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Chapter 1 

Introduction 

Graph theory as Cl mathernatical discipline was initiated by the 

renowned Swiss mathematician Leonhard Euler (1707 - 1783) in 

his famous discussion of the Konigsberg Bridge problem entitled 

'The solution of a problem relating to the geometry of position'. 

It was presented at the St.Petersberg Academy on 26th August, 

1735. Unfortunately, this article of Euler, published in 1736, 

remained an isolated contribution for nearly a hundred years. 

However, in t.he middle of the nineteenth century, there was a 

resurgence of interest in the area of graph theory. Tlw natu­

ral sciences exercised their influence through investigations of 

1 



2 Chapter 1. Introduction 

electrical networks and models for crystals and molecular struc­

ture and theoretically, the development of formal logic led to the 

study of binary relations in the form of graphs. 

Today, graph theory is Cl branch of mathematics which find:-; 

applications in many areas - anthropology, architecture, biology, 

chemistry, computer science, economics, physics, psychology, so­

ciology and telecommunications: to name a few. The applica­

tions of graph theory in operations research, social science, psy­

chology and physics are detailed in C. \V. Marshall [61}. J. L. 

Gross and J. Yell en [34} discuss a variety of graph classes with 

numerous illuminating examples which are of topological rele­

vance. The development of graph theory with its applications 

to electrical networks, flows a.nd connectivity are included in 

[11 ) and [22]. Ramsey theory is an interesting branch of graph 

theory which relates to the number theory. In [22}, RDiestel 

covers all major developments in the subject. More recently, 

the exciting notion of '\Veb graphs' (6J ha.s been finding appli­

cations in very many different areas. Such graphs are examples 

of large, dynamic, distributed graphs a.nd share many proper­

ties with several other complex graphs [64J found in a variety of 
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systems ranging from social organizations to biological systems. 

The best barometer to indicate the growth of interest in graph 

theory is the explosion in the number of pages that Section 05: 

Combinatorics occupies in the Mathematical Reviews. 

Volumes have been written on the rich theory and the very 

many applications of graphs. To name a few, [5], [9], [10], [32], 

[34], [35], [49], [71], [78]. This thesis entitled' Studies on some 

graph operators and related topics' is a humble attempt 

at making a small addition to the vast ocean of results in graph 

theory. 

'Graph operator' is a mapping T : 9 -----t g' where 9 and g' 

are families of graphs. Krausz [52] introduced the concept of 

the line graph and also that of 'graph operators'. He also gave 

a characterization of line graphs. \Vhitney [79] showed that ev­

ery finite connected graph except C3 has at most one connected 

L-root. 

The study of graph operators gained increasing irnportancc 
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due to the study of its dynamics as detailed by E.Prisner [66J. 

The beginning of graph dynamics dates back to 1960s, with 

the publication [36} by fIarary and Norman, and also the three 

problems of great influence posed by Ore in his monograph [65], 

namely 

1. Determine all graphs isomorphic to their interchange graph 

(line graph). 

2. vVhen the interchange graph is given, is the original graph 

uniquely determined? 

3. Investigate the repeated iutcrchange graphs. 

In the graph dynamics terminology, the first problem deals 

with the 'fixedness' and the second and third will lead to the 

'I-periodicity' and 'convergence' or 'divergence'. 

The 1960s were mainly devoted to the investigation of the 

line graph a,nd the line digraph operators, Several solutions to 

Ore's problems for the line graph a.ppeared in [8], [15], [72], 

[73]. The question of periodicity was considered only for the 

fixed graphs till 1970:,;, General periods \vere investigated by 
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Escalante [25] and it was studied for the line digraphs by Hem­

minger [42]. The transition number was first explicitly defined 

in [1]. 

vVhile dealing with graph classes, a main source is the clas­

sical book by M. C. Golumbic [32]. Since then many interesting 

new graph classes have been studied as discussed in detail by 

A.Brandstadt, et.al. [13]. 

By applying graph operators also, we get some graph classes. 

The line graphs, Gallai and the ant.i-Gallai graphs, the cycle 

graphs and the edge graphs arc some of the graph cla.sses ob­

tained by choosing appropriate graph operators. In fact, the 

intersection graphs form a sub collection of the graph classes 

obtained by using graph operators. The intersection graph is a 

very general notion in which objects are assigned to the vertices 

of a graph and two distinct vertices are adjacent if the corre­

sponding objects have a non empty intersection. A variety of 

well studied graph classes such H.'i the line graphs, the clique 

graphs and the block graphs an~ actually special types of inter-
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section graphs. J. L. Szwarcfiter has made an excellent survey 

of the clique graphs [75]. The block graph [37], the square [38] 

and the complement [70] are some well studied graph operators. 

Several graph operators and the dynamical behavior of these 

operators are extensively studied in [66]. 

It is interesting to study when the graph operators belong to 

some special graph classes. The inclusions between graph classes 

can be identified from their forbidden subgraph characteriza­

tions. The cographs) the split graphs, the threshold graphs and 

the line graphs arc some of the interesting graph classes which 

admit finite forbidden subgraph characterizations and the per­

fect graphs, the distance hereditary graphs, the comparability 

graphs and the chordal graphs are some of the other interesting 

graph classes defined by forbidding an infinite collection of in­

duced subgraphs. 

vVhile studying a graph operator, the study of its parameters 

such as clique III llnb er , independence number, chromatic num-
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ber, domination number, diameter, radius, eccentricity, center 

etc are important. It is quite interesting to study the relation­

ship between these parameters of G and those under graph op­

erators. 

This thesis is mainly concerned with the graph operators -

the 'P3 intersection graph' and the 'edge Cl graph'. 

1.1 Basic definitions 

The basic nota.tions, terminology and definitions a.re from ([5], 

[14], [32], [66] and [78]) and the basic results are from ([13], [39], 

[45] and [77]). 

Definition 1.1.1. A graph G = (V, E) consists of a collection 

of points, V called its vertices and a set of uIlordered pairs of 

distinct vert.ices, E ca.lled its edges. If I V I is fillite, then G is 

a finite graph. The ullordmed pair of vertices {11, v} E E are 

called t.he end vertices of the edge e = {1£, v}. \Vhen '/l, and v 
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are end vertices of an edge, then u and v are adjacent. If the 

vertex v is an end vertex of an edge e, then e is incident on v. 

Two edges which are incident with a common vertex are said to 

be adjacent edges. The cardinality of V is called the order of 

C and the cardinality of E is called the size of C. A graph C 

of order n and size rn is also denoted by C = (n, m). A graph is 

the null graph, denoted by <P if it has no vertices and trivial 

if it has no edges. 

Definition 1.1.2. The degree of a vertex v, denoted by d(v) 

is the number of edges incident on v. A graph C is k-regular 

if d(v) = k for every vertex v E V. A vertex of degree zero is 

an isolated vertex and of degree one is a pendant vertex . 

The edge incident on a pendant vertex is a pendant edge. A 

vertex of degree n - 1 is called a universal vertex . In a graph 

C, the maximum degree of vertices is denoted as ~(C) and the 

minimum degree of vertices is denoted as 8(C). 

Definition 1.1.3. A Vo - Vk walk in a graph C is a finite list. 

vo, e1 , VI, e2, V2, "', ek: Vk of vertices and edges such that for 1 ~ 

i ~ k, the edge ei has end vertices Vi-l and Vi, In the 'On - Vk 

walk, Vo is the origin, Vk is the terminus and VI, V2, ... , Vk-l are 

its internal vertices. If the vertices vo, V1, .. " Vk of the above 
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walk are distinct, then it is called a path. A path from a vertex 

u to a vertex v is called a u - v path. A path on n vertices is 

denoted by Pn . If the edges el, e2, ... , ek of the walk are distinct, 

it is called a trail. A graph G is Eulerian if it has a closed 

trail containing all the edges. A nontrivial closed trail is called 

a cycle if its origin and internal vertices are distinct. A cycle 

with n vertices is denoted by en. The length of a walk, a path 

or a cycle is its number of edges. A graph containing exactly 

one cycle is called a unicyclic graph. A graph is acyclic if it 

does not contain cycles. The girth of G, g(G) is the length of 

a shortest cycle in G. An acyclic graph has infinite girth. The 

circumference of G, c( G) is the length of any longest cycle in 

G. 

Definition 1.1.4. A graph H = (VI, E') is called a subgraph 

of G if V' ~ V and E' ~ E. A subgraph H is a spanning sub­

graph if V' = V. The graph H is called a.n induced subgraph 

of G if E' is the collection of all edges in G which has both its 

end vertices in V'. < VI > denotes the induced subgraph with 

vertex set V'. A spanning I-regular graph is called a I-factor or 

perfect matching. A graph G is H-free if it does not contain 

H as an induced suhgraph. 
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Definition 1.1.5. A graph G is connected iffor every u, v E V, 

there exists a u - v path. If G is not connected then it is dis­

connected. The components of G are its maximal connected 

subgraphs. A connected acyclic graph is called a tree. 

Definition 1.1.6. The distance between two vertices u and 

v of a connected graph G, denoted by d(u, v) or dc(u, v) is the 

length of a shortest u-v path in G. The eccentricity of a vertex 

u, e(u) = maximum {d(u,v)jv E V(G)}. The radius rad(G) 

and the diameter diam( G) are respectively the minimum and 

the maximum of the vertex eccentricities. The center of a graph 

G, C(G) is the subgraph induced by the vertices of minimum 

eccentricity. 

Definition 1.1.7. A chord of a cycle C is an edge not in C 

whose end points lie in C. A graph G is chordal if every cycle 

of length at least four in G has a chord. 

Definition 1.1.8. A complete graph is a graph in which each 

pair of distinct vertices is joined by an edge. A complet.e graph 

on n vertices is denoted by Kn. The graph obtained by deleting 

any edge of K n is denoted by K n - { e }. K 3 is called a triangle 

and a paw is a t.riangle with a pendant edge. A clique is a 
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maximal complete subgraph. The size of the largest clique in 

G is the clique number w( G). A clique of size k is called a 

k-clique. 

Definition 1.1.9. A cycle C of G is a b-cycle of G if C is not 

contained in a complete subgraph of G. The bulge of G, b(G) 

is the minimum length of a b-cycle in G if G contains ab-cycle 

and is 00 otherwise. 

Definition 1.1.10. The set of all vertices adjacent to a vertex 

v is called open neighbor hood of v, denoted by N ( v). The 

closed neighborhood of v, N[v] = N(v) U {v}. 

Definition 1.1.11. Assigning colors to the vertices of a graph 

is called a vertex coloring. If no two adjacent vertices receive 

the same color, then sllch a coloring is called a proper vertex 

coloring. The minimum number of colors required for a proper 

vertex coloring of a graph G is called its chromatic number, 

denoted by X(G). 

Definition 1.1.12. A property P of a graph G is vertex hered­

itary if every induced subgraph of G has the property P. A 

graph H is a forbidden subgraph for a property P, if any 

graph G which satisfies the property P cannot have H a.s an 
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induced subgraph. 

Definition 1.1.13. A graph G = (V, E) is isomorphic to a 

graph H = (V', E') if there exists a bijection from V to V' 

which preserves adjacency. If G is isomorphic to H, we write 

G~H. 

Definition 1.1.14. Let G be a graph. The complement of G, 

denoted by GC is the graph with vertex set same as that of V 

and any two vertices are adjacent in GC if they are not adjacent 

in G. K~ is called totally disconnected. A graph G is self 

complementary if G ~ GC. 

Definition 1.1.15. A graph G is bipartite if the vertex set 

can be partitioned into two non-empty sets U and U' such that 

every edge of G has one end vertex in U and the other in U' . A 

bipartite graph in which each vertex of U is adjacent to every 

vertex of U' is calleel a complete bipartite graph. If !U! = 

m and !U'I = n, then the complete bipartite graph is denoted 

by Km"n- The complete bipartite graph KI,n is called a star. 

A graph G is complete multipartite if the vert.ices can be 

partitioned into sets so that {tt, v} E E if and only if 1.£ and 11 

belong to different sets of the partition. A complete k-partite 
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graph with partite sets of cardinalities nl, n2, ... , nk is denoted 

by K n1 ,n2, ... ,n,.. 

Definition 1.1.16. A subset I <; V of vertices is independent 

if no two vertices of I are adjacent. The maximum cardinality of 

an independent set is called the independence number and 

is denoted by a(C). A subset F <; E of edges is said to be 

an independent set of edges or a matching if no two edges 

in F have a vertex in common. The maximum cardinality of a 

matching set of edges is the matching number and is denoted 

by,O(C). 

Definition 1.1.17. A subset K <; V is called a vertex cover 

of C if every edge of C is incident with at least one vertex of 

K. The minimum cardinality of a vertex cover is the vertex 

covering number aD (C). 

Definition 1.1.18. For a graph C, a subset V' of V(C) is a 

k-vertex cut of C if the number of components in G - Viis 

greater than that of C and IV'I = k. The vertex connectivity 

of G, K( G) is the smallest number of vertices in G whose deletion 

from C increases the number of components of C. A graph is 

n-connected if K.(G) ~ n. A vertex v of G is a cut vertex 
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of G if {v} is a vertex cut of G. If G has no cut vertices, 

then G is a block. For {u, v} E V(G), the u - v cut is a set 

S ~ V(G) - {u,v} such that G - S has no u - v path. The 

edge connectivity of a graph G, K' (G) is the least number of 

edges whose deletion increases the number of components of G. 

Definition 1.1.19. A vertex x dominates a vertex y if N(y) 

~ N[x]. If x dominates y or y dominates x, then x and y are 

comparable. Otherwise, they are incomparable. The Dil­

worth number of a graph G, dilw( G) is the largest number of 

pairwise incomparable vertices of G. 

As an example, dilw( C4 ) = 2. 

Definition 1.1.20. A subset S ~ V of vertices is a dominat­

ing set if each vertex of G that is not in S is adjacent to at 

least one vertex of S. If S is a dominating set then N[S] = V. 

A dominating set of minimum cardinality in G is called a min­

imum dominating set, its cardinality is called the domination 

number of G and it is denoted by 1'( G). 

Definition 1.1.21. A dominating set S is an independent dom­

inating set if S is an independent set. The independent domi­

nation number of a graph G, ri (G) is the minimum cardinali ty 
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of an independent dominating set in G. The minimum cardinal­

ity of a maximal independent set of vertices in G is also the same 

as "Yi(G). A subset S ~ V is a total (open) dominating set if 

N(S) = V. The total (open) domination number of a graph 

G, "Yt (G) is the minimum cardinali ty of a total dominating set in 

G. A dominating set S is a connected dominating set if < S > 

is a connected sub graph of G and the corresponding domina­

tion number is the connected domination number "Yc(G). A 

dominating set S is a paired dominating set if < S > has a per­

fect matching and the corresponding domination number is the 

paired domination number IPr(G). The paired domination 

number exists for all graphs with out isolated vertices. A dom­

inating set S is a clique dominating set jf < S > is a complete 

graph. The minimum cardinality of a clique dominating set, if 

it exists is the clique domination number ~/cl(G). A clique 

dominated graph is a graph that contains a dominating clique. 

Definition 1.1.22. The subgraph weakly induced by a set S of 

vertices is the graph < S >1JJ whose vertex set is N[S] and whose 

edge set consists of those edges in E( G) with at least one vertex, 

and possibly both, in S; A dominating set S is called a weakly 

connected dominating set if < S >tIJ is connected. The corre-
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sponding domination number is weakly connected domina­

tion number, 'Yw(G). The cardinality of the weakly connected 

independent dominating set is the weakly connected inde­

pendent domination number, denoted by iw(G). 

For example:-

G: 
h J n 

1 
a b 

-0 
f c c 

° kO 0 qO 

Figure 1.1.1 

Then, I'(G) = 5 ({a, b, d, J, g} is a dominating set of minimum 

cardinali ty), 

'Yi(G) = 7 ({h, i, b, d, j, p, q} is an independent dominating set 

of minimum cardinality), 

I't (G) = 6 ({a, b, d, e, J, g} is a total dominating set of minimum 

cardinality) , 

I'c( G) = 7 ({a, b, c, d, e, j, g} is a connected dominating spt of 
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minimum cardinality), 

Ipr (G) = 6 ({a, b, c, d, j, g} is a paired dominating set of mini­

mum cardinality), 

IW( G) = 5 ({a, b, d, j, g} is a weakly connected dominating set 

of minimum cardinality), 

iw (G) = 7 ({ h, i, b, d, j, p, q} IS a dominating set of minimum 

cardinality). 

The graph G is not a clique dominated graph. 

Definition 1.1.23. A subset 5' ~ E is an edge dominating set 

if every edge not in 5' is adjacent to some edge in 5'. The edge 

domination number ~t' (G) of G is the minimum cardinality 

of all edge dominating sets of G. A subset 5' c E is an efficient 

edge dominating set for G if each edge in E is dominated by ex­

actly one edge in 5'. The efficient edge domination number 

of G is denoted by r~ ( G). 

Definition 1.1.24. The intersection graph is a graph whose 

vertex set is a collection of objects and any two vertices are 

adjacent if the corresponding objects intersect. The int.ersection 

graph of all the edges of G is the line graph of G denoted by 

L(G). Thus, the line graph L(G) of a graph G is a graph that 
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has a vertex for every edge of G, and two vertices of L (G) are 

adjacent if and only if they correspond to two edges of G with 

a common end vertex. 

Illustration: 

G: L(G): 

gh 

be 

c 
cd 

Figure 1.1.2 

Definition 1.1.25. The k-path graph corre.spol1ding to a graph 

G has the set of all paths of length k as vertices and two ver-

tices in the k-path graph are adjacent whenever the intersection 

of the corresponding paths form a path of length k - 1 in G and 

their union forms either a cycle or a path of length k + 1 in G. 
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Definition 1.1.26. For any graph G, the nth iterated graph 

under the operator !l> is iteratively defined as !l>l(G) = !l>(G) and 

!l>n(G) = <I>(<I>n-l(G)) for n > 1. A graph G is <I> n - complete if 

<I>n(G) is a complete graph. We say that G is convergent under 

<I> if {!l> n( G), n E N} is finite. If G is not convergent under <I>, 

then G is divergent under <I>. A graph G is periodic if there 

is some natural number n with G = <I> n(G). The smallest such 

number n is called the period of G. A graph G is <1>- fixed if the 

period of G is one. The transition number t( G) of a conver­

gent graph G is zero if G is periodic and is the smallest number 

n such that <I> 11 ( G) is periodic otherwise. A gra.ph G is mortal 

if for some n E N, <1>n(G) = cp, the null graph. A semibasin is 

any subset B of the class of graphs Q with <p(B) ~ B. A basin 

is a semibasin B if its compliment is also a scmiba..c.;in. 

Definition 1.1.27. The touching number of a cycle is the 

cardinality of the set of all edges having exactly one of its end 

vertices on the cycle. For every integer n ~ 3, the n-touching 

number tn (G) of a graph G is the supremum of all touehing 

numbers of Cn , provided G contains some Cn . If G contains no 

Cn then tn(G) is undefined. The vertex touching number of 

an induced Ck is the cardinality of the! set of all vertices which 
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are adjacent to exactly one vertex of the Ck. The vertex touching 

number of a graph vtk (G) is the supremum of all vertex touching 

numbers of induced Ck, provided G contains some induced Ck' 

For example, for the graph G in Figure 1.1.3, t5(G) - 7, 

V 
G: 

~\ 
\ 

Figure 1.1.3 

Definition 1.1.28. A graph G whose vertex set can be parti-

tioned into an independent set and a clique is a split graph. 

Definition 1.1.29. A graph G is perfect if X(H) = w{H) for 

every induced subgraph H of G. 

Definition 1.1.30. A graph G is a threshold graph if it can 

be obtained from [(1 by recursively adding isolated vertices and 

universal vertices. 
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Definition 1.1.31. A connected graph is a block graph if 

every maximal 2-connected subgraph (block) is complete. A 

graph is a geodetic graph if for every pair of vertices there is 

a unique path of minimum length between them and a graph is 

weakly geodetic if for every pair of vertices of distance two, 

there is a unique common neighbor. 

Definition 1.1.32. A graph that can be reduced to the trivial 

graph by taking complements within components is called a co­

graph. 

Definition 1.1.33. For every integer w: 1 ~ 11) ~ 6(G), a w­

container between any two distinct vertices u and v of G is 

a set of 'w' internally vertex disjoint paths between them. Let 

Cw(u, v) denote a w-container between ~L and v. In Cw(u, v), 

the parameter 11) is the width of the container. The length 

of the container is the longest pat.h in Cw (u, v). The w-wide 

diameter of C, Dw(G) is the minimum number l such that there 

is a Cw ( v,, v) of length I between any pair of distinct vertices v. 

and v. 

For example:-
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a b 

G: 

f c 

Figure 1.1.4 

For this graph G, C3 (a, b) = {a - b, a - c - b, a - e - b}. Length 

of this C3 (a, b) = 2. D3(G) = 3. 

Definition 1.1.34. For any k, the diameter variability ari::;­

ing from the change of edges of a graph G are as follows. 

D-k(G) : The least number of edges whose addition to G de­

creases the diameter by (at least) k. 

D+O(G) : The maximum number of edges whose deletion from 

G does not change the diameter. 

D+k (G) : The least number of edges whose deletion from G in­

creases the diameter by (at least) k. 

Definition 1.1.35. The graph obtained from G by subdividing 
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each edge of G exactly once is called the subdivision of G and 

is denoted by S ( G) . 

Definition 1.1.36. The union of two vertex disjoint graphs G 

and H denoted by G U H is the graph with vertex set V (G) U 

V(H) and edge set E(G) U E(H). 

Definition 1.1.37. The join of two graphs C and H denoted by 

G V H is the graph obtained from the union C U H by adding the 

edges {u - v: u E V(C) and v E V(H)}. The graph K} V 2K2 

is called a bow. The moth [58] graph is K1 V {P3 U 2K1}. 

Definition 1.1.38. The corona of two graphs G 1 = (n}, Tnl) 

and G2 = (n2' 1712)' denoted by Cl 0 G2, is the graph obtained 

by taking one copy of Cl and Ttl copies of C2 , and then joining 

the ith vertex of Cl to every vertex in the ith copy of C2 . 

Definition 1.1.39. The cartesian product of two graphs G 

and H denoted by C x H is the graph with V(C x H) = {(v" v) : 

11. E V(C) and v E V(H)} and any hvo vertices (11.1: VI), (U2' V2) 

E G x If a.re adjacent jf onc of the following holds. 

(i) 111 = 11.2 and VI - V2 E E(Ji) 

(ii) '/1.1 - 11.2 E E(G) and VI = V2' 
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1.2 Basic lemmas and theorems 

Lemma 1.2.1. [8] The line graph L(G) has nine forbidden sub­

gmphs. 

Figure 1.2.1 gives the nine forbidden subgraphs of L(G). 

r 

Figure 1.2.1 

Lemma 1.2.2. [19] G is a cogmph 'if and only '~f G is Prfree. 
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Lemma 1.2.3. [6B} If G is a cogmph , then the domination 

number of G is at most two. 

Lemma 1.2.4. [29] If G is a graph without isolated vertices, 

then I'(G) ~ dilw(G). 

Lemma 1.2.5. (16] A graph G is a thTeshold gm,ph if and only 

if dilw(G) = 1. 

Lemma 1.2.6. (16] A gmph G is a thTe:;hold graph if and only 

if G contains no induced {2K 2, C4 } and no P4' 

Lemma 1.2.7. (44], (48) A gmph G is a block gmph if and only 

if b(G) = QC. 

Lemma 1.2.8. 144/, (48] A gmph C i8 'IDeakly geodetic if and 

only if b(G) ~ 5 

Lemma 1.2.9. (30] A graph G is a split gm,ph if and only if G 

contains no induced 2K 2, C4 and no C5 . 

Lemma 1.2.10. (77] For a connected gmph C, D+i(C) ~ K'(C). 

Lemma 1.2.11. (26], [31] A connected graph G 'is EuleTian if 

and only if the degTee of each 'vertex of G is even. 

Theorem 1.2.12. (15) FOT any gmph G = (n, rn), I"(G) ~ 

Ln/2J. 
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Theorem 1.2.13. [4J For any connected graph G of even order 

n, ,'(G) = n/2 if and only ifG is isomorphic to Kn or K n/ 2,n/2' 

Theorem 1.2.14. !4J For any tree T of order n =I 2, ,'(T) ~ 

(n - 1)/2, equality holds if and only if T is isomorphic to the 

subdivision of a star. 

Theorem 1.2.15. !4J Let G = (n, m) be a connected unicyclic 

graph. Then 1"(G) = Ln/2J if and only if G is isomorphic to 

either C41 C5 , C7 , C3,k or C4,k for some k ~ O. 

Theorem 1.2.16. [41] For a connected graph G, diarn(G) -1 ~ 

lAG) ~ 2{1(G). 

Theorem 1.2.17. (23] For a connected graph C, I'c(G) ~ 2a(C)­

l. 

Theorem 1.2.18. (Whitney's theorem) (79] Let G be a sim­

ple graph with at least three vertices. Then G is 2-connected if 

and only if for each pair of distinct vertices u and 11 of G there 

are two internally dis.ioint u, - v paths in G. 

Theorem 1.2.19. (Menger's theorem) (62], (21] Let u and 

v be two non adjacent vertices of a graph C. Then the rrwJ:irrw.m 

number of inte'rnally dis,joint 1J, - v paths in G is the minimum 

numbeT of ve'nice8 in a u - v separating set. 
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Theorem 1.2.20. (Generalized Whitney's theorem) [17] 

A simple graph G is n-connected if and only if, given any pair 

of distinct vertices u and v of G, there are at least n internally 

disjoint u - v paths in G. 

1.3 New definitions 

Definition 1.3.1. [59] The P3 intersection graph of a graph 

G, P:,,( G) is the intersection graph of all induced 3-paths in G. 

That is, p;{ (G) has t.he induced paths on t.hree vertices in G as 

its vertices and two distinct vertices in p:" (G) are adjacent if the 

corresponding induced 3-paths in G intersect. If al - a2 - 0,3 is 

an induced 3-path in G then the corresponding vertex in P3 ( G) 

is denoted by 0,1 o,2a:3. 

Definition 1.3.2. A graph G is a P3 intersection graph if 

there exists a graph H such that G ~ P3(H). 

In Figure 1.3.1 a graph G and its P;~( G) are shown. 
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efg 

acd 

def a 
G: A 
LL--o--o----o 

~ (G): 

b c d e f g cde 
bcd 

Figure 1.3.1 

Definition 1.3.3. [57J The edge C4 graph of a graph, E4(G) 

is a graph whose vertices are the edges of G and two vertices in 

E4(G) are adjacent if the corresponding edges in G are either 

incident or are opposite edges of some C4 in G. This graph class 

is also known by the name edge graph in [66]. 

In E<1(G) any two vertices are adjacent if the union of the 

corresponding edges in G induce anyone of the graphs P3, C3 , 

04 , K4 - {e}, K4· If al - a2 is an edge in G, the corresponding 

vertex in E4 (G) is denoted by al a2' 

Definition 1.3.4. A graph G is an edge 0 4 graph if there 

exists a graph H such that G ::: E4 (H). 

In Figure 1.3.2 a graph G and its E4(G) are shown. 
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G E4(G) 
1 2 

1 

8 9 

6 8 

6 

Figure 1.3.2 

1.4 A survey of results 

This section is a survey of results related to that of ours. 

The H - intersection graph IntH(G) [66] is the intersec­

tion graph of all subgraphs of G that are isomorphic to H. If H 

is K2 then IntH(G) is the line graph. Trotter [76] characterized 

the graphs for which IntK2(H) is perfect. The 3-edge graph is 

the intersection graph of the set of all 3-edges of G [67]. The 

K3 intersection graph is the 3-edge graph provided every edge 

4 
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lies in some triangle [66]. In [2], Akiyama and Chwltal have 

characterized the graphs for which IntP3(G) is perfect. 

In [27], Daniela derived some properties of the girth and 

connectivity of the path graphs. In [51], Knor and Niepel char­

acterized the graphs isomorphic to their path graphs. 

In [7], Bandelt and others proved that a bipartite graph is 

clismantlable if and only if its edge C4 graph is dismantlable and 

a bipartite graph is neighborhoocl-Helly if and only if its edge C4 

graph is ncighborhoocl-Helly. For any given graph C, the edge 

graph is a supergraph of L(G). In [50) it has been shown that 

for any graph C without isolated vertices, there is a graph H 

such that C(H) = G and C(L(H)) = L(C). 

Many types of dominations and their characteristics are dis­

cussed in [24], [39], [40]. In [18], efficient algorithms are devel­

oped for finding a minimum cardinaJity of connected dominat­

ing set and a minimum cardinality Steiner t.ree in permutation 

graphs. In [20), forbidden suhgraph conditions sufficient to il1l-
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ply the existence of a dominating clique are given. 

The concept of edge domination was introduced by Mitchell 

and Hedetniemi in [63]. The edge dominating sets and the 

bounds for the edge domination number " are studied in [47]. In 

[15}, an upper bound for ,'(G) is obtained. Again, these bounds 

are modified in [4] for a. connected graph G of even order, tree 

and a connected unicyclic graph. In [23], [41) a bound for the 

connected domination number of a graph G with regard to the 

diameter of the graph, the vertex independence number and the 

matching number of a graph are obtained. 

In [29], it is observed that for graphs G \vithout isolated 

vertices, ,(G) ~ dilw(G). Threshold graphs were introduced 

by Chwltal.V and HalIllIler.P.L ill [16], where different charac­

terizations for such graphs are given. Block graphs, geodetic 

graphs and weakly geodetic graphs are studied in detail in [44], 

[48]. Stemple et.al [74] showed that a graph is geodetic if and 

only if each of its block is geodetic. It is known that block 

graphs ~ geodetic graphs ~ weakly geodetic graphs [13]. In 
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[19], eight characterizations of cographs which include the re­

cursive characterization and the forbidden subgraph characteri­

zation are given. The median and the anti-median of cographs 

are discussed in [69]. The recent Ph.D thesis by Ms. Aparna 

Lakshmanan [3] contains results regarding cographs and other 

graph classes such as the Gallai and the anti- Gallai graphs, the 

clique irreducible graphs, the clique vertex irreducible graphs 

and the weakly clique irreducible graphs. 

The concept of wide diameter ha.s been discussed and us(~d 

in distributed and pa.rallel computer networks [45]. In [43], lIou 

and Wang defined generalized wide diameter and calculated it 

for any k- regular k-connected graph. A generalized p-cyclc is a 

digraph whose set of vertices is partitioned into p parts that can 

be ordered in such a way that a vertex is adjacent only to the 

vertices in the next part. The bounds for the wide diameter of 

the generalized p-cycle is obtained in [28]. The wide diameter 

of butterfly networks is studied in [53}. Bolian Liu and Xiankun 

Zhang studied some problems on the relations between Dw(G) 

and diarn( G) in [54}. In this paper they characterized the graphs 

G for which Dw(G) = dimn(G) , w > 1. 
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The diameter of a graph is an important factor for com­

munication as it determines the maximum communication de­

lay between any pair of processors in a network. The diarne­

ter of a graph may be affected by the additioll or ddction of 

edges. In [33], Graham and Harary studied this aspect in hy­

percubes and proved that D-l(Qn) = 2, D+l(Qn) = n - 1 and 

D+O(Qn) ~ (n-3)2n- 1 +2. Bouabdallah et.al [12] improved the 

lower bound of D+O(Qn) and furthermore gave an upper bound, 

(n- 2)2n- 1 _n CLn/2J +2 ~ D+O(Qn) ~ (n- 2)2n- 1 - r2n- 1 /2n-

11 + 1. 

The diameter variability arising from the addition or deletion 

of edges of a graph G is defined in [77] and in this paper, vVang 

et.al proved that D-1(Cm.) ~ 2, D-l(Tm,n) ~ 2, D-2(Tm,n) = 2 

for m ~ 14 and m =I 15. Also they obtained the exact value of 

D+1(Tm,n). 
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1.5 Summary of the thesis 

This thesis entitled 'Studies on some graph opemtors and 

related topics' is divided into five chapters including an intro­

ductory chapter. We shall now give a summary of each chapter. 

The first chapter is an introduction and contains literature 

on graph operators. It also includes some basic definitions and 

terminology used in this thesis. 

In the second chapter, the P..1 intersection graph of a graph 

G which is the intersection graph of all induced 3-paths in G is 

studied in detail. The following are some of the results proved: 

• For a connected graph G, P3(G) is bipartite if and only if 

G is P3) P4 , 1<4 - {e} or Cl paw. 

• ](1,4 is a forbidden subgraph for a graph to be the p~{ 

intersection graph. 

• There exist only a finite fc1.mily of forbidden subgraphs for 

the P3 intersection graphs to be H-free for any finite graph 
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H. 

• For a connected graph G, X(P3(G)) ~ X(G) - 1. The 

equality holds if and only if G is either Kn - {e} or a 

complete graph with a pendant vertex attached to it. 

• The relationship between the chromatic number, clique 

number, connectivity, independence number, domination 

number, the radius and the diameter of a graph and its P..'i 

intersection graph. 

The third chapter is the study of another graph operator -

the edge C4 graph of a graph. If G does not contain Cl as a 

subgraph, then the edge 0.1 graph of a graph coincides with its 

line graph. So if G is an Eulerian graph which does not contain 

C4 as a subgraph, then E4(G) is Eulerian. Following are some 

of the results obtained: 

• There exist infinitely many pairs of non isomorphic graphs 

\vhose edge 0,1 graphs are isomorphic. 

• Characterizations for E4(G) being connected, complete, 

bipartite etc. 
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• There is no forbidden subgraph characterization for E4(G). 

• The relationships between the diameter, radius, center, 

domination number of G and those of E4 ( C). 

• Relationships between different types of dominations of C 

and that of E4 ( C). 

• For any connected graph C, diam(C) - 2 ~ 1'c(E4 (C)) ~ 

2,B(G) - 1. 

• A bound for the domination number of E4 (C) in terms of 

the order of C. Further for a graph C, which is a tree or Cl 

unicyc1ic graph, characterization is obtained for the strict 

bound of the domination number of E4 ( C). 

• Conditions for the E4 (C) being a clique dominated graph, 

threshold graph, cograph, geodetic graph, weakly geodetic 

graph and block graph. 

The dynamics such as convergence, divergence, periodicity, 

fixedness etc of the P3 intersection graph and the edge CIj graph 

are included in chapter fom. The following are some of the 

results proved: 
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• There are no P3-periodic graphs. 

• If a graph G is P3-convergent, then it is P:f(G)-complete 

for some n ~ 1 and hence all the Ps-convergent graphs are 

P3-mortal graphs. 

• The relationship between the touching number of P3 ( G) 

and the vertex touching number of G. 

• Characterization of the E1- convergent graphs. 

• The relationship between the touching number of G and 

that of E.1(G). 

III dmptcr five of this thesis, tlw diameter variability a.nd 

the w-wide diameter of the three graph operators - the P;l inter­

section graph, the edge C4 graph and the line graph and some 

graph operations such as join and corona are studied. Some of 

the results are listed below: 

• Corresponding to a w-container in G, there exists w-containers 

in P3(G) and E4(G). 

• Strict bound for the w- wide diameter of P3 (G), L(G) and 

E4(G). 
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• Strict bounds for D+i of P3(G), E4(G) and L(G). 

• The diameter variability of join and corona of two graphs. 

All the graphs considered in this thesis are finite, undirected 

and simple. Some results of this thesis are included in [55} - [60]. 

We conclude the thesis with some suggestions for further study 

and a bibliography. 
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Chapter 2 

The P3 intersection graph 

of a graph 

This chapter deals with the graph operator known as 'the P3 in-

tersection graph'. \Ve study the conditions for the P3(G) to be 

connected, bipartite, tree, geodetic, block etc. The existence of 

a finite family offorbidden sub graphs for the P3(G) to be H-free, 

H being a finite graph, is proved a.nd the forbidden subgraph 

Some results of this chapter are included in the following papers. 
l. 1Ianju K. Menon, A. Vijayakumar, The P3 int.ersection graph, Util . 
.l'vlath. 75 (2008), 35 - 50. 
2. Manju K. Menon, A. Vijayakllmar. Dynamics of t.he P3 intersection 
graph, (communicated). 
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characterizations of G for which the P3 (G) are complete, chordal 

etc are discussed. The relationship between the clique number, 

chromatic number, connectivity, independence number, domi­

nation number, radius and diameter of a graph and its P3(G) 

are also studied in detail. 

2.1 The P3 intersection graph of a graph 

For any graph G which is the union of complete graphs, p.:~( G) 

is null graph. Hence in this chapter we do not consider such 

graphs. If G is a connected graph of order at most five then 

P3(G) is complete. 

In general, the H-intersection graph of a connected graph 

need not be connected. But, in the case of P3 (G), we have 

Theorem 2.1.1. P..1{G) is connected if and only ifC has exactly 

one component containing an induced P3 . 

Proof. Suppose that G contains more than one component con­

taining an induced P3' Let a1 - 02 - aa and b1 - b2 - h;~ be allY 
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two induced 3-paths in G which lie in distinct components of 

G. Then by the definition of Pa(G) the corresponding vertices 

al a2aa and bl b2ba in Pa (G) cannot be connected by a path and 

hence Pa (G) is disconnected. 

Let G have exactly one component containing an induced 

Pa. Suppose that x = ala2aa and y = bl~b3 are any two non­

adjacent vertices in P3(G). If ai,i = 1,2,3 and bj,j = 1,2,3 

are adjacent then ala2a3, aibjb.i+l or aibjbj_l, b1b2ba is a path 

connecting :1: and y. If ai and bj are not adjacent then let the 

shortest path connecting ai, i = 1,2,3 and b.i, j = 1,2,3 be 

ai, Cl, C2, ... , en, b:i' If n = 1, then ala2a:~, aiclb.h b1b2b:l is a path 

connecting x and y. If n ~ 2, then ala2a:~, aicIC2, ... , cn-lcnb,i, 

b1b2b3 is a path connecting J: ancl y in Pa(G). Hence P3(G) is 

connected. 0 

Theorem 2.1.2. If G is k-connected; k ~ 2, then Pa(G) is 

(k - I)-connected. Furthe'" /'i;(P:~(G)) = r-;,(G) - 1 if and only if 

GisKn-{e}. 

Proof Let G be k-connectecl. Then by Theorem 1.2.20, for any 

two vertices u and v, there exists at least k internally disjoint 
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U - v paths. 

Let Ul U2U3 and VI V2V3 be any two distinct vertices in P3 (G). In 

G, if Ui and Vj are connected by a path which contain at least one 

vertex other than these six vertices, then correspondingly there 

exists at least one path in P3(G) joining UIU2U3 and VIV2V3. SO, 

it is enough to consider the paths in G involving one or more of 

these six vertices. 

Case 1: Let Ui and Vj be non - adjacent for some i, j E {I, 2, 3}. 

Then corresponding to any path in G joining Ui and Vj, there 

exists a path in P3(G) joining UIU2U;i and VlV2V3. So K(P:i(G)) 

;;:;: K(G). 

Case 2: Let Ui be adjacent to Vj. 

Case 2a: All UiS and VjS are distinct. 

Then in between any Ui and Vj in G, there exists at most five 

internally disjoint 'Ui-Vj paths involving those six vertices only. 

But there exists six internally disjoint paths joining 'Ill U2U3 and 

'UIV2'V3 in P3(G) which are of the form UIU2'll~~, 1LJVjU:~, 'lJlV2V3 

and UIU2'U3, VIUjV3, V!'U2v3,.i E {l,2,3}. HCHce ill this case also 
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~(P3(G)) ;;:: ~(G). 

Case 2b: UiS and VjS share a common vertex. 

In this case there exists more paths between Ul U2U3 and Vl V2V3 

in P3(G) than the minimum number of paths between any Ui 

and Vj in G. Hence K(P3(G)) ;;:: ~(G). 

Case 2c: UiS and VjS share two common vertices. 

In this case also, except when they form K4 - {e}, the number 

of internally disjoint paths between Ul'U2U3 and VI V2V3 in P3 (G) 

is greater than or equal to the minimum number of internally 

disjoint paths between any Ui and v.i in G. If there exists one 

more vertex, then K(P3(G)) < K(G) only when the newly ad­

joined vertex is adjacent to all the four vertices. If we adjoin 

more vertices to this graph also, K(Pa(G)) < K(G) only \vhen the 

adjoined vertices are adjacent to all the other existing vertices. 

Hence K{P3 (G)) < ~(G) only when G is Kn - {e}. For Kn - {e}, 

~(P3(G))= K.(G) - 1. 0 

As to the question whether every graph is the P.l intersection 

graph of some graph, we have the following theorem:-

Theorem 2.1.3. The following gmphs G cannot be the P3 in­

ter.c;ection gmph of any gmph. 
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1. G is a connected graph having at least three vertices and a 

pendant vertex . 

2. There exists a vertex v in G with d(v) = 2 s'Uch that v is 

adjacent to any two non-adjacent vertices in G. 

3. G is a connected triangle free graph having at least three 

vertices. 

Proof 1. Let G be a connected graph having at least three 

vertices. Let x be a pendant vertex of G and z be the 

unique vertex adjacent to x. If possible let there exist a 

graph H such that g,(H) = C. Since there are at least 

three vertices, there exists a vertex adjacent to z and let 

it be y. Since x and y are two non-adjacent vertices in 

G = P3(H), we can assume that x = a.1a2a3 and y = b1b2b3 

where ais and b.js are distinct vertices in H. Since z is 

adjacent to both x and y, z corresponds to a 3-path in H 

which must contain at least one ai and bj . So z must be 

of the form {libjC or aicb.i or caibj. 

Let z = o.ibj{;, If i = 1, then 0.2 - al - b.i is a :3-path. Bllt if 

this is an induced path: then x ca.nnot remain a pendant 

vertex. So (/'2 - hi is a.n edge in H. Then o.:{ - 0.2 - b.i is 
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a 3-path. But if this is an induced path then x cannot 

remain a pendant vertex. So a3 - bj is an edge in H. Then 

al - bj - ag is an induced 3-path. If the corresponding 

vertex albja3 is different from z, then it is adjacent to x, 

a contradiction to the fact that x is a pendant vertex. If 

a1bja3 = z, then we can show that there exists an induced 

3-path with al and two bIS, l = 1,2,3 as its vertices. The 

corresponding vertex which is different from Z is adjacent 

to x which will also lead to a contradiction. So G cannot 

be the Pg-graph of any graph. The case is similar when 

i = 2,3 also. The proof is similar when z = aicbj or 

Z = caibj. 

2. Suppose now that G has a vertex v with d(v) = 2 and 

let G = P.'3(H). Let v be adjacent to VI and V2 where 

VI and V2 are non-adjacent vertices. Let V1 = 0,10,20,3 and 

V2 = b1b2b3 where o,iS and bjs are distinct vertices in H. 

Then v must be of the form aibjC or o,icb.i or ca'ibj. So as 

in the proof given above, we can show that there exists a 

vertex adjacent to v \vhich is different from both VI and 

V2, which is a contradiction to the fact. that d(v) = 2. 
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3. Finally, let G be a connected triangle free graph. If pos­

sible assume that G = P3(H). Since G has at least three 

vertices it contains a vertex z which is adjacent to two non­

adjacent vertices x and y. Let x = ala2a3 and y = b1b2b3 , 

where aiS and bjs are distinct vertices in H. Then z must 

be of the form aibjC or aicbj or caibj. Using the similar 

arguments as in the above proofs, we can show that there 

exists a vertex which is adjacent to both x and z, which is 

a contradiction to the fact that G is triangle free. 

o 

Lemma 2.1.4. If G is a conna:ted Y'f'llfJh ha:uinq at l(~(}..'it .five 

vertices, then P3 (G) has at least three vertices. 

Proof. Let G be a connected graph having at least five vertices. 

Let x and y be two non-adjacent vertices of G. Let the shortest 

path connecting x and y be x, VI, V2, ... 11", y. If n ~ 3 then 

P3(G) clearly contains at least three vertices. If n = 2 then 

since G is a connected graph having at least five vertices, the 

fifth vertex must be adja.cent to at least one of ;1;, Vb V2, y. Then 

there exists at least three induced 3-paths in G and hence P3(G) 

contains at Jeast three vertices. If n = 1, there exists at least 
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two more vertices in G and they must be connected to x, Vb y. 

In any case there exists at least three induced 3-paths in G and 

hence P3 ( G) contains at least 3 vertices. 0 

Theorem 2.1.5. Let G be a connected graph. Then P.3(G) 'lS 

bipartite if and only if G is P3 , P4 , K4 - {e} or paw. 

Proof. Let P3(G) be bipartite. Then P3(G) cannot contain tri­

angles. So by Theorem 2.1.3 (3), the only bipartite P3 intersec­

tion graphs are Kl and K 2 • Again by Lemma 2.1.4, G can have 

at most four vertices. Since we are considering only connected 

graphs, the theorem follmvs. 0 

Corollary 2.1.6. For a. connected graph G, Pa(G) is a. t'tee if 

and only ifG is P3, Pi, K4 - {e} O'!' paw. 

Theorem 2.1.7. Fa'!' any connected graph G, P3(G) is a block. 

Proof. Suppose that w = xyz is a cut vertex in P3(G). Then 

there exists two non adjacent vertices v,11/'2U3 and VIV2V:l such 

that the only path joining them is V,lU2'U3, W, VIV2V:l. Then UiS 

and v,is are distinct and some '1li' Vj = :1; , y or z. Thus we can 

find at least onc more path joining UIU2U3 a.nd 'IJ!'U2V:3, which is 

a contradiction to the fact that :ryz is a cut. vertex. 0 
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Theorem 2.1.8. The only connected geodetic P3 intersection 

graphs are the complete graphs. 

Proof Let P3 ( G) be non-complete. Consider two non-adjacent 

vertices V'lU2U3 and VIV2V3 in P3(G). Since G is connected, we 

may choose VI V2V3 such that Ui is adjacent to some Vj for i, j 

E {1, 2, 3}, Then there exists at least two disjoint paths of length 

two connecting V'I U2U3 and VI V2V3 and hence P3 (G) cannot be a 

geodetic graph. 0 

2.2 Forbidden subgraph characteriza­

tions 

In this section we prove that the Pa intersection graphs have a 

forbidden subgraph characterization. Even though many well 

known classes of graphs have forbidden subgraph characteriza­

tions, the number of the forbidden subgraphs need not be finite. 

But, 'we prove that there exist only finitely many forbidden sub­

graphs for the P3 intersection graph to be H - free where H is 

any finite graph. vVe also obtain forbidden subgraph characteri-
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zations for the P3 intersection graph to be chordal and complete. 

Theorem 2.2.1. If G is a P3 intersection graph then K I ,4 is a 

forbidden subgraph for G. 

Proof. Suppose that G = P3 (H) contains K I ,4 as an induced 

subgraph. Let v be the central vertex of K I ,4 and VI, V2, V3, V4 

be its neighbors in G. Then V corresponds to an induced 3-

path in H which intersects with all the four distinct 3-paths 

corresponding to VI, V2, V3 and V4, which is not possible. Hence 

K 1,4 is a forbidden subgraph for the P3 intersection graph. D 

Lemma 2.2.2. Let!.p = {G : P3(G) 'is H -free} where H is any 

finite graph. Then the pmper-ty P, G E r.p is vertex heTeditaTY. 

Proof Let G E'{:. Suppose that G - {v} 1- !.p. So P3 (G - {v}) 

contains H as an induced subgraph. Then this H will be induced 

in P3 ( G) also, which is a contradiction to the fact that G € 'P. 0 

Theorem 2.2.3. The collection <p ha.<; only (l.finde cia.';,'; of '/lC'f'­

tex minimal joTi)'idden, snbgrophs. 

Pmof. The property G f <p is vertex hereditary. So <p must have 
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vertex minimal forbidden subgraphs. Let F be the collection of 

all such vertex minimal forbidden subgraphs. Let Cl f. F. Then 

P3(C l ) contains H as an induced subgraph. So, corresponding 

to a vertex in H there exists an induced 3-path in Cl. This 

implies that the number of vertices in Cl covered by these 3-

paths cannot exceed 3n where n is the number of vertices in 

H. If Cl contains more than 3n vertices, then there exists a 

vertex v in Cl such that any induced 3-path containing v does 

not determine a vertex of H in P3 ( Cl) . Then Cl - {v} is also 

forbidden for <p which is a contradiction to the vertex minimality 

of Cl. Hence the number of vertices of Cl is bounded by 3n 

and hence <p hafi only a finite class of vertex minimal forbidden 

subgraphs. 0 

Corollary 2.2.4. Let S' = {C : P3 (C) 'is chordal}. The col­

lection S' has an ir~fin'ite da..,.'> of 'lJer-te:£ minimal fOTb'idden sub­

graphs. 

Pmof Let C f. S'. Then by Lemma 2.2.2, the property P, G f. S' 

is vertex hereditary. So S' must have vertex minimal forbidden 

subgraphs. If C contains Cro 11. ~ 6 as an induced subgraph, 

then P3(C) contains Cn, n ~ 4 and hence cannot be chordal. 
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Also P3(Cn - {v}), n ~ 6 is chordal. So Cn, n ~ 6 are vertex 

minimal forbidden subgraphs for 'S. Thus there exists an infinite 

class of vertex minimal forbidden subgraphs for 'S. o 

Corollary 2.2.5. Let W = {G : P3 (G) is complete}. Then any 

vertex minimal forbidden subgmph for W has exactly six vertices. 

Proof· Let G E W. Then G is induced Prfree. So by Lemma 

2.2.2, the property G ( W is vel't.c~x hereditary. So it has vertex 

minimal forbidden subgraphs. The P3(G) is complete for any 

graph ha"ing at most five vertices. So, a. forbidden subgraph 

must have at least six vertices. Let Cl be any vertex minimal 

forbidden subgraph for W. Since Cl is Cl forbidden subgraph for 

P3 ( C) being complete, it must have at least two disjoint 3-paths, 

al - a2 - a3 and bI - b2 - b3 . These six vertices are enough to 

induce a vertex minimal forbidden subgraph. o 

2.3 The chromatic number of P3(G) 

In this section we study the relationship between the chromatic 

number ofG and that of P3(C), 
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Lemma 2.3.1. For a connected graph G, W(P3(G)) ~ w(G)-1. 

Proof. Let w( G) = k. Since G is non-complete and connected, 

there exists a vertex u adjacent to at least one vertex of the 

k-clique in G. If u is joined to t vertices of this k-clique then 

there are t(k - t) induced 3-paths in G where u is common to 

all these induced 3-paths. So W(P3(G)) ~ t(k - t). Now, if 

t( k - t) < k - 1 then k < (t + 1) which is a contradiction to the 

fact that w(G) = k. So W(P3(G)) ~ k - 1. 0 

Theorem 2.3.2. For a connected graph G, X(P3 (G)) ~ X(G)-

1. The equality holds if and only if G is either Kn - {e} or a 

complete graph with a pendant vertex attached to it. 

Proof. Let X(G) = k. Then there exists a vertex v in G with 

color k such that its neighbors VI, V2, ... , Vk-.l have distinct colors 

1,2, ... , k - 1 respectively. 

If these k vertice.s form a complete subgraph, then w( G) ~ k. 

So X(P3 (G)) ~ W(P3(G)) ~ k - 1, by Lemma 2.3.1. 
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If these k vertices do not form a complete subgraph, then let 

'rn' be the size of maximal clique in the subgraph induced by 

these k vertices. Clearly v is a vertex in this m-clique. Then 

among the k vertices, there are k - m vertices adjacent to v 

which are not in the m-clique. Let Vi be such a vertex. Then 

this Vi can be adjacent to at most m-I vertices of the m-clique. 

In any case we can find at least k distinct induced 3-paths having 

a common vertex. The corresponding k vertices in P3 ( G) will 

form a complete subgraph having k vertices and hence X(P3 (G)) 

~ k. 

Hence the equality holds only \vhen there is a k-c1ique in G. 

Since G is connected and non-complete, there exists a vertex 

Ul which is adjacent to some of the ViS in the k-dique. If Ul 

is adjacent to t vertices of the k-c1ique where 2 ~ t ~ k - 2, 

then there exists at least k distinct induced 3-paths having a 

common vertex. Hence, in this case X(P3(G)) > k - 1. So 

Ul can be adjacent with either 1 or k - 1 vertices of the k­

clique. If there exists one more vertex in G other than these 

k + 1 vertices, thE.'Il also we CHn find at least k induced 3-paths 

baving a common vertex and hence X(P:J(G)) ~ k. So when 



56 Chapter 2. The Ps intersection graph of a graph 

X((P3(G))) = X(G) - 1, there exists exactly k + 1 vertices such 

that Ut is adjacent to 1 or k - 1 vertices of the k-clique. If Ut is 

adjacent to only one vertex of the k-clique, then the graph is a 

complete graph with a pendant vertex attached to it and if Ut 

is adjacent to k - 1 vertices of the k-clique, then the graph is 

Kk+1 - {e} and hence the result. 0 

Theorem 2.3.3. Given any two positive nu,mbers a and b where 

a > 1 and b ~ a-I, there exists a graph G such that X( G) = a 

and X(P3 (G)) = b. 

Proof. Consider the following cases: 

Case 1: b = a-I 

The graph G is obtained by attaching a pendant vertex to any 

one vertex of K a' 

Illustration: When a = 4; b = 3, 

o 
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Case 2: b = a 

Consider the graph G in Case 1. Then attach a single vertex to 

the pendant vertex of G. This is the required graph. 

Illustration: 'When a = 4; b = 4 

o---uO 

Case 3: b > a 

Subcase 3a: b ::::;; 2a - 1 

Consider the graph G in case 1. Anyone vertex of K b- a+1 is 

joined to the pendant vertex of G. This is the required graph. 

Illustration: \Vhcn a = 4; I> = 6 

rvr /\ ~-o--o----o ....0 
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Subcase 3b: b > 2a - 1 

Let k be the maximum integer satisfying the equation kC2 + 

(a - l)k = b. Join k pendant vertices to the same vertex of K(l' 

Replace anyone of these pendant vertices by K b-[ kC2+(a-l)kj' 

Illustration: 'When a = 4; b = 9 

In all the above cases, P3(G) = Kb and hence X(P3(G)) = b. 

Since all possible cases have been covered, the result follows. 0 

2.4 Some other graph parameters of 

P3(G) 

In this section we study the relationship between the paranwters 

such as domination nnrnbcr ~f, independence number lV, radius 
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and diameter of G and those of P3(G). 

Theorem 2.4.1. Given any two positive numbers a and b where 

a> 1 there exists a graph G such that '"'((G) = a and,),(P3 (G)) = 

b. 

Proof. Consider the following cases. 

Case 1: Suppose a < b. 

Consider an induced Vl-Vu path. To each Vi, i = 1,2, "'! a-I, 

join an induced 3-path - Wil -- Wi2 - Wi3. To Va join 2(b - a + 1) 

disjoint indGced 3-paths. This is the required graph G. Clearly 

')'(G) = a. Consider the a-I vertices in P3(G) which are of the 

form WilViVi+l,i = 1,2, ... ,a -1. In P3(G), these vertices will 

dominate all the vertices except the vertices corresponding to 

the 2(b - a + 1) disjoint paths joined to Va' These 2(b - a + 1) 

vertices can be dominated exactly by b - a + 1 vertices which 

are of the form 'U(UaUj where Ui and Uj are vertices in any two 

of the disjoint induced gs joined to Va' The above described 
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collection of a-I vertices together with these b - a + 1 ver­

tices will form a minimum dominating set for P3(G). Hence 

1'(P3 (G)) = (b - a + 1) + (a - 1) = b. 

As an example, consider a = 5; b = 6. The corresponding 

graph G is, 

Q.L' C;)17 '\- 1p 
\ / \, \ 
\\/ \~. ~ . 

. /~ ~~\ i o~ O---o--D 0----'0---0 

Case 2: Suppose a = b. 

Consider an induced VI - Va path. To each Vi, i = 1,2, ... , a 

join an induced 3-path, Wi1Wi2Wi3. This is the required graph G. 

Clearly 1'(G) = o. In P3(G), vertices of the form WnV(Wi3, i = 

1,2, ... ,a form a minimum dominat.ing set. Hence ,(Pl(G)) = 

a = b. 
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As an example, consider a = 5; b = 5. The corresponding 

graph G is, 

/ \\ 
6 0-----<>-----0 

Case 3: Suppose a > b. 

Consider an induced VI-Vb+! path. To (~ach Vi, i = 1,2, ... , b-

1 join an induced 3-path, WilWi2Wi3. To Vb.H, attach a - b + 1 

disjoint K 2s. This is the required graph G. Clearly ,)'(G) = 

(b - 1) + (a - b + 1) = a. In P3(G) the (b - 1) vertices which 

are the vertices in any K2 attached to Vb will dominate all the 

vertices. Clearly this is the minimum number of vertices in any 

dominating set of P3(G). Hence ~/(P:i(G)) = b. 

As an example, consider a = 6; b = 4. The corrcoponciing 
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graph G is, 

\ / \ / 
\ .I 

'\/ 

o 

Theorem 2.4.2. Gi'uen any two positive numbers (l and b 71Iher-e 

a > 1, there exists a graph G such that 0'. (G) = a and a( P;~ ( G)) = 

b. 

Proof. Consider the following cases: 

Case 1: Suppose a < b. 

Consider a K3b whose vertices are labelled as V1, V2, ... , V3b. 

From this graph, edges of the form V:~k-2 - V:~k, k = 1,2, ... , b 

and edges whose end vertices arc both of the form V3k+l, k = 

0,1, ... , a - 1 are deleted. This is the required graph C. Clearly 
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a(G) = a where a maximum independent set is {VI, V4, ... V3a-2}. 

Also a(P3(G)) = b where a maximum independent set is {V3k-2 

V3k-l V3k; k = 1,2, ... , b}. 

As an example, consider a = 2; b = 3. The corresponding graph 

G is, 

., v5 v6 

Case 2: Suppose a = b. 

Consider G = (Kat V P2n' Clearly o(G) = a. n(P3(C)) = a 

where the maximum independent set is {V{IliVrt+i; i = 1,2, ... , a} 
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where Vi and Va+i are vertices in P2a and Ui is a vertex in (Ka)c. 

As an example, consider a = 2; b = 2. The corresponding 

graph G is, 

Case 3: Suppose a > b. 

Subcase 3a: Let (), ~ 2b. 

Consider G = Ka,b with the partition {Ut, U2, ... , ua} and 

{VI, V2, ... , Vb}. Clearly a( G) = a. Since a maximum indepen­

dent set in P3(G) is {UiViUb+i;i = 1,2, ... ,b}, a(P3(G)) = b. 

As an example, consider a = 6; b = 2. Then the graph G is 

K6,2' 
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Sub case 3b: Let a < 2b. 

Let t = L a/2 J. Let G = Ka,b V P2(b-t). Let the parti­

tion of Ka,b be {Ul,V,2,".,Ua } and {Vl,V2, ... ,Vb} and let the 

vertices in the path be Wll W2, ... , W2(b-t). Then a( G) = a. 

Consider the following independent set of vertices in P'3 ( G), 

{UiViUHiii = 1,2, ... ,t,WjVHjWb-t+j,.i = 1,2, ... ,b - k}. This 

is an ind0.pendent set having maximum number of vertices in 

P3(G). Hence O:(P3(G)) = b. 

As an example, when 0, = 5; b = 3, the graph G = J(5,3 V P2' 0 

Theorem 2.4.3. For a connected graph G, rad(P3(G)) :s; rad(G)+ 

1. The equality holds only when rad( G) = 1. F7J:rther ifrad( G) ;;:: 

4 then rad(P3(G)) < rad(G). 

Proof. Let u be a center of G. So d( u, v) :s; f'ad( G) for all '0 f. 

V(G). Since G is not a complete graph, there exists an induced 

3-path having 'U as Cl vertex in it. Let t.he corresponding ver­

tex in P3(G) be ala2(),3 where 71 is some ai' Let b1b2b3 be any 

other vertex in P:\(G). If d(u, bj ) = 1, then (l,lo,2(l,;{, ul}jbj+1 or 
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ubibi-b bl~b3 is a path connecting ala2a3 and bl~b3 and hence 

d(ala2a3, bl b2b3) ::;; 2 = d(u, bi) + 1. Now, if d(u, bi) = k > 1, 

let a shortest path connecting u and bi be u, Cb C2, ... , Ck-l, bj . 

Then a1a2o,3 and b1b2b3 are connected by a path 0.10.20.3, UCIC2, 

... ,Ck-2Ck-Ibj, b1b2b3. So d(a1a2a3, b1b2b3) ::;; k = d(u, bj)' 

This implies that d(a1a2a3, b1b2b3) ::;; d(u, bj ) + 1 ::;; rad(G) + 1, 

since d(u, bj ) ::;; ro,d(G). Hence e(o,1a2a3) ::;; rad(G) + 1. There­

fore rad(P3(G)) ::;; rad(G) + 1. 

Now, let rad(P,'3(G)) = ro.d(G) + 1. 'We have proved that 

if d(ll, hj ) > 1, then d(ala2a3, b1b2b3 ) ::;; d{u, bj ) ::;; rad(G). So 

e(ala2a:1) ::;; rad(G) and hence rad(P,'3{G)) ::;; rad(G). So the 

equality does not hold when rad( G) > 1. 

Consider the case when rad(G) ~ 4. Consider a1a2a:1 where 

u is some ai and let bI b2b3 be any other vertex in p.~ ( G). Let 

d( u, hj ) = k and ai, Cl, C2 ... , Ck-b bj be a shortest path connect­

ing ai and bj . Then 0.10.20.3 and bI b2b3 are connected by a 

path 0.10.20.3, UCIC2, C2C3C4, ... , Ck-2Ck-1b,j, b1b2b3. So if k ::;; 3, then 

£1(0,10,20.3, b1b2( 3 ) ::;; 3 and if k ~ 4, then d(0.10'20.3, blb2b:~) < k. 
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So e(ala2a3) < k ~ rad(G). Hence rad(P3(G)) < rad(G). 0 

Remark 2.4.1. The condition rad(G) = 1 is not sufficient for 

the equality rad(P:~(G)) = rad(G) + 1. For eg:- if G = KI,n, n ~ 

3, then rad{G) = rad(P3(C)) = 1. 

Theorem 2.4.4. For a connected graph C, diarn(P.'3(G)) ~ 

diam( G). Pu,rther, if diam( G) ~ 4 then diarn( p.'3 (C)) < diam( G). 

Pmof Since G is not a cOll1pletE:~ graph diarn( G) > 1. By the 

arguments simila.r to those in the above proof, \ve can prove that 

for any two vertices a.la2a:~ and b1b2iJ3 in Pa(G), d(ala2a3, b1b2b3) ~ 

d(ai' bj ) ~ diam(G). So diarn(P3(G)) ~ diarn(G). 

Let diam( G) ~ 4. Let a1 a2a3 and bI b2b3 be any two vertices 

in P3(G) such that d(ala2a:l, b1b2b:3) = diam(P3(G)). Using 

the similar arguments as in the above proof, we can show that 

d(ala2a3, b1b2b3 ) < d(ai' b.i) ~ diarn(G). Hence diarn(P3(C)) < 

diam(G). 0 

Note: Let G = f{2V 4 K 1 . Then T'ad(G) = 1, rad(P;J(G)) = 2, 

diam.(G) = 2: dicnn(P3 (G)) = 2. Hence the hounds in Theorems 
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2.4.3 and 2.4.4 are strict. 



Chapter 3 

The edge C4 graph of a 

graph 

In this chapter, we study another graph operator - the edge C4 

graph of a graph. This operator is also called the edge graph in 

[66], as mentioned earlier. '0/e construct infinitely many pairs 

Some re~;nIts of this chapter are included in t.he following papers. 
1. ?vIanju K MenoIl, A. Vijayakumar, The edge 0 4 graph of a graph, 
Proceedings of the International Conference on Discrete Mathematics, Ra­
manujan Math. Soc. Lect. Notes Ser. 7 (2008), 2{15 - 2·18. 
2. )'laJljll K. )'Jenon, A. Vijayakumul', The edge Cl graph of some graph 
c1a."ises (communicated). 
3. Mnnju K. ~lcnon, A. Vijayakuma.r, Some domination paramet.ers in 
E.l (G) (communicated). 

G9 
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of non isomorphic graphs C and H such that E4(C) = E4(H). 

\Ve also prove that E4 (C) has no forbidden subgraph charac­

terization. We include in this chapter, the relationship between 

different types of domination numbers in G and those in E4 ( C). 

vVe also study the conditions for E4 (C) to be a special class of 

graphs such as the threshold graphs, cographs, block graphs, 

geodetic graphs, weakly geodetic graphs etc. 

3.1 The edge C4 graph of a graph 

For any graph C, E4(G) is a supergraph of L(G). So E4(G) is 

connected if and only if exactly one component of C contains 

edges. It is well known [79] that the only pair of non-isomorphic 

graphs having the same line graph is K 1,3 and J(3. But we 

observe that in the case of the edge C4 graphs, there are infinitely 

many pairs of non-isomorphic graphs having isomorphic edge C4 

graphs. However we are yet to obtain such pairs of same order. 

Theorem 3.1.1. There exist infinitely many pa'lrs of non iso­

morphic graphs whose edge C4 graphs aTe iS07noTphic. 



3.1. The edge C4 graph of a graph 71 

Proof. Let G = KI,n' Ifn = 2k-l, then take H = K2V(k-l)KI 

and if n = 2k, then take H = 2K1 V kK1• Clearly G and Hare 

non isomorphic graphs. But E4(G) = E4(H) = Kn. 0 

In [8], Beineke proved the existence of nine forbidden sub­

graphs for a graph to be a line graph. But, we prove that there 

is no forbidden subgraph characterization for E4(G). 

Theorem 3.1.2. There is no forbidden subgmph characteriza­

tion for E4 (G) . 

Proof. \Ve shall prove that given any graph C, we ca.n find a 

graph H such that C is an induced subgraph of E4(H). For any 

graph C, let H = G X /(2' Then in E.l(H), all the vertices of 

the form 11,u' where u, is a vertex in G and 11,' is the corresponding 

vertex in the copy of C used in the construction of G x K 2, will 

induce C. For, if u, and v are any two adjacent vertices in G, 

uu' and vv' correspond to adjacent vertices in E4(H) as uu'v'v 

forms a C4 in H. If u and v a.re any two non adjacent vertices 

in G then uv,' and v'v' are non adjacent vertices in E4(H). 0 

Theorem 3.1.3. For a tree T, E.1(T) ~ E4 (TC) if and only if 

T -is K 1 , PI or /(1,3' 



72 Chapter 3. The edge C4 graph of a graph 

Proof. Let E4(T) :::: E4(rc). If T is a tree having n vertices then 

T has n -1 edges. But TC has n(n -1)/2 - (n -1) edges. Since 

E4(T) '" E4(TC), both T and TC must have the same number of 

edges. 

So n(n -1)/2 - (n -1) = n -1 and hence n = 1 or 4. If n = 1, 

T = Kl and if n = 4, T = K 1,3 or P4' 

Converse is trivially true. o 

3.2 Diameter, Radius and Center 

In this section, we study the relationships between the diameter 

and radius of G and those of E4(G). In [50j, it has been shown 

that for any graph C without isolated vertices, there is a graph 

H such that C(H) = G and C(L(H)) = L(C). \Ve prove a 

similar result for E4 (C) also. 

Theorem 3.2.1. For a connected graph C, diam(C) - 1 ~ 

diam(E4{G)) ~ diarn(C)) + 1. 

Proof. 'Ve shall first prove the inequality on the right.. 

Let diarn{E4 {G)) = k. Suppose that dimn(G) < k - 1. Then 
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for any two vertices VI and V2 in G, dG(VI, V2) < k - 1. Con­

sider any two edges el = VI - v~ and e2 = V2 - v~ in G. But 

dG(Vl, V2) < k-l. Hence in E4(G), dE4(G)(eI, e2) ~ dO(VI' v2)+1 

< k, which is a contradiction to the fact that diam(E4(G)) = k. 

Thus diam(E4(G)) ~ diam(G)) + 1. 

Next let diarn(G) = k. Suppose that diam(E4(G)) < k -

1. Let u and V be any two vertices in G and let u - u', V -

v' be any two edges incident with 1), and v respectively. But 

dE4 (G) (v,u', VV') < k - 1. So dG(u, v) ~ dE4 (G) (uu', vv') + 1 < k, 

which is a contradiction to the fact that diam(G) = k. 0 

Theorem 3.2.2. For (J, connected graph G, rad(G) - 1 ~ rad 

(E,j(G)) ~ rad(G) + 1. 

Proof. Let rad(E4(G)) = k. If possible, let rad(G) < k - 1. 

Then there exists a vertex 'a' in G so that dc(a, b) < k - 1 for 

any vertex b in G. Consider an edge adjacent to a., say ea. Let 

e = VI - V2 be any edge in G. 

dE4 (C) (ea, e) ~ max{dc (a:vl),dc;(0.,V2)} + 1 

< k - 1 + 1 = k and hence e(ea ) < k. Thus rad(E4(G)) ~ 

rad(G) + 1. 
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Finally let rad(G) = k. Suppose that rad(E4(G)) < k - 1. 

Then there exists a vertex uu' in E4 (G) such that e( uu') < k - 1. 

Consider the vertex u in G. Let v be any vertex in G. Let vv' 

be any edge incident with v. Then dc(u, v) ~ dE4 (C) (uu', vv') + 

1 < k, and hence e(u) < k, which is a contradiction to the fact 

that rad(G) = k. 0 

Note: The bounds in Theorems 3.2.1 and 3.2.2 are strict. 

If G is a bow, then diam( G) = 2, diam, ( E4 ( G)) = 3, rad( G) = 1 

and rad(Bl(G)) = 2. 

If G is C4 , then dia1n( G) = 2, diarn(E4( G)) = 1 and rad( G) = 2, 

rad{E4(G)) = 1. 

Theorem 3.2.3. For any graph G without isolated vertices, 

there exists a supergraph H such that C (H) = G and C (El\. (H)) = 

Bj(G). 

Proof. Consider G V 2/(2. Let the ]{2S be a - a' and b - b'. 

Attach a" - alii to a - a' such tha.t 0' is adjacent to a" and a is 

adjacent to a"'. Similarly attach l/' - bill to b - b' such that b is 
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adjacent to b" and h' is adjacent to bllf • The graph so obtained 

is H. 

We have, 

e(u) = 2, if u E V(G). 

= 3, if U E {a, a', b, b'}. 

= 4, ifu E {a", a"', b", b"'}. 

Hence C(H) = G. 

Now, let Ul, U2, ... , Um be the vertices in G and x be any vertex 

in E4(H). Then, 

e(x) = 2, if x E {U(u,j/ni is adjacent to Uj in G, i, j = 1,2, ... , m, i =1= 

J. 

= 3, if x E {av'i, a'ui, bni, b'Ui}, i = 1,2, ... , m. 

= 4, if x E {a.'a", aa"', b'b", bb"', a"a"', ll'b"'}. 

Hence C(E4(H)) = E4(G). 

Illustration: If G = P3, then H is 

o 
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3.3 Some domination parameters in 

In this section, we study the relationship between different types 

of dominations in G and those in E4(G). 

Theorem 3.3.1. For any graph G with out isolated vertices, 

there exists a dominating set in G corresponding to any dom­

inating set in E4(G). FUT·ther for such a graph G, ,(G) :::; 

2,(E4(G)). 

Pmof Let G be any graph having no isolated vertices. Then 

corresponding to any component in G, there exists a component 

in B-1 (G) and vice versa. 

Let {el = VIV~, e2 = V2V;, ... , eb = VbVa be a dominating 

set in E4(G). Consider S = {Vl,V;,V2,V~, ... ,VI)'V~}, Then S ~ 

V ( G). Let w be any vertex in V ( G) . Since G is a connected 

graph, w must be the end vertex of an edge w - '111'. But the 

vertex ww' in E4 (G) is dominated and hence is adjacent to at 

least one of the b vertices. Let ei be adjacent to ww' in R1 (G). 
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Then in G, either ei is incident with w - w' or ei and w - w' 

are the opposite edges of some C4 • In both the cases, w is 

dominated by Vi or v~. Thus S is a dominating set of G and 

hence ,(G) :::;; 2,(E4(G)). o 

Note: Corresponding to any dominating set in G, there need 

not be a dominating set in E4 (G). As an example, consider the 

following graph: 

G: 

Corresponding to the dominating set {a, b, c} in this graph, we 

cannot find a dominating set in its EJ(G). 

Corollary 3.3.2. For any graph G, ".1(1,,(0) :::;; 2''Y(Et (G)) 
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Proof. Let 'Y(E4(G» = k. Let a minimum dominating set of 

E4(G) be {el = vlv~,e2 = V2V~, ... ,ek = vkvD. Let 8 = {Vl!V~, 

V2, v~, ... , Vk, v~}. Then S is a dominating set in G by Theorem 

3.3.1. F\lrther, S allows a perfect matching and hence the result. 

o 

Corollary 3.3.3. For a connected graph G, I'c(G) ~ 2'Yc(E4(G). 

Proof Let S' = {El = vlv~,e2 = V2V~, ... ,ek = vkvD be a 

minimal connected dominating set in E4 (G). Consider S = 

{Vl, v~, V2, v~, ... , Vk, vU in G, which is Cl dominating set in G by 

Theorem 3.3.1. By the definition of E4 ( C), S is connected and 

hence the result. o 

Corollary 3.3.4. For a connected gmph G, I'w(G) ~ 2iw (E4(G)). 

Proof. Let iw(E4( G)) = k and S' = {el = VI v;, e2 = V2V~, ... , ek = 

Vk v~} be a minimal weakly connected independent dominating 

set in E4 ( G). Since S' is independent, no two eiS are adjacent. 

Further since < S' >1(1 is connected, for any ei in S', e(ed ~ 2 in 

< S' >w· 80 in < S' >w, e'i and Cj are either adjacent or there 

exists an ei,j whieh is a.djacent to both ei and Cj. Then in C, the 

edge ei..j is either incident with ei, e.i or is opposite to ei, ej in 
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some C4• Consider 8 = {v}, v~, V2, v~, ... , Vk, v~}. In both these 

cases, < 8 >111 is weakly connected. Also 8' is a dominating set 

by Theorem 3.3.1. Hence the result. 0 

Corollary 3.3.5. For any connected gmph G, 1't(G) ~ 21't(E4(G)). 

Proof Let 8 be a minimal total dominating set in E4(G). Let 

8' be the set of all end vertices of the corresponding edges in G. 

Then N(8' ) = V. For, consider any vertex v E 8' . It is clearly 

dominated by the other vertex v' in S' such that vv' E S. Also 

by Theorem 3.3.1, 8' forms a dominating set for G. Thus N(8') 

= V(G) and hence the result. 0 

Theorem 3.3.6. Given any two integers a and b, there exists 

a graph G s'uch that i(G) = a and ~/(E4(G)) = b. Pu,Tther, ~f 

a ~ 2b, the'f'e (~xists a connected gmph G such that 1'( G) = 0. and 

1'(E4(G)) = b. 

Proof Case 1 : b ~ a ~ 2b. 

Consider P2b = {VI, V2 .. ·, V2b}. Attach a pendant vertex to each 

of 'lJ2i-l,i = 1,2, , .. b. Then to each V2i , i = 1,2, ... , a - b, attach 

Cl pendant vertex. This is the required graph G. Then ,(G) 

= b + a - b = a. Abo, '''y(E4(G)) = b since the set of vertices 
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{ V2i-l V2i; i = 1, 2, ... , b} is a dominating set of minimum cardi­

nality in E4 (G). 

For example, when a = 4; b = 3, G is 

LLLo---L 
Cl:l..Se 2 : a < b. 

Consider K 1,a. Replace a pendant vertex of K 1,a by KI V(b-a+ 

1)K2 . To all other pendant vertices of K 1,a, attach a pendant 

vertex. Let 11,1 be the central vertex of K1,a and {VI, V2, ... , va} 

be the vertices attached to 11,1. Suppose thl'l.t v~, v~, ... , v~ are 

respectively the pendant vertices attached to V2, V3, ... , Va. Let 

W1 - w~, W2 - w~, ... , Wb-a+l - W~-a+l be the b - a + 1 K 2s 

joined to VI. This is the required graph G. Then {VI, V2, ... , va } 

forms a minimum dominating set in G and hence ,( G) = 0,. In 

E4(G), {WiW;'; i = 1,2, ... , b - a, V1Wb-a+I. wu~; i = 2,3, ... , a} is Cl 

dominating set of minimum cardinality and hence ,(E4(G)) = 

b - a. + 1 + a-I = b. 
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For example, when a = 5; b = 6, G is 

Case 3: a. > 2b. 

G is P2b 0 /(1 together \vith a - 2b isolatt~d vertices. 

For example, when a = 8; b = 3, G is 

LLLUJ o o 

o 

Lemma 3.3.7. For' any connected graph C, n(E,l(G)) ~ peG). 
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Proof. Let a(E4(G)) = k and S = {el, e2, ... , ek} be the max­

imum vertex independent set in E4(G). Consider the corre­

sponding edges in G. Since ei and ej are not adjacent in S, the 

corresponding edges in G are also independent. o 

Theorem 3.3.8. For any connected graph G, diam(G) - 2 ~ 

'Yc(E4(G)) ~ 2f3(G) - 1. 

Pmof. By Theorem 1.2.16, diam(E4(G)) - 1 ~ '"Yc(E4(G)). Us­

ing Theorem 3.2.1, we get the left inequality. By Theorem 

1.2.17, 'Yc(E4(G)) ~ 2a(E4(G)) - 1. Then by applying Lemma 

3.3.7, we get the right inequality. 0 

Note: In Theorem 3.3.8, the left bound is strict for P5 and the 

right bound is strict for K I ,3' 

Theorem 3.3.9. For any connected graph G, 'Y(E4(G)) ~ ~r'(G). 

Further, equality holds if the edge domination of G is the effi­

cient edge domination. 

Pmo.f. Let S form a minimal edge dominating set in G so that 

,),'(G) = ISI. In E.t(G), let Sf be the set of vertices correspond­

ing to the edges in S. Clearly S' dominates all the vertices in 
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E4(G). Hence 1'(E4(G)) ~ l"(G). 

Let S = {el, e2! "'! ed be an efficient edge dominating set in G 

so that l'~(G) = ISI. Let S' be any dominating set in E4(G). 

Claim: IS'I ~ ISI· 
Suppose that ei E S' dominates et and em in E4 (G) where 

1, m E {I, 2, ... , k}. Since S is an efficient edge dominating set 

in C, both el and em cannot be adjacent with ei' So the only 

possibility is that el and em are opposite to ei in some C4s in G. 

But ei in G must be dominated by an edge Ck E S. Even then, 

S is not an efficient edge dominating set. Thus any dominating 

set in E4(G) must have ISI elements. Hence t.he equality. 0 

Note: Even if ~1(El(G)) = ~/(G) , t.he edge domination need 

not be efficient. As an example, G = K1,n' 

Corollary 3.3.10. FOT any gmph G = (n, m), "(E4(G)) < n/2. 

Proof Using Theorem 1.2.12 and Theorem 3.3.9, we get ~f(E4(G)) 

~ Ln/2J ~ n/2. But i/(G) = n/2 is possible only when n is even. 

But, hy Theorem l.2.1:3, for even 'n, "('(G) = n/2 if and only if G 

= Kn or Kn/2,n/2' \Vhcn G = Kn or Kn/2,n/2, E4(G) is complete 

and hence "(E4(G)) = 1. 0 
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Notation 3.3.1. The graph C3,k denotes the graph obtained 

from a C3 and k copies of K2 by joining one end of each K2 with 

a fixed vertex of C3 • The graph obtained from C4 by joining a 

vertex of C4 with the cent er of S(K1,k) is denoted by C4,k' 

Corollary 3.3.11. If a connected graph G = (n, m) is a tree or 

a unicyclic graph then ,(E4(G)) = Ln/2J if and only ifG is one 

of the following. 

(1) subdivision of a star, (2) C5 , (3) C7 , (4) C3,k' 

Proof. By Corollary 3.3.10, ,(E4(G)) < n/2. So "y(E4(G)) = 

Ln/2J is possible only when n is odd. By Theorem 1.2.14 for any 

tree of order n =1= 2, -y' (G) = (n - 1) /2 if and only if G is isomor­

phic to the subdivision of a star. If G is S(K1,k), ,(E4(G)) = k. 

By Theorem 1.2.15, for a connected unicyclic graph G = (n, m), 

,'( G) = Ln/2 J if and only if G is isomorphic to either C1 , Cs, C7 , 

C3,k or C4,k' \Ve have ,(E4 (C4 )) = 1, ,(E4 (C5 )) = 2, ,(gl(C7 )) 

= 3, ,(E4(C3,k)) = k + 1 , ~(E4(C4,k)) = k + 1. Thus the result 

follows. 0 

Theorem 3.3.12. Let G be a clique dominated graph with a 

dominating clique S. If every vertex v f/. S is adjacent to at 

least two vertices of S, then £.1 (G) is also a clique dominated 
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graph. 

Proof. Let S = {VI, V2, ••. , Vk} be a dominating clique of a clique 

dominated graph G. Let {el, e2, ... , en} be the set of all edges 

in the graph induced by S. Then the set of vertices S' = 

{el, e2, ... , en} in E4(G) induces a complete subgraph by the def­

inition of E.1(G). Also, S' forms a dominating clique. 

Let ex = V:1;V~ rf. S' be a vertex in E4(G). If x or x' E {l, 2, ... , k}, 

then ex in E4(G) is dominated by S'. So let both Vx and v~ ~ S. 

But, both Vx and v~ are adjacent to at least two vertices in S. 

Let V'I; be adjacent to Vi in S and let v~ be adjacent to v,il i =I j 

in S. Then Vi - Vj and V;I: - v~ are opposite edges of some C4 

in G and hence the vertex (;3; is dominated by S'. So S' is a 

dominating clique in E4(G) and hence it is a clique dominated 

graph. 0 

Note: The converse of Theorem 3.3.12 need not be true, as in 

the case of G = KTl 0 K 1 . 
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3.4 E4(G) and some graph classes 

Theorem 3.4.1. For' a connected graph G, E4(G) is complete 

if and only if G is a complete multipartite graph . 

Proof. Let G be a connected graph such that E4(G) is complete. 

"Vc shall first show that G is a cograph and is paw-free. If G 

contains an induced P4 then the first and the third edges in P4 

correspond to two non adjacent vertices in E4(G), and E4(G) is 

not complete. Further if G contains a paw as an induced sub­

graph then the pendant edge and the edge in the triangle of the 

paw to which the pendant edge is not adjacent correspond to 

non adjacent vertices in E4(G). Hence G is also paw-free. Thus 

G is a paw-free cograph. 

Claim: G is a complete multipartite graph. 

If not, G is not a union of complete graphs. Then G con­

tains an induced P3 . But, G is disconnected as G is 11 connected 

graph. Hence G is a disconnected graph containing an induced 

Ps and so G has a paw, giving a contradiction. This proves the 

claim. 
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Conversely suppose that G is a complete multipartite graph. 

Let el and e2 be any two edges in C. If they are not adjacent, 

they are opposite edges of some C4 in C since C is a complete 

multipartite graph. Hence E4 (C) is a complete graph. 0 

Theorem 3.4.2. For a connected graph C, E4 (C) is bipartite if 

and only if C is either an even cycle of length greater than five 

or a path. 

Proof. If G is either a path or an even cycle of length greater 

than five, then B1(C) is bipartite. 

Let E4(G) be a bipartite graph. Then it cannot contain odd 

cycles. But if G contains a ](1,3 or a ](3 then E4{G) contains a 

](3' E4 (C4 ) is ](4 which is not bipartite. Since E4(C) is fixed 

for Cn; n f:- 4, C cannot contain odd cycles. Hence E.1(G) is 

bipartite only for the even cycles of length greater than five or 

paths. 0 

Corollary 3.4.3. For a connected graph G, E.1(G) is a tree if 

and only if G is a path. 
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Theorem 3.4.4. Let G be a connected graph such that E4(G) 

is a threshold graph. Then ,(G) :s;; 2. 

Proof We know by Lemma 1.2.5 that E4(G) is a threshold graph 

if and only if dilw(E4(G)) = 1. Also dilw(E4(G)) ~ ,(E4(G)) 

by Lemma 1.2.4. Then the theorem follows from Theorem 3.3.1. 

o 

Notation 3.4.1. The graph obtained from I<4 by attaching two 

pendant vertices to the same vertex of I<4 is denoted by H in 

the following Theorem. 

Theorem 3.4.5. If G 2S a thTeshold graph then E4(G) is a 

threshold graph if and only if G is {m.oth, H} - fTee. 

Proof. Let G be a threshold graph. If G contains a moth graph 

or H as an induced subgraph, then £.1 (G) contains a 2K2 a.nd 

hence cannot be threshold. 

Conversely, suppose that G is a {moth, H}-free threshold 

graph. Since G is threshold, dilw( G) = 1 and hence ')'( G) = 1. 

So G must have Cl universal vertex u. 
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If at most two vertices in N(u) are of degree greater than one, 

then E4(G) cannot contain an induced 2K2 , C4 or P4. 

Now, let k ~ 3 vertices in N(u) be of degree greater than one. 

Claim: There exist three vertices Ub 'l/'2, Ua E N(u) such that 

the vertex U2 is adjacent to Ul and Ua. 

If k = 3, this claim holds true. If k > 3, let Ul, 1L2, U3 and U4 be 

four vertices of degree greater than one in N(u) such that UI is 

adjacent to U2 and Ua is adjacent to U4. Since G is threshold, 

it cannot contain an induced 2K2 and hence U3 or U4 must be 

adjacent to Ul or 1.t2· Let?L3 be adjacent to Ul' Then 'l/'2, 'l/'l! U3, U4 

forms an induced P4 which is not possible since G is threshold. 

In this case, if U4 is adjacent to U2, then G contains an induced 

C4 which is again not possible. Hence the claim. 

Further, if Ul and U3 are adjacent, the vertex u can have at most 

one more neighbor since G is H-free. In this case also E4(G) is 

threshold since it is {2K2' C4 , P4 }-free. On the other hand if Ul 

and Ua are not adjacent, then since G is moth-free, the vertex u 

can have at most one more neighbor. In this case also B-1 (G) is 

threshold. 0 

Note: If G is a connected graph such that £"1 (G) is a cograph, 
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then -y(G) ~ 4. This follows from Lemma 1.3.3 and Theorem 

3.3.1. 

Theorem 3.4.6. Let G be a connected graph. Then E4(G) is a 

weakly geodetic graph if and only if G is {paw, 4 -pan} -free. 

Proof· If G contains a paw in which C3 = Ul, U2, Us and a is a 

pendant vertex attached to Ul, then in E4(G), d(aub U2U3) = 2, 

but they have two common neighbors UlU2 and UlUS. Similarly 

if G contains a 4-pan in which C4 = Ul, U2, U3, U4 and a is a 

pendant vertex attached to Ul, then in E4(G), d(mLl' U31/'4) = 2, 

but they have two neighbors Ul1/'2 and 1tl U4. 

Conversely, suppose that G is a {paw, 4-pan} free graph. If 

G is an acyclic graph, there exists a unique shortest path joining 

any two vertices in E4(G). Thus E4(G) is weakly geodetic. 

Next, suppose that G contains cycles. 

If g(G) = 3 then G contains a C3 with vertices 1t1, 1t2, U3. 

Claim: G is a cograph. 

Suppose that G contains an induced P4 = VI, V2, V3, V4. Let ltl i= 

VI' Consider a shortest path 1/,1,0.1,0.2, ... , ak, Vl joining 'lLl and 
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Vt. Since G is paw free, al must be adjacent to at least one 

more Ui, i = 2,3. Proceeding like this, VI and then V2 must be 

adjacent to at least two UiS. This implies that VI and V2 must 

have a common neighbor among the UiS. Let it be Ul. Then 

VI, Ut, V2 form a C3 . Since G is paw-free, V:~ must be adjacent to 

at least one of VI and Ut. But, since VI, V2, V3, V4 is an induced 

P4, V3 must be adjacent to UI· Then VI, UI, V3 will form a C3 in 

G. Again, since G is paw-free, V4 must be adjacent to Ul. Now, 

consider VI, UI , V2 with the edge UI - V4. Since G is paw-free, V4 

must be adjacent to VIOl' V2, which is a contradiction. Thus G is 

a paw-free cograph. Thus by Theorem 3.4.1, E4(G) is complete 

and hence is weakly geodetic. 

If g(G) = 4, then G contains a C4 = UI,7L2,7/'3,.1l,t, If G = C4 , 

then EtJ.(G) = ](4. If there exists a vertex VI in G which is 

adjacent to UI, VI must be adjacent to U3 also since G is 4-pan­

free. Similarly if there exists a vertex 1)2 which is adjacent to 

U2, V2 must be adjacent to Uti.. If there exists a vertex v~ which 

is adjacent to VI. it. must be adjacent to both U2 and 11.,1. Hence 

G is a complete bipartite graph. Since q(G) = 4, G is paw-free. 

Again by Theorem 3.4.1, E4 (G) is complete, and hence weakly 

geodetic. 
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Finally, Let g(G) = k, k > 4. Let Ut, U2, U3 ... , Uk be a Ck in G. 

Then E4(G) also contains a Ck. This Ck is not a part of any 

complete subgraph in E4(G) and hence b(E4(G)) ~ k. Since G 

does not contain any C4 , two vertices in E4(G) are adjacent if 

and only if the corresponding edges in G are adjacent. Thus 

E4 (G) cannot contain a b-cycle of length less than k and so 

b(E4(G)) = k where k > 4. By Lemma 1.2.8, G is weakly 

geodetic if and only if b( G) ~ 5. Thus E4 (G) is a weakly geodetic 

graph. 0 

Theorem 3.4.7. FaT a connected gmph G, E4 (G) is a geodet'ic 

graph if and only ifG 'is {C2n , n > 2, 4-pan, (2n -i)-pan; n > 1}­

free. 

Proof. Let G be a geodetic graph. If G contains a 4-pan, there 

exists more than one shortest path joining two vertices in E4 ( G) 

as proved earlier. If G contains a C2n = Ul! U2 ... , 11,2n, then UtU2 

and Un+l11,n+2 in E4(G) are connected by more than one shortest 

paths and hence E4 (G) is not geodetic. If G contains a (2n - 1)­

pan in which C2n - 1 = 1L1, U2 ... , 1/,271.-1 and a. is a pendant vertex 

attached to 1l1, then a.U1 and Un U n+ 1 in E4 (G) are connected by 

more than one shortest path and hence E,j (G) is not geodet.ic. 
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Conversely, assume that G is {4-pan, C2n , (2n - l)-pan}­

free. If G is an acyclic graph there exists a unique shortest path 

joining any two vertices in E4 (G) and hence is geodetic. So 

consider the graphs G containing cycles. 

Let g(G) = 3. Since G is paw-free, E4(G) is complete and hence 

is geodetic. If g(G) = 4, E.t(G) is complete since G is 4-pan-free 

and thus geodetic. If g( G) = 2n - 1, n > 2, then G contains 

a C2n - 1 = U}, U2 ... , U2T1-1. If G = C271- 1 , then E4(G) = C2n- 1 

and hence geodetic. If a is a vertex attached to Ul, since G is 

(2n - 1)-pan-free, a must be adjacent to at least one more Ui. 

But this is impossible since g( G) = 2n - 1. Since G is C2n-free, 

g( G) =I- 2n, n > 2. Hence in all the ca.ses, it follows that G is 

geodetic. 0 

Theorem 3.4.8. If G is a connected graph, then E4(G) is a 

block graph if and only if G is {paUl, 4-pan, Cn; n ~ 5}-free. 

Proof. Let G be a block graph. If G cont.a.ins a paw in which 

C3 = U}, U2, Ua and a is the pendant vertex adjacent to Ul, then 

E4 (G) contains a 0,1 = aUt, 'U] 1£2,1£211:3 ,UaV,l which is not a part 

of any complet.e subgraph. Thus b( Et! (G» :::; 4. Similarly if 
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G contains a 4-pan, in which C4 = U1, U2, U3, U4 and a is a 

pendant vertex adjacent to U1, then E4(G) contains a C4 = 

aUl, U111'2, U3U4, U4Ul which is not a part of any complete sub­

graph and hence b(E4(G)) ~ 4. If G contains a Cn, n > 4, then 

E4(G) also contains a Cn , n > 4. This Cn forms a b-cyde and 

hence b( E4 ( G)) ~ n and hence E4 (G) is not a block graph. 

Conversely, suppose that G is {paw, 4-pan, Cn; n > 4}-free. 

If G is a.n acyclic graph, then E4 (G) cannot contain a b-cycle and 

hence is a block graph. Now, consider the graphs G containing 

cycles. Since G is Cm n ~ 5-frce, g(G) = 3 or 4. But since G is 

{paw, 4-pan}-free, E4(G) is complete as proved earlier and thus 

is a block graph. 0 
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Figure 3.4.1 

Theorem 3.4.9. IfG is a connected split graph, then E4(G) is 

a split graph if and only if G does not contain any of the graphs 

shown 'in Fig'I.LTe 3.4.1 as ind'uced ,crubgm,ph8. 

Proof. Let both G and E4(G) be split graphs. Then by Lemma 

1.2.9, both G and E4(G) cannot contain induced {2K2' C4 } and 

no C5 • If G contains anyone of the graphs shmvn in Figure 

3.4.1, then E4(G) contains a 2K2 which is a contradiction to the 

fact that E4 (G) is a split graph. 

Conversely, suppose t.hat G is Cl t:iplit graph which does not 

contain any of the graphs shown in Figure 3.4.1 as induced sub-
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graphs. 

Let G be a tree. Since G is a split graph, G cannot contain 

Pn , n ;::: 5 as an induced subgraph (Since 2K2 C induced P5). If 

G :: Pn , n < 5, then E4(G) is a split graph. If G is a tree other 

than P4, and if there are more vertices in G, then the additional 

vertices can be attached only to the mid vertices of P4 . If ver­

tices are attached only to a mid vertex of P4 , then E4 (G) is a 

split graph. Since G is Gl-free, vertices cannot be attached to 

both the mid vertices of P4 • If a split graph G is any tree other 

than G l in Figure 3.4.1, then E,! (G) is a split graph. 

Let G be not a tree. Since G is a split graph, G is {C4 , C5 } 

-free. Further, since G is 2](2 - free, G is Cn ! n > 6 - free. Hence 

g(G) = 3 and c(G) = 3. Let ~J,lU2U3 be any C3 in G. If G ~ C3 , 

then E4 (G) :: C3 and hence is a split graph. So G contains 

more than these three vertices. If more vertices are attached 

to a unique vertex of the C3 , then E4 (G) is a split graph. If a 

vertex each is attached to any two vertices of the C3 ! then also 

E4(G) is a split graph. Since G is {G2 , G;{, G4 } - free, the only 

case remaining is attaching a single vertex to each of the UiS. 

Then also E4 (G) is a split graph. Hence the proof. 0 



Chapter 4 

Dynamics of P3 (G) and 

Graph dynamics deals with the study of convergence, diver-

gence, fixedness, periodicity etc of graph operators [66]. The 

dynamics of both P.~( G) and E4 (G) are discussed in this chapter. 

\Vc have also included some results on their touching numbers. 

Some results of this chapter are included in the following papers. 
1. :\Ianju K I\lcnon, A. Vijayakumar, Dynamics of the P3 intersection 
graph. (cormnullicated). 
2. l\Ianju K I'vlenon, A. Vijayakumar, The edge C4 graph of a graph, 
Proceedings of the fut.ernatiollal Conference on Discrete I\Iat.hematics, Ra­
rnanlljan ~'lath. Soc. Lect. Kot-cs Ser. 7 (2008), 2d5 - 248. 

07 
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4.1 Dynamics of P3(G) 

If G is the union of complete graphs, then P3 (G) = cp, the null 

graph. So we do not consider such graphs in this section. 

Lemma 4.1.1. Let G be a connected graph. If P3 (G) is not 

complete, then W(P3(G)) ~ w(G). Equality holds if and only if 

G is one of the following. 

1. G is a complete graph with two pendant vertices attached to 

any two of its distinct vertices. 

2. The graph G is as in .figure 2( a.) or 2 (b): 

Figure : 2( a) Figure: 2(b) 

Proof Let w(G) = k. So consider a Kk ~ G. Let the vertices 

of the Kk be {u}, U2, ... , Uk}. Since G is not complete, Kk C G. 

Let v E V(G) - V(K) be a vertex which is adjacent to t vc}"-

tices Ul, ~L2, ... , Ut of K k . Then the vertices of the form VUi1J.j, 

1 ~ i ~ t, t + 1 ~ j ~ k form a Kt(k-t) in P3(G). Butt(k - t) 
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~ k -1 as proved in Lemma 2.3.1. If t(k - t) = k -1, then t = 

1 or k -1. 

CaseI: t = k - 1. 

Let v be adjacent to Ul, U2, ... , Uk-l. Since P3(G) is not complete, 

there must exist more vertices in G. Consider the case when 

there exists a vertex 'W adjacent to some Ui, i = 1,2, ... , k - 1, 

but not adjacent to Uk. If W is not adjacent to v, then VUiUk ; 

i = 1,2, ... , k - 1, WUiV and WUiUk will form a Kk+1 in P3(G). 

If w is adjacent to v, then since v is adjacent to k - 1 vertices 

of K k , 'W can be adjacent to at most k - 2 vert.ices of K k . If W 

is not adjacent to V,k-l, then VUiUk ; i = 1,2, ... ,k -1, WVUk-l 

and WUiUk, i = 1, 2 ... k - 2 will form at least et K k+1 in P3(G). 

Similarly if W if:; adjacent to Uk, we can find at least a K k+1 in 

P3(G). 

Therefore consider the case when such a w does not exist. Since 

P3 (G) is not complete, the vertex v must have a neighbor x hav­

ing an induced P3 which is independent of the UiS and v. Then 

V'Il'iU,k;i = 1,2, ... k -1 and XVUi; i = 1, 2 ... k - 1 will form at least 

a K k+1 in P3(G). Thus in this case, w(P:{(G)) ~ w(G) + 1. 

Case2: t = 1. 
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Let v be adjacent to Ul alone. Since P3(G) is not complete, 

there must exist an induced P3 which is independent of Ul and 

v. Let there exist w adjacent to some UiS. If w is also adjacent 

to Ul, then there exists at least a J( k+1 in P3 ( G). If w is adj a­

cent to more than one vertex of K k , then also at least a Kk+l 

is contained in P3 ( G). If w is adj acent to exactly one Ui, i =1= 1, 

then W(P3(G») = k except when k = 3 [But when k = 3, P3(G) 

is complete]. This is the graph mentioned in 1 of the statement. 

Now, if v or w has a neighbor, then W(P3(G)) > k. If more than 

two vertices are adjacent to the v.iS, then also W(P3(G)) > k. 

So consider the case when 'U.iS have no neighbor other than v. 

Since P3 (G) is not complete, v must have Cl ncighbor x having 

an induced P3 consisting of x but none of v or the UiS. In this 

case also we can find at least a Kk+l in P3(G). 

If t(k - t) = k, then we get k = 4 and t = 2. So let v be 

adjacent to Ul and U2. Since P:i(G) is not complete, it must 

contain more vertices. If there exists a vertex w which is adja­

cent to v and if w is not adj acent to '1.1'1 or U2, then w ( P'3 ( G)) > 4. 

So consider the case when 11) is adjacent with 11, U1, 1J.2 (w ca.n 
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be adjacent only to these two vertices of K4)]. Then the graph 

is the graph shown in Figure: 2(a) of the Lemma. 

For the graph G in Figure: 2(a), w(P3(G)) = w(G) = 4. Ifwe 

join one more vertex to this graph, then W(P3(G)) > w(G). Next 

consider the case when w is not adjacent to v. Then W(P3(G)) 

> w(G) except when w is adjacent to both U3 and U4. Then the 

graph is the graph shown in Figure : 2(b) of the Lemma. 

For the graph G in Figure: 2(b), W(P3(G)) = w(G). As 

in the above case, if this graph contains more vertices, then 

W(P3(G)) > w(G). Hence the lemma is proved. o 

Theorem 4.1.2. There are no P3-periodic gmphs. 

Proof. If a graph G is P3-fixed, then W(P3(G)) = w(G). From 

Lemma 4.1.1, W(P3(G)) = w(G) only for the above three types of 

graph!:). But, none of them are fixed ulHler p;~. Thus there does 

not exist any graph with period one. Again, from Lemma 4.1.1: 

w(P}(G)) > w(G). Hence ~f(G) =f Pa(G) for any n > 1. 0 

Remark 4.1.1. Since 1 - periodic graphs are fixed, it follows 
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that there does not exist any P3 - fixed graphs. 

Theorem 4.1.3. If a graph G is P3 -converyent , then it is 

P;(G)-complete for some n;;:;: 1. 

Pmof. Let G be a P3-convergent graph. If G is none of the three 

graphs mentioned in Lemma 4.1.1, then w( P3 (G» > w( G). Thus 

the clique size of the iterated graphs goes on increasing. So if G 

converges, it converges to some complete graph. 

If G is one among the three graphs mentioned in Lemma 4.1.1, 

then by Theorem 4.1.2 Pa(G) =f G and w(Pi(G» > w(G). This 

indicates that in both the cases, the clique size goes on increas­

ing. Also we know that if P:.f (G) is a complete graph, then 

p;+l(G) = cjJ. Hence if G converges, it converges to some com­

plete graph. 0 

Note: By the Theorem 4.1.3, it follows that all the Prconvergent 

graphs are P3- mortal graphs . 

The following seems to be an interesting open problem. 

Problem: Are there any P::!-divergent graphs? 
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4.2 Dynamics of E4(G) 

In this section we study the dynamical properties of the edge C4 

graph of a graph. 

Theorem 4.2.1. A connected graph G is E4-convergent if and 

only ifG is Pnl K I ,3 or Cn(n =1= 4). 

Proof. The paths Pn converge to 4J since E~(Pn) = 4J. For [{1,3, 

E4(K1,3) = [{3, E'4(KI,3) = [{3, for n > 1 and hence K I,3 con­

verges to [{3. All cycles except C4 are E4-fixed. 

If G contains a vertex of degree > :3 , then E.l (G) contains 

Kt!. Then KG ~ El(G), Kl5 ~ E,1(G),I<]Os ~ E,1(G) and so 

on. Thus in the subsequent iterations the clique size goes on 

increasing and hence G diverges. So if G is E4-convergent, then 

~(G) ~ 3. 

If G is a tree which is neither Pr! nor [{I,3, then ]{4 is contained 

in at least the third iterated graph and hence G cannot converge. 

Next, consider the graphs \vhich are not trees. If G is not a cycle, 

then G contains a cycle with a pendant edge as a ::lubgraph (need 

not be induced). Then K4 is a subgraph at least in the i:iecond 
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iteration and hence in the subsequent iterations the clique size 

will go on increasing and hence cannot converge. Also, C4 is not 

convergent since E4 (C4 ) = K4 and in the subsequent iterations, 

the clique size goes on increasing. o 

Corollary 4.2.2. A connected gmph G is E4 -periodic if and 

only 'if G :: Cn, n -::j:. 4. The cycles Cn, n =14 have period one. 

Proof. A graph G is convergent if and only if G is either peri­

odic or there is some positive integer n with E/'(G) periodic. 

But from Theorem 4.2.1, the only E4 - convergent graphs are 

Pn , K l ,3, Cn; n =1= 4. But Pn converges to the Ilull graph and K l ,3 

converges to K 3 . So it is easy to verify that the only periodic 

graphs are the cycles Cn , n =1= 4 and they have period one. 0 

Corollary 4.2.3. The transition number t{Pn) = n, t (KI,a) -

1 and fOT n =1= 4, t (Cn )= O. 

Proof. The transition with respect to E4 of a graph G is zero 

if G is periodic and the smallest number n such that E'4( G) is 

periodic. E4 (Pn) = Pn- l , E~(Pn) = <I> and hence t(Pn) = n. 

E4(K1,3) = K 3 , Ef(Ku) = E4 (K3 ) = K 3 · Thus t (Kl,;~) = 1. 

Since er" n -::j:. 4 an~ pcriodic~ for n -::j:. 4, t (Cn ) = O. 0 
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Corollary 4.2.4. For a connected graph G, E4(G) is a mortal 

graph if and only if G is a path. 

Theorem 4.2.5. IfG is a tree then for E4(G), the only semibasins 

are the paths and the only basins are Pn , n ~ 4. 

Proof Let G be a tree. If G contains a f{1,3, then E4(G) contains 

a K3 and hence E4(G) i G. Also for any Pn , E4 (Pn) = Pn-I. 

Hence, among the trees the only semi basins are the paths. 

If G ~ Pn , n ~ 5, then ~(GC) = n - 2. If Pn, = VI, V2,· .. ·, Vn" 

then in E4(Pr~)' d(VIVn) is at least (n - :3) + (n - 3) = 2n - 3. 

For n ~ 5, 2n - 6 > n - 2. So E4(P~) i P:~. If G ~ PTl; TI. < 5, 

then E4 (P:;) <;; P~. 0 

4.3 The touching number 

In this section, we consider those graphs G for which the touch­

ing Humber is defined. 

Theorem 4.3.1. For any gnLph G, t k (P3(G)) ~ 8vtdG), k ~ 4 

and t:~(P3( G)) ~ 9 vtk( G) for any k > :3. 
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Proof Let x}, X2, .•. , Xk, Xl be an induced Ck in G. Let y be a 

touching vertex of this cycle which is adjacent to Xi alone. Then 

XIX2X3, :r2X3X4, •.. , Xk-IXkX}, XkXl, X2 forms a Ck in P3(G). Also 

YXixH 1 and yXiXi-1 are two vertices in P3 (G) such that YXixH 1 is 

adjacent to XixHIXH2, Xi-lXi·Ti+}, Xi-2Xi-lXi, Xi+lXH2XH3 and 

yXiXi-1 are all adjacent to XiXHIXH2, Xi-lXiXH}, Xi-2Xi-l;Ei and 

Xi-3Xi-2Xi-l' All these eight edges are touching edges to the Ck 

in P3(G). Hence tk(P.'l(G)) ~ 8 vtk(G), k ~ 4. 

Again, let Ck = Xl, X2, ... , Xk, Xl be an induced Ck in G. If 

Y is a touching vertex of the cycle which touches Xi alone, then 

YXiXi+l, ;Ei-lXiXi+l and yXiXi-l induce a. C3 in Pa(C). Then 

XiXi+lXi+2, Xi-2Xi-lXi and Xi+lXi+2Xi+:~ are all adjacent to all 

the three vertices of the C3 and hence the result. o 

Note: The bounds in the above theorem a.re strict. 

If G is 4 - pan, then, P'3(G) = KG' But, vt4 (G) = 1; t4(P3 (G)) 

= 8; t 3(P3 (C)) = 9. 

Theorem 4.3.2. For any graph C, tn(E4(G)) ~ 2 tn(G). PU,T­

theT ~f G conta1:ns C1 as a subgmph where either an edge or two 
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consecutive edges of 0 4 are the edges of the On which determines 

the touching number, then t n(E4(G) > 2 tn(G) . 

P1'00j. Let a On in G be :£1, X2,· •. ,::r;n, Xl. Then XIX2, X2X3, ... , 

XnXl is a On in E4(G). If yXi is a touching edge in G, then E4(G) 

contains two touching edges say yXi - XiXi+l and yXi - Xi-lXi' 

Thus t n(E4(G)) ;:: 2 tn(G). 

Let 0 4 = o.lo.2o.:{o.4 be a subgraph of G. Further, suppose that 

the edge a30.4 is a touching edge in G . Then o.1a4, a2o.:{, 0.10.2 are 

touching edges in E4(G). Hence tll(E4(G)) > 2 t7l(G). The proof 

is similar for the ca,se \vhen a.ny two consecutive edges of Cl are 

the edges of the Cn mentioned above. 0 

Note: The bound in the above theorem is strict. 

For example, if G is k - pan, k =I 4. Then tk (G) - 1 and 

tk(E.1(G)) = 2. 



Chapter 5 

The wide diameter and 

diameter variability 

An interconnection net.work connects the processors of a par-

allel and distributed system. This can always be represented 

by a graph, where each vertex represents a processor and each 

edge represents a vertex to vertex communication link. For rout-

ing problems in interconnection networks it is important to find 

short containers between any t.wo vertices, since the w-wide di-

Some results of t.his chapter are includeo in t.he following paper. 
~Ianjll K. l'.lellOIl, D'l.Jliella Fcrrero, A. Vijayakllmar, The wide diameter 
and diameter va.riability of some graphs (in prepa.ration). 

lOa 
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ameter tells us the maximum communication delay when there 

are up to w - 1 faulty nodes in a network modelled by a graph 

G. This is a consequence of Menger's Theorem. In fact, the 

maximum integer w such that there exists a non empty con­

tainer of width w between every pair of distinct vertices is the 

vertex connectivity 1\,( G). Indeed it is only interesting to study 

l~ w ~ I\,(G). In networks, communication is the critical issue 

and the diameter of the graph is a measure of the transmission. 

In fact the diameter of a graph can be affected by adding or 

deleting edges. In [33], Graham and Harary studied whether 

the diameter of hypercubes changed or not on increasing or de­

creasing the number of edges. The diameter variability arising 

from the change of edges of a graph G is defined in [77J. 

5.1 The w-wide diameter 

In this section we study the w-wide diameter of some graph 

operators such as P3 ( G), E4 (G) and L( G). We also include 

results on the w-v,"ide diameter of the join of two graphs. 

Lemma 5.1.1. If there eJ;ists a container of width 'W between 
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any two vertices in G, then there exists a container of width w 

between any two vertices in P3(G). 

Proof. Let there exists a container of width w between any two 

vertices in G. Let V,1 U2U3 and VI V2V3 be any two vertices in 

P3(G). Then in C, between any Ui and Vj, i,j E {I, 2, 3}, there 

exists 71J internally vertex disjoint paths. 

Consider Ui and Vj, i,j E {l, 2, 3} where Ui and Vj are non ad­

jacent vertices in C. 

Claim: Corresponding to the vertex disjoint paths in CW(Uil v.i), 

there exist vertex disjoint paths connecting Ul U2U3 and VI V2V3 

in P..,,( C). 

For, if Ui - VH1 - Vj E Cw ('Ui , '0.7), then Ul'll,2U3 -V,iVj+1'V,i - 1)(V2V3 

is a path joining UIU2U3 and 1)1V2'03 in P3(C). If Ui - UH1 - Vj E 

C'tllUi, v.i), then UIU2U3 - UiUi+1'O,1 - V1V2V3 is a path joining 

UIU2U3 and V1V2V3 in P3(C). Let P = Ui - a1 - a2 - a3 -

... - ak-1 - '0,1 E Cw(V,i, Vj). If P is an induced path then 

UIU2U3 - Uj,al(12 - ... - ak-2Q.k-lVj - V1V2'03 is a pat.h joining 

V,jU2U,3 and 'lhV2V3 in P3(G). If P is not an induced path, 

then consider the induced path Hi, ht, b2 , ••• , bTT" Vj joining Ui and 

Vj where bI ) b2 , ... , bm E {aI, 0.2, ... , ak-d. Then 'Ul7L2H3, Ui bl b2, 
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bl~ba, ... ,bm - Ibm Vj, VI V2V3 E Cw(UIU2Ua, VIV2Va). Since we are 

considering internally vertex disjoint paths between Ui and Vj in 

Cw ( Ui, Vj), all the corresponding paths joining UI U2U3 and VI V2V3 

in P3 (G) are internally vertex disjoint. 

Now, consider the case when each Ui is adjacent to each Vj' 

Then as in the above argument, we can find vertex disjoint paths 

joining UIU2U3 and VIV2V3 in P3(G) corresponding to the vertex 

Theorem 5.1.2. For a connected gmph G with w > 1, 

Dw(P3(G» :::; r(Dw(G) + 1)/21 if Dw(G) is even, and 

Dw(P3(G» :::; rDw(G)/21 + 1 if Dw(G) is odd. 

o 

Proof. Let Dw(G) = l. Then there exists a container of width w 

between any two vertices u and V in G which is of length I. Let 

Ul U27J,3 and VI V2V3 be any two vertices in Pa ( G). Then by Lemma 

5.1.1, corresponding to any Cw(Ui, Vj); i,j E {I, 2, 3} there exists 

a Cw(Ul'U.2U3,VIV2V:~), Consider the Cw(Ui,Vj) of length l. Let 

ui,al,a2, ... ,al-l,Vj be a path of length I in Cw(tt.i,v,i)' This 

corresponds to a path of maximum length in Cw ( 1L11l2U:~, VIV2Va). 

Clearly the maximum length occurs when 71;, 0.,,0,2, ... ,0.1-1, Vj 

in Cw(Ui, Vj) is an induced path. Then U1'I1'21J'3, 'lLiata2, 0,2a3a4, 
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a4a5a6, ••• , ak-2ak-lVj, VIV2V3 in CW ('UI'U2'U3, VIV2V3) is of length 

r(l + 1)/21 if l is even and P/21 + 1 if l is odd. Hence the 

~~. 0 

Lemma 5.1.3. If there exists a container of width w between 

any two vertices in C, then there exists a container of width w 

between any two vertices in E4(C). 

Pmoj. Let there exists a container of width w between any two 

vertices in C. Let el = Ul VI and e2 = U2V2 be any two vertices 

in E4(C) and let 'Ul =I- 'U2· Since 'U1 and 'U2 are any two ver­

tices in C, there exists a container of width 10 between them. 

Consider t.hat container Cw (UI,V'2). If 'UI - 'U2 is a member of 

that container: then el, 'Ul V,2, e2 is a path joining el and e2 in 

E.i(G). If 'Ul - VI -1L2 E Cw ('lJ'1,U2), then el,VI'U2,e2 is a path 

joining el and e2 in E4(G). If 'Ul - a1 - a2 - •.• - ak - V2 E 

Cw (U},U2), then C},u}o,},o,la2, ... ,akv2,e2 is a path joining e1 

and e2 in E4 (G). Thus corresponding to the 11) internally dis­

joint paths in C~I!('Ul' 'U2), there exist at least w internally vertex 

disjoint paths between el and e2. Hence the result. 0 

Theorem 5.1.4. For' a connected graph G 'With w > 1. Dw(E4(G)) 

~ Dw(G) + 1. 
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Proof Let Dw(G) = k. Then there exists a Cw(u, v) of length 

k between any two vertices u, v E V (G). Let el = UI VI and 

e2 = U2V2 be any two vertices in E4(G) and let UI -=I U2. Then 

by the Lemma 5.1.3, corresponding to the container Cw(UI,U2) 

in G, there exists C.w(el' e2) in E4(G). Consider the path of 

length k in Cw(UI, U2). Let it be Ul - al - a2 - ... - ak-l - U2. 

Then correspondingly there exists el, UI al, al a2, ... , ak-l U2, e2 in 

Cw(e}, e2) which is a path of length k + 1. o 

Corollary 5.1.5. For a connected graph G with 10 > 1, Dw(L(G) 

~ Dw(G) + 1. 

Theorem 5.1.6. If GI = (n), ml) and G2 = (n21 m2) are any 

two connected graphs having conta'iners of width 1.lh and W2 re­

spectively between any two of its vertices, then there exists con­

tainers of width 1 ~ W ~ Minimum{wl + n2, W2 + n}, 8(G1 ) + 

b(G2 )} between any two vertices of GI V G2 -

Proof Let u and v be any two vertices in G 1- Then the container 

of width W1 between U and v in G I together with the 11, - v paths 

of the form 11, - Wi - v, where Wi E G'2 give w) + n2 internally 

disjoint paths between 11, and v in Gl V G2 - Similarly, if 1.t and 

v are any two vertices in G2 then there exists W2 + Tt, int.erna.lly 



5.2. The diameter variability of some graph operators 115 

disjoint paths between u and v in G l V G2• Now let 11, E G l 

and v E G2 • Then in G l V G21 there exist paths of the form 

u, - 11,1 - v, where 11,1 is a neighbor of 11, in G I and 11, - VI - v, where 

VI is a neighbor of v in G2 . Thus in this case there exists at least 

8(G1 ) + 8(G2 ) paths between 11, and v. Hence the proof. 0 

Remark 5.1.1. For any two connected graphs Gl and G2 with 

at least two vertices, D2 ( G l V G2 ) = 2. 

5.2 The diameter variability of some 

graph operators 

In this section, the diameter variability of Pa (G), £4 (G) and 

L( G) are studied. 

Theorem 5.2.1. For a connected graph G, 8(P:l(G)) ~ c5(G). 

The equality is attained if and only if G is J( k - { two 'independent 

edges} for some k > 3. 

Proof. Let U,lU2U,3 be any vertex in P3(G). Then 'Ul'U211,3 will have 

the minimum degree ,,,,hen all the three '1.4'8 in G have minimum 
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degree 6(G) and further more the neighbors of Ul and U3 are ex­

actly the same and all the neighbors of U2 are from the neighbors 

of Ul and U3· Let the neighbors of Ul and U3 be w}, W2, ... , Wt5(G)-l 

and let the neighbors of U2 be Wl, W2, ... , Wt5(G)-2' Further the in­

duced 3-paths in G will be the minimum if and only if Wl, W2, ••. , 

W6(G)-1 form a complete graph. Then, in P3 (G), the only vertices 

adjacent to UIU2U3 are WtI(G)-lUIU2, Wt5(G)-lU3U2, Wt5(G)-lWiU2; i = 

1,2, ... , 8(G) - 2. Thus 8(P3(G)) ;;:: 8(G). 

Further 6 (P3 ( G)) = 6 (G) only if the vertices of the graph are 1.ll , 

U2, U3, W}, W2, ... , WJ(G)-l as explained earlier. Then the graph 

is clearly J( k - {two independent edges} for some k > 3. 0 

Lemrna 5.2.2. For any connected graph G, K'(P3 (G)) ~ 6(P3(G)) 

~ ~(~l(G)) ~ 3 ~2(G)-7~(G)+4+3(~(G)-1)!-(~(G)-2)!. 

Proof. Both the inequalities on the left are obvious. 

Let UIU2'U'3 be·a vertex in P3(G). Then UIU2'IL3 has the maximum 

degree in P3(G) when Ul, U2, 1t3 and all their neighbors in G have 

degree ~(G). Then d(1J.I1J.21J.3) ~ (~(G)-l)(~(G)-l)+(~(G)­

I)! + (~(G) - 2)(~(G) - 2)! + (~(G) - 2)(~(G) -1) + (~(G)­

l)(~(G) - 1) + (~(G) - i)! 

~ 2(,6.(G)-1)2+2(~(G) -1)~ +(~(G) -2)(~(G) -2)! + (~(G)-
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2)(~(G) - 1) 

~ 3~2(G) - 7~(G) + 4 + 3(~(G) - I)! - (~(G) - 2)1. 0 

Note: If G = C7 , the bounds in the above lemma are strict and 

the common value is four. 

Theorem 5.2.3. For any connected graph G, D+ i (P3 (G)) ~ 

3~2(G) - 76(G) + 4 + 3(~(G) - I)! - (6(G) - 2)!, for any i. 

Proof. The proof follows from Lemmas 1.2.10 and 5.2.2. 0 

Lemma 5.2.4. For any graph G, 2()(G) - 2 ~ b(E4(G» ~ 

~(E4(G» ~ ~2(G) - 1. 

Proof. A vertex e = uv in E4 (G) has minimum degree when 

both u and v in G have minimum degree beG). Then, the 

8(G) - 1 edges incident on u and the beG) - 1 edges incident 

on v form 2b"(G) - 2 neighbors of e in E4(G), and hence the left 

inequality holds. 

Now, the maximum degree of a vertex e =uv in E4(G) occurs 

when both u and v in G have the maximum degree ~(G) and 
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any edge incident on u and any edge incident on v are opposite 

edges of some C4 in G. The 6( G) -1 edges incident on u [among 

the 6(G) neighbors, u - v is omitted] and the 6(G) - 1 edges 

incident on v forms 26(G) - 2 neighbors of e in E,l(G). Now, 

the maximum number of edges opposite to e in some C4 of G 

is (~(G) - 1)2. Thus 6(E4(G)) ~ 2~(G) - 2 + (6(G) - 1)2 = 

6 2 (G) - 1. 

o 

Theorem 5.2.5. For any connected gmph G, D+i(E4(G)) ~ 

~2(G) - 1 for any i. 

P7'00j. For any connected graph G, D+i(G) ~ fi:'(G) ~ 6(G). 

Hence the proof follows from Lemmas 1.2.10 and 5.2.3. 0 

Theorem 5.2.6. FOT' any connected gmph G, D+i(£(G)) ~ 

2(6(G) - 1). 

Pr-ooj. For a connected graph C, 6(£(C)) ~ 2(6(G)-1). Hence 

the proof follows from Lemma 1.2.10. 0 
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5.3 The diameter variability of some 

graph operations 

In this section, the diameter variability of the graph operations, 

'join' and 'corona' of t,vo graphs a.re studied. 

Theorem 5.3.1. Let Gl = (n}, mt) and G2 = (n2' m2) be two 

connected graphs such that at least one of them is not a complete 

graph. Then D-1(G1 VG2 ) = nl(nl -1)/2-ml +n2(n2-1)/2-

Proof. If at least one of GI : G2 is Hot complete: then diam (Gl V 

G2 ) = 2. So to decrease diarn(G1 V G2 ) by one, wc have to add 

edges till both G1 and G2 become complete graphs. So to make 

G1 a complete graph, we have to add "11.1 (nl-l)/2-ml edges and 

to make G2 a complete graph, we have to add n2(n2 -1)/2 - m2 

edges. 0 

Theorem 5.3.2. If at least one of the two connected graphs 

G1 = (n), ml) and G2 = (n2' m'2) is not a complete graph, 

D+O(G} V G2) ~ ml + 7n2. 

Proof. If at least one of Gl and G2 is not a complete graph, t.hen 
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diam(G1 V G2 ) = 2. Even if we delete all the edges of G l and 

G2 in G l V G2 , the diameter of G l V G2 remain unchanged and 

thus the result. o 

Theorem 5.3.3. If both Gl = (nl,ml) and G2 = (n2,m2) are 

graphs having diameter more than two, then D+1(G1 V G2) ~ 

minimum{n},n2}' If diam(Gl ) ~ 2 and diam(G2 ) ;;: 2, then 

D+l(G1 V G2 ) ~ nl. If diam(Gl ) ~ 2 and diam(G2 ) = 2, then 

D+1(G1 V G2 ) ~ nl(L\(G2 ) + 1). Finally if both Gl and G2 are 

complete graphs, then D+1(G I V G2) = 1. 

?mof If both G l and G'2 are not complete graphs, then diam(G1 V 

G2 ) = 2. 

Let both GI = (n}, ml) and G2 = (n2' m2) have diame­

ter greater than two. Ll~t minimum{ nIl nd = nl' Consider 

a vertex u in G2 such that there exists a vertex v in G2 with 

dG2 (u, v) > 2. In G l V G21 if we delete all the edges of the form 

1l - 1/, U' E V(G1 ) then dGIVG2(U, v) is three and hence the cli­

ameter of G l V G2 is increa..scd by at least one. 
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Now let diam(Gd :::;:; 2 and diam(G2) ~ 2. Consider the 

vertices u and v in G2 such that dC2 (u, v) > 2. In G l V G2 , if 

we delete all the nl edges of the form u - u' where u' E V(Gl ), 

then dCI VC2 (u, v) = 3 and hence the diameter of G l V G2 will be 

increased by at least one. 

Let diam(G1 ) ~ 2 and diam(G2 ) = 2. Choose a vertex u in 

G2 having the minimum degree and with e(u) = 2. Let v be the 

vertex in C2 with dC2 (u, v) = 2. Let the neighbors of u in C 2 be 

Wl, 'W2, ... , Wk. In Gl V C2 delete all the edges of the form x - Wi 

and ;:r; - u where :1; E Cl. Then dCIVG2(U, x) = 3 and hence the 

diameter of Cl V C2 will be increased by at least one. Since the 

degree of u is at most 6.(C2 ): the result follows. 

Finally assume that both Cl and C2 are complete graphs. 

Then diam( Cl vG2 ) = 1. So if we delete anyone edge in Cl VG2 , 

the diameter will be increased by one and hence the result. 0 

Theorem 5.3.4. FOT any two connected g'mph, Cl = (n}, mI) 

and C 2 = (U2, Tn2) with nI, Tl2 > 1, 

1. D--- 1(G1 0 G2) ~ nln2(n,n2 - 1)/2 - Tllm2 
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Proof. For any two graph Cl - (n}, rnd and C2 - (n2' m2), 

Cl 0 C2 = diam(C1 ) + 2. 

1. In Cl 0 C2 , if we make all the copies of C2 a complete graph 

then the diameter of Cl 0 C2 will decrease by one. For that we 

have to add nln2(njn2 - 1)/2 - nlm2 edges. 

2. In Cl 0 C2 , even if we delete all the edges in all the nl 

copies of C2 , the diameter of Cl 0 G2 remains unchanged and 

hence the result. 

3. Let Ui and Uj be the ith and lh vertices of Cl with diarn( Cl) = 

d(Ui, 'Uj). Suppose that 'Uil and U.il are two vertices in the ith 

and lh copies of C2 respectively. In Cl 0 G2 , if we delete an 

edge 'll'i - Uil then d(Uil, Ujl) = diarn(G l ) + 3 and hence the 

result. o 
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Theorem 5.3.5. If both Cl and C2 are complete graphs then 

D-2(C1 oG2 ) = (nl +nln2)(nl +nln2 -1)/2- 1nl -nlm2 -nln2. 

Proof. If both Gl and G2 are complete graphs then diam( Cl 0 

G2 ) = 3. 

So to decrease diameter by at least two, any two vertices in 

Cl oG2 must he adjacent. There are nl +nln2 vertices in Gl oG2 

and there are 1nl + nlm2 + nrn2 edges in Cl 0 C2. Thus the 

theorem. o 
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List of problems 

1. Characterize P3 intersection graphs. 

2. Characterize non-isomorphic graphs having isomorphic p:.{ 

intersection graphs. 

3. If G is a Pa intersection graph, expla.in a. method to find 

H so that P3 (H) = G. 

4. Characterize all self complementary P.3 intersection graphs. 

5. Cha.racterizf~ graphs for which the P3 intersection graph 

belongs to some special classes of graphs such as planar 

graphs, perfect graphs, distance hereditary graphs, ptole­

maic graphs, split graphs, cographs etc. 

6. Characterize P3 convergent graphs. 

7. Are there any P3 divergent graphs? 

8. Characterize £.1 ( G). 

9. Characterize nOIl-isomorphic graphs having isomorphic edge 

C1 graphs. 
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10. Find non isomorphic graphs of the same order having iso­

morphic edge C4 graphs. 

11. Characterize the graphs G for which diam(E4(G)) = diam 

(G) - 1, diam(E4{G)) = diam(G) and diam{E4(G)) = 

dia:m( C) + 1. Alsb characterize the graphs C for which 

rad(E4(G)) = rad(C) - 1, rad(E4(C)) = rad(C), and 

rad(E4(G)) = rad(C) + 1. 

12. For any graph C, find a super graph H such that C(H) = 

C and C(E~(H)) = E~(G), i ~ 2. 

13. Relationships between the k-path graph and the P:.l inter­

section graph. 

14. The w- wide diameter and the diameter variability of other 

graph operators and graph operations. 

15. The wide diameter Dw(P3(G)) for x;(G) < w ~ K(P:.i(G)). 
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List of symbols 

rxl 

LxJ 
b(G) 

c(G) 

C(G) 

Cw('U, v) 

d(v) 

diam(G) 

d'ilw(G) 

d( 1/" v) or d(;(u, v) 

Dw(G) 

D-k(G) 

D+O(G) 

- Smallest integer ;;;: x 

- Greatest integer ~ x 

- Bulge of G 

- Circumference of G 

- Cent er of G 

- Cycle of length n 

- Container of width w between u and v 

- Degree of v 

- Diameter of G 

- Dilworth number of G 

- Distance bet'~,Teen 1L and v in G 

- w-wide diameter of G 

- The least number of edges 

whose addition to G decreases 

the diameter by (at least) k 

- The maximum number of edges 

whose deletion from G 

does not change the diameter 
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D+k(G) 

E or E(G) 

e(u) 

g(G) 

G:::.H 

GxH 

GvH 

GuH 

- The least number of edges 

whose deletion from G increases 

the diameter by (at least) k 

- Edge set of G 

- Eccentricity of u 

- Girth of G 

- Complement of G 

- G is isomorphic to H 

- Cartesian product of G and H 

- Join of G and H 

- Union of G and H 

Corona of G and H 

- \Veakly connected independent 

domination number 

Km,n - Complete bipartite graph where m and 

n are the cardinalitif'B of the partitions 

K n l,n2 •... ,nk - Complete multipartite graph with partite 

sets of cardinalities nI, n2, ... , rtk 

Kn - Complete graph on n vertices 

L(G) - Line graph of G 

m or rn (G) - Number of edges of G 



N[v] 

N(v) 

nG 

nor n(G) 

Pn 

- Closed neighborhood of v 

- Open neighborhood of v 

- n disjoint copies of G 

- Number of vertices of G 

- Path on n vertices 

ra.d( G) - Radius of G 

t( G) - Transition number of G 

tn ( G) - Touching number of G 

V or V(G) - Vertex set of G 

- Graph induced by V 

- Vertex touching number of G 

- Independence number of G 

- Vertex covering number of G 

- Matching number of G 

- Domination number of G 
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<V> 

vtk(G) 

n(G) 

ao(G) 

(3(G) 

I(G) 

li(G) 

It(G) 

IC(G) 

Ipr(G) 

Id(G) 

- Independence domination number of G 

- Total domination number of G 

- Connected domination number of G 

- Paired domination number of G 

- Clique domina.tion number of G 
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IW(G) - Weakly connected domination 

number of G 

,'(G) - Edge domination number of G 

,~(G) - Efficient edge dominatioIl 

number of G 

8(G) - Minimum degree of vertices in G 

~(G) - Maximum degree of vertices in G 

K(G) - Vertex connectivity of G 

K'(G) - Edge connectivity of G 

X(G) - Chromatic number of G 

w(G) - Clique number of G 

<I>n( G) - nth iterated graph of G under <1) 



List of Graphs 

C 
3, k 

C 
4,k 

1 

4 

Bow 

'\ 
'\ 

o b 

Paw or 3- pan 
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u3 
(

U4 0 U~_6_~O U 

U2~. 
uI uk 

k - pan 

b 

o 

S( star) 

Moth 

K - e 
4 
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mortal, 102 

periodic, 101 

Jr.:- path graph, 18 

paired 

domination number, 15 

path, 9 

paw, 10 

pendant edge, 8 

pendant vertex, 8 



146 

perfect 

graph, 6, 20 

matching, 9 

period, 19 

periodic, 19 

proper vertex coloring, 11 

radius, 10, 58, 72 

self complementary, 12 

semibasin, 19, 105 

size, 8 

spanning sllbgraph, 9 

split graph, 20, 25 

star, 12 

subdivision, 23 

subgrapb,9 

terminus, 8 

threshold grapb, 20, 25, 88 

total domination number, 15, 

79 
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trivial, 8 
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union, 23 
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vertex 
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hereditary, 11, 51 

touching number, 19 
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