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Abstract. By introducing a petiodic perturbation in the control parameter of the logistic map
we have investigated the period locking properties of the map. The map then gets locked onto the
periodicity of the perturbation for 2 wide range of values of the parameter and hence can Jead to
a control of the chaotic régime. This parametrically perturbed map exhibits many other
interesting features like the presence of bubble structures, repeated reappearance of periodic
cycles beyond the chaotic regime, dependence of the escape parameter on the seed value and also
on the initial phase of the perturbation etc.
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1. Introduction

Nonlinear difference equations have proved to be efficient mathematical models in the
study of many physical and biological systems [1]. The simplest and one of the most
extensively studied nonlinear difference equations is the logistic map

Xn+1=4’an(1_Xn) OSX,).QI (1)

In actual experimental situations the control parameter represents the ambient condi-
tions such as voltage, discharge current, intensity of the electromagnetic field, etc [2, 3]
which in turn can often have a time dependence. The simplest case of a time dependence
is a linear time dependence [4], where properties like bistability and hysteresis have
been observed. One can consider a more general situation in which 1 itself evolves as
a discrete nonlinear map and most often X gets enslaved to the periodicity of the
perturbation [5, 6]. Quadratic maps with additive periodic forcing leading to bistabil-
ity and co-existence of multiple attractors have also been studied [ 7]. Time dependence
can also be incorporated into the dynamics of (1) as a periodic perturbation [8-11].
In this paper we consider a situation wherein instead of changing A continuously it is
changed in a discrete sequence as a train of pulses repeated periodically, the envelope of
the amplitude of the pulses forming a positive sine profile. Such a sequence of pulses
may be relevant in the study of biological systems subjected to periodic stimuli [12].
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With a similar perturbation, but with a cosine profile that includes both the positive
and negative half cycles, it has been found that the map undergoes a transition from
a fixed point and gets locked into the periodicity of the perturbation [14]. For odd
periodic perturbation, the period locked system undergoes the usual period doubling
cascade whereas for even periodic perturbation there are multiple period locked cycles
co-existing for an interval and having different basins of attraction. These period locked
cycles then undergo period doublings independently. In our work we have restricted
the sine profile in the perturbation to its positive half cycle. We have already analyzed
the symbolic dynamics of the period-locked cycles in the presence of this perturbation
[13] and observed many sequences that do not fall under the MSS prescription. We
explain the presence of bubble structures in certain bifurcation diagrams. So also the
parameter value for escape is dependent both on the initial phase and on the seed value
and that the basin for escape is a fractal. The dimension D, of this basin has been
computed. The difference in the behaviour of the map for odd and even perturbations
as reported in [14] is absent in the present model. The paper is organized as follows,
Section 2 discusses the dynamics of the perturbed map for perturbations of various
periods with the help of the bifurcation diagrams. Section 3 attempts an explanation
for the presence of bubble structures in the bifurcation diagram. In §4 the phase
dependent nature of the escape parameter is detailed. Our concluding remarks are
given in the last section.

2. Parametrically pertnrbed logistic map

In this section we outline the nature of the perturbation employed in the system and its
effects on the bifurcation diagrams of the map. The control parameter of the logistic
map is perturbed by a periodic perturbation so that it takes the form

Ays1 =A%+ Alsing, , ,modn, 2
where
Ppyy =, + T (3)

Here A° is the time independent part and 1! refers to the amplitude of the time
dependent part of the control parameter. For a rational w, say o = p/g, the contro!
parameter forms a g cycle with cyclé elements.

A, =A%+ Asin((n — l)n/g) where n=0,1,2,...,q — 1. (4)
The logistic map with the sinusoidal perturbation can then be written as

X,.y =4(A° + Asing,)X,(1 - X,). ©
If L{X) =4 X (1 — X) the parametrically perturbed map becomes

X =1°L(X,,)-§:—l‘sin¢"l_(X,,). (6)

We can casily identify 1° L(X) as the usual logistic map and A'sing, L(X) as the
perturbation component. The dynamics of the parametrically perturbed map (6) has
been studied by fixing A° and varying the strength of the perturbation amplitude 1*.To
obtain a wide tunability for A! we fix A° = 0-1. The advantage of fixing 4° at 01 is that
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the unperturbed logistic map possesses only one stablg cycle, ixlsttxl?lf.*in?t.tti‘ g:::: z‘; .
so that the full effect of the perturbation can be studied. At 27 = £"* dete )
Tl inzi (7
+ 1 =[] 4%(A° + A**sinxi/q)
i=0

the fixed point changes stability with a g cycle. This ¢ cycle thcrc'a'f tcr ux’ulclr:’.::c: l:: l;l;) ;(Ll
doubling bifurcations. If A° is such that the unper.tt_lrbcfi ]ogl..s{u. ‘In-).t\pk ‘Q‘L fc .”w
k cycle then the perturbation would result in a transition from & Llyf. th‘» :;h "-,-w'd Ny
transition from a fixed point to a g cycle in such C{lle:S can stxl{l n.‘ (r i“f. o
a perturbation which is out of phase i.e., A'sin¢, — = A :?‘m(/:,,. the \u;‘ x‘u 1? /.‘ s,.};,r o
obtained from (7). Figures 1 and 2 give the bifurcam?n dlagram.for t ‘1' n}tlyw.l k fn;m
odd (g=3) and an even (g = 6) periodic perturbation r&sneclwcl},. t xs, ‘Li':d. oo
table 1 that the stability zone for the various ¢ cycles have increased L'(.)t?tll n..m ! !)'h“
comparison with the respective stability zones in the unpcnurbcd‘ 1ng1:~.uu’ m:q;.. | .‘.‘
perturbation also provides a prescription for period-locking the sy&t?ftl L :m Vit u;u
periodicity. It is obvious from figure 1 that the ¢ cycle bccumes.supct f.mhh. more l. nr;
once within a zone of stability. This is in contrast with the behaviour of the unpertur lk t
logistic map (1). The symbolic dynamics of these su'persmble cycles have ulrc';u.i \1 'I:;: 2
analyzed [13]. Also the cycles possess sequences which do not fall under the usual MS!
prescription in addition to MSS ones.

3. Bubble structures, co-existence of multiple attractors in the parametrically perturbed
logistic map

In this section we explain the presence of bubble structures in the bifurca }im_l diagriam
of (5) for certain q values (for e.g. ¢ = 10). A bubble is formed when a periodic evele of
q period doublés but later recombines to form a g cycle again. Such bubble structures
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Figwe 1.  The bifurcation diagram of the map for ¢ = 3. Note the widening of the zone
of stability for the 3 cycle which appears only as a small window in the Jogistic map {1).
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Figure 3. Section of the bifurcation diagram for g = 10. The diagram has been
drawn using different initial values. Notice the hysteresis region in the rang
0953 < A! <0-956.

have been reported earlier [15-17). We find that the symmetry condition for the bubble
structures as reported in [16] is not a necessary condition for the formation of bubbles.
Figure 3 plots the bifurcation diagram for g = 10 in the parameter range 09 < ' <.
Here a 10 cycle reappears after the period doubling cascade and remains stable up to
A' 2 0:935. This 10 cycle then period doubles but recombines later to form a 10 cyck
again thus giving rise to a bubble structure. This bubble structure is followed by
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Figure4. Variation of the f19(X) with 1. Notice the discontinuity in slope in the
hysteresis region. '

a hysteresis region where a new 10 cycle coexists with this 10 cycle in the parameter
range 0953 < A* < 0-956. Beyond A! = 0-956 the original 10 cycle loses stability and the
new 10 cycle later undergoes period doubling bifurcations. In the region of coexistence
the two 10 cycles have their basins of attraction intertwined, which is quite different
from earlier reports [7, 14, 18]. Bubble structures have also been found for g = 5, 8. We
have found that for this map bubble structures are always being followed by a region of
co-existing attractors having intertwined basins of attraction. These sequence of events
can be visualized in the plot of /% (x) vs A! given in figure 4. The birth of this new 10
cycle is simultaneous with the discontinuity in the f%(x) curve. We also find that the
range of A for which the system has bounded orbits is discontinuous, that is there are
regions of escape within the tuning range of the parameter 1.

4. Fractal nature of the basin of escape

In this section we discuss the fractal nature of the basin of escape for the perturbed
logistic map (5). For the usual logistic map (1) the range of the control parameter for
bounded orbits is 0 < A < 1. The value of the control parameter is A= 1 beyond which
successive iterates of the map speeds away rapidly towards — co. It has also been found
that beyond 4 = 1 those seed values which remain in the [0, 1] after infinite iterations
form a cantor set [19). Therefore 4 = 1 is considered as the parameter value for escape
from the interval [0, 1]. In map (5) the parameter value for escape A, is found to be
dependent both on the initial phase and seed value of the iteration. For a given sc?ed
value X, the iterates may either remain within the interval [0, 1] or go out depending

on the initial phase of iteration.Thus for ¢= 10 and ¢,= 7/10 the iterates escape
towards — co. If we choose a seed value X, = 0-3 the iterates are unbounded. In fact for
ble 4 cycle exist we find

= 1/4 and 1! = 0-904, a parameter value for which a supersta
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Table 1. Stability zone for the g
cycle in the parametrically perturbed
logistic map

q Stability zone

052500 < 1! < 2:0211
0-34096 < A < 0-959
0-30034 < A < 09761
0-28406 < A! < 0-847
027578 < A! < 0-8541
0-27094 < At < (-907
0-26788 < At < 0883
026579 < A < (:9234
026432 < A < 0-8966

. .
QWO IR DWN

Table 2. The capacity dimension of
the basin of escape for @ =1/10 for

¢, =7/10.

A D,
0923 0-8526099
0-94 0-9071668
0948 09581154
0956 09728904

that certain seed values do not converge onto the 4 cycle, instead they go out of the
interval. This basin of escape is of fractal nature. The fractal dimension D, has been
calculated and tabulated in table 2.

5. Concluding remarks

We have studied the dynamics of a parametrically perturbed logistic map. The map can
be an efficient model in the study of physical systems subjected to periodic stimuli [12].
The map is shown to exhibit many interesting properties like bubble structures,
hysteresis region, reappearence of periodic cycles beyond chaotic region. The dynamic
region of the control parameter appears to be discontinuous. We find that the escape
parameter 4, depends on the initial phase ¢, and seed value X . The basin for escape
has a fractal structure. We have also found that the range of A' for which bounded
orbits exist is discontinuous.
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