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Realisation ofa Target Classifierfor Noise Sources in the Ocean

CHAPTERl

INTRODUCTION

Sonars, which are devices for remotely detecting and locating objects

underwater, play a key role in ocean research. Since its introduction

during the early half of the 20th century, it has been undergoing various

evolutionary stages and has remained as one of the priority areas of

research in developed, developing as well as underdeveloped countries.

Sonar uses sound propagation underwater, to navigate, communicate or

detect other vessels or targets of interest. This chapter touches upon the

different types of sonars and various noise sources in the ocean as well as

the need and requirement of a classifier for identifying them. The

underlying principle of operation of the proposed classifier, which

involves extraction of the various spectral, cepstral and bispectral features,

is also briefly introduced in this chapter.

The study of underwater sound or hydro-acoustics, has gained

considerable significance due to its strategic as well as commercial

importance. Sonars, which are devices for remotely detecting and locating

objects underwater, play a key role in ocean research.

1.1 Definition ofSonar

The term "SONAR" is defined as the method or equipment that uses

underwater sound propagation to explore the presence, location or nature of

objects in the sea. It is an acronym for "SOund NAvigation and Ranging"



Chapter 1 Introduction

and uses sound propagation underwater, to navigate, communicate or detect

other vessels or targets of interest.

1.2 Types ofSonar Systems

Sonar, which can be used as a means for the detection and

localization of underwater targets, can be classified into two broad

categories:

• Active sonars are devices that, generate sound waves of specific,

controlled frequencies, and listen for the echoes of these emitted

sound signals returned by remote objects underwater.

• Passive sonars are essentially listening devices that record the

sounds emitted by the objects underwater. Such devices can be

used to detect seismic occurrences, early warning of ships,

submarines, torpedoes, etc. and marine creatures that emit

characteristic sounds of its own.

Modem naval warfare makes extensive use of both active and

passive sonars from various platforms like water-borne vessels, aircrafts

and fixed installations. The usefulness of active and passive sonar systems

depends on the characteristics of the target of interest. Although in World

War II active sonar was mainly used, with the advent of noisy nuclear

submarines, passive sonar was preferred for early detection and warning

applications.

1.2.1 Active Sonar

Active sonar, as illustrated in Fig.l.l, involves the transmission of

an acoustic signal which, when reflected from a target, provides the sonar

receiver with a basis for detection, estimation and localization of targets

2



underwater. A signal, in the form of a sound pulse. called ping, is emitted

and the wave then travels in various directions and hits the objects on its

propagation path.

......... Reflected Wave I
•

(
,
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\
./"

/
I

(

~
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!
i
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\
; \

I

/
I

I
\
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Fig. 1.1 Principle or Active Sonar

The incident wave is then reflected and some of the energy will

travel back to the transmitting system. The echo, alongwith other factors

such as the frequency, energy of the received signal, depth, water

temperature. etc.• will enable the sonar system to compute the position of

the target of interest. with vanishingly small errors.

Ping of acoustic signals generated using a Sonar Projector working

in conjunction with the signal generator, power amplifier and transducer

array, possibly with a beam former helps in target detection and estimation
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as depicted in Fig.1.2. Acoustic signals can as well be generated

underwater by other means such as detonation ofexplosives.

To estimate the distance of the target of interest, the time elapsed

between the transmission and reception of a signal is converted into the

range parameter using the velocity of sound. To measure the bearing,

Water surface

W ter borne scatterer

Fig. 1.2 Scenario using Active sonar

several hydrophones are used, which measure the relative time of arrival

(TOA) of the reflected signal to each, or by measuring the relative

amplitude of beams formed through beamforming, with an array of

hydrophones. Beamforming is a technique that is used to manipulate the

directionality, or sensitivity of a radiation pattern. When receiving a signal,

4



Realisation ofa Target Classifier for Noise Sources in the Ocean

it can increase the receiver sensitivity in the direction of the desired signals,

while it decreases the sensitivity in the direction of interference and

unwanted noises. The use of an array reduces the spatial coverage and

hence to achieve wider coverage, multi-beam systems are used. The echo

returns together with noise is then subjected to various types of signal

processing, which for simple sonars may be just energy detectors. It is then

presented to some form of decision device, which will interpret the signal,

within certain allowable tolerances. This decision device may be an

operator with headphones or a display, or in more sophisticated and fully

automated sonar systems, this function may be implemented by special

purpose tools/platforms.

The signal used may be of constant frequency or a chirp of varying

frequency. Simple sonars generally use the former with a filter, wide

enough to cover possible Doppler effects, while more complex ones

generally employ the latter technique. Military sonars often have multiple

beams to perform the surveillance of the entire space, while the simple ones

only cover a narrow area.

When single frequency transmission is used, the Doppler effect can

be utilized to measure the radial speed ofa target. The Doppler shift, which

is the difference between the transmitted and received frequencies, is

estimated and converted into a velocity term. Since Doppler shifts are

caused by either the motions of the receiver or target platforms, appropriate

correction terms deemed fit need to be taken into account to compensate for

the radial speed of the sonar platform. The use ofactive transmissions from

sonars, especially during war time, need to be analysed on the strategic

point of view. Active transmissions from such sonars will help the enemy

vessels, around the radiating sonar, to infer the clues as regards to the
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presence of active sonar, its transmitting frequency and its position making

use of the received acoustic levels.

Since active sonar platforms are very noisy, such sonars will not

allow target identifications with significant success rates. Thus, this type of

detection is used by fast platforms such as planes and helicopters and by

noisy platforms like surface ships, but rarely by submarines. When active

sonar is used by surface ships or submarines, it is typically activated very

briefly at intermittent periods, to reduce the risk of detection by the

enemies.

Depending on the number and position of the transmitters and

receivers, the active sonar operation can be classified as

o mono-static

o bi-static

o multi-static

When the transmitter and a receiver are in the same place, the

operation is called mono-static, while in bi-static, they are separated. When

more transmitters or receivers are used, it is refereed to as a multi-static

operation. Generally most sonars are used mono-statically with the same

array often being used for transmission and reception. In certain mono­

static system installations, if the platform is moving, it may be considered

as bi-static. Multi-static operation is preferred in active sonobuoy field

applications.

1.2.2 Passive Sonar

Passive sonar systems, unlike the active sonars, do not radiate any

signals. They detect the targets and perform estimations by analyzing the

sound signals emitted by the target itself, as illustrated in Fig. 1.3.

6
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Generally, the passive sonar which is quite frequently referred to as

listening sonar, has a much greater detection range than active systems and

helps in performing the identification of the targets, estimating the range

and bearing as well as tracking of targets. The noi;e generated by

mechanized objects underwater is made use of, for performing the target

detection. Once a signal is detected in a certain direction, referred to as

broadband detection, it is possible to zoom in and analyze the signal

received, referred to as narrow band analysis. Identification of the target is

made possible as every target generates its own characteristic noises and

Fourier Transform techniques can be used to analyze the various frequency

components in it.

Even though passive sonar is stealthy and very useful, performance

limitations arise as a result of the propagation loss and additive noise at the

receiver, Major limitations result from the imprecise knowledge of the

characteristics of the target emanations, and from dispersion in time and

frequency of target emissions by the undersea medium. Another use of the

passive sonar is to determine the target's trajectory by a technique referred

to as Target Motion Analysis (TMA), which will provide the target's range,

course, and speed.

1.1 Sonar Equations

The sonar equations establish the working relationships between the

effects of the medium, target, and equipment and they serve two important

practical functions. One of them is the prediction of performance of the

sonar equipment of known or existing design, while the other pertains to

the design ofthe sonar system.

7
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The prediction of the performance characteristics, mostly in terms

of detection probability, is achieved in sonar by the prediction of range ,

through the sonar parameter, Transmission Loss (TL). The equations are

solved for transmission loss, which is then converted to the range through

some assumption concerning the propagation characteristics of the

medium.

Tow Ship

Noise Target

Passive Listening
Towed Array

Fig. Error! No text of specified style in document.. I Scenario using Passive sonar

For tacklin g the sonar design problems, for a given range, the

equation is solved for the particular parameter, whose practical realisation

is likely to cause difficulty. For example, the equation can be solved for the

directi vity required, alongwith other probable values of sonar parameters,

8
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to yield the desired range of detection in sonar. After the directivity needed

to obtain the desired range has been obtained, the design continues with the

trade-offs between the directivity index and other parameters. The design is

finally completed through several computations using the equations and the

design engineers' intuition and experience.

1.3.1 Active and Passive Sonar Equations

The sonar parameters are referred in units of decibels relative to the

standard reference levels. Certain sonar parameters are determined by the

equipment, while some others are determined by the medium and the target

as detailed below.

• Parameters determined by the equipment

o Projector Source Level (SL)

o Self Noise Level (NL)

o Receiving Oirectivity Index (DJ) and

o Detection Threshold (OT)

• Parameters determined by the medium

o Transmission Loss (TL)

o Reverberation Level (RL) and

o Ambient Noise Level (NL)

• Parameters determined by the target

o Target Strength (TS)

o Target Source Level(SL)

In this context, it may be worth mentioning the fact that one of the

parameters on account of the equipment, viz. the self noise level cannot be

completely decoupled from the ambient noise level parameter determined

by the medium and as such these two parameters are essentially identical

and hence represented by the same notation.

Q



Chapter I introduction

A sound source, by appropriate means, produces a source level of

SL decibels at a I m. When the radiated sound reaches the target, its level

will be reduced by the transmission loss, and becomes SL - TL. Upon

reflection or scattering from the target of target strength TS, the reflected or

backscattered level will be SL - TL + TS at a distance of I m from the

acoustic centre of the target in the direction back towards the source. In

travelling back towards the source, this level is again attenuated by the

transmission loss and becomes SL - 2TL + TS. This is the echo level at

the hydrophone terminals. Turning now to the background and assuming it

to be isotropic noise rather than reverberation, the background level is NL.

This level is reduced by the directivity index of the transducer acting as a

receiver or hydrophone so that at the terminals of the hydrophone, the

relative noise power is NL - DI. Hence, at the hydrophone terminals, the

echo-to-noise ratio is SL - 2TL + TS - (NL - 01).

In sonar scenario, a decision will be made by the human observer

that a target is present, when the input signal-to-noise ratio is above a

certain detection threshold, DT, satisfying certain probability criteria, else

the decision will be made that the target is not present. If the target is

present, just at the point of detection, the signal-to-noise ratio will be equal

to the detection threshold, and hence the equation becomes SL - 2TL + TS

- (NL - DI) = DT. This is the active-sonar equation for the mono-static

case in which the acoustic returns of the target is back towards the source.

In some sonars, a separated source and receiver are employed and the

arrangement is said to be bi-static and in this case, the two transmission

losses, to and from the target, are not the same. Also in some modem sonar,

it is not possible to distinguish between DI and DT and it becomes

appropriate to refer to DI - DT as the increase in signal-to-background

noise ratio generated by the entire receiving system.

10
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For a reverberation background we will replace the terms NL - DI

by an equivalent plane-wave reverberation level RL observed at the

hydrophone terminals. The active-sonar equation then becomes

SL-2TL+TS=RL+ DT.

In the passive case, the target itself produces the signal by which it

is detected, and the parameter source level now refers to the level of the

radiated noise of the target at 1 m. Also, the parameter target strength

becomes irrelevant and as only one way transmission is involved, the

passive sonar equation becomes

SL-TL= NL-DI + DT.

1.4 Factors Affecting the Sonar Performance

The detection, classification and localization performance of sonar

depends on the environmental factors and the receiving equipment. In the

case of active sonars, the performance is also determined by the

transmitting subsystems, while the radiated noise characteristics also can be

a factor that influences the performance of the passive sonar.

1.4.1 Environmental Factors

Sonar operation is affected by variations in sound speed,

particularly in the vertical plane. Sound speed is lower in fresh water than

in sea water. The speed ofsound in water is affected by density, as well and

the density in turn is affected by temperature, dissolved molecules, usually

salinity, and pressure.

Ocean temperature varies with depth, and for depth ranges between

30 and 100 meters, there is often a significant variation in temperature,

11
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its target strength and for passive sonar the target's radiated noise

characteristics are the critical components that affect the sonar

performance. The radiated noise, in general, will consist ofan unresolvable

continuum of noise with superimposed or resolvable spectral lines on it, the

lines aid in classification. Echoes are also obtained from other objects in the

sea such as whales, wakes, schools of fish and rocks.

1.4.4 Other Noises

The ocean, as a propagation medium is full of interfering noise

sources such as machinery noise from the shipping traffic, flow noise, wave

noise, wind noise, noise from biologies and even intentional jammers,

which may interfere with the desired target returns and emissions.

1.5 Noise Sources in the ocean
The ocean environment includes a variety of noise sources, which

are of natural as well as manmade in origin. The general back ground noise

which has the contributions from all the oceanic noise sources is termed as

the ambient noise. The ambient noise has a broad frequency range and its

characteristics depends on a number of factors including climate, wind

speed, presence of aquatic organisms, etc .. The following sections briefly

examine the principal sources of ambient noises and their characteristics.

1.5.1 Natural Sources of Ambient Noise

The natural sources of ambient noise can be broadly classified into

the following categories:

• Hydrodynamic sources

• Thermal agitations

• Seismic sources

• Ice cracking

13
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• Biological sources

1.5.1.1 Hydrodynamic Sources

Hydrodynamic sources include a large number of sources which

generate noise due to various physical phenomena, including movement of

water itself due to winds, tides, currents etc.. Surface waves are a

predominant source of hydrodynamic noise and originate mainly due to

wind action and contribute to the low frequency noise spectrum. The

bubbles are yet another source from which hydrodynamic noise originates.

Another source, namely, turbulence is commonly formed in the ocean in

regions which are near to coastal areas, straits and harbours. Turbulence

can occur at the water-ocean floor boundary. at the sea surface and within

the water as well.

1.5.1.2 Thermal Agitations

The effects of thermal agitations of the medium determine a

minimum noise level for that medium. The minimum ambient noise level at

upper frequency limits of ambient noise data, around 20 to 30 kHz, are

mainly contributed by thermal agitations.

1.5.1.3 Seismic Sources

Various types of disturbances in the earth's crust (tectonic as well as

volcanic actions), can also contribute to the ambient noise in the sea. Even

if the sources of these types of disturbances are far away from the sea, those

high energy disturbances easily reach the oceans as compression waves.

The spectral characteristics of such noises depend on the magnitude and

range of the seismic activity, the propagation path, etc. It has been observed

that, in general, the spectral peaks due to the seismic activities occur

between 2 and 20 Hz, when the disturbances are waterbome.
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1.5.1.4 Biological Sources

The ocean serves as a habitat for millions of life forms, A large

variety of marine organisms like crustaceans, mammals and fishes are good

noise makers. Noise from such sources exhibit a wide frequency spectrum

from 10Hz to 100 kHz. The individual sounds are repetitive in nature and

of short duration. Generally, noise from various sources blend to form a

bewildering mix of noise.

1.5.1.5 Cracking of Ice

Shifting and breaking of ice is a prominent source of noise in the

ocean, especially in the Polar Regions. The noise originates from cracking,

grinding, sliding and crunching of ice bergs, and covers a wide range of

frequencies.

1.5.1.6 Other Sources

Spray of water droplets and hail constitute precipitation. It generally

contributes to the ambient noise at frequency above 500 Hz. At low wind

speeds, heavy precipitation can generate noise around 100 Hz. Rain also

contributes to the increase in ambient noise levels. Heavy rains are found to

cause an increase of about 30dB in the 5 to10kHz range of the noise

spectrum.

1.5.2 Manmade Noises

Various types of human activities also contribute greatly towards

ambient noise. The main sources include shipping traffic, seismic surveys,

oil and gas exploration / production, military operations, sonars. etc.

1.5.2.1 Shipping Traffic

Shipping traffic has been found to be a dominant noise source in the

oceans. It has been found that the non-wind dependent component of the
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frequency range from 10Hz to 1000 Hz is contributed mainly by ship

traffic noise. The effect is predominant at frequencies between 20 and 500

Hz. The degree to which shipping noise influences the ambient noise

depends on various factors like particular combination of transmission loss,

number of ships, class of ships and the distribution of ships. It has been

found that the effective detectable range for shipping noise in the open

ocean can be as high as 1000 miles or more.

1.5.2.2 Seismic Surveys

Seismic surveys are carried out in order to study the structure and

composition of geological formation of earth's crust and to detect the

presence of natural resources like hydrocarbon reservoirs. Such surveys are

carried out by directing high intensity, low frequency sound signals through

the earth's crust. The reflected signal is processed to get the required

information.

1.5.2.3 Oil and Gas Exploration / Production

Ocean beds have rich source of oil and natural gases. Noise is

generated during all phases of oil and gas production, including

exploration, pile driving, pipe laying, drilling and platform operations. The

noise thus generated may be impulsive or continuous.

1.5.2.4 Military Operations

With newer technologies and innovations which are being

developed in the Defence Research and Development Programs, military

operations are now-a-days becoming a major source of underwater noise.

Naval forces may conduct various experiments, test fire their equipments /

gadgets, etc., which could significantly disturb the ocean environment and

,.. ....ntrihute to short term changes in the ambient noise levels.
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The use of active sonars also contributes to ocean noise. Sonar

systems generally emit short pulses of sound which carries high energy.

Submarines and torpedoes are also significant noise sources. Moreover, the

explosives used in military tests and exercises can be a considerable source

of undesirable noise with typical source levels of 267dB in the frequency

band from 1 to 7 kHz.

1.6 Types ofUnderwater Noises

Various kinds of noises that are generated underwater can be

categorised into four groups, when viewed from the sonar signal processing

perspective. These are radiated noise, self noise, ambient noise and

reverberation noise.

Radiated noise constitutes the acoustic output of surfaced or

submerged vessels, weapons or machineries which can reveal the details of

the noise sources and as such this type of noise is important in target

classification / identification scenarios. Generation of radiated noise can be

attributed to propellers, machineries and hydrodynamic effects present in

the system.

The self noise mainly gets generated from the vibration of structural

parts induced by water flow and rotating as well as reciprocating

machineries. Those sources, viz. propellers, machineries and hydrodynamic

effects, which contribute to radiated noise also contribute to self noise.

Analysis has revealed that the spectrum of self noise has both line spectra

as welI as continuous spectra and has a steep negative slope at high

frequencies.
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1.6.1 Sources of Radiated Noise

The radiated noise generated from ships, submarines, oil platforms

etc. can be attributed as due to the following components.

• Machineries

• Propellers

• Hydrodynamic sources

1.6.1.1 Machinery Noise

The machinery noise generally originates from the mechanical

vibrations of the various parts of the vessel. The vibralions of the structures

are coupled to the sea, through the ship's hull or oil platform columns.

The causes for the machinery noise are the following

• Unbalanced rotating parts such 'lS motor armatures

• Repetitive discontinuities. E.g Gear teeth and armature slots

• Reciprocating parts. E.g. Co.npression in engine cylinders.

• Turbulence and cavitation resulting from the flow of fluids
through pumps, etc.

• Mechanical friction in machine parts

The machinery noise of the vessel generally contains a continuous

spectrum with strong line components. The line components are

contributed by the first three causes listed above, while the turbulence and

mechanical friction can give. rise to the continuous components

1.6.1.2 Propeller noise

When the propeller rotates in water, regions of low or negative

pressures are developed on the surface as well as at the tips of propeller

blades. The cavties thus produced give rise to minute bubbles, which when

collapse pror'uce sound. Thus the propeller noise originates outside the

hull, while the machinery noises are generated inside the vessel. Radiation
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patterns of propeller noise reveal that the radiation is not uniformly

distributed and has a directional pattern in the horizontal plane around the

radiating vessel.

1.6.1.3 Hydrodynamic Noise

This type of noise is generated by the fluctuating and irregular flow

of fluid past a physical structure, viz. the hull of the vessel. When the fluid

irregularly flows, pressure fluctuations arise which induce vibrations in

various parts of the vessel, or can be directly transmitted to the ocean.

Generally, the contributions due to the hydrodynamic noise are small, and

thus get masked by machinery and propeller noises.

1.7 Classifiers

One of the most notable requirements and objectives of sonar is to

extract the requisite features of the acoustic space time field from the

received signals or echoes and interpret these information legibly, precisely

and clearly, without having any ambiguity to the end user. The detection

and classification problems generally addressed by the sonar systems are

used to detect the presence of targets, by comparing the level of certain

statistics with the assumed or estimated statistics, and to classify the targets

adopting the joint concepts of estimation, localization and tracking.

Tracking of targets also help in extracting invaluable information on the

target dynamics. As an example, the information on the target dynamics

can be used to identify a school of fish from a freighter target or submarine.

In underwater scenario, it is a usual practice to analyze short term

data records as most of the noise signals, or processes of interest to a

passive sonar system will be very brief in duration and may have a time

varying spectra. These can be considered fairly stable only for short term
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data records. As an example, the moving noisy target or a moving receiver

platform can cause a time varying spectral responses due to Doppler

effects.

In listening sonar, targets are classified on the basis of the tonal

components or signatures present in the frequency spectrum of the noise

signals emanating from the targets using spectral estimation techniques. For

random signals with unknown features and characteristics, as in the case of

passive sonar systems, the noise signals emanating from the targets can be

assumed to be a Gaussian random process and can be received and

processed with suitable energy detectors. In such a scenario the receiver

may have a rough knowledge of the spectral bands occupied by the noise

signals. Noise power outside the expected spectral range can conveniently

be eliminated with the help of bandlimiting filters. Hence, in passive sonar,

classification is usually performed on the basis of the tonal components or

the signature patterns of the noise data waveforms emanating from the

targets by using the technique of template matching.

Fourier analysis approaches implemented in the form of discrete

Fourier transforms using Fast Fourier Transform (FFT) techniques were

widely being utilized for estimating the power spectral density of noise

emanating from underwater targets as well as signals buried in high noise

fields. Though the estimation of the power spectral density of deterministic

and stochastic processes usually employs FFT, which is computationally

efficient and yields satisfactory results for most applications, there are

several inherent limitations. Due to the implicit windowing of the data in

this conventional approach as well as the limitation in frequency resolution,

analysis of short data segments needs a better method. To improve the

spectral fidelity, alternative modem spectral estimation procedures are

used, based on the approach of fitting the measured data segments to an

20



Realisation ofa Target Classifier for Noise Sources in the Ocean

assumed model. Some of the approaches demand significant computational

requirements than the conventional methods. The performance of the

spectral estimator has to be analysed and a criterion for the selection of a

suitable spectral estimator depending on the signal types and data records

can be evolved.

The spectrum of any waveform consists of two components, the

slowly varying part, referred to as the filter or spectral envelope and the

rapidly varying part, referred to as the source or harmonic structure. These

two components can be separated by cepstral analysis. A more systematic

approach for computing the cepstral coefficients can be achieved by

estimating the Mel Frequency Cepstral Coefficients (MFCC), which is a

measure of the perceived harmonic structure of sound.

The techniques like power spectral analysis are found to have wide

applicability and are also robust and time tested. However, many signals,

especially those which are generated from nonlinear processes, can not be

properly analysed by second order statistical methods. Many of the

naturally occurring signals deviate from Gaussianity and linearity. Hitherto,

such signals were considered Gaussian or near Gaussian signals and

analysis were conducted, which has resulted in loss of valuable

information. For these reasons, higher order statistical methods have been

developed, which can handle non-Gaussian as well as nonlinear signals. As

the phase information is not available in the second order measures such as

the power spectrum and autocorrelation functions, it cannot identify non­

minimum phase signals and certain types of phase couplings, associated

with nonlinearities. Information regarding the phase couplings and

nonlinearities can be identified using bispectral estimation.
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A classifier system for identifying the noise sources in the ocean

using the spectral, cepstral and bispectral features extracted from the noise

emissions needs to be implemented for alleviating the inefficiencies in the

operator assisted classification system. Though signal analysis can be

carried out even in the time domain, most of the target specific signatures

are extractable from the frequency domain representation and its variants.

The process of feature extraction can be carried out through various signal

processing techniques, so that the raw data is transformed into new data

sets that can be used by the classifier for the purpose of system

identification.

1.8 Summary

This chapter throws light on the salient operational and functional

features of sonar systems and the various noise sources in the ocean,

highlighting the need and requirement of a classifier for identifying them.

The underlying principle of operation of the proposed classifier which

involves extraction of the various spectral, cepstral and bispectral features

is also briefly introduced in this chapter.
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CHAPTER 2

REVIEW OF PAST WORK

This chapter is devoted to the review of the research work reported in

open literature in the areas of underwater noise, spectral estimation,

cepstral analysis, bispectral estimation, target classification, etc..

Classification of targets centred around the statistical classifiers, expert

system classifiers, neural network classifiers, etc. have been reported and

the results of comparison of the different methods have also been

consolidated by various researchers. The target classification is also

achieved through energy detection as well as spectral modelling. The

functional and operational requirements of the classification systems in

use, alongwith the various target specific features as well as the feature

selection criteria required to be adopted for realizing the various state-of­

the-art classifiers such as the statistical classifiers, expert system

classifiers, neural network classifiers, fuzzy classifiers, sonar signal

processor based classifiers, etc. are highlighted in this chapter. This

chapter also covers the recent trends in the classifier implementation based

on the Hidden Markov Model.

2.1 Introduction

In modem Sonar systems, the dry-end comprising of the receiver

and the post processing modules performs underwater target detection,
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estimation, localisation, tracking and classification functions. The

detection and estimation procedures in sonar involve the computation of

various statistics for improving the overall performance of target detection,

localisation and classification capabilities of the end system, taking into

consideration all the undesirable propagation effects.

Upon judiciously selecting the characteristic features of a target, the

relevant features are combined to form a feature vector. In general, such a

feature vector forms the input to the classifier. Reports on classifiers based

on statistical as well as expert system concepts are available in open

literature. Though the results of such activities are reported, most of the

papers do not touch upon the implementation details and other related

issues to aid the researchers for the practical realisation of such a system. In

the area of sonar signal processor based classifiers, many research works

have been reported, both in the field of active as well as passive sonars.

Some studies even indicate the potential use of broadband sonar as a tool

for species and size classification offish and other marine species.

Yet another major contribution in the field of classification is

through the use of neural networks. There are literatures which give an

overview of the practical and potential application of neural network

models, viz. Hopefield Net, Multilayer Perceptron and Self Organizing

Feature maps. Classification schemes implemented using fuzzy logic

principles as well as algorithms typically used in pattern recognition

systems have also been reported. Of these, the most widely used classifiers

are the Neural Network (Multi-layer Perceptron), k-Nearest Neighbours,

Gaussian Mixture Model and the Bayes' Classifier.
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2.2 Characteristic Signatures ofTypical Ocean Noise

BertiIone and Killeen [1], investigated the noise from snapping

shrimp, which often dominates the ambient underwater noise environment

of warm, shallow waters, at frequencies ranging from 1 kHz to 200 kHz. It

is found that the conventional sonars perform poorly in this highly

impulsive noise environment, and there is a potential for significant

enhancements to detection performance using detectors that are tuned to the

non-Gaussian noise. The paper reports the general statisucs of band pass

snapping shrimp noise data collected from the Timor Sea and investigates

the performance of several generalized energy detectors (GEDs) for passive

band pass detection of characteristic random processes in the noise data.

A review on the various aspects of radiated noise, self noise and

ambient noise has been carried out by Gordon M. Wenz [2]. The review

addresses the objectives, accomplishments and basic challenges of

underwater noise research. The review also highlights the major problems

such as the noise measurements, noise reduction and prevention.

Carey [3] discusses the low-to-mid frequency (LMF) noise

characteristics, mechanisms and computations of basin noise based on the

breaking wave as a random source of sound. The ambient noise is seen to

be attributed as due to the bubble spray and splash produced by wind action

and breaking waves at higher frequencies. However, the cause of the low­

to-mid-frequency noise (10-500 Hz) remained a puzzle, since large bubbles

required to produce low frequency noise are not found at sufficient depths.

The LMF ambient noise measurements were often dominated by emissions

from ships and industrial activity, making observations of local noise

generating mechanisms difficult. Wave-wave interaction, wave-turbulence

interaction and the pressure fluctuations due to the turbulent boundary layer
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above the sea surface were all examined as LMF mechanisms but were

found to radiate insufficient sound levels. Breaking waves were found to

generate microbubble plumes and clouds, while radiating low frequency

sound. Recently, cumulative oscillations of these compact microbubble

clouds were shown to be responsible for generating LMF noise. Results

reported by Williams et al. in [4] seem to confirm the theory that the

Knudsen region of the ambient noise is produced by breaking waves even

at low sea states. It also shows that the main mechanism which produces

the noise is the free oscillations of the bubbles. It is concluded that the main

source of energy is the radial flow around the proto-bubble at the moment it

breaks away to form the actual bubble.

Tan Soo Pieng, et al. [5] describe the collection of ambient noise

data and the structured compilation of the collected information into a

useful database. The data collected spans a frequency range of 11 Hz to

8300 Hz. The data has been indexed and stored in a database and accessed

through a GUI. A brief summary of the data collected is presented in terms

of the power spectral density variations. The observed data is compared

with the 'classic' curves reported in open literature.

Potter and Delory [6] studied the ambient noise levels from

shipping and other human activities in Northern and Southern Hemisphere

sites and concluded that shipping appears to have raised the background

noise significantly throughout the Northern Hemisphere. Available

evidence and moderate extrapolation of known features of marine mammal

hearing leads to the conclusion that the total noise levels are likely to

adversely affect several species.

Pflug, et al. [7], investigated the stationarity and Gaussianity of

ambient shipping noise. To identify the time periods of non-stationarity in
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the noise, upto fourth moments are analyzed and the summing up of the

investigations indicate that the third order moments deviate from

Gaussianity more than the fourth order moments. It has been found that,

while shipping noise at the deeper waters appear to be somewhat non­

Gaussian during certain time periods, the shallow depth data appears

Gaussian.

A theoretical model for the prediction of ambient noise levels due to

cumulative oscillations of air bubbles under breaking wind waves has been

presented by Pavlo Tkalich and Eng Soon Chan [8]. The model uses a

budget of the energy flux from the breaking waves to quantify the acoustic

power radiation by a bubble cloud and derives good estimates of the

magnitude, slope, and frequency range of the noise spectra using the wind

speed or height of the breaking waves. In this model, it has been assumed

that the wind is the source of the Knudsen spectra only through the

mediation of breaking waves, which are themselves the sources of the

sound radiating bubbles.

A recent work by Wales et al. [9] present an evaluation of the

classical model for determining an ensemble of the broadband source

spectra of the sound generated by individual ships and propose an alternate

model to overcome the deficiencies in the classical model proposed by

Ross. The alternate model proposed here represents the individual ship

spectra by a modified rational spectrum where the poles and zeros are

restricted to the real axis and the exponents of the terms are not restricted to

integer values. An evaluation of this model on the source spectra ensemble

indicates that the rms errors are significantly less than those obtained with

the model where the frequency dependence is represented by a single

baseline spectrum. Furthermore, at high frequencies (400 to 1200 Hz), a

single-term rational spectrum model is sufficient to describe the frequency
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dependence and, at the low frequencies (30 to 400 Hz), there is only a

modest reduction in the nns error for a higher order model. Finally, a joint

probability density on the two parameters of the single term model based on

the measured histograms of these parameters is proposed. This probability

density provides a mechanism for generating an ensemble of ship spectra.

A model has been proposed by Gray and Greeley [10] for the

acoustic source strength of blade rate line tonal produced by merchant

vessels. These source strengths are based on observed cavitation time

histories of merchant vessels and limitations imposed by considerations of

propeller design procedures and ship vibration criteria. Relationships are

presented for the expected value of the blade rate source strength for ships

of different lengths, expressed both as a monopole source strength located

at a known depth below a free surface and as a dipole source strength that

describes the pressure radiated to the farfield. These relationships are based

on a small sample of merchant ship characteristics and are exercised for the

estimated population of ships at sea. This calculation yields a statistical

description of the distribution of source level and frequency of propeller

blade rate acoustic energy for the fleet ofsingle-screw merchant vessels.

Arveson and Vendittis [11] present the results of extensive

measurements made on the radiated noise of a bulk cargo ship, powered by

a direct-drive low-speed diesel engine, which is a representative design for

many modem merchant ships. The radiated noise data show high-level

tonal frequencies from the ship's service diesel generator, main engine

firing rate, and blade rate harmonics due to propeller cavitation. Radiated

noise directionality measurements indicate that the radiation is generally

dipole in form at lower frequencies, as expected. There are some departures

from this pattern that may indicate hull interactions. Blade rate source level

agrees reasonably well with a model of fundamental blade rate radiation
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previously reported by Gray et al., but agreement in blade rate harmonics is

not as good.

Observations obtained from a buoy moored near Alaska have been

presented by Hollinberger et al. in [12]. The buoy recorded the omni

directional ambient noise sound pressure level and wind speed. The

analysis shows that for a wind speed of about 5 knot, the measured ambient

noise level at 900 Hz lies well below the Knudsen curve for open ocean

wind generated noise. As the wind speed increases from 5-10 kn, the

measured noise level approaches Knudsen curve, and above 10 kn, the

measured ambient noise level matches the Knudsen curve.

Michel Bouve et al. [13] present a study of statistical modelling of

underwater noise using a Gaussian- Gaussian Mixture. Three underwater

noise samples are studied with emphasis on noise PDF modeling. The

results show that the snapping shrimp noise appears to be non-stationary.

The back ground noise is very close to Gaussian while the merchant ship

noise seems to be adequately described by a Gaussian-Gaussian Mixture.

The results of an experiment carried out to investigate the relative

importance of wind and waves as noise generators are given by Nichols in

[14]. Trials were carried out for 40 days to measure wind speed, wave

height and noise spectrum levels at three deep water sites. The results

suggest that breaking waves are likely to be a source of VLF ambient noise.

The non-Gaussian characteristics of ambient noise have been

examined by Webster in [15]. Signal processing algorithms optimized for

Gaussian noise may degrade significantly in a non-Gaussian noise

environment. A generic distribution suitable for modelling non-Gaussian

ambient noise has also been suggested.
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Huynh [16] demonstrates underwater mammal sound classification

using a novel application of wavelet time-frequency decomposition and

feature extraction using a Bienenstock, Cooper, and Munro (BeM)

unsupervised network. Different feature extraction methods and different

wavelet representations have been discussed. The system achieves

outstanding classification performance even when tested with mammal

sounds recorded at very different locations, from those used for training.

The results suggest that nonlinear feature extraction from wavelet

representations outperforms different linear choices of basis functions.

Certain fish sound recordings and marine mammal vocalizations are

available in the archives of certain web sites [17], [18]. Information on

some marine life forms like whales is given in [19]. This site also includes

few sound files and spectrograms of various sound sources.

2.3 Classes offeatures
The identification and selection of features play a crucial role in the

realisation of the classifier with acceptable success rates. A wide range of

features extracted from spectral, cepstral, and bispectral methods have been

used for implementing various types of classifiers such as statistical

classifiers, expert system classifiers, etc ..

2.3.1 Spectral Features

The methods and procedures that have been suggested for extracting

some of the vital spectrally decomposable features are reported in [20] ~

[40] and are briefly discussed below.

In [20], Chun Ru Wan et al. analysed the statistical property of the

power spectrum observations and developed a novel tonal detector by

optimally integrating the spectral inferences. The optimal detectors are
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derived by using the method of maximum likelihood hypothesis test. The

results from simulations and open ocean trial data have shown that the

proposed detectors have a promising role in detecting tonals.

Marple, in [21] presents a summary of several modern spectral

estimation methods. Most of the methods are explained in the context of

parametric time series modelling. Non parametric techniques discussed

include classical spectral estimation, autoregressive, ARMA, Prony,

Maximum likelihood, Pisarenko and MUSIC. The paper also throws some

light on current spectral estimation research trends.

Shin, F.B. [22], suggests methods to improve the detection

performance of passive emissions from quiet sources in littoral waters,

focusing on the full spectrum of the target signature. Various noise

emissions corrupted with ambient noise are analyzed and the results are

presented. A classify before detect algorithm is used, which takes

advantage of the microstructures present in the aquatics signature for

improved performance.

A detailed tutorial on power spectral estimation, periodograms,

random signals, fundamental principles of estimation theory, various

procedures for power spectral density estimations, etc. are discussed in

[23].

In [24], Hinich proposes a method for detecting an unknown

periodic signal in additive noise. The period is unknown, but the amplitudes

of the fundamental and the first (M - I) harmonics are known to be

nonzero. One application of such a method is the detection of a torpedo by

a submarine sonar system from the observed acoustic line spectrum

generated by the torpedo's blade motion.
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In the work reported by Cremona et al. [25], an approach of

Frequency Modulated Continuous Wave (FMCW) radar spectrum analysis

with the Auto Regressive parametric estimation is described. The proposed

method yields additional information compared to power spectra and a

more detailed signal characterization.

A method for estimating signal harmonics in the spectrum is

presented by Eftestol in [26]. The method's potential for discriminating

between cardiac rhythms organised to different degrees is studied using

features based on the signal harmonic frequencies and corresponding

amplitudes in a classification system. This study demonstrates that the

proposed method for estimating signal harmonics in the spectrum has

potential for discriminating between ECGs with different levels of

organization.

Ricardo S. Zebulum et al.[27] in their work investigate the

application of Artificial Neural Network in speech recognition. The

performance of a neural network based recognition system when using

different spectral analysis models has been compared and different sets of

coefficients, such as Autocorrelation and Mel cepstrum, have been

extracted. A hybrid system, combining the two different sets of coefficients

outperforming the other models, has also been described.

A comparison of different spectrum estimation techniques applied

to nonstationary signals has been carried out by Massino Aletto et al.[28].

The comparison examines applications in which spectral analysis is applied

to nonstationary signals. Different spectral analysis algorithms were tested

in order to compare their behaviour in detecting defined harmonic

frequencies. The results showed that the chirp-Z transform outperforms
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other techniques especially when a restricted frequency band has to be

analyzed.

Friedlander and Porat [29] present an iterative frequency domain

technique, based on minimizing the error between the smoothed sample

power spectrum and a spectral model, for estimating AR-plus-noise and

autoregressive moving average (ARMA) parameters. The estimation error

of this proposed technique, with less computational requirements than

maximum likelihood estimators, is found to be close to Cramer-Rao bound,

especially for long data records.

A new ARMA model has been proposed by Talkhan et al.[30] for

the power spectral density function of noisy random ergodic zero mean

discrete time signals in which, the residual power not covered by the AR

polynomial is represented by a limited order MA polynomial. The residual

power which is still not represented by the added limited order MA

polynomial has been minimized .. The proposed technique which is

computationalIy efficient has been validated and is found to consume less

storage space.

Qi Tian et al. [31] made an attempt to enhance the performance of

Split Spectrum Processing (SSP) in detecting multiple targets which exhibit

different spectral characteristics. An iterative procedure that combines

group delay moving entropy and SSP is proposed, whereby the multiple

targets are identified one at a time. It has been established that the proposed

group delay moving entropy technique can be used to select the optimal

frequency region for SSP, when detecting multiple targets. The dominant

target is subsequently eliminated using time domain windows, which

improves the detection of the remaining weaker targets.
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A high-resolution spectral estimation algorithm based on the

approximation to maximum likelihood criterion, has been proposed by

Luzin et al. [32]. Here, the structure of estimation filter comprises of two­

channels, of which the first channel corresponds to a measuring channel

like one of Capon's algorithm, while the second channel is used for taking

into account and compensating for the non-coherent white noise

components. The proposed two beam method allows the design of power

spectrum estimating devices having rather simple structure for real time

implementations.

A new method for simultaneously estimating a number of power

spectra has been suggested in [33]. It is required that a prior estimate of

each spectrum is available and new information is obtained in the form of

values of the autocorrelation function of their sum. The method is

compared with minimum cross-entropy spectral analysis and some basic

mathematical properties are discussed. Three numerical examples are

included, two based on synthetic spectra, and one based on actual speech

data.

The impact of the Fast Fourier transform on the spectrum of time

series analysis is discussed in [34]. It is shown that the computationally

fastest way to calculate the mean lagged products is to begin by calculating

all Fourier coefficients with a Fast Fourier transform and then to fast­

Fourier-retransform a sequence made up of a/+b/ (where arrib; are the

complex Fourier coefficients). The paper also discusses the raw and

modified Fouricr periodograms, bandwidth versus stability aspects, and the

aims and computational approaches to complex demodulation.

Arun [35] presents principal components algorithms for the problem

of fitting an ARMA model to a given segment of a sample sequence of a



discrete-time stochastic process, and uses the model to estimate the power

spectrum of the process. To reduce the effects of finite word length errors,

the authors have suggested balanced state-space parameterization of the

ARMA model, instead of the more popular difference equation

parameterization. Model identification is formulated as a problem of

selecting a partial state to approximately span an apparently large

dimensional information interface between the past and the future of the

process. Different criteria are used to measure the quality of the

approximation, and it leads to various Singular Value Decomposition based

principal components algorithms for the problem.

Existence ofan exact relationship between the maximum likelihood

method (MLM) and autoregressive (AR) signal modeling in

multidimensional power spectral estimation has been investigated by

Dowla and Lim [36]. For one-dimensional uniformly sampled

autocorrelation functions, Burg has shown a relationship between the

maximum entropy method and MLM spectral estimates. In this paper the

authors have shown a similar relationship between the MLM and AR

spectral estimates for m-Dimensional signals sampled uniformly or

nonuniformly,

Peretto et al. [37] describes power spectrum analysis and a periodic

signal estimation whose bandwidth is not limited by the mean sampling

time. The procedure relies on the evaluation of the input signal

autocorrelation function in different delayed time instants, located at either

equispaced or random time instants. A recursive random sampling process

in the time domain was used in order to avoid any bandwidth limitation due

to the sampling strategy in the evaluation of each autocorrelation function.

The signal power spectrum as well as its period can finally be estimated, if

the approximate value of the fundamental frequency is known.
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Amin [38] suggests a simple method that provides an access to a set

of sliding power spectra with different characteristics. The method is based

on the use of cascading-form realisation of the infinite impulse response

filter. The filter is employed as a time window to the data samples or their

lagged products depending on whether the frequency or the power

spectrum is of interest. The choice of the filter's poles and zeros, as well as

their cascading order, allows a direct access to a wide range of power­

spectrum estimators, each with different trade offs between temporal and

spectral resolutions.

The acoustic spectrum of a transiting aircraft, when received by a

hydrophone located beneath the sea surface, changes with time due to the

Doppler Effect. The traditional method for analysing signals, whose

frequency content changes with time is the short-time Fourier transform

that selects only a short segment of the signal for spectral analysis at any

one time. The short-time Fourier transform requires the frequency content

of the signal to be stationary during the analysis window; otherwise the

frequency information will be smeared by the transformation. Recently,

joint time-frequency distributions, which highlight the temporal localisation

of a signal's spectral components, have been used to analyse nonstationary

signals whose spectra are time dependent. In this paper Ferguson[39],

applied the short-time Fourier transform and the Wigner- Ville tirne­

frequency distribution to a time-series data from the hydrophone so that the

instantaneous frequency of the propeller blade rate of a aircraft can be

estimated at short time intervals during the aircraft's transit over the

hydrophone. The variation with time of the estimates of the Doppler-shifted

blade rate is then compared with the corresponding temporal variation

predicted using a model that assumes the sound propagation from the



airborne acoustic source to the subsurface receiver through two distinct

isospeed media separated by a plane boundary .

Omologo and Svaizer [40] report on the use of cross power

spectrum phase (CSP) analysis as an accurate time delay estimation (TOE)

technique. It is used in a microphone array system for the location of

acoustic events in noisy and reverberant environments. A corresponding

coherence measure (CM) and its graphical representation are introduced to

show TOE accuracy. Using a two-microphone pair array, experiments show

less than 10 cm average location error in a 6 m x 6 m area.

2.3.2 Cepstral Features

Automatic genre classification of music in audio format has gained

significant importance as, in addition to automatically structuring large

music collections, such classification can be used as a way to evaluate

features for describing musical content [41]. A comparison ofthe automatic

results with human genre classifications on the same dataset has been done.

The results show that, although there is room for improvement, genre

classification is inherently subjective and therefore perfect results can not

be expected from either automatic or human classification. The

experiments also showed that features derived from an auditory model have

similar performance with features based on met frequency cepstral

coefficients (MFCC).

Holmes et al. [42] describe the use of subword units based on

allophones with an allophone-dependent model structure, to improve

subword HMM (hidden Markov model) recognition performance when

using vocabulary-independent training. The new system is an extension of

an approach based on sub-triphone units called phonicles. The original
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system modelled major phonetic context effects, but did not take account of

context effects wider than one immediately adjacent phone or the

differences in duration and spectral complexity which exists between

different types of phoneme. The recognition system has therefore been

extended so that phoneme transcriptions are first converted to allophone

transcriptions. Each allophone is then transformed to a sequence of one or

more allophonicles, where different allophonicles can have different

numbers of states and one allophonicle may be shared across allophones.

Using a Mel cepstrum front end, isolated-word speaker-dependent

recognition experiments on six application vocabularies have shown

extremely good recognition performance for allophonicle models, with an

average error rate ofonly 0.3%.

A new algorithm of extracting MFCC for speech recognition which

reduces the computation power by 53% compared to the conventional

algorithm and has an accuracy of 92.93% has been suggested by Han et

al. [43]. By a reduction of only 1.5%, the number of logic gates required to

implement the new algorithm is about half of the MFCC algorithm, which

makes the new algorithm very efficient for hardware implementation.

A method for warping the frequency axis of cepstral coefficients in

a way analogous to the pre-processing performed by the human ear has

been described by Merwe and Preez [44]. The computation is a two-step

procedure in which the bilinear transform is used to represent the LPC

coefficients on a warped frequency scale. A warping constant determines

the degree of transformation. This results in an ARMA representation of

the filter transfer function. The second step determines recursively the

cepstral coefficients corresponding to this ARMA transfer function



Imai[45] reports a new technique for cepstral analysis-synthesis on

the mel frequency scale, the log spectrum on the mel frequency scale is

considered to be an effective representation of the spectral envelope of

speech. This analysis-synthesis system uses the mel log spectrum

approximation (MLSA) filter which was devised for the cepstral synthesis

on the mel frequency scale. The filter coefficients are easily obtained

through a simple linear transform from the mel cepstrum defined as the

Fourier cosine coefficients of the mel log spectral envelope of speech. The

MLSA filter has low coefficient sensitivity and good coefficient

quantization characteristics. The spectral distortion caused by the

interpolation of the filter parameters of two successive frames is small and

as such, the data rate of this system is very low. The same quality speech is

synthesized at 60-70 % of the data rates in the conventional cepstral

vocoder or the LPC vocoder.

New techniques for automatic speaker verification using telephone

speech based on a set of functions of time obtained from acoustic analysis

of a fixed, sentence- long utterance has been suggested by Furui [46].

Cepstral coefficients are extracted by means of LPC analysis successively

throughout an utterance to form time functions. The time functions are

expanded by orthogonal polynomial representations and, after a feature

selection procedure, brought into time registration with stored reference

functions to calculate the overall distance. This is accomplished by a new

time warping method using a dynamic programming technique. A decision

is made to accept or reject an identity claim, based on the overall distance.

Reference functions and decision thresholds are updated for each customer.

Results of the experiment indicate that verification error rate of one percent

or less can be obtained even if the reference and test utterances are

Subjected to different transmission conditions.
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Concentrating mainly on the signal processing and physical models

behind the algorithms used to classify ships by making use of the radiated

noise, the physical model for cavitation is expanded to include the losses by

acoustical radiation and the heat transfer from the vapor to the fluid by

Lourens [47]. Out of the five algorithms developed for estimating the

propeller speed, the performance of the three most promising ones are

judged with respect to the ratio of the expected value to the variance of the

estimator. A complete Bayes hypothesis test on second-order

autoregressive power density spectrum poles are then described for

determining the kind of propulsion a vessel uses. The nature of gearbox

noise is described and the cepstrum is proposed as a technique to detect this

kind of noise.

Xiong et al.[48] present a comparison of 6 methods for

classification of sports audio. For the feature extraction, the two choices of

MPEG-7 audio features and Met-scale frequency cepstrum coefficients

(MFCC) are considered, while for the classification the two choices of

maximum likelihood hidden Markov models (ML-HMM) and entropic

prior HMM (EP-HMM) are considered. EP-HMM, in turn, have two

variations, viz. with and without trimming of the model parameters. Thus

there exist 6 possible methods, each of which corresponds to a

combination. The results show that all the combinations achieve

classification accuracy of around 90% with the best and the second best

being MPEG-7 features with EP-HMM and MFCC with ML-HMM.

Eronen [49] has compared several features with regard to

recognition performance in a musical instrument recognition system. Both

rnel-frequency and linear prediction cepstral and delta cepstral coefficients

were calculated. Linear prediction analysis was carried out both on a

uniform and a warped frequency scale, and reflection coefficients were also
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used as features. The data base consisted of 5286 acoustic and synthetic

solo tones from 29 different Western orchestral instruments, out of which

16 instruments were included in the test set. The best performance for solo

tone recognition, 35% for individual instruments and 77% for families, was

obtained with a feature set consisting of two sets of meI-frequency cepstral

coefficients and a subset of the other analysed features. The confusions

made by the system were analysed and compared to results reported in a

human perception experiment

A vowel system identification using phonological typologies is

discussed in [50]. The phonological study of vowel systems shows that a

typology of the languages may be issued from the description of their

vowel system. The vocalic space has been modelled as a Gaussian mixture

and two algorithms, viz. LBG and LBG-Rissanen algorithms have been

used to estimate it. The success rate ofabout 75% has been achieved

Molau et al. [51] presents a method to derive Mel-frequency

cepstral coefficients directly from the power spectrum of a speech signal.

Omission of filter bank in signal analysis does not affect the word error rate

and it simplifies the speech recognizers front end by merging subsequent

signal analysis steps into a single one. It avoids possible interpolation and

discretization problems and results in compact implementation. The

frequency warping schemes like vocal tract normalization can be integrated

easily without additional computational efforts.

Molau et al.[52] describes a technique called histogram

normalization that aims at normalizing feature space distributions at

different stages in the signal analysis front-end, namely the log-compressed

filter bank vectors, cepstral coefficients, and LDA (local density

approximation) transformed acoustic vectors. Best results are obtained at
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the filter bank, and in most cases there is a minor additional gain when

normalization is applied sequentially at different stages. It is shown that

histogram normalization performs best if applied both in training and

recognition, and that smoothing the target histogram obtained on the

training data is also helpful.

Tyagi et al. [53] presents new dynamic features derived from the

modulation spectrum of the cepstral trajectories of the speech signal.

Cepstral trajectories are projected over the basis of sines and cosines

yielding the cepstral modulation frequency response of the speech signal. It

has been shown that the different sines and cosines basis vectors select

different modulation frequencies, whereas the frequency responses of the

delta and the double delta filters are only centred over IS Hz. Therefore,

projecting cepstral trajectories over the basis of sines and cosines yield a

more complementary and discriminative range of features. In this work, the

cepstrum reconstructed from the lower cepstral modulation frequency

components is used as the static feature. In experiments, it is shown that

these new dynamic features yield a significant increase in the speech

recognition performance in various noise conditions when compared

directly to the standard temporal derivative features.

Garcia et al. [54] presents the development of an automatic

recognition system for infant cry, with the objective to classify two types of

cry, viz. normal and pathological cry from deaf babies. Acoustic

characteristics obtained from the mel-frequency cepstrum technique and a

feed forward neural network that was trained with several learning methods

were used for this classifier and this resulted in a better scaled conjugate

gradient algorithm.
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Speech and music discrimination has gained much popularity in

recent years for efficient coding and automatic retrieval of multimedia

sources and Automated Speech Recognition (ASR). Mubarak et a/.[55]

present two novel features that can be concatenated with Mel frequency

cepstral coefficients, viz. the Delta Cepstral Energy (DCE) and Power

Spectrum Deviation (PSDev). Employing a Gaussian mixture model for

classification as a back-end to the system, a significant improvement in the

error rate was found using these features.

Black et al.[56] describe an algorithm for detecting and estimating

pitch in acoustic audio signals using the generalized spectrum (GS). A

performance evaluation of a GS-based and two classical, autocorrelation­

and cepstrum-based, pitch determination algorithms have been conducted

on a set of Wavetable synthesized musical signals. The experiment

performs the tasks of pitch detection and estimation. Pitch estimation

performance is presented in terms of gross pitch errors and mean-squared

fine pitch error. The pitch detection performance is evaluated by a receiver

operating characteristic analysis of the detection statistics. Results

demonstrate that the GS-based estimator generally performs worse than the

autocorrelation and cepstrum-based methods. However, the GS-based

method performed consistently better for the detection problem, especially

at low signal-to-noise ratio levels.

A study on the effectiveness of rnel-frequency cepstrum coefficients

(MFCCs) and some of their statistical distribution properties such as

skewness, kurtosis, standard deviation, etc. as the features for text­

dependent speaker identification is presented in [57] by Molla and Hirose.

Multi-layer neural network with back propagation learning algorithm is

used here as the classification tool. The MFCCs representing the speaker

characteristics of a speech segment are computed by nonlinear filter bank
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analysis and discrete cosine transform. The speaker identification efficiency

and the convergence speed of the neural network are investigated for

different combinations of the proposed features. The result shows that the

first MFCC degrades the identification competence and statistical

distribution parameters enhance the training speed of the neural network.

Automatic knowledge extraction from music signals is a key

component for most music organization and music information retrieval

systems. Nielsen et al. in [58], consider the problem of instrument

modelling and classification from the rough audio data. Two different

models on the spectral characterization of musical instruments have been

considered. The first assumes a constant envelope of the spectrum (i.e.,

independent from the pitch), whereas the second assumes a constant

relation among the amplitude of the harmonics. The first model is related to

the Mel frequency cepstrum coefficients (MFCCs), while the second to

harmonic representation (HR). Experiments on a large database of real

instrument recordings show that the first model offers a more satisfactory

characterization and therefore MFCCs should be preferred to HR for

instrument modelling/classification

Hung et al. [59], discusses the use of Weighted Filter Bank Analysis

(WFBA) to increase the discriminating ability of Mel Frequency Cepstral

Coefficients (MFCCs). The WFBA emphasizes the peak structure of the

log filter bank energies (LFBEs) obtained from filter bank analysis while

attenuating the components with lower energy in a simple, direct, and

effective way. Experimental results for recognition ofcontinuous Mandarin

telephone speech indicate that the WFBA-based cepstral features are more

robust than those derived by employing the standard filter bank analysis

and some widely used cepstral liftering and frequency filtering schemes

both in channel-distorted and noisy conditions
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2.3.3 Bispectral Features

Higher Order Spectral analysis as well as bispectrum concepts have

been described in [60] - [76].

An important task in underwater passive sonar signal processing is

the determination of target signatures based on the narrow-band signal

content in the received signal. To achieve good classification performance

it is important to be able to separate the different sources (e.g. engine, hull

and drive) present in the signature, and to determine the distinct frequency

coupling pattern of each of these sources. Lennartsson, et al. [60], attempt

to achieve these using bispectral techniques. Tt was found that the

hannonics that propagated through water are engine related at low speeds

and drive related at high speeds. The hull vibrations are only present at very

low speeds. Moreover, it is found that the normalized bispectrum measures

could provide additional coupling information not visible in the standard

bispectrum.

Raghuveer and Nikias in [61] provide a detailed study of parametric

estimation of bispectrum. Power spectrum estimation essentially contains

the same information as the autocorrelation and hence provides a complete

statistical description of a process only if it is Gaussian. In cases where the

process is non-Gaussian or is generated by nonlinear mechanisms, higher

order spectra defined in terms of higher order moments or cumulants

provide additional information which cannot be obtained from the power

spectrum. This paper concentrates on the third-order spectrum or the

bispectrum. The bispectrum of a third-order stationary process can be

defined as the double Fourier transform of its third moment sequence. It has

the important property of being identically zero for a zero-mean Gaussian

process and can thus be used to measure deviations from normality.
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Raghuveer and Nikias in [62], also describes the parametric method

for bispectrum estimation which is based on a non-Gaussian white noise

driven autoregressive (AR) model. A detailed overview of bispectrum and

parametric methods are presented. The paper proposes a parametric

approach to bispectrum estimation based on AR modelling of time series.

The definition and properties of a parametric bispectrum estimator in the

general ARMA case are also presented.

Regazzoni, et al. in [63] compare the spectral and bispectral

analysis techniques and investigate the acoustical underwater

communication problem in the low frequency range, up to I kHz, where the

shipping noise is dominant and expected to be non-Gaussian. Classical

detector performance is found to degrade in the presence of non­

Gaussianity. The results indicate that for detection and identification in

non-Gaussian environment, HOS based approaches are capable of

providing more robust and efficient results.

Another paper which tries to compare the effectiveness of classical

spectral analysis as well as modem techniques is given in [64]. The

objective of the paper is to ascertain whether passive sonar signals can be

classified on the basis of higher order statistics of their time series and

whether higher order statistics can have any additional classification

information that is not present in the power spectrum. The paper describes

the limitations of the conventional higher order spectra (HOS) and defines

new higher order spectra called Phase Only Spectra (POS). The studies

reveal that conventional HOS could provide no more information than is

present in the Power spectra. Higher order analysis should use pas to

extract additional information.
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Bispectrum estimation is found useful in detecting quadratic phase

coupling among sinusoids in noise, the phase measurements for non­

Gaussian processes, system identification, etc. When the given data records

are short, all known methods perform poorly in terms of resolution.

Raghuveer and Nikias in [65] presents a method called Constrained Third

Order Mean (CTOM), which can perform very well in detecting quadratic

phase coupling when the data records are short. The method proposes the

estimation of the parameters of an autoregressive (AR) model driven by

non-Gaussian White Noise (NGWN) by setting the sample mean of the

Third Order Recursion error process to zero.

Papadopoulos, et al. [66], suggest a method for transient signal

reconstruction using bispectral estimation techniques. The proposed

method is capable of reconstructing the transient signal in environments,

where the noise is coloured Gaussian with unknown autocorrelation

function. The method could out perform the conventional Prony's method

whereas the existing methods could not perform well in the presence of

significant additive noises.

In [67], Garth and Bresler re-examines many statistical tests for

stationary time series, formalizing the consistency requirements for the

component HOS estimators. The paper also proposes a new F-test statistic.

Studies are carried out on the detrimental factors in Hinich's test and

modify this test for coloured scenarios.

In [68], Grassia, et al. consider the statistical characterization of

non-Gaussian noise, with a particular reference to shipping underwater

noise. The bispectrum of sample data are analyzed using both parametric

as well as non-parametric methods to obtain useful phase instantaneous

infonnation applicable to classification and characterization.
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Nikias and Raghuveer [69] describe the bispectrum estimation in a

digital signal processing framework. Definitions and properties of

bispectrum is presented. Conventional Power Spectral estimation and its

limitations are discussed. General reasons behind the use of bispectrum in

signal processing are addressed. Both conventional and parametric models

of bispectrum estimations are explained. The paper also briefs various

applications of the bispectrum like detection of Quadratic phase coupling,

deconvolution, etc.

Hinich, et al. [70], describe the bispectrum estimation of a ship

radiated noise received using a towed array. The result shows that there

exist frequency dependent bispectral components in the ships radiated

noise. The ambient noise does not contain any significant bispectral

components. Since the existence of a nonzero bispectrum indicates the

presence of non-linear components in the noise source, it is estimated that

the ship generated noise contains non-linear components. The paper

suggests a means for differentiating between ship noise and at least some

other forms of ambient noise sources using bispectral analysis. Another

significant point to be noted is that the data used was in the narrow band (of

bandwidth 130 Hz) and the cavitation noise, which is expected to be a

major contributor of the shipping noise, was out ofband.

The bispectrum and bicoherence estimates of underwater acoustic

signals have been studied by Richardson and Hodgkiss [71]. The

properties of bispectrum and bicoherence are described. Bispectra of data

collected from a freely drifting swallow float is estimated. The results show

how the bispectrum can be used to detect non-Gaussianity, nonlinearity and

harmonic coupling. Special stress is given in determining whether the

spectral lines are harmonically related.



Mendel in [72], gives an in-depth treatment on higher order

statistics. The paper collects some of the most useful theoretical results,

making them readily accessible. Various fields of applications of higher

order statistics are described. The paper covers various definitions and

properties related to higher order statistics and also discuss various results.

Quazi [73] suggests an attempt to utilize the basic quantities of the

infonnation theory, viz. entropy and mutual information for detection and

localization of underwater sources. The entropy of a process having a finite

number of sample points is maximum when the received process consists of

noise alone and decreases when a correlated signal is present. The paper

analyses both active and passive sonar signals and compares them with the

results oftraditional techniques.

Martin [74], presents a detection statistics, which exploits features

in the three dimensional response of the non-stationary bispectrum for an

assumed class of transient signals. The results are presented relative to the

performance of a conventional power spectrum detector and a detection

statistics based on the spectral correlation. The paper also discusses the

merits of bispectral detectors relative to other transient detection methods.

Frazer and Boashash [75] have demonstrated the application of the

Wigner-Ville time frequency distribution, the bispectrum, the time varying

bispectrum and Gerr's third order Wigner distribution, to underwater

acoustic data. Use of higher order spectral analysis improves time,

frequency and time-frequency analysis methods and provides the analyst

with important additional information.

Roy et al. [76] in their paper present a novel feature and its

estimation method, for the classification of marine vessels using passive
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sonar. A classification feature, namely the coefficient of quadratic

nonlinearity (CQNL), which quantifies the quadratic coupling that exists

between a pair of running machinery on the target platform, has been

proposed. The classification is based on the premise that the degree of

nonlinear coupling between the various machineries on a target platform is

unique for a particular class of targets and depends on the types of

machinery and their placements. The estimation of the CQNL feature uses

higher-order spectral analysis in conjunction with a method analogous to

matched field processing. The CQNL feature provides unique information

about the target platform that is not present in spectrum based features. The

performance of the algorithm is good even in low SNR conditions.

2.4 Classifiers

2.4.1 Statistical Classifiers

Statistical classification uses statistical procedure for classification,

In which individual items are placed into groups based on quantitative

information on one or more characteristics inherently associated with the

items (referred to as traits, variables, characters, etc.) and based on a

training set of previously labelled items.

In [77], Rajagopal et al. describe the classification of marine vessels

using Passive Sonar methods. The signals from various surrounding

sources are sensed by a receiver. The data is processed and transformed to

obtain the input to the classifier, which combines these with any other

stored information to make a decision. The paper proposes a scheme for a

general classifier and describes the practical constraints on each block of

the classifier. Three well known classification techniques, viz. statistical,



expert system and neural network are compared and finally combined to

give a hybrid classifier.

Shapo and Bethel [78], in their paper introduces Cell Probability

Density Function (CPOF), a new statistical detecting and tracking

algorithm suitable for imaging arrays. The input to the algorithm is the 20

array of intensity levels in all beams as a function of time. CPOF is a three­

step algorithm, involving pre-processing, detection, and trackinglbearing

estimation. It is found that CPOF has been very successful in detecting and

tracking targets on broadband data collected by SONAR arrays, and has

excelled in especially challenging scenarios with high bearing rates and

multiple crossing targets.

2.4.2 Expert System Classifiers

Rajagopal et al. [79] describes an expert system approach for sonar

target classification. It deals with passive listening for classification of

underwater targets.

There are basically two different techniques of classification, viz.

the statistical approach which makes use of classical pattern recognition

methods and the expert system approach. The paper also identifies and

discusses dominant sources of noise such as propeller cavitation noise,

blade-rate tonals, piston-slap tonals, gear noise, injector noise and low

frequency radiation from the hulls. The structure of the expert system

consists of three major parts, viz. a knowledge base which deals with rules

of inference and facts, a database consisting of the facts made available to

the system by the programmer at any given time and the inference engine

that guides the reasoning process through the knowledge base by

attempting to match the facts in the data base to the rule conditions.
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Algorithms to detect and classify various parameters of ships by

analyzing the underwater acoustic noise are presented in [80]. Lourens and

Coetzer in this work, discuss the detection of the mechanical features like

propeller shaft speed, number of propeller blades and type of propulsion.

Classification of the ships into different classes is carried out using a small

expert system. The propeller shaft speed and number of blades can be

determined by two approaches. The first method consists of computing the

Discrete Fourier Transform of the short time power of band pass filtered

underwater acoustic noise. The second method determines a two

dimensional discrete Fourier transform to extract the required information.

The development of an autonomous sonar classification expert

system for AUVs is investigated in [81] by Brutzman, et al.: The use of

Geometric analysis techniques and an expert system for heuristic reasoning

has been examined in this paper. Classification of sonar contacts is

performed by comparing the attributes of detected objects with

predetermined attributes ofknown objects of interest.

Adnet and Martin [82] presents the first results of a study of an

expert system dedicated to spectral analysis. Spectral analysis methods

have been put together with a unification principle stemming from filter

bank analysis and the strategy has been applied to generate a Knowledge

based system.

2.4.3 Neural Network Classifiers

The various neural network based classifiers reported m open

literature are described below.

Jae-Byung Jung, et al. [83] discusses the results from a set of

experiments conducted on the target classification capabilities of broadband



sonar using targets of differing sizes and materials like Styrofoam balls and

hollow plastic bodies. The experiments were carried out by analyzing the

spectral components of echoes from the targets using neural networks. The

studies indicate the potential use of broadband sonar as a tool for species

and size classification of fish and other marine targets.

Several different classification algorithms are tested and

benchmarked in [84], by Donghui Li, et al. not only for their performance

but also to gain insight into the properties of the feature space. Results of a

wideband 80-kHz acoustic backscattered data set collected for six different

objects are presented in terms of the receiver operating characteristics

(ROC) and robustness of the classifiers with respect to reverberation.

Classification methods like Multivariate Gaussian Classifier, Evidential K­

Nearest Neighbour Classifier, support vector machines, etc. are considered.

In [85], Purnell, et al. present the implementation of a classifier

which discriminates between ships based on the radar back scatter from the

targets. Three different classification methods, viz. correlation filters, peak

extraction with a feed forward neural network classifier and a feed forward

neural network using raw radar data were used. It was concluded that the

feed forward neural network method that uses raw radar data showed better

performance.

De Yao, et al. in [86] propose a classification system which consists

of several subsystems including pre-processing, sub-band decomposition

using wavelet packets, linear predictive coding, feature selection and neural

network classifier. A multi-aspect fusion system is introduced to further

improve the classification accuracy. The classification performance of the

overall system is demonstrated and benchmarked on two different acoustic

backscattered data sets with 40 and 80-kHz bandwidth. A comprehensive
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study has been presented to compare the classification performance using

these data sets in terms of the receiver operating curves, error locations,

generalization and robustness on a large set of noisy data. Additionally, the

importance of different frequency bands for the wideband 80 kHz data is

also investigated. For the wideband data, a sub-band fusion mechanism is

introduced, which offers very promising result.

[87] - [90] discuss the introductory papers which throw some light

on the underlying principles and methodologies of realizing neural network

based classifiers [87] outlines the biological neuron structure and its

similarity to the artificial neural network (ANN) alongwith a historical

overview of ANNs. A brief review of the various components of the

network and various training / learning functions is also presented.

Schoonees [88], gives an introduction to artificial neural networks

and provides an overview of their potential application in signal processing.

A brief survey of three network models, viz. Hopefield Net, Multilayer

perceptron and Self Organizing Feature maps is also described.

Richard P. Lippmann [89] in his review paper presents the concepts

of artificial neural networks in detail. He reviews six important neural net

models that can be used for pattern classification. A comparison of neural

nets and traditional classifiers are also presented. Descriptions of

Hopefield, Hamming, Single Layer perceptron, Multi layer perceptron,

Kohonen's Self Organizing Feature maps, etc. are presented.

Back propagation algorithms are extensively used m almost all

applications involving neural networks including pattern as well as target

recognition. Paul and Byrne [90] present an efficient learning algorithm for

the back propagation networks. Two conditions for reducing the learning
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iterations are deduced, without affecting the memory retention or

generalization capabilities of the network.

Abdel Allim, et al. [91] describe a neural network system which can

recognize different types of sonar signals. The work compares the

parameters that affect the shape of the echoes returned from different

underwater targets like submarines, mines, etc., using fourteen echo signals

from three different types ofmilitary targets.

A discussion of the real-time digital signal processor based

hierarchical neural network classifier, capable of classifying both analog

and digital modulation signals is presented in [92]. A high performance

DSP processor, viz. the TMS320C670 1, has been made use for

implementing the different kinds of classifiers, including a hierarchical

neural network classifier. A total of 31 statistical signal features are

extracted and used to classify 11 modulation signals corrupted by white

noise.

Martinez Madrid, et al. [93], describe a target classification system

which uses the measured Doppler signature to excite a neural network. The

paper describes the use of Multilayer perceptron based neural network and

its training using back propagation algorithm. The paper also points out the

advantages of using neural networks, like fault tolerance, learning

capabilities, etc.

Eapen, A [94], proposes the use of a neural network for detecting

underwater targets in the presence of random noise. Here a neural network

is made to adapt to the signal output of a hydrophone. Then the changes

triggered by the presence of targets will be detected with the complex

classification space of the neural network. Neural networks offer powerful
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collective computational capability for designing special purpose hardware,

which can implement automatic detection oftargets in real time. The ability

to learn is the key property of ANNs. Modem learning procedures fall into

two broad categories, viz. supervised methods, which require a teacher to

specify the desired outputs and unsupervised procedures, which construct

internal models that capture regularities in input signals. The work

presented in this paper uses a variant of the back propagation rule, which is

one of the most widely used algorithms for multi layer perceptron-like

networks, called the Modified selective update back propagation algorithm.

A comparison of the relative performance of a numher of classical

classification methods with the neural network is performed by Patel, et

al.[95]. Feature data extracted from infrared images are used for the

comparison. Classical classification techniques, viz. k-Nearest neighbour,

Euclidean distance, weighted Euclidean distance and Mahalanobis distance

are described and tested. The neural network used was a simple Multilayer

perceptron network trained with error back propagation coupled with a

gradient descent algorithm. The network consisted of an input layer, a

hidden layer and an output layer. A sigmoid function was used as the

activation function. The studies show that the neural network and k-nearest

neighbor methods could outperform all the other classical techniques.

Considering the adaptability and the computational efficiency of Neural

Networks, the MLP method is shown to have a distinct advantage.

Chin-Hsing Chen, et al. [96] describe the results of four kinds of

neural network classifiers that have been used for the classification of

underwater passive sonar signals radiated by ships. Classification process is

divided into two stages, viz. pre-processing feature extraction stage and

classification stage. In the pre-processing stage, Two-Pass Split-Windows

(TPSW) algorithm is used to extract tonal features from the average power
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spectral density of the input data. In the classification stage, four kinds of

static neural network classifiers are used to evaluate the classification

results:

• The probabilistic based c1assifier-Probabilistic Neural
Network (PNN)

• The hyperplane based classifier-Multilayer Perceptron
(MLP)

• The kernel based classifier- Adaptive Kernel Classifier
(AKC) and

• The exemplar based classifier- Learning Vector
Quantization (LVQ).

The data were collected from fishing boats, which were classified

into three groups. From each boat, three types of signals (at low speed, at

medium speed and at high speed) were recorded. It has been experimentally

established that the exemplar classifiers-LVQ have the most efficient

learning.

Azimi-Sadjadi, et al. [97] describe a new sub band based

classification scheme developed for classifying underwater mines and mine

like objects from the acoustic backscattered signals. The system consists of

a feature extractor using wavelet packets in conjunction with linear

predictive coding (LPC), a feature selection scheme and a back propagation

neural network classifier. Multi aspect fusion was performed to obtain great

improvement in the classification performance of the system.

Roth, M.W in his review paper [98] on Automatic Target

Recognition (ATR), highlights the use of neural network technology in the

field of ATR. The paper describes ATR sensor development and Multi
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sensor fusion, various issues related to ATR, feature extraction procedures

and the scope of neural networks in the field of ATR and its advantages.

Overman and Louri, [99], investigates the design of a neural

network architecture that can take noisy serial pixel data as an input and

report the detected position of the target with respect to the sensors field of

view. The neural network target detection architecture presented is based

on Multilayer perceptron neural receiver. The paper describes how a neural

network can be implemented as an optimum likelihood ratio receiver and

discusses back propagation training process. Preparations in setting up

neural net detection architecture for Monte-Carlo simulations against

various noise types are also discussed.

Solinsky and Nash [lOO], in their paper attempt to describe the

applications of neural network in sonar. Various neural network classifiers

operating on the DARPA Phase I data set has been analyzed using classical

decision theory. An important element of the assessment is to include a

ground truth of events in the data set. A trained human operator produces

such ground truths based on aural analysis of the data.

The use of hybrid neural approaches for passive sonar recognition

and analysis using both unsupervised and supervised network topologies

are investigated by Howell and Wood [101]. The results presented

demonstrate the ability of the network to classify biological, man made, and

geological noise sources. The capabilities of the networks to identify the

complex vocalizations of several fish and marine mammalian species are

also described. Basic structure, processor requirements, training and

operational methodologies as well as application to autonomous

observation are described. For training the network, Self Organising

Map(SOM) - Kohonen maps are used, since it is efficient for unsupervised



learning. It also contains a review of various types of source files (.wav,

MP3 etc) and the issues arising out of over sampling data in these types of

files.

Hallinan and Jackway [102], describes a novel feature selection

algorithm which utilizes a genetic algorithm to simultaneously optimize a

feature subset and the weights for a three-layer feed-forward neural

network classifier. It has been shown that this method needs only fewer

input features and simpler neural network architecture. The results indicate

that tailoring a neural network classifier to a specific subset of features has

the potential to build a classifier with low classification error and relatively

low computational overheads.

The design and evaluation of a comprehensive classifier for short

duration oceanic signals obtained from passive sonar is described in [103].

The paper highlights the importance of selecting appropriate feature vectors

for efficient classification. Wavelet based feature extractors are examined.

A number of static neural network classifiers are evaluated and compared

with traditional statistical techniques. The paper highlights the fact that

each algorithm is designed to handle only a few set of problems and may

have many limitations and a synergistic approach can lead to better results.

It is found that a judicious combination of several classifiers will yield

higher accuracy, since it can overcome the limitations of a single type of

network and the system was tested with DARPA data set.

Yanning Zhang, et al. in [104], discuss a local adaptive neural

network based classifier to classify ship noises. Combining wavelet theory

with neural network to form adaptive wavelet neural network has the

advantage of feature automatic compression, extraction and classification

from signal. The neural network consists of input layer, adaptive wavelet
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feature extraction layer, hidden layer and output layer. A modified Back

propagation algorithm is used to train the network.

Adams, et al. [105], present the statistical properties of underwater

acoustic ambient noise fields obtained by analyzing the acoustic output of a

single hydrophone in the 75-200 Hz band. The analysis demonstrates the

non-stationarity of the noise power in 0.78 Hz bands. Tn addition, the

correlation between the noise power fluctuations in 0.78 Hz bands is shown

as a function of time and frequency separation of the bands. The

fluctuations appear to consist of a slow broadband power increase and a

smaller amplitude fluctuation process which has small correlation across

frequency and time.

John R. Potter [106], establishes that a feed forward ANN is very

effective in self training the system to recognize the end notes of bowhead

whale songs. A three layer feed forward network is used for testing.

2.4.4 Fuzzy Classifiers

Argenti, et al. [107], address the problem of detecting ships in SAR

images in a fully automated way. A classification scheme implemented

using fuzzy logic principles is also discussed in this paper.

Amo et al. [108], suggests an algorithm for terrain matching,

leveraging an existing fuzzy clustering algorithm, and modifying it to its

supervised version for apply the algorithm for georegistration as well as

pattern recognition. Georegistration is the process of adjusting one drawing

or image to the geographic location of a "known good" reference drawing,

image, surface or map. The terrain matching algorithm will be based on

fuzzy set theory as a very accurate method to represent the imprecision of

the real world, and presented as a multicriteria decision making problem.



The energy emitted and reflected by the Earth's surface has to be recorded

by relatively complex remote sensing devices that have spatial, spectral and

geometrical resolution.

2.4.5 Sonar Signal Processor based Classifiers

Gaunaurd, in [109], describes the bistatic and mostly monostatic

techniques that are useful for target classification by means of active sonar.

The echoes returned by any submerged elastic body contain features caused

by the poles of the scattering amplitude of the problem. These poles are

studied and it was shown that they naturally split into two large sets from

which one can separately extract shape or material composition

information. The composition information seems easier to determine than

details about the shape. Together these sets of poles unambiguously

characterize any scatterer.

A filter structure has been proposed for target signal enhancement

in reverberation limited environment by Kim et al. [110]. The proposed

structure consists of an adaptive filter and a non-adaptive filter. The input

signal is filtered by the non-adaptive filter whose coefficients are obtained

from the adaptive filter working with the delayed signal. The investigations

were carried out on the data from an active sonar system for target signal

enhancement problem and the results have shown that the proposed method

can yield fairly acceptable performance in a time varying channel and is

robust to target cancellation effects.

Dwyer [Ill], discusses the processing technology that enables the

classification of target echoes from very wide bandwidth transmitted

signals, which can reduce the complexity of classifiers. Implementation of

two types of sequential classifiers is discussed. One of the sequential
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classifier used the spectrum of the data while the other used the fourth order

cumulant spectrum of the data.

A new method for target localization and classification has been

discussed in [112]. Firing of pulses from two closely spaced transmitters,

with a time separation of the order of 1 ms is the basic tool for this

approach. Maximum Likelihood Estimation (MLE) method is used for the

implementation.

A tutorial illustrating some interactive demos, tips and tricks of

Digital Signal Processing are described in the website [113].

2.4.6 Recent Trends

A classification algorithm using Hidden Markov Models (HMMs) is

presented in [114J. Recognition of three classes of targets such as

personnel, tracked and wheeled vehicles can be carried out using this

algorithm. The procedure described is based on target Doppler signatures.

While conventional Doppler based methods consider the Doppler signature

to be stationary, the suggested method utilizes the time-varying nature of

Doppler signature as well for efficient classification. One of the advantages

of this technique is that the classifier requires only a modest amount of data

for training.

Lourens [115] considers an improved cavitation model and

proposes algorithms for determining propeller speed and number of blades.

The new model takes into account the acoustic losses and heat losses. Gear

box identification is also addressed in this paper. A complete Bayes

hypothesis test is also described for determining the kind of propulsion the

vessel uses.



Paul Chestnut, Helen Landsman and Robert W. Floyd, [I I6],

present a study carried out on an active sonar target recognition system.

The data were obtained from 16 targets, submerged in a salt water pool.

The frequency responses from the echoes were analyzed and the

information is extracted by energy detection in a bank of filters and

Spectral modelling. The classification techniques use methods in

conventional pattern recognition.

Chan, et al. [117] present a new bearings-only method of detecting

and tracking low signal-to-noise ratio (SNR) wideband targets on a

constant course and velocity trajectory. A track-before-detect strategy

based on matched velocity filtering is adopted using spatial images

constructed from a sequence of power bearing map (PBM) estimates

accumulated during tracking. To lower the threshold SNR for detection, a

discrete bank of matched velocity filters integrates the PBM images over a

range of hypothesized trajectories. The distribution of the matched filter

output is derived based on a single point target in diffuse noise conditions.

Receiver operating characteristic curves show a definite detection gain

under low SNR conditions for matched velocity filtering over detection

from a single PBM.

Attempts by Chen Xiangdong and Wang Zheng [118], throw light

on a non-linear signal processing technique called the Similar Sequence

Repeatability to analyze the ship radiated noise and indicate its use for the

acoustic target recognition. Here, the local similarity of the ship radiated

noise data is studied based on the temporal behaviour of the time series

itself. According to the local similarity property of the time domain

acoustic signal, a phase space is constructed. From this, repeatability

parameters are calculated and repeatability (RPT) curves are drawn, from

which the entropy information is extracted. The RPT curves and the
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entropy can effectively represent the time domain features of the ship

radiated noise and aids in underwater target recognition and classification.

Guo Guirong, et al. [119] discuss the problem of ship recognition

and a suitable method is proposed. The paper focuses on algorithms for

target recognition from radar video returns. The method mainly uses the

Fourier transform and Me1lin transform for feature extraction. Fourier

Transform is invariant to shifting. This property provides a useful means

for extracting features insensitive to the time delay of radar returns, that is,

the target range. The Mellin transform produces a set of features invariant

to scaling changes. This implies that the features extracted from the MT are

insensitive to the aspect angle of the radar.

Pezeshki, et al. in [120], suggest a feature extraction method for

underwater target classification that exploits the linear dependence between

two sonar returns. Canonical co-ordinate decomposition is applied to

resolve two consecutive acoustic backscattered signals into their dominant

canonical coordinates. The hypothesis behind this feature extraction

method is that for certain aspect separations linear dependence of

coherence between the sonar returns reveals common target/non-target

attributes, whereas linear independence reveals bottom reverberation

features.

A work that discusses the nonlinear regularities in ship-radiated

signals is presented by Su Yang and Zhishun Li [121]. They propose a

chaotic feature for classification. Certain classes that cannot be classified

effectively by using spectra can be satisfactorily classified using the chaotic

features. Experimental results show that this feature is effective and

outperforms the spectrum feature in identifying some classes. It can

augment current solutions by providing complementary information.



Fractal based approaches for the recognition of ships from the

radiated noise is being considered in [122]. The methods proposed by

Yang, et al. include fractal Brownian motion based analysis, fractal

dimension analysis and wavelet analysis, to augment existing feature

extraction methods that are based on spectral analysis. The results show

that fractal approaches are effective and when used to augment two

traditional features, line and average spectra, fractal approaches lead to

better classification results. This implies that fractal approaches can capture

some information not detected by traditional approaches alone.

A sequential decision feedback approach for target classification of

underwater mine-like objects in a changing environment is described by

Azimi-Sadjadi et al.[123]. An adaptive target classification system

developed using the decisions of multiple aspects of an object through a

tapped delay line mechanism to impact the final decision of the current

aspect is also discussed here. This system minimizes the error of the

classifier while it maps the new feature vector to a familiar feature space

for the classifier. The test results presented are obtained on a wideband

acoustic backscattered data set collected using four different objects with I

degree of aspect separation for two different bottom (smooth and rough)

conditions.

Paul Gaunard et al.[124] discuss the automatic classification of

environmental noise sources from their acoustic signatures, recorded at the

microphone of a noise monitoring system (NMS), using Hidden Markov

Models. The performance of the proposed system, which is based on a time

frequency analysis of the noise signal, was evaluated experimentally for the

classification of five types of noise events, viz. car, truck, moped, aircraft

and train. The HMM based approach is found to outperform human
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listeners as well as previously proposed classifiers based on the average

spectrum of noise event with success rates as high as 95%.

Transformation of a segment ofacoustic signal, by processing into a

vectorial representation such as the spectrum, can permit the identification

of the constituent phonemes within spoken speech according to Grant

[125]. A comparison with stored replicas of the data segments using

techniques such as dynamic time warping or hidden Markov modelling

then permits a speech recognition operation to be accomplished. These

signal processor intensive transform and graph-search-based pattern

matching techniques are reviewed and currently achievable recognition

accuracies are reported.

Existing concepts of Walsh power spectra for wide sense stationary

stochastic processes are restricted to the case ofauto power spectra because

they are based on real Walsh functions. Blaesser [126], describe a Walsh

power spectrum, which is based on a system of complex Walsh functions

for wide-sense stationary stochastic processes and the concepts have been

extended to auto and cross power spectra as well.

2.5 Summary

An attempt has been made in this chapter to present a state-of-the­

art literature in the topic covered by the thesis highlighting the

characteristic signatures of typical ocean noise as well as the classes of

features that have been considered for realizing the various types of

classifiers as reported in open literature. The literature survey has also

brought out the operational features of various classifiers such as statistical,

expert system, neural network and fuzzy k-NN classifiers.



CHAPTER 3

METHODOLOGY

This chapter addresses the methodology adopted for the realisation of the

proposed target classifier, which primarily involves the extraction of source

features by analysing the composite noise data waveforms and compilation

of the knowledge base, which forms the backbone of the classifier. The

detection and estimation processor computes the various statistics for

improving the target classification capabilities. The output of the estimation

processor is compared with the earlier estimations, which are stored in the

target feature record and the relevant target features are updated. In case, if

a target feature is not updated over a significant period, the concerned

feature will be dropped from the target feature record. In many situations,

the system may have to backtrack or retrack through the stored feature

record to establish the links with the most recent data. As and when the

required classification clues are available in the target feature record, the

most matching feature vector is identified from the known target feature

vectors in the knowledge base, depending on the allowable percentage of

mismatch, chosen by the user. For making the system fool proof and full­

fledged one, the knowledge base has to be updated with the feature vectors

and target dynamics for all the class and type of the targets. The target

feature record or the target feature vector is generated from the spectral,

cepstral and bispectral features.
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3.1 Introduction

Sonar has been in wide spread practical use for underwater target

detection, estimation, localization, tracking and classification applications.

The recent advancements in microelectronics has created an indelible

impact in sonar manufacturing industry, resulting in a rapid transition from

hardware based processing systems to software based and fully automated

computer controlled systems. Sonar data can be judiciously used to identify

and classify underwater targets. Target detection addresses the problem of

determining whether the target is present, while classification addresses the

problem of identifying or categorising the detected target. To facilitate this,

knowledge about the way in which typical isolated individual bodies

interact with sound wave is essential. In active sonar, such information are

quantified by the parameter Target Strength and the process of

classification is correlated to the localisation and tracking functions as the

target dynamics is severely affected and controlled by the target types and

class. Passive sonars are the listening sonar systems which use sound,

usually unwillingly, radiated by the target.

The propagation effects, responsible for the performance

limitations in sonar systems are summarised below. The undersea

propagation medium is a time-varying channel, which shows clear

significant functional dependencies on geographic location, depth, range

and season. Moreover, the temperature profile, multiple reflections and

inhomogeneties present in the ocean cause a wide variety of channel

dispersion effects on time, frequency and angle. The adverse effect of time

spreading is due to multipath, while frequency spreading is caused by the

wave motion of the sea surface, movement of water masses, underwater

currents as well as the motions of the transmitter, receiver and targets.



Doppler spread of upto one percent or more are common in sonar. The

sonar detection and estimation problems for signals of considerable

spreading are much more cumbersome than the ones for simple systems,

due to reasons that are obvious. A wide range of interfering noises are also

present in the ocean such as the sea state noise, biological noise, machinery

and cavitation noise from the shipping traffic, in addition to the thermal

noise.

The underwater environment is characterised by a diverse range of

noise-like signals and signal-like noises. In passive listening scenario, the

sources and kind of noises from the targets are used to identify the targets.

The noise signals generated by such noisy targets will form the basis for

passive sonar detection and classification. The noise signals are

characteristics of target concerned and may vary a great deal with time as

well as class and type of target. Targets can be distinguished on the basis of

the noise frequency spectrum or other signatures by performing the spectral

analysis, bispectral analysis, cepstral analysis and Hidden Markov

Modelling, which in turn can be compared with known signature patterns,

and the matching pattern which has a good degree of acceptability can be

identified.

The detection and estimation procedures in sonar involve the

computation of various statistics for improving the overall performance of

the target detection, localization and classification capabilities of the end

system, taking into consideration all the undesirable propagation effects

mentioned above.
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3.2 Basic Model of/he Proposed Classifier

In order to interpret most effectively and efficiently the vast amount

of data furnished by the signal processor, especially in situations where the

detectable range of the system is very large, it is essential to have a fully

automated and intelligent classifier, as most of the target information, in all

probability, may not be of much interest to the user. Operator assisted

classifier turns out to be inappropriate and highly inefficient in such

situations. The generalized block schematic of the proposed target classifier

is shown in Fig. 3.1.

­""'- ­.........so-.- ­...
Fig. 3.1 Target Classifier

-

The detection and estimation statistics processor simply performs

the est imation of the signal energy within a finite time interval. The output

of the estimation processor is compared with the earlier estimations, which

are stored in the target feature record and the relevant target features are

updated. In case, if a target feature is not updated over a significant period.

the concerned feature will be dropped from the target feature record. In

many situations, the system may have to backtrack or retrack through the

stored feature record to establish the links with the most recent data . As

and when the required classification clues are available in the target feature

record, the most matching feature vector is identified from the known target

feature vectors in the knowledge base. depending on the allowable

percentage of mismatch, chosen by the user. For making the system self

contained and full-fledged one, the knowledge base has to be updated with
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the signature patterns and target dynamics for all the class and types of

targets.

3.3 Extraction ofsource signatures

3.3.1 Spectral Features

A totally random process with unknown features is normally

modelled as a Gaussian random process, in a practical environment for

decision-making purposes. Though the features are unknown, the receiver

can have a rough knowledge of the spectral region that the signals may

occupy, so that band-limiting filters turn out to be a very powerful tool for

regenerating the noise signal, devoid of noise power outside the predicted

spectral region.

This section presents a summary of some of the features that can be

computed from the spectrum of a signal. Some of these features relate

directly to some perceptual characteristics of sound, such as loudness,

pitch, etc. Most of the features are generated from the spectrogram on a

frame-by-frame basis.

3.3.1.1 Spectral Centroid

The spectral centroid, which may also be referred to as the spectral

brightness, gives an indication of the spectral shape and is defined as the

amplitude-weighted average or centroid of the spectrum[127], [128]. It is a

simple, yet efficient parameter, estimated by summing together the product

of each frequency component of the spectrum and its magnitude, which is

further normalized by dividing with the sum ofall the magnitudes. Thus the

spectral centroid se is given by
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(3.1 )

Nf2-1

L/kSk
se k=O=-'N'-'=-2--1-

ISk
k=O

where S" is the magnitude spectrum of the fh frequency component

fie and N is the record size.

3.3.1.2 Spectral Range

The spectral range or bandwidth refers to the range of frequencies

that are present in the signal. It is computed using the spectral magnitude

weighted average of the difference between each frequency component and

the centroid, Se. Thus the spectral range, SR is expressed as

N/2-1

ISkl/k -sel
k=O

N/2-1

LSk
k=O

(3.2)

3.3.1.3 Spectral Roll ofT

Another spectral feature, which gives a measure of the spectral

shape, is the spectral roll off and is defined as the frequency below which

85% of the magnitude distribution ofthe signal is concentrated [127].

i.e. RO::= Minimum(R), such that
R N-l

ISk ~ O.85ISk

k=O k=O

(3.3)

3.3.1.4 Spectral Flux

This is a measure of the amount of local spectral change. This is

defined as the squared difference between the normalized magnitude

spectra of successive frames.
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where norm! is the magnitude spectrwn of the current frame, scaled

to the range 0 to 1 and normju is the normalised magnitude spectrum of the

previous frame. Spectral flux is a measure of how quicklY the power

spectrum of the signal is changing and computed by comparing the power

spectrum ofone frame with that of the previous frame

3.3.1.5 Spectral Slope

The spectral slope is also identified as one of the prominent

signatures in the suggested algorithm and refers to the average slope of the

power spectral density variation.

3.3.1.6 Number of Peaks and the Peaking frequencies

The total number of peaks in the power spectral density variation,

which will help in identifying the tonal as well as continuous frequency

components, is treated as one of the significant spectral features. For better

results, only the significant peaks above a certain preset threshold value are

taken into account. The peaking frequencies, rising as well as falling slopes

of the power spectral response of the target emanations are also considered

for fine tuning the classification clues.

3.3.2 Cepstral Features

The target specific features extracted using spectral estimation of

the noise emissions alone cannot always perform reliable classification

especialIy, in the presence of composite ambient noise and varying

environmental parameters. To make the identification process more robust

and reliable, additional feature components are incorporated by exploiting

the other unexplored features of the noise sources. A variety of signal

processing applications use the collection of nonlinear techniques known as

cepstral analysis which is capable of yielding potential features that can aid

73



Chapter 3 Methodology

in the process of classification. One of the important properties of the

cepstrum is that it is a homomorphic transformation in which the output is a

superposition of the input signals.

The spectrum of a waveform consists of two components, the

slowly varying part, referred to as the filter or spectral envelope and the

rapidly varying part, referred to as the source or harmonic structure.

Separation of these two components can be achieved by taking the

cepstrum, an anagram of the word spectrum. The cepstrum is defined as the

inverse Fourier transform of the log magnitude Fourier spectrum of the

signal and is said to be in the quefrency domain, an anagram of frequency

[129]. The cepstral values are stored as discrete components referred to as

the cepstral coefficients, where the nth cepstral coefficient is the amplitude

of the nth component along the quefrency axis.

3.3.2.1 Mel Frequency Cepstral Coefficients

A more systematic approach for extracting the cepstral features

makes use of the estimation of Mel Frequency Cepstral Coefficients

(MFCC), which is a measure of the perceived harmonic structure of sound

[130], [131]. A Mel is a psychoacoustic unit of frequency which relates to

the human perception and is approximated using the expression

m =259510g1o[1+L]
700

(3.5)

where f is the frequency in Hz. The spectrum can be transformed

into a spectrum emphasized at Mel intervals using Mel filter banks, which

is a row of triangular filters overlapping at MeI-spaced intervals [132]. The

cepstrum of this transformed spectrum yields Me! frequency cepstral

coefficients.



3.3.3 Bispectral Features

Conventionally, techniques like power spectral estimation is widely

being used for the analysis of various acoustic sources in the ocean

including that of marine origin. However, power spectral analysis is phase

blind and cannot fully characterize the nonlinear signals as well as the noise

generating mechanisms. Thus most of the signals are approximated as

linear and analysis is carried out, which results in loss of many valuable

information in the signal. As the demand for more detailed and accurate

analysis as well as modelling has increased, researchers are now mainly

focusing on techniques based on higher order spectra [69].

Analysis using Higher Order Spectra, in particular the third order

spectra called bispectrum, is being evolved as a powerful technique in the

field of digital signal processing and allied areas. Bispectrum is a third

order frequency domain measure, capable of providing more information

than the conventional tools like power spectrum. While power spectrum

can efficiently estimate the power of different frequency components of a

signal, it in general fails to quantify any non-linear interactions between the

component frequencies. Such interactions induced by the second order

nonlinearities give rise to certain phase relations called Quadratic Phase

Coupling (QPC). Bispectral analysis can reveal the presence of phase

couplings as well as can provide a measure to quantify such couplings.

Bispectrum is the two-dimensional Fourier Transform of the

expected value of a signal at three time points. The use of bispectrum is

highly motivated by the fact that it can provide information regarding

deviations from Gaussianity as well as presence of nonlinearities and phase

information.. In situations where the stationary signals has non-Gaussian

properties and the additive noise process is stationary Gaussian, the use of

75



Chapter 3 Methodology

bispectral analysis become advantageous in estimating the signal features.

Such an analysis is important, since all periodic, quasi-periodic as well as

many of the signals emitted from various machineries and mechanical

systems can be considered as non-Gaussian.

Bispectral analysis can play a key role in the analysis of acoustic

noise sources. A normalized form of bispectrum, called the bicoherence is

found to be more appealing since its variance is independent of the energy

content of the signal. Analysis of noise data wave forms generated by the

noise sources in the ocean using bicoherence can reveal the deviation of the

signals from Gaussianity as well as linearity, which is usually hidden in the

traditional spectral analysis. Such information may be effectively utilized

for generating certain target specific features, which can aid in the

identification and classification of underwater targets.

3.4 Compilation ofKnowledge Base

The performance of the classifier relies on the target features

available in the knowledge base. To generate the features of a target, the

long-term spectra of the specific target class are to be collected and

averaged. The average spectrum so obtained is the characteristic spectrum

for the specific target class or type under consideration.

The information bearing signals sensed by the hydrophone array, on

an average, is white in nature, comprising of a wide range of frequencies.

By computing the noise spectral level, over the available frequency range,

one can infer the nature of the noisy target and by correlating this

information with the available classification clues, it is possible to

effectively identify the targets, within the limits of the variances of the

classification clues.
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3.5 Inference System

3.5.1 Feature Vector

A feature vector is an n-dimensional vector of numerical features

that represent an object and facilitates processing and statistical analysis.

The vector space associated with these vectors is often called the feature

space. In general, feature extraction involves simplifying the amount of

resources required to describe a large set of data accurately. When

performing analysis of complex data, one of the major problems stem from

the number of variables involved. Analysis with a large number of

variables generally requires a large amount of memory and computational

power. In order to reduce the dimensionality of the feature space, a number

of dimensionality reduction techniques can be employed. The feature

extraction is a genericl term for methods of constructing combinations of

the variables to override these problems while describing the data with

sufficient accuracy.

3.5.2 Feature Selection

Upon extracting a set of features, which forms the basis for

classification, only those features are selected, that can indeed improve the

performance of the classifier. This process, known as feature selection,

may lead to loss of information and is in many cases based on singular

transformations. The feature selection process is significant because of the

following reasons.

• Reduce noise generated by irrelevant features.

Many classifiers are sensitive to irrelevant features, and will

degrade their performance when such features are included.

Distance based classifiers, such as the ones used in this work, are
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particularly sensitive to this. If a random feature is included, it

will contribute to the distance measure just as much as any other

feature. If the features were not scaled, they may contribute even

more than a relevant feature. Thus, due to this distortion, a pattern

may appear as similar to patterns of a different class.

• The risk of over fitting the training data can be reduced

The larger the number of features used, the more detailed the

classifier will be. But if a classifier has too many degrees of

freedom, it may adjust itself perfectly to the training data, but

perform poorly when used with other data. By reducing the

number of features, and thus the degrees of freedom of the

classifier, it is possible to improve generalization for a given

scenario.

• Classifier made computationally feasible.

The selection of too many features will demand substantial

computing power for the purpose of feature extraction, training as

well as classification process. Hence, the smaller the number of

features the lesser will be the computational complexities of the

classifier.

Thus, the classification function operates in a multidimensional

space formed by the various components of the feature vector. For the

purpose of classification, an efficient inference system, capable of

performing template matching by correlating the generated target features

with the feature components available in the knowledge base, has to be

realized. The classification decision becomes too hard and inappropriate if

too many features are considered for the decision-making. The practical
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methods for the classification always involve a heuristic approach intended

to find a good-enough solution to the optimization problem.

3.6 Summary

The methodology suggested to be adopted for realizing the

proposed target classifier involving the extraction of target specific features

by analysing the composite noise data waveforms followed by template

matching of the feature vectors for the purpose of classification has been

presented in this chapter. For making the system fool proof and full-fledged

one, the knowledge base has to be updated with the feature vectors and

target dynamics for all the class and type ofthe targets.
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CHAPTER 4

Spectral and Cepstral Analysis

This chapter highlights the technology involved in extracting the spectral

and cepstral feature components required for generating the classification

clues. A spectrum is a relationship typically represented by a plot of the

magnitude or relative value of some parameter against frequency. Spectral

analysis is a frequency domain tool for signal analysis and characterizes the

frequency content of a measured signal. Classical spectral estimation

methods, in which the Power Spectral Density (PSD) is estimated directly

from the signal itself is discussed in detail. In Parametric models, the PSD is

estimated from a signal that is assumed to be the output of a linear system

driven by white noise. These methods first estimate the parameters of the

linear system, from which the signal is assumed to be generated. Such

methods are found to give better results for short data segments. They also

give better frequency resolutions than conventional estimators. The various

algorithms used for the PSD estimations are discussed in detail in this

chapter. This chapter also touches upon the concepts of cepstral analysis,

which belongs to an area of signal processing known as homomorphic

analysis and can be accomplished by using a cascade of forward and inverse

operations with a linear time invariant operation sandwiched in between. A

more systematic approach for computing the cepstral coefficients can be

achieved by estimating the Mel Frequency Cepstral Coefficients (MFCC),

which is a measure ofthe perceived harmonic structure of sound.
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4.1 Introduction

The widespread and prevailing characteristics of ambient noise,

which can be due to a variety of sources, often pose various problems in

characterizing the noise data waveforms without subjecting it to various

analytical procedures. Investigations on ambient noise carried out in the

ocean over the band of frequencies from I Hz to 100 kHz show that

ambient noise has different characteristics at different frequencies, and with

a different spectral slope and a different behavior with varying

environmental conditions, such as wind speed. It is also found that one or

more of the source noises are dominant over the others in anyone region of

the spectrum.

The measurements have shown that above 150Hz, ambient noise in

the deep ocean is principally surface generated and depends upon the sea

surface in the vicinity of the receiver. Time periods of fluctuations in noise

spectral level correspond to changes in local weather patterns. Over the

band of frequencies 20 to 150 Hz, the ambient noise is highly variable and

shipping as well as mining operations are the principal noise contributors.

Time scales of fluctuations are much shorter than at higher frequencies and

depend upon the proximity of the receiver to shipping channels, ship traffic

density and the length of time, the passing ships spend in acoustic

convergence zones.

Short-term fluctuations may be superimposed upon seasonal

variations arising from variations in the speed of sound in the mixed layer.

Characterizations of the noise processes as a stationery zero mean,

Gaussian field may be adequate to describe the noise processes during short

intervals of time, but do not describe the fluctuations in noise spectral level
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which are observed experimentally and are not sufficient for the design of

signal processing systems or for the prediction of system performance.

4.1.1 Sources of Ambient Noise

A conceptual diagram depicting some of the sources of deep water

ambient noise is shown in Fig 4.1.

{' Surface noise

t : la ir Turbulence
V (.of ...+-( r "i Distant

~
'\ V shipping and storms

~ ? +--1----
Molecular
motion

-------......

Fig. 4.1 Conceptual Diagram of sources of Ambient Noise

Tides and waves cause hydrostatic pressure variations of relatively

large amplitude at the low-frequency end of the spectrum. Surface waves

are also a source of hydrostatic pressure variations at a depth in the sea.

However, they have pressure amplitude, which falls off rapidly with

increasing depth and with decreasing wavelength of the surface waves.

Another important contribution of ambient noise is due to seismic

activities. The micro seismic disturbances and perhaps earth seismicity, in

general, are likely sources of ocean noise at very low frequencies. In

addition, intermittent seismic sources such as individual earthquakes and

distant volcanic eruptions are undoubtedly the transient contributors to the

low-frequency background of the deep sea.

The role of turbulence in the sea as a source of ambient noise is

significant as the contribution to ambient noise can be in many forms. It
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can contribute in the form of self-noise or can appear as part of the

background at places far away from the turbulence itself. The third and the

most important, acoustic effect of turbulence is the turbulent pressure

variations created inside the turbulent region. The turbulence gives rise to

varying dynamic pressures that are picked up by a pressure sensitive

hydrophone located in the turbulent region.

The ambient noise measurements in areas of high shipping activities

are higher and less wind dependent at frequencies from 50 to 500 Hz than

they are in areas where shipping is sparse. Ship traffic, which may occur

even at distances of 1,000 miles or more from the measurement

hydrophone, can be a principal source of noise in the decade 50 to 500 Hz.

At higher frequencies, ambient noise is governed by the roughness

of the sea surface. A direct correlation between the sea state or wind force

and the level of ambient noise was found, with a better correlation of noise

with local wind speed. The processes by which the sea surface generates

the major portion of the ambient noise can be breaking whitecaps, flow

noise, cavitations, wave-generating action ofthe wind on the surface ofthe

sea, second order effect ofsea surface wave motion, etc..

4.2 Power spectral estimation

A spectrum is a relationship typically represented by a plot of the

magnitude or relative value of some parameter against frequency. Spectrum

analysis is a frequency domain tool for signal analysis and characterizes the

frequency content of a measured signal. The spectral density of the wave,

when multiplied by an appropriate factor, will give the power carried by the

wave per unit frequency.
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The most commonly used method to estimate the PSD is using the

Fast Fourier Transform CFFT). FFT based methods are comparatively easy

and computationally efficient, though the frequency resolution is minimal.

Windowing can also adversely affect the results of the FFT based methods.

These limitations are particularly important when analyzing short data

records. In order to overcome these limitations, alternate spectral estimation

techniques including parametric techniques have been developed.

4.2.1 Definitions and Basics

4.2.1.1 Energy Spectral Density

The energy spectral density describes how the energy or variance of

a signal/ time series is distributed with frequency. If fit) is a finite-energy

signal, the spectral density <1>(0)) of the signal is the square of the magnitude

of the continuous Fourier transform of the signal.

<I>(w) = IJ~lT [,fu)e-JW'dtI2

FCw)FoCw)
=

2lT

where 0) is the angular frequency and FCO)) is the continuous Fourier

transform of.f{t), and F ·CO)) is its complex conjugate.

If the signal is discrete with values In, over an infinite number of

elements, then the energy spectral density can be defined as:
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where F(ro) is the discrete-time Fourier transform ofJn.

If the number of defined values is finite, the sequence does not have

an energy spectral density as such, and the sequence can be treated as

periodic, using a discrete Fourier transform to make a discrete spectrum, or

it be extended with zeros and a spectral density can be computed as in the

infinite sequence case.

4.2.1.2 Power Spectral Density

The above definitions of energy spectral density require that the

Fourier transforms of the signals exist, i.e., that the signals are square

integrable or square summable. A more often used alternative is the Power

Spectral Density (PSD), which describes the distribution of power of a

signal or the time series with frequency. Here power can be the actual

physical power, or more often, for convenience with abstract signals, can

be defined as the squared value of the signal, if the signal was a voltage

applied to a 1 ohm load. This instantaneous power (the mean or expected

value of which is the average power) is then given by:

P =s(t/

Since, a signal with nonzero average power is not square integrable,

the Fourier transforms do not exist in this case. The PSD is the Fourier

transform of the autocorrelation function Rtr;)of the signal, if the signal can

be treated as a stationary random process. This results in the formula,

~

S(f) = fR(i)e-2Jr!r dr

The power of the signal in a given frequency band can be computed

by integrating over the positive and negative frequencies,
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F, -r;

P = fS(f)df + fS(f)df
I'; -ri

The power spectral density of a signal exists if and only if the signal

is a wide-sense stationary process.

4.3 Spectral Estimation Methods

Various methods of spectrum estimation can be broadly classified

into two, viz. Classical and Parametric Methods.

4.3.1 Classical Methods

In the classical spectrum estimation method, the PSD is estimated

directly from the signal itself. There are two main estimation techniques

based on the Fourier Transform. One is the Correlogram method as

suggested by Blackman and Tukey and the other is the Periodogram

method.

4.3.1.1 Correlogram Method

According to Blackman and Tukey, the spectral estimate of a finite

data sequence XJ, XI, .... ,X N-l is given by

M

P(J) =: M L: s; (m) exp( - j21ifm M)
n~-M

where -1 /(2/lt) ~ f s 1/(2M) and Rxx(m) is given by
R _ 1 N-m-I ,

u(m) - -- LX(n+m)xn
N <m m~O

4.3.1.2 Periodograms

Periodograms compute power spectral density directly as,

I 1

2
IN-I

P(f) =- I>n exp(j2;ifn/)J)
NM n~O
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FFT can be used to evaluate Eq. (4.2) at discrete set of N equally

spaced frequencies,

fm= mt1f Hz, for m = 0,1, ..., N-1

1
where !'if =-- .

NtM

Hence,

where Xm is the DFT of the series.

The Pm is similar to the energy spectral density, the only difference

being that it is divided by a time factor NtJt, which makes it Power Spectral

Density. Now, the total power of the process is given by

N-I

Power = L Pm !'if
m~O

If the factor ~fis incorporated into Pm,

Pm = PJ1f- 1 21 X ml
2

(NM)

1

1 N-I 1
2

=~LXn exp(-j2mnn/ N)
N n=O

(4.3)

Eq. (4.3) can be referred to as the periodogram. The performance of

periodogram estimators can be improved by applying pseudo ensemble

averaging, which will in effect smoothen the PSD estimate.

4.3.2 Parametric Estimators

In parametric models, the PSD is estimated from a signal that is

assumed to be the output of a linear system driven by white noise. These
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methods first estimate the parameters of the linear system, from which the

signal is assumed to be generated. Such methods are found to give better

results for short data lengths. They also give better frequency resolutions

than conventional estimators.

Parametric approaches take the advantage of the a priori knowledge

about the process from which the data samples are taken. Thus the

parametric methods basically have 3 steps, viz. selecting a time series

model, estimating the parameters of the model assumed and generating the

spectral estimate by substituting the estimated model parameters in the

theoretical PSD, suitable for the model.

4.3.2.1 Random Process Models

A rational transfer function model is found to be useful for

approximating many of the commonly encountered, deterministic as well as

stochastic, discrete time processes. This model, with an input sequence u[n]

and an output sequence x[n], can be represented by a linear difference

equation ofthe type

p q

x[n] =- La[k]x[n - k]+ Lb[k]u[n - k]
k=l k=O

-o

=; Lh[k]u[n - k] (4.4)
k=O

The system function H(z) between the output and the input has the

form

H(z) = B(z)
A(z)

where

p

A(z)=I+ La[kJz-k

k=l
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q

B(z) =1+ ~)[k]Z-k and
k:\

""
H(z) =I + Ih[k]z-k

k:]

The coefficients ark] are referred to as Auto Regressive (AR)

parameters, while b[k] are the Moving Average (MA) parameters.

4.3.2.1.1 AR Processes

If all the MA parameters, b[k] are zero, except b[O]""l, then the

process can be expressed as

p

x[n] =-I a[k ]x[n - k] + u[n]
k:l

Such a process is referred to as AR process oforder p and the model

is called as an all-pole model. Thus, the AR process assumes that each

value of the series depends only on the weighted sum of the previous values

of the same series and the input.

4.3.2.1.2 MA Processes

If all the AR parameters, ark] are zero, except a[O]=I, then the

process can be expressed as

q

x[n] =Ib[k]u[n - k]
k:l

Such a process is referred to as MA process of order q and the

model is called as an all-zero model. Thus, the MA processes can be

thought of as the output of a filter with all-zero transfer function and an

input, which is a white noise process.

4.3.2.1.3 ARMA Processes

When both AR and MA terms are present, the process is termed as

an ARMA process. Thus, in effect, ARMA model can be thought of as the
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output obtained when white noise is passed through a filter with p pole and

q zero filter. While the zeros of the filter may be anywhere in the z-plane,

the poles are expected to be within the unit circle in the z-plane.

4.3.2.2 Spectrum of ARMA, AR and MA Processes

As described in the previous section, we have 3 types of random

processes, viz. AR, MA and ARMA. Each model has its own advantages

and limitations. Apart from the theoretical properties of the estimators like

consistency, efficiency, etc., practical issues like the speed of computation

and the size of the data must also be taken into account in choosing an

appropriate method for a given problem. Often, one method in conjunction

with others can be used to obtain the best result. These estimation methods,

in general, require that the data be stationary and zero-mean. Failure to

satisfy these requirements may result in nonsensical results or a breakdown

of the numerical computation.

The Z-transform of the autocorrelation of the input sequence, Puu(z)

is related to that of the output sequence PxAz)of the random process by •

If the driving sequence is a white noise process of zero mean and

variance Pw' Puu (z) =Pw' The power spectral density of ARMA can be

computed by substituting z =exp(j2rifT) in the above equation and

scaling by the sampling interval T.
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where
p

A(/) =1+ L a[k]exp( - j2;r I k T)
k=l

q

B(/) =1+ Lb[k]exp(-j27ifkT)
k=1

and the complex sinusoidal vectors eq (I) and ep (I) are given by

1
eXPG2 It f T)

exptj 2 It f P T)

andeq(f) =

1

eXPG21t fT)

eXPG2 It f qT)

and the vectors a and b are given by

1

a[l]
a=

a[p]

and

1

b[l]

b[p]

If all the autoregressive parameters except a[O] 0;:: 1,

i.e., By setting p-O, then

(4.6)

which gives the spectrum of the MA Model.

Similarly if all the moving average parameters except b[O] 0;:: 1

i.e., by setting q=O, then
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P (f) - Tpw
AR -I 12A(f)

Tpw
=---~--

e; (f)aa H ep(f)

which gives the spectrum ofthe AR model.

4.3.3 AR Spectral Estimation

(4.7)

Various algorithms to estimate the AR parameters are available in

the open literature. The following sections provide brief descriptions of the

different algorithms like Yule Walker, Burg's, Covariance and Modified

Covariance.

4.3.3.1 Yule-Walker Method

The Yule-Walker method is one of the most widely used methods to

compute the AR parameters, due to its applicability to short data records.

For PSD estimations, this method uses auto-correlation function estimates

for solving the Yule-Walker equations. A biased estimate of the

autocorrelation function of the signal is computed and the least squares

minimization of the forward prediction error is solved.

The AR parameters and the autocorrelation sequence are related by

the equation,

p

- La[k]R.u[m - k] for m> 0
k=\

R.u[m] = Pw - fa[k]R.J-k] for m = 0
b,!

R:[-m] form <0

where Pw is the variance and p is the model order.

In matrix form, the above equation can be expressed as,
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1

a[l]
Pw
o

Rxx(O) a[p] o

By solving this matrix equation, which relates the AR model with

the autocorrelation sequence, AR parameters can be estimated. This

procedure of estimation of AR parameters is referred to as the Yule-Walker

method.

4.3.3.2 The Burg's Algorithm

The burg's algorithm is based on minimizing the forward and

backward prediction errors while satisfying the Levinson-Durbin recursion.

The method estimates the reflection coefficients directly. Burg's method is

found especially useful in resolving closely spaced sinusoids when low

noise levels are present.

4.3.3.3 Covariance Method

The covariance model fits an AR model to the signal by minimizing

the forward prediction error in the least squares sense. The covariance

based model of spectral estimators can give a better resolution than the

Yule Walker equations, for short data lengths. However, it can give rise to

unstable models. It also exhibits frequency bias for estimates of sinusoidal

signals present in the noise.

4.3.3.4 Modified Covariance Method

Though this method is similar to covariance method, it takes into

account minimizations of both forward as well as backward prediction

errors. In addition to providing high resolution, this method is immune to
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spectral line splitting. The comparison between the different algorithms is

discussed in the Table 4.1.

Table 4.1 Comp. ofvarious algorithms to estimate the AR parameters

Burg Covariance Modified
Covariance

Yule-Walker

Characteris Does not Does not Does not apply Applies
tics apply window apply window window to data window to

to data to data data

Minimizes the
forward &
backward
prediction
errors in the
least-squares
sense

Minimizes the
forward
prediction
error In the
least-squares
sense

Minimizes the
forward and
backward
prediction errors
in the Ieast­
squares sense

Minimizes the
forward
prediction
error in the
least-squares
sense.

Conditions
for Non­
singularity

Order must be Order must be
less than or less than or
equal to half equal to 2/3 the
the input input frame size
frame size

Due to the
biased
estimate, the
autocorrelatio
n matrix is
guaranteed to
positive­
definite, hence
nonsingular

Advantages
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High
resolution for
short data
records.

Always
produces a
stable model

Better
resolution
than Y-W for
short data
records (more
accurate
estimates).

Able to extract
frequencies
from data
consisting of
p or more pure
sinusoids

High resolution
for short data
records.

Able to extract
frequencies
from data
consisting of p
or more pure
sinusoids. Does
not suffer
spectral line­
splitting

Performs as
well as other
methods for
large data
records.

Always
produces a
stable model



Burg Covariance Modified Yule-Walker
Covariance

Disadvanta Peak locations May produce May produce Performs
ges highly unstable unstable models. relatively

dependent on models. poorly for
initial phase. short data

May sutTer
Peak locations records.

Frequency slightly
spectral line-

bias for dependent
splitting for

on

sinusoids in
estimates of initial phase. Frequency

noise, or when
sinusoids in bias for

order is
noise estimates of

very
sinusoids in

large.
Minor frequency noise

Frequency bias for
bias for estimates of
estimates of sinusoids in
sinusoids in

noise
noise

Acquire Data

Select AR Model Order

Estimate AR Parameters using a
suitable procedure

Estimate the PSD using the AR
Parameters

Adjust the order for varlance/
resolution Trade off

Fig. 4.2 Flow chart for the generic estimation of AR PSD
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A general flowchart for AR PSD estimation is given in the Fig. 4.2.

Let the N data samples be acquired with a sample interval of T seconds. A

suitable AR order is then selected and the AR parameters are obtained from

the sampled data by anyone of the methods. The PSD can then be obtained

using Eq.(4.7). The analysis may be carried out by selecting various orders

till a satisfactory result is obtained.

The MA parameters can be estimated by a technique commonly

known as the method ofmoments. Here, the MA parameters of a 4h order

process are calculated by solving the set of non-linear equations (which is

the autocorrelation function of the MA process), given by the following

equation.

form> q

forO S m S q

form <0

(4.8)

In order to obtain the spectral estimate, there is no need to solve for

the MA parameters, since the PSD can be directly estimated from the

Autocorrelation sequence as

q

PMA ( / ) =T 'LR.u[k]exp(-j2tifkT).
k~-q

A flowchart of a generic MA PSD estimator is given in Fig. 4.3.

Another approach which is relatively simple and relies on linear operations

is to use higher order AR Approximation to the MA process. Let B(z) and

l/Aex>(z) be the system functions of an MA(q) process and AR( (0) process

equivalent to the MA(q) process respectively, which are defined as,

q

B(z) =1+ Ib[k]z-k
k=1

96



A... (z) =1+ :ta[k]z-*
k=1

i.e., B(z)A.., (z) =1.

The inverse z-transfonn of the transform product, B(z) A",,(z) is the

convolution of the MA parameters with the AR parameters and that of

constant 1 is the sample function 8[m].

Equivalently,
q

a[m] + L:b[n]a[m - n] =8[m]
n=1

(4.9)

Fig. 4.3 Flowchart for the Generic MA PSD Estimation
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{
I form =0

where o[m] ==
Ofor m "* 0

and a[O];: 1 and a[k]:;: 0 for k<O.

Thus, one can estimate the MA parameters from an equivalent

infinite order AR model using Eq (4.9).

4.3.4 ARMA Spectral Estimation

The ARMA process model is given by

p q

x[n] =-:La[k]x[n-kJ+ :Lb[k]u[n-k]
k.1 k~O

(4.10)

The ARMA parameters b[k] and ark] are related to the

autocorrelation of the process x[k] by

q p

Rn[mJ= p",2)[k]h'[k-mJ- La[k]Rx...[m-k) for u s m s q
k=m k=l

R:[-m] form <0

- fa[k)Rn[m- k]
hI

form> q

(4.11)

Thus, the ARMA parameters can be estimated by obtaining the

autocorrelation values and by solving the above equations. However, the

non-linear nature of the above equation and the need to simultaneously

estimate the MA and AR parameters, make the ARMA estimation

comparatively a difficult process, even when the autocorrelation sequence

is exactly known. A flowchart representing the procedures for ARMA

estimation is given in Fig. 4.4.

4.4 Analysis ofNoise Signals on the Spectral Perspective

It has been found that the various noise sources can be effectively

classified and identified by analyzing the frequency spectrum of the noise
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signals emanating from the targets using various spectral estimation

techniques. As envisaged in section 4.3.2, using certain a priori

information on the general characteristics of the spectrum, parametric

spectral estimation techniques are seen to yield better results when

compared to classical estimation techniques.

Fig. 4.4 Flowchart for the Generic ARMA PSD Estimation
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The various types of spectral est imators have been implemented in

Matlab and the front end of the estimator is the graphical user interface

(GUI) shown in FigA.5.

SPECTRUM ESTIMATOR

Ch'l.os"e! Spe-~l tl l

Esl,mouon

,Er'C ~ .. I

M,n"rlUffl v aneo ce sceceer
E$bm~'on

P~"o" ,e!ri, Mod",ls r~~

Scecnum AAelly'S'&

,.. rE, . 1' ~1 I- I

I I .. ;C[ T I'-'<'~ t

-
Fig. 4.5 GUI of the Spectral Estimator

This aUI has a provision for carrying out the classical, minimum

variance as well as parametric model based spectral estimations. The

selection of a suitable parametric model from the three established models.

viz. AR, MA and ARMA. should be carried out by analyzing the spectral

shape and computational efficiency. AR models give the spectra with sharp

peaks, but with no deep nulls. In the MA model spectrum, the reverse is

true, i.e.. there are deep nulls but no sharp peaks. The ARMA model can. )n

general. represent both the extremes. Also. the model which gives a

satisfactory result with the use of fewer numbers of parameters should be

selected. From a thorough analysis of the data samples and the models, it
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has been observed that the AR model. which has less computational

burden. can be a best choice for analysis ofocean noise data waveforms.

The performance of the AR estimator making use of the Yule­

Walker, Burg, Covariance and Modified Covariance algorithms

implemented in Matlab have been studied in detail for various types of

signals as well as noise types usually encountered in underwater scenario.

All the files are segmented into records of one second in duration for

analysis. The plots indicate that the spectra of different sources differ in

many aspects while there is a notable similarity between the samples of the

same signal. The results of the analysis are furnished in Figs. 4.6 through

4.27, with the spectra plotted for four different orders, viz. 20, 40, 60 and

80 as well as different algorithms discussed above.

For evaluating the performance of the time series AR estimator. the

noise data waveforms generated by a merchant vessel approaching a

monitoring station from 1.7 kms as well as that of a large commercial

vessel cruising at approximately 20 knots and 3.2 kms away were

considered. The performance validation of the model estimators based on

these algorithms revealed that an Autoregressive time series model

estimator making use of the Yule-Walker algorithm is the optimum one in

terms of the computational complexity as well as the spectral fidelity for

processing the noise types described above.

Figs. 4.6 to 4.8 depict the spectra for the merchant vessel using the

Yule-Walker algorithm for three parametric models, viz. AR. MA and

ARMA. In order to study the effect of the order selection, the spectra are

plotted for the orders of 20, 40, 60 and 80. The Figs. 4.9 to 4.11 depict the

PSD plotted for AR models in respect of the noise generated by the

merchant vessel using the other three algorithms with the four different
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orders. Figs. 4.12 to 4.15 depict the PSD of the commercial vessel for the

various AR algorithms, while Fig. 4.1 6 depicts the MA spectrum using

Yule Walker algorithm.

It can be observed that the MA spectrum shown in Figs. 4.7 and

4.16 has broad peaks around the peaking frequency. In addition, as the

order increases, the broadness of the peaks decreases while the sharpness of

the nulis is getting increased. The ARMA spectrum in Fig. 4.8 has sharp

nulls and peaks and for low orders. the sharpness tends to decrease,

especially for the peaks.

AR Spectrum .Merchant Vessel
Yu!es Algorithm - DifteffinlOreers

for"""" 20
j , - - for"""" 40

-10 • +. --···4· ····1-
for"""" 60a>

-e
for"""" eo.e

.~ ·20 ~ 'f- ••<
0c

• -30 Tu
0 i
~

U)- -40
, ,-0 ... - ..,-

• ; ,
0

Q.
0 i I
> -50 r ,. "---i" " j ·1·· ._..~

\~ , !'-

0 I Ia:
I

1, I'-60 , ~.. ., ..._.L.. .." - ri I

005 0.1 0.15 0.2 0.25 0.3 0.35 0.' 0.45 05
Fraction ofSamplingFrequency

Fig. 4.6 AR Spectrum ora Merchant Vessel using Yule Walker
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The AR spectra in Figs. 4.6 and 4.9 to 4.15 have moderate peaks

and nulls and fi re found to give a smooth spectral profile. As the order

increases, there is an increase in the number of peaks and nulls.

-,
i...' I!

nos 0 1 0,15 0.2 025 0.3 0 35 0.. 0,45 0.5
Fl'BdlDl1 01Samplll'lg Frequency

Fig. 4.7 MA Spectrum or a Merchant vessel using Yule Walker
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Fig. 4.8 ARMA Spectrum of Merchant Vessel using Yule Walker
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Fig. 4.10 AR Spectrum or a Merchant Vessel using Covariance
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Fig. 4.12 ARSpectrum ofa Conunercial Vessel using YuleWalker
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The PSD of a tugboat which has a smaller high speed propeller is

plotted in Figs. 4.17 through 4.19. The plots show the analysis results

obtained using the Yule Walker for the three parametri c models, AR. MA

and ARMA for the four different orders. In this case also, the AR spectrum

is found to give a smooth profile, with orders which are neither too low nor

too high. The MA spectrum exhibit broad peaks and sharp nulls, while the

ARMA spectrum has very sharp nulls and peaks.

Noise generated by Torpedo has also been analysed and the

spectrum is given in Fig 4.20. An analysis of the spectra has clearly

indicated that the AR model is the ideal one for characterizing the Torpedo.
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Fig. 4.17 AR Spectrum ofa Tug Beat using Yules
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Fig. 4.20 AR Spectrum of a Torpedo using Yule Walker

The analysis of the noise generated by some typical marine species,

viz . Humpback Whales and Pinnipeds are illustrated. Humpback whales are

the noisiest and most imaginative whales when it comes to songs. They

have long. varied. complex, eerie, and beautiful songs that include

recognizable sequences of squeaks, grunts, and other sounds. Their songs

have the largest range of frequencies ranging from 20 to 9,000 Hz. The

spectral plots of the sound signature of a humpback whale are presented in

Figs. 4,21 through 423.

Pinnipeds are cold weather seals that live in the circumpolar regions

of the northern hemisphere. These animals produce a distinctive song

ranging from 0.02 to 6 kHz in frequency. These complex songs consist of

long, spiralling trills and short, low frequency moans. Results of the

spectral analysis carried out using Yule Walker algorithm for the noise
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Fig. 4.23 ARMA Spectrum or a Humpback. Whale using Yule Walker

produced by a typical Pinniped is presented in Figs. 4.24 through 4.25. The

spectrum of the beluga whale is also illustrated in Fig 4.26. .

Apart from the analysis of the noise sources in the ocean, certain

environmental states have also been analysed. As an example. the analysis

of lightning noise has been carried out and their spectrum is depicted in Fig

4.27.
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4.5 Spectral Features

A detailed study on the various noise sources in the marine

environment has been carried out, from a target classification/ identification

point of view. Various source signatures, both of man made as well as

biological in origin have also been analyzed.

The spectrum estimated using the AR process model seems to be

more fitting for underwater noise data waveforms and hence this has been

adopted as the standard model for extracting the spectral features in this

work.

Acquisition of N data samples at equispaced intervals of !!.l is

followed by the selection of the AR Model order parameter p. From a

knowledge of certain error criterion, it is possible to select the required

model order. The significance of the model order in AR model is such that,

very low values of the model order result in a highly smoothed spectral

estimate, while higher order values increase the resolution and in certain

cases introduce spurious behaviour into the spectrum.

The next step is the selection of one of the four approaches for estimating

the AR parameters depending on the user requirements. The Yule-Walker

method produces AR spectra for short data records with the least resolution

among the four. The Burg's and Covariance methods produce comparable

AR spectral estimates. The Modified Covariance method is the best for

sinusoidal components in the data. Once the AR parameters have been

estimated using any of these methods, then the AR spectrum can be

computed. In this work, for the ocean noise data waveforms, the AR

spectrum has been estimated using the Yule Walker method. Upon

estimating, the power spectrum, the following feature components which
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reveal the sign ificant spectral character istics, considered for the realisati on

of the proposed classifier, is computed as shown in Fig. 4.28.
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o Spectral Centroid, which may also be referred to as the spectral

brightness, gives an indication of the spectral shape.

o Spectral Range, which refers to the range of frequencies that are

present in the signal.

o Spectral Roll ofT, which gives a measure of the spectral shape.

o Spectral flux, which is a measure of how quickly the power

spectrum ofthe signal changes

o Spectral Slope, which refers to the average slope of the power

spectral density variation.

o Number of Peaks and the Peaking frequencies, which will help in

identifying the tonal as well as continuous frequency components.

4.6 Cepstral Analysis

Cepstral analysis belongs to an area of signal processing known as

homomorphic analysis. The attraction of the homomorphic analysis is that,

it can be accomplished using cascade of forward and inverse operations

with a linear time invariant operation sandwiched in between.

The spectrum of any waveform consists of two components, the

slowly varying part, referred to as the filter or spectral envelope and the

rapidly varying part, referred to as the source or harmonic structure.

Separation of these two components can be achieved by taking the

cepstrum, an anagram of the word spectrum. The Cepstrum is defined as

the inverse Fourier transform of the log magnitude Fourier spectrum of the

signal and is said to be in the quefrency domain, an anagram ofjrequency.

The convolution of any two signals in the time domain is

transformed into simple multiplication of DFTs in the frequency domain.

Thus, Fourier transform of any signal is actually a multiplication of the
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Chapter 4 SPectral and Cepstral Analysis

frequency transform of the source and the filter signals. Hence, by applying

the operation of logarithm to this Fourier transform. we get the convolution

in the time domain transformed into a sum of log-magnitude components in

the frequency domain. Now applying an inverse Fourier transform to the

log spectrum takes the function back into the time domain, and is a measure

of the rate of change of the spectral magnitudes [129]. The idea of the log

spectrum or cepstral averaging is found useful in many applications such as

speech processing, echo detection and noise source recognition.

Consider a signal set) consisting of the convolution of the two

components, x(t) and yet), so that set) = x(t) ® yet) .

Then, taking Fourier transforms of both sides,

S(m) = X(m)Y(m)

The magnitude spectrum ofthe signal can be written as

IS(m~ = IX(m)IIY(m)1

By taking the logarithms of both sides,

InIS(m~ = InIX(m)1 + InIY(m)1

Thus, a convolution in time has been transformed into a sum of log­

magnitude components in the frequency domain. For separating the

components x(t) and yet), the inverse Fourier transform can be applied.

However, it should be noted that the phase information from the original

signal has been lost, as a result of the magnitude operation on the complex

spectra.

Applying an inverse Fourier transform to the log spectrum gives

F-
J ~nIS(m)I}= r:' {lnIX(m)j}+ F-1{lnIY(m)j}

For the signal set) =x(t) ® y(t), c. (n) is given by



C, (n) = c I (n) +c]/(n) ,

when: c. (o) , c. (o) and c, (0) ate the cepstra of signals s(1), x(t) and

y(t) , respectively .The various steps involved in the computation of the

cepstral coefficients are depicted in Fig. 4.29 .

The cepstrom so derived is the real cepstrwn, as it is derived from

the power spectrum of the signal, which is always a real function of

frequency and is an even functio n of the independent variable, lag or

qucfrency. Because the log-magnitude spectrum is real and symmetrical for

real signals, the fmallFf can be replaced with a cosine transform .

~t)

• Fourier • In 1,1 Inverse •Transform Fourier Transform

Fig. 429 Steps involved in computing Real Ccpstnun

Using a suitable cepstral filter normally referred to as lifter, the

components may be separated from each other and then they can be

transformed hack into log-mngnitudes or magnitudes in the frequency

domain as required.

• Low order cepstraI coefficients are sensitive to spectral slope,

glottal pulse shape, etc.

• High order cepstral coefficients are sensitive to the analysis window

position and other temporal artefacts.
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• The variations in these coefficients can be reduced by using a raised

sine window that emphasizes the coefficients at the centre of the

window

One of the drawbacks of the real cepstrum concerns with the loss of

phase information. By taking the complex logarithm of the Fourier

transform, it is possible to generate the complex cepstrum. The various

steps involved in the computation of the complex cepstrum are depicted in

Fig. 4.30.

~l)

Founer
Transform

S{w)-- In(.)

•
C, In>

Inverse ...
FourierTransform

Fig. 4.30 Steps involved in getting the complex cepstrum

4.6.1 Cepsll'lll Plob

It can be seen that most of the details occur near the origin and in

peaks higher up the cepstrum. Thus, the lower numbered coefficients

provide the envelope intormation, while the remaining infonnation are

mostly confined 10 the peaks which are separated by the pitch period. The

windowed noise wavefonns, its cepstrum, the spectral envelope and the

spectral detail s of various noise sources in the ocean are depicted in Figs.

4.31 to Fig. 4.42 .
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4.7 Mel Frequency Cepstral Coefficients

A more systematic approach for computing the cepstral coefficients

is achieved by estimating the Mel Frequency Cepstral Coefficients (MFCC)

[130], which is a measure of the perceived harmonic structure of sound.

Davis and Mermelstein coined the term Mel Frequency Cepstral

Coefficients (MFCC) in 1980[131] when they combined nonuniformly

spaced filters with the discrete cosine transform (DCT) [132] as a front-end

algorithm for Automatic Speech Recognition System.

A Mel is a psychoacoustic unit of frequency which relates to the

human perception and is approximated using

m = 259510g\o[1+L]
700

where f is the frequency in Hz.

The spectrum can be transformed into a spectrum emphasized at

Mel intervals using Mel filter banks, which is a row of triangular filters

overlapping at Mel-spaced intervals. The cepstrum of this transformed

spectrum yields Mel frequency cepstral coefficients.

4.7.1 MFCC Estimation

4.7.1.1 Mel-frequency scaling and Cepstrum

The cochlea of the inner ear acts as a spectrum analyzer and hence

researchers have undertaken psychoacoustic experimental work to derive

frequency scales that attempt to model the natural response of the human

perceptual system. The complex mechanism of the inner ear and auditory

nerve implies that the perceptual attributes of sounds at different

frequencies may not be entirely simple or linear in nature. The cochlea in
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'Chapter '4Spectral and Cepstral Analysis

the auditory system acts, as if it is made up of overlapping filters having

bandwidths equal to the critical bandwidth. Hence the method of frequency

scaling is used to map the linear frequencies into human perception. Mel­

frequency scale as showin Fig 4.43 is such a kind of perceptually motivated

scale, which is linear below I kl-lz, and logarithmic at higher frequencies.

••••'."~t~)

,,'

""r----~---~---~---...,
""
"'".­.,'"
'..
'"
1~!;----~~--~"";~'----~-----::

Fig. 4.43 The Met-scale

The Mel scale more closely models the sensitivity of the human ear

than a purely linear scale and provides for greater discriminatory capability

between audio segments. The Mel-scale frequency analysis has been

widely used in current speech recognition system and can be used for target

emissions also.

The DFT of the input signal x(n) is given by

N-'
X(k) = Lx(n)exp(- j21111k I N)- k=O.I.2•........N -I

Hence the Mel-frequency filler bank [132].[133] comprising of p

filters can be represented as shown in the Fig. 4.44 with the energy in each

band given by m j (j =J. 2, ...•p), and is computed as detailed below.
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Each Fourier Transform magnitude coefficient is multiplied by the

corresponding filter gain and the results are accumulated. It can be

computed as

N_l 2

mJ =LIX(k~ H ,(k)... OSj Sp

where HAt) is the transfer function ofJ4h filter.

The Mel-frequency cepstrum is then the discrete cosine transform

[55] of the p filter outputs and is represented as

ji.{-. {";j)C, = -LmJco --
N , .. I P

where Cl is the I" MFCC coefficient .

(4. 12)

Mel-cepstral coefficients are extracted from the noise data

waveforms. The key difference between MFCCs and cepstral coefficients

lies in the process involved in extracting the characteristics ofa noise signa l

(134].

With a sampling frequency nf 11025, • filter bank of 40 equal area

filters. which cover the frequency range [50, 6400] Hz has been
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implemented. The centre frequencies of the first 13 of them are linearly

spaced in the range [50, 1000] Hz with a step of 73.077 Hz and that of the

next 27 are logarithmically spaced in the range [IOOI, 6400] Hz with a

/ogStep= 1.071103, computed using

{
I{ 1:40:) / J

logStep = ex 1000}/NumLogFilt

where fc40' the centre frequency of the last one in the

logarithmically spaced filters is 6400, and NumLogFi/t = 27, the number of

logarithmically spaced filters..

Each one of these equal area triangular filters is defined as

o
2(k - fbi-I)

for k < fbl-J

for fbi-I s k s fbl

for fb; s k s fbi+1

for k > fbi+1

(4.13)

where i =1,2,...,p and stands for the ,.th filter, fill are p + 2 boundary

points that specify the p filters, and k =1,2,...,N corresponds to the It!'
coefficient of the N point OFT. The boundary points hi are expressed in

terms of the position. The key to equalization of the area below the filters

lies in the term

2
(4.14)
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On account of this term the filter bank (4.13) is normalized in such

a way that the sum of the coefficients for every filter is equal to one. Thus,

the i th filter satisfies:

NL H i ( k) = 1 for i = 1, 2 P
t-I

The equal area filter bank (4.13) is employed in generating of the

log-energy output. Finally, the Discrete Cosine Transform (OCT) provides

the MFCC-FB40 parameters.

The Discrete Cosine Transform performed on the log of the Mel­

spectral coefficients provides the Mel-Frequency Cepstral Coefficients

[135]. Of the many MFCCs, only the first 20 coefficients ofeach frame are

considered, since most of the features of the noise source can be extracted

from these coefficients. The use of DCT minimizes the distortion in the

frequency domain and is efficient in computation, since an N-point DCT

can becarried out using a symmetric 2N-point FFT.

4.7.2 Window function

When the spectral analysis techniques like the Fast Fourier

Transform are applied to the segments as a whole, it behaves as if it is

operating on a data signal waveform that is zero just before the segment

and then abruptly jumps to the signal during the segment and then back to

zero when the segment ends. This introduces significant distortion of the

signal and warrants the need for windowing.

The motivation behind the function of windowing is to remove the

undesirable undulations and smoothen the edges of each data record, so as

to reduce the spectral distortion as well as discontinuities or abrupt changes

at the end points. More specifically, if the original signal level is S(l) at time
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i, then the windowed signal can be represented as s(1) * W(I) where W(I) is

the window function.

A window function that works well is the Hamming window and is

defined by

W(n) =0.54 - O.46COS( 21D'1 )
N-l

When the cepstral coefficients are extracted, using the procedures

already formulated it has been observed that the MFCCs for various records

vary over a wide range of values. Hence, the optimum set of values for the

cepstral coefficients are to be synthesized by a technique referred to as

vector quantization [136].

4.7.3 Vector Quantization

Vector quantization is a lossy data compression method based on

the principle of block coding, which codes the values from a

multidimensional vector space into values in a discrete subspace of lower

dimension. In the work reported here, the LBG (Linde, Buzo, Gray) design

algorithm [137] for vector quantization by trimming the cepstral

coefficients to the nearest value is adopted for finding out the optimum

match.

4.7.3.1 Implementation

The MFCC matrix is vector quantized by passing each column of

this matrix through a vector quantizer. In vector quantization, the columns

of the MFCC matrix are taken as source vectors, which will generate the

quantized code vectors comprising of the various cepstral coefficients at

different quefrencies.
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If the source vectors are k-dimensional, then Xm can be represented
as

Let P be the number of code vectors which are synthesized from the

M source vectors, by following an iterative procedure for trimming the

cepstral coefficients, starting with a column vector, obtained by taking the

average of the entire elements in a row of the MFCC matrix.

{C}= { Cl, C2, .... , cp} represents the set of k-dimensional code

vectors with the various components of each cp given by cp = (Cpl, Cp2,

....., cpk) where p = I, 2, ...., P-I, P being the number ofcode vectors that

are to be synthesized from the source vectors, as specified at the time of

initialization.

The LBG algorithm requires an initial code book containing one

code vector obtained by taking the row wise mean of the MFCC matrix.

The initial code vector is split into two column vectors by adding and

subtracting an error term. From these column vectors, the minimum

distance to the various columns of the MFCC matrix is computed by the

Euclidean distance technique using the equation,

D=

~ ~

where D is the Euclidean distance, X m is the source vector and Ym is the

code vector. The stipulated procedure for trimming the cepstral coefficients

using vector quantization is illustrated in the flowchart shown in Fig. 4.45.
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0.011
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Flg-4.45 Procedure fer vector quantization

Using this minimum distance and i1s index, the correspooding column

vecton of the MFCC matrix are identified and from the average values,

new codevectorsare generated.
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The new code vectors so generated are compared with the previous

code vectors. If the difference is greater than the error term, minimum

distances between these code vectors and MFCC matrix is again computed

by the same method and the code book is being updated until the difference

is less than the error term. The process of splitting the code vectors is

continued till the number of iterations specified at the time of initialisation

is reached. As the number of iterations in the vector quantizer has to be an

integer, the number of code vectors specified at the time of initialization

has to be a power of two.

4.8 Cepstral Features

For the extraction of cepstral features the signals collected from the

hydrophone are pre-processed which mainly includes framing, windowing

and pre-emphasis. The various processes involved in the extraction of the

cepstral features are illustrated in FigAA6.

Framing is used to segment the long-time signal to the short-time

signal in order to get relatively stable frequency characteristics. Thus the

noise data is sliced into different records of fixed length N and each data

record is windowed using a Hamming window. The windowed data record

is then transformed into the frequency domain by taking FIT, which is

applied to the Mel-scale filter bank. The MFCCs are computed by taking

the discrete cosine transform (DCn ofthe log-scaled filter bank output and

is further subjected to vector quantisation.

In an attempt to extract the cepstrally decomposable features, 20

MFCCs have been generated. The Table 4.2 summarizes the MFCCs with
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Fig. 4.46 Illustration of the steps involved in estimation ofMFCC

and without noise for two different noise sources. viz. engine and a surface

craft. In underwater scenario. as man made noise data contain certain

valuable low frequency infonnation, the Mel filter banks have been

extended to the low frequency cut off value of 50 Hz.
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Table 4.2 Table of MFCC for two different noise sources

ENGINE BOAT

MFCC(wit VQ(witho MFCC(wit VQ(with MFCC( VQ(with MFCC( VQ(with
hout noise) ut noise) h noise) noise) without out with noise)

noise) noise) noise)
-10.03600 -10.00500 -9.27650 -9.27200 9.40760 -9.39900 -8.94210 -9.41910

-1.91800 -1.91980 -1.29340 -1.28690 1.94420 1.94580 1.39010 1.33860

0.12247 -0.11614 0.01102 0.01729 -1.81440 -1.80390 -1.48920 -1.45380

0.00562 0.01932 -0.00326 0.00547 -0.03919 -0.02978 -0.13143 -0.1133

0.17826 0.16857 0.02445 0.02279 -0.53635 -0.52936 -0.36691 -0.36104

0.38255 0.38257 0.15368 0.14744 0.07886 0.07321 -0.01608 -0.01083

0.32239 0.32903 0.11544 0.11892 0.35154 -0.35473 -0.27156 -0.24204

0.12236 0.13344 -0.03715 -0.02744 -0.12932 -0.13455 -0.21963 -0.21028

-0.03592 -0.02889 -0.13080 -0.12722 0.03189 -0.03388 -0.05134 -0.04338

0.01818 0.00330 -0.05365 -0.05629 -0.13503 -0.12872 -0.05672 -0.05774

0.13244 0.11247 0.05403 0.05924 0.28481 0.28800 0.21459 0.19267

0.12084 0.12221 0.07212 0.07549 -0.22155 -0.21884 -0.06984 -0.07290

-0.06611 -0.05528 -0.04210 -0.03955 0.22930 0.22831 0.13303 0.12586

-0.18141 -0.18559 -0.11832 -0.11294 -0.26006 -0.25951 -0.16329 -0.15808

-0.14267 -0.13664 -0.08246 -0.08612 0.29963 0.29593 0.10468 0.10566

0.01217 0.01636 0.03863 0.03664 -0.28433 -0.28325 -0.13267 -0.12409

0.06414 0.06597 0.07923 0.07641 0.08896 0.08946 0.03609 0.03009

-0.04586 -0.04916 0.00470 -0.00424 -0.20589 -0.20540 -0.11799 -0.12153

-0.14250 -0.13556 -0.06930 -0.06846 0.14926 0.14848 0.06515 0.06923

-0.08870 -0.08474 -0.04470 -0.04260 -0.20498 -0.20398 -0.06682 -0.06192
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4.9 Summary

This techniques and procedures involved in extracting the various

feature components required for generating the classification clues are

highlighted in this chapter. The classical as well as parametric model based

power spectral estimators for extracting the spectral features have also been

presented in this chapter. It has been observed that parametric model based

estimators give better results for short data segments and yield better

frequency resolutions than conventional estimators. In this context it is also

worth mentioning the fact that parametric approaches take the advantage of

the a priori knowledge about the process from which the data samples are

taken.

This chapter also touches upon the concepts of cepstral analysis,

which belongs to an area of signal processing known as homomorphic

analysis and can be accomplished by using a cascade of forward and

inverse operations with a linear time invariant operation sandwiched in

between. The spectrum of any waveform consists of two components, the

slowly varying part, referred to as the filter or spectral envelope and the

rapidly varying part, referred to as the source or harmonic structure.

Separation of these two components can be achieved by taking the

cepstrum. A more systematic approach for computing the cepstral

coefficients can be achieved by estimating the Mel Frequency Cepstral

Coefficients (MFCC), which is a measure of the perceived harmonic

structure of sound.
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CHAPTER 5

BISPECTRAL ESTIMATION

In the analysis and handling of random signals, the first and second order statistics

have gained significant importance and is used in a wide variety ofapplications. For

many signals, which are generated from nonlinear processes, second order

statistical methods are not sufficient for analysis. Many of the naturally occurring

signals deviate from Gaussianity and linearity. Hitherto, such signals were

considered Gaussian or near Gaussian signals and analysis were conducted, which

has resulted in loss of valuable information. For these reasons, higher order

statistical methods have been developed, which can handle non-Gaussian as well as

non-linear signals. Phase information is not available in the second-order measures

such as the power spectrum and autocorrelation functions because of which, non­

minimum phase signals and certain types of phase couplings, associated with

nonlinearities, cannot be correctly identified by second order statistics. The

Gaussian signals can be completely characterized by its mean and variances.

Different types of nonlinearities results in different types of phase couplings. If a

signal composed of two sinusoids is passed through a non linear system, then the

output will contain components at the sum and difference frequencies as well.

Quadratic Phase Coupling is the term used to describe the coupling which results

from such type of nonlinearities, The procedures to be adopted for generating the

bispectrally extractable features such as the mutual coupling frequencies, self

coupling frequencies, the peak at the bifrequencies, etc. are described in this

chapter.
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5.1 Introduction

As the applicability of the signal processing technology is

increasing, a number of techniques based on certain statistical approaches

have been developed to analyze and handle random signals. The first and

second order statistics have gained significant importance and is used in a

variety of applications. The technique of power spectral analysis is found to

have wide applicability and are also robust and time tested. However, many

signals, especially those which are generated from nonlinear processes, can

not be properly analysed by second order statistical methods.

Many of the naturally occurring signals deviate from Gaussianity

and linearity. Until recently, such signals were considered Gaussian or near

Gaussian signals and analysis were conducted, which has resulted in loss of

valuable information, For handling such signals, higher order statistical

methods have been developed, which can handle non-Gaussian as well as

non-linear signals.

During the 1970s, for the first time, Higher Order Spectrum (HOS)

techniques were applied to signal processing problems, and since then HOS

has been continuing to expand into different fields as speech, seismic data

processing, plasma physics, optics, etc ..

5.1.1 Theory and Definitions

Consider a discrete time real valued random signal x(n). The

probability density function (PDF) of x(n) gives an insight into the

distribution of the amplitudes of x(n). The shape of the POP can be

characterized by a set of measures called moments. Another measure called

cumulants, which are very similar to moments" has also been coined and

the higher order spectra are defined in tenns of these cumulants.
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5.1.1.1 Moments

The moments are defined as the coefficients of the Taytor's

expansion of the Moment Generating Function (MGF). The first moment,

the mean, gives a measure of the location of the PDF, while the second

moment, the variance, gives a measure of the spread of the PDF. The third

and fourth order moments are called skewness and kurtosis, which gives a

measure of the asymmetry and sharpness of the PDF, respectively.

The j(h order moment, about the mean, of the process can be

estimated by computing the expected value of product of itself with (k-l)

lagged versions. Thus, the second and third order moments can be written

as

m2 ( T J =.: E[x(n)x(n+ T 1) ]

m3 (T], T 2) =E[x(n)x(n + T] )x(n + T 2)]

In general, the j(h order moment can be estimated as

(5.1)

5.1.1.2 Cumulants

The natural logarithm of MGF is the Cumulant Generating Function

(CGF) and the coefficients of the Taylor's expansion of the CGP are

termed as the cumulants. One of the notable features of the cumulants is

that, for a Gaussian process, all cumulants of order greater than two are

identically zeroes and this helps in distinguishing a non-Gaussian process

from a Gaussian one.

Cumulants are closely related to moments and can be estimated by

first computing the moments of the process and then applying some simple

relations, which exist between the cumulants and moments.
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Chapter 5 Bispectral Analysis

c4 =m4 -4m3m1 -3m~ + 12m2m1
2 -6m:

where m;andc; are the lh order moment and cumulant respectively.

Hence, for zero mean processes, the second and third order

cumulants will be equal to the respective moments. Even for zero mean

processes, for orders greater than three, the moments and cumulants are

distinct,

Cumulants have certain attractive properties, that make it more

useful over moments and because of which the expressions involving

cumulants are much simpler and easier to manipulate than expressions

involving moments.

5.1.1.3 Polyspectrum

Fourier fransfonn of a real discrete zero-mean process x(n) is given

by

'"
X(f) = Lx(n)exp(- j2tifn)

n:;;-(I)

(5.2)

The polyspectrum, or the nth order cumulant spectrum, is defined as

the Fourier Transform of the nth order cumulant sequence. rhus, the first

member of the polyspectrum family is the well known power

spectrum P(f) and is expressed as the Fourier transform of the second

order cumulant or the autocorrelation sequence [69].
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where Cc is the second-order cumulant ofx(n) , given by

C,,(k) == E[x(n)x·(n+k)] (5.4)

Similar to the power spectrum, the third order spectrum or the

bispectrum BU;,f2) is defined as

00 00

BU;,12 ) == I I C""(k,/) exp(-j2iT J;k)exp(-j2iT 1 2/ ) (5.5)
k~-<X) I~-«>

where C xx(k,/) is the autobicorrelation, which is the third order

cumulant and is expressed as,

Cxx(k, I) =E[x(n)x(n + k)x· (n + I)] (5.6)

Fourier transform of the fourth order cumulant sequence is called

the trispectrum and is given by

00 00 00

T(J;,12, f 3) = ILL C xxx (k,l, m)exp(-j2iT J;k)
k=-Q() I =-com=-co (5.7)

It may be noted that the bispectrum is a function of two frequencies,

whereas the trispectrum is a function of three frequencies. In contrast with

the power spectrum which is real valued and nonnegative, bispectra and

trispectra are complex valued. In general, Higher Order Spectra,

H (J;, 12 ..., Ik) is complex for order k greater than two.

An outstanding property of polyspectrum is that all polyspectra of

higher order (order greater than two) vanish when the process is Gaussian.

This property is a direct consequence of the fact that all the cumulants of

order greater than 2 are identically zero. Thus higher-order spectra measure
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the deviation of a stochastic process from Gaussianity. Higher order

statistics such as skewness, kurtosis, etc. are now widely being used in

applications like speech processing, source identification/classification,

etc ..

A random signal x(n) can be completely characterized by its

autocorrelation function (ACF) only if it originates from a random process

with Gaussian characteristics. In non Gaussian processes, the higher order

moments carry information that can not be found in the ACF. Such non­

Gaussianities can be found, for example, in speech, radar, sonar, bio­

medical, seismology, etc.. The extra information provided by HOS leads to

better estimates of the parameters and throws light on the non-linearities in

the source of the signal.

Some of the notable advantages of such techniques over the

traditional second-order techniques are the following:

.:. The phase information is not available in the second-order measures

such as the power spectrum and autocorrelation functions. Because

of this, non-minimum phase signals and certain types of phase

couplings associated with nonlinearities cannot be correctly

identified by second order techniques.

•:. The Gaussian signals can be completely characterized by its mean

and variances, Consequently, the HOS of Gaussian signals are zero.

Since, many signals encountered in practice are non-Gaussian and

many measurement noises are Gaussian in nature, HOS are less

affected by Gaussian background noise than the second order

measures.
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The second feature becomes very attractive in classification or

identification scenarios. For example, the power spectrum of a

detenninistic signal and Gaussian noise is very different from the power

spectrum of the signal alone. However the bispectrum of the signal and

noise is, at least in principle, the same as that of the signal.

Thus, the general motivations behind the use of higher order spectra

are to extract information due to deviation from Gaussianity, to detect and

characterize the non-linear properties of signal generating mechanisms and

to estimate the phase of non-Gaussian parametric signals.

5.2 Bispectrum

As already established, the traditional power spectrum is the Fourier

transform of the autocorrelation sequence, while the bispectrum is the

Fourier transform of the third-order cumulant sequence or the

autobicorrelation sequence. The bispectrum is a member of the category of

higher order spectra, or polyspectra and can provide additional information

than the power spectrum.

Among the higher order spectra, the third order polyspectrum or the

bispectrum can be computed very easily and hence is attracting more and

more researchers. The bispectrum can be thought of as a frequency

decomposition of the third-order cumulant and it follows that the process

skewness Y3 which is the zero-lag cumulant C3(O,O) is equal to the

bispectrum summed over all the frequencies. This can be compared with

the way in which the variance of a process is related to its power spectrum

and second-order cumulant or autocorrelation function. Bispectral analysis

can reveal the deviation of the processes from Gaussianity, since all
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polyspectra of order greater than two is identically zero for Gaussian

process.

5.2.1 Energy Dependence of Bispectrum

The bispecrrum is asymptotically consistent. However. at the

bifrequency U ;' ! 2) ' the complex variance is proportional to the product of

the power of the signals at the frequenciesli . fi and c.J. + /2) '

i.e. var[BU ,,f,l] a P(!, lPU , lP(!, +I,l

So the value of the bispectrum at a particular bifrequency depends

on the energy content at those frequencies. This energy dependency can

lead to erroneous results. As an illustration consider the bispectrum of a

Gaussian signal as shown in Fig. 5.1. Though theoretically, the bispectrum

of the Gaussian signal should be identically zero. In practical scenario

bispectral values are found to have smaller values (nearly zero) as shown in

the Fig 5.1.

Fig. S. l Bispectru m ofGaussian Noise

However. as the amplitude of the signal gets increased, the

bispectral plot also shows false peaks. indicating the signal as non-Gaussian

146



even though the signa l is purely Gauss ian. Figs. 5.2 (a) and (b) shows the

bispect ral plots of the Gaussian signal amplified by a factor of 2 and 100

respec tively.

- -,---.-- "

•
•

• •
• •.. •

•..
•• •

• -
. ..

Fig. S.2 (a) Bispectrum o f the Gaussian
signal amplified by 2

5.3 Blcoherence

Fig. S.2 (b) Blspectrum or the Gaussian
signal amplified by 100

It can be seen that the magnitude of the bispectrum plot. on a large

sca le, depends on the amplitude of the signal under cons ideration. Th us, in

order to make the bispectrum independent of the energy content at the

bifreq uencies, another parameter called bicoherence is used.

Bicoherence bicU; , / 2) is defined as

hie _ InU;,f, l!
(J,,f,l - [P(f, )P(f, lP(J, +I,lr" (5.8)

Since the bicoherence is independent of the ene rgy or ampl itude of

the signal, it can be used as a convenient test statistics for the detection of

non Gaussian. nonlinear and coupled processes.
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Chapter 5 Btspectral Analysis

From Figs.S.3 (a) and (b), it is clear that the blcoherence is

independent of the energy content or the amplitude of the signal.

Fig. 5.3(a) Bicohereece of the
signal amplified by 2.

5.3.1 Linear aad GauuiaDModels

(b) Bicoherence of lhe signal
amplified by 100

A time series is said to be stationary, if the mean. covariance and

the third moment do not change with the shift of time. A stationary time

series x(n) is said to be linear, ifit can be expressed in the form

x(.) =2 > (m)&(. - ", )
•

where £(n) is a pure noise process and h(m) is the volterra kernel.

If c(n) happens to be Gausslan. then x(n) is also Gaussian. Thus it is

evident that all Gauss ian processes are linear while the converse need not

be true .

The power spectrum P(f) is given by
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H (I) =L h(m) exp(- j21ifm) and the bispectrum is given by
m

B(J;,/2) =f.L1 H (J; )H (/ 2)H ( J; +12)

where f.L3 =E[8 3 (n)].

Substituting these values in Eq. (5.8),
2

bic? = f.L~ ' which will bea constant.
a

(5.9)

Hence, the bicoherence will be a constant for all frequency

pairsC!.,};), ifx(n) is linear. Since the higher order moments ofa Gaussian

process is zero i.e. f.L3 =0, the bicoherence is also zero. Thus, one can

easily show that if the process is linear then its bicoherence is constant.

Hence, if the bispectrum or bicoherence is not zero, then the process is non­

Gaussian; if the bicoherence is not constant then the process is nonlinear.

Consequently we have the following hypothesis testing procedures:

HI: The bispectrum ofx(n) is nonzero

Ho: The bispectrum ofx(n) is zero

If hypothesis HI holds, we can test for linearity, that is, we have a

second hypothesis testing problem:

HI ': The bicoherence ofx(n) is not constant

HI": The bicoherence ofx(n)is a constant

Ifhypothesis HI" holds, the process is linear.
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Chapter 5 Bispectral Analysis

5.4 Properties ofBispectrum

Let {X(k)} be a real, discrete, zero-mean stationary process. The
power spectrum P(w), can be defined as

..,
pew) = Lr('r).exp(-jwT) .for Iwl < tr (5.10)

r=--<o

where z(r) =E[X(k)X(k + T)] is its autocorrelation sequence. If

R (m, n) denotes the third moment sequence of {X(k)},

i.e., R(rn,n) =E[X(k)X(k + m)X(k + n)] , then its bispectrum is
defined as

.., ..,
B(w"w2 ) = L LR(m,n).exp[-j(w,m+w2n)] (5.11)

m::;-eI) ""-(10

Since the third-order moments and cumulants are identical, the

bispectrum is a third-order cumulant spectrum.

The physical significance of the power spectrum and bispectrum

becomes apparent when expressed in terms of the components dZ(w) of the

Fourier - Stieltjes representation of X(k) (Cramer spectral representation).

(5.12)for all le,
1 ..,

X(k) = - Jexp(jlVk)dZ(w)
2tr _..,

where E[dZ(w)] =0

E[dZ(OJ\)dZ*(OJ2) ] = {O
21CP(OJ)dw w, =w2 =eo

and

E[dZ(w,)dZ(w
2)dZ

*(w
3

) ] ={o, (w. + W2 ~ ( 3 )

B(w"w2 )d{o.dw2.(w1 + W2 =( 3 )

It is therefore apparent that the power spectrum P(w) represents the

contribution to the mean product of two Fourier components whose

frequencies are the same. whereas the bispectrum B(WI. wv represents the
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contribution to the mean product of three Fourier components, where one

frequency equals the sum of the other two.

The important symmetry conditions that follow from the above

definitions are:

r(t) = I(-t)

P(w) = P(- w)

P(ro) :2: 0 (real, nonnegative function),

The third moments obey the symmetry properties

R(m, n) = R(n, m)

= R(-n, m - n)

= Rtn -m, -m)

= R(m - n, -n)

= R(-m, n - m).

Consequently, knowing the third moments in any one of the six

sectors, (I) through (VI ) shown in Fig.SA. would enable to find the entire

third moment sequence. These sectors include their boundaries so that, for

example, sector (I ) is an infinite wedge bounded by the lines m = 0 and m

= n; m, n :2: 0.

"
@

@

if?>

CD
@

~_.,

Fig. 5.4 (a) Symmetry regions of
third-order moments

(b) Symmetry regions of the
bispectrum
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~MjJJ&t 3 H/spectral Analysis

From the definition of the bispectrum and the properties of third

moments, it follows that

8 (m}. m1) is generally complex, i.e., it has magnitude and phase

B (IDI, ID2) =IB (IDI, ID2)1 exp [j\jlB (ID), ID2)]

8 (on, tVz) is doubly periodic with period 27t

B (ID), ID2) =B (IDI+27t, ID2+27t).

8 (m}, m1) =8 (m1. m/)

=8·(-m1, -m/)

=8 ·(-m},-m1)

=8 (-mrm1. m1)

= 8 (m}, -m/-m2)

=8 (-m/-tVz, m})

= 8 (m1.-m/-tVz).

Thus, a knowledge of the bispectrum in the triangular region m1;;::: 0,

m};? m1, m}+tVz 5 1r shown in Fig.5.4 (b) is enough for a complete

description of the bispectrum. It is worth noting that the computation of

Bto», tVz) is carried out over one of the twelve sectors shown in Fig. 5.4(b)

and the symmetries are then utilized, for completely characterizing the

bispectral behaviour ofthe process.

Additional significant properties of the bispectrum that make it very

attractive in practical application are outlined below.

(i) Gaussian Processes: If {X(k)} is a stationary zero-mean Gaussian

process, its third-moment sequence R(m, n) = 0 for all (m, n) and

therefore its bispectrum 8(m/. (1) is identically zero

152



(ii) Linear Phase Shifts: Given {X(k)} with power spectrum Px(w) and

bispectrurn B(w/. (2) , the process Y(k) = X(k - N), where N is a

constant integer, has power spectrum Py(w) = Px(tV) and bispectrum

BY(w/, (2)= Bx(w/. (2), i.e., the second-and third-order moments

suppress linear phase information, However, the power spectrum

suppresses a// phase information, while the bispectrum does not.

(iii)Non-Gaussian White Noise: If {W(k)}is a stationary non-Gaussian

process with E [W(k)] = 0, E[W(k) W(k + or)] = Q.B(or), and E[W(k)

W(k + or) W(k + p)] = j3.B(or,p), then its power spectrum and

bispectrum are both flat, i.e., P (w) =Qand B(w}, (2) =j3.'

(iv)Quadratic Phase Coupling: There are situations in practice where

because of interaction between two harmonic components of a

process there is contribution to the power at their sum and/or

difference frequencies. Such a phenomenon, which could be due to

quadratic nonlinearities, gives rise to certain phase relations called

quadratic phase coupling. In certain applications it is necessary to

find out, if peaks at harmonically related positions, in the power

spectrum are, in fact, coupled. Since the power spectrum suppresses

all phase relations it cannot provide the answer while bispectrum, IS

capable ofdetecting and quantifying phase coupling.

5.5 Bispectral Estimators

Bispectral estimation techniques can be broadly classified into

Conventional and Parametric Methods.

In the conventional method, direct type algorithms estimate the

bispectrum directly from the data, while the indirect methods compute the
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bispectnnn from an estimate of the autocorrelation. Parametric estimators

use a model for the process under investigation and obtain an estimate of

the bispectrum by first computing the parameters of the model, while

conventional estimators make no assumptions about the model of the

process. Parametric techniques can provide better estimates of the

bispectrum than conventional techniques in situations, where an assumption

about the underlying model is valid.

5.5.1 Conventional Bispectral Estimators

The conventional bispectrum estimation can further be classified as

Direct method and Indirect method.

5.5.1.1 Direct Method

Consider a series comprising of N samples, {x(/),x(2) x(N)}.

The series is divided into K segments/records (i = i,2,3 .....,K) each of

length M (K~M), so that N = KM.

Let the lh segment be denoted as x(i}(1c), k=O, I, ...,M-I and i = 1,2

....K. The mean jJ; of the fh segment is calculated and is subtracted from

each sample ofthat segment.

x(i)(k) =x(i)(k)-,u,. The Discrete Fourier Transform of each

segment x(l)(k) is calculated as :

I M-I

X(f) =M Lx(l) (k)exp(-j2~ / M) 1 =O,1,.....,M/2 (5.13)
1..0

i =1,2.....,K

Now, the bispectrum of the lh segment is given by,

B(I)U;,/2) =X(I)(!. )X(I) (/2)X(I)' (I. +12) (5.14)

Finally, the Ifi}(fi, h) of all segments are averaged to get the

bispectrum.
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(5.15)

5.5.1.2 Indirect Method

As already mentioned, using the indirect method, the bispectrum is

computed from an estimate of the autocorrelation sequence. The following

steps can be adopted for estimating the bispectrum for a data

set, {x(l),x(2) x(N)}. Now,

1) Segment the data into K records ofM samples each i.e.. N = KM.

2) The mean Pt of the ,4h segment is calculated and is subtracted from

each sample of that segment.

3) Assuming that {X(i )(k), k= 0,1, .....,M-l} is the data per segment,

obtain an estimate of the third-moment sequence

1
r(l)(m.n) =-----------

MI. X(i) (l)x(1)(l +m)x(i) (I + n)
1=.,

where, i = 1,2•....K

SJ =max(O,-m,-n)

S ]=min(M-l,M-l-m,M-l-n)

4) Average liJ(m, n) over all segments

" 1 ~ ClR(m,ll) =- L.Jr I (m, n).
K ;=\

5) Generate the bispectrum estimate

I. I."

B'IN (aJ.,aJ2 ) = L LR(m,n)W(m,n).exp{-j(aJ\m+aJ2n)}
_-1.,,=-1.
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where L < M-I and W(m, n) is a two-dimensional window function.

The computational requirements of the bispectrum estimate may be

substantially reduced if symmetry properties of third moments are taken

into account for the computation of ,11'(m,n). In the case of conventional

bispectrum estimation, to get better estimates, suitable windows should be

used.

5.6 Quadratic Phase Coupling (QPC)

Different types of nonlinearities result in different types of phase

couplings. If a signal composed of two sinusoids is passed through a

squarer, then the output will contain components at the sum and difference

frequencies of the two sinusoids. Quadratic phase coupling is the term used

to describe the coupling which results from this type of nonlinearity.

5.6.1 Theoretical Background

If x(n), the sum of two sinusoids x. (n)= cos(2~n + 'I) and

x2 (n) = COS(21if2n+ ' 2) are passed through a nonlinear system as shown in

Fig. 5.5, then the output signaly(n) isx. (n) + x2(n) + [x.(n) + x2(n)] 2.

""i , ".)
,~",.." ( )

Fig. 5.5 Model of a Nonlinear System

y(n) = cos(Z,g;n + ' \) + COs(21!f2n + ; 2) + cos" (Z,g;n +;\) +

oos2(2nf2n + '2) + Zcos(2-'if; n +;1)COS(21!f2 n + ' 2
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1
y(n) =cos(21if;n +;.) + COS(21(2 n +;2) + 1+ 2"cos(41(ln + 2;1) +

I- COS(41(2n + 2;2) + cos[2nU; + 12 )n + (;1 +;2)] +
2
cos(21Z"(J; - 12)n + (;. - f/l2»

As evident from the above equation, the output signal y(n) contains

the components at 2J;, 2/2' (J; +12) and (J; - 12) along with Ji and h.

y(n) also exhibits certain phase relations and such nonlinear interactions

would give rise to a quadratic phase coupling at the bifrequencies (fi,ji).

Bispectrum plots will show peaks at bifrequencies wherever there

are frequency couplings, even if there is no phase coupling. This issue may

be resolved by considering the phase of the bispectrum at the required

bifrequencies.

B(J;,/2) =X(J;)X(/2)X·(J; +12)

Now,

abs[B(J; ,/2)] =IX(J; )X(/2)X·U; + 12)1

LB(J;,/2) =f/ll +;2 -"2

Thus,

LB(J; ,J; ) = f/l. +,. -2,. =0

LB(lz ,/2 ) =;2 +'2 - 2'2 = 0

LB(J;,/2) =,. +;2 -(,. +;2)=0

LB(J;,-/2) =;. -'2 -(,. -;2)=0

Hence, the phase of the bispectrum, for the bifrequency for which

QPC exists should be zero. This feature is made use of in a two stage

bispectrum estimator to detect the QPC. The advantage of the two stage

QPC detector is that, it doesn't require the phase randomization concept,
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which is otherwise necessary for the reliable estimation of the bispectrum.

A flowchart of the two stage bispectrum QPC estimator is as shown in

Fig.5.6.

No

Ve.

Ves

ape Detected

No NoQPC

Fig. 5.6 Flowchart ofthe two stage bispectrum QPC estimator

As an illustration, consider a signal containing three sinusoidal

waves at frequencie s It = 5, 12= 10 and 11= 15 and phases

; , =0.5, ;, = 0.8 and;, = 2.0 lIere,jj = jj + jj. Bul; , ~;, +;, . Thus at

the bifrequency (/i,Ji), there is frequency coupling. with no phase coupling.

However, as shown in Fig. 5.7, the bispectrum contour plot has a peak at

the bifrequency ifi,h), even though there is no phase coupling.

Fig. 5.8 show the phase contour plot of the above illustration. It may

be noted that there is no peak at the phase plot corresponding to the

bifrequenc y (jj , !z), which leads to the conclusion that there is no QPC at
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the bifrequency (fi, h), and indicates that QPC can be reliably detected

using both magnitude and phase plots.
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Fig. 5.7 Bispectrum contour plot without
QPC
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Fig. 5.8 Bispectrum contour Phase Plot
withoutQPC

On the other hand, if ;3 =1.3, then ;3 =tPl +;2 and jj =fi +h. In

this case, there is both frequency and phase couplings and thus the presence

ofQPC is implied as indicated by the plots shown in Figs.5.9 and 5.10

where there is a peak at both the frequency as well as the phase plots of the

bispectrum corresponding to the bifrequency (fj, h). The 3-Dimensional

plot ofthe magnitude bispectrum is shown in Fig. 5.11.
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Fig. 5.9 Magnitude contou r plot of Bispectru rn

(where QPC is present)

Fig. 5.10 Phase:co ntour Plot of

Bispectrum ( where QPC is
present)
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Fig. 5.11 3D plot of Bispcctrum corresponding to the magn itude plot in Fig. 5. 9
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5.7 Data Analysis and Results

The Bispectrally extractable features of the targets have been

generated making use of the procedures formulated in the preceding

sections. Since the bispectrum depends on the amplitude of the signal

under consideration, the bicoherence measure has been used as a

convenient test statistics for the detect ion of non-Gaussian, nonlinear and

coupled processes. The bicoherence mesh and contour plots for the noise

waveforms generated by 3 Blade are shown in Figs. 5.12 and 5.13.
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Fig. 5.12 Mes h Plot for 3 Blade without
filter ing

Fig. 5.13 Contour Plot of 3 Blade without
filtering

In these plots, it has been noticed that there are certain undesirab le

spurious frequency components which needs to be filtered out for

identifying the coupling frequencies. It has been further observed that by

adopting certain threshold statistics. it is possible to extract these

frequencies and the peaks at the bifrequencies to an acceptable level of

reproducib ility. In this work, bicoherence levels below 30% of the highest

bicoherence level has been adopted for the purpose of filtering out the

unwanted components leading to the extraction of certain target specific
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Chap/er '5 Bispectral Analysts

bispectral features . With a threshold level of 30%, the bicoherence mesh

and contour plots of 3 Blade noise source for the same data record are

depicted in Fig.5.14 and 5.15. It was further noticed that when the filter

threshold is varied the numbe r of coupling frequencies also vary as

summarized in Tab le 5. 1.

- ,-..,.-_ - ...

,,,
.-!-

..l­
i

~.. t·

l'" ~

,.
,.
I..

.. i-,
t·

···i

Fig. 5.14 Mesh Plol for 3 Blade with 30 %
Filter Threshold

Fig. 5.15 Contour Plot for 3 Blade with 30 %
Filler Threshold

Table 5.1 Effectof Filter Threshold on the Number of Coupling Frequencies

Filter Thre shold 30% 40% 50 % 60 % 70%
Level (FTL)

Num of Coupling 61 42 24 18 18
Frequency

Figs. 5. 16, 5.17, 5.18 and 5.19 depict the bicoherence mesh and

contour plots for the noise emanations from a merchant vessel for the entire

range of frequencies and in the filtered scenario with the filter threshold

levelof30%.
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Fig . 5. 16 Mesh Pint for Merchan t Vessel
without filtering

Fig. 5. 17 Contour Pial for Merchant Vessel
witho ut filleting

Fig. 5. 18 Mesh Plot for Merchant Vessel
with 30 % rrt.

Fig. 5.19 Contour Plot for Merchant Vesse l with
30 % FTI.

The bicoherence mesh plots without filtering for the a commercial

vessel as well as that of marine species like whale, hump back whale and

damsel are also illustrated in Figs 5.20, 5.21.5.22 and 5.23 respectively.
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ig. 5.20 Mesh Plot for Humpback Whale
without filtering

Fig. 5.21 Mesh Plot for Whale without filte rin g

Fig. 5.22 Mesh Plot for Damsel without
filtering

Fig. 5.23 Mesh Plot for Com mercia l Vessel
without liltcring

5.8 Blspectral Features

As with power spectrum estimators. there are two main approaches

for estimating the blspectrum, viz. conventional and parametric approaches.

The conventional method is based on the direct application of Fcurier

transforms and may be further classified into direct and indirect methods.

The direct class of bispectral estimators has been implemented. due to its

simplicity as well as the ease in the implementation.
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The procedures that are to be followed for generating the

bispectrally extractable features depicted in the flow chart in Fig. 5.24.

'mm HA

I
Preprocessor

I
Slice NOise data wevercrm Into

ftxed Size rKOfds

Compute the Bicoherence to
find the coupling frequencies

I
select those coupling

jrecuences whose bicoherence
level 15 above the threshold

I
No Features

computed for
all records?

Yes AYerage all feature
_ component values with dose _ Bispectral

resemblance and generate Features
the freQuency bins

Fig. 5.24 Depicts the procedure for generating the bispectral feature!

5.9 Summary

The bispectrum which is based on the third order statistics can

characterize non-Gaussian as well as nonlinear signals. Since, many

signals encountered in practice are non-Gaussian and many measurement

noises are Gaussian in nature. the blspectrum are less affected by Gaussian

background noise than the second order measures, as the bispectrum of

Gaussian signals are zero. Moreover. different types of nonlinearities

results in different types of phase couplings.
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QPC has been identified as an invaluable tool in non-linear system

identification. It is based on the fact that a nonlinear system excited by

independent sinusoidal sources produces a harmonic signal that has

quadratically coupled frequency pairs. Thus, the identification of the

coupled frequencies and the corresponding coupling strength enables us to

identify some of the features of the system and the number of independent

sources. An attempt has been made in this chapter to highlight the

bispectral features such as the number of coupling frequencies, mutual

coupling frequencies, self coupling frequencies, the peak at the

bifrequencies etc. which can be effectively utilized in implementing the

target classifier.
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CHAPTER 6

THE TARGET CLASSIFIER

A prototype system for identifying the noise sources in the ocean using the

spectral, cepstral and bispectral features extracted from the noise emissions

has been implemented. The process of feature extraction involves obtaining

such characteristics through various signal processing techniques, so that the

raw data is transformed into new data sets that can be used by a classifier for

the purpose of system identification. Though signal analysis can be carried

out even in the time domain, most of the target specific signatures are

extracted from the frequency domain representation and its variants. The

various steps involved in the generation of feature vectors are described in

this chapter. A new hierarchical target trimming classifier centred on the

concepts of trimming the probable number of targets by applying certain

elimination criteria, making use of the characteristic target specific features

is also proposed in this chapter. The performance of this classifier has been

compared with that of the Euclidean distance as well as the more

sophisticated Fuzzy K-Nearest Neighbour model classifiers. In the proposed

target classification system, the feature vector based hierarchical target

trimming classifier works in conjunction with the Hidden Markov Model

(HMM) based classifier. In situations where the decisions of the Feature

Vector based classifier differs from the HMM based classifier, the DUET

algorithm can be resorted to for resolving the contentions. The various steps

involved in implementing the HMM based classifier and the DUET

algorithm are also described in this chapter.
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6.1 Introduction

The problem of identification of noise sources in the ocean is of

prime importance because of its diverse practical applications. The noise

waveforms emanating from the sources will certainly disclose the general

characteristics of the noise generating mechanisms. The composite ambient

noise containing the noise waveforms from the targets, received by the

hydrophone array systems are processed for extracting the target specific

features. Though quite a large number of techniques have been evolved for

the extraction of source specific features, none of them are capable of

providing the entire set of classification clues. Of these, many of the

techniques are complex and some of them often yield complementary

results, leading to ambiguities in the decision making process. Since

classification of certain noise sources with acceptable confidence levels,

using traditional spectral estimation techniques yield low success rates,

many techniques centred on the concept of parametric modelling have been

reported in open literature. These modem parametric approaches for the

extraction of spectral profiles give more emphasis to spectral resolutions

and enhanced signal detection capabilities than conventional techniques.

In order to interpret most effectively and efficiently the vast amount

of data furnished by the signal processor, especially in situations where the

detectable range of the system is very large, it is essential to have a fully

automated and intelligent classifier, as most of the target information, in all

probability, may not be of much interest to the user. Operator controlled

classifier turns out to be inappropriate and highly inefficient in such

situations. Automatic detection and classification algorithm attempts to

alleviate this operability problem by taking over the operator's role of
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picking out targets from a background of noise and interferences. The

genera lized structure of the proposed classifier is shown in Fig. 6.1.
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Fig. 6.1 Block Schematic of the Classifier

The detection and estimation statistics processor simply performs

the estimation of the signal energy within a finite lime interval. The output

of the estimation processor is compared with the ear lier estimations, which

are stored in the Target Feature Record (TFR) and the relevant target

features are updated. In case if a target feature is not updated over a

significant period, the concerned data will be dro pped from the target

feature record. In many situations, the system may have to backtrack!

retrack through the stored TFRs to establish the links with the most recent

data . As and when the required classification clues are available in the

target feature record , the most match ing signature pattern is identified from

the known target signatures in the knowledge base, depend ing on the

al lowable percentage of mismatc h. chosen by the user.

A prototype system for identifying the sources using the spectral,

cepstral and blspectral features extracted from the noise emissions has been

implemented. The various steps involved in the generati on of feature

vectors arc described in this chapter. A new hierarchical target trimming

classifier centred on the concepts of trimming the probable number of

targe ts by apply ing certain elimination crite rion. mak ing use of the

characteristic target specific features is also proposed . The performance of
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this classifier has been compared with that of the Euclidean distance as well

as the more sophisticated Fuzzy K-Nearest Neighbour models. In an

attempt to improve the classifier efficiency the proposed Hierarchical

Target Trimming Classifier has been augmented with a Hidden Markov

Model (HMM) based classifier. In situations where there are chances for

conflicting classifier decisions, a contention resolving mechanism has also

been proposed by effectively utilizing the concepts of blind source

separation with the help of the Degenerate Unmixing Estimation Technique

(DUET).

6.2 Knowledge Base

For the realisation of the proposed classifier, it is essential to have a

powerful knowledge base comprising of the relevant parameters of

different class and types of targets. The raw data collected has to be

processed for gathering the relevant parameters for creating the knowledge

base.

6.2.1 Noise Data

The noise data used for creating the knowledge base mainly

comprises of the man made noises and noise that are ofbiological in nature.

Some of the data sets used in developing the knowledge base were

collected during scheduled cruises off Cochin and Mangalore.

6.2.1.1 Man Made Noises

Surfaced and submerged vessels create noise from their propellers,

motors and gears. The noise generated by the motor is continuous and

caused by the mini-explosions that occur, as the fuel burns rapidly inside

the engine cylinders and by the rotating gears and shafts. Sound is also

generated due to the formation of bubbles during the rotation of propellers
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and, to a lesser extent, by the wake of waves produced due to the

movement of the vessels. As the vessel moves and the propellers rotate,

bubbles are formed in the water and the formation of these bubbles is

known as cavitation. The breaking of these bubbles create a loud acoustic

noise and is termed as cavitation noise which is directly related to the speed

of the vessel. The faster the propeller rotates, the more will be the

cavitation noise. The breaking bubbles produce noise over a range of

frequencies, and at high speeds, these frequencies can be as high as 20,000

Hz. On the other extreme, a large ship with slowly turning propellers can

generate very low frequencies to the extent of 10Hz or even less. The

rotation of the propellers creates bands of noise at more or less constant

frequencies that are proportional to the rate of rotation of the propeller.

The noise created by these rotations, called blade-rate lines, can help to

distinguish between different sizes of ships and even a particular ship in

certain cases. Low frequency noise generated by ships contributes

significantly to the amount of low-frequency ambient noise in the ocean,

particularly in regions with heavy ship traffic. In fact, because of the

increase in propeller-driven vessels, low-frequency ambient noise has

increased 10-15 dB during the past 50 years.

Some of the representative typical target signatures are depicted in

Figs 6.2 through 6.5. The main engine noise spectrum of a typical surfaced

submarine at moderate speed is shown in Fig. 6.2.

The long-term averaged noise spectral response of a typical

submarine propeller is shown in Fig.6.3. As the depth is increased, the

bump in the noise spectrum, which is a feature ofthe cavitation gets shifted

towards the high frequency of the spectrum.
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Fig. 6.2 Noise spectrum of a typical Surfaced Submarine
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Fig. 6.3 Noise Spectrum ofa Submarine Propeller at 30ft and SOft

Fig. 6.4 depicts the variation of noise spectrum for an average

submarine and destroyer at 20 kHz with speed. while Fig.6.S depicts a

comparison of the noise spectra of a torpedo and a submarine.

172



11 ElM e Me " .1..
,

._-, -
"

-: /
/ coo r.Y

"
, /

"
I /

• • " "

!

Fig.. 6.4 Noise Spectrum of an average submarine & destroyer at 20 kHz

r ' r r r, I I " r r,..
"

~ ... UJ-b .t ..u401lM)TS

/ I ~" __ J.~• .• •.__ . • J- - - - -

: ~- -- --- -+ -=~--
<, i

I

"
,

~III".

Fig. 6.5 Comparison of the Noise Spectra of torpedo and submarine

Results of observations, which deviate from the variations shown

above. have also been reported. Such differences can be attributed as due

to the variations in the vessel features in a part icular class and propagation
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characteristics of the medium, at the location where the measurements are

taken.

(a) Surface Crafts

For the proposed study, three types of sound signatures have been

collected. The first one is a recording of a large commercial ship cruising at

approximately 20 knots and 3.2 km (approximately 2 miles) away from the

hydrophone. Sound levels of large ships are loud and cover a broadband of

frequencies, thus masking most of the sounds made by many marine

mammals, as well as other life in the oceans, such as various fishes.

Second was ofa Merchant vessel in the Cochin Shipyard and the noise data

were recorded, as the vessel was approaching from 1.7 km (approximately

I mile) away. The third noise data was of a tug boat, which has a smaller

high speed propeller than larger ships.

Tugs with barges typically produce less near surface sound than

other ships. This is not because they are quieter, but rather the propellers of

a typical tugboat are recessed to reduce propeller cavitation and to protect

the propeller from damage in case of grounding. With the propeller in this

position, the sound rays from the propellers are blocked by the ship's hull.

Thus, propeller noise cannot be heard ahead of the tugs and barges. This

effect is called acoustic shadowing.

(b) Outboard Motor

Outboard motors are found on small boats, such as a zodiac, that are

popular in coastal waters. The propeller of an outboard motor is what

creates sound. On smaller boats, like a zodiac, the small propeller produces

a cavitation noise which is at higher frequencies than larger vessels. The

smaller propellers also produce higher rotation rates which also causes the
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propeller to make high frequency noises. A zodiac, for example, can

produce frequencies as high as 6300 Hz.

Two types of noise data were collected from the motor boat, the

first is from a small Zodiac with a 35 HP engine. One can hear the engine

starting, going into the gears and then the thundering cavitation noise as the

propeller begins to spin. The second one is from a 50 HP outboard engine

starting up and going into the gears. It is possible to hear a ratchet like

sound that is associated with the gears starting to engage.

(c) Torpedo

Torpedoes used for military operations produce more than just an

explosive sound upon detonation. After an initial firing, the sound of the

outer hatch can be heard closing. The torpedo can then be heard moving

through the water to the target. The length of this sound is dependant upon

the distance of the target. Finally, a large explosion is heard. Torpedoes

are also associated with a pinging noise used by the sonar for torpedoes

before firing. The recording of this sound is of a live torpedo shot

downloaded from the website. The signatures include the sounds of the

launch, the closing of the torpedo hatch and the explosion of the torpedo.

6.2.1.2 Biological Noise Data

A variety of biological noise data has been used for the purpose of

creating the knowledge base. Some typical biological data, which have

been used in developing the knowledge base were the noises generated by

the following species.

(a) Beluga Whale

The beluga, a medium sized toothed whale, which is white in colour

has an adaptation to its environment and it lives primarily in the Arctic. Its

175



name is derived from the Russian word for white. Th ick blubber makes it

possible for the Beluga to live in extremely cold water, and a back with no

dorsal fin allows it to move freely under ice. The beluga 's body is thick.

muscular and tapered at both the ends. with a small head and a narrow

caudal peduncle (tail stock). Its head is round and has a short beak and a

prominent. protruding forehead called the melon.

Fig. 6.6 Beluga Whale

Beluga Whale are amongst the loudest animals in the sea. They

exhibit a wide range of vocallzations including clicks, squeaks, whistles.

squarks and a bell-like clang. The sounds recorded are mostly in the range

of 0.110 12 kHz.

(b) Humpback Wbale:

The humpback whale is one of rorquals which have two

characteristics in common. viz. dorsal tins on their back. and ventral pleats

running from the tip of the lower j aw back to the belly area.

Fig. 6.1 Humpback Whale
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The body is black on the dorsal side and mottled black and white on

the ventral side. Humpbacks are best known for their vocalizations that are

arranged in complex, repeating sequences with the characteristics of song

and contain both tonal and pulsed sounds.

(c) Harbour Seal :

The harbour seal resides in North Pacific, North Atlantic, and Arctic

waters. These seals have no external ears like those found on otariid seals

(eared seals). Instead, only a small ear opening behind the eyes is visible.

Fig. 6.8 HarbourSeal

The furred hind flippers of true seals are shorter than those of the

fur seals and sea lions, and extend behind their body to provide propulsion

during swimming. The short, furry front flippers act mainly as rudders

when the seals are swimming and help in their movement on land or ice.

Some of the different types of seal calls are: trill , chirp, multiple whistle,

single whistle, growl, whoop, chug, and grunt

(d) Sea robin

Sea robins are the only local fish that "walk". They use their unique,

detached, finger-like fin rays to feel their way across the bottom. The body

of the sea robin is elongated, nearly round, and tapers to the tail. They also

use these fins to burrow into the sediments, so that their eyes and the tops
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Chapter 6 The Target Identifier

of their heads are exposed, a tactics for avoiding predators, to ambush prey.

or to wait out the tidal currents.

Fig. 6.9 Sea Robin

The fins are also used to agitate the bottom and help sense food in

the area. They are very noisy fishes and make sounds like grunting,

growling and grumbling.

6.2.2 Data Analyst.

For creating the knowledge base, the noise data waveforms of

various targets are analysed following the procedures for extracting the

spectral, cepstral and bispectral features described in chapters 4 and 5. The

performance of the classifier depends on how extend and vast the

knowledge base is. In the prototype system all the available noise date

waveforms were analysed and a representative knowledge base has been

developed. The knowledge base for the prototype classifier comprise of the

spectral, cepstral and bispectral features of different classes like ships.

boats, marine mammals, environmental conditions. etc.

6.2.3 Updating of Knowledge Base

The knowledge base that has been developed for realizing the

prototype target classifier is only representative and not complete in all

respects. For making the system efficient, the knowledge base has to be
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updated with the signature patterns and the target dynamics for all the

classes and types of targets.

6.3 Generation ofFeature Vector

The pre-processed noise data waveforms are analyzed in different

ways in the Estimation Statistics Processor. The different techniques like

cepstral analysis, spectral analysis and bispectral estimation techniques

used for extracting the various signatures of the targets are illustrated in

Fig.6.IO.

Start

Noise data wav efonns

Preprocessor--
Ceps lral Ana lysis

Generate MFCC
features

Spect ral Analysis

Generate frequency
domain features

Target Feature Record (TFR)

HOS
Analysis

Generate phase
Information features

using Bispectrum

.:
Fig. 6.10 v arious techn iques for extnlCling the target reatum

The various features generated from this analysis are stored in a

target feature record (TFR), which is used for the purpose of mapping the

target signatures with the signatures available in the knowledge base.
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6.4 Generation 01 Target Feature Record

The generation of the target feature record (TFR), as depicted in

Fig. 6.11.• plays an important role in the efficiency and success rate of the

From HA

"---'*--Preprocessor......_-
:----,*-----.

Slice Noise data waveform Into
fixed size records

Generate TFR from the records

No

Yes

Take the average of all TFRs
which have close resemblances
and generate the feature vector

! Feature Vector

Fig. 6.11 Flowchart for generation of TFR

classifier. As such, when the noise data waveforms are made available to

the classifier, it generates the target feature record by performing spectral

estimation. cepstral analysis and bispectral estimation. The target feature

records for various data records are generated. In case. if a TFR is not
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updated over a considerable period of time, the concerned feature record

will be dropped and the system takes the average of all the TFRs which

have close resemblances and thus generates the TFR.

6.5 Prototype Target Classifier

The classification function operates in a multidimensional space

formed by the various components of the feature vector. For the purpose of

target classification, one has to identify the characteristic features from the

representation of an object. Upon generating the various features, those

features that can indeed aid in the process ofclassification are selected.

Though, such a selection will generally lead to loss of information,

this will reduce the noise generated by the irrelevant features as well as the

risk of over fitting the training data, thus making the classifier

computationally efficient.

The signatures of spectral, bispectral as well as cepstral in origin

were used to generate the required classification clues towards the

identification of the noise sources in the ocean. The function of

classification is carried out by performing the template matching process, in

which the various components of the feature vector generated are mapped

with the corresponding components of the feature vector available in the

knowledge base. The proposed Hierarchical Target Trimming Approach is

described in this thesis alongwith the salient highlights of the Euclidean

distance Model, adopted in arriving at the nearest match to a feature vector

with approximate weights assigned to the various feature components and

the Fuzzy K-Nearest Neighbour model based on the concept of Fuzzy

logic. An effort is also made in the thesis to augment the decision of the

classifier with a Hidden Markov Model based classifier. In situations

where the decisions of both the classifiers differ, a contention resolving
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mechanism built around the DUET algorithm for blind source separation

(BSS) has been suggested.

6.5.1 Feature Vector based Identifier

6.5.1.1 Euclidean Distance Model

Euclidean distance model is one of the simple yet efficient classifier

algorithms and a properly weighted model, making use of the feature

vector, could be used to find out the nearest match [139]. The weights for

the various components of the feature vector have been selected based on

heuristics, the knowledge gained from the training examples as well as trial

and error procedures. For the purpose of feature vector based classification,

the Euclidean distance between the feature vectors of the unknown target

and that of the various targets in the knowledge base is computed. The

vector components are normalized by standard deviation or the range of the

features, across the whole knowledge base. Further to normalization, each

feature is weighted in proportion to its significance in the similarity

estimation.

The Euclidean distance DE is computed as

DE = ±(X/ - Yi)X Wj)2

/at v/
(6.1)

where Xi and Yi refers to the r feature component of the unknown

target and that of the various targets in the knowledge base respectively, Wi

I

is the weight assigned to the lh feature component such that, LW/ =1, Vi
Izl

represents the normalization vector and 1is the total number of features.
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6.5.1.2 Fuzzy K-Nearest Neighbour Model

K-Nearest Neighbour is a basic technique of supervised

classification and Fuzzy K-NN is K-NN with the inclusion of fuzzy

concepts. Fuzzy K-NN has the advantages of having a wider range ofK and

is easily tunable.

In K-NN, the matching parameters between the unknown feature

vectorxand all the feature vector components of target signatures are

computed and for all the components, k nearest neighbours are identified.

From these k nearest neighbours most frequently occurring value is

considered to be the probable one. One of the problems encountered in

using the K-NN classifier is that normally each of the sample vectors is

considered equally important in the assignment of the class label to the

input vector. Another difficulty is that once an input vector is assigned to a

class, there is no indication of its strength of membership in that class.

Incorporation of fuzzy set theory into the K-NN rule will resolve these two

issues in the K-NN algorithm.

By introducing fuzzy sets, the degree of membership in a set can be

specified, which will provide information as regards to the strength with

which the object belongs to each class, rather than just the binary decision.

The Fuzzy K-NN algorithm assigns membership as a function of the

distance of the vector from the k-nearest neighbours as well as

memberships of the neighbours in the possible classes. The class

memberships have been computed using the procedures set out by Keller et

a/.[138]

6.5.1.3 Hierarchical Target Trimming Approach

The proposed algorithm for classification of targets is centred on the

concept of template matching within the allowable ambiguity parameter.
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Here, the feature vector of the target to be identified is assumed to be

composed of many feature components that are extractable using spectral,

cepstral and bispectral techniques.

Let the Universal set of targets with known features be U = {T, T2,

....,TMl. Any member target in this ensemble can be described as Tm where

m varies from 1 to M.

Let the feature vector of a member target Tm be Fm with the feature

components {FfnS, Fme. FmB} , where FmS refers to the set of spectral

features comprising of the components {Fmst. ....,Fms6} where Fm6 can be

mapped to a q x r array SM(q, r) of frequency related signatures, Fmc refers

to the set of cepstral features and FmB, refers to the bispectral feature, the

number of coupling frequencies, which can be mapped to an array m x n

BM(m, n) ofbifrequency related signatures.

The order in which the various feature components are processed

for target trimming leading to the final classification has been so chosen

that a subset of as many probable targets as possible is formed during the

first level of screening, while the subsequent levels lead to the elimination

of targets from this set based on the characteristics of each of the feature

components under consideration.

6.5.1.3.1 Algorithmfor classification

a) For the unknown target, the feature vector F, and the arrays Su and Du

are estimated first.

b) Fus, the fITSt component of Fu, is mapped with Fms, allowing a

reasonable mismatch parameter ~I. Thus the set SI of M 1 probable

member targets conforming to Fm l ± ~I is formed.
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c) Fue. the second componentofFu, is then mapped with Fmc of all the M)

targets in the set SI. allowing a reasonable mismatch parameter Ll2, thus

forming a set S2 of M2 members. The process is repeated till the

mapping of the entire feature components are completed, resulting in a

minimum members M, ofprobable targets in the set Si.

d) From these trimmed target set, target identification is performed by

elimination process, making use of the characteristic signature array SM

and BM of the M, targets in the set Si.

e) For further resolving the ambiguities, if any, in the target identification

process, Euclidean minimum distance criteria can be resorted to.

For extracting the spectral features, the power spectral density has

been computed using the AR parametric model. The algorithms for

extracting the source specific signatures such as, spectral centroid, spectral

range, spectral roll off, spectral slope, spectral flux, number of peaks,

peaking frequencies, rising slope, falling slope, Mel frequency cepstral

coefficients, number of coupling frequencies, mutual coupling frequencies,

self coupling frequencies and the peak at the bifrequencies have been

developed. These features have been judiciously exploited for the target

identification making use of the three classifier algorithms described above,

with acceptable reproducibility and repeatability. For validating the

performance of the algorithm and methodology proposed here, the noise

data waveforms of the entire data set were mixed with the ocean wave

noise and fed to all the three classifiers under consideration. During the

validation process it has been observed that one of the spectral features,

viz., spectral flux, is a redundant feature as far as the target identification

process is concerned and as such it can be discarded. The validation results

as well as the comparison of the three classifiers are discussed in section

6.7.
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6.5.2 Hidden Markov Model Based Classifier

Hidden Markov Models provide an effective architecture for target

detection and classification of distinct targets in multiple target scenarios. It

is possible to design HMMs to identify target classes where members of a

given class may share common physical attributes. Such a strategy may be

incorporated into a hierarchical identification framework where a target is

first assigned to a class and later with sufficient additional information, it

may be identified as a particular target within that class. The class based

model approach is summarized in Fig 6.12.

Data From First
Target

•:_ - - - -,Get Data from
next Target

Feature
Extraction

Get Data from
next Target

NO Performed
class training?

NO Define states
for new class

YES Design HMMs- for each class

Fig. 6.12 Flowchart or class associenons prior to HMM design
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In order to train a statistical model for each class, HMMs can be

used, which consist of several training states. The class based HMMs can

be trained on the target data associated with their respective classes.

Though many model based features can be generated for training HMMs,

only the NoiseSpectrumEnvelope feature has been adopted in this work.

6.5.2.1 Spectrum Basis Projection

NoiseSpectrumEnvelope is a feature, which is a logarithmic

frequency spectrum, spaced by a power-of-two divisor or multiple of an

octave. This feature describes the short-term power spectrum of a noise

data waveform. It may be used to display a spectrogram, to synthesize a

crude auralization of the data, or as a general-purpose descriptor for search

and comparison.

Let Iw denote the length of the analysis window in samples. The

position of each window is described by a shift h, which is the number of

samples the Hamming window has to slide over the noise file to obtain the

next analysis window position. For Hamming windowed noise signal x(n),

the Fourier coefficients Xw(k) are computed as

N-I

X w(k) =Lx(n)exp(- j27T1cn/ N)
"aO

O~k~N-l (6.2 )

where N is the FFT size, which is chosen such that it is the next

power of 2 greater than Iw• due to which the analysis window needs to be

enlarged by zero padding, resulting in a larger number of Fourier

coefficients and thereby enhancing the frequency resolution.

Each coefficient belongs to one of the N frequencies and as only

one halfofthese frequencies is retained due to the symmetry of the Fourier
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transform, the frequency distance DF between two adjacent frequencies can

be expressed as DF =Is / N where Is, denotes the sampling rate.

A specific grouping of these coefficients can be made to obtain a

logarithmic frequency axis and this frequency axis is considered due to the

logarithmic frequency response of the human ear. To obtain such a

frequency axis. logarithmic frequency bands are defined as shown in

Fig.6.l3. The edge frequencies of these bands•.fedge = 2' m • 1 kl-lz, m € Z

where r is the resolution and m determines the number of edge frequencies

within the octaves. As an example. for m = -16. -]5, 7. 8 and a

resolution of r = '4. the 25 edge frequencies which results in 24 bands have

been computed and is given in Table 6.1 .

Table 6.1 Edge Frequencies in [Hz] for Logarithmic Bands

62.5
74.3
88.4
]05.1
125

148.7
176.8
2]0.2
250

297.3

353.6
420.4
500

594.6
707.1

840.9
1000

1189.2
1414.2
1681.8

2000
2378.4
2828.4
3363.6
4000

Each band is represented by a mean value calculated from the

Fourier coefficients that refer to this band. The frequencies 62.5 Hz and

4000 Hz are denoted as /oedge and hiedge. Two additional values have to be

calculated for the out-of-band energy for O... /Oedge and hiedge....1s12.

For the computation of a value that represents a logarithmic band.

an assignment rule has to be followed, which states that the Fourier

coefficients with frequencies farther away than DFIl from a band edge

have to be shared between the two bands in such a way that each band

retains a part of the coefficient. A linear weighting function can be used to

estimate these parts and is illustrated in Fig 6.13. In fact. a logarithmic
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frequency band contains Fourier coefficients from 10edge - DF/2 to hiedge+

DF/2, partially weighted using the weighting function.

D'll OFIl

WeipdIla run~tion

Fig. 6.13 Logarithmic band used

! DFIl

For computational effective realisation of such a method, a

weighting matrix, as given in Table 6.2, can be considered. Each row

selects Fourier coefficients for a logarithmic band value. Values larger than

o and smaller than I indicate that the Fourier coefficients are shared

between adjacent logarithmic bands. Upon computing the short term

Fourier coefficients, these coefficients are retained in a matrix C with N

rows, the number of Fourier frequencies, and F columns, the number of

analysis frames. Each vector of such a matrix contains the Fourier

coefficients of one analysis frame.

Table 6.2 Weighting matrixwith 12 columnsand 8 rows.

1 2 3 4 5 6 7 8 9 10 11 12

1 o 1 1 1 0.5 0 0 0 0 0 0 0

210 0 0 0 0.5 0.2568 0 0 0 0 0 0
3

31000 0 0 0.74317 0.15685 0 0 0 0 0
4100 0 0 0 0 0.84315 0.22717 0 0 0 0
5100 0 0 0 0 0 0.77283 0.5 0 0 0
6 000 0 0 0 0 0 0.5 I 0.013657 0
7 000 0 0 0 0 0 0 0 0.98634 0.81371
8 000 0 0 0 0 0 0 0 0 0.18629
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With an appropriate weighting matrix W, the matrix D containing L

logarithmic band values per column is given as

D=(W.C) .W ' (6.3)

where W I denotes a matrix containing the number of Fourier

coefficients that are considered for each logarithmic band value. In

Eq.(6.3), * denotes a matrix product, whereas . denotes an element by

element product. The matrix W' calculates the mean values from the

summed Fourier coefficients and is constructed from the sum ofthe rows of

W. The resulting vector is F times repeated to construct a L-by-F matrix

W~ A column vector of D then contains the logarithmic band values that

belong to an analysis frame. Each value of such a column is the result of a

scalar product between a row of the weighting matrix and a column of the

Fourier matrix D.

Therefore each row of the weighting matrix has to select the

appropriate values of a column of the Fourier matrix to construct a

logarithmic band value. The weighting matrix must contain as many rows

as there are logarithmic bands and as many columns as there are Fourier

frequencies. Generally, this methodology to obtain a logarithmic scale is

very sensitive to the choice of the logarithmic edge frequencies.

Furthermore, the number of coefficients per band increases exponentially.

Therefore, the lower bands contain a significantly smaller number of

coefficients than the higher bands.

The feature extraction technique using basis projection is illustrated

in Fig.6.I4 which mainly consists of computation of Short-time Fourier

transform (STFT), NoiseSpectrumEnvelope (NSE), Normalized

NoiseSpectrumEnvelope (NNSE), basis decomposition algorithm-such as
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singular value decomposition (SVD) or leA followed by basis projection,

obtained by multiplying the NNSE with a set ofextracted basis functions.

From HA

_ !,----.
Preprocessor

Slice Noise data waveform into
fixed size records

'----

Compute the Short Term
Fourler Transform

1
Compute Noise Spect ral

Envelope, Normalise-_...
PCA

I
SOUNO BASIS

FUNCTION

[C_A:-::-::-::-:.:==-_J~~~~J

fia. 6.14ne feature Extraction system using basis proj«:tion

In this feature extraction method, an attempt bas been made to obtain

from the noise data waveform a low-complex description of its content. A

balanced tradeoff between reducing the dimensionality of data and
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retaining maximum information content must be achieved, which can be

accomplished by using the projection of a spectrum into a low-dimensional

representation using decorrelated basis functions.

In the basis decomposition step, it combines a basis dimension­

reduction using a principal component analysis (PCA) algorithm with basis

information maximization by ICA. First, the observed noise signal is

divided into overlapping frames by the application of a Hamming window

function and analyzed using the STFT

N-I

S(l,k) =Ls(n + lM).w(n)exp(-j2nkn I N ) 05, k 5, N - J
n=O

where is N is the size ofthe STFT, k is the frequency bin index, I is

the time frame index, w is an analysis window of size /w , and M is the hop

size.

By Parseval's theorem (i.e., so that power is preserved), there is a

further factor of J/N to equate the sum of the squared magnitudes of the

STFT coefficients as

P(/,k) =-1-IS(I,k)1
2

nf.N

where the window normalization factor

1_-1

nf= Lw2(n)
n=O

(6.4)

To extract the reduced-rank spectral features, the spectral

coefficients P(l,k) are grouped in logarithmic sub bands. Frequency

channels are logarithmically spaced in non overlapping 1/4-octave bands

spanning between the low edge of 62.5 Hz and high edge of 8 kHz, the

band of frequencies occupied by the ocean noise. The spectrum according

to a logarithmic frequency scale, which can be referred to as NSE, consists
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of a coefficient representing power between 0 Hz and low edge. a series of

coefficients representing power in logarithmically spaced bands between

low edge and high edge, and a coefficient representing power above high

edge. The resulting log-frequency power spectrum is converted to the

decibel scale.

D(/,.n =10 log., NSE(I,f) (6.5)

where f is the logarithmic frequency range. Each decibel-scale

spectral vector is normalized with the rms energy envelope, thus yielding a

normalized log-power version of the NSE called as NNSE. The full-rank

features for each frame consist of both the rms-norm gain value RI and the

NNSE vector X(l,f)as follows:

F

R, = IJD(I,f» 2; 1~ f s F
1=1

X(l,f) = D~f) I $1 ~ L (6.6)
I

where F is the number of NSE spectral coefficients and L is the

total number of frames.

To obtain the Noise Spectral Band, Principal Component Analysis

(PCA) and Independent Component Analysis (ICA) perform high­

dimension multivariate statistical analysis. PCA decorrelates the second­

order moments corresponding to low-frequency properties and extracts

orthogonal principal components of variations [141]. ICA, on the other

hand, is a linear but not necessarily orthogonal transform, which makes

unknown linear mixtures of multidimensional random variables as

statistically independent as possible. It not only decorrelates the second­

order statistics but also reduces higher order statistical dependencies. It

extracts independent components even if their magnitudes are small,

whereas PCA extracts only components with the largest magnitudes. Thus,
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in the feature extraction process, the ICA representation captures the

essential basis functions of the data.

The next step in the feature extraction is generation of a subspace

from the NNSE using the PCA algorithm. Then to yield statistically

independent or uncorrelated component ICA algorithm can be used.

If X represents the input signal in the form of a L x F time­

frequency matrix, with each row corresponding to a time frame index I and

each column corresponding to a frequency range index f, then the columns

should be centred by subtracting the mean Pf value from each one as

follows:

XC!, I) = XC!,/)-lJf
1 L

PI =- L XC/./)
L,=o

where )if is the mean of the column / . The next step is the

standardization of the rows by removing the de offset and normalizing the

variance as detailed below.

1 F

P, =- 'LX(!./)
F I-I

F

XI = I:X 2
(/ , I )

/-1

r, =~(Zl - F,P
I

2)/(F -1)

XC!,/) =XC!. I) - PI
r,

where PI is the mean. XC/./) is the energy of the NNSE and r, is the

standard deviation of the row I.
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The columns are linearly transformed to remove any linear

correlations between the dimensions through eigenvalue decomposition of

the covariance matrix. This whitening process established by Hyoung-Gook

Kim et 01. [140] is closely related to PeA.

Following the procedures set out in [140], spectrum projection has

been perfonned and the resulting spectrum projection is the product of the

NNSE matrix, the dimension-reduced PeA basis functions and the leA

transfonnation matrix. The basis function so generated is stored in the basis

function database for the purpose ofclassification.

6.S.2.2 Classification Using Spectrum Projettions .Dd "MMs

Spectrum projection is used to represent low dimensional features

of a spectrum after projection onto a reduced-rank basis. In order to train a

statistical model on the basis projection features for each class. HMMs can

be used, which consist of several states [142],[143]. During training, the

parameters for each state of the model are estimated by analyzing the

feature vectors of the training set. Each state represents a similarly

behaving observable process. At each instant in time, the observable

symbol in each sequence either stays at the same state or moves on to

another state depending on a set of state transition probabilities. Fig. 6.15

illustrates the training process of a HMM for a given class.

.....­ora-,

!

Fig. 6.15 UMM for a given class i
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The training data is first projected onto the basis function

corresponding to the noise class. The HMM parameters are then obtained

using the well-known Baum-Welch algorithm.

The procedure starts with random initial values for all of the

parameters and optimizes the parameters by iterat ive re-estimation. Each

iteration runs through the ent ire set of training data in a process that is

repeated until the model converges to satisfactory values. The parameters

converge after three training iterations. With the Baum-Welch re­

estimation training patterns, one HMM is computed for each class of noise

that captures the statistically most regular features of the noise feature

space. Fig.. 6.16 show an example classification scheme consisting of

ships. boats. torpedoes and whales.

Each of the resulting HMMs is stored in the knowledge base.

Acoustic signals are modelled according to class labels and represented by

a set of HMM parameters. Automatic classification of noise uses a

collection ofHMMs, class labels, and basis functions.

HMM
Ships ·

HMM
Boats

HMM
Torpedo

HMM
Wha les

Fig. 6.16 Principle of HMM based Classifier
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Automatic classification finds the best-match class for an input

sound by presenting it to a number of HMMs and selecting the model

having maximum likelihood score. Fig. 6.17 depicts the recognition module

used to class ify noise input based on pre-trained noise class models. Noise

data waveforms are read from a media source format, such as WAVE files.

Given an input sound, the NNSE features are extracted and projected

against each individual noise model 's set of basis functions. producing a

low-dimen sional feature representation. The HMM yielding the best

maximum-likelihood-score is selected, and the corresponding optimal state

path is stored.

...... '"­~_.
--

Fig. 6.17 Block Diagram of Classifie r Using Spectrum Basis Projection Feature:
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6.6 Decision System

The processed data furnished by the front end system is fed to the

Feature Vector as well as Model based Classifiers. In the Feature Vector

Based Classif ier, the Hierarchical Target Trimming Approach [144) is

adapted and from the classification clues the target is identified.

Simultaneously the model-based classifier also works on the pre-processed

data and an identification of the target is done as shown in Fig. 6.18.

Preprocessor

FV Based
Classifier •

Decis ion
System

•

Model Based
Classifi er 1-- - • .

Fig. 6.18 Basic Block Diagram

If there is an agreement among the decisions of the two approaches.

the prototype of the classifier displays the target. In case of a disagreement.

on the assumption that there can be more a source, further processing is

done to separate the signals. It is treated as a problem of recovering two or

more sources from a number of unknown mixtures which can be handled

with the Degenerative Unmixing Estimations Technique {DUEn[145],

[ 146] which pcrfonns the source separation by frequency domain

processing and is independent of the number of mixed sources.

6.6.1 Degenerative Unmixing Estimations Technique

Let the sources be positioned at different locations, as shown in Fig.

6.19.
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For a two-channel hydrophone arrangement with K sources, the

incoming mixed signals X I and Xl can be described as

K

x,(n) =L s,(n ),.,
K

x z(n) -= LQ,s,(n - o/),.,

Fig. 6.19 Two I;hanncl h)'drophone arrangements

The mixtures XI and Xl are sampled and split into blocks of length

N with overlap. These sample blocks are multiplied with a windowing

function Wand then discrete time Fourier transformed. Following the

procedures set out by Robert Gavelin et al. in [144]. the DUET algorithm

has been implemented.

6.7 Results and Discussions

The variation of power spectral density for the noise waveforms of a

surface craft with and without additive ocean noise are shown in Fig. 6.20

and the various spectral features extracted using the noise emissions from
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three typical targets including the surface craft are summarized in Table

6.3.

\
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Fig. 6.20 PSD of the noise data waveform of a surface craft with and without add itive
ocean wave noise

As can be seen from this table. the enlisted spectral features are

different for the various noise sources and each of these spectral features

can be treated as the characteristics of the corresponding noise sources.

Table 6.3 Spectral features with and without additive ambient no ise

Su rface C raft Engine Beluga
Spectral Without With Without With Without With
Fea tures Noise Noise Noise Noise Noise Noise

Spectral 3131 3122 2824 2954 13091 13061
Centrcid
Spectral 1084 1048 1333 1293 4614 4993
Range

Spectra l Roll 5145 5095 4694 4150 19488 19181
off
Spectral Slope -114 -15 -41 -44 -88 -50
Number of 11 8 18 11 11
Peaks 11
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The output screen shot of the spectral feature extractor GUI when

used for the engine as test case is shown in Fig 6.2I.
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Fig. 6.2 1 Output screen shot of the Feature Extractor GUI

The 3-dimcnsional bicoherence plot and the corresponding contour

plot of the same signal arc shown in Figs 6.22 and 6.23 while Figs. 6.24

and 6.25 depicts the plots for a filtered output of 30 % threshold

respectively.
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Fig. 6.24 Mesh Plot for Engine with 30 %
Filter Threshold

Fig. 6.25 Contour Plot for Engine with 30 %
Filter Threshold

The bicoherence plot clearly brings out the non-Gau ssian nature of

the noise signal. From the contour plots, it is clear that there are certain

nonlinear interactions between some of the constituent freq uencies. Many

prominent peaks can be observed at various bifrequencies, some of which

are due to self couplings while others are due to mutual couplings. With a

filter threshold of ) 0010 eighteen characteristic coupling frequen cies with

vary ing bicoherence levels have been obta ined and are as summarized In

Table 6.4.
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Table 6.4 Bispectral Features of Engine

Frequency /1 Frequency/2 Hie (fl.f~

86.00 -43.00 1.35
43.00 43.00 1.35
43.00 -86.00 1.35

-43.00 86.00 1.35
-43.00 -43.00 1.35
-86.00 43.00 1.35
86.00 43.00 0.93
43.00 86.00 0.93

-43.00 -86.00 0.93
-86.00 -43.00 0.93
129.00 -43.00 0.93
129.00 -86.00 0.93
86.00 -129.00 0.93
43.00 -129.00 0.93

-43.00 129.00 0.93
-86.00 129.00 0.93

-129.00 86.00 0.93
-129.00 43.00 0.93

In an attempt to extract the cepstrally decomposable features, 20

MFCCs have been generated. Though 20 MFCCs have been computed,

during the validation process, it has been experimentally observed that even

a judiciously chosen five coefficient subset of the 20 MFCCs alongwith the

spectral and bispectral features are capable of identifying the targets with

success rates as high as 92% for the Hierarchical Target Trimming Model.

It has also been observed that any further increase in the MFCCs

does not improve the success rates of the identifier any further, Moreover,

with the inclusion of 20 MFCCs for the realisation of the classifier the

computational complexity has increased considerably. The adaptability of

the suggested algorithm has been further established through some of the

basic test statistics carried out with the Euclidean distance(ED) and Fuzzy

K-Nearest Neighbour (FKNN) Models. The success rates of all the three
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classifiers have been validated with 11 0 noise sources and the results are

summarized in Table 6.5. The output screen shot of the Target classifier

with the target identified as Engine is as shown in Fig 6.26.

Table 6.5 Results ofcomparison of the three Classifiers

Success Rate of

EO Model FKNN-NN Mod e1 Proposed Mod el

Without Noise With Noise Without Noise With Noise Without Noise With Noise

0.9363 0.8909 0.9545 0.9090 0.9545 0.918 1

"..........

-iu

."

.,.

.,.

Fig. 6.26 Prototype Target Identifier

The following figures Figs. 6.27 and 6.28 depicts the projection of

NoiseSpectrumE nvelope on the basis components in respect of two typical
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noise sources namely Torpedo and Whale while the screen shots shown in

Figs.6.29 and 6.30 demonstrate the HMM Based Prototype Underwater

Target Classifier using the NSE vector.
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The capability of the DUET algorithm for resolving contentions, in

case the decisions of the feature vector based classifier differs from the

HMM based classifier has been eva luated with a few test cases and is found

to yie ld encouraging results. The simulated composite signal comprising o f

noise data waveforms generated by two sources Source I and Source 2 has

bee n used as the input to the DUET algorithm. Adopting suitable dem ixing

techn iques suggested in [144], the characteristic source emanations could

be separa ted from the mixture. The mixed signal comprising o f the
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Fig. 6 .29 Illustration of the: HMM Based Classifier (Torpedo)

Underwater Target Classifier
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components of the source signals Source 1 and Source 2 shown in Figs 6.31

and 6.32 have been separated and shown as Retrieved I and Retrieved 2.

This illustrates the capabil ity of the DUET algorithm for extracting signals

from a composite signal.
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6.8 Summary

A prototype system for identifying the noise sources in the ocean

using the spectral, cepstral and bispectral features extracted from the noise

emissions has been implemented. The various steps involved in the

generation of feature vectors have been described in this chapter. A new

hierarchical target trimming classifier centred on the concepts of trimming

the probable number of targets by applying certain elimination criteria,

making use of the characteristic target specific features has also been

proposed in this chapter. The performance of this classifier has been

compared with that of the Euclidean distance as well as the more

sophist icated Fuzzy K-Nearest Neighbour model classifiers. In the
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proposed target classification system, the feature vector based classifier

works in conjunction with the Hidden Markov Model (HMM) based

classifier. In situations where the decisions of the Feature Vector based

classifier differs from the HMM based classifier, the DUET algorithm can

be resorted to for resolving the contentions. The various steps involved in

implementing the HMM based classifier and the DUET algorithm have also

been described in this chapter.
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CHAPTER 7

Conclusions

This thesis addresses one of the emerging topics in Sonar Signal Processing,

viz. the implementation of a target classifier for noise sources in the ocean, as

the operator-assisted classification turns out to be tedious, laborious and time

consuming. In the work reported in this thesis, various judiciously chosen

components of the feature vector are used for realizing the newly proposed

Hierarchical Target Trimming Model. The performance of the proposed

classifier has been compared with the Euclidean distance and Fuzzy K­

Nearest Neighbour Model classifiers and is found to have better success rates.

The procedures for generating the Target Feature Record or the Feature

Vector from the spectral, cepstral and bispectral features have also been

suggested. The Feature Vector, so generated from the noise data waveform is

compared with the feature vectors available in the knowledge base and the

most matching pattern is identified, for the purpose of target classification. In

an attempt to improve the success rate of the Feature Vector based classifier,

the proposed system has been augmented with the HMM based Classifier. In

situations where both the classifier decisions disagree, a contention resolving

mechanism built around the DUET algorithm has been suggested. This

chapter also brings out the salient highlights of the work and the general

inferences gathered alongwith enlisting of the scope and direction for future

research in this area.
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7.1 Highlights ofthe Thesis

The study of underwater sound has gained considerable significance

due to its strategic as well as commercial importance. The ocean, as a

propagation medium is full of interfering noise sources such as machinery

noise from the shipping traffic, flow noise, wave noise, wind noise, noise

from biologies and even intentional jammers. The ambient noise in the

ocean is composite in nature comprising of the components emanating from

a variety of noise sources. The studies carried out on the noise in the ocean

reveal that its spectrum extends over the frequency range from a few hertz

to about 100 kHz. The work reported in the thesis entitled Realisation ofa

Target Classifier for Noise Sources in the Ocean addresses one of the

emerging topics in Sonar Signal Processing, viz. the impiementation of a

target classifier for noise sources in the ocean, as the operator assisted

classification turns out to be tedious, laborious and time consuming. The

following are the salient highlights of this thesis.

7.1.1 Need and Requirement of a Computer Assisted Classifier

The introductory chapter of the thesis throws light on the various

noise sources in the ocean as well as the need and requirement of a

computer assisted classifier for identifying them. The underlying principle

of operation of the proposed classifier which involves extraction of the

various spectral, cepstral and bispectral features is also briefly introduced in

this chapter.

7.1.2 Preparation ofa State-of-the-art Literature

As a part of the work, a state-of-the-art literature has been prepared

in the topic covered in the thesis highlighting the characteristic signatures

of different noise sources in the ocean and various classifiers such as the
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statistical classifiers, expert system classifiers, neural network classifiers,

fuzzy classifiers, sonar signal processor based classifiers, etc..

7.1.3 Feature Vector Based Classifier

The methodology suggested to be adopted for realizing the

proposed classifier involves the extraction of source features by analyzing

the composite noise data waveforms and identifying the most matching

feature vector using template matching technique leading to the

identification of the target. For making the system fool proof and full

fledged one, the knowledge base has to be updated with the feature vectors

and target dynamics for all the class and type of the targets.

7.1.4 Extraction of Spectral Features

Though the thesis addresses both the classical and parametric model

based power spectral estimators for extracting the spectral features, the

model based estimators are found to give better performance as well as

frequency resolution for short data segments than conventional estimators.

The parametric model based estimation techniques require a prior

knowledge of the process from which the data samples are taken.

7.1.5 Extraction of Cepstral Features

The cepstral features are extracted using cepstral analysis, which is

accomplished by using a cascade of forward and inverse operations with a

linear time invariant operation sandwiched in between. A more systematic

approach for computing the cepstral coefticients can be achieved by

estimating the MFCCs. Though 20 MFCCs have been computed, it has

been experimentally observed that even a judiciously chosen five

coefficient subset of the 20 MFCCs alongwith the spectral features are

capable of identifying the targets with acceptable confidence levels.
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7.1.6 Extraction of Bispectral Features

The bispectrum, which is based on the third order statistics, can

characterize non-Gaussian as well as nonlinear signals. Different types of

nonlinearities results in different types of phase couplings. QPC is

considered as an invaluable tool in nonlinear system identification. Some

of the bispectral features which can be effectively utilized in realizing the

target identifier have been brought out in this thesis. Moreover, the

procedures to be adopted for generating the bispectrally extractable features

such as the self coupling frequencies, mutual coupling frequencies, the

peak at the bifrequencies, etc. are also described in the thesis.

7.1.7 Generation of Target Feature Record

The thesis also addresses the various steps involved in the

generation of target feature records. If the target feature record so generated

from the various data records, are not updated over a considerable period,

the relevant feature records will be dropped and the average of all the

feature records that have close resemblances will be used for generating the

feature vector.

7.1.8 Classifier Based on Hierarchical Target Trimming Approach.

A new classifier approach centred on the concept of trimming the

probable number of targets by applying certain elimination criteria, making

use of the feature vectors, which are assumed to be composed of many

feature components that are extractable using spectral, cepstral and

bispectral techniques has also been presented in this thesis. The

performance of this classifier has been compared with the Euclidean

distance and fuzzy k-NN classifiers and the results of the comparison

yielded encouraging results.
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7.1.9 Towards Improving tbe Performance oftbe Classifier

In the Target Classifier System proposed in this thesis, the feature

vector based Hierarchical Target Trimming System works in conjunction

with the Hidden Markov Model based classifier. In situations, where the

decisions of the feature vector based classifier differ from the HMM based

classifier, the DUET algorithm can be resorted to for resolving contentions.

7.1.10 DUET Algorithm for Resolving Contentions

The thesis also addresses the principle and working of the

Degenerative Unmixing Estimations Technique (DUET), which is capable

of resolving the issues arising out of multiple sources scenarios. Here the

noise emanations from the various sources are separated by frequency

domain processing and its performance is seen to be independent of the

number of sourc-es.

7.2 Future Scope for Research

The work presented in this thesis has a significant role to play in

view of its practical applications. This work also has substantial scope for

further research for improving the overall system performance. Some of

the possible proposals for future work in this area are enlisted below.

7.2.1 Prototype System

The proposed prototype system for identifying the noise sources in

the ocean works on a simulated environment with the sample data sets

obtained from some of the web sites and open literatures. In the simulated

environment, the system has been validated by mixing these noise data

waveforms with ocean wave noise data. The performance of the systems

needs to be validated with realistic data for the Indian Seas.
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7.2.2 Realistic Field Data

During the course of implementation of the target classifier

suggested in this thesis, though attempts were made to obtain the realistic

data for the Indian seas, from some of the National Laboratories in the

Country, the efforts did not succeed to the expectations. Due to reasons

that are obvious, the field collection of realistic data as a part of Ph.D.

thesis is beyond its scope, as it involves massive efforts and substantial

investments. Hence, it was not attempted. This will be taken up as a

separate major project from appropriate funding agencies.

7.2.3 Real-time Target Classifiers

As already brought out, the classifier system reported in this thesis

works on a simulated environment. In order to make the system more

reliable, robust and fool proof, the knowledge base of the system needs to

be updated with the feature vectors and target dynamics for all the class and

type of the targets. This demands massive investments and efforts.

Moreover, in order to make the system a real time, the classifier needs to be

augmented with the requisite hardware comprising of the hydrophone

array, receiving electronics subsystems and pre-processing modules, so that

the processed data is made available to the estimation statistics processor.

As this proposal also demands massive investment, this will be taken up

separately later.

7.2.4 Hardware Based Feature Vector Generator

The classifier system reported in this thesis works on a simulated

environment and the modules have been developed in Matlab. In order to

reduce the processing time, it is proposed to generate the feature vectors
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with dedicated hardware using DSP boards which will also be taken up

separately later.

7.2.5 Handling Multiple Target Scenario

For improving the classifier performance, the feature vector based

Hierarchical Target Trimming System is made to work in conjunction with

the Hidden Markov Model based Classifier. In case the decision system

encounters with contentions in the inferences gathered by these systems,

appropriate contention resolving mechanisms built around the DUET

algorithm needs to be invoked. In the work reported in this thesis, the

DUET algorithm has been implemented in a simulated environment. In real

time target classifier proposed to be realized with specific funding from

appropriate Government Agencies/Departments, the Degenerate Unmixing

Estimation Technique (DUET) is also suggested to be implemented in real

time.

7.2.6 Modeling other features using HMM

The HMM based classifier has been implemented by modelling

only one of the features, viz. the NoiseSpectrumEnvelope. The reliability

and success rate of the HMM based classifier can be improved by

incorporating more training vectors on to the model.

7.3 Summary

An attempt has been made in this chapter to bring out the salient

highlights of the work and the general inferences gathered along with

enlisting of the scope and direction for future research in this area. When

the real-time classifier system augmented with a full fledged backbone

knowledge base becomes a reality, the system can outperform the state-of­

the-art classifiers with amazing high success rates.
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