 
/e(O.b) 

Proof 

The assumption (i) is used to prove that Mo (t) does not diverge to 

infinity, (ii) is used to ensure that counting process N (t) has sufficient activity on 

the entire interval so as to estimate the parameters, and (iii) excludes the 

possibility of N (t) having at most only one jump. The model becomes 

unidentifiable if all Ni have only one jump. The rest of proof of the theorem is 

similar to the one given in Murphy (1994). 

The asymptotic normality of the estimators can be established in the 

following way. 

b 

Set Mor(O)= Jl+t~(u)dMo(u) and ~ =t~+O for ~ a function and ~ a 
o 

scalar, and differentiate at t = 0 to get F" (M 0,0) (~, ~). Then, if (Mo. 0) 

maximizes 10gL(8). Fn(Mo,8)(~,~)=O for all (~,il:!). The fonn of F" is 

given by 
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and 

+ 0 -2 ( hI J (11 0 ) + Ni ( b ) bJ log 1+0 Y;dMo - h . 0 '~Y;dMo 

o (1/ 0) + I Y;dM 0 0 

o 

For 0 = a, the la~t tenn is taken as its limit as 0 approaches zero to get 

( OY;dM 0 J /z) + N; (b) f Y;dM.. The class of h is taken to be the space of 

bounded variation cross the reals. Define the norm to be IlhllH = II~ IL + 1~ I, where 

Il~IL is absolute value of /~ (0) plus the total variation of ~ on the interval [a,b). 

Define Hp to be the product space of bounded variation functions on [D, b) and 

real valued scalars with norm IIhllH = 11~ Ilv + Ihzl ~ p . If P = 00, then the inequality 

is strict. In the following p is assumed to be finite unless stated otherwise. Define 

b 

(M 0,0) ( h ) = J ~dM 0 + hzO . Then the parameter space 'P can be considered to be 
o 

a subset of r ( Hp) , which is the space bounded by real valued functions on Hp 

under the supremum norm IIV 11 = sup IV ( h )1. The score function FII is a random 
hE Hp 

map from '¥ to r ( Hp) for all finite p. 

Theorem 3.3 

Assume that 

1. SupIMo(t)-Moo(t)l~a a.s. and lo-ool~a a. s., 
(E(O,b) 
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ii. There exist a constant K for which Ilyll ~ K and N (b) ~ K a.s., 

iii. In! E (Y (u ) ) > 0 , 
UE(O.b) 

IV. p(Y(~)~l)<l, 

on r' (Hp); Y' is a tight Gaussian process on r ( Hp) with mean zero and 

covariance process 

b 

Cov(Y'(h),Y'(h'))= jhP'0; (h ')dMoo + h20'(~I) (h'), 
o 

where 0'::= (O'" 0'2) is a continuously invertible linear operator from H ~ onto H ~ 

with inverse 0'-1 ::= (0'(1)-1,0'(2)-1). The form of 0' is as follows: 

and 

where 
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b 2 

fY;dMoo 
o 

When 0, = 0, the last term above is defined by its limit, which is 10 l;dM 00 J . 
Proof 

Proof of the theorem follows from Murphy (1995). 

3.4 Shared Gamma Frailty Reversed Hazards Model with Covariates 

In survival studies, covariates are usually used to represent observable 

heterogeneity in a population. For example, Crouchley and Pickles (1995) 

discussed data on age at first marriage of UK volunteer sample of twins. Some of 

the observations were left censored, because some of the individuals were married 

but time of first marriage was not known. The covariate included was the gender 

of the twin pair, since woman tend to marry earlier than men. The proportional 

reversed hazards frailty models with covariates can be employed to account such 

variability. 

Let mj(Z,tJ=ZmOj(tJexp{[!'.!J be individual RHRs given frailty Z 

px 1 vector of regression parameters and .!.i = ( x jl ,x j2' ••• , X jp ), j = 1,2 is a px 1 

vector of covariates. Then proceeding as s~milar to shared gamma frailty reversed 

hazards frailty model, we get (3.6) as 
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Assuming that Z follows Gamma (~ , ~ ), we obtain bivariate distribution 

function of (~, T2 ) as 

(3.14) 

and the marginal distribution functions as 

which is in terms of cumulative baseline reversed hazard rates M OJ (t j ), j = t, 2. 

Then distribution function of (1i, Tz)' (3.14) can be expressed in terms of 

marginal distribution functions as (3.10). The estimation of the parameters of the 

model is done via EM algorithm. 

Retaining the notations and following the steps in Section 3.3, we obtain 

the log likelihood function for the parameters B and ~ , which can be expressed 

as 

log L(B,P) = 4 (B) + Lz (~), 

where 4(B)=--logB-n logr{l/B)+ I, -+Nj(b)-l logzj---L and n n (1 )( z.) 
B ;=1 B B 

11 2 . b 

Lz (P) = I, I, N ji (b )(~'~i + log (r; (t) dM 0 (t))) - zjel!J;j Jf; (s) dMo (s). 
~~ 0 

The E-step is to estimate Zj' 

'" (lIB)+N j {b) 

z, = (I/o}/i ± Y,j (s }e~'" JdM 0 (s) . 
~l J=I 

72 



Proportional Reversed Hazards Frailty Models 

The M step is to obtain the estimates of () and ~. The estimate of () is obtained 

by maximising the log likelihood function ~ (()) numerically and the estimate of 

~ is obtained by maximising ~ (~) . Following the steps similar to Cox's partial 

likelihood we can express the partial likelihood for ~ as 

(3.15) 

The likelihood (3.15) is used to obtain the initial estimate of ~. The likelihood 

function (3.15) is considered by Sengupta et a1. (1998) in a different way. 

The estimate of the cumulative baseline reversed hazard rate is obtained 

from ~(~) as 

" ()= bJ dN.(s) 
Mo t ( J' 

1 ~ 2; ±Y;j (s) el!··Tij 
I )=1 

The steps are repeated until the convergence. By making suitable changes in the 

conditions of the theorems given in Pamer (1998), the asymptotic properties ofthe 

estimates of () and ~ can be established. 

3.5 Data Analysis 

Now we apply the model (3.10) to the Australian Twin data given in Duffy 

et a1. (1990) which consists of information on the age at appendectomy of 

monozygotic (MZ) and dizygotic (DZ) twins as explained in Section 3.1. The 

genetic effect involved in the risk of appendectomy is the frailty random variable. 

The individuals with missing age at onset are the left censored observations. We 

consider pair of twins with uncensored age at onset and individuals having age at 

onset less than 11 are considered as left censored observations. The data consists 

of 203 pairs of MZ twins and 167 pairs of DZ twins. Of these MZ twin pairs, there 
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are 37 female pairs and 166 male pairs. Among the DZ twins, there are 82 same­

sex female pairs, 19 same-sex male pairs and rest of them are opposite-sex pairs. 

The maximum likelihood estimate of () for MZ and DZ twins is given in Table 

3.1. The value of the frailty variable is estimated and those for MZ female pairs, 

MZ male pairs, DZ same-sex female pairs and DZ same-sex male pairs are given 

in Tables 3.2 - 3.5. It can be noted, from Table 3.2 - Table 3.5, that if the 

realization of Z is less than one, then all the members of the group tend to 

experience the event of interest at an earlier time, where as opposite occurs if Z is 

greater than one. Figures 3.1 - 3.4 show that the values of the frailty variable 

increase with increase in age at onset, for MZ and DZ twins. Tables 3.6-3.9 

depicts values of cumulative baseline reversed hazard rate for MZ and DZ twins at 

different times and is decreasing as shown in Figures 3.5-3.8. The null hypothesis 

Ho: 8 = 0 of independence between individuals within a pair is tested at 1 % level 

of significance. The value of the test statistic for MZ twins and DZ twins is given 

in Table 3.10, which implies that individuals within a pair are dependent. 

Table 3.1 Estimate of 8 for twins 

MZ DZ 

Female 1.0036 0.47926 

Male 0.47663 0.40887 
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Table 3.2 Estimate of frailty variable, Zj, for MZ female pairs 

Twin 1 Twin 2 Twin 1 Twin 2 
Family Family 

ID ~] 
8, Zj 

ID ~J ~2 
Zi 

tu ti2 
1- tj] ta 

337 26 t 21 1 1.7281 4257 27 1 31 1 2.1232 

682 38 I 16 I 1.2489 4319 21 1 19 1 1.3848 

759 11 0 11 0 0.1225 4628 11 1 18 1 0.54233 

799 21 1 12 1 0.77413 5133 11 0 11 0 0.1225 

1180 12 1 15 1 0.61453 9309 16 1 14 I 0.72309 

1275 39 1 43 1 2.5118 9331 11 0 11 0 0.1225 

1349 29 1 26 1 2.0318 10252 17 1 25 1 1.2377 

1457 18 1 21 1 1.2424 11052 11 0 11 0 0.1225 

1490 14 1 14 1 0.62411 12742 24 1 15 1 1.075 

1957 20 1 14 I 0.86301 15196 14 1 17 1 0.74578 

2113 20 1 19 1 1.3134 15420 19 1 11 0 0.37832 

2135 18 1 15 1 0.87687 15438 20 1 18 1 1.1846 

2176 40 1 52 1 2.6162 15737 11 0 28 1 0.41743 

2944 18 1 11 1 0.54233 15879 12 1 42 1 0.85902 

3200 11 1 11 0 0.24543 16000 19 1 40 1 1.6379 

3264 11 1 21 1 0.59677 16234 12 1 11 0 0.28586 

3872 45 1 56 1 2.848 16325 40 1 20 1 1.7719 

3956 11 1 II 1 0.36837 20309 17 1 18 1 0.97438 

3976 11 0 11 0 0.1225 
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Table 3.3 Estimate of frailty variable, z;' for some MZ male pairs 

Twin 1 Twin 2 Twin 1 Twin 2 
Family 

Zj 
Family 

Zi 
ID til ~} ti2 

0; ID tu O;} ti2 0;2 

42 17 I 17 1 0.94868 2034 22 1 11 0 0.55541 

154 11 1 13 1 0.56621 2089 20 1 21 1 1.2242 

265 15 I 16 1 0.81624 2114 18 I 18 1 1.0335 

414 15 1 18 1 0.88742 2707 25 1 18 1 1.2057 

524 14 1 17 1 0.78985 2867 15 1 25 I l.01l5 

560 20 1 53 I 1.4804 2995 30 1 32 1 1.6589 

574 45 1 18 1 l.3368 3111 24 1 17 1 1.1234 

580 12 1 21 I 0.77163 3591 15 1 24 1 0.99386 

621 15 1 19 1 0.91854 3620 34 I 35 1 1.7743 

630 11 0 11 0 0.26241 3727 11 0 11 0 0.26241 

660 22 1 17 1 1.0957 3840 13 1 16 1 0.7285 

668 21 1 II 1 0.72645 3988 31 1 26 1 1.564 

688 19 1 19 1 1.1221 4107 11 0 12 1 0.40418 

744 21 1 12 1 0.77163 4148 16 1 15 1 0.81624 

752 20 1 13 I 0.82889 4285 38 1 17 1 1.2512 

776 II 0 12 1 0.40418 4305 38 1 19 1 1.3931 

874 11 0 20 1 0.54335 4378 11 0 11 0 0.26241 

895 19 1 18 1 1.076 4395 28 1 20 I 1.3523 

898 12 I II 0 0.40418 4446 16 1 22 1 1.0334 

909 19 1 16 1 0.97309 4457 22 1 38 1 1.5202 

910 11 0 25 1 0.57224 4486 24 1 13 I 0.86675 

1062 13 I 11 0 0.42804 4505 40 1 11 I 0.80404 

1066 30 1 25 1 1.5298 4520 36 I 16 1 1.\661 

1091 22 I 27 1 1.4033 4680 11 0 II 0 0.26241 

1142 26 1 18 1 1.2181 4682 34 I 11 0 0.60025 

1814 12 1 18 I 0.72532 4745 11 0 16 1 0.48536 

1818 14 1 17 1 0.78985 4765 11 0 21 1 0.54918 

1826 20 I 18 1 1.1116 4840 17 I 12 1 0.70326 

1828 24 1 12 1 0.7949 4995 11 0 14 1 0.44093 

1859 13 1 11 1 0.56621 5089 48 1 48 I 1.8976 

1899 11 0 11 0 0.26241 5097 16 1 15 1 . 0.81624 

1911 11 0 II 0 0.26241 5107 23 I I I 0 0.56131 
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Table 3.4 Estimate of frailty variable, Zi' for DZ female pairs 

Twin 1 Twin 2 Twin 1 Twin 2 
Family Family 

ID ~I ~ Zi 
ID ~l ~2 

Zi 
tu ti2 ti/ ta 

212 24 I 25 1 1.3694 4710 20 1 58 1 1.3696 

298 34 I 22 I 1.3824 5290 29 1 16 1 1.0712 

385 I1 0 11 0 0.27151 5350 27 1 43 1 1.6126 

589 14 1 13 I 0.67907 5394 20 1 29 1 1.2547 

661 11 0 49 1 0.62446 5395 32 1 43 1 1.6788 

725 21 1 11 0 0.547 5418 26 1 14 1 0.93885 

741 23 1 19 1 1.1489 5433 45 1 23 1 1.5039 

823 12 I 30 I 0.84402 5458 25 1 25 1 1.3898 

843 11 0 48 I 0.62362 5491 13 1 11 0 0.44561 

862 16 1 17 1 0.86368 5501 11 1 11 0 0.40163 

892 11 0 11 0 0.27151 5503 16 1 15 1 0.80457 

1063 11 0 11 0 0.27151 5587 24 1 30 1 1.445 

1618 16 1 11 0 0.48867 5670 23 1 16 1 1.0072 

1825 12 1 15 1 0.66631 5699 14 1 59 1 1.0228 

1830 26 I 11 0 0.58664 5754 14 1 14 1 0.69646 

1947 17 I 21 1 1.007 5778 22 1 38 1 1.4121 

2104 11 0 17 I 0.50597 5951 17 1 17 1 0.90498 

2208 22 1 30 1 1.3514 8853 18 1 17 1 0.9431 

2706 15 1 11 0 0.47869 9261 23 1 70 1 1.5522 

2977 28 1 20 1 1.2475 10247 54 1 52 1 1.8963 

3256 11 1 11 0 0.40163 11713 11 0 21 1 0.547 

3619 11 0 12 1 0.41879 11789 33 1 14 1 0.97189 

3686 42 I 24 1 1.523 11886 18 I 14 1 0.81582 

4248 22 1 47 I 1.4439 11909 35 I 21 I 1.352 

4360 16 1 22 1 0.97679 12010 20 1 27 1 1.2402 

4533 12 1 26 1 0.82614 12055 33 I 21 1 1.3306 

4655 33 1 35 1 1.639 13874 25 1 58 1 0.81767 
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Table 3.5 Estimate of frailty variable Z, for DZ male pairs 

Twin I Twin 2 Twin I Twin 2 
Family Family 

ID °'1 
~, Z, 

8,,/ ~1 
Z, 

III ',2 ID 1;/ la 

134 11 0 11 0 0.35308 9363 21 I 25 I 1.4675 

206 18 I 25 I 1.426 1 13247 16 I 18 I 1.1572 

54 1 16 I 22 I 1.1975 14674 14 I 26 I 1.1709 

2673 17 I 17 I 1.2061 15043 24 I 15 I 1.1537 

3310 12 I 12 I 0.69586 15092 35 I 13 I 1.0898 

406 1 16 I 16 I 1.035 15249 11 0 26 I 0.714 12 

4598 11 I 11 0 0.49744 16347 16 I 13 I 0.89801 

4657 24 I 52 I 1.6024 2045 1 26 I 13 I 1.0675 

5003 11 0 11 0 0.35308 20616 15 I 11 0 0.59494 

5446 17 I 24 I 1.3 199 

3 
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., 
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:J;l Twin 1 

Figure 3.1 Plot of the estimate of frailty variable, z" for MZ female pairs 
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Figure 3.2 Plot of the estimate of frailty variab le, z" for MZ male pairs 
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Figure 3.3 Plot of the estimate of frailty variable, Zi' for DZ female pairs 
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Figure 3.4 Plot of the estimate of frailty variable, Zj' for DZ male pairs 

Table 3.6: Estimates of the cumulative baseline reversed hazard rate, Mo (t) , for 

different age at onset of MZ female twins 

Mo(t) 
A 

Ma(t) Mo(t) Age t Aget Mo(t) Age t Age t 

11 3.5689 19 0.71167 27 0.23811 40 0.12135 

12 2.4185 20 0.57327 28 0.21726 42 0.073211 

14 1.9024 21 0.45575 29 0.19659 43 0.057382 

15 1.461 24 0.33 31 0.17675 45 0.042159 

16 1.2451 25 0.30551 38 0.15771 52 0.027568 

17 1.1191 26 0.28175 39 0.13912 56 0.013514 

18 0.95972 
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Table 3.7: Estimates of the cumulative baseline reversed hazard rate, Ni 0 (t ) , for 

different age at onset of MZ male twins 

Mo(t) Mo(t) Ma(t) 
A 

Aget Age t Age t Age t Mo(t) 

11 2.9487 21 0.59449 30 0.21366 40 0.050075 

12 2.6183 22 0.5312 31 0.18946 42 0.040377 

13 2.191 23 0.47259 32 0.15857 45 0.03398 

14 1.9795 24 0.439 33 0.13623 48 0.030795 

15 1.5863 25 0.36715 34 0.11458 49 0.021401 

16 1.3362 26 0.33266 35 0.096989 50 0.018288 

17 1.1108 27 0.29105 36 0.079903 53 0.015193 

18 0.93356 28 0.27745 37 0.069808 55 0.009068 

19 0.77708 29 0.2387 38 0.066456 63 0.006024 

20 0.65498 

Table 3.8: Estimates of the cumulative baseline reversed hazard rate, Mo (t) , for 

different age at onset of DZ female twins 
A 

Mo(t) Mo(t) Age t Mo(t) Age t Mo(t) Aget Aget 

11 2.7992 21 0.75692 32 0.23619 47 0.077004 

12 2.4844 22 0.66663 33 0.22766 48 0.06365 

13 2.0408 23 0.54017 34 0.20289 49 0.057001 

14 1.8905 24 0.47071 35 0.17905 50 0.043912 

15 1.5622 25 0.42689 36 0.16353 52 0.037442 

16 1.4305 26 0.37563 37 0.14827 54 0.031051 

17 1.2145 27 0.33599 38 0.14072 58 0.024735 

18 1.032 28 0.31671 42 0.12597 59 0.018475 

19 0.93006 29 0.29795 43 0.11153 67 0.012253 

20 0.87245 30 0.27082 45 0.090627 70 0.006098 

Table 3.9: Estimates of the cumulative baseline reversed hazard rate, Mo (1) , for 

different age at onset of DZ male twins 
A A 

Age t Mo(t) Age t Mo(t) Age t Mo(t) Age t Mo(t) 

11 2.2406 15 1.1054 21 0.38313 26 0.13876 

12 1.9715 16 0.92491 22 0.34179 35 0.05379 

13 1.58 17 0.62013 24 0.3024 52 0.026316 

14 1.2125 18 0.47116 25 0.20057 
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Figure 3.5 Estimate of cumulative baseline reversed hazard rate, Mo (t), for 
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different age at onset of MZ female pairs 
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Figure 3.8 Estimate of cumulative baseline reversed hazard rate, Mo (t) , for 

different age at onset of DZ female pairs 

Table 3.10 Value of likelihood ratio test statistic for twins 

MZ DZ 

Female 1206.8 3602 

Male 8004 152.44 
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3.6 Conclusion 

The proportional reversed hazards frailty model, which is useful to model 

the dependence through common random effect in the context of left censoring 

was introduced. The shared frailty reversed hazards model was developed by 

considering the distribution of frailty variable as gamma distribution. The 

properties of the shared gamma frailty reversed hazards model were studied. The 

estimation of the parameter of the shared gamma frailty reversed hazards model 

via EM algorithm was discussed and properties of the estimators were studied. 

The shared gamma frailty reversed hazards model with covariates was also 

discussed. Finally, with monozygotic and dizygotic data in Duffy et al. (1990), the 

applicability of the model was well illustrated. 
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Chapter Four 

Bivariate Correlated Gamma Frailty Reversed Hazards 

Model* 

4.1 Introduction 

The shared frailty model describes the association between subjects within 

subgroups. It assumes the unobserved factors to be same within the subgroups, 

which may not always reflect reality. For example, it may be inappropriate to 

assume that all partners in a subgroup share all their unobserved risk factors. In 

the shared frailty model, the dependence between lifetimes within the subgroup is 

based on a marginal distribution of frailty. But in many applications, it is 

important to specify different marginal frailty distributions for related individuals, 

for example, in the analysis of unlike-sex twins, brothers and sisters, relatives 

from different generations etc. This is because the distribution of frailty may be 

different for males and females or individuals taken from different generations. 

Assuming gamma distribution as the distribution of frailty random variables, 

Yashin and Iachine (1995) introduced correlated gamma frailty model. The model 

is useful for the analysis of either complete or right censored bivariate lifetime 

data, but it is not appropriate for the analysis of left censored bivariate lifetime 

data. So in order to incorporate the situations where the bivariate lifetime data is 

left censored and individuals in a group have different but correlated frailties, we 

introduce bivariate correlated gamma frailty reversed hazards model. 

:,: Some results are published in the journal Metrika (see Sankaran and Gleeja (2007b)) and some 
other results are summarized in Sankaran and Gleeja (2008b) and communicated. 



Bivariate Correlated Gamma Frailty Reversed Hazards Model 

The rest of the chapter is organized in the following way. Section 4.2 

introduces bivariate correlated gamma frailty reversed hazards model. The 

extension of the proposed model to the multivariate set up is given in Section 4.3. 

In Section 4.4, we present estimation of the parameters of the bivariate correlated 

gamma frailty reversed hazards mode1. The model is applied to dizygotic data in 

Duffy et al. (1990), in Section 4.5. Finally, a brief summary is given in Section 

4.6. 

4.2 Bivariate Correlated Gamma Frailty Reversed Hazards Model 

Let T = (~, T2 ) be a nonnegative random vector representing lifetimes of 

two related individuals with an absolutely continuous distribution function 

F(tl't2 ) in the support of D=[O,bl ]x[O,b2 ] where (bl'b2 ) is such that hj <00 

and bj =inf{tIFj(t)=l}, j=1,2. Let 1nj (Zj,tJ=Zj 1nOj (tJ, j=I,2 be their 

individual RHRs given frailties ZI and 22 where 1nOj (t j ) are the baseline 

reversed hazard rate of Tj' j = 1,2. We assume that ZI and 22 are correlated and 

lifetimes (~,T2) are conditionally independent given frailties ZI and 2 2 , 

A bivariate correlated gamma frailty reversed hazards model can be 

constructed when the frailties ZI and Z2 follow gamma distributions. In this case, 

the frailties of two individuals have different variances 0"1
2 and (j2

2 and a 

correlation coefficient p. The foHowing theorem specifies the bivariate correlated 

gamma frailty reversed hazards model, useful for the analysis of left censored 

data, which is analogous to the model given by Yashin and Iachine (1997) using 

hazard rates. 

Theorem 4.1 

For the proportional reversed hazards model of bivariate lifetime 

distribution, there exist a bivariate gamma frailty distribution with different 
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marginals that allows for representation of the bivariate distribution function 

F(tl'tz ) as 

P 

F (tI'12) = [ F; (1.) J-P:: [Fz (tz )]l-P:: [[ F; (11 )]-CTl2 +[ Fl (t2) TCT!2 -1 J CT,CT2 (4.1) 

Proof 

Let ~, i = 0,1,2 be three independent gamma distributed random 

variables (r(ki,J),i =0,1,2). Let a be a real positive number. Let Z. =Yo +~ 

and Z2 = a (Yo + Yz ). Then the random variables Z. and Z2 are gamma 

distributed and correlated. Let us assume that Z. and Z2 have means equal to one. 

variances O".z and 0"22 and a correlation coefficient p. Then parameters of 

gamma distributions are obtained from these assumptions as 

Since ki :;:::0. i=O.I,2, we get o~p~rnin(0"2 ,~). 
0"1 0"2 

We can write (3.1) as 

(4.2) 

F (11,12 I ZI' Z2) = exp { - Yo [ Mo. (t. ) + aM 02 (t2 ) ] - 1'; [ M OJ (t. ) ] - Yz [ aM 02 (12)]} . 

Integrating out Yo' 1'; and Y1 we obtain F (t. ' t2 ) as 

(4.3) 

Substituting (4.2) in (4.3), we get F (tpt2) in terms of cumulative baseline RHRs 

as 
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p 

F (t) ,t2) = [1 + a)2MOI (t,) + C122M 02 (t2) J 0"10"2 

[1+0"/M01 (tl)]-(G:2 - G~J[1+0"/M02(t2)]-(G:2 -G~J. 

Further, we have the marginal distributions as 

[
M ( )]-(kO+kI) ( I I 

F; (tl ) = 1 + o~ t) = [ 1 + 0"/ M 01 (tl ) J 0/) 

and 

(4.4) 

(4.5) 

Substituting (4.2), (4.4) and (4.5) in (4.3) we get (4.1), which is the correlated 

gamma frailty reversed hazards model in terms of marginal distribution functions. 

Remark 4.1 The model (4.1) can be obtained from (2.34) if we substitute 

a l =1-2p(a\/a2 ), a2 =1-2p(0"2/0"1), Pt =P2 =1 and 

Remark 4.2 Substituting a l
2 = 0"22 = 8 in (4.1), we obtain 

Remark 4.3 For 0"1 2 =0"22 =8 and p=l, (4.1) reduces to (3.10), the shared 

gamma frailty reversed hazards model. 

The identifiability of correlated gamma frailty reversed hazards model is 

established in the following theorem. 
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Theorem 4.2 

Let F (t\, t 2 ) be a known hi variate distribution function given by (4.1) 

with parameters P > 0, 0"1 2 > 0 and 0"2
2 > 0 and let the marginal reversed hazard 

rate mj (bi ) * 0, i = 1,2. Then the model is identifiable. 

Proof 

Let F (tP t2 ) be a known bivariate distribution function given by (4.1). 

m2 (t2 ) are marginal reversed hazard rate of 7; and T2 respecti vel y and 

Since F; (bi ) = 1 and mj (b;) * 0, i = 1,2, we have (4.6) as 

y;( bl ,b2 ) = PO"l a2"", (bl ) m2 (b2 ) , 

which gives 

Let us define another function '1/ (t l ,t2 ) as 

(4.7) 

(4.8) 

'1/( t l , t2 ) is a known function and we obtain logarithmic derivatives of (4.8) as 
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Now, from (4.9), we obtain 

(4.10) 

Thus we obtain, from (4.7) and (4.10), 

which completes the proof. 

4.3 Multivariate Correlated Gamma Frailty Reversed Hazards Model 

Multivariate lifetime models are important in the analysis of lifetime 

data with several events and in the analysis of lifetimes of related individuals. 

Accordingly, we can extend the correlated gamma frailty reversed hazards model 

for more than two lifetimes. Let 7;, i = 1, 2, ... ,n be the life spans of n related 

individuals, m; (Z;, t; ) = Z;11loi (t;) be their individual RHRs given frailties Z; 

where 11'lui (t;) are the underlying baseline reversed hazards for i = 1, 2, ... ,n. Let 

I;,T2 , ... ,Tn be conditionally independent given frailties Z"Z2""'Z", In the 

following, we give the multivariate correlated gamma frailty reversed hazards 

model. 

Theorem 4.3 

For the proportional reversed hazards of the n -variate distribution 

function, there exist an n -variate gamma frailty distribution with different 

marginals that allows for representation of distribution function F (tl' 12 , ... , t/l) as 
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where Pi) are correlation coefficient between Z; and Z j' and O'j 2 are the 

variances of Zj' i,j =1,2, ... ,n, i,* j and Pi)/O'jO'j is a constant not depending 

on i,j. 

Proof 

Let Y;, i ::: 0,1,2, ... , n, be n + 1 independent gamma distributed random 

variables (r (kj, A. ), i = 0,1,2, ... , n ). Let us define a set of random variables Zj as 

Zj ::: a; (Yo + Y; ), i = 1,2, ... , n where a; is a real positive number with a l = 1. Then 

Z; , s are gamma distributed and dependent random variables. Let us assume that 

Z; , s have means equal to one and variances O'j 2 • Let the correlation coefficient 

between Z; and Zj be Pij' i,j=I,2, .. ,n, i*-j and Pi) is a constant not 
{7jO'j 

1 
depending on i, j . Then the parameters of the distribution of Y; are A.::: -2 ' 

0'\ 

i,* j 

d Pij - PH . . k I . . k I - 1 2 an -----,l'*j, *-, l,j, , - , , ... ,n. 
O'/~ j O'k {7/ 

We have 

and 

F(t"t2 ,··.t1l I Z"Z2""'Z,J =exp{-t1.m, (Z"u)du 1· 
1=1 I, J 

Now, following the steps similar to the bivariate case, we get 

(4.11) 
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Remark 4.4 If the marginal frailty distributions of the multivariate model are 

identical (ai 2 = a 2, i = 1, 2, ... , n) and all associations among frailty variables in 

the multivariate correlated gamma frailty reversed hazards model (4.11) are 

described by one parameter p, then 

Remark 4.5 If a/ = B, ; = 1,2, ... ,n and Pu = 1, i, j = 1,2, ... ,11, i =t j in the model 

(4.11), then we get 

which is shared gamma frailty reversed hazards model extended to the 

multivariate setup. 

4.4 Estimation of Correlated Gamma Frailty Reversed Hazards Model 

We consider the situation where the data is left censored. The lifetime 

vector T = (I; , T2 ) and censoring time vector U = (U I ' U 2 ) are defined on a 

common probability space (n, (f, p). Then the observable random vectors are 

given by f=(~,f2) and g=(~,g2) where fj=max(Tj,U j ) and 

8j = I (Tj = fj)' j = 1,2. Suppose now that f; = (~i,f2i) and ~ = (~i' 82i ), 

;=1,2, ... ,n is an i.i.d. sample, each (f;,~) having the same distribution as 

(f,8) . 

Let us define the counting process Y(t) as 

Y{t)=(Y;j(t), i=I,2, ... ,n, j=l,2) where Y;j(t)=/{f;j ~t} and the counting 

process N(t) as N(t)={Nij{t), i=I,2, ... ,n, j=I,2) where 

N ij (t ) = I {i;j ~ t, ~j = I}, ; = 1,2, ... , nand j = I, 2 . 
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We obtain the likelihood function L(P'0"1'0"2) as 

where Pj (.) denotes the p.d.f of Wj , j = 0,1,2 and h = max(bl ,b2 ). Using 

binomial expansion (since Nij(u)E{O,l}, j=1,2, i=I,2, ... ,1l, all binomial 

coefficients are equal to one), we can write 

and 

Thus 

(4.12) 

Now using (4.12) and integrating out Wj , j = 0,1,2, we get the likelihood 

function as 

(4.13) 

where G is the product of gamma functions given as 
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b 

and Mij(O)= Jt:j(s}dMo(s), i=1,2, ... ,n, j=I,2. 
o 

We can use the EM algorithm to maximize (4.13). The E-step is to obtain the 

estimates of frailty variables as 

and 

Nil (b)+Ni2 (b)-k-h+ :a 
1 2 

WOI·=----------~--~--~(~)------------~ NilU,) N;2 b 

L LG 
k=O 11=0 

2 
A _ U 2 (A A) C • -1 2 
Z2i--2 W Oi +W2i ,lorl-, , .. ,n. 

0"1 

The M step is to obtain the estimates of the parameters p, 0"1 and 0"2 from the 

likelihood function (4.13) and to obtain estimate of Mo (t) as 

11 2 

where N .. (t) = IINij (t). 
i=l j=1 
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Then we obtain 

b 

Mij(O)= SY;j(S)dlW"O(S}, for i=t,2, .. ,/l, j=I,2. 
o 

The EM steps are repeated until the estimates converge. 

The consistency and asymptotic normality of the estimators follows from Pamer 

(1998) by incorporating appropriate changes in the conditions. 

Remark 4.6 For the correlated gamma frailty model with covariates, individual 

RHRs given frailties ZI and Z2 is 1nj(Zj,tjl.:!j)=Zjel!'.!jmOj(tJ where 1nOj (tJ 

are the baseline reversed hazard rate of Tj , j=I,2, ~=(fJl./32, ... ,fJp)' is pxl 

vector of regression parameters and :!.j == ( X jI ' X j2' . •• , x jp ) " j = 1,2 is pxl vector 

of covariates. Then retaining the assumptions and proceeding similar to that of 

correlated gamma frailty reversed hazards model in Section 4.2, we get the 

distribution function F (tl' 12 ) in terms of cumulative baseline RHRs as 

p 

F ( ) -[1 2 f!.'fJM (t) + 2 I!'~M (t )]- "",""2 tl'12 - + 0"1 e 01 I 0"2 e 02 2 

The distribution function (4.14), when expressed in terms of marginai distribution 

functions, reduces to (4.1). For the estimation of the parameters of the correlated 

gamma frailty reversed hazards model with covariates note that the cumulative 

reversed hazard rate is 

b 

Mij{O)= jY;j(s)ef!'XildMo(s), i=1,2, ... ,n, j=1,2. 
o 

Then estimation is done by maximum likelihood method via EM algorithm as 

given above. The estimation of parameter vector ~ is done as in Section 3.4 of 

Chapter 3. 
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4.5 Data Analysis 

To depict the importance of con'elated gamma frailty reversed hazards 

model, we apply the model (4.1) to the DZ data in Duffy et aL (1990) which 

consists of information on the age at appendectomy of monozygotic (MZ) and 

dizygotic (DZ) twins. The DZ data consist of the same-sex male pairs, same-sex 

female pairs and opposite-sex pairs. The individuals with missing age at onset are 

the left censored observations. We consider pair of twins with uncensored age at 

appendectomy and individuals having age at onset less than 11 are considered as 

left censored observation. We analyse the female-male pairs, male-male pairs and 

female-female pairs separately. Table 4.1 shows the estimates of the parameters of 

the model and we can see that correlation between the frailty variables for female­

male pairs is lower than that of male-male and female-female pairs. It might be 

because of gender difference. Figure 4.1 shows the graph of two frailty variables 

for female-male pair. Figures 4.2 and 4.3 show the graphs of the two frailty 

variables for male-male pair and female-female pair respectively. From Figure 

4.1, we see that there is some difference between the values of two frailty 

variables for female-male pair. But in Figures 4.2 and 4.3, the values of frailty 

variables are almost same. The difference between frailty variables in Figure 4.1 

may be because of the effect of difference in gender. 

Table 4.1 Estimates of the parameters 

DZ P A 2 A , 

0"1 0"-
2 

Female Male 0.734332 0.260224 0.140324 

Male Male 0.946333 0.978372 1.092486 

Female Female 0.983083 0.676444 0.699925 
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Figure 4.1 The frailty variables for the female-male pair 
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Figure 4.3 The frailty variables for the female-female pair 

4.6 Conclusion 

Correlated gamma frailty reversed hazards model, which is a proportional 

reversed hazards model, was introduced for the analysis of left censored bivariate 

lifetime data of related individuals. The estimation of the parameters of the 

correlated gamma frailty reversed hazards model via EM algorithm was discussed. 

Finally, using dizygotic data in Duffy et al. (1990), utility of the correlated gamma 

frailty reversed hazards model was illustrated. 
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Chapter Five 

Association Measures§ 

5.1 Introduction 

Dependence relations between random variables are one of the most 

widely studied subjects in Probability and Statistics. There are several global 

dependence measures such as Karl Peat'son's coefficient of correlation, Kendall's 

t' and Spearman's rank correlation coefficient, that are commonly used to study 

the dependence among random variables. Although it is customary to compute a 

correlation coefficient, the dependence between a pair of continuous random 

variable is often more complex than single scalar dependence measure can reflect. 

Therefore, a global dependence measure such as the correlation coefficient will 

not convey the complete dependence structure. Accordingly, various local 

dependence measures are developed in literature. We discussed those measures, in 

Chapter one, which depends on hazard rate or survivor function and thus 

appropriate for the analysis of complete or right censored data. 

In lifetime studies, there are many situations that require measure of 

association among variables, when lifetime data is left censored. In the bivariate 

set up, Chu et al. (2005) considered data on plasma and saliva viral loads in the 

Women's Interagency Human Immunodeficiency Virus (HIV) oral study. 195 

seropositive subjects who had been on highly active antiretroviral therapy were 

randomly selected from the oral health component of the Women's Interagency 

HIV study to examine the correlations in HIV RNA copies per millilitre found in 

§ Some results are published in Journal of the Japan Statistical Society (see Sankaran and Gleeja 
(2006)) and some other results are published in Communications in Statistics-Theory and Methods 
(see Sankaran and Gleeja (2008a)). 
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., 
serum versus saliva samples obtained within 14 days of each other. HIV RNA..~as 

measured by using the NucliSens® quantification assay, which at the time of the 

analyses had a lower detection limit of 80 copies per millilitre. In the data given, 

the HIV RNA copies per millilitre, which are below the lower detection limit of 

80 copies per millilitre, is denoted as 56.57 copies per millilitre. That is, the value 

56.57 indicates left censored observations and the data is left censored. We revisit 

the data in Section 5.5. In such situations, as pointed out by Andersen et al. 

(1993), hazard rates, survivor functions or mean residual life functions are not 

suitable for the analysis of lifetime data, but the reversed hazard rate (RHR) and 

distribution function are very usefuL Accordingly, the reversed hazard rate and 

mean waiting time are more appropriate to measure the association among 

variables on such situations. Motivated by these facts, we introduce four 

association measures using bivariate distribution function, bivariate reversed 

hazard rates and bivariate mean waiting time. 

The rest of the chapter is organised as follows. In Section 5.2, we 

introduce four association measures using bivariate RHR and bivariate mean 

waiting time and study their properties. Section 5.3 discusses association measures 

in terms of frailty. The estimators of the association measures are developed in 

Section 5.4. In Section 5.5, with two data sets, of which one is complete and other 

is left censored, estimation of association measures is carried out, in order to 

specify the usefulness of these association measures in the analysis of both types 

of data. We conclude the chapter in Section 5.6. 

5.2. Association Measures 

Let T = (7; ,T2 ) be a nonnegati ve random vector representing 

lifetimes of two components of a system with an absolutely continuous 

distribution function F(tl'tJ in the support of D=[0,bl ]xfO,b2 ] where (bl'b2 ) 

is such that bj <= and bj =inf{rlFj (t)=l}, j=I,2. Suppose that the 

probability density function (p.d.f.) of T, f(tl't 2 ) exists. Analogous to the cross 
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ratio function in Clayton (1978), we define a new local dependence measure in 

terms of reversed hazard rates, given by 

which can be ex pressed as 

(5.1) 

where m(ll ,tz} and k j (tl ,t2 }, i=1,2 are bivariate reversed hazard rates defined 

in Chapter 2. Obvious1 y A. (t] ,12 ) > 0 for all t], t2 > 0 . 

Now we study various properties of A.(t] '(2). 

Theorem 5.1 

A. (1] , t2 ) = 1 if and only if ~ and T2 are independent. 

Proof 

If ~ and ~ are independent, then 

which leads to 

Substituting the above in (2.34), we get 

which completes the proof. 

Let k;* (tl ,t2), i = 1,2 denote bivariate reversed rates defined in Chapter 2. 
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Theorem 5.2 

Proof 

. aF (11' (2 ) r' () ( ) (I ) ConsIder at
2 

= 1 .f U, t2 du =.f2 t2 F t] T2 = t2 ' 

which gives 

(5.2) 

at2 

m (t1' tJ 
=-----'"~;..:... 

k2 (t1't2 )' 

(5.3) 

Thus, from (5.3) and (5.1), we get 

k; (t1'12) _ 1( ) 
----'....;........,;;..;... - /L tp t2 . 
k] (t1'tJ 

(5.4) 

Similarly, we can obtain 

(5.5) 

which completes the proof. 

Remark 5.1 ACt], t2 ) can be interpreted as the ratio of the reversed hazard rate of 

the conditional distribution of ~ given T2 = t2 to that of ~ given T2 < t2 • By 

symmetry, a similar interpretation holds with (~, 7;) interchanged. 

Remark 5.2 A(t], t2 ) = B + 1 , where B > 0, uniquely determines the shared frailty 

reversed hazard model (3.10). 
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Theorem 5.3 

The bivariate RHRs and A (t) ,t2 ) are related by 

k) (tl' t2) k2 (tl' t2) [ A (tp t2 ) -1] = k2 (tp t2) [ k; (tl' tJ - k) (tl't2)] 

= k) (tl't2)[ k; (tl't2)- k2 (tI'12) J. 
Proof 

From (5.4), we obtain, 

k2 (t) ,t2 ) [ k; (t} ,t2 ) - k) (t) ,t2 ) ] = k2 (t) ,t2 ) [k) (t), t2 ) A (t) ,t2 ) - k) (t), (2 ) ] ' 

which gives, 

Similarly, from (5.5), we get, 

k) (t) ,t2 ) [ k; ( t) , t2 ) - k2 (t) , t2 ) ] = k) (t) , t2 ) k2 (t) ,12 ) [ A ( t) ,t 2 ) -1 ] 

which completes the proof. 

Definition 5.1 (Shaked, 1977) Let I; and Tz have joint p.d.f. f (tl' t2)' Then 

f (t), t2 ) is said to be totally positive of order 2 (TP2) if for all t) < t) , , 12 < 12 ' 

f (t),t'2) f (I, ',12 ') ~ f (tl,12 ') f (t, ',t2)· 

Definition 5.2 (Brindley and Thompson, 1972) Random variables I; and T2 are 

said to be Left Corner Set Decreasing (Increasing) (LCSD (LCSI» if 

P(T; $1) ',T2 $t2 'IT; $t1'T2 $t2 ) is decreasing (increasing) in (tpI2) for every 

choice of (I) ',12 '). 

Definition 5.3 (Brindley and Thompson, 1972) T2 is Left Tail Decreasing in I; 

(LTD ( T21I; » if P{T2 $ t2 I ~ $ 1)) is decreasing in t, for all t2 • 
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Definition 5.4 (Lehmann, 1966) The pair (Tr, T2 ) or its distribution function 

F (t j , t2) is positively (negatively) quadrant dependent (PQD (NQD» if 

The dependence is strict if inequality holds for at least some pair. 

Remark 5.3 TP2 {:} LCSD ~ LTD (T21~) ~ PQD. 

From the definitions, we can easily prove that (~, T2 ) is LCSD if 

A(tj,t2)~1 for all (tl,t2)E D and consequently TP2, LTD and PQD. If 

.,1,( tl , t 2 ) ~ 1 for all (/1 ,t2 ) E D, then (Tr, T2 ) is Left Corner Set Increasing. 

Conditional expectations describe the dependence between random 

variables Tr and T2 • For example, in analysis of positively associated twin data, 

the expected waiting time for twin 1 given the death time of twin 2 will be less 

than that without any information about twin 2. Motivated by this, we define an 

association measure as 

(5.6) 

The numerator of (5.6) is the expected waiting time of Tr given ~ ~ tl and T2 ~ t2 

and the denominator is the expected waiting time for Tr given Tr ~ t l • Values of 

qJI (/1't2) much different from one indicate strong influence of T2 and therefore 

strong association between Tr and T2 · If Tr and T2 are positively associated, as t2 

increases qJI {tl' tJ should increase. We can define <1'2 (tl' t2) by interchanging Tr 

and T". The measure (5.6) is time dependent, but not symmetric with respect to 

each coordinate. When Tr and T2 respectively denote first and second recurrence 

times of a disease for an individual, the knowledge that ~ ~ t1 influences the 

expectation of T2 and hence qJ2 (t\, t2 ) measures the association between Tr and 
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The following theorem shows that the f{Ji (t) ,t2 ) and marginal reversed 

hazard rates mj (tj), i = 1,2 determine the bi variate distribution function. 

Theorem 5.4 

The marginal reversed hazard rates and f{Ji (t), (2 ), i = 1,2 determine the 

bivariate distribution function of T = (I; ,T2 ) . 

Proof 

Let mj (tj) be the marginal reversed hazard rate function of I;, i = 1,2. It 

IS well known that mj(t) determines F; (tj ) uniquely. Define the marginal 

waiting time of I; as 

If m) (t)) is known, then we can obtain )1.) (1) ) . Thus, from (5.6), we have 

(5.7) 

It is to be noted that E (t) -1( 11( :::; t) ,T2 :::; ( 2 ) is nothing but the expected waiting 

time of ~ given ~ S t) and T2 :::; t2 • From (5.7), we can obtain the conditional 

distribution function of 1( given T2 S t2 • Thus, the marginal distribution of T2 and 

conditional distribution function of I; given T2 :::; 12 jointly provide the bivariate 

distribution of T = (~ ,Tz ) . 

Analogous to the dependence measure in terms of conditional probability 

in Anderson et al. (1992), we can define a dependence measure as 
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where 

(5.9) 

Since A (tl' tz ) is symmetric, fJ (tl • tz ) is also symmetric. When r; and T2 are 

independent, fJ (tl' t2 ) = 1 for all (tl' tz) E D. fJ (t1 ,t2 ) > 1 indicates positive 

dependence between To. and T2• since fJ(t1,tz»1 only when T2 ~tz greatly 

increases p(r; ~ t,). 

From the representation of bivariate distribution function (2.7), we have 

(5.10) 

It is obvious that A (t1 ,t2) or exp {A (tl ' 12 )} defines association between ~ and 

Differentiating (5.10) with respect to tl and t 2 , we get 

(5.11 ) 

where m; (t; ) = ~ i;,~ is the reversed hazard rate of 1'" i = I, 2. The identity (5. 1 I) 

connects 1( t}, t2 ) with A (I., t2 ) . 

Remark 5.4 From the definitions (2.1), (5.8), (5.9) and (5.11), it is easy to see 

that 

(5.12) 

dependent. In a similar manner, if fJ (t], t2 ) ;::: 1, for all (tj' t2 ) E D, then (r;. T2 ) is 

positi ve quadrant dependent. 
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As in Theorem 5.4, we can prove that the marginal reversed hazard rates 

and fJ (t[, t2 ) together determine the bivariate distribution function of T = (I;, 1;) . 

Now we propose another measure of association using product moment of 

waiting times. Product moment of waiting times is defined as 

11 12 

f f F (u, ,u2 )du2du l 

M (tl,tZ ) = E[(t[ - T. )(t2 -Tz) IT. s, t"T2 ~ tzJ =-"-0-"-0 ____ _ 
F(tl't2) 

Then the measure of association a (t, ,t2 ) is defined as 

(5.13) 

given Tr s,t, and Tz ~t2' i=1,2. We say that (Tr,Tz) is positively (negatively) 

associated if a(tl,tz)~(~)l for all (t],tz)E D and there is no association 

between Tr and Tz ifa(t"t2)=1,forall (tl,tz)ED. 

Now we consider examples of positively and negatively associated random 

variab1es. For the bivariate uniform distribution with density 

(5.14) 

we get 

and ( ) - A2 + I 38th 1 a E, ,f, - > , 
- A2 + I 28th 
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Since all the four association measures described above are greater than one for 

(5.14), (Tr,Tz) is positively associated or (Tr,Tz) is positively quadrant 

dependent. Since A. (tp t2 ) > 1 , (Tr,Tz) is TP2 and hence it is LCSD. 

However, for the bivaraite Dirichlet distribution with density 

we get 

In this case (Tr,Tz) is negatively associated or (Tr,T2 ) is negative quadrant 

dependent since all association measures are less than one and since A. (t)' tJ < 1 , 

Theorem 5.5 

The following statements are equivalent 

(a) Tr and T2 are independent. 
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(c) ~j{t"t2)=1, i=1,2, for all (tl,t2)e D 

(d) P(t"t2 )=I, foral! (11,tz)e D 

(e) a(tl ,t2)=1, for all (tl,t2)E D. 

Proof 

We first prove (a) =? (b) =? (c) =? (d). If Tr and T2 are independent, then 

F (tl ,12) = F; (t l ) F2 (tz), which provides 

-1.,(tl ,12 ) = ~j (tl ,!2) = P(tl'tz) = a{tt,t2 ) = 1, i = 1,2. 

The proof for the result A(11,t2) = 1 implies Tr and T2 are independent, is given in 

Theorem 5.1. 

To prove (c) =? (a), for i = 1, we have 

(5.15) 

Differentiating (5.9) with respect to tl , we get 

(5.16) 

where kl (tJ' 1z) is the reversed hazard rate of Tr given T2 ~ t2 . 

kl (11,12 ) is independent of Tz. Similarly, we can show that reversed hazard rate 

of T2 given Tr ~ t], k2 (tl ,tz ), is independent of Tr· Thus Tr and T2 are 

independent. The proof for i = 2 is similar. 

T2 are independent. 

Finally, we prove (e) =? (a). From a( t j , t2 ) = 1, we get 

11 12 

J f F (Ut, lIz )du1du1 = F (tt, 12 ) Jil (tl' t2 ) Jiz (11,t2 ) . 

00 
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Differentiating (5.17) with respect to t\ and dividing by F (tl , t2)' we obtain 

function of t2 only. 

Similarly, we can show that 14 (t l ,t2 ) is a function of tl only. Therefore 

kj ( tl ' (2 ) is independent of t}, i, j = 1, 2, i =1= j . Thus 11 and T2 are independent. 

Theorem 5.6 

If iL(tl,t2»1 for all (tl,t2)ED, then qJj(tl ,t2) >1, i=1,2 for all 

(tl ,t2)E D. 

Proof 

We prove the result for i = 1 . The proof for ; = 2 is similar. 

From (2.10) and (5.11), we get 

dk (t t ) 
Thus iL(tl,tz»l implies Idtl' 2 >0 or kl (tl ,t2) is increasing in 12 . We also 

2 

have 
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11 

IF {V,t2 )dv 

-"-0____ is decreasing in t2 • Thus, we obtain III (tl' t2 ) is decreasing in t2 
F(tl ,t2 ) 

and hence 

.l4 (tl' t2 ) ( ) 
( ) = 91 tl'12 > 1 . 

f-lJ tl' b2 

Remark 5.5 Measures described above do not detennine the distribution 

uniquely. This follows from the fact that 

with independent rnarginals. 

Theorem 5.7 

a ( tl ' 12 ) = k (k * 1) , a constant independent of 11 and t2 if and only if the 

distribution function of T = (11 ,T2 ) has the representation 

Proof 

k 

= III (bl,t2) 112 {bl,b2)[1l2 ((1,12) .l4 (h.,t2) ]I-k 
.l4 (t1' (2 ) Jlz (q , t2 ) Jlz ( q , t2 ) III (bl , b2 ) 

Suppose that a (11' t2 ) = k . Then from the definition, we have 

I, 12 

F (tl,/2)M (11,12) = f f F (UI 'U2 )du2dul · 
00 

Differentiating (5.20) with respect to 11 and dividing by F (tl' (2)' we get 

llO 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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J- dPI (11,t2 ) 

Using kl (t l ,t2 )= (dtI) ,(5.21)canbewrittenas 
14. tl , t2 

(5.22) 

and hence (5.22) reduces to 

or 

(5.23) 

Using the representation for III (tl' (2) in tenns of distribution function, (5.23) 

leads to 

or 

I-k 

112 ( tl ,t2 ) = [Jl.t (tl ,t2 ) F ( tl ,t 2 ) JT A. (t 2 ) , (5.24) 

where AI (t2 ) is a function of 12 only. 

As tl ~ hi ' we obtain 

I-k 

AI (t2) = (PI (hI' t2 ) F ( hi ,t2 )) - T P; (bl ' t 2 ) . (5.25) 

111 



Association Measures 

From (5.24) and (5.25), we get 

(5.26) 

Similarly, differentiating M (t1 ,t2) with respect to t2, we arrive at 

(5.27) 

As t2 ~ b2 , (5.26) becomes 

(5.2S) 

Substituting (5.2S) in (5.27), we obtain F (t1, t2 ) as required in (5.1S). The 

identity (5.27) provides the expression for F (bl' t2 ) and then substituting 

F (bI '(2) in (5.26), we obtain (5.19). The proof of converse part is direct. 

5.3 Association Measures in terms of Frailty 

Bivariate reversed hazard rates were expressed in terms of frailty variables 

in Chapter 3. Now, from (3.4), (3.5) and (5.1), we can represent the association 

measure ,.l(t1,tz) in terms of frailty parameters as 

(5.29) 

Remark 5.6 For the shared gamma frailty reversed hazards model (3.10), we get 
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P (t) ,/2 ) can be obtained in terms of frailty parameters by substituting 

(3.2) and (3.3) in (5.8). To represent other association measures in terms of frailty 

parameters, note that 

T; ~ 

J J 1'; (u I Zj) g (Zj ) dzjdu 
E (ti - T; I T; ~ t j ) = -,,-O-"-~ ______ _ (5.30) 

J F; (Ij I Zj ) g ( Zj ) dZ j 
o 

tj 00 !Xl 

J J JF(u,tj I ZI' Z2)g(ZI'Z2)dz1dz2du 
E( -TIT< T< )_000 ' "'-12 tj j i - t;, j - t j - 00 00 ,l "* J, I, ] - , 

J JF(ti'tj IZl'zJg{ZI'Z2)dz1dz2 

00 

(5.31) 

and 

'1 '2 co 00 

J J J J F (ul' u2 I zp Z2 ) g ( zl' Zz ) dZ1dzZduZdu) 
M (t t ) = -"-0-"-0-"-0-"-0 ____________ _ 

I' 2 0000 
(5.32) 

f J F (tl ,12 I ZI' Z2 ) g ( Z) , Z2 ) dz1dzZ 

00 

Now, by substituting (5.30) and (5.31) in (5.6), we get f{J1 (II' t 2 ) in terms of frailty 

parameters. Similarly, we can obtain f{J2(tl't2). Substituting (5.31) and (5.32) in 

(5.13), we get a (tl' (2 ) in terms of frailty parameters. 

5.4 Estimation 

To apply the association measures in a practical situation we need to find 

the estimators of the measures. For this purpose, nonparametric estimators of the 

quantities involved in the measures can be used. First, we consider the estimation 

of joint distribution function and marginal distribution functions. 

For complete sample, let (7;;,7;;), i = 1,2, ... ,n be a random sample having 

same distribution as (I;, T2)' Then, the estimates of the bivariate distribution 
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function F (t] ,tz) and marginal distribution function Fj (tJ, j = 1, 2 could be 

obtained using the empirical distribution function as, 

(5.33) 

and 

(5.34) 

For the estimation of the distribution functions for left censored data, let 

C = ( Cl' Cz ) be a pair of censoring variables with distribution function G (t], t2)' 

The observable random vectors, under the bivariate left censoring, are Y = (~, Y2) 

H (t l ,tz) be the distribution function of Y . Assume that censoring mechanism is 

independent of failure time. This implies that H (tp t2 ) = F (tp t2 ) G (tl' t2 ). Let 

A( (I,lz) = (AI (dl] ,tz), A2 (t] ,dt2 ), AI2 (dt l ,dtz )) be the reversed hazard rate 

vector, where 

(5.35) 

(5.36) 

and 

(5.37) 

When the joint density function of (J;,TJ, f{tl't 2 ) exists, we can write 

hazard vector component given by (2.1) and m(tl't2) is the scalar bivariate 

reversed hazard rate given by (2.4). 
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H(tl't2)=P(~ ::;t1'Y2 ::;t2 ), 

KI (tl' tJ = P (~ ::; tl' 1'; ::; t 2' J" = 1 ) , 

K2(tl't2)=P(~ ::;tl'1'; ::;t2 ,82 =1) 

From the equations (5.35) - (5.41), we obtain 

and ( ) = ht

J
b

J
2 KI2 (du,dv) 

AI2 tI , t2 () • 
tj 12 H U,V 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

Then the distribution functions F; (t; ), i = 1,2 and F (tJ , t2 ) can be written as 

(5.42) 

(5.43) 

and 

To estimate joint distribution function and marginal distribution functions 

in the left censored set up, suppose that (~;, Y2i , J"i' 82;), i = 1,2, """' n is a random 

sample having the same distribution as (~, Y2 , 8, ,82 ), Then the estimator of 

cumulative reversed hazard vector components is obtained as 
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where 

Thus, from (5.42), (5.43) and (5.44), we get the estimators of distribution 

functions as 

(5.45) 

(5.46) 

and 

(5.47) 

Thus, we derived estimates of marginal and joint distribution functions for 

complete sample set up and for left censored data. 

Now, to estimate the association measures, we use estimates (5.33) and 

(5.34) for complete sample set up and (5.45). (5.46) and (5.47) for left censored 

data. Then we obtain the estimator of association measure, p (tl ,t2) as 

To obtain the estimator of A. (t" (2 ), note that AI (dtl' t2 ) is the estimator of 

the reversed hazard rate of ~ given T2 ~ t2 • On similar lines. we can develop the 

estimator of reversed hazard rate of ~ given T2 = 12 . Thus we get a nonparametric 

estimator of A. (t[. t2 ) • by substituting these estimates in (5.4). 
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To derive the estimator of 'PI (t), t2 ) , note that 

The non-parametric estimator of a (t\ ,t2 ) is obtained as 

I[ 12 

f J F (UI ,U2 )du2du1 

where M (tl ,t2) = ...::..0-"-0_-=--__ _ 

F(tl,t2) 
is the nonparametric estimator of 

The strong consistency and asymptotic normality of the estimators of 

cumulative reversed hazard rates can easily be established by extending the proofs 

of those for hazard rates given in Andersen et al. (1993). Then, the asymptotic 

normality of estimators ft.. (t) ), F2 (t2 ) and F (t), t2 ) can be proved by functional 

delta method (see van der Vaart and Wellner, 1996 and Glider, 2004). Finally, we 

can establish the strong consistency and asymptotic normality of the estimators 

A (I .. t2 ),,B (tl' 12 ), a( 11'(2 ) and 4'i (tl' 12 ), i = 1, 2. The following theorems 

establish the strong consistency and asymptotic normality of a (t\ ,t2 ) and proofs 

for other estimators are similar. 

Theorem 5.8 

strong consistent. 
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Proof 

To prove the strong consistency of a (tl ' t2 ) , we have 

almost surely for i = 1,2 and 

IIAI2 (t l ,t2 )-AI2 (tl't2 }IID ~O almost surely, proof of which follows easily by 

extending the proofs for hazard rates given in Darbowska (1998). The strong 

consistency of fij (tl)' F2 (t2) and F(tl,t2} also can be proved by following the 

steps similar to one given in Darbowska (1998) for survivor functions. Now, we 

can write 

Since IIF (tl, t2) - F (1]> t2 )IID ~ 0 almost surely, we can establish that 

IIM(tl,t2 )-M(tl,tz )IID ~O and II,ui(tl,t2 )-,iLi(tl ,t2 )IID ~O, i=1,2 almost 

surely. Now (5.48) can be written as 

Ila(I"I,)-a(I"I, )IID ,; '( M ~"I;{ ) {i,u, (I, ,I, )[ft, (I, ,1,)- /1, (I, ,1,) JIID 
Ji.1 tl ' t Z Ji.2 tl> t2 

+Ji.2 (tl ,t2 )11,u1 (11,t2)-,iL1 (tl ,t2 )IID} 

+ 1 IIM(tl ,t2 )-M(tl ,t2 )IID' 
,iLl (t] ,12 ) Ji.2 ( t) , t 2 ) 
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which provides 

Since \\M (t\'t2) - M (tl,t2 )IID ~ 0 and Ilfti (1I't2) - Pi (t1,t2 )IID ~ 0, i = 1,2 

almost surely, Ila(tl ,t2 )-a(t"t2 )IID ~ O. 

Theorem 5.9 

with zero mean. 

Proof 

First we prove the asymptotic normality of .J;;. (AI (t\, t2) - Al (tl' t2) ). 

asymptotically equal to 

By multivariate central limit theorem, each item in the simple brackets of (5.50) 

converges to a normal variate with mean zero. Thus for fixed (tp t 2 )e D, the 
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asymptotic normality of Fn (AI (tl' 12 ) - AI (tl' t2)) follows from the delta method 

using the maps (ai' a2 ) --7 a, + az (see van der Vaart and Wellner, 1996). The 

asymptotic variance is given by 

Similarly we can prove the asymptotic normality of Fn (A2 (tl' t2 ) - A2 (t" t2 ) ) 

and Fn(AI2(t"tJ-AI2(t"t2))' The asymptotic variances thus obtained will be 

Next, we consider 

where F3 (tl' t2 ) = exp { AI2 ( t1' t2 ) - 1\ ( t" tJ J\ (tl ,t2 )} • The asymptotic normality 

of Fn(Ai{tl't2)-Ai(tl,tZ))' i=1,2 and Fn(A 1Z (t"tz)-A12 (t1'tz)) carries over 

the asymptotic nonnality of Fn ( F; ( tj ) - F; (ti ) ) , i = 1,2 and 

Fn ( F3 (t" 12 ) - F3 (t1' t2)) and hence to Fn ( f (tl' t2) - F (t" t2 )) . 

To establish the asymptotic normality of Fn (&(tl't2)- a(t"t2)), write 

(5.51) 
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Since Sup IIM (tl' (2 ) - M (tl' t2 )11 a.s.) 0 and Sup II'ui (tl' t2 ) - ,ui (tl' t2 )11 a.s,) 0, 
D D 

i = 1,2, (5.51) is asymptotically equal to 

J;z ( a( tl ,t2 ) - a( tI ' t2 ) ) 

=J;z(M (lpt2)(.L4 (tl't2) JIz (tl'tz) - A ({l't2) A (tl't2) ) (M (tl'tz) - M( tl't2))] 

n ~2 (tl'tJ Jlzz (tpl2) ~ (tptz) JIz (tptJ 

Now, 

_ J;z[ M (tl ,tz ) - M (11'12) ] J;zM (tl't2 )[ A (II'll) - Pt (tptJ ] 

- .L4 (tl'tJ JIz (tl ,t2 ) .L4 z (lplJ JIz (tl'lz) 

~M ({I'll )[#2 (/I't2) -,uz (11 ,/2) ] 

PI (tl'l2 ),u/ (tI'12) 

ts t1 11 I" tit2 

(5.52) 

J J ft ( VI' Vz ) dv2dvI J J ft ( VI' v2 ) dv2dvI 

00 +~o~o __ ~ __ __ 
J JF(vl ,v2 )dvzdvI 

00 

F( tl't2) F( tl' t2) 

(5.53) 

Since 11ft (tl' tz ) - F (/1' t2 )IID ---70 almost surely, (5.53) is asymptotically equal to 

On similar lines, we can write .,J;; {AI (t" t2 ) - PI (tl' t2 )) and 

asymptotic normality of ~ (a{ tl' t2 ) - a( tI.rJ) follows easily from (5.52). The 

asymptotic variance ean be calculated, but it will be in a complex form. In 

practice, the boots trap method of resampling the observed data with 
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(Yip Y2j,b;j,b2i ), i=l,2, .. ,n with replacement can be used for the estimation of 

variance of the estimators (see Efron and Tibshirani, 1993). 

Remark 5.7 If the bivariate distribution is of the form (3.10), we can obtain a 

non-parametric estimator of A(tl' t2 ) using KendaU's (1962) coefficient of 

concordance. Let (~i'T2i)' i=1,2 ... ,n be a random sample from bivariate 

distribution (3.10). Then, for 1 ~ i < j ~ 11 , define X ij = 1 or X ij = -1 according 

as ~i < ~j or ~i > I;j' Define ~j similarly for TZi and T 2j and let 2ij = X ijYij • 

Set U 
A.(t)h) 

Since the probability of concordance is U is an 
A.(t)h) +1 , 

b· d' f A.(t), t2 ) -1 Th .. f un lase estImator 0 . us, we propose a nonparametnc esttmator 0 
A(tl't2 )+1 

,1.(11' 12 ) by l(t) 12 ) = 1 + U . The asymptotic normality of U follows from the 
. I-U 

results of Hoeffding (1948). 

Remark 5.8 We can obtain the estimates of 1(tl ,t2 ), from the identity (5.29), by 

substituting the estimates of E (2)22 I ~ ~ t[ , T2 ~ t2 ), E (21 I ~ ~ t) , T2 $ t2 ) and 

E (22 I ~ ~ 1\, Tz ~ t2 ). The estimates of these quantities can be obtained using the 

conditional density function g (z\ ' Z2 I ~ ~ t), I; ~ t2)' Similar technique can be 

5.5 Data Analysis 

We illustrate the use of association measures with two real life data sets, 

the first one is a complete sample and the second one is a left censored data. First 

we consider the cancer recurrence data given in Kulkarni and Rattihalli (2002). 

The data consist of observations on 19 patients having bladder tumours when they 
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entered the trial. These tumours were removed and patients were given a treatment 

called 'placebo pills'. At subsequent follow-up visits, any tumours found were 

removed, and the treatment was continued. The variables observed are time (in 

months) to first recurrence of tumour (~) and second reCUITence of tumour (T2). 

The estimates of the association measures at all the time points are computed 

using the method given in Section 5.4 and are given in Table 5.1. In Table 5.1, 

estimate of the variances of the estimators, computed using bootstrap method, are 

given in brackets. The values of estimators of association measures at different 

time points are greater than one, which is an indication of positive association. But 

at certain time points, for which t( is very small compare to 12 , estimates are less 

than one. (For example, association measures at the time points (2,17), (2,26) and 

(3,16).) As mentioned in Section 5.2, tJ'2 (t\'t2) is more appropriate association 

measure for this data. Surface plot of the data for various association measures are 

given in Figures 5.1-5.5. 
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Table 5.1: Estimates of association measures for complete data 

t( t2 J(tl' t2) P(tpt2) ~I (tl't2) ~2 (tl' t2) a{tpt2 ) 

1.0000 1.58330 1.00000 0.75000 1.00000 
2 8 

(0.000) (0.000) (0.000) (0.000) (0.000) 

1.0000 0.79167 1.00000 1.02440 0.28571 
2 15 

(1.428x 1 0.29) (5.447xlO,30) (1.691 x 10.29) (0.000) (0.000) 

1.0000 0.89063 1.00000 0.87562 0.27273 
2 17 

(8.349x 10.30) (1.93x 10'30) (0.000) (0.000) (0.000) 

1.0000 1.05560 1.00000 0.78440 0.10526 
2 26 

(4. 940x 10'32) (8.923xlO,31) (0.000) (0.000) (0.000) 

1.0000 1.90000 2.50000 1.00000 1.00000 
3 6 

(I.428x 10'29) (0.000) (0.000) (0.000) (0.000) 

1.3333 1.90000 0.62500 1.00000 0.57143 
3 9 

(3.006x1O,28) (1.47 x I 0.29) (0.000) (0.000) (0.000) 

0.9333 1.10830 0.71429 1.29620 0.79032 
3 15 

(2.501xlO,29) (3.602x 1 0.29) (4.902x 1 0.29) (3.569xlO,30) (0.000) 

1.3333 1.08570 0.62500 1.25470 0.94737 
3 16 

(1.961 X 10'28) (2.613x 10'29) (1.000x 1 0'28) (4.459xlO·3O) (0.000) 

5.0000 1.23380 0.82500 1.11180 1.23460 
5 14 

(3 .873x 10.29) (2.391 x 10'29) (7.904xlO,31) (4.940x 10.3°) (0.000) 

5.0000 1.58330 0.88696 1.00000 1.22990 
7 10 

(3.34xlO,29) (4.002x 10.3°) (I.235x 10'28) (0.000) (0.000) 

6.0000 1.35710 0.90000 1.00000 1.31940 
9 11 

(1.039x10·29) (3. 162xlO,30) (0.000) (0.000) (0.000) 

3.2500 1.10270 0.96923 1.13890 1.04170 
9 17 

(3.34x 1 0.29) (5.711xlO·29) (2.076xlO,29) (0.000) (0.000) 

2.7500 1.16110 0.97403 1.09090 1.10890 
10 15 

(2.204x 10.05) (0.089279) (0.0058551 ) (0.00012247) (0.0001738) 

2.4000 1.11760 1.01900 1.00000 1.17790 
12 15 

(7.124 x 10.06) (9.395xl0·05 ) (0.0125) (0.0017174) (0.000) 

3.5000 1.11760 0.96930 1.00000 1.19590 
12 16 

(4.155x I 0'29) (3.34x 10.29) (0.000) (0.000) (0.000) 

17.0000 1.05560 0.97738 1.00000 1.13150 
16 19 

(1.075x I 0'29) (1.045xlO,28) (4.155xlO,29) (0.000) (0.000) 

19.0000 1.00000 1.00000 1.00000 1.06850 
28 30 

(4.013xlO,29) (0.000) (0.000) (0.000) (0.000) 
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I ..... 

Figure 5.1: Plot of ,i(t,.t,) for complete data. 
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Figure 5.2: Plot of jJ( ",t,) for complete data . 
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Figure 5.3: Plot of fA (t,.t,) for complete data. 
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Figure 5.4: Plot of fiJz (t1,12 ) for complete data. 
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Figure 5.5: Plot of li( 11,12 ) for complete data. 

Now we consider the bivariate left censored data. given in Chu et a1. 

(2005). The data is explained in Section 5. 1 and we take the value 56.57 as 80 

itself and note that it is a left censored observation. Let T; and Tz denote saliva 

and plasma viral load measurements (copies/ml) respectively. We then estimate 

the values of the various association measures at all the time points and estimators 

at certain time points are shown in Table 5.2. Estimate of the variances of the 

estimators. is computed using bootstrap method, and are given in brackets. in 

Table 5.2. Surface plot of the various association measures are given in Figures 

5.6-5.10. From the figures. we can see that behaviours of -«I,.I,).P(I,.I,). 

a(tl ,t2 ), 9'J (t1,t2 ) and tpz(tl'tz) exhibits same pattern. The association measures 

-«1,.1,). P(I,.I,). ~(I,.I,). 11',(1,.1,) and a(I,.I,) have values greater than 
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one at almost all the time points. This indicates that (11, T2 ) is positive quadrant 

dependent or (11,T2 ) is positively associated. It can be noted that, in both data 

sets, A (t, ' t2 ) is more sensitive to dependence. 

Table 5.2: Estimates of association measures for bivariate left censored data. 

t, t2 1( tpt2) /J(t"t2 ) ~, (tpt2) ~2(tpt2) a(tpt2 ) 

0.000 1.4247 1.00000 1.00000 1.00000 
80 80 

(0.000) (0.00587) (0.000) (0.000) (0.000) 

0.000 1.0351 1.00000 1.02020 1.0237 
80 590000 J 

(1.336x 10.28) (9.564xlO·29) (7.904xlO·29) (0.000) (0.000) 

55 1.4177 0.9943 1.0311 1.0069 
130 3200 

(9.004x 10-3<) (1.388x 10-28) (4.446xlO-29) (0.000) (0.0027131) 

1.000 1.4424 1.00430 1.00000 1.0411 
380 80 

(3.088xlO·29) ( 1.045xlO-28) (0.000) (0.0030754) (0.000) 

48.333 1.0667 1.0042 1.0421 1.0103 
510 160000 

(1.462xl0-26) (2.613xlO·29) (1.976xlO-29) (1.601 X 10-29) (0.00014474) 

75 1.0849 1.0138 1.0294 1.02 
1700 56000 

(3.34xlO-29) (7.904xlO-29) (9.564xlO-29) (0.000) (0.00011384) 

38 1.1912 1.0513 0.99955 1.0108 
2900 2000 

(5.059x 1 0-29) (5.38x 10-29) (5.711xlO-29) (6.403xlO-29) (0.00029446) 

146 1.1057 1.0169 1.015 1.0144 
3800 29000 

(9.135x 10-29) (4.748xlO-29) (7.904xl0-31) (0.000) (0.00019831) 

171 1.0225 1.0002 1.0099 1.0087 
4000 840000 

(7. 114xlO-30) (7.114xlO-~ (l.976xlO-29) (1.1 38x 10-28) (0.000) 

130.00 1.1480 1.03850 0.99921 1.0199 
4300 5100 

(8.349xlO-~ (1.783xlO-29) (5.059xlO-29) (0.000) (0.00022893) 

47 1.0873 1.0337 1.0049 1.0243 
6700 11000 

(4.255x 1 0-26) (4.748x 10-29) (1.549x 1 0-28) (5.711xl0-29) (0.00018845) 

91 1.0107 1.0021 1.0089 1.0088 
10000 870000 

(1.441 x 10-05) (6.763xlO-29) (7.904xlO-31) (1.235xlO-3O) (0.000) 

90.5 1.0161 1.0057 1.0025 1.0101 
16000 410000 

(7 .179x 1 0-05) (5_978xlO-~ (9.683x 10-3<) (9_683x 10-30) (0.000) 

75 1.0489 1.0291 1 1.0145 
17000 17000 

(7.437xlO-05) (l.l12x 10-29) (4.446x 10-31 ) (0.000) (0.000) 

187 1.0106 1.0025 1.0009 1.0084 
30000 730000 

(1.882x 10-25) (2.360x 10-05) (1.494x 10-28) (5.71lxlO-29) (l.976xlO-31) 

89.5 1.0055 1.0092 1 1.0104 
58000 130000 

(0.000) (3.6015e-029) (4.7476e-029) (0.000) ( 1. 89ge-028) 
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Figure 5.6: Plot of 1(1,,1,) for left censored data . 
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Figure 5.7: Plot of ,8 (I" (2) for left censored data. 
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Figure 5.8: Plot of IPI (11,12 ) for left censored data. 
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Figure 5.9: Plot of fiJ2 (11 ,/2 ) for left censored data. 
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Figure 5.10: Plot of «(/,,/2) for left censored data. 

5.6 Conclusion 
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We developed four association measures using the concept of reversed hazard 

rates and studied their properties. These association measures were discussed in 

terms of frailty also. The estimation of the association measures was discussed 

under independent left censoring and finally, usefulness of these association 

measures were illustrated with complete data and left censored data. 
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Chapter Six 

Conclusion 

6.1 Introduction 

Lifetime data analysis refers to a collection of statistical procedures for 

data analysis, in which the outcome variable of interest is time until an event 

occurs. The event may be death, onset of disease, recovery, equipment breakdown 

etc. The existing literature in lifetime data analysis mainly focuses on the analysis 

of data under right censoring situations. There are many situations where the data 

is left censored. The analysis of such data can be done on the basis of new 

stochastic models developed using reversed hazard rates. Accordingly, in the 

present work, we developed new stochastic models that enable us to analyze such 

type of data. In chapter 2, various definitions of bivariate reversed hazard rates 

and their importance in the analysis and modelling of lifetime data was explored. 

Based on bivariate reversed hazard rates discussed, a unique representation for 

bivariate distribution was given and a new class of distributions was proposed. 

The proposed model was used to develop models for the analysis of data on 

parallel systems. As applications of the proposed model, the frailty model and a 

bivariate proportional reversed hazards model were also derived. 

The concept of frailty, to account for unobserved heterogeneity, is 

attracting increasing attention in the literature because individuals of interest 

usually differ in susceptibility to causes of death or disease, response to treatment 

and influence of risk factors. In Chapter 3, based on reversed hazard ~ate, we 

introduced proportional reversed hazards frailty models. The univariate gamma 
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frailty reversed hazards model and shared gamma frailty reversed hazards model 

were discussed. The estimation of the parameters of the shared gamma frailty 

reversed hazards model via EM algorithm was presented. The properties of the 

model were also discussed. The model was applied to monozygotic and dizygotic 

data given in Duffy et al. (1990). A correlated gamma frailty reversed hazards 

model was introduced in Chapter 4, to incorporate the situations where frailties of 

individuals differ. The estimation of the parameters of correlated gamma frailty 

reversed hazards model via EM algorithm was presented and applicability of the 

model was illustrated with real data sets. 

Studies on dependence among random variables are increasingly important 

in survival analysis, actuarial science, reliability analysis and other areas related to 

probability and statistics. Various concepts of dependence, developed over recent 

decades, had allowed researchers in modelling multivariate random variables. In 

Chapter 5, we developed four new local dependence measures and studied their 

properties. These association measures were also discussed in terms frailty 

variables. Estimation of these association measures was presented and properties 

of those estimates were discussed. Finally, the usefulness of association measures 

was discussed using two real data sets. 

6.2 Future Works 

In the present work, the estimation of the parameters of the proportional 

reversed hazards models and association measures was done based on the 

assumption that the lifetime vector and censoring time vector are independent, to 

ensure the identifiability of marginal distribution functions. There are many 

situations, in which censoring time depends on lifetime. For example, Cui (1999) 

discussed Australian AIDS data diagnosed from 1984 and reported by the end of 

1993. The time to AIDS diagnosis and the time to entry on to AIDS registry were 

the lifetimes under study. The reporting dates were recorded only from November 

23, 1990. Before this date, only the fact that a case had been registered, but not the 

exact date of registration was known. Thererore time to entry on to AIDS registry 
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was left censored. Moreover, left censoring of the time to entry on to AIDS 

registry depends on the time to AIDS diagnosis. The analysis of left censored 

data, under dependent censoring is an area to be explored. 

The estimation of parameters of the proportional reversed hazards frailty 

models, in Chapters 3 and 4, was done via EM algorithm. Other methods of 

estimation like penalized likelihood, pseudo likelihood, Bayesian technique etc 

can be used and comparison between the estimates can be carried out to determine 

the most suitable method. 

The choice of frailty distribution is an important problem in modelling 

frailty random variables. In the present work, because of mathematical 

convenience, the gamma distribution with mean one is chosen as distribution of 

the frailty random variable. Other distributions such as positive stable, Weibull, 

lognormal etc can be considered as distribution of the frailty random variables. A 

study in this direction is an area to be explored. 

In Chapters 3 and 4, we discussed proportional reversed hazards frailty 

models, which incorporate positive association among the individuals in the 

group. Negative association may exist between individuals in a group. For 

example, in the analysis of lifetime data on adopted children (Nielsen et al. 

(1992)) negative estimated dependence was found between adoptee and adoptive 

mother. Proportional reversed hazards frailty models to incorporate negative 

dependence is an area of research yet to be studied. 

Based on the association measures described in Chapter 5, we can develop 

tests for independence among variables, which would be a topic of further 

research. 

In the present work, we introduced new stochastic models for the analysis 

of left censored lifetime data. There are situations where the lifetime data is right 

truncated and left censored. For example, consider the bipolar affective disorder 

data given in Mclnnis et al. (1993). 125 families were ascertained via eighteen 
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hundred Probands screened for bipolar I or bipolar 11. Age at onset and current 

ages of 34 parent -child pairs from 34 families among those 125 families were 

available. The remaining 91 families were excluded because they either showed 

clinical evidence of bilineality or did not have at least one interviewed, affected 

individual in each of two successive generations. Among the 34 parent-child pairs, 

there were 9 parent-child pairs with either missing age at onset or current age. 

The modelling and analysis of such data is also an area of interest. 
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