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Chapter 1

Introduction

Graph theory as a mathematical discipline was initiated by the
renowned Swiss mathematician Leonhard Euler (1707 - 1783) in
his famous discussion of the Konigsberg Bridge problem entitled
‘The solution of a problem relating to the geometry of position’.
It was presented at the St.Petersberg Academy on 26th August,
1735. Unfortunately, this article of Euler, published in 1736,
remained an isolated contribution for nearly a hundred years.
However, in the middle of the nineteenth century, there was a
resurgence of interest in the area of graph theory. The natu-

ral sciences exercised their influence through investigations of
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electrical networks and models for crystals and molecular struc-
ture and theoretically, the development of formal logic led to the

study of binary relations in the form of graphs.

Today, graph theory is a branch of mathcmatics which finds
applications in many areas - anthropology, architecture, biology,
chemistry, computer science, economics, physics, psychology, so-
ciology and telecommunications, to name a few. The applica-
tions of graph theory in operations research, social science, psy-
chology and physics are detailed in C. W. Marshall [61]. J. L.
Gross and J. Yellen [34] discuss a variety of graph classes with
numerous illuminating examples which are of topological rele-
vance. The development of graph theory with its applications
to electrical networks, flows and connectivity are included in
[11] and {22]. Ramsey theory is an interesting branch of graph
theory which relates to the number theory. In [22], R.Diestel
covers all major developments in the subject. More recently,
the exciting notion of ‘Web graphs’ [6] has been finding appli-
cations in very many different areas. Such graphs are examples
of large, dynamic, distributed graphs and share many proper-

ties with several other complex graphs [64] found in a variety of
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systems ranging from social organizations to biological systems.
The best barometer to indicate the growth of interest in graph
theory is the explosion in the number of pages that Section 05:

Combinatorics occupies in the Mathematical Reviews.

Volumes have been written on the rich theory and the very
many applications of graphs. To name a few, [5], [9], [10], [32],
[34], [35], [49], [71], [78]. This thesis entitled ‘Studies on some
graph operators and related topics’ is a humble attempt
at making a small addition to the vast ocean of results in graph

theory.

‘Graph operator’ is a mapping T : G — G’ where G and G’
are families of graphs. Krausz [52] introduced the concept of
the line graph and also that of ‘graph operators’. He also gave
a characterization of line graphs. Whitney [79] showed that ev-
ery finite connected graph except C3 has at most one connected

L-root.

The study of graph operators gained increasing importance
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due to the study of its dynamics as detailed by E.Prisner [66].
The beginning of graph dynamics dates back to 1960s, with
the publication [36] by Harary and Norman, and also the three
problems of great influence posed by Ore in his monograph [65],
namely

1. Determine all graphs isomorphic to their interchange graph
(line graph).

2. When the interchange graph is given, is the original graph
uniquely determined?

3. Investigate the repcated interchange graphs.

In the graph dynamics terminology, the first problem deals
with the ‘fixedness’ and the second and third will lead to the

‘1-periodicity’ and ‘convergence’ or ‘divergence’.

The 1960s were mainly devoted to the investigation of the
line graph and the line digraph operators. Several solutions to
Ore’s problems for the line graph appeared in (8], [15], [72],
[73]. The question of periodicity was considered only for the

fixed graphs till 1970s. General periods were investigated by
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Escalante (25] and it was studied for the line digraphs by Hem-
minger [42]. The transition number was first explicitly defined

in (1].

While dealing with graph classes, a main source is the clas-
sical book by M. C. Golumbic [32]. Since then many interesting
new graph classes have been studied as discussed in detail by

A.Brandstddt, et.al. [13].

By applying graph operators also, we get some graph classes.
The line graphs, Gallai and the anti-Gallai graphs, the cycle
graphs and the edge graphs are some of the graph classes ob-
tained by choosing appropriate graph operators. In fact, the
intersection graphs form a sub collection of the graph classes
obtained by using graph operators. The intersection graph is a
very general notion in which objects are assigned to the vertices
of a graph and two distinct vertices are adjacent if the corre-
sponding objects have a non empty intersection. A variety of
well studied graph classes such as the line graphs, the clique

graphs and the block graphs are actually special types of inter-
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section graphs. J. L. Szwarcfiter has made an excellent survey
of the clique graphs [75]. The block graph [37], the square [38]

and the complement [70] are some well studied graph operators.

Several graph operators and the dynamical behavior of these

operators are extensively studied in [66].

It is interesting to study when the graph operators belong to
some special graph classes. The inclusions between graph classes
can be identified from their forbidden subgraph characteriza-
tions. The cographs, the split graphs, the threshold graphs and
the line graphs arc some of the interesting graph classes which
admit finite forbidden subgraph characterizations and the per-
fect graphs, the distance hereditary graphs, the comparability
graphs and the chordal graphs are some of the other interesting
graph classes defined by forbidding an infinite collection of in-

duced subgraphs.

While studying a graph operator, the study of its parameters

such as clique number, independence number, chromatic num-
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ber, domination number, diameter, radius, eccentricity, center
etc are important. It is quite interesting to study the relation-
ship between these parameters of G and those under graph op-

erators.

This thesis is mainly concerned with the graph operators -

the ‘P; intersection graph’ and the ‘edge C, graph’.

1.1 Basic definitions

The basic notations, terminology and definitions are from ([5],
(14}, [32], [66] and {78]) and the basic results are from {[13], [39],
[45] and [77}).

Definition 1.1.1. A graph G = (V, E) consists of a collection
of points, V called its vertices and a set of unordered pairs of
distinct vertices, E called its edges. If | V | is finite, then G is
a finite graph. The unordercd pair of vertices {u,v} € E are

called the end vertices of the edge e = {u,v}. When u and v
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are end vertices of an edge, then u and v are adjacent. If the
vertex v is an end vertex of an edge ¢, then e is incident on v.
Two edges which are incident with a common vertex are said to
be adjacent edges. The cardinality of V' is called the order of
G and the cardinality of E is called the size of G. A graph G
of order n and size m is also denoted by G = (n,m). A graph is
the null graph, denoted by ¢ if it has no vertices and trivial

if it has no edges.

Definition 1.1.2. The degree of a vertex v, denoted by d(v)
is the number of edges incident on v. A graph G is k-regular
if d(v) = k for every vertex v € V. A vertex of degree zero is
an isolated vertex and of degree one is a pendant vertex .
The edge incident on a pendant vertex is a pendant edge. A
vertex of degree n —1 is called a universal vertex . In a graph
G, the maximum degree of vertices is denoted as A(G) and the

minimum degree of vertices is denoted as §(G).

Definition 1.1.3. A vy — v, walk in a graph G is a finite list
Vg, €1, V1, €2, Va, ..., €x, Vg Of vertices and edges such that for 1 <
i < k, the edge e; has end vertices v;_; and v;. In the vy — v,
walk, vg is the origin , vy is the terminus and vy, v9, ..., vx_, are

its internal vertices . If the vertices vy, vy, ..., vx of the above
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walk are distinct, then it is called a path. A path from a vertex
u to a vertex v is called a u — v path. A path on n vertices is
denoted by P,. If the edges ey, ey, ..., e; of the walk are distinct,
it is called a trail. A graph G is Eulerian if it has a closed
trail containing all the edges. A nontrivial closed trail is called
a cycle if its origin and internal vertices are distinct. A cycle
with n vertices is denoted by C),. The length of a walk, a path
or a cycle is its number of edges. A graph containing exactly
one cycle is called a unicyclic graph. A graph is acyclic if it
does not contain cycles. The girth of G, g(G) is the length of
a shortest cycle in G. An acyclic graph has infinite girth. The

circumference of G, ¢(G) is the length of any longest cycle in

G.

Definition 1.1.4. A graph H = (V' F’) is called a subgraph
of Gif V' CV and E' C E. A subgraph H is a spanning sub-
graph if V' = V. The graph H is called an induced subgraph
of G if E’ is the collection of all edges in G which has both its
end vertices in V’. < V' > denotes the induced subgraph with
vertex set V. A spanning 1-regular graph is called a 1-factor or
perfect matching . A graph G is H-free if it does not contain

H as an induced subgraph.
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Definition 1.1.5. A graph G is connected if for every u,v € V,
there exists a u — v path. If G is not connected then it is dis-
connected. The components of G are its maximal connected

subgraphs. A connected acyclic graph is called a tree.

Definition 1.1.6. The distance between two vertices u and
v of a connected graph G, denoted by d(u,v) or dg(u,v) is the
length of a shortest u—wv path in G. The eccentricity of a vertex
u, e(u) = mazimum {d(u,v)/v € V(G)}. The radius rad(G)
and the diameter diam(G) are respectively the minimum and
the maximum of the vertex eccentricities. The center of a graph
G, C(G) is the subgraph induced by the vertices of minimum

eccentricity.

Definition 1.1.7. A chord of a cycle C is an edge not in C
whose end points lie in C. A graph G is chordal if every cycle

of length at least four in G has a chord.

Definition 1.1.8. A complete graph is a graph in which each
pair of distinct vertices is joined by an edge. A complete graph
on n vertices is denoted by K. The graph obtained by deleting
any edge of K, is denoted by K, — {e}. Kj is called a triangle

and a paw is a triangle with a pendant edge. A clique is a
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maximal complete subgraph. The size of the largest clique in
G is the clique number w(G). A clique of size k is called a

k-clique.

Definition 1.1.9. A cycle C of G is a b-cycle of G if C is not
contained in a complete subgraph of G. The bulge of G, b(G)
is the minimum length of a b-cycle in G if G contains a b-cycle

and is oo otherwise.

Definition 1.1.10. The set of all vertices adjacent to a vertex
v is called open neighborhood of v, denoted by N(v). The
closed neighborhood of v, N{v] = N(v) U {v}.

Definition 1.1.11. Assigning colors to the vertices of a graph
is called a vertex coloring. If no two adjacent vertices receive
the same color, then such a coloring is called a proper vertex
coloring. The minimum number of colors required for a proper
vertex coloring of a graph G is called its chromatic number,

denoted by x(G).

Definition 1.1.12. A property P of a graph G is vertex hered-
itary if every induced subgraph of G has the property P. A
graph H is a forbidden subgraph for a property P, if any

graph G which satisfies the property P cannot have H as an
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induced subgraph.

Definition 1.1.13. A graph G = (V, E) is isomorphic to a
graph H = (V'  E') if there exists a bijection from V to V'

which preserves adjacency. If G is isomorphic to H, we write

G=H.

Definition 1.1.14. Let G be a graph. The complement of G,
denoted by G° is the graph with vertex set same as that of V
and any two vertices are adjacent in G° if they are not adjacent
in G. K is called totally disconnected. A graph G is self

complementary if G = G°.

Definition 1.1.15. A graph G is bipartite if the vertex set
can be partitioned into two non-empty sets U and U’ such that
every edge of G has one end vertex in U and the other in U’. A
bipartite graph in which each vertex of U is adjacent to every
vertex of U’ is called a complete bipartite graph. If |U| =
m and |U’| = n, then the complete bipartite graph is denoted
by K.;n. The complete bipartite graph K, , is called a star.
A graph G is complete multipartite if the vertices can be
partitioned into sets so that {u,v} € F if and only if v and v

belong to different sets of the partition. A complete k-partite
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graph with partite sets of cardinalities n1,ng, ..., nx is denoted

by K, n,,...onx-

Definition 1.1.16. A subset I C V of vertices is independent
if no two vertices of I are adjacent. The maximum cardinality of
an independent set is called the independence number and
is denoted by a(G). A subset ' C FE of edges is said to be
an independent set of edges or a matching if no two edges
in F' have a vertex in common. The maximum cardinality of a

matching set of edges is the matching number and is denoted

by 3(G).

Definition 1.1.17. A subset X C V is called a vertex cover
of G if every edge of GG is incident with at least one vertex of
K. The minimum cardinality of a vertex cover is the vertex

covering number «oy(G).

Definition 1.1.18. For a graph G, a subset V' of V(G) is a
k-vertex cut of G if the number of components in G — V' is
greater than that of G and |V’| = k. The vertex connectivity
of G, x(G) is the smallest number of vertices in G whose deletion
from G increases the number of components of G. A graph is

n-connected if K(G) > n. A vertex v of G is a cut vertex
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of G if {v} is a vertex cut of G. If G has no cut vertices,
then G is a block. For {u,v} € V(G), the u — v cut is a set
S C V(G) — {u,v} such that G — S has no v — v path. The
edge connectivity of a graph G, «'(G) is the least number of

edges whose deletion increases the number of components of G.

Definition 1.1.19. A vertex z dominates a vertex y if N(y)
C Niz]. If z dominates y or y dominates z, then z and y are
comparable. Otherwise, they are incomparable. The Dil-
worth number of a graph G, dilw(G) is the largest number of
pairwise incomparable vertices of G.

As an example, dilw(C,) = 2.

Definition 1.1.20. A subset S C V of vertices is a dominat-
ing set if each vertex of G that is not in S is adjacent to at
least one vertex of S. If S is a dominating set then N[S] = V.
A dominating set of minimum cardinality in G is called a min-
imum dominating set, its cardinality is called the domination

number of G and it is denoted by v(G).

Definition 1.1.21. A dominating set S is an independent domn-
inating set if S is an independent set. The independent domi-

nation number of a graph G, +;(G) is the minimum cardinality
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of an independent dominating set in G. The minimum cardinal-
ity of a maximal independent set of vertices in G is also the same
as v(G). A subset S C V is a total (open) dominating set if
N(S) = V. The total (open) domination number of a graph
G, v:(G) is the minimum cardinality of a total dominating set in
G. A dominating set S is a connected dominating set if < S >
is a connected subgraph of GG and the corresponding domina-
tion number is the connected domination number ~.(G). A
dominating set S is a paired dominating set if < S > has a per-
fect matching and the corresponding domination number is the
paired domination number v,.(G). The paired domination
number exists for all graphs with out isolated vertices. A dom-
inating set S is a clique dominating set if < S > is a complete
graph. The minimum cardinality of a clique dominating set, if
it exists is the clique domination number ~,(G). A clique

dominated graph is a graph that contains a dominating clique.

Definition 1.1.22. The subgraph weakly induced by a set S of
vertices is the graph < S >,, whose vertex set is V[S] and whose
edge set consists of those edges in E(G) with at least one vertex,
and possibly both, in S. A dominating set S is called a weakly

connected dominating set if < S >,, is connected. The corre-
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sponding domination number is weakly connected domina-
tion number, ~,,(G). The cardinality of the weakly connected
independent dominating set is the weakly connected inde-

pendent domination number, denoted by 7,(G).

For example:-

G: h ) ! n pT
a B < a5
1 © K© m 0 QO

Figure 1.1.1

Then, v(G) = 5 ({a,b,d, f, g} is a dominating set of minimum
cardinality),

v(G) =7 ({h,4,b,d, f,p,q} is an independent dominating set
of minimum cardinality),

Y(G) =6 ({a,b,d,e, f, g} is a total dominating set of minimum
cardinality),

v{G) = 7 ({a,b.c.d.e, f,g} is a connected dominating set of
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minimum cardinality),

Yr(G) = 6 ({a,b,c,d, f,g} is a paired dominating set of mini-
mum cardinality),

Y0(G) =5 ({a,b,d, f, g} is a weakly connected dominating set
of minimum cardinality),

iw(G) = 7 ({h,i,b,d, f,p,q} is a dominating set of minimum
cardinality).

The graph G is not a clique dominated graph.

Definition 1.1.23. A subset &’ C F is an edge dominating set
if every edge not in S’ is adjacent to some edge in §’. The edge
domination number +'(G) of G is the minimum cardinality
of all edge dominating sets of G. A subsct S’ C E is an efficient
edge dominating set for G if each edge in E is dominated by ex-
actly one edge in S’. The efficient edge domination number

of G is denoted by v.(G).

Definition 1.1.24. The intersection graph is a graph whose
vertex set is a collection of objects and any two vertices are
adjacent if the corresponding objects intersect. The intersection
graph of all the edges of G is the line graph of G denoted by
L{G). Thus, the line graph L(G) of a graph G is a graph that
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has a vertex for every edge of GG, and two vertices of L(G) are
adjacent if and only if they correspond to two edges of G with

a common end vertex.

ITlustration:

Figure 1.1.2

Definition 1.1.25. The k-path graph corresponding to a graph
G has the set of all paths of length & as vertices and two ver-
tices in the k-path graph are adjacent whenever the intersection
of the corresponding paths form a path of length & — 1 in G and

their union forms either a cycle or a path of length & + 1 in G.
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Definition 1.1.26. For any graph G, the n** iterated graph
under the operator @ is iteratively defined as }(G) = ®(G) and
®"(G) = ®(®"Y(G)) for n > 1. A graph G is ® ™ - complete if
®"((G) is a complete graph. We say that G is convergent under
& if {® *(G), n € N} is finite. If G is not convergent under &,
then G is divergent under ®. A graph G is periodic if there
is some natural number n with G = ® *(G). The smallest such
number 7 is called the period of G. A graph G is ¢- fixed if the
period of G is one. The transition number #(G) of a conver-
gent graph G is zero if G is periodic and is the smallest number
n such that ®"(G) is periodic otherwise. A graph G is mortal
if for some n € N, ®*(G) = ¢, the mull graph. A semibasin is
any subset B of the class of graphs G with ®(B) C B. A basin

is a semibasin B if its compliment is also a semibasin.

Definition 1.1.27. The touching number of a cycle is the
cardinality of the set of all edges having exactly one of its end
vertices on the cycle. For every integer n > 3, the n-touching
number ¢,(G) of a graph G is the supremum of all touching
numbers of C,, provided G contains some C,,. If G contains no
C, then t,(G) is undefined. The vertex touching number of

an induced C} is the cardinality of the sct of all vertices which
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are adjacent to exactly one vertex of the Cy. The vertex touching
number of a graph vt (G) is the supremum of all vertex touching

numbers of induced Cy, provided G contains some induced Cj.

For example, for the graph G in Figure 1.1.3, #5(G) = T,
tg(G) = 5, ’Ut5(G) = 1, ’Utg(G) = 5.

v—g\
/

G:

Figure 1.1.3
Definition 1.1.28. A graph G whose vertex set can be parti-
tioned into an independent set and a clique is a split graph.
Definition 1.1.29. A graph G is perfect if x(H) = w(H) for

every induced subgraph H of G.

Definition 1.1.30. A graph G is a threshold graph if it can
be obtained from K by recursively adding isolated vertices and

universal vertices.
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Definition 1.1.31. A connected graph is a block graph if
every maximal 2-connected subgraph (block) is complete. A
graph is a geodetic graph if for every pair of vertices there is
a unique path of minimum length between them and a graph is
weakly geodetic if for every pair of vertices of distance two,

there is a unique common neighbor.

Definition 1.1.32. A graph that can be reduced to the trivial
graph by taking complements within components is called a co-

graph.

Definition 1.1.33. For every integer w: 1 < w < §(G), a w-
container between any two distinct vertices u and v of G is
a set of ‘w’ internally vertex disjoint paths between them. Let
Cu(u,v) denote a w-container between u and v. In Cy,(u,v),
the parameter w is the width of the container. The length
of the container is the longest path in Cy,(u,v). The w-wide
diameter of G, D,(G) is the minimum number { such that there
is a Cy(u,v) of length [ between any pair of distinct vertices u

and v.

For example:-
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Figure 1.1.4

For this graph G, Cs(a,b) = {a—b,a—c—b,a — e — b}. Length
of this Cs(a, b) = 2. D3(G) = 3.

Definition 1.1.34. For any k, the diameter variability aris-
ing from the change of edges of a graph G are as follows.
D7%(G) : 'The least number of edges whose addition to G de-
creases the diameter by (at least) k.

D*9(@) : The maximum number of edges whose deletion from
G does not change the diameter.

D**(G) : The least number of edges whose deletion from G in-

creases the diameter by (at least) k.

Definition 1.1.35. The graph obtained from G by subdividing
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each edge of G exactly once is called the subdivision of G and

is denoted by S(G).

Definition 1.1.36. The union of two vertex disjoint graphs G
and H denoted by G U H is the graph with vertex set V(G) U
V(H) and edge set E(G) U E(H).

Definition 1.1.37. The join of two graphs G and H denoted by
GV H is the graph obtained from the union GUH by adding the
edges {u —v:u € V(G) and v € V(H)}. The graph K; V 2K,
is called a bow. The moth (58] graph is K, V {P; U 2K, }.

Definition 1.1.38. The corona of two graphs Gy = (n1,m)
and Gy = (ng, m2), denoted by G; o Gy, is the graph obtained
by taking one copy of G; and n; copies of G3, and then joining

the it* vertex of Gy to every vertex in the i** copy of G,.

Definition 1.1.39. The cartesian product of two graphs G
and H denoted by G x H is the graph with V(G x H) = {(u,v) :
u € V(G) and v € V(H)} and any two vertices (u1,v1), (ug,vq)
€ G x H are adjacent if one of the following holds.

(i) u3 = uy and vy — vy € E(H)

(i) u; — up € B(G) and v, = v,
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1.2 Basic lemmas and theorems

Lemma 1.2.1. [8] The line graph L(G) has nine forbidden sub-

graphs.

Figure 1.2.1 gives the nine forbidden subgraphs of L(G).

Figure 1.2.1

Lemma 1.2.2. [19] G is a cograph if and only if G is P,-free.
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Lemma 1.2.3. [68] If G is a cograph , then the domination

number of G is at most two.

Lemma 1.2.4. [29] If G is a graph without isolated vertices,
then v(G) < dilw(G).

Lemma 1.2.5. [16] A graph G is a threshold graph if and only
if dilw(G) = 1.

Lemma 1.2.6. [16]/ A graph G is a threshold graph if and only
if G contains no induced {2K,,Cs} and no Pj.

Lemma 1.2.7. [{4], [48] A graph G is a block graph if and only
if b(G) = oc.

Lemma 1.2.8. [/4], [48] A graph G is weakly geodetic if and
only if (G) =2 5

Lemma 1.2.9. [30] A graph G is a split graph if and only if G

contains no induced 2K,,Cy and no Cs.
Lemma 1.2.10. [77] For a connected graph G, DV (G) < £'(G).

Lemma 1.2.11. [26], [31] A connected graph G is Eulerian if

and only if the degree of each vertexr of G is even.

Theorem 1.2.12. [15] For any graph G = (n,m), v(G) <
|n/2].
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Theorem 1.2.13. [4] For any connected graph G of even order
n, ¥ (G) = n/2 if and only if G is isomorphic to K, or Kp/2.5/2.

Theorem 1.2.14. [4] For any tree T of order n # 2, ¥'(T) <
(n — 1)/2, equality holds if and only if T is isomorphic to the

subdivision of a star.

Theorem 1.2.15. [{] Let G = (n,m) be a connected unicyclic
graph. Then v'(G) = |n/2] if and only if G is isomorphic to

either Cy, Cs, Cr, Cs i or Cyy for some k = 0.

Theorem 1.2.16. [41] For a connected graph G, diam(G)—1 <
7.(G) < 23(G).

Theorem 1.2.17. [28] For a connected graph G, v.(G) < 2a(G)—
1.

Theorem 1.2.18. (Whitney’s theorem) [79] Let G be a sim-
ple graph with at least three vertices. Then G is 2-connected if
and only if for each pair of distinct vertices u and v of G there

are two internally disjoint u — v paths in G.

Theorem 1.2.19. (Menger’s theorem) [62], [21] Let u and
v be two non adjacent vertices of a graph G. Then the mazimum
number of internally disjoint u — v paths in G is the minimum

number of vertices in a u — v separating set.
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Theorem 1.2.20. (Generalized Whitney’s theorem) [17]
A simple graph G is n-connected if and only if, given any pasr
of distinct vertices u and v of G, there are at least n internally

disjoint u — v paths in G.

1.3 New definitions

Definition 1.3.1. [59] The P; intersection graph of a graph
G, P3(G) is the intersection graph of all induced 3-paths in G.
That is, P5(G) has the induced paths on three vertices in G as
its vertices and two distinct vertices in P3(G) are adjacent if the
corresponding induced 3-paths in G intersect. If a; — ap —az 1s
an induced 3-path in G then the corresponding vertex in P5(G)

is denoted by ajasasz.

Definition 1.3.2. A graph G is a P; intersection graph if

there exists a graph H such that G = P3(H).

In Figure 1.3.1 a graph G and its P3(G) are shown.
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Figure 1.3.1

Definition 1.3.3. [57] The edge C4 graph of a graph, E,;(G)
is a graph whose vertices are the edges of G and two vertices in
E4(G) are adjacent if the corresponding edges in G are either
incident or are opposite edges of some Cy in G. This graph class

is also known by the name edge graph in [66].

In E4(G) any two vertices are adjacent if the union of the
corresponding edges in G induce any one of the graphs P;, Cs,
Cy, Ky — {e}, K4. If a1 — a5 is an edge in G, the corresponding

vertex in F4(G) is denoted by a;ja,.

Definition 1.3.4. A graph G is an edge C, graph if there
exists a graph H such that G = E;(H).

In Figure 1.3.2 a graph G and its E4(G) are shown.



1.4. A survey of results 29

Figure 1.3.2

1.4 A survey of results

This section is a survey of results related to that of ours.

The H - intersection graph Inty(G) [66] is the intersec-
tion graph of all subgraphs of G that are isomorphic to H. If A
is K, then Inty(G) is the line graph. Trotter [76] characterized
the graphs for which Intg,(H) is perfect. The 3-edge graph is
the intersection graph of the set of all 3-edges of G [67]. The

K3 interscction graph is the 3-edge graph provided every edge
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lies in some triangle [66]. In [2], Akiyama and Chvdtal have

characterized the graphs for which IntP;(G) is perfect.

In [27], Daniela derived some properties of the girth and
connectivity of the path graphs. In [51], Knor and Niepel char-

acterized the graphs isomorphic to their path graphs.

In {7], Bandelt and others proved that a bipartite graph is
dismantlable if and only if its edge C4 graph is dismantlable and
a bipartite graph is neighborhood-Helly if and only if its edge Cy
graph is neighborhood-Helly. For any given graph G, the edge
graph is a supergraph of L(G). In [50] it has been shown that
for any graph G without isolated vertices, there is a graph H

such that C(H) = G and C(L(H)) = L(G).

Many types of dominations and their characteristics are dis-
cussed in [24], [39], [40]. In [18], efficient algorithms are devel-
oped for finding a minimum cardinality of connected dominat-
ing set and a minimum cardinality Steiner tree in permutation

graphs. In [20], forbidden subgraph conditions sufficient to im-
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ply the existence of a dominating clique are given.

The concept of edge domination was introduced by Mitchell
and Hedetniemi in [63]. The edge dominating sets and the
bounds for the edge domination number ' are studied in [47]. In
[15], an upper bound for 7/(G) is obtained. Again, these bounds
are modified in [4] for a connected graph G of even order, tree
and a connected unicyclic graph. In [23], [41] a bound for the
connected domination number of a graph G with regard to the
diameter of the graph, the vertex independence number and the

matching number of a graph are obtained.

In [29], it is observed that for graphs G without isolated
vertices, Y(G) < dilw(G). Threshold graphs were introduced
by Chvatal.V and Hammer.P.L in [16], where ditferent charac-
terizations for such graphs are given. Block graphs, geodetic
graphs and weakly geodetic graphs are studied in detail in [44],
[48]. Stemple et.al [74] showed that a graph is geodetic if and
only if each of its block is geodetic. It is known that block

graphs C geodetic graphs C weakly geodetic graphs [13]. In
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[19], eight characterizations of cographs which include the re-
cursive characterization and the forbidden subgraph characteri-
zation are given. The median and the anti-median of cographs
are discussed in [69]. The recent Ph.D thesis by Ms. Aparna
Lakshmanan [3] contains results regarding cographs and other
graph classes such as the Gallai and the anti- Gallai graphs, the
clique irreducible graphs, the clique vertex irreducible graphs

and the weakly clique irreducible graphs.

The concept of wide diameter has been discussed and used
in distributed and parallel computer networks [45]. In [43], Hou
and Wang defined generalized wide diameter and calculated it
for any k- regular k-connected graph. A generalized p-cycle is a
digraph whose set of vertices is partitioned into p parts that can
be ordered in such a way that a vertex is adjacent only to the
vertices in the next part. The bounds for the wide diameter of
the generalized p-cycle is obtained in [28]. The wide diameter
of butterfly networks is studied in {53]. Bolian Liu and Xiankun
Zhang studied some problems on the relations between D,,(G)
and diam(G) in [54]. In this paper they characterized the graphs

G for which D, (G) = diam(G),w > 1.
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The diameter of a graph is an important factor for com-
munication as it determines the maximum communication de-
lay between any pair of processors in a network. The diame-
ter of a graph may be affected by the addition or deletion of
edges. In [33], Graham and Harary studied this aspect in hy-
percubes and proved that D~YQ,) = 2, D*1(Q,) = n —1 and
D¥(Q,) = (n—3)2"" +2. Bouabdallah et.al [12] improved the
lower bound of D*°(Q,,) and furthermore gave an upper bound,
(n—2)2""1 =" Clp0)+2 < DYQ,) < (n—2)2"1 =21 /2n—
1]+ 1.

The diameter variability arising from the addition or deletion
of edges of a graph G is defined in [77] and in this paper, Wang
et.al proved that DY(C,,.) 2 2, DY Tpn) 2 2, D72(Trnp) = 2
for m > 14 and m # 15. Also they obtained the exact value of

DT ).
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1.5 Summary of the thesis

This thesis entitled ‘Studies on some graph operators and
related topics’ is divided into five chapters including an intro-

ductory chapter. We shall now give a summary of each chapter.

The first chapter is an introduction and contains literature
on graph operators. It also includes some basic definitions and

terminology used in this thesis.

In the second chapter, the I3 intersection graph of a graph
G which is the intersection graph of all induced 3-paths in G is

studied in detail. The following are some of the results proved:

e For a connected graph G, P5(G) is bipartite if and only if
G is P3, Py, K4 — {e} or a paw.

e K, is a forbidden subgraph for a graph to be the P,

intersection graph.

e There exist only a finite family of forbidden subgraphs for

the P; intersection graphs to be H-free for any finite graph
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H.

e For a connected graph G, x(P(G)) = x(G) — 1. The
equality holds if and only if G is either K, — {e} or a

complete graph with a pendant vertex attached to it.

e The relationship between the chromatic number, clique
number, connectivity, independence number, domination
number, the radius and the diameter of a graph and its P

intersection graph.

The third chapter is the study of another graph operator -
the edge Cy graph of a graph. If G does not contain C; as a
subgraph, then the edge Cy graph of a graph coincides with its
line graph. So if G is an Eulerian graph which does not contain
C4 as a subgraph, then E4(G) is Eulerian. Following are some

of the results obtained:
e There exist infinitely many pairs of non isomorphic graphs
whose edge C; graphs are isomorphic.

e Characterizations for Ey(G) being connected, complete,

bipartite ctc.
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There is no forbidden subgraph characterization for E4(G).

The relationships between the diameter, radius, center,

domination number of G and those of E4(G).

Relationships between different types of dominations of G

and that of F4(G).

For any connected graph G, diam(G) — 2 < v.(E4(G)) <
26(G) — 1.

A bound for the domination number of F4(G) in terms of
the order of GG. Further for a graph G, which is a tree or a
unicyclic graph, characterization is obtained for the strict

bound of the domination number of E4(G).

Conditions for the E,;(G) being a clique dominated graph,
threshold graph, cograph, geodetic graph, weakly geodetic

graph and block graph.

The dynamics such as convergence, divergence, periodicity,

fixedness etc of the P intersection graph and the edge C graph

are included in chapter four. The following are some of the

results proved:
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e There are no P3-periodic graphs.

e If a graph G is P3-convergent, then it is P§(G)-complete
for some n > 1 and hence all the P3-convergent graphs are

Ps-mortal graphs.

e The relationship between the touching number of P3(G)

and the vertex touching number of G.
e Characterization of the F4- convergent graphs.

e The relationship between the touching number of G and

that of E,(G).

In chapter five of this thesis, the diamecter variability and
the w-wide diameter of the three graph operators - the Pj inter-
section graph, the edge Cj graph and the line graph and some
graph operations such as join and corona are studied. Some of

the results arc listed below:
e Corresponding to a w-container in G, there exists w-containers
in P5(G) and Ey4(G).

e Strict bound for the w- wide diameter of P3(G), L(G) and
EL(G).
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e Strict bounds for D** of P3(G), E4(G) and L(G).

e The diameter variability of join and corona of two graphs.

All the graphs considered in this thesis are finite, undirected
and simple. Some results of this thesis are included in [55] - [60].
We conclude the thesis with some suggestions for further study

and a bibliography.
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Chapter 2

The P; intersection graph

of a graph

This chapter deals with the graph opcrator known as ‘the Ps in-
tersection graph’. We study the conditions for the P5(G) to be
connected, bipartite, tree, geodetic, block etc. The existence of
a finite family of forbidden subgraphs for the P5(G) to be H-free,

H being a finite graph, is proved and the forbidden subgraph

Some results of this chapter are included in the following papers.
1. Manju K. Menon, A. Vijayakumar, The P intersection graph, Util
Math. 75 (2008), 35 - 50.
2. Manju K. Menon, A. Vijayakumar, Dynamics of the Pj intersection
graph, (communicated).

41
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characterizations of G for which the P3(G) are complete, chordal
etc are discussed. The relationship between the clique number,
chromatic number, connectivity, independence number, domi-
nation number, radius and diameter of a graph and its P3(G)

are also studied in detail.

2.1 The P;intersection graph of a graph

For any graph G which is the union of complete graphs, P3(G)
is null graph. Hence in this chapter we do not consider such
graphs. If G is a connccted graph of order at most five then

P3(G) is complete.

In general, the H-intersection graph of a connected graph

need not be connected. But, in the case of P3(G), we have

Theorem 2.1.1. P3(G) is connected if and only if G has ezactly

one component containing an induced Pj.

Proof. Suppose that G contains more than one component con-

taining an induced P;. Let aqy — ay — ay and by — by — b3 be any
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two induced 3-paths in G which lie in distinct components of
G. Then by the definition of P3(G) the corresponding vertices
a1a2a3 and bibobs in P3(G) cannot be connected by a path and

hence P3(G) is disconnected.

Let G have exactly one component containing an induced
P;. Suppose that x = ajaza3 and y = by bybs are any two non-
adjacent vertices in P3(G). If a;,4 = 1,2,3 and b;,j = 1,2,3
are adjacent then ajasas, a;b;bjy1 or a;b;b;_1,b1bobs is a path
connecting = and y. If a; and b; are not adjacent then let the
shortest path connecting a;, i = 1,2,3 and b;, j = 1,2,3 be
@;,C1,Co, ..., Cn, bj. 1If 0 =1, then ajasas, a;c1b;, bibobs is a path
connecting z and y. If n > 2, then ajazas, a;cico, ...y Cro1Cnby,
bybebs is a path connecting = and y in P3(G). Hence P3(G) is

connected. O

Theorem 2.1.2. If G is k-connected; k > 2, then P3(G) is
(k — 1)-connected. Further k(P3(G)) = k(G) — 1 if and only if
G is K, — {e}.

Proof. Let G be k-connected. Then by Theorem 1.2.20, for any

two vertices u and v, there exists at least & internally disjoint
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u — v paths.

Let ujusus and vyvous be any two distinct vertices in P3(G). In
G, if u; and v; are connected by a path which contain at least one
vertex other than these six vertices, then correspondingly there
exists at least one path in P3(G) joining ujusus and vyvyuz. So,
it is enough to consider the paths in G involving one or more of

these six vertices.

Case 1: Let u; and v; be non - adjacent for some 4, j € {1,2,3}.
Then corresponding to any path in G joining u; and v;, there
exists a path in P3(G) joining ujusug and vivevz. So k(P3(G))

= k(G).

Case 2: Let u; be adjacent to v;.

Case 2a: All u;s and v;s are distinct.

Then in between any u; and v; in G, there exists at most five
internally disjoint u;-v; paths involving those six vertices only.
But there exists six internally disjoint paths joining ujuouz and
v1vgv3 in P3(G) which are of the form wjusuy, wyvjus, vivavs

and uyuaus, v1u;Us, vitats, § € {1,2,3}. Hence in this case also
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K(B(G)) > K(G).

Case 2b: u;s and v;s share a common vertex.

In this case there exists more paths between uiusus and vvovs
in P3(G) than the minimum number of paths between any u;
and v; in G. Hence x(P3(G)) > (G).

Case 2c: u;s and v;s share two common vertices.

In this case also, except when they form K, — {e}, the number
of internally disjoint paths between u uqug and vyvavs in P3(G)
is greater than or equal to the minimum number of internally
disjoint paths between any u; and v; in G. If there exists one
more vertex, then x(P3(G)) < x(G) only when the newly ad-
joined vertex is adjacent to all the four vertices. If we adjoin
more vertices to this graph also, k(/3(G)) < k(G) only when the
adjoined vertices are adjacent to all the other existing vertices.
Hence (P3(G)) < k(G) only when G is K,, — {e}. For K, —{e},
k(P3(G))= k(G) - L. O

As to the question whether every graph is the P; intersection
graph of some graph, we have the following theorem:-

Theorem 2.1.3. The following graphs G cannot be the Py in-

tersection graph of any graph.
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1. G is a connected graph having at least three vertices and a

pendant vertex .

2. There exists a vertex v in G with d(v) = 2 such that v is

adjacent to any two non-adjacent vertices in G.

3. G is a connected triangle free graph having at least three

vertices.

Proof. 1. Let G be a connected graph having at least three
vertices. Let z be a pendant vertex of G and z be the
unique vertex adjacent to z. If possible let there exist a
graph H such that P (H) = G. Since there are at least
three vertices, there exists a vertex adjacent to z and let
it be y. Since z and y are two non-adjacent vertices in
G = P3(H), we can assume that x = ajasas and y = b;beb;
where a;s and b;s are distinct vertices in H. Since z is
adjacent to both x and y, z corresponds to a 3-path in H
which must contain at least one a, and b;. So z must be
of the form a;b;c or a;cb; or ca;b;.

Let z = a;bje. If ¢ = 1, then ay —a; —b; is a 3-path. But if
this is an induced path, then z cannot remain a pendant

vertex. So a, — b; is an edge in H. Then a3 — ag — b; is
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a 3-path. But if this is an induced path then z cannot
remain a pendant vertex. So az—b; is an edge in H. Then
a; — b; — ag is an induced 3-path. If the corresponding
vertex aib;as is different from z, then it is adjacent to z,
a contradiction to the fact that z is a pendant vertex. If
aibjaz = z, then we can show that there exists an induced
3-path with a; and two b;s, { = 1,2, 3 as its vertices. The
corresponding vertex which is different from z is adjacent
to = which will also lead to a contradiction. So G cannot
be the P;-graph of any graph. The case is similar when
t = 2,3 also. The proof is similar when z = a;cb; or

z = ca;b;.

. Suppose now that G has a vertex v with d(v) = 2 and

let G = P3;(H). Let v be adjacent to v; and vy where
v; and v, are non-adjacent vertices. Let v; = a,a5a3 and
U = bybybs where a;s and b;s are distinct vertices in H.
Then v must be of the form a;bjc or a;cb; or ca;b;. So as
in the proof given above, we can show that there exists a
vertex adjacent to v which is different from both v, and

vz, which is a contradiction to the fact that d(v) = 2.
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3. Finally, let G be a connected triangle free graph. If pos-
sible assume that G = P3(H). Since G has at least three
vertices it contains a vertex z which is adjacent to two non-
adjacent vertices z and y. Let x = ajasa3 and y = bibybs,
where a;s and b;s are distinct vertices in H. Then z must
be of the form a;bjc or a;ch; or ca;b;. Using the similar
arguments as in the above proofs, we can show that there
exists a vertex which is adjacent to both = and z, which is

a contradiction to the fact that G is triangle free.

O

Lemma 2.1.4. If G is a connccted graph having at leost five

vertices, then Py(G) has at least three vertices.

Proof. Let G be a connected graph having at least five vertices.
Let z and y be two non-adjacent vertices of G. Let the shortest
path connecting z and y be z,v;,vq, ..v,,y. If n > 3 then
P3(G) clearly contains at least three vertices. If n = 2 then
since GG is a connected graph having at least five vertices, the
fitth vertex must be adjacent to at least one of z, vy, v2,y. Then
there exists at least three induced 3-paths in G and hence P3(G)

contains at least three vertices. If n = 1, there exists at least
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two more vertices in G and they must be connected to z, vy, ¥.
In any case there exists at least three induced 3-paths in G and

hence P3(G) contains at least 3 vertices. O

Theorem 2.1.5. Let G be a connected graph. Then P3(G) is

bipartite if and only if G is P3, Py, K4 — {e} or paw.

Proof. Let P3(G) be bipartite. Then P3(G) cannot contain tri-
angles. So by Theorem 2.1.3 (3), the only bipartite P3 intersec-
tion graphs are K; and K,. Again by Lemma 2.1.4, G can have
at most four vertices. Since we are considering only connected

graphs, the theorem follows. O

Corollary 2.1.6. For a connected graph G, P3(G) is a tree if
and only if G is P53, Py, K, — {e} or paw.

Theorem 2.1.7. For any connected graph G, P3(G) is a block.

Proof. Suppose that w = zyz is a cut vertex in P3(G). Then
there exists two non adjacent vertices ujusus and vivevs such
that the only path joining them is ujuqus, w, vivevs. Then u;s
and v;s are distinct and some w;, v; = z , y or z. Thus we can
find at least one more path joining ujusus and vy vyvs, which is

a contradiction to the fact that xyz is a cut vertex. (I
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Theorem 2.1.8. The only connected geodetic P; intersection

graphs are the complete graphs.

Proof. Let P3(G) be non-complete. Consider two non-adjacent
vertices ujusuz and vivpuz in P3(G). Since G is connected, we
may choose viveuz such that u; is adjacent to some v; for i, j
€ {1,2,3}. Then there exists at least two disjoint paths of length
two connecting ujusuz and vyv9v3 and hence P3(G) cannot be a

geodetic graph. O

2.2 Forbidden subgraph characteriza-

tions

In this section we prove that the Pj3 intersection graphs have a
forbidden subgraph characterization. Even though many well
known classes of graphs have forbidden subgraph characteriza-
tions, the number of the forbidden subgraphs need not be finite.
But, we prove that there exist only finitely many forbidden sub-
graphs for the P; intersection graph to be H - free where H is

any finite graph. We also obtain forbidden subgraph characteri-
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zations for the P intersection graph to be chordal and complete.

Theorem 2.2.1. If G is a P; intersection graph then K4 is a
forbidden subgraph for G.

Proof. Suppose that G = P5(H) contains K; 4 as an induced
subgraph. Let v be the central vertex of K4 and vy, ve, vs, vy
be its neighbors in G. Then v corresponds to an induced 3-
path in H which intersects with all the four distinct 3-paths
corresponding to v, ve, v3 and vg, which is not possible. Hence

K, 4 is a forbidden subgraph for the Pj intersection graph. [

Lemma 2.2.2. Let p = {G : P3(G) is H-free} where H is any

finite graph. Then the property P, G € ¢ is vertex hereditary.

Proof. Let G € . Suppose that G — {v} ¢ ¢. So P3(G — {v})
contains H as an induced subgraph. Then this H will be induced

in P3(G) also, which is a contradiction to the fact that Ge . O

Theorem 2.2.3. The collection @ has only a finite class of ver-

tex manimal forbidden subgraphs.

Proof. The property G ¢ ¢ is vertex hereditary. So ¢ must have
pert; ¥ )
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vertex minimal forbidden subgraphs. Let F be the collection of
all such vertex minimal forbidden subgraphs. Let G; ¢ F. Then
P3(G1) contains H as an induced subgraph. So, corresponding
to a vertex in H there exists an induced 3-path in G;. This
implies that the number of vertices in Gy covered by these 3-
paths cannot exceed 3n where n is the number of vertices in
H. If G, contains more than 3n vertices, then there exists a
vertex v in G such that any induced 3-path containing v does
not determine a vertex of H in P3(G;). Then G; — {v} is also
forbidden for ¢ which is a contradiction to the vertex minimality
of G;. Hence the number of vertices of Gy is bounded by 3n
and hence ¢ has only a finite class of vertex minimal forbidden

subgraphs. (]

Corollary 2.2.4. Let S = {G : P5(G) is chordal}. The col-
lection & has an infinite class of vertex minimal forbidden sub-

graphs.

Proof. Let G ¢ §. Then by Lemma 2.2.2, the property P, G ¢ &
is vertex hereditary. So & must have vertex minimal forbidden
subgraphs. If G contains C,,, n > 6 as an induced subgraph,

then I%(G) contains C,, n > 4 and hence cannot be chordal.
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Also P3s(Cr — {v}), n > 6 is chordal. So C,, n > 6 are vertex
minimal forbidden subgraphs for &. Thus there exists an infinite

class of vertex minimal forbidden subgraphs for <. O

Corollary 2.2.5. Let ¥ = {G : P3(G) is complete}. Then any

vertex minimal forbidden subgraph for U has exactly siz vertices.

Proof. Let G ¢ ¥. Then G is induced Ps-free. So by Lemma
2.2.2, the property G ¢ ¥ is vertex hereditary. So it has vertex
minimal forbidden subgraphs. The I3(G) is complete for any
graph having at most five vertices. So, a forbidden subgraph
must have at least six vertices. Let G; be any vertex minimal
forbidden subgraph for ¥. Since G is a forbidden subgraph for
P3(G) being complete, it must have at least two disjoint 3-paths,
a; — a2 — a3 and by — by — bs. These six vertices are enough to

induce a vertex minimal forbidden subgraph. (]

2.3 The chromatic number of P3(G)

In this section we study the relationship between the chromatic

number of G and that of P3(G).
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Lemma 2.3.1. For a connected graph G, w(P3(G)) 2 w(G)—1.

Proof. Let w(G) = k. Since G is non-complete and connected,
there exists a vertex u adjacent to at least one vertex of the
k-clique in G. If u is joined to t vertices of this k-clique then
there are t(k — t) induced 3-paths in G where u is common to
all these induced 3-paths. So w(F3(G)) = t(k —t). Now, if
t(k—1t) <k—1then k < (t+ 1) which is a contradiction to the
fact that w(G) = k. So w(P(G)) 2 k — 1. a

Theorem 2.3.2. For a connected graph G, x(P3(G)) = x(G) —
1. The equality holds if and only if G is either K, — {e} or a

complete graph with a pendant vertex attached to it.

Proof. Let x(G) = k. Then there exists a vertex v in G with
color k such that its neighbors vy, vy, ..., vx_; have distinct colors

1,2, ...,k — 1 respectively.

If these k vertices form a complete subgraph, then w(G) > k.

So x(P3(G)) 2 w(P(G)) = k— 1, by Lemma 2.3.1.
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If these k vertices do not form a complete subgraph, then let
‘m’ be the size of maximal clique in the subgraph induced by
these k vertices. Clearly v is a vertex in this m-clique. Then
‘among the k vertices, there are k — m vertices adjacent to v
which are not in the m-clique. Let v; be such a vertex. Then
this v; can be adjacent to at most m — 1 vertices of the m-clique.
In any case we can find at least & distinct induced 3-paths having
a common vertex. The corresponding k vertices in P3(G) will
form a complete subgraph having & vertices and hence x(P5(G))

= k.

Hence the equality holds only when there is a k-clique in G.
Since G is connected and non-complete, there exists a vertex
u; which is adjacent to some of the v;s in the k-clique. If u;
is adjacent to t vertices of the k-clique where 2 < ¢t < k — 2,
then there exists at least k distinct induced 3-paths having a
common vertex. Hence, in this case x(P(G)) > k£ — 1. So
uy can be adjacent with either 1 or &k — 1 vertices of the k-
clique. If there exists one more vertex in G other than these
k + 1 vertices, then also we can find at least & induced 3-paths

having a common vertex and hence x(P5(G)) 2> k. So when
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x((P3(G))) = x(G) — 1, there exists exactly k + 1 vertices such
that u; is adjacent to 1 or k — 1 vertices of the k-clique. If u, is
adjacent to only one vertex of the k-clique, then the graph is a
complete graph with a pendant vertex attached to it and if u,
is adjacent to k — 1 vertices of the k-clique, then the graph is

K11 — {e} and hence the result. O

Theorem 2.3.3. Given any two positive numbers a and b where
a>1andb > a—1, there exists a graph G such that x(G) = a
and x(P3(G)) = b.

Proof. Consider the following cases:
Case l: b=a-1
The graph G is obtained by attaching a pendant vertex to any

one vertex of K.

Hlustration: When a = 4;b = 3,

P
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Case 2: b=a
Consider the graph G in Case 1. Then attach a single vertex to

the pendant vertex of G. This is the required graph.

Illustration: When a = 4;b =4

R

Case 3: b>a
Subcase 3a: b< 2a —1
Consider the graph G in case 1. Any one vertex of Kj_,y41 is

joined to the pendant vertex of G. This is the required graph.

llustration: When a = 4;b =6

/
/
./’
/

— 00— O ——0__.____ O
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Subcase 3b: b > 2a — 1
Let k be the maximum integer satisfying the equation *Cj +
(a — 1)k = b. Join k pendant vertices to the same vertex of K.

Replace any one of these pendant vertices by Ky_[ kcyy(a=1)4)-

Illustration: When a =4;b6=9

NO\_AD

In all the above cases, P3(G) = K, and hence x(P3(G)) = b.

Since all possible cases have been covered, the result follows. O

2.4 Some other graph parameters of

B(G)

In this section we study the relationship between the parameters

such as domination number +. independence number «, radius



2.4. Some other graph parameters of P3(G) 59

and diameter of G and those of P3(G).

Theorem 2.4.1. Given any two positive numbers a and b where
a > 1 there exists a graph G such that v(G) = a and v(P3(G)) =
b.

Proof. Consider the following cases.

Case 1: Suppose a < b.

Consider an induced v, —v, path. Toeachv;,i =1,2,...,a—1,
join an induced 3-path - w;; - wia — wy3. To v, join 2(b—a +1)
disjoint induced 3-paths. This is the required graph G. Clearly
Y(G) = a. Consider the a — 1 vertices in P3(G) which are of the
form whvivig,t = 1,2,...,a — 1. In P3(G), these vertices will
dominate all the vertices except the vertices corresponding to
the 2(b — a + 1) disjoint paths joined to v,. These 2(b —a + 1)
vertices can be dominated exactly by b — a + 1 vertices which
are of the form wu;v,u; where u; and u; are vertices in any two

of the disjoint induced Pss joined to v,. The above described
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collection of a — 1 vertices together with these b — a + 1 ver-
tices will form a minimum dominating set for P3(G). Hence

Y(Ps(G) = (b—a+1)+(a—1)=b.

As an example, consider @ = 5;b = 6. The corresponding

graph G is,

Case 2: Suppose a = b.

Consider an induced v, — v, path. To each v;,i = 1,2,...,a
join an induced 3-path, w;wpw;s. This is the required graph G.
Clearly v(G) = a. In I3(G), vertices of the form wjv;w;3, 1 =
1,2, ...,a form a minimum dominating set. Hence v(P3(G)) =

a=h.
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As an example, consider a = 5;b = 5. The corresponding

graph G is,

\

Case 3: Suppose a > b.

Consider an induced v, —vy41 path. Toeachwv;,7 =1,2, ..., b—
1 join an induced 3-path, w; wiw;3. To vy, q, attach a — b+ 1
disjoint Kys. This is the required graph G. Clearly v(G) =
(b—1)+(a—b+1) =a. In P(G) the (b — 1) vertices which
are of the form wyv;v;11,7 = 1,2, ...,b—1 and vycycy where ¢y, ¢
are the vertices in any K5 attached to v, will dominate all the
vertices. Clearly this is the mininum number of vertices in any

dominating set of P3(G). Hence v(P4(G)) = b.

As an example, consider ¢ = 6;b = 4. The corresponding
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graph G is,

]
v\l
/

O

a

Theorem 2.4.2. Given any two positive numbers a and b where
a > 1, there exists a graph G such that o(G) = a and o P3(G)) =
b.

Proof. Consider the following cases:

Case 1: Suppose a < b.

Consider a K3, whose vertices are labcelled as vy, vy, ..., V3.
From this graph, edges of the form wvs_o — v, bk = 1,2,...,b
and edges whose end vertices are both of the form vspqq,k =

0,1,....,a — 1 are deleted. This is the required graph G. Clearly
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a(G) = a where a maximum independent set is {vq, v4,...v34-2}.
Also a(P;3(G)) = b where a maximum independent set is {vsx—2

V3k-—1 U3k, k= 1,2, ,b}

As an example, consider a = 2;b = 3. The corresponding graph

G is,

Case 2: Suppose a = b.

Consider G = (K,)¢V P,. Clearly o(G) = a. o(P3(G)) =a

where the maximum independent set is {v;uvq447 = 1,2, ..., a}
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where v; and v,4; are vertices in Py, and u; is a vertex in (K,)°.

As an example, consider a = 2;b = 2. The corresponding

graph G is,

Case 3: Suppose a > b.

Subcase 3a: Let a > 2b.

Consider G = K,, with the partition {uq,us,...,us} and
{v1,v2,...,v5}. Clearly o(G) = a. Since a maximum indepen-

dent set in P3(G) is {uviupsi;i = 1,2, ..., b}, a(P3(G)) = b.

As an example, consider a = 6;b = 2. Then the graph G is

K.
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Subcase 3b: Let a < 2b.

Let t = |a/2]. Let G = K, V Pyp—s). Let the parti-
tion of K,p be {uy, ug,...,u,} and {vy,v2,...,0} and let the
vertices in the path be wy,ws,...,wap—y. Then o(G) = a.
Consider the following independent set of vertices in P3(G),
{uvivesi;t = 1,2, 0,8, Wit jWy—45,7 = 1,2,...,b — k}. This
is an independent set having maximum number of vertices in
P3(G). Hence o P3(G)) = b.

As an example, when a = 5;b = 3, the graph ¢ = K53V . O

Theorem 2.4.3. For a connected graph G, rad(P3(G)) < rad(G)+
1. The equality holds only when rad(G) = 1. Further if rad(G) >
4 then rad(P3(G)) < rad(G).

Proof. Let u be a center of G. So d(u,v) < rad(G) for all v €
V(G). Since G is not a complete graph, there exists an induced
3-path having u as a vertex in it. Let the corresponding ver-
tex in P3(G) be ajagas where u is some «,. Let bbybs be any

other vertex in P4(G). If d(u,b;) = 1, then ayagas, ubjbjq or
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ubjbj_1, bibabs is a path connecting ajasaz and b1b2b3 and hence
d(arazas, bibebs) < 2 = d(u,b;) + 1. Now, if d(u,b;) = k > 1,
let a shortest path connecting u and b; be u,cy,cs, ..., k-1, b;.
Then ajasaz and bybybsy are connected by a path a,aqa3, ucics,
< esCh=2Ck~1bj, bibabs. So d(ajasas, bibabs) < k = d(u, b;).

This implies that d(aiasas, bibobs) < d(u,b;) +1 < rad(G) + 1,
since d(u, b;) < rad(G). Hence e(ayaszas) < rad(G) + 1. There-
fore rad(Ps(G)) < rad(G) + 1.

Now, let rad(P3(G)) = rad(G) + 1. We have proved that
if d(u,b;) > 1, then d(aiazas, bibobs) < d(u,b;) < rad(G). So
e{ajazaz) < rad(G) and hence rad{P3(G)) < rad(G). So the

equality does not hold when rad(G) > 1.

Consider the case when rad(G) > 4. Consider a,asa3 where
u is some a; and let bjbybs be any other vertex in P3(G). Let
d(u,b;) = k and a;, ¢y, c2..., ¢x—1, b; be a shortest path connect-
ing a; and b;. Then ajazaz and bybsbs are connected by a
path ayaqa3, ucica, cacscy, ..., Cp_ack—1b;, bibobs. So if k < 3, then

d((L]CLQCLg,b]be:}) <J3andif k > 4, then d(dlaga3,b1b2b;;) < k.
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e

So e(@aza3) < k < rad(G). Hence rad(P3(G)) < rad(G). O

Remark 2.4.1. The condition rad(G) = 1 is not sufficient for
the equality rad(P3(G)) = rad(G)+1. Foreg-if G = Ky ,,n 2
3, then rad(G) = rad(P5(G)) = 1.

Theorem 2.4.4. For a connected graph G, diam(P3(G)) <
diam(G). Further, if diam(G) = 4 then diam(P5(G)) < diam(G).

Proof. Since G is not a complete graph diamn(G) > 1. By the
arguments similar to those in the above proof, we can prove that
for any two vertices ajasas and bybabs in P3(G), d(ayasas, bibaby) <
d(a;, b;) < diam(G). So diam(P5(G)) < diam(G).

Let diam(G) > 4. Let ajazas and bybybs be any two vertices
in P3(G) such that d(ajasas, bibabs) = diam(P3(G)). Using
the similar arguments as in the above proof, we can show that
d(aragas, bibobs) < d(as, b;) < diam(G). Hence diam(P3(G)) <
diam(G). 0

Note: Let G = K,V 4 K. Then rad(G) = 1, rad(P3(G)) = 2,

diam(G) = 2, diam(1%3(G)) = 2. Hence the bounds in Theorems
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2.4.3 and 2.4.4 are strict.



Chapter 3

The edge C; graph of a
graph
In this chapter, we study another graph operator - the edge C,

graph of a graph. This operator is also called the edge graph in

[66], as mentioned earlier. We construct infinitely many pairs

Some results of this chapter are included in the following papers.

1. Manju K. Menon, A. Vijayakumar, The edge Cy graph of a graph,
Proceedings of the International Conference on Discrete Mathematics, Ra-
manujan Math. Soc. Lect. Notes Ser. 7 (2008), 245 - 248.

2. Manju K. Menon, A.Vijayakumar, The edge C4 graph of some graph
classes (communicated).

3. Manju K. Menon, A. Vijayakumar, Some domination parameters in
£4(G) (communicated).
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of non isomorphic graphs G and H such that E4(G) = E4(H).
We also prove that E;(G) has no forbidden subgraph charac-
terization. We include in this chapter, the relationship between
different types of domination numbers in G and those in E,(G).
We also study the conditions for E4(G) to be a special class of
graphs such as the threshold graphs, cographs, block graphs,

geodetic graphs, weakly geodetic graphs etc.

3.1 The edge C; graph of a graph

For any graph G, E4(G) is a supergraph of L(G). So E4(G) is
connected if and only if exactly one component of G contains
edges. It is well known [79] that the only pair of non-isomorphic
graphs having the same line graph is K;3 and Kj3. But we
observe that in the case of the edge C, graphs, there are infinitely
many pairs of non-isomorphic graphs having isomorphic edge Cj4

graphs. However we are yet to obtain such pairs of same order.

Theorem 3.1.1. There exist infinitely many pairs of non iso-

morphic graphs whose edge Cy graphs are isomorphic.
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Proof. Let G = K ,. If n = 2k—1, then take H = KpV(k—1)K;
and if n = 2k, then take H = 2K; V kK;. Clearly G and H are
pon isomorphic graphs. But E4(G) = Ey(H) = K,. O

In (8], Beineke proved the existence of nine forbidden sub-
graphs for a graph to be a line graph. But, we prove that there

is no forbidden subgraph characterization for E4(G).

Theorem 3.1.2. There is no forbidden subgraph characteriza-

tion for E«(G).

Proof. We shall prove that given any graph G, we can find a
graph H such that G is an induced subgraph of E,(H). For any
graph G, let H = G x K,. Then in E4(H), all the vertices of
the form uu’ where u is a vertex in G and ' is the corresponding
vertex in the copy of G used in the construction of G x Kj, will
induce G. For, if v and v are any two adjacent vertices in G,
uu' and vv’ correspond to adjacent vertices in Ey(H) as uu'v'v
forms a Cy in H. If w and v are any two non adjacent vertices

in G then uu’ and vv’ are non adjacent vertices in Fy(H). O

Theorem 3.1.3. For a tree T, E(T) = E(T°) if and only if
T s Kl: Py or .[\,1,3.
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Proof. Let E4(T) = E4(T°). f T is a tree having n vertices then
T has n—1 edges. But 7° has n(n—1)/2— (n— 1) edges. Since
Ey(T) = E4(T*°), both T and T° must have the same number of
edges.

Son(n—1)/2—(n—1)=n—-—1and hencen=1or4. Ifn=1,
T=Kyandifn=4,T=K;30r P

Converse is trivially true. a

3.2 Diameter, Radius and Center

In this section, we study the relationships between the diameter
and radius of G and those of F4(G). In [50], it has been shown
that for any graph G without isolated vertices, there is a graph
H such that C(H) = G and C(L(H)) = L(G). We prove a

similar result for E4(G) also.
Theorem 3.2.1. For a connected graph G, diam(G) — 1 <

diam(E4(G)) < diam(G)) + 1.

Proof. We shall first prove the inequality on the right.

Let diam(E4(G)) = k. Suppose that diam(G) < k — 1. Then
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for any two vertices v, and v, in G, dg(v1,v2) < k — 1. Con-
sider any two edges e; = v; — v; and e; = v; — v} in G. But
dg(v1,v2) < k—1. Hence in E4(G), dg,(c)(e1, e2) < dg(vr,v2)+1
< k, which is a contradiction to the fact that diam(E4(G)) = k.
Thus diam(E4(G)) < diam(G)) + 1.

Next let diam(G) = k. Suppose that diam(E.(G)) < k —
1. Let u and v be any two vertices in G and let u — o/, v —
v’ be any two edges incident with u and v respectively. But
dg,c)(ue',v') < k—1. So dg(u,v) < dg,y(uwe/,vv') + 1 <k,

which is a contradiction to the fact that diam(G) = k. O

Theorem 3.2.2. For a connected graph G, rad(G) — 1 < rad
(E4(@)) € rad(G) + 1.

Proof. Let rad(E4(G)) = k. If possible, let rad(G) < k — 1.
Then there exists a vertex ‘a’ in G so that dg(a,b) < k — 1 for
any vertex b in G. Consider an edge adjacent to a, say e,. Let
e = v; — vy be any edge in G.

de,6)(€q, €) < max{dg(a,v1),dg(a,v2)} + 1

< k—141 = k and hence e(e,) < k. Thus rad(Fs(G)) <
rad(G) + 1.
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Finally let rad(G) = k. Suppose that rad(Fy(G)) < k — 1.
Then there exists a vertex v’ in F4(G) such that e(un') < k—1.
Consider the vertex u in G. Let v be any vertex in G. Let vv/
be any edge incident with v. Then d¢(u,v) < dg oy (e, vv') +
1 < k, and hence e(u) < k, which is a contradiction to the fact

that rad(G) = k. O

Note: The bounds in Theorems 3.2.1 and 3.2.2 are strict.

If G is a bow, then diam(G) = 2, diam(E4(G)) = 3, rad(G) =1
and rad(E4(G)) = 2.

If G is Cy, then diam(G) = 2, diam(E4(G)) =1 and rad(G) = 2,
rad{Ey(G)) = 1.

Theorem 3.2.3. For any graph G without isolated vertices,
there exists a supergraph H such that C(H) = G and C(E;(H)) =
EL(G).

Proof. Consider G V 2K,. Let the Kys be a — ¢ and b — V.
Attach a” — a” to a — @’ such that o’ is adjacent to @” and a is

adjacent to a”. Similarly attach & — & to b — ¥ such that b is
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adjacent to b” and b’ is adjacent to ¥”. The graph so obtained
is H.

We have,

e(u) =2, if u € V(G).

=3, ifu € {a,ad,bV'}.

=4, if u € {a",a",b",b"}.

Hence C(H) = G.

Now, let uy,us, ..., 4y, be the vertices in G and z be any vertex
in Fy(H). Then,

e(z) = 2,ifz € {uu;/u; isadjacent tow; in G, i,j = 1,2,...,m,i #
7.

= 3, if z € {au;, a'u;, bu;, ¥u},i = 1,2, ...,m.

=4, if z € {a'a", aa” bV, bb"  a"a" H'b"}.

Hence C(E4(H)) = E4(G).

INlustration: If G = P, then H is
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3.3 Some domination parameters in

E4(G)

In this section, we study the relationship between different types

of dominations in G and those in E4(G).

Theorem 3.3.1. For any graph G with out isolated vertices,
there exists a dominating set in G corresponding to any dom-
inating set in E4(G). Further for such a graph G, v(G) <
2v(E4(G)).

Proof. Let G be any graph having no isolated vertices. Then
corresponding to any component in G, there exists a component

in £,(G) and vice versa.

Let {e1 = v1v],ea = vqv}, ..., = v} be a dominating
set in Ey(G). Consider S = {vy, v}, v2, 05, ..., 0, vy }. Then S C
V(G). Let w be any vertex in V(G). Since G is a connected
graph, w must be the end vertex of an edge w — w/. But the
vertex ww’ in E4(G) is dominated and hence is adjacent to at

least one of the b vertices. Let e, be adjacent to ww' in E(G).
J
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Then in G, either e; is incident with w — w’ or e; and w — w’
are the opposite edges of some Cj. In both the cases, w is
dominated by v; or v.. Thus S is a dominating set of G and

hence v(G) < 2v(E4(G)). a

Note: Corresponding to any dominating set in G, there need
not be a dominating set in F4(G). As an example, consider the

following graph:

//
A
O
O
——0
\\

2
—
o
jan
o

Corresponding to the dominating set {«, b, ¢} in this graph, we

cannot find a dominating sct in its E,(G).

Corollary 3.3.2. For any graph G. 7, (G) < 2v(Ex(G))
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Proof. Let v(E4(G)) = k. Let a minimum dominating set of
E4(G) be {e1 = v1v], €2 = Vo, ..., € = Vv }. Let S = {vy,],
Vg, Vb, ...y Uk, Uy }. Then S is a dominating set in G by Theorem
3.3.1. Further, S allows a perfect matching and hence the result.

O

Corollary 3.3.3. For a connected graph G, v.(G) < 27:.(E4(G).

Proof. Let §' = {e1 = wnv),ea = vath,...,ex = vv;} be a
minimal connected dominating set in E4(G). Consider S =
{v1, v}, v2, ¥}, ..., vk, v} } In G, which is a dominating set in G by
Theorem 3.3.1. By the definition of E4(G), S is connected and

hence the result. a

Corollary 3.3.4. For a connected graph G, 7,,(G) < 2i,,(E4(G)).

Proof. Let i,(E4(G)) =kand §' = {e; = vyv}, ea = vath, ..., €, =
vkvy } be a minimal weakly connected independent dominating
set in E4(G). Since S’ is independent, no two ¢;s are adjacent.
Further since < S’ >,, is connected, for any e; in S’, e(e;) < 2 in
<8 >, Soin < § >, e; and e; are either adjacent or there
exists an ¢; ; which is adjacent to both e; and e;. Then in G, the

edge e;; is either incident with e;, e; or is opposite to e;, e; in
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some Cy. Consider S = {vy,v],va, V5, ..., Uk, V. }. In both these
cases, < S >,, is weakly connected. Also S’ is a dominating set

by Theorem 3.3.1. Hence the result. |

Corollary 3.3.5. For any connected graph G, v.(G) < 2v.(E4(G)).

Proof. Let S be a minimal total dominating set in F4(G). Let
S’ be the set of all end vertices of the corresponding edges in G.
Then N(S’) = V. For, consider any vertex v € S’. It is clearly
dominated by the other vertex v’ in S’ such that vv/ € S. Also
by Theorem 3.3.1, &' forms a dominating set for G. Thus N(S)

= V(G) and hence the result. a

Theorem 3.3.6. Given any two integers a and b, there exists
a graph G such that v(G) = a and v(E4(G)) = b. Further, if
a < 2b, there exists a connected graph G such that v(G) = a and
Y(E(G)) =b.

Proof. Case 1: b<a< 2b.

Consider Py, = {vy,v5...,v9}. Attach a pendant vertex to each
of vg;_1,4 = 1,2,...b. Then to cach vy; , 7 =1,2,...,a — b, attach
a pendant vertex. This is the required graph G. Then ¥(G)

=b+a—-b=a Alo, v(Ey(G)) = b since the sct of vertices
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{vgi—1v9i;t = 1,2, ..., b} is a dominating set of minimum cardi-

nality in E4(G).

For example, when a =4;b=3, G is

S N

Case 2: a < b.
Consider K, ,. Replace a pendant vertex of [; , by K;V(b—a+
1)K,. To all other pendant vertices of I; ,, attach a pendant
vertex. Let u; be the central vertex of K, and {vi, v2,..., 0.}
be the vertices attached to u;. Suppose that vh,v3, ..., v, are
respectively the pendant vertices attached to wvo,vs,...,v,. Let
Wy — Wy, Wy — Wy, ..., Wp—aqi1 — Wy_aqq De the b —a + 1 Kips
joined to vy. This is the required graph G. Then {vq,vs, ..., U}
forms a minimuin dominating set in G and hence y(G) = a. In
EAG), {wywi;i=1,2,...,b— a,v1Wp-ny1, %051 = 2,3, ...,a} is a
dominating set of minimum cardinality and hence v(E4(G)) =

b—a+1+a—-1=0.
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For example, when a = 5;b =6, G is

Case 3: a > 2b.

G is Py, o K together with a — 2b isolated vertices.

For examiple, when ¢ = 8;6=3, G is

S G0 0 G

g

Lemma 3.3.7. For any connected graph G, o E4(G)) < 8(G).
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Proof. Let a(E4(G)) = k and S = {ej, €3, ..., €1} be the max-
imum vertex independent set in E,(G). Consider the corre-
sponding edges in GG. Since ¢; and e; are not adjacent in S, the

corresponding edges in G are also independent. 0O

Theorem 3.3.8. For any connected graph G, diam(G) — 2 <
Y(Es(G)) < 28(G) — 1.

Proof. By Theorem 1.2.16, diam(E4(G)) — 1 < 7.(F4(G)). Us-
ing Theorem 3.2.1, we get the left inequality. By Theorem
1.2.17, v.(E4(G)) < 20(E4(G)) — 1. Then by applying Lemma

3.3.7, we get the right inequality. O

Note: In Theorem 3.3.8, the left bound is strict for P5 and the

right bound is strict for Kj 3.

Theorem 3.3.9. For any connected graph G, v(E4(G)) < 7 (G).
Further, equality holds if the edge domination of G is the effi-

cient edge domination.

Proof. Let S form a minimal edge dominating set in G so that
¥(G) = |S|. In E4(G), let S’ be the set of vertices correspond-

ing to the edges in S. Clearly S’ dominates all the vertices in
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E4(G). Hence v(Ey(G)) < ¥(G).

Let S = {e1, €2, ...,ex} be an efficient edge dominating set in G
so that v.(G) = |S|. Let S’ be any dominating set in E4(G).
Claim: |S’] > |5].

Suppose that e; € S’ dominates e¢; and e, in E;(G) where
I,m € {1,2,....k}. Since S is an efficient edge dominating set
in G, both ¢; and e,, cannot be adjacent with e;. So the only
possibility is that e; and e, are opposite to e; in some Cys in G.
But e; in G must be dominated by an edge e, € S. Even then,
S is not an efficient edge dominating set. Thus any dominating

set in F4(G) must have |S| clements. Hence the equality. O

Note: Even if v(E(G)) = v/(G) , the edge domination need

not be efficient. As an example, G = K ,,.

Corollary 3.3.10. For any graph G = (n,m), 7(E4(G)) < n/2.

Proof. Using Theorem 1.2.12 and Theorem 3.3.9, we get v(E4(G))
< |n/2) < n/2. But v/(G) = n/2 is possible only when n is even.
But, by Theoremn 1.2.13, for even n, v(G) = n/2 if and only if G
= Ky or Kyypn70. When G = K, or Ky, /0,72, E4(G) is complete
and hence v(F4(G)) = 1. d
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Notation 3.3.1. The graph C5; denotes the graph obtained
from a C3 and k copies of K3 by joining one end of each K, with
a fixed vertex of C3. The graph obtained from Cy by joining a

vertex of Cy with the center of S(K3 k) is denoted by Cy .

Corollary 3.3.11. If a connected graph G = (n,m) is a tree or
a unicyclic graph then v(E4(G)) = {n/2] if and only if G is one
of the following.

(1) subdivision of a star, (2) Cs, (3) Cz, (4) Cs k.

Proof. By Corollary 3.3.10, v(E4(G)) < n/2. So v(Esi(G)) =
|n/2] is possible only when n is odd. By Theorem 1.2.14 for any
tree of order n # 2, ¥'(G) = (n—1)/2 if and only if G is isomor-
phic to the subdivision of a star. If G is S(K1x), Y(E4(G)) = k.
By Theorem 1.2.15, for a connected unicyclic graph G = (n,m),
v (G) = |n/2] if and only if G is isomorphic to either Cy, Cs, Cy,
Cs i or Cyr. We have v(E4(Cy)) = 1, v(E4(Cs)) = 2, v(E4(Cr))
=3, Y(Ba(Csr)) =k+1, v(Es(Cyy)) = k+ 1. Thus the result
follows. 0O

Theorem 3.3.12. Let G be a clique dominated graph with o
dominating clique S. If every vertex v ¢ S is adjocent to at

least two vertices of S, then E4(G) is also a clique dominated
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graph.

Proof. Let S = {v1,va, ..., vt} be a dominating clique of a clique
dominated graph G. Let {ej, e, ...,e,} be the set of all edges
in the graph induced by S. Then the set of vertices S’ =
{e1, ez, ...,en} In E4(G) induces a complete subgraph by the def-
inition of E4(G). Also, S’ forms a dominating clique.

Let e, = v,v), ¢ S’ beavertexin Ey(G). lfzorz’ € {1,2,...,k},
then e, in E4(G) is dominated by S’. So let both v, and v, ¢ S.
But, both v, and v/, are adjacent to at least two vertices in S.
Let v, be adjacent to v; in S and let v, be adjacent to v;,7 # j
in S. Then v; — v; and v, — v, are opposite edges of some Cjy
in G and hence the vertex ¢, is dominated by S’. So &' is a
dominating clique in E4(G) and hence it is a clique dominated

graph. O

Note: The converse of Theorem 3.3.12 need not be true, as in

the case of G = K, o Kj.
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3.4 FE4(G) and some graph classes

Theorem 3.4.1. For a connected graph G, E4(G) 1s complete

if and only if G 1s a complete multipartite graph .

Proof. Let G be a connected graph such that F,(G) is complete.
We shall first show that G is a cograph and is paw-free. If G
contains an induced P, then the first and the third edges in P,
correspond to two non adjacent vertices in E4(G), and Ey(G) is
not complete. Further if G contains a paw as an induced sub-
graph then the pendant edge and the edge in the triangle of the
paw to which the pendant edge is not adjacent correspond to
non adjacent vertices in F4(G). Hence G is also paw-free. Thus
G is a paw-free cograph.

Claim: G is a complete multipartite graph.

If not, G is not a union of complete graphs. Then G con-
tains an induced P;. But, G is disconnected as G is a connected
graph. Hence G is a disconnected graph containing an induced
P; and so G has a paw, giving a contradiction. This proves the

claim.
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Conversely suppose that G is a complete multipartite graph.
Let e; and e; be any two edges in G. If they are not adjacent,
they are opposite edges of some Cy in G since G is a complete

multipartite graph. Hence F4(G) is a complete graph. d

Theorem 3.4.2. For a connected graph G, E4(G) is bipartite if
and only if G is either an even cycle of length greater than five

or a path.

Proof. If G is either a path or an even cycle of length greater

than five, then Ey(G) is bipartite.

Let E4(G) be a bipartite graph. Then it cannot contain odd
cycles. But if G contains a K 3 or a K3 then E;(G) contains a
Ks. E4(Cy) is K4 which is not bipartite. Since Ey(G) is fixed
for C,; n # 4, G cannot contain odd cycles. Hence E{G) is
bipartite only for the even cycles of length greater than five or

paths. 0

Corollary 3.4.3. For a connected graph G, E4(G) is a tree if

and only if G is a path.



88 Chapter 3. The edge C, graph of a graph

Theorem 3.4.4. Let G be a connected graph such that E4(G)
is a threshold graph. Then v(G) < 2.

Proof. We know by Lemma 1.2.5 that F4(G) is a threshold graph
if and only if dilw(E4(G)) = 1. Also dilw(E4(G)) = v(E4(G))
by Lemma 1.2.4. Then the theorem follows from Theorem 3.3.1.

d

Notation 3.4.1. The graph obtained from K, by attaching two
pendant vertices to the same vertex of K, is denoted by H in

the following Theorem.

Theorem 3.4.5. If G is a threshold graph then E4(G) is a
threshold graph if and only if G is {moth, H}- free.

Proof. Let G be a threshold graph. If G contains a moth graph
or H as an induced subgraph, then E;(G) contains a 2K, and

hence cannot be threshold.

Conversely, suppose that G is a {moth, H}-free threshold
graph. Since G is threshold, dilw(G) = 1 and hence v(G) = 1.

So G must have a universal vertex wu.
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If at most two vertices in N(u) are of degree greater than one,
then E4(G) cannot contain an induced 2K, Cy or Py.

Now, let k > 3 vertices in N{u) be of degree greater than one.
Claim: There exist three vertices ui,ug,uz € N(u) such that
the vertex uy is adjacent to v, and us.

If k = 3, this claim holds true. If k > 3, let uy, up, u3 and uy be
four vertices of degree greater than one in N(u) such that u; is
adjacent to uy and u3 is adjacent to uy4. Since G is threshold,
it cannot contain an induced 2K, and hence uz or u4y must be
adjacent to uy or uy. Let uz be adjacent to uy. Then uy, vy, us, u4
forms an induced P, which is not possible since G is threshold.
In this case, if uy4 is adjacent to uy, then G contains an induced
C, which is again not possible. Hence the claim.

Further, if u, and uz are adjacent, the vertex u can have at most
one more neighbor since G is H-free. In this case also E;(G) is
threshold since it is {2K5, Cy, Py}-free. On the other hand if uy
and uz are not adjacent, then since GG is moth-free, the vertex u
can have at most one more neighbor. In this case also F;(G) is

threshold. O

Note: If G is a connected graph such that E,(G) is a cograph,
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then v(G) < 4. This follows from Lemma 1.3.3 and Theorem
3.3.1.

Theorem 3.4.6. Let G be a connected graph. Then E4(G) is a

weakly geodetic graph if and only if G is {paw, 4-pan}-free.

Proof. If G contains a paw in which C3 = u;,us,u3 and a is a
pendant vertex attached to u;, then in Fy(G), d{auy, upus) = 2,
but they have two common neighbors u;u, and ujus. Similarly
if G contains a 4-pan in which C4 = uy,uq,u3,uq4 and a is a
pendant vertex attached to u;, then in Ey(G), d(auy, usuy) = 2,

but they have two neighbors ujus and wyuy.

Conversely, suppose that G is a {paw, 4-pan} free graph. If
G is an acyclic graph, there exists a unique shortest path joining
any two vertices in Fy(G). Thus E,(G) is weakly geodetic.
Next, suppose that G contains cycles.
If g(G) = 3 then G contains a C3 with vertices uj, ug, ua.
Claim: G is a cograph.
Suppose that G contains an induced Py = vy, vg, vz, vq. Let uy #

vy. Consider a shortest path uy,aq, a4, ..., ax, vy joining u; and
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v;. Since G is paw free, a; must be adjacent to at least one
more u;, i = 2,3. Proceeding like this, v; and then vy must be
adjacent to at least two u;s. This implies that vy and vy must
have a common neighbor among the u;s. Let it be u;. Then
v1, Uy, V9 form a Cj. Since G is paw-free, vz must be adjacent to
at least one of v; and u;. But, since vy, vy, v3,v4 is an induced
P,, v3 must be adjacent to u;. Then v, u;,v3 will form a C; in
G. Again, since G is paw-free, v, must be adjacent to u;. Now,
consider vy, uy, vy with the edge u; — v4. Since G is paw-free, v,
must be adjacent to vy or v, which is a contradiction. Thus G is
a paw-free cograph. Thus by Theorem 3.4.1, E;(G) is complete
and hence is weakly geodectic.

If g(G) = 4, then G contains a Cy = uy,uy,u3, uy. If G = Cj,
then E,(G) = K,. If therc exists a vertex v; in G which is
adjacent to u;, v; must be adjacent to uz also since G is 4-pan-
free. Similarly if there exists a vertex v, which is adjacent to
ug, v, must be adjacent to u,. If there exists a vertex v} which
is adjacent to v, it must be adjacent to both uy; and u,. Hence
G is a complete bipartite graph. Since ¢(G) = 4, G is paw-free.
Again by Theorem 3.4.1, E4(G) is complete, and hence weakly

geodetic.
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Finally, Let ¢(G) = k, k > 4. Let uy, ug, u3...,ux be a Cy in G.
Then E4(G) also contains a Cy. This C} is not a part of any
complete subgraph in E4(G) and hence b(Ey(G)) < k. Since G
does not contain any Cj, two vertices in Ey(G) are adjacent if
and only if the corresponding edges in G are adjacent. Thus
E4(G) cannot contain a b-cycle of length less than k and so
b(E4(G)) = k where k > 4. By Lemma 1.2.8, G is weakly
geodetic if and only if b(G) > 5. Thus E4(G) is a weakly geodetic

graph. O

Theorem 3.4.7. For a connected graph G, E4(G) is a geodetic
graph if and only if G is {Cay,,n > 2, 4-pan, (2n -1)-pan; n. > 1}-

free.

Proof. Let G be a geodetic graph. If G contains a 4-pan, there
exists more than one shortest path joining two vertices in Fy4(G)
as proved earlier. If G contains a Cy, = uy, ug..., Ug,, then ujus
and Un4qUp42 in F4(G) are connected by more than one shortest
paths and hence E4(G) is not geodetic. If G contains a (2n —1)-
pan in which Co,_1 = uy, us..., us,~, and a is a pendant vertex
attached to uy, then auy and w,u,4q in Fy(G) are connected by

more than one shortest path and hence E;(G) is not geodetic.



3.4. E4(G) and some graph classes 93

Conversely, assume that G is {4-pan, Cay,, (2n — 1)-pan}-
free. If G is an acyclic graph there exists a unique shortest path
joining any two vertices in F4(G) and hence is geodetic. So
consider the graphs G containing cycles.

Let g(G) = 3. Since G is paw-free, F4(G) is complete and hence
is geodetic. If g(G) = 4, E4(G) is complete since G is 4-pan-free
and thus geodetic. If g(G) = 2n — 1,n > 2, then G contains
a Copn_1 = Uy, Us...,Uop—1. If G = Coyyq, then Ey(G) = Cony
and hence geodetic. If a is a vertex attached to u;, since G is
(2n — 1)-pan-free, a must be adjacent to at least one more u;.
But this is impossible since g(G) = 2n — 1. Since G is Cy,-free,
9(G) # 2n, n > 2. Hence in all the cases, it follows that G is

geodetic. O

Theorem 3.4.8. If G is a connected graph, then E4(G) is a

block graph if and only if G is {paw, 4-pan, C,; n = 5}-free.

Proof. Let G be a block graph. If G contains a paw in which
Cs = uy, Uz, u3 and «a is the pendant vertex adjacent to uq, then
E4(G) contains a Cy = auy, uyuy, gz, U, which is not a part

of any complete subgraph. Thus H(E;(G)) < 4. Similarly if
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G contains a 4-pan, in which Cy = uy,us,u3,us and a is a
pendant vertex adjacent to wu;, then Fy4(G) contains a Cy =
auy, Uts, Uzlg, Uguq which is not a part of any complete sub-
graph and hence b{E;(G)) < 4. If G contains a C,,, n > 4, then
F4(G) also contains a C,,, n > 4. This C, forms a b-cycle and

hence b(E4(G)) < n and hence F4(G) is not a block graph.

Conversely, suppose that G is {paw, 4-pan, C,;n > 4}-free.
If G is an acyclic graph, then E4(G) cannot contain a b-cycle and
hence is a block graph. Now, consider the graphs G containing
cycles. Since G is C,,n > 5-free, g(G) = 3 or 4. But since G is
{paw, 4-pan}-free, E4(G) is complete as proved earlier and thus

is a block graph. O
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Figure 3.4.1

Theorem 3.4.9. If G is a connected split graph, then E4(G) is
a split graph if and only if G does not contain any of the graphs

shown in Figure 8.4.1 as induced subgraphs.

Proof. Let both G and E,;(G) be split graphs. Then by Lemima
1.2.9, both G and E4(G) cannot contain induced {2K>, Cy} and
no Cs. If G contains any one of the graphs shown in Figure
3.4.1, then E4(G) contains a 2K, which is a contradiction to the

fact that Ey4(G) is a split graph.

Conversely, suppose that G is a split graph which does not

contain any of the graphs shown in Figure 3.4.1 as induced sub-
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graphs.

Let G be a tree. Since G is a split graph, G cannot contain
P,,n 2 5 as an induced subgraph (Since 2K, C induced F;). If
G = P,,n < 5, then E4(G) is a split graph. If G is a tree other
than Py, and if there are more vertices in G, then the additional
vertices can be attached only to the mid vertices of Py. If ver-
tices are attached only to a mid vertex of Pj, then E4(G) is a
split graph. Since G is G,-free, vertices cannot be attached to
both the mid vertices of P,. If a split graph G is any tree other
than G; in Figure 3.4.1, then E4(G) is a split graph.

Let G be not a tree. Since G is a split graph, G is {Cy, Cs}
-free. Further, since G is 2K, - free, G is C,,, n > 6 - free. Hence
9(G) = 3 and ¢(G) = 3. Let ujugus be any Cs3 in G. If G = Cj,
then E4(G) = C; and hence is a split graph. So G contains
more than these three vertices. If more vertices are attached
to a unique vertex of the Cs, then F4(G) is a split graph. If a
vertex each is attached to any two vertices of the Cs, then also
E4(G) is a split graph. Since G is {G,, G3, G4} - free, the only
case remaining is attaching a single vertex to each of the u;s.

Then also E;(G) is a split graph. Hence the proof. O



Chapter 4

Dynamics of P3(G) and
Ey(G)

Graph dynamics deals with the study of convergence, diver-
gence, fixedness, periodicity etc of graph operators [66]. The
dynamics of both P3(G) and F4(G) are discussed in this chapter.

We have also included some results on their touching numbers.

Some results of this chapter are included in the following papers.
1. Manju K. Menon, A. Vijayakumar, Dynamics of the P3 intersection
graph, (communicated).
2. Manju K. Menon, A. Vijayakumar, The edge C4 graph of a graph,
Proceedings of the International Conference on Discrete Mathematics, Ra-
mamujan Math. Soc. Lect. Notes Ser. 7 (2008), 245 - 248.
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4.1 Dynamics of P;(G)

If G is the union of complete graphs, then P3(G) = ¢, the null

graph. So we do not consider such graphs in this section.

Lemma 4.1.1. Let G be a connected graph. If P3(G) is not
complete, then w(P3(G)) = w(G). Equality holds if and only if
G 1s one of the following.

1. G s a complete graph with two pendant vertices attached to

any two of its distinct vertices.

2. The graph G is as in figure 2(a) or 2(b):

DA <K

Figure : 2(a) Figure : 2(b)

Proof. Let w(G) = k. So consider a K, C G. Let the vertices
of the K}, be {uy,us, ..., ux}. Since G is not complete, K C G.
Let v € V(G) — V(K) be a vertex which is adjacent to ¢ ver-
tices u1,uy,...,us of K. Then the vertices of the form vu,u,;,

1<i<t, t+1< 7 <k forma Ky in P(G). But t(k — 1)
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> k—1 as proved in Lemma 2.3.1. If t(k—t) =k —1, thent =
lork—1.

Casel: t =k — 1.

Let v be adjacent to uy, us, ..., ug—1. Since P3(G) is not complete,
there must exist more vertices in G. Consider the case when
there exists a vertex w adjacent to some w;, i = 1,2,...,k — 1,
but not adjacent to wuy. If w is not adjacent to v, then vu;uy ;
i=1,2,...,k -1, wyv and wuu, will form a Ky, in P3(G).
If w is adjacent to v, then since v is adjacent to k& — 1 vertices
of K, w can be adjacent to at most & — 2 vertices of K. If w
is not adjacent to uz_q, then vuug ;1 = 1,2,...,k — 1, woug_,
and wuug, i = 1,2...k — 2 will form at least a Ky in P3(G).
Similarly if w is adjacent to uy, we can find at least a Kp,q in
P(G).

Therefore consider the case when such a w does not exist. Since
P3(G) is not complete, the vertex v must have a neighbor z hav-
ing an induced P3 which is independent of the u;s and v. Then
vt = 1,2, ..k — 1 and zvy;; 7 = 1,2...k — 1 will form at least

a Kiy1 in P3(G). Thus in this case, w(P3(G)) 2 w(G) + L.

Case2: t = 1.
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Let v be adjacent to u; alone. Since P3(G) is not complete,
there must exist an induced Ps; which is independent of u; and
v. Let there exist w adjacent to some u;s. If w is also adjacent
to u;, then there exists at least a Ki41 in P3(G). If w is adja-
cent to more than one vertex of Ky, then also at least a Ky,
is contained in P3(G). If w is adjacent to exactly one wu;, 1 # 1,
then w(P3(G)) = k except when k = 3 [But when k = 3, P3(G)
is complete]. This is the graph mentioned in 1 of the statement.
Now, if v or w has a neighbor, then w(P5(G)) > k. If more than

two vertices are adjacent to the u;s, then also w(P(G)) > k.

So consider the case when u;s have no neighbor other than v.
Since P3(G) is not complete, v must have a neighbor z having
an induced P; consisting of z but none of v or the u;s. In this

case also we can find at least a Ky in P3(G).

If t{(k —t) = k, then we get k = 4 and ¢t = 2. So let v be
adjacent to u; and us. Since P;(G) is not complete, it must
contain more vertices. If there exists a vertex w which is adja-
cent to v and if w is not adjacent to uq or ug, then w(P3(G)) > 4.

So consider the case when w is adjacent with v, uq, uy (w can
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be adjacent only to these two vertices of K4)]. Then the graph

is the graph shown in Figure : 2(a) of the Lemma.

For the graph G in Figure : 2(a), w(P3(G)) =w(G) =4. If we
join one more vertex to this graph, then w(Ps(G)) > w(G). Next
consider the case when w is not adjacent to v. Then w(P3(G))
> w(G) except when w is adjacent to both uz and u4. Then the

graph is the graph shown in Figure : 2(b) of the Lemma.

For the graph G in Figure : 2(b), w(P(G)) = w(G). As
in the above case, if this graph contains more vertices, then

w(P3(G)) > w(G). Hence the lemma is proved. O

Theorem 4.1.2. There are no Ps-periodic graphs.

Proof. If a graph G is Ps-fixed, then w(P3(G)) = w(G). From
Lemma 4.1.1, w(P(G)) = w(G) only for the above three types of
graphs. But, none of them are fixed under P;. Thus there does

not exist any graph with period one. Again, from Lemma 4.1.1,

w(P2(G)) > w(G). Hence P} (G) # P3(G) for any n > 1. 0

Remark 4.1.1. Since 1 - periodic graphs are fixed, it follows
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that there does not exist any P; - fixed graphs.

Theorem 4.1.3. If a graph G is Ps-convergent , then it is

P} (QG)-complete for somen 2 1.

Proof. Let G be a P3-convergent graph. If G is none of the three
graphs mentioned in Lernma 4.1.1, then w(P3(G)) > w(G). Thus
the clique size of the iterated graphs goes on increasing. So if G
converges, it converges to some complete graph.

If G is one among the three graphs mentioned in Lemma 4.1.1,
then by Theorem 4.1.2 P3(G) # G and w(P;5(G)) > w(G). This
indicates that in both the cases, the clique size goes on increas-
ing. Also we know that if PF(G) is a complete graph, then
PF*Y(G) = ¢. Hence if G converges, it converges to some com-

plete graph. O

Note: By the Theorem 4.1.3, it follows that all the Ps-convergent

graphs are P3-mortal graphs .

The following seems to be an interesting open problem.

Problem: Are there any Pj-divergent graphs?
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4.2 Dynamics of Ey(G)

In this section we study the dynamical properties of the edge Cj

graph of a graph.

Theorem 4.2.1. A connected graph G is FE4-convergent if and
only if G is P, K13 or Cp(n # 4).

Proof. The paths P, converge to ¢ since E}(FP,) = ¢. For K3,
E4(K1,3) = K3, EE(Kl,g) = K3, for n > 1 and hence K1,3 con-

verges to K3. All cycles except Cy arc Ey-fixed.

If G contains a vertex of degree > 3 |, then Fy(G) contains
K4 Then Kz C EXG), Kz C E3(G), Kyjos € E$(G) and so
on. Thus in the subsequent iterations the clique size goes on
increasing and hence G diverges. So if G is Ej-convergent, then
A(G) £ 3.

If G is a tree which is neither P, nor K 3, then K, is contained
in at least the third iterated graph and hence G cannot converge.
Next, consider the graphs which are not trees. If G is not a cycle,
then G contains a cycle with a pendant edge as a subgraph (need

not be induced). Then K, is a subgraph at least in the second
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iteration and hence in the subsequent iterations the clique size
will go on increasing and hence cannot converge. Also, Cy is not
convergent since E4(Cy) = K4 and in the subsequent iterations,

the clique size goes on increasing. O

Corollary 4.2.2. A connected graph G is E4-periodic if and
only if G = Cp,n # 4. The cycles Cp,nn # 4 have period one.

Proof. A graph G is convergent if and only if G is either peri-
odic or there is some positive integer n with E;"(G) periodic.
But from Theorem 4.2.1, the only E; - convergent graphs are
P,, Ki3,Ch;n # 4. But P, converges to the null graph and K 3
converges to K3. So it is easy to verify that the only periodic

graphs are the cycles C,,n # 4 and they have period one. O

Corollary 4.2.3. The transition number t(P,) =n, t (Ky3) =
1 and forn #4,t (C,)= 0.

Proof. The transition with respect to E; of a graph G is zero
if G is periodic and the smallest number n such that E}(G) is
periodic. E4(P,) = P,_1, E}(P,) = ® and hence t(P,) = n.
E4(Ky3) = K3, E3(K3) = E4(K3) = K3. Thust (K;3) = 1.
Since C,,,n # 4 are periodie, for n # 4, t (C,,) = 0. (]
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Corollary 4.2.4. For a connected graph G, E4(G) is a mortal
graph if and only if G is a path.

Theorem 4.2.5. If G is a tree then for E4(G), the only semibasins

are the paths and the only basins are P,,n < 4.

Proof. Let G be a tree. If G contains a K 3, then E4(G) contains
a K3 and hence Fy(G) € G. Also for any P,, E4(P,) = P,_1.

Hence, among the trees the only semi basins are the paths.

fG=P,,n =5 then A(GY) =n—2. If P, =v1,09,..., U,
then in E4(PS), d(v1vy,) is at least (n —3) + (n — 3) = 2n — 3.
Forn>52n—6>n—2. So Ey(PS) € P:. f G = P,;n <35,
then E,(PS) C Pt O

4.3 The touching number

In this section, we consider those graphs G for which the touch-
ing number is defined.

Theorem 4.3.1. For any graph G, tx(P3(G)) =2 8vtp(G), k =2 4
and t3(P3(G)) = 9 vti(G) for any k > 3.
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Proof. Let xy, s, ...,Tk, 1 be an induced Cy in G. Let y be a
touching vertex of this cycle which is adjacent to x; alone. Then
T1Z9T3, ToT3Ly, ..., Th—1LkT1, Tk L1, T2 forms a Cy in P3(G). Also
yT;x;41 and yr;xz;_y are two vertices in P3(G) such that yz; x4 is
adjacent to T;T;11Tit2, Tic1TiTit1, Ti-2Ti-1Ti, Tit1Tip2Tip3 and
yz;x;-1 are all adjacent to Z;2;41Ti10, Ti1L:Tit1, Ti-2Zi—1T; and
T;_3T;_2%;_1. All these eight edges are touching edges to the Cj

in P3(G). Hence t,(P3(G)) = 8 vt,(G), k > 4.

Again, let Cy = 11,9, ..., Tk, 1 be an induced Cy in G. If
y is a touching vertex of the cycle which touches z; alone, then
YT, Tiv1, Ti1%;Tip1 and yz;z;—; induce a C; in P3(G). Then
TiTi1Tiq2, Ti—2Z;1T; and Z;11Z;40%,43 are all adjacent to all

the three vertices of the C3 and hence the result. 3

Note: The bounds in the above theorem are strict.
If Gis 4 - pan, then, P3(G) = K. But, v£4(G) = 1; t4(P(G))
= 8; t3(P(G)) = 9.

Theorem 4.3.2. For any graph G, t,(E;(G)) > 2 t,(G). Fur-

ther if G contains Cy as a subgraph where either an edge or two
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consecutive edges of Cy are the edges of the C,, which determines

the touching number, then t,(Eq(G) > 2t,(G) .

Proof. Let a C, in G be x1,%3,....Zn, 1. Then 2129, zoz3, ...,
a1 is a Cp in Ey(G). If yx; is a touching edge in G, then F4(G)
contains two touching edges say yzr; — x;z;41 and yz; — ;_12;.

Thus t,(E4(G)) = 2 ta(G).

Let Cy = ajasaza, be a subgraph of G. Further, suppose that
the edge asa, is a touching edge in G . Then a,a4, azas, a1a, are
touching edges in F4(G). Hence t,(E,(G)) > 2 t,(G). The proof
is similar for the case when any two consecutive edges of Cy are

the edges of the C,, mentioned above. d

Note: The bound in the above theorem is strict.
For example, if G is k - pan, k # 4. Then t,(G) = 1 and
te(Es(G)) = 2.



Chapter 5

The wide diameter and

diameter variability

An interconnection network connects the processors of a par-
allel and distributed system. This can always be represented
by a graph, where each vertex represents a processor and each
edge represents a vertex to vertex communication link. For rout-
ing problems in interconuection networks it is important to find

short containers between any two vertices, since the w-wide di-

Some results of this chapter are included in the following paper.
Manju K. Menon, Daniella Ferrero, A. Vijayakumar, The wide diameter
and diameter variability of some graphs (in preparation).

109
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ameter tells us the maximum communication delay when there
are up to w — 1 faulty nodes in a network modelled by a graph
G. This is a consequence of Menger’s Theorem. In fact, the
maximum integer w such that there exists a non empty con-
tainer of width w between every pair of distinct vertices is the
vertex connectivity x(G). Indeed it is only interesting to study
1< w < k(G). In networks, communication is the critical issue
and the diameter of the graph is a measure of the transmission.
In fact the diameter of a graph can be affected by adding or
deleting edges. In [33], Graham and Harary studied whether
the diameter of hypercubes changed or not on increasing or de-
creasing the number of edges. The diameter variability arising

from the change of edges of a graph G is defined in [77].

5.1 The w-wide diameter

In this section we study the w-wide diameter of some graph
operators such as P3(G), E4(G) and L(G). We also include

results on the w-wide diameter of the join of two graphs.

Lemma 5.1.1. If there exists a container of width w between
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any two vertices in G, then there exists a container of width w

between any two vertices in P3(G).

Proof. Let there exists a container of width w between any two
vertices in G. Let ujusus and viv9vs be any two vertices in
P5(G). Then in G, between any u; and v;, ¢,j € {1,2, 3}, there
exists w internally vertex disjoint paths.
Consider u; and v;, 4,7 € {1,2,3} where u; and v; are non ad-
jacent vertices in G.
Claim: Corresponding to the vertex disjoint paths in C,,(u;,v;),
there exist vertex disjoint paths connecting u usus and v vous
in P(G).
For, if u; — vj41 —v; € Cylu, v;), then ujupus — vvj410; — V10203
is a path joining u usus and vivevs in P3(G). If u; —uq —v; €
Cu(ui,v5), then ujugus — uui1v; — v1v2v3 is a path joining
wjUpus and muveuz in P3(G). Let P = w; —ay — ap — ag —
.= ag-1 — v € Cyl(ui,v;). If P is an induced path then
U UU3 — UGy — ... — Ax—_2Qx—1; — V1V2V3 1S & path joining
uuguz and vy in P3(G). If P is not an induced path,
then consider the induced path w;, by, b, ..., by, v; joining u,; and

v; where by, b, ..., by € {ay1,a2,...,0r_1}. Then uyugus, ubibe,
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b1bobs, ....bm_1bmv;, v1vavz € Cyl(uyugus, v1v2us). Since we are
considering internally vertex disjoint paths between u; and v; in
Cuw(us, vj), all the corresponding paths joining u;uaus and vivavs
in P3(G) are internally vertex disjoint.

Now, consider the case when each u; is adjacent to each v;.
Then as in the above argument, we can find vertex disjoint paths
joining u usuz and vv,u3 in P3(G) corresponding to the vertex

disjoint paths in Cy,(u;, v;). a

Theorem 5.1.2. For a connected graph G with w > 1,
Dy (P(G)) € [(Dw(G) +1)/2] if Du(G) is even, and
Du(Py(@)) < [Du(G)/2] +1 if Dy(G) is odd.

Proof. Let D,(G) = I. Then there exists a container of width w
between any two vertices u and v in G which is of length . Let
uyusug and vyveu3 be any two vertices in P3(G). Then by Lemma
5.1.1, corresponding to any Cy,(us, v;); 4,7 € {1, 2,3} there exists
a Cy(uqugug, v1v9v3). Consider the C,(u;, v;) of length . Let
Ui, @1, @2, ..., a1—1,v; be a path of length ! in C,(u;,v;). This
corresponds to a path of maximum length in C,, (ujusus, v1vv3).
Clearly the maximum length occurs when u;, a1, as, ..., a1-1, v;

in Cy(u;,v;) is an induced path. Then ujuqus, w0102, axazaa,



5.1. The w-wide diameter 113

40506, ..., Qp—-20k-1Vj, V10203 in Cy(uiugus, v1v2v3) is of length
[(1+1)/2] if | is even and [I/2] + 1 if ! is odd. Hence the

result. 0

Lemma 5.1.3. If there exists a container of width w between
any two vertices in G, then there exists a container of width w

between any two vertices in E4(G).

Proof. Let there exists a container of width w between any two
vertices in G. Let e; = uyv; and ey = uyvy be any two vertices
in E,(G) and let u; # uy. Since u; and uy are any two ver-
tices in G, there exists a container of width w between them.
Consider that container Cy(uy,us). If u; — up is a member of
that container, then ey, ujuq, ey is a path joining e; and e; in
E(G). If ug — vy —ug € Cyu(uy, uz), then e, viuy, €2 is a path
joining e; and ey in Fy(G). Ifuy —a; —ap — ... —a — vy €
Cu(uy, ug), then ey, uyay,a1a, ..., 0509, €3 1 a path joining ey
and ey in Fy(G). Thus corresponding to the w internally dis-
joint paths in C,(uy, u2), there exist at least w internally vertex

disjoint paths between e; and e,. Hence the result. O

Theorem 5.1.4. For a connected graph G withw > 1, Dy (E4(G))
< Do(G) + 1.



114 Chapter 5. The wide diameter and diameter variability

Proof. Let D,(G) = k. Then there exists a C,(u,v) of length
k between any two vertices u,v € V(G). Let e; = u v; and
es = UV be any two vertices in E4(G) and let u; # uy. Then
by the Lemma 5.1.3, corresponding to the container Cy,(u;,ug)
in G, there exists Cy(e1,e3) in E4(G). Consider the path of
length k in Cy(uy,us). Let it be uy —ay —ag — ... — ag—y — us.
Then correspondingly there exists e, ujay, a1a9, ..., ag_1u2, €2 in

C.(e1, e2) which is a path of length £+ 1. O

Corollary 5.1.5. For a connected graph G withw > 1, D,,(L(G)
< Dy(G) + 1.

Theorem 5.1.6. If G1 = (n1,my) and Gy = (ny, ma) are any
two connected graphs having containers of width w; and ws re-
spectively between any two of its vertices, then there exists con-
tainers of width 1 < w < Minimum{w; + ng, ws + n1, 8(Gy) +

3(G2)} between any two vertices of Gy V Go.

Proof. Let u and v be any two vertices in G;. Then the container
of width w; between v and v in G, together with the u— v paths
of the form u — w; — v, where w; € G, give w; + n, internally
disjoint paths between u and v in G; V G,. Similarly, if © and

v are any two vertices in G5 then there exists wo + 1y internally
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disjoint paths between u and v in G; V G2. Now let u € G;
and v € G9. Then in G; V Gy, there exist paths of the form
u—u — v, where v is a neighbor of v in G; and v — v’ — v, where
v’ is a neighbor of v in G3. Thus in this case there exists at least

8(Gh) + 0(G2) paths between u and v. Hence the proof. a

Remark 5.1.1. For any two connected graphs G; and G, with

at least two vertices, Da(Gy V Ga) = 2.

5.2 The diameter variability of some
graph operators

In this section, the diameter variability of P(G), E4(G) and

L(G) are studied.

Theorem 5.2.1. For a connected graph G, 3(P3(G)) = §(G).
The equality is attained if and only if G is K, - {two independent

edges} for some k > 3.

Proof. Let uqusus be any vertex in P3(G). Then ujusus will have

the minimum degree when all the three «;’s in G have minimum
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degree 6(G) and further more the neighbors of u; and ujz are ex-
actly the same and all the neighbors of u, are from the neighbors
of uy and u3. Let the neighbors of u; and uz be wy, wy, ..., ws@)-1
and let the neighbors of u; be wy, ws, ..., wsg)—2. Further the in-
duced 3-paths in G will be the minimum if and only if wy, wy, ...,
we(c)-1 form a complete graph. Then, in P3(G), the only vertices
adjacent to ujusuz are ws(g)—1 U1, We(G)~1Uala, We(G)—1Willy; 1 =
1,2,...,6(G) — 2. Thus §(P3(G)) > 6(G).

Further §( P3(G)) = 6(G) only if the vertices of the graph are w;,
Uz, Us, Wi, Wy, ..., Ws)—1 as explained earlier. Then the graph

is clearly K, - {two independent edges} for some k > 3. O

Lemma 5.2.2. For any connected graph G, '(P3(G)) < d(P3(G))
< A(B(G)) € 3A*G)—TA(G)+4+3(A(G) - 1) - (A(G)-2)L.

Proof. Both the inequalities on the left are obvious.

Let ujuqug be a vertex in P3(G). Then uqusuz has the maximum
degree in P3(G) when u;, uy, uz and all their neighbors in G have
degree A(G). Then d{ujusus) < (A(G)—1HA(G)-1)+(A(G)—
D'+ (A(G) = 2)(A(G) = 2)' + (A(G) — 2)(A(G) - 1)+ (A(G) -
A(G) - 1) + (A(G) — 1)!

< 2(A(G)-1)2+2(A(GY - )+ (A(G) —2)(A(G) - 2)1+(A(G) —
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2)(A(G)-1)
< 3A%(G) — TA(G) + 4 + 3(A(G) = 1)! — (A(G) — 2)1. 0

Note: If G = (7, the bounds in the above lemma are strict and

the common value is four.

Theorem 5.2.3. For any connected graph G, D" (P3(G)) <
3A%G) — TA(G) + 4+ 3(A(G) — ) — (A(G) — 2)!, for any i.

Proof. The proof follows from Lemmas 1.2.10 and 5.2.2. d

Lemma 5.2.4. For any graph G, 26(G) — 2 < 6(E4(G)) <
A(EA(G)) < A%(G) ~ 1.

Proof. A vertex e = uv in E4(G) has minimum degrece when
both v and v in G have minimum degree §(G). Then, the
d(G) — 1 edges incident on u and the 6(G) — 1 edges incident
on v form 24(G) — 2 neighbors of e in E4(G), and hence the left

inequality holds.

Now, the maximum degree of a vertex ¢ = uv in Fy(G) occurs

when both 2 and v in G have the maximum degree A(G) and
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any edge incident on u and any edge incident on v are opposite
edges of some Cy in G. The A{G)—1 edges incident on u [among
the A(G) neighbors, u — v is omitted] and the A(G) — 1 edges
incident on v forms 2A(G) — 2 neighbors of e in F4(G). Now,
the maximum number of edges opposite to e in some Cy of G
is (A(G) — 1)%. Thus A(E4(G)) < 2A(G) — 2+ (A(G) —1)* =
A% G) —1.

Theorem 5.2.5. For any connected graph G, DV (FE4(G)) <
A*(G) =1 for any i.

Proof. For any connected graph G, D*(G) < x'(G) < A(G).

Hence the proof follows from Lemmas 1.2.10 and 5.2.3. ()

Theorem 5.2.6. For any connected graph G, DY (L(G)) <

2A(G) - 1).

Proof. For a connected graph G, A(L(G)) < 2(A(G)—1). Hence

the proof follows from Lemma 1.2.10. O
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5.3 The diameter variabiiity of some

graph operations

In this section, the diameter variability of the graph operations,

‘join’ and ‘corona’ of two graphs are studied.

Theorem 5.3.1. Let Gy = (ny,mq) and Gy = (na,my) be two
connected graphs such that at least one of them is not a complete
graph. Then DY (G1VG3) = ni(ng—1)/2—my+nz(ny—1)/2 -

moy.

Proof. 1f at least one of Gy, G5 is not complete, then diam (G1V
G,) = 2. So to decrease diam(G, V G») by one, we have to add
edges till both G; and G2 become complete graphs. So to make
G, a complete graph, we have to add n;(n; —1)/2—m, edges and
to make G5 a complete graph, we have to add ny(ng —1)/2—ma

edges. O

Theorem 5.3.2. If at least one of the two connected graphs
G, = (m,m) and Gy = (na,ma) is not a complete graph,

DTG,V Gy) = my + ma.

Proof. If at least one of G; and G, is not a complete graph, then
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diam(G, V G3) = 2. Even if we delete all the edges of G; and
G4 in Gy V G, the diameter of G; V G5 remain unchanged and

thus the result. O

Theorem 5.3.3. If both Gy = (n1,m1) and G2 = (ng, my) are
graphs having diameter more than two, then DTG,V G;) <
minimumi{ny,na}. If diam(G1) < 2 and diam(G,) > 2, then
DY Gy V G2) < my. If diam(Gy) € 2 and diam(G,) = 2, then
DY Gy V Gy) € mi(A(Ge) + 1). Finally if both Gy and G, are
complete graphs, then DTGV Gy) = 1.

Proof. If both G and G, are not complete graphs, then diam(GV
Gy) =2.

Let both G; = (ny,m;) and Gy = (ny,mg) have diame-
ter greater than two. Let minimum{n;,ny} = n;. Consider
a vertex u in (G5 such that there exists a vertex v in G, with
dg,(u,v) > 2. In Gy V Gy, if we delete all the edges of the form
w—, u € V(Gy) then dg,va,(u,v) is three and hence the di-

ameter of G; V G is increased by at least one.
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Now let diam(G;) < 2 and diam(G;) > 2. Consider the
vertices u and v in Gy such that dg,(u,v) > 2. In Gy V Gy, if
we delete all the n; edges of the form u — ' where v’ € V(Gy),
then dg,ve, (¢, v) = 3 and hence the diameter of G V G5 will be

increased by at least one.

Let diam(G;) < 2 and diam(G>) = 2. Choose a vertex u in
G2 having the minimum degree and with e(u) = 2. Let v be the
vertex in Gy with dg,(u,v) = 2. Let the neighbors of u in G, be
wy, W, ..., Wg. In G1V Gy delete all the edges of the form z — w;
and xr — u where z € G,. Then dg,ve, (v, x) = 3 and hence the
diameter of G, V Gy will be incrcased by at lecast one. Since the

degree of u is at most A(G3), the result follows.

Finally assume that both G; and G, are complete graphs.
Then diam(G1VGq) = 1. So if we delete any one edge in Gy VGa,

the diameter will be increased by one and hence the result. [

Theorem 5.3.4. For any two connected graphs G1 = (ny, my)
and Gy = (ng, my) with ny,ng > 1,

1. DGy o Gy) < mna(nyny — 1)/2 — nymg
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2. D+O(G1 (o) Gg) = nyMmsy.

3. D+I(G1 o Gg) =1.

Proof. For any two graph Gy = (ny,m;) and Ga = (ng, ms),

G, 0 Gy = diam(Gy) + 2.

1. In G; 0 Gy, if we make all the copies of G, a complete graph
then the diameter of G; o G, will decrease by one. For that we

have to add nyny(niny — 1)/2 — nym, edges.

2. In Gy o Gy, even if we delete all the edges in all the n,
copies of Gy, the diameter of G; o G remains unchanged and

hence the result.

3. Let u; and u; be the ¢** and j** vertices of G, with diam(G;) =
d(ui,uj). Suppose that u;; and u;; are two vertices in the *

and jt*

copies of GG respectively. In G; o Gy, if we delete an
edge u; — u; then d(u;,uj) = diam(G,) + 3 and hence the

result. O
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Theorem 5.3.5. If both G1 and G5 are complete graphs then

D"z(Gl OGQ) = (n1 +n1n2)(n1 +n1ng— 1)/2 — M) —N3Mg —N1MNso.

Proof. 1f both G; and G, are complete graphs then diam(G; o
Gy) = 3.

So to decrease diameter by at least two, any two vertices in
G1 0G5, must be adjacent. There are n, +mnin, vertices in G1oGy
and there are m; + nymg + nyng edges in G, o G,. Thus the

theorem. O
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List of problems

1. Characterize P; intersection graphs.

2. Characterize non-isomorphic graphs having isomorphic P;

intersection graphs.

3. If G is a Pj intersection graph, explain a method to find
H so that P3(H) = G.

4. Characterize all self complementary P intersection graphs.

323

Characterize graphs for which the FP; intersection graph
belongs to some special classes of graphs such as planar
graphs, perfect graphs, distance hereditary graphs, ptole-

maic graphs, split graphs, cographs etc.
6. Characterize P3 convergent graphs.
7. Are there any P3 divergent graphs?
8. Characterize Ey(G).

9. Characterize non-isomorphic graphs having isomorphic edge

C, graphs.
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10

11.

12

13.

14.

15.

Find non isomorphic graphs of the same order having iso-

morphic edge Cy graphs.

Characterize the graphs G for which diam(E4(G)) = diam
(G) — 1, diam(E4(G)) = diam(G) and diam(E,(G)) =
diam(G) + 1. Alsd characterize the graphs G for which
rad(E4(G)) = rad(G) — 1, rad(E4(G)) = rad(G), and
rad(E4(G)) = rad(G) + 1.

For any graph G, find a super graph H such that C(H) =
G and C(Ei(H)) = E{(G),i > 2.

Relationships between the k-path graph and the P inter-

section graph.

The w- wide diameter and the diameter variability of other

graph operators and graph operations.

The wide diameter D,,(P3(G)) for k(G) < w < k(P4(G)).
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List of symbols

[z]

lz]

b(G)
o(G)
C(G)
C,
Cu(u, v)
d(v)
diam(G)
dilw(G)
d(u, v) or de(u, )
D, (G)
D*(G)

D+0(G)

1

Smallest integer > x

Greatest integer < z

Bulge of G

Circumference of G

Center of G

Cycle of length n

Container of width w between v and v
Degree of v

Diameter of G

Dilworth number of G
Distance between v and v in G
w-wide diameter of G

The least number of edges
whose addition to G decreases
the diameter by (at least) &k
The maximum number of edges
whose deletion from G

does not change the diameter
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D¥(G) - The least number of edges
whose deletion from G increases
the diameter by (at least) k

Eor E(G) - Edgesetof G

e(u) - Eccentricity of u

9(G) - Girthof G

G* - Complement of G

G=H - (G is isomorphic to H

Gx H - Cartesian product of G and H

GVH - Join of G and H

GUH - Union of G and H

GoH - Corona of G and H

io(G) - Weakly connected independent
domination number

Kmn - Complete bipartite graph where m and
n are the cardinalities of the partitions

Kpyng.me - Complete multipartite graph with partite
sets of cardinalities ny, ng, ..., ny

K, - Complete graph on n vertices

L(G) - Line graph of G

m or m(G)

Number of edges of G
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Niv - Closed neighborhood of v

N(v) - Open neighborhood of v

nG - n disjoint copies of G

norn(G) - Number of vertices of G

P, - Path on n vertices

rad(G) - Radius of G

t(G) - Transition number of G

t.(G) - Touching number of G

VorV(G) - Vertexset of G

<V> - Graph induced by V

vt (G) - Vertex touching number of G

o(G) - Independence number of G

ap(G) - Vertex covering number of G

B(G) - Matching number of G

Y(G) - Domination number of G

%(G) - Independence domination number of G
7(G) - Total domination number of G
Y(G) - Connected domination number of G
Yor(G) - Paired domination number of G

Yi{G) - Clique domination number of G
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’Yw(G)

7'(G)
Ye(G)

6(G)
A(G)
(G)
'(G)
xX(G)
w(G)
®™(G)

Weakly connected domination
number of G

Edge domination number of G
Efficient edge domination
number of G

Minimum degree of vertices in G
Maximum degree of vertices in G
Vertex connectivity of G

Edge connectivity of G
Chromatic number of &

Clique number of G

nt" iterated graph of G under ®
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List of Graphs

Bow

N\
\

S
04’ k Paw or 3- pan
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Moth
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acyclic, 9
adjacent
edges, 8

vertices, 8

b-cycle, 11, 92, 94
basin, 19
bipartite graph, 12, 87
block, 14, 49

graph, 21, 25, 93
bow, 23
bulge, 11

cartesian product, 23
center, 10, 74

chord, 10

chordal, 10. 52

chromatic number, 11, 53

circumference, 9
clique, 10
dominated graph, 15, 84
domination number, 15
number, 11
closed neighborhood, 11
cograph, 21, 24, 25, 89
comparable, 14
complement, 12
complete
bipartite graph, 12
graph, 10, 53, 86
multipartite graph, 12, 86
component, 10
connected, 10
domination number, 15

container, 110, 113

143
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convergent, 19 edge Cy4 graph, 28, 70

corona, 23, 119 edge connectivity, 14

cut vertex, 14 efficient

cycle, 9 edge domination number, 17,
83

degree, 8

end vertex, 7

diameter, 10, 59, 72 Eulerian, 9, 25, 35

variability, 22, 115

) 1-factor, 9
Dilworth number, 14

. finite graph, 7
disconnected, 10

. fixed, 19
distance, 10

) ) fixed graph, 101
distance hereditary graph, 6

forbidden subgraph, 11, 50, 71
divergent, 19

dominating set, 14, 76 geodetic

domination number, 14, 58 graph, 21, 50, 92
girth, 9

2 graph, 7

convergent, 103

eriodic. 104 H - intersection graph, 29
periodic,

. H-free, 9, 51, 88
eccentricity, 10
cdge incident, 8

domination number, 17, 82 incomparable, 14
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independence number, 13, 58  moth, 23, 88

independent, 13
n-connected, 13, 27
domination number, 14
null graph, 8
induced subgraph, 9

internal vertex, 8 open neighborhood, 11
intersection graph, 17 order, 8
isolated vertex, 8 origin, 8

isomorphic, 12, 70
P; intersection graph, 27, 42,
iterated graph, 19
111

join, 23, 119 Py

k-clique, 11 convergent, 102

k-vertex cut, 13 divergent, 102

k-recular. 8 mortal, 102
Sl

periodic, 101
length, 9
cugtl k- path graph, 18
length of the container, 21 .
‘ paired
line graph, 17, 24
srap ’ domination number, 15

matching path. 9
number, 13 paw, 10
Menger’s theorem, 110 pendant edge, 8

mortal, 19, 105 pendant vertex, 8
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perfect
graph, 6, 20
matching, 9
period, 19
periodic, 19

proper vertex coloring, 11

radius, 10, 58, 72

self complementary, 12
semibasin, 19, 105
size, 8

spanning subgraph, 9
split graph, 20, 25
star, 12

subdivision, 23

subgraph, 9

terminus, 8

threshold graph, 20, 25, 88

total domination number, 15,

79

totally disconnected, 12

touching number, 19, 105
trail, 9

transition number, 19, 104
tree, 10, 49, 87

triangle, 10

trivial, 8

u — v cut, 14

u -~ v path, 9
unicyclic, 9, 26, 84
union, 23

universal vertex, 8

vertex
coloring, 11
connectivity, 13, 110
cover, 13
covering number, 13
hereditary, 11, 51

touching number, 19

w-container, 21

walk, 8
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weakly
connected domination num-
ber, 16
connected independent dom-
ination number, 16
geodetic, 21, 25, 90
wide diameter, 21, 110

width, 21, 110, 113
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