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Photoacoustic investigation of intrinsic
and extrinsic Si

Abstract. An open-ce!! configuration of the photoacoustic (PA) tech
nique is employed o determine the thermal and transport properties of
intrinsic Si and Si doped with B (p-type} and P (n-type). The experimen-
tally obtained phase of the PA signal under heat transmission configure
tion is fitted to that of theoretical model by taking thermal and transpot
properties, namely, thermat diffusivity, diffusion coefficient, and surfae
recombination velocity, as adjustable parameters. It is seen from the
analysis that doping and also the nature of dopant have a strong inf
ence on the thermal and transport properties of semiconductors. The
results are interpreted in terms of the carmier-assisted and phonon-
assisted heat transfer mechanisms in semiconductors as well as te
various scattering processes occumng m the propagahon of heat car+
ers. © 2004 Society of Photo-Optical Instr 1 Engineers.
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1 Introduction

Recently, thermal wave physics has become an active area
of research, particularly in characterizing the material
parameters.!~> The laser induced nondestructive and nonin-
trusive photoacoustic {PA) and photothermal methods are
widely used to lnveslxgate the thermal, transport, and opti-
cal properties of matter in all its different states.* The PA
technique has emerged as a very valuable tool for semicon-
ductor research, especially after the invention of lasers and
advanced 51gnal processing and data acquisition
systems.®~® Since the PA techmque can directly monitor the
nonradiative processes, it is widely used for the surface
characterization and mvesuganon of deep-level 1mpurmes
in semiconductors.”'® The thermal waves generated in the
coupling medium within the PA cell following the illumi-
nation of the sample with chopped optical radiation induce
density fluctuations in the sample and the coupling me-
dium, which can be detected using a mncrophone or piezo-
electric transducer.'®"’ The PA technique, using the heat
transmission configuration or the so-called open-
photoacoustic-cell (OPC) technique is found to be more
useful than that employing the reflection detection configu-
ration to evaluate the structural and transport properties of
the materials, especially in the low-chopping-frequency
range, 1216

Si is an extremely important semiconductor, which has
wide apphcanons in the electronic and optoelectronic
industries.!” The power-handling capability and the electri-
cal as well as electro-optical properties of these semicon-
ductors depend greatly on the thermal and transport prop-
erties of these materials. A large number of PA
investigations of the thermal, transpont, and optical proper-
ties on both direct-bandgap and mdlrect-bandgap semicon-
ductors have already been reported.'® 2% However, the very
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‘recent investigations show that the thermal and transpe

pcmes are substantially influenced by the dopmg oo
cexﬁratnon as well as by the nature of dopant?™ |t ws
alsi?reponed that doping can alter even the optical propr
ties such, AS the bandgap of the semiconductor devics
which, ha%; ‘Wide applications in the electronic and oplocks:
tronic:jndustries S especially from the device fabricates
point oﬁ:mem;a In this context, a more detailed invests
gation of the t,hcl_"inal and transport properties of intrinsic §
and the mﬂl,ggg‘ce of the nature of the dopant has g
al significance.

I fecuses on the measurement of te-
ies of intrinsic Si and Si dopd
I type). The thermal and trassm
properties, namely, thermal d]ffusmty, diffusion cocfi
cient, surface rccombmauol} élocity, and nonradiative &
combination time, are evaﬁfatetf’by fitting the experine
tally obtained phase under the heat trafsmésin
configuration to lhat of the théotet]
Pinto Neto et al."® ‘

2 Experimental Setup

Figure 1 shows a schematic view of the OPC emplogt
here. Optical radiation from an argon ion laser (Lics
5000 series) was used as the source of excitation, wha
was intensity modulated using a mechanical chopper (S
ford Research Systems SR 540) before it reached ix
sample surface. Detection in the PA cell cavity was mu
using a sensitive electret microphone (Knowles BT %
The phase of the PA signal was measured using duakpie
lock-in amplifier (Stanford Research Systems SR 81 &
all cases, the laser was operated at 80 mW with a suabiin
+0.5%, and the optical radiation was unfocused o aw!
the lateral diffusion of heat.
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smples used for the presefit ig estxgatlon were in-
Smd §i doped with B (p- type) and Si doped with P

i our semiconducting samples, we resort io the.

ipson model of Rosencwaig and Gersho (RG),

ich the pressure fluctuation 8P in the PA cell due,
: heatmg of the sample is given by the

,_e"" n
"l 2

}iTy) is the ambient pressure (temperature); 1y is
st of the gas chamber; o, =(1+)a,, whcre a,
o) ?=(1/p,) with g, as the thermal diffusion
athe gas with thermal diffusivity a,; © is the
imperature fluctuation at the sample-gas interface
nd w=27f, where f'is the modulation frequency.
of the PA cell used for this study is given in

ase of semiconductors, if we excite the sample
=gy greater than the bandgap energy, the heat
fmity and hence the temperature fluctuation © can
mhree processes, namely, thermalization, bulk re-
and surface recombination processes. The
mion component is due to fast intraband transition
) of the electrons in the conduction band.
ad surface recombination are due to nonradiative
ion of photoexcited carriers in the bulk and sur-
& specimen, respectively. Taking into account all
distinct processes, the expression of PA signal is

:dupo e—-1 [
¥ )!‘ 'Tg k.\' g, € CXP( s (T:)

fo, ( 1 N vT 5
:\; \ "3_ 72 o @
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The first term represents the thermalization component,
which dominates in the low-chopping-frequency range, fol-
lowed by the bulk and surface recombination processes.

In Eq. (), o.=(1+j)a,, a,=(mfla,)'?=(1/p,),
where u, is the thermal diffusion length of the sample, y
=[(1+jwr)/D7]\? is the carier diffusion coefficient, €
=E,/(hv), r=v/Dy, re=vo/Dvy, and F=1/(1+rg)(1
+r)e” (1=r)(1 —rg)e” ", where E_ is the bandgap en-
ergy; and Av is the incident energy; and v and vg are the
recombination velocity of photoexcited carriers at x=—/,
and x =0, respectively; D is the diffusion coefficient; and 7
is the nonradiative recombination time.

It is reported in Ref. 19 that the PA signal under the heat
transmission configuration for semiconductors in the ther-
mally thick (/,0,,2 1) region is essentially determined by
nonradiative recombination processes. Thus, the expression
for pressure fluctuation is given by

2efy PoF 1 vT
= +—, Q)
To/gl(_‘.D'yTag 0'_3—72 [

and in the experimental frequency range for which wr<1,
we can show that the phase of the PA signal is given by

T
b= +Ad, @)

lere

(aDlv)(wTgt1)
(aD)(1 — w7~ 1 —(wreg)®’

)

with £y (D/ a)—1] and a=(mf/a,)'?

We togksthermal diffusivity, diffusion coefficient, sur-
face recom%;nagq’ﬁ velocity, and relaxation time as adjust-
able paramefew d_, en we fitted the variable part of Eq.
(5) with the exﬁ&memally obtained phase angle A®.

F5 ‘*’—5‘«

4 Results and Dlscussnon

Figures 2, 3, and 4 repi'@sent the best theoretical fits to the
expenmentally obtame&*pba “of the PA signal for intrin-
sic Si and Si doped with “Bsng =1 respecnvely The fitting
procedure essent:ally follows the le;
dure developed using MATLAB:
ues of parameters obtained by the-fifting procedure for all
the specimens under investigatior:, The fitting analysis re-
sulted in the following accuracy of the fitted parameters:
thermal diffusivity, +2%, diffusion coefficient, =5%; sur-
face recombination velocity, +8%; and nonradiative re-
combination time, *+3%.

It is obvious from Table 1 that the thermal diffusivity
value of the doped samples is less than that of the intrinsic
sample. Thermal diffusivity is an important thermophysical
parameter, which essemxally determines diffusion of heat
through the specimen.?® The inverse of thermal diffusivity
is 2 measure of the time required to establish a thermal
equilibrium in systems for which a transient temperature
change has occurred. The reduction in the thermal diffusiv-
ity value of the doped samples can be understood in terms
% 3lhe phonon-assisted heat transfer mechanism in semicon-

le 1 contains the val-
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Fig. 2 OPC phase angle for intrinsic S¥
quency. The solid lines represents the data’
text.

ductors. For semlconductors having a carrier concentration
less than 10*cm™3, the contribution from electrons t5-Fat-
tice thermal conductwnty 1s small as compared to lhe corn-
tribution from electrons.?” However, phonon sca(temf'g

the key source that limits the performance of electronic ﬁd

optoelectronic devices. The addition of a dopant introduces:
scattering centers in the lattice, which, in tum, reduces the -

phonon mean free path. It was reported?® ecarlier that the
lattice thermal conductivity k is governed by lattice thermal
resistivity W through the relation k= 1/W=AT"". At con-
stant temperature, 4 is a parameter that decreases with dop-
ing. The lattice thermal conductivity (thermal diffusivity),
which is proportional to phonon mean free path, also de-
creases with the introduction of a dopant. Thus, the doped
samples show a reduced value for thermal diffusivity. We
also see from the table that, for a given doping concentra-
tion, the thermal diffusivity value of the n-type specimen is

301 — Theoretical fit
e Experimental
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Fig. 3 OPC phase angle for Si doped with B versus modulation

frequency. The solid lines represents the data fitting to Eq. (5) of the
text.
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Fig. 4 OPC phase angle for Si doped with P versus modulaion
frequency. The solid lines represents the data fitting to Eq. (5)of te
text.

greater than that of the p-type specimen. The impurity scat-
tering rate in the case of doped samples is proportional o
the mass difference between the atom in the host lattice and
the impurity atom. In the present case, the mass difference
between B and Si is greater than that of P and Si. Thus, te

P‘~d0ped Si results in a reduced value for thermal diffusivity
fgﬁ‘}a given dopmg concentration. In addition, in the case of
d*p-type specimen, phonons suffer large scattering fron
holes having greater effective mass as compared to
},Q?e n-type sample. Thus, the p-type B-dopcdSl
duéed value for thermal diffusivity in compar-
Si.
cient (D) is an important physical p
rameter, alons gh ombination time, because it derer
mines the distancs ayeled by the photoexcited carriesste:
fore their recombin Thus, the value of diffusion
coefficient greatly dependyzgn the scattenng processes sl
fered by the photoexcuetkmners An increase in scattering
centers due to dopmg %sglts pa decreased value of diff
sion coefficient. It is seemﬁem the values obtained for te
diffusion coefficient that under the present expcnmctm!
condition, it is not the ambipplardiffu:
the diffusion of minority camers% essentially determines
the PA signal. This also implies“that:for the laser pows
used in the Dpresent investigation, the populauon of phoio
excited carriers is less than that of the carrier concentrabos
of the samples used here. The diffusion coefficient is
rectly proportional to the mobility of the carriers through
Einstein’s relation D=(ukgT)/e, where u and e are i
mobility and the charge of the carriers at a particular tem-
perature T, and kg is the Boltzmann constant.?’ Thus, te
doping reduces mobility and hence the value of the diff
sion coefficient. It is also seen from the table that the &
fusion coefficient of the n-type specimen is less than thalof
the p-type sample. This is because in the case of ntyp
sample, the minority carriers are holes, which have v
mobility due to its greater effective mass as compared% '
&ctmm in the p-type specimen. ‘
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Table 1 Thermal and transport properties of intrinsic and doped Si.

| Thermal Diffusivity (cm?s™")  Diffusion Coefficient (cn?s™")  Surface Recombination Velocity (cms™")  Relaxation Time (s)
0.882 15 446 5% 1078
0.815 10.6 632 9x 1077
0.846 10.1 536 2%x10°%

wrface recombination velocity has great impact on
ance of electronic and optoelectronic devices.
ftion of a dopant has a sggmﬁcant effect on surface

jna oexcited carriers. It
poted earlier that the surface rg:mﬁmnanon velocity
mconductors increases mfh mcpease in doping

wion velocity of the doped samplés is greater than
be intrinsic sample. This can be understood from
ot 3= ov N (Where o is the capturé ¢ross sec-
te photoexcited carriers, vy, is the thermal velocity
piexcited carriers, and Ny is the number of trap-
mirs per unit area) that the surface recomti‘iq-ati
J upropomonal to the density of surface trapping

wiich agrees well with the present experimental ob-
w However, for a given doping concentration, the
mombination velocity is proportional to the ther-
ity of the photoexcited carriers, and thus, it has an
nlation with the square of effective mass of photo-
umiers. In the case of the p-type specimen, the
amers are electrons with lower effective mass.
wrface recombination velocity of photoexcited
a3 j-ype material is greater than that of an n-type

ganistive recombination time of semiconductors
important physical parameter, which ulti-
es the quantum efficiency of light sources
materials. The nonradiative lifetime 7, is
lifefime 75 through its relation with ra-
1,, given by l/7p=(1/7,)+(1/7,,). The to-
lative recombination time depends on various re-
M mechanisms such as the direct nonradiative
mechanism, the Shockley-Read-Hall recom-
mechanism, etc.® In the case of indirect-bandgap
ors such as Si, nonradiative recombination is
process, whereas in direct-bandgap materi-
Je(aAs; the radiative recombination process is the
i rcombination mechanism of photoexcited car-
e, the evaluation of the nonradiative recombina-
§(Si and the study of the influence of doping on
recombination time have great physical
ially with respect to the design and fab-
ices. The nonradiative recombination
related to the thermal velocity of the pho-
ers as well as to the number of scautering
mugh the expression 7, = /Ny 0. The intro-
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duction of a dopant increases the scattering centers in the
specimen, which, in tum, results in a decrease of nonradi-
ative recombination time, as observed in the present inves-
tigation. However, for a given doping concentration, the
nonradiative lifetime is inversely proportional to the ther-
mal velocity of minority carriers. Hence, in the case of the
n-type specimen, where the minority carriers are holes with
lower thermal velocity due to their greater effective mass,
we see a higher value for nonradiative recombination time
as compared to a p-type specimen, as observed in the
present measurement.

5 Conclusion

We demonstrated the effectiveness of the PA technique in
general and the OPC technique in particular to study the
influence of doping on the thermal and transport properties

.. of semiconductors. The thermal and transport properties of
T introduction of a dopant results in an increase .

mber of trapping centers for photoexcited carriers .
wmsequent increase in surface recombination ve-

intrinsic Si as well as Si doped with B and P were studied
ing the thermal wave transmission technique. Thermal
| transport properties such as thermal diffusivity, diffu-
sion goefficient, surface recombination velocity, and nonra-
diative recombination time were evaluated by fitting the
experimentally obtained phase to that of the theoretical
model. Ftom the analysis of data, it is obvious that dopmg
gre thermal and transport properties of semi-
conductogs it ngﬁcam manner. The nature of the dop—
ant also aftejs properties in a considerable way. It is
seen from thesénalysis that the doping decreases the ther-
mal diffusivity va Be of semiconductors, whereas the varia-
tion of transport pi mpq@és depends on the nature of dopant.
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