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Abstract. We study the effect of parameter fluctuations and the resultant multiplicative
noise on the synchronization of coupled chaotic systems. We introduce a new quantity,
the fluctuation rate φ as the number of perturbations occurring to the parameter in unit
time. It is shown that φ is the most significant quantity that determines the quality of
synchronization. It is found that parameter fluctuations with high fluctuation rates do not
destroy synchronization, irrespective of the statistical features of the fluctuations. We also
present a quasi-analytic explanation to the relation between φ and the error in synchrony.
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1. Introduction

Synchronization of coupled chaotic systems has generated a lot of research activities
over the last several years. Synchronized behaviour has been studied extensively in
physical, chemical and biological systems [1–11]. Different types of synchronization
such as complete, generalized, lag and phase synchrony are described in literature.
One of the methods by which the synchronization of chaotic systems is achieved
is by coupling two identical systems, which may be unidirectional or bidirectional.
Synchronization in arrays of coupled laser systems has also been investigated un-
der various coupling schemes [8–11]. Complete synchronization of identical chaotic
systems is of considerable interest because of its applications in secure communica-
tion [10,11]. By identical systems we mean a set of systems whose parameters are
exactly equal. It is found that the complete synchronization is not possible when
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there is a small but finite mismatch of the parameters of the systems [7,12,13].
In coupled non-autonomous systems, phase mismatch or finite constant frequency
detuning destroys the synchronization altogether [14].

Though the effect of finite constant parameter mismatch is to destroy synchro-
nization, the effect of a fluctuating parameter mismatch can be different. Such
fluctuations can arise either due to the internal instabilities, or due to environment.
It is found that spatial parameter fluctuations (constant in time) can give rise to
interesting nonlinear phenomenon (for example, occurrence of travelling waves in
coupled map lattices, when mismatches do not intersect bifurcation points [15,16]
and pattern formation) [17]. In coupled phase oscillators, such fluctuations seem
to play the role of pacemakers [18].

Exact synchronization is not usually found in nature, at least as common as
phase synchronization. The systems that are designed for applications such as
chaotic encryption, will be maintained with identical parameter values, though
they are located in different regions in space. However, temporal modifications to
the parameter values for which such systems are designed are possible. Here we
study the effect of temporal parameter fluctuations with characteristic time-scales
on exact synchronization of chaotic systems.

2. Parameter fluctuations

To study the effect of fluctuations it is essential to identify a parameter whose
mismatch is most effective in destroying synchronization. Let this parameter be p
and the fluctuations to the parameter is assumed to occur in time as follows:

p1t = p0 + ξ1t

p2t = p0 + ξ2t, (1)

where, ξ1t and ξ2t are two delta correlated zero mean random variables. We define
∆̃p, a measure of the amplitude of fluctuations, as

∆̃p = 〈|δp(t)|〉t, (2)

where δpt = p1t − p2t and 〈· · ·〉t denotes time average. Here we assume that
such fluctuations do not intersect the bifurcation points in the parameter space, as
suggested in [15].

Parameter fluctuations can be associated with characteristic time-scales. In a
laser this can be of the order of nano- or microsecond and in the case of a biological
system the time-scales may be of the order of hours or days. To study the effect of
time-scales of parameter fluctuation on synchronization, we define the fluctuation
rate φ, where φ = number of perturbations/unit time. Different fluctuation rates
can be achieved numerically by modifying the parameter as in eq. (1) only in certain
chosen time steps. Rest of the time the value of the parameter remains constant at
the modified value. The error in synchrony is studied by varying φ.

Coupled Rossler oscillators are well-known for numerical studies in synchroniza-
tion. This is due to their simplicity, its ability to synchronize and the generalizabil-
ity of the results to other chaotic systems. We consider a system of bidirectionally
coupled Rossler oscillators.
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ẋ1 = −y1 − z1 + c(x2 − x1)
ẏ1 = x1 + p1y1

ż1 = 0.2 + z1(x1 − 10)
ẋ2 = −y2 − z2 + c(x1 − x2)
ẏ2 = x2 + p2y2

ż2 = 0.2 + z2(x2 − 10). (3)

Here, the coupling strength c = 0.25, p0 = 0.18 and ∆̃p was fixed to be 0.05 for all
fluctuation rates. This selection of parameters is arbitrary, however, variations in
these parameters gives qualitatively similar results. Thus we choose values which
are best suited for illustrating the concepts. Figure 1 shows the synchronization plot
in the presence of parameter fluctuations. It can be seen that the synchronization
is robust. With the same value of ∆̃p the synchronization is destroyed with a lower
fluctuation rate as shown in figure 2.

The similarity function given by

S2(Θ) =
〈[x1(t + Θ)− x2(t)]2〉

[〈x2
1(t)〉〈x2

2(t)〉]1/2
, (4)

is a versatile tool in studying the synchronization properties. In coupled chaotic
systems this function can be used to represent the nature of the dynamics in terms of
the synchronization error. For example, in [7,12,13] the phase to lag synchronization
of coupled systems is described in terms of the variation of S(Θ) with respect to
Θ. It is also useful in studying the dynamics of coupled map lattices [16].

In eq. (4) if Θ is set to zero, gives S(0), the error in synchrony. Figure 3 shows
the plot of S(0) vs. fluctuation rate. It can be seen that the error diminishes rapidly
with the increase in the fluctuation rate. It is found that a linear relation between
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Figure 1. Synchronization is maintained in the presence of parameter fluc-

tuations. φ = 1000 and ∆̃p = 0.05.
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Figure 2. Synchronization is destroyed in the presence of parameter fluctu-

ations with low fluctuation rates. Fluctuation rate φ = 25 and ∆̃p = 0.05.
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Figure 3. The synchronization error decreases with the increase in the fluc-
tuation rate. It can be seen that high coupling could not stabilize synchro-

nization with lower fluctuation rates. Here ∆̃p = 0.05.

the inverse of the fluctuation rate and the error S(0) exists. In figure 4 it is shown
that with a linear fit of the form S(0) = a+bτ where τ = 1

φ is possible. With c = 0.9,
a(=0.005) represents the offset value which is much small compared to b(=0.12),
which is the slope of the graph, which suggests that S(0) is inversely proportional to
φ. In addition to random fluctuations to the parameter, we investigated the effect
of deterministic modulations to the parameter. The parameters of the coupled
systems are assumed to evolve in time as follows:
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Figure 4. Relation between φ and S(0) is found to be of the form
S(0) = a + bτ , with c = 0.9, a = 0.005 and b = 0.12.
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Figure 5. The synchronization error decreases with the increase in the fre-
quency of modulation. It can be seen that the modulation frequency is more
important than coupling strength in determining the stability of synchroniza-
tion. Here the amplitude of modulation a = 0.1.

p1 = p0 + a sin 2πft,

p2 = p0 − a sin 2πft, (5)

where f is the frequency of modulation and a = 0.1 is the amplitude of modu-
lation. It can be seen in figure 5 that the synchronization error levels off as the
frequency of modulation is increased. Note that high coupling strengths only re-
duce the synchronization error, but the stability of synchrony is achieved only at
high modulation frequencies.
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In general the robustness of synchronization with high fluctuation rates and de-
struction of synchronization with low fluctuation rates can be understood as follows:
This also applies to other coupled dynamical systems of similar nature. Let the
evolution of the coupled systems in phase space be represented by the dynamical
equation

Ẋ1 = f1(p1, X1) + Cf(X2 −X1),

Ẋ2 = f1(p2, X2) + Cf(X1 −X2), (6)

where X represents the phase space variables, p is the parameter whose fluctuation
is considered and C is the coupling constant. With eq. (6) we can write an equation
for the rate of separation X1 −X2 of the trajectories as

d(X1 −X2)
dt

= Ẋ1 − Ẋ2 = M(p1, p2, X1, X2), (7)

M(p1, p2, X1, X2) is a function of the dynamical variables, the parameters of the
coupled systems and ∆p the parameter mismatch. This can be expanded in terms
of ∆p and the effect of fluctuations can be separated out.

M(p1, p2, X1, X2) = Ms(p0, X1, X2) + E(p0, X1, X2, ∆p1,∆p2), (8)

where E(p0, X1, X2, ∆p1,∆p2) can be written as

E(p0, X1, X2, ∆p1,∆p2) = ∆p1
∂M(p1, p2, X1, X2)

∂p1

∣∣∣∣
p1=p0

+∆p2
∂M(p1, p2, X1, X2)

∂p2

∣∣∣∣
p2=p0

.

This is valid for small ∆p neglecting its higher powers or if the higher derivatives
of M(p1, p2, X1, X2, ∆p1, ∆p2) with respect to p is zero. Also it should be noted
that the parameter values are not near a bifurcation point. Here Ms(p0, X1, X2)
represents the quantity which offers a stable synchronization manifold, that is, when
Ms(p0, X1, X2) alone is in the right-hand side of the separation equation, coupled
systems synchronize as t →∞. The conditions for such a synchronization is widely
discussed in [19]. The term E(p0, X1, X2,∆p1, ∆p2) represents the effect of the
parameter mismatch. Coupled systems synchronizes if the overall effect of this
term vanishes as t →∞.

In the present example of coupled systems (eq. (3)) the rate of separation of
trajectories can be written as follows:

d(x1 − x2)
dt

= (y1 − y2) + (z2 − z1) + 2C(x2 − x1)

d(y1 − y2)
dt

= (x1 − x2) + p1y1 − p2y2

d(z1 − z2)
dt

= (x1z1 − x2z2) + 10(z2 − z1). (9)
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Assuming that we start from an approximately synchronized state, x1 ' x2, y1 ' y2

and z1 ' z2, we can write eq. (9) as

d(x1 − x2)
dt

' 0

d(y1 − y2)
dt

' p1y1 − p2y2

d(z1 − z2)
dt

' 0. (10)

Here it can be seen that M(p1, p2, X1, X2) = p1y1 − p2y2 and E(p0, X1, X2, ∆p1,
∆p2) can be calculated as

E(p0, X1, X2, ∆p1, ∆p2) = ∆p1
∂(p1y1 − p2y2)

∂p1

∣∣∣∣
p1=p0

+∆p2
∂(p1y1 − p2y2)

∂p2

∣∣∣∣
p2=p0

= ∆p1y1 −∆p2y2

= ξ1ty1 − ξ2ty2 (11)

as the instantaneous parameter mismatches ∆p1 = ξ1t and ∆p2 = ξ1t.
Also the form of E(p0, X1, X2,∆p1, ∆p2) can be generalized to

E(p0, X1, X2,∆p1, ∆p2) =
∑

i

αiξtixi(t) (12)

with many coupling schemes. Here ξt’s are the fluctuation terms, α’s are some
constants and x(t)’s are the phase space variables of the coupled system.

Here the effect of fluctuations vanishes because the ξti’s are zero mean rapidly
fluctuating quantities and x(t)’s are the phase space variables that evolve slowly
when compared to the rapid fluctuations or modulations of the parameter. Thus
x(t)’s can be assumed to be constant, in the time required for the fluctuations
to get summed to zero. However, with a low fluctuation rate the quantity
E(p0, X1, X2, ∆p1,∆p2) can affect synchrony because the phase space evolution
time is comparable to the interval where a fixed parameter mismatch persists. Thus,
with a lower fluctuation rate, the system always gets time to respond to the parame-
ter mismatch before being canceled out. In other words, the sum in the RHS of eq.
(12) does not vanish without considerably modifying the phase space variables x(t)
when the fluctuation rates are low. Apart from Gaussian random fluctuations, we
studied perturbations with a uniform distribution. The results were qualitatively
similar to that of Gaussian perturbations. This suggests that the fluctuation rate
φ is more significant than the statistical nature of the fluctuations.

In a case where the parameters are modulated, the fluctuating terms ξ’s are re-
placed by the oscillating terms. The mechanism of retaining stability of synchrony
at high frequency modulations is similar to that of random parametric perturba-
tions. The contributions of the parameter mismatch vanishes with fast zero mean
oscillations. The analytical treatment of this is straightforward and little different
from that of random fluctuations.
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The effect of noise on synchronization has been studied in the past. In most of the
cases, noise reduces the quality of synchrony or destroys synchronization [20,21].
Interestingly, there are also cases where synchronization is robust to noise [22] or
even induce synchronization [23].

A comparison of additive noise and parameter fluctuation in view of the fluctu-
ation rates is interesting. Though noise and parameter fluctuations affect synchro-
nization, their effects on the dynamics are not essentially the same. Noise induces
perturbations to the phase space variables that decay as the system evolves and
more. In a case where the parameter fluctuates, the resultant perturbations do not
die out with the evolution of the system. It remains the same until it is corrected
manually or the fluctuations modify the parameter to a new value or in other words
the mismatches has no dynamical evolution. In actual physical systems the lifetime
of a modified parameter value may follow a statistical distribution which is unique
to the system. However, once a fluctuation rate is defined, much of our findings
will be relevant.

In conclusion, we have studied the effect of parameter fluctuations on the syn-
chronization of coupled chaotic systems. It is found that the most significant entity
that determines the quality of synchronization is the fluctuation rates. Also it is
observed that the time-scales with which the parameter fluctuates is more signif-
icant than the statistical or mathematical features of the fluctuations. Parameter
fluctuations or modulations may also have much higher significance in coupled ar-
rays of nonlinear oscillators and in biological systems which exhibit synchronized
behaviour. We hope that our studies will give a motivation in this direction.
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