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Chapter 1

Introduction

Since the last century there have been marked changes in the approach to scientific
enquires. There has been greater realization that probability ( or non-deterministic)
models are more realistic than deterministic models in many situations. Observa­
tions taken at different time points rather than those taken at a fixed period of
time began to engage the attention of probabilists. This led to new concept of
indeterminism in dynamic studies. The period of dynamic indeterminism began
roughly with the work of Mendel (1822-1884). The physicists like Chandrasekhar
(1943) played a leading role in the development of dynamic indeterminism. Many
such phenomenon occurring in physical and life sciences are studied now not only
as a random phenomenon but also as one changing with time or space. Similar
considerations are also made in other areas, such as, social sciences, engineering
and management and so on. The scope of applications of random variables which
are functions of time or space or both has been on the increase. This thesis is
concerned with stochastic modelling and analysis of real life problems. We confine
to problems in queues, though the motivation comes from diverse areas such as
Engineering, medicine. Most of the time our process turns out to be a continuous
time Markov chain and in one case a discrete time Markov chain. Hence we start
with some basic results in Markov chains.

1.1. Markov Chain

Definition 1.1.1. A Markov process is a stochastic process with the property
that, given the value of Xl, the values of X s , s > t, do not depend on the values of
X u , u < t. If the time is discrete the Markov process is called discrete time Markov
chain; otherwise continuous time Markov chain. In this thesis we encounter both,
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discrete and continuous time Markov chains.

Chapter 1. Introduction

Theorem 1.1.1. If a Markov Chain is irreducible and positive recurrent, there
exists a unique solution to the linear' system n P = n, ne = 1. If, moreover, the
chain is aperiodic, the probabilities P[Xt = i] will converge to ni as n ---t 00

In this thesis we will demonstrate how certain queueing problems can be mod­
elled as Markov Chain. Markov chain have wide range of applications in different
areas of science.

1.2. Queueing Theory

The first work on waiting line (queue) was 'The theory of probabilities and tele­
phone conversations' by A.K. Erlang [9J who published this paper in 1909 . This
was devoted to the study of telephone traffic congestion. Random fluctuations in
customer arrival and service processes play a pivotal role here. Queueing Theory
is mainly seen as a branch of applied probability theory. Applications of queue­
ing theory in different fields include communication networks, computer systems.
machine plants and so forth. These are concerned with the design and planning
of service facilities to meet randomly fluctuating demands for service so that con­
gestion is minimized and the economic balance between the cost of service and the
cost associated with waiting for that service is maintained. A queueing system
consists of customers arriving at random time to some facility where they receive
service and then depart. When the service system is available, a certain service
discipline decides which customer will be served next. This customer then moves
to service facility and depart the queueing system after getting the service.

Queueing systems are classified according to the input process, the service time
distribution, the size of buffers, the number of servers and the scheduling discipline.
Kendall notation to describe the queueing system and its a/b/c/d/ejf here a­
denotes the arrival process, b-service process, c-the number of servers, d-size of
queue, e-service discipline, f-size of the source of arrival. Following are some of the
distributions used in this thesis.

Definition 1.2.1. Continuous Time Phase Type Distribution
Consider a finite Markov chain(MC) with 'a' transient states and one absorbing

state with the transition matrix P partitioned as P = .: ~O] where T is a

matrix of order a and TO is a column vector such that Te +TO = 0 where e is a col­
umn vector of 1's. For eventual absorbtion in to the absorbing state, starting from
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any initial state, it is necessary and sufficient that T is non singular. Suppose that
the initial state of the MC is chosen according to the probability vector (o:, aa+l) ,
with a = {aI, a2, ........ , aa}. Let X denote the time until absorbtion. Then X is a
continuous time random variable taking non negative real values with probability
distribution function F(x) given by F{x) = 1 - aeTxe, for x ~ O.The probability
function so constructed is a continuous PH-distribution and (a, T) of order a is a
representation. The kt h factorial moment is given by J.L~ = k!aTk-1(I - T)-le, for
k~O

Definition 1.2.2. Discrete Time Phase Type Distribution
Consider a finite Markov chain(MC) with 'a' transient states and one absorbing

state with the transition probability matrix P partitioned as P = [~ ~O] where

T is a matrix of order a and TO is a column vector such that Te + TO = e. It is
necessary and sufficient that (I~T) is non-singular for eventual absorption in to the
absorbing state, staring from any initial state. Suppose that the initial state of the
MC is chosen according to the probability vector (a, aa+d. The absorption time X
is then a random variable taking non negative integer with probability function (ak)
given by ao = aa+l and ak = aTk-1To, for k ~ 1, k = 1,2, .... , a. The probability
function so constructed is a discrete PH-distribution represented by (Q, T) of order
a is a representation; the order of T is called the order of the representation. The
k th factorial moment of (ak) is given by Ij,~ = k!aTk-1(I - T)-le, for k ~ 0

Definition 1.2.3. Poisson Process
A stochastic process {N (t), t ~ O} is said to be a counting process if N (t) represents
the total number of 'events' that occur by time t. The counting process {N(t), t ~
O} is said to be a Poisson process having rate A, A > 0, if (i) N(O)=O, (ii) the process
has independent increments (iii) the number of events in any interval of length t
is poisson distributed with mean At. The Poisson process and distribution arising
out of it play a pivotal role in queueing theory.

Definition 1.2.4. Exponential Distribution
Suppose we have a poisson distribution with rate of change A, the distribution of
waiting between successive changes is
F(:r) = P(X ~ x)

= 1 - P(X > x)
= 1 - e-Ax

and its density function is f(x) = Ae- AX. The exponential distribution is the only
continuous distribution having memoryless property.

Definition 1.2.5. Erlang Distribution
An Erlang distribution E~ with n stages and parameter A is the distribution of the
sum of n independent exponential random variables with parameter A. It has den­
sity function given by f(t) = (n~l)! tn-le-At for all t ;;:: 0; A > O. Its interpretation
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as a succession of n exponentially distributions with rate A. An Erlang distribu­
tion can be represented as the holding time in the transient state set {1, 2, .... , n}
of a Markov chain with absorbing state n+1 where the only possible transitions
occur from a state k to the next state k-l-I (for k=1,2, ... ,n), with rate A each.
Thus an Erlang distribution is PH-distribution with representation (0, T) where

-A A
-A A

0= (1,0,0, ....0), T= and TO = (0 0

Definition 1.2.6. Hyper Exponential Distribution
A hyper-exponential distribution is a finite mixture of n(E N) exponential distri­
butions with different parameters Ak(k = 1,2, ... , n). Its density function is given

n n
as f(t) = L qkAke->'kt with proportions qk > 0 satisfying L qk = 1 . This leads

k=1 k=1

-AI

to a PH-representation as 0 = (11"1, 7f2," .... , 7fn ) , T =

r

and TO = (AI A2 . . An)

Definition 1.2.7. Geometric Distribution
The geometric distribution is a discrete distribution for x=O,l,2 ..... having proba­
bility density function f(x) = p(l - p}X = pqx where 0 < p < 1 and q = 1 - p and

x
distribution function is F(x) = L f(k) == 1 - qn+l. The geometric distribution

k=O
is the only discrete distribution having memoryless property and it is the discrete
analog of the exponential distribution.

Definition 1.2.8. Batch Markovian Arrival Process
Consider a two dimensional Markov Process X (t) = {N (t), J (t) : t ;:: O} on the
state space {(i, j) : i ;:: 0, 1 :::;; j ~ m} with infinitesimal generator given by

Do D1 D2

Do D 1 D2

Q = Do D 1 where Dk , k ;:: 0, are m x m rnatrices.; Do has di-

agonal elements negative and nonnegative off-diagonal elements; D k for k ;:: 1 are
00

nonnegative and the matrix D given by D = L Di; is an irreducible infinitesimal
k=O

generator of a continuous time Markov chain. The variable N(t) denotes the num-
ber of arrivals in (0, t], and the variable J(t) denotes phase of the arrival process.
The transition from a state (i,j) to a state (i + k,l) where k ;:: 1 , 1 ~ j,l :::;; m
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in with transition rates governed by the matrix Dk' correspond to the arrival of
a batch of size k, while a transition from a state (i,j) to a state (i,1), 1 ~ i,
l ~ m; j =I' 1, with transition rates governed by the matrix Do, correspond to no
arrival. Thus the matrix Do governs transitions that correspond to no arrival and
the matrix Dk governs transitions corresponding to a batch arrival of size k, k :;::: l.
We assume that the matrix Do is a stable matrix (see Bellman [8]) which makes
it non-singular which in turn ensures that the sojourn time in the set of states
{(i, j) : 1 ~ j ~ m} is finite with probability 1 for all i. This ensures that the
arrival process X(t) never terminates. Let 7r be the stationary probability vector of
the Markov process with generator D. The fundamental arrival rate is then given

by <5 = 7r (f: kDk ) e. For more details on BMAPs we refer to Lucantoni [23]. All
k=O

excellent survey of BMAP is available in Chakravarthy(2006)[6].

Definition 1.2.9. Markovian Arrival Process
A Markovian Arrival Process (MAP) is a particular case of BMAP where maximum
possible batch size is 1, that is, we take Dk = 0, for k :;::: 2, so that in this
case D = Do + DJ. This is not the construction of MAP. A construction of
M AP with representation matrices (Do,Dd of order m is as follows: Consider
a Markov process with state space {1, 2, ... , m, m + I} with infinitesimal generator

D = [~o ~] where Do is an m x m matrix, Doe+d = 0 and m+ 1 is an absorbing

state. Since by assumption Do is a stable nonsingular matrix, absorption occurs
with probability 1 from any initial state. As in the construction of PH-renewal
process, when absorption occurs we assume that an arrival has occurred and we
immediately restart the process using an initial probability vector. But different
from PH-renewal process here this initial probability vector depends also on the
state from which absorption occurred and this brings dependence between inter
arrival times. Let O:i =I' 0, where (Xi is an m-dimensional row vector with O:ie = 1,
be the probability vector which we use to restart the process after absorption has
occurred from the state i and define the m x m matrix D1 by (D1)ij, (di)(O:i)j, 1 ~
i,j ~ m. Now the matrix D = Do + DJ will be the generator matrix of a Markov
process {Y(t) : t :;::: O} on the state space {1, 2, ... , rn}. Let N(t) denotes the
number of arrivals in (0, tJ. Then the 2-dimensional Markov Process ((N(t), Y(t)) :
t :;::: O} with state space {(i,j) : i ~ 0, 1 ~ j ~ m} is the arrival process which
we constructed above and is called Markovian Arrival Process. The infinitesimal

Do D1

Do D 1

generator of the process is given by Q = Do D1 For more details

on MAPs refer to Lucantoni r2~1. Chakravarthv rflL
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1.3. Matrix analytic methods

Chapter 1. Introduction

Queueing systems such as AI/M/I, M/M/oo, G/G/1 etc. are well studied and are
well tractable, using the methods of generating functions and Laplace transform
methods. However there are increasingly many queueing problems that turn out
to be analytically intractable. At best one may get the Laplace transforms of some
quantities of interest. Nevertheless, most often these turn out to be difficult to
invert if not impossible, thereby rendering the evaluation of system performance
measures inaccessible. It is to overcome this difficulty that Neuts (1979) [25] de­
vised efficient algorithms through the introduction of matrix analytic methods.
PH distributions have the advantage that an arbitrary distribution with rational
Laplace Steiltjes transform can be approximated by the former. Since PH distri­
bution is numerically tractable, one can do quite a bite of manipulations for the
distribution having this properly mentioned above. The two books : Matrix Geo­
metric Metholds in Stochastic Process. An Algorithmic Approach (John Hopkins,
1988) and Matrices of M/G/1 type (1991) by Neuts [26] and also by Latouche &
Ramaswami [21] make excellent reading. The modelling tools such as Phase type
distributions, Markovian Arrival Processes, Batch Markovian Arrival Processes,
Markovian Service Processes etc. are well suited for Matrix Analytic Methods.
Below we give a brief description of Matrix Analytic Methods applied for solving
quasi-birth-and-death processes.

Definition 1.3.1. Level independent quasi-birth-and-death processes
A level independent quasi-birth and death process is a Markov process with state
space D. = {(O,j) : 1 ~ j ~ n} U {(i,j); i ~ 1, 1 ~ j ~ m} and with infinitesimal

Co Cl
C2 Al Aa

generator Q given by Q = A2 Al Ao

The generator Q is obtained in the above form by partitioning the state space
E into the set of levels Q,1,2, ... where Q= (O,j) : 1 ~ j ~ ».i. = (i,j): 1 ~ j ~ n
for i ~ 1. The vector i:. is called i th level. Co is a square matrix of order n x nand
denotes transition rates from states of level 0 to the states of level 0 itself. Cl is
a matrix of order n x m and denotes transition rates from level 0 to level 1. The
m x n matrix C2 denotes transition rates from level 1 to level 0 . A 2 , AI, Ao are
square matrices of order m and denotes transition rates from level i to levels i - 1, i,
i + 1 respectively. Assuming that Q is irreducible, we have the following theorem
(see Neuts [25]).

Theorem 1.3.1. The process Q is positive recurrent-if and only if, the minimal
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non negative solution R to the matrix quadratic equation

R ZA2 + RA l + Ao = 0

7

(1.1)

(1.2)

has spectral radius less than 1 and the finite system of equations

xoCo + xICz = 0,

XOCI + Xl (AI + RAz) = 0,
xoe + XI(I - R)-le = 1

has a unique positive solution tor Xo, and, Xl. If the matrix A = Ao + Al + Az is
irreducible, then sp(R) < 1 if and only if, ttAoe < 7rAze, where 1r is the stationary
probability vector of the generator matrix A.

The stationary probability vector x = (xo, Xl, X2, .•. ) of Q is given by

Xi = Xl tc, [or i ~ 1. (1.3)

To find the minimal solution of 1.2 one can use the iterative formulas (see Neuts
[25]):

R = -Ao(AI + Rn_1Az)-I [or n ~ 1 (1.4)

with an initial value Ro, which converges to R if sp(R) < 1. An accuracy check for
R is given by the equation RAze = Aoe. Also the above relation 1.4 shows that if
any row of Ao is a row consisting of zeroes only, then the corresponding row of R,
also consists of zeros only. So if our Ao matrix has a special structure, it can be
exploited ill the evaluation of the R matrix. Another method to find R is to use
the relation

(1.5)

where the matrix G is the minimal nonnegative solution of the matrix quadratic
equation

A z + AIG + AoGz = O. (1.6)

The matrix G will be stochastic if sp(R) < 1. When sp(R) < 1, the Logarithmic
Reduction Algorithm due to Ramaswamy [21] (see Latouche and Ramaswamy [21]),
which is quadratically convergent, can be used to calculate the G matrix and hence
the R matrix using relation 1.5. 'When G is stochastic, from 1.6 we obtain the
relation

G = (-AI - AoGtlAz (1.7)

which shows that if any column of the Az matrix is zero then the corresponding
column of the G matrix is also zero. Therefore if the Az matrix has a special
structure, it can be exploited in the calculation of the G matrix. Also one can
efficiently use (Block) Gauss- Seidel iteration method to evaluate the G matrix,
particularly, if the matrix Az has a special structure. For further details on Matrix
Analytic Methods for Level independent QBD's we refer to Neuts [25], Latouche
and Rama.<>wami r211.
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1.4. Literature Survey

Chapter 1. Introduction

It may be noted that vacation is a sort of interruption, there is a distinction that
usually vacation is associated with the advent of an event whenever server becomes
free after serving a few customers/ a certain customers are served continuously.
Thus the server goes on vacation at the end of a service. However interruption to
service takes place while a service is going on. This can be due to server breakdown
or due to a high priority customer arrival and consequent pre-emption of the cus­
tomer in service. It is the better form of interruption that we dwelve on this thesis.
'rVe give below a brief survey of the work reported in queues with interruption.
This accuracy is in no way exhausting.

(1) White and Christie (1958)[36] considered two queues (priority I & II) served
by a single server, with the lower priority (II) customer being preemptecl on
arrival of a high priority customer. Service times of both type of customers
are independent exponentially distributed with distinct parameters. Never­
theless the assumption that service times are exponentially distributed does
not help us in distinguishing whether an interrupted service is to be repeated
or resumed. They contrast this model with head of line priority. They had
shown how service facility breakdown could be considered equivalent to ar­
rivals of items with preemptive priority.

(2) Gaver (1962) [14] discussed a queueing problem with interruption as detailed
under: On completion of an interruption either the service is repeated or
resumed. There is no specific rule that determines whether the service is to
be resumed or repeated. The completion time distribution function for post­
ponable interruption (the interruption starts not at the epoch of its onset;
rather only on completion of the present service the interruption takes effect.
The duration of the interruption is the cumulated effect of all interruptions
that got postponed). He computed the distributions of the completion time
of the job in the three cases of repetition, resumption and postponable inter­
ruption, in terms of Laplace transforms. With the arrival process assumed to
be poisson and service times arbitrarily distributed, with duration of inter­
ruption also arbitrarily distributed, Caver obtained the Laplace transform of
the service completion time random variable.

(3) Keilson (1962)[17] considered M/G/l queue with interruptions of Poisson in­
cidence occasioned either by server break down or the arrival of customers
with higher priority. Interruption times and priority service times have arbi­
trary distribution. After preemptive interruption, ordinary service is either
repeated or resumed. The time dependent behavior of the system was dis­
cussed in a complete state space and the join density in all system variables
of this space is constructed systematically from the densities associated with
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a set of simpler first-passage problems. He also obtained equilibrium dis­
tributions as limiting forms and server busy period distribution computed.
Nevertheless Keilson did not devise a method to distinguish between repeat
and resumption of an interrupted service.

(4) Ibe and Trivedi (1990) [35] considered a queue with two stations, that are
served by a single server in a cyclic manner. They assumed that at most one
customer can be served at a station when the server arrives at the station.
The server is subject to breakdown and hence a repair time is associated
with such events. They obtained appropriate mean delay of customers in
the system. Numerical results were obtained to get a closer view of the
performance measures.

(5) Nunez-Queija (2000) [27J considered the sojourn times of customers in an
M/ M/I queue with the processor sharing service discipline and a server which
is subject to breakdown. The duration of the breakdown have a general dis­
tribution, whereas the on-periods are exponentially distributed. A branching
process approach leads to a decomposition of the sojourn time, in which the
components are independent of each other and could be investigated sepa­
rately. He derived the LaplaceStieltjes transform of the sojourn-time distri­
bution in steady state, and showed that the expected sojourn time is not
proportional to the service requirement. In the heavy-traffic limit, the so­
journ time, conditioned on the service requirement and scaled by the traffic
load, was shown to be exponentially distributed. These results could be used
for the performance analysis of elastic traffic in communication networks, in
particular, the ABR service class in ATM networks, and best-effort services
in IP networks.

(6) Fiems et.al, EJOR (2008)[l1J provides specific probability for repeat/resumption
of an interrupted service. Specifically, they assumed that an interruption
would be destructive (the authors call it disruptive, which is a wrong termi­
nology) with probability p, and so the interrupted service has to be repeated,
or with probability 1 - p it is non destructive and so has to be resumed on
removal of interruption. With arrival process forming a poisson process and
service times arbitrarily distributed they set up the equation to determine
the effective service time of a customer. Closed form expressions for various
performance measures were obtained. First the stability of the system was
investigated. Using a transform approach, they obtained various performance
measures such as the moments of the queue content and waiting times. They
illustrate their approach by means of some numerical examples.

(7) Tewfik Kernane(2009) [34J extended the work of Fiems et.al.(2008)[1l] to
queues with repeated trial (retrial)of customers. He proved that all the results
r>h.t ",;ne>rl ;., the> bttpr ("'o1l1cl hp. t.ranslated to the retrial set up.
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(8) Takine and Sengupta (1997)[33J considered a single server, multi-class service
system. Arrival of customers according to MAP. Service times arbitrarily
distributed. At times server would not be available for service to customers of
priority below a given level. They characterize the queue length distribution
as well as the waiting time distribution. The computational feasibility of the
model is highlighted through numerical procedures.

(9) Atencia and Moreno (2006) [2] discuss a discrete time Geo/G/1 retrial queue
with server subject to starting interruption. That is, at the instance of com­
mencement of processing a new job, the server may breakdown. Associated
with this there is a repair time, after which the service commences. They ob­
tain the stationary distribution of the system state and then compute a few
useful performance measures. They also obtain two stochastic decomposition
laws and find a measure of the proximity between the system size distribution
of the model and corresponding model without retrials. Further they showed
that M/G/1 retrial queue with starting failures can be approximated by its
discrete time counterpart.

(10) Atencia and Moreno (2008)[3] consider an .M[Xl/G/1 retrial queue in which
customer arrival constitutes compound poisson process. Service times are
arbitrarily distributed. There is no waiting space. for customers and so, if the
server is busy at an arrival epoch, such customers are directed to an orbit of
infinite capacity from where they retry to access the server according to an
exponentially distributed time. In case the server is idle at an arrival epoch,
then one in the arriving group proceeds for service and the rest, if any, to the
orbit. Server is subject to failure during service. The customer in service then
stays back. The repair time is arbitrarily distributed. The server 'on tirne'is
exponentially distributed. The service that got interrupted get resumed, on
repair of server. They obtain long run behavior of the system.

(11) Lin Li, Ying and Zhao (2006)[29J consider a queue in a more general set up
than that of Atencia and Moreno (2008) [3], namely the BMAP/ G/1 Retrial
queue with server breakdown and repairs. Here again service times have
arbitrary distribution; repair time of server is also arbitrarily distributed. The
server 'on time' has exponential distribution (which does not change when
the server is idle). Here again resumption of service, on repair of the server,
is assumed. Using supplementary variable technique the authors analyze the
system. The R-G factorization of the level dependent CTMC of the M/G/1
type is used to provide the stationary probability measures.

(12) Gursoy and Xiao (2004) [15J discuss an infinite server queue with Poisson
arrival and exponentially distributed service times. Interruption occurs to
the system according to a poisson process. When interrupted, the service
rate of each server is less than the normal service rate. The time to get back
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to normal state is exponentially distributed. Under these assumptions the
authors obtain a stochastic decomposition for the number of customers in
the system; they prove that one component in the decomposition is precisely
the number of customers present in the classical M/M/00 queue.

• In most of the work reported on interruption, either the service of the inter­
rupted customer is repeated on removal of interruption or it is resumed. An
exact rule to determine whether to resume or repeat service on completion
of interruption is missing. In most of these Krishnamoorthy et.al.(2009) [19]
is also provides specific rules for repetition / resumption of service. How­
ever Fiems.et.al (2008)[11] and its extension to retrial set up by Tewfik Ker­
nane (2009)[34] specifically identify the rule to decide whether service is to
be repeated or resumed. Nevertheless, this is done at the onset of inter­
ruption which may not be the correct decision rule in most situations. To
rectify this we have, in this thesis, brought in the rules concerning repe­
titions/resumption of service to apply immediately after the completion of
an interruption. Specifically a random clock (threshold clock) starts ticking
the moment interruption starts. At this point a competition between the
interruption clock and random clock begins. Whichever stops ticking first
determines whether to resume or repeat the service of the interrupted cus­
tomer. To be more specific, we assume that the interrupted service is resumed
if interruption clock realizes before threshold clock and it is repeated other­
wise. This is the rule that we follow throughout this thesis.

Another important aspect to be mentioned at this point is that, while 011

interruption the server does not get affected by the arrival of further inter­
ruptions which means that the interruption behaves like a Type I counter
(see for example Karlin and Taylor (1975)[20]). All the work reported on
interruptions essentially follow this rule except, perhaps that of Gaver [14]
where postponable interruption is treated separately. However postponable
interruption has the defect that the effective service time of a customer is the
actual service time. This so because the interruptions that occurred during
a service could be all pooled together and passed on the server at the ser­
vice completion epoch. Type II counter like interruption is being investigated.

In addition to the above mentioned work there are a few others that are re­
ported on queues with service interruptions. These include Guodong Pang
and Ward \Vhitt(2009)[28], Haridass and Arumuganathan (2008)[16], Boxma
et.al.(2008)[5], Chan et.al.(1993)[7]' Gursoy and Xiao (2004)[15], Rembowski
(1985)[30], Li and Zhao(2004)[29], in continuous time, and in discrete time,
Fiems et.al.(2002)[12], Alfa (2002)[1].
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Li and Tian (2007)[22] examined a queue with working vacations and vacation
interruptions. Precisely, he assumed that a vacation could be interrupted by
the arrival of a high priority customer. In the steady state they proved
that the stationary queue length can be decomposed into the sum of two
independent random variables.

1.5. About the thesis

The theory of stochastic service systems is mainly concerned with services which
are subject to interruptions. The most natural cause of such interruptions is server
breakdowns. However interruption can also occur to the system when the server
preempts the current customer to serve a higher priority customer. Since 1958
several researchers have analyzed different types of interruptions. Most of these
consider either repetition or resumption of the interrupted service on removal of
interruption. Also there are some work dealing with both repeat and resumption of
service, but predetermined with some probability. The work reported in this thesis
is a generalization in different directions of the work done by most of these authors.

An example related to the model discussed in this thesis can be described as
follows: In a typical client-server interaction over the internet, clients issue requests
for applications such as real-time voice or video download, large file transfer via file
transfer protocol or interactive sessions with a server. For example, a request from
a client can be made for a video streaming from a streaming server. Such video
transfers require sustained availability of service from the server. Client requests
line up at the server at peak hours of operation. Insistent requests keep the server
fully loaded and on the verge of breakdown. The server can go to a repair state
and can come back after a stipulated amount of time. The server resumes serving
clients requests from the point where it was dropped or repeat the service of the
client depending upon the amount of time taken for repair.

Another example is administration of antibiotics. In general, antibiotics are
prescribed for a specified duration of time (in days). Interruptions of short dura­
tions are permitted. However if the medicine is not taken continuously for a few
days, the whole process has to be repeated. A third example comes from Ayurveda
(the Indian system of medicine): Certain types of ailments need a type of massag­
ing, twice or thrice a day, for 21/41/... , days. Interruption to this, due to patients
health condition, is permissible only for 3 to 4 days at a stretch. Beyond that the
whole process has to start from the very beginning; that is the treatment has to
be repeated.
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Other contexts of applications could be found in civil engineering (concreting
of roofs), buffer sharing and so on. However a very significant example comes from
the functioning of artificial heart valves. In a typical situation, a patient, surviving
on an artificial heart valve was prescribed a particular tablet to be take once a day,
at a specified time, to keep the level of a certain component in the blood between
2.5 and 3.5 units. The patient was advised to take the tablet daily at the specified
time without fail (interruption). Nevertheless even when interruptions occur, a
tolerance limit is prescribed. Beyond this tolerance level, the heart valve is to be
replaced.

More examples can be cited, for example from priority queues, buffer sharing
and so on. The above examples are all indicative of a specific characteristic. If
within tolerance limit interruption is completed, the service which got interrupted
gets resumed ie, start from where it got interrupted; else it gets repeated. In the
first case the part of service that was provided is remembered whereas in the latter
case the entire past is forgotten. It may be noted that the models under discussion
are not restricted to the above applications alone and so the discussions to follow
are in a much more general framework.

Throughout the thesis we assume that whenever the server is under interrup­
tion, no further interruption befalls the server. ie, the effect of interruption process
is governed by a type-I counter (see [36]). The case where duration of interruption
getting extended due to further interruptions befalling the server, who is already
under interruption, is the subject matter of future work. This thesis entitled' On
Queues with Interruptions and Repeat or Resumption of Service' introduces several
new concepts into queues with service interruption. It is divided into Seven chap­
ters including an introductory chapter. The following are keywords that we use
in this thesis: Phase type (PH) distribution, Markovian Arrival Process (MAP),
Geometric Distribution, Service Interruption, First in First out (FIFO), threshold
random variable and Super threshold random variable. In the second chapter we
introduce a new concept called the 'threshold random variable' which competes
with interruption time to decide whether to repeat or resume the interrupted ser­
vice after removal of interruptions. This notion generalizes the work reported so far
in queues with service interruptions. In chapter 3 we introduce the concept of what
is called 'Super threshold clock' (a random variable) which keeps track of the total
interruption time of a customer during his service except when it is realized before
completion of interruption in some cases to be discussed in this thesis and in other
cases it exactly measures the duration of all interruptions put together. The Super
threshold clock is OIl whenever the service is interrupted and is deactivated when
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service is rendered. Throughout this thesis the first in first out service discipline is
followed except for priority queues.

1.6. Summary of the thesis

The first chapter is an introduction and contains a survey on queues with interrup­
tions. It also contains some basic definitions and terminologies used in this thesis.

Second chapter presents an infinite capacity queueing system with a single
server. A customer, on arrival to an idle server, is immediately taken for ser­
vice; else he joins the tail of the queue. Arrival of customers constitute MAP with
representation (Do, Dd. During the service of a customer, none, one or more in­
terruptions may occur. It takes a random amount of time to clear the interruption.
Interruption process occurs according to a Poisson process of rate I and duration
of interruption is PH distributed. When the duration of an interruption exceeds
a threshold random variable (also Phase type distributed), the customer whose
service got interrupted has to undergo the service process right from the begin­
ning on completion of interruption; else his service is resumed. We investigate this
queueing system. Long run system distribution is obtained under stable regime.
Several performance measures are evaluated. Numerical illustrations of the system
behavior is also provided. As a variation we also consider in this chapter an infinite
capacity queueing system with a single server, here with a bound on the number
of interruptions that a customer is normally willing to accept, beyond which the
system will have to pay a heavy penalty. All other assumptions remain the same as
in model I. We investigate the behavior of this queueing system. Long run system
distribution is obtained under stable regime. We analyze this problem as a Markov
Decision process (MDP) to investigate the optimal N value. Several performance
measures are evaluated. Numerical illustrations of the system behavior is also pro­
vided.

The third chapter describes an infinite capacity queueing system with a single
server. A customer on arrival to an idle system immediately joins service. Arrival
of customers constitute M AP. Here we introduce an upper bound N to the number
of interruptions that a customer is subjected, beyond which no further interrup­
tion is permitted. Thus the probability p in the previous chapter turns out to be
1 for this model on realization of N interruptions. Interruptions occur according
to a Poisson process of rate I and duration of each interruption is PH distributed.
Repeat I resumption of interrupted customers service is decided by a comparison
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between duration of interruption and a threshold random variable which is also
PH distributed. When the duration of interruption exceeds the threshold random
variable the interrupted customer gets its service repeated on completion of in­
terruption; otherwise it is resumed after the interruption is removed. In addition
to the bound on the number of interruptions we bring in another check on the
interruption through a 'Super threshold clock'. This measures duration of inter­
ruption, except perhaps that of the last interruption. Once the super threshold
clock is realized, the customer whose service got interrupted, will face no further
interruption (note that the present interruption is allowed to be continued). So
the super threshold clock and maximum number of interruptions permitted, act
as checks on the actual number of interruptions/ total duration of interruptions a
customer encounters. Long run system state distribution is obtained under stable
regime. Several performance measures are evaluated. Numerical illustrations of the
system behaviour is also provide. An optimization problem is numerically analyzed.

Chapter 4 studies a single server queueing model consisting of two queues-an
infinite capacity queue of ordinary customers and a finite capacity (K) of priority
customers. Customers join the system according to a Marked Markovian Arrival
process. If the server is free, an arriving customer (ordinary/priority) can imme­
diately join for service. During the service of an ordinary customer preemption
can take place by the arrival of a priority customer. Then the preempted customer
waits at the head of the ordinary queue till he is allowed to continue his service. An
(N +1) faced solid figure whose possible out comes are O,1, ,N with probabilities
qo, ql,······,qN, respectively, is tossed at the beginning of the service of an ordinary
customer which decide the maximum number of priority customer(s) allowed to be
served during the service of the specified ordinary customer. Thus if the face i of
the solid figure turns up, then at most i interruptions are permitted to the service of
this ordinary customer. The restart/ resumption of preempted service takes place
only when the priority queue become empty or the maximum number of priority
customers permitted to be served during his service is realized, whichever occurs
first. If the threshold random variable, which competes with the duration of pre­
emption, is realized before completion of preemption then the preempted customer
has to get its service repeated; otherwise it is resumed. Here the random variable
corresponding to ordinary customers service, priority customers service and thresh­
old random variable are all PH distributed. This system is analyzed under stable
regime. A few useful measures for system performance are obtained. These help
in designing an efficient system. Numerical results are provided to illustrate the
system performance . We also examine the optimal value of N by introducing a
suitable cost function. Note that this chapter generalizes the results in the previous
one, since, in the former the maximum number of interruptions during a service
was systems choice and is fixed at i ; 0 ~ i ~ N whereas in this chapter it is left
with customer to decide the maximum number of interruptions he/she is willing to
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undergo. However the system may encourage a low priority customer to opt for a
large number of interruptions by way of providing incentives.

In chapter five we study an infinite capacity single server discrete time queueing
system. Customers join the system according to PH distribution. If the system
is idle, an arriving customer is immediately taken for service. During service sev­
eral interruptions may occur where interruption process is geometrically distributed
with probability I for an interruption to occur. When interruption occurs a thresh­
old random clock starts ticking. When the duration of an interruption exceeds a
threshold random variable, the interrupted customer has to undergo the service
right from the beginning, on completion of interruption; else his service is resumed.
Several performance measures are evaluated. Numerical illustrations of the sys­
tem behavior is also provided. It may be noted that unlike in the continuous
time models discussed in the previous chapters, here several events can occur at a
time point. In that way more complexity is involved here. Further we work with
transition probability matrices in place of the infinitesimal generator.

The last chapter is a comparison of the performance of all the models discussed
through chapters 2 through 5. Some further possible investigations are also sug­
gested in this chapter.



Chapter 2

On a Queue With Interruptions
and Repeat or Resumption of

•service

This chapter presents an infinite capacity queueing system with a single server
where service rule is FIFO . A customer, on arrival to an idle server, is immedi­
ately taken for service if the server is idle at that instant; else he joins the tail of the
queue. Arrival of customers constitute .MAP. During the service of a customer,
one or more interruptions may occur. It takes a random amount of time to clear
the interruption. Interruption process occurs according to a Poisson process of rate
I and duration of interruption is PH distributed. When the duration of an inter­
ruption exceeds a threshold random variable (also PH distributed), the customer
whose service got interrupted has to undergo the service process right from the
beginning on completion of interruption; else his service is resumed. We investi­
gate this queueing system. Long run system distribution is obtained under stable
regime. The several performance measures are evaluated. Numerical illustrations
of the system behavior is also provided.

Part of this chapter appeared in Journal of Non-Linear Analysis.
A. Krishnamoorthy, Pramod.P.K, T.G. Deepak, On a Queue With Interruptions and Repeat or
Resumption of Service, Non-Linear Analysis, 2009, (Elsevier). It was also given as invited talk
to the Fourth World Conference of Non-Linear Analysts, Orlando, July 2008.
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2.1. Model I

Here we consider a service system with a single server, to which customers arrive
according to a Markovian arrival process with representation (Do, D l ) , the order
of these matrices is r, An arriving customer enters service immediately if the
server is free. When the system is in busy state, an interruption occurs to the
service, resulting in preemption of the customer in service. When the interrup­
tion time exceeds a threshold random variable, the interrupted customer gets its
service repeated on completion of interruption. Else service is resumed, that is it
starts at the point where it got interrupted. The service time, interruption time
and the threshold random variables are all mutually independent PH-distributed
with representations (a,S), (j3,T), (6,U) and of orders a, b, c, respectively. Write
So = -S~, TO = -Tf. and UO = ~U~ where ~ is a column vector of l 's of ap­
propriate order. Let N(t), S(t), SI(t), S2 (t), S3(t) denote respectively the number
of customers in the system, state of the system, service phase, interruption phase
and threshold phase.

If N(t) ~ 1 and service is going on at t , write Set)' = 1; if server is inter­
rupted write Set) = O. Sl(t) denotes the phase of service where it got interrupted
if Set) = 0 and phase of service if Set) = 1. The variable S2(t) denotes phase
of interruption at time t. The random variable S3(t) equal to 0 if duration of
the interruption exceeds threshold random variable and phase of threshold random
variable otherwise. The arrival process is represented by the variable M(t).

Write X(t) = (N(t), Set),Sl(f), S2(t),S3(t),M(t)); then {X (t) : t ~ O} forms
a continuous time Markov chain (CTMC) which is a quasi death process (LIQBD)
with state space whose nth level is given by f(n)=U 'V(n, l), l = 0,1. The subsets

I
of w(n,l) are defined as {(n,0,i1,i2 , i3,i4);1 ~ i 1 ~ a,l ~ '£2 ~ b,O ~ i 3 ~ C, 1 ~

i 4 ~ r}, and {(n, 1, i 1 , i 4 ) ; 1 ~ i 1 ~ a, 1 ~ i 4 ~ r}. The states in Ware listed in
lexicographical order, then transitions among subsets Wen, l); l = 0, 1 are as follows:
Note that when N(t) = 0, the only other component in the state vector is M(t).
Also, when Set) = 1, the last two components in the state vector stand for the
phases of service and arrival process respectively. \Ve now describe the infinitesimal
generator matrix Q of this CTMC. Note that by the assumptions made above the
CTMC {X(t), t ~ O} is a level independent quasi-birth and death process (LIQBD).
We have

Do c- 0 0 0 0 0
Cl Al Aa 0 0 0 0

Q = 0 A2 Al Aa 0 0 0
o 0 A2 Al Ao 0 0

(2.1)
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In the above boundary matrices Do, Co and Cl have different dimensions which are
further different from those of Ao, Al and A 2 . First we shall describe the matrices
Aol Al and A2 appearing in the repeating part of Q. An corresponds to arrival
of a customer to the system. The transitions in la 0 t, 0 IC+l 0 o, and la 0 o,
record rates of jumping to 'l1(n + 1,0) and 'l1(n + 1,1) respectively from 'l1(n,O)
and \lJ (n, 1), which are of orders ab(c + l)T, ar respectively. All other transitions
in An are filled by zero matrices and Ao is of order ab(c + 1)r + ar. Similarly, A 2

corresponds to departure of a customer after completing the service. During the
entire service a customer may encounter one or more interruptions. The only non
zero component in A2 corresponds to the transition to 'I'(n - 1,1) from W(n, 1)
which is given by SO 0: 0 L: Since there cannot be a departure while remaining
in interruption state such positions are represented by zero matrices. Also there
cannot be departure along with transitions from busy state to interruption state.
Thus this position is also occupied by zero matrix. A departure occurs only when
the transition occurs from busy state to itself; that position is occupied by the
matrix SO 0: ® I; and is of order ar . The block matrix A2 is square matrix of order
ab(c+ 1)r + ar.

Now consider the matrix AI, which describes all transitions in which level does
not change (that is transitions within levels). Let All, A12 , A13 and A14 record
transitions from 'I'(n,O) to W(n,O), W(n,O) to '1'(n,l), '1'(n,1) to W(n,O) and
w(n, 1) to \lJ(n, 1), respectively. All is described as follows: la 0 H records tran­
sitions to \lJ(n,O) from W(n,O) and is of order ab(c+ 1)r , where only transitions
within interruption phases and/or phase change of threshold clock occur. We have

H = GlEBG2 = G10Ir+h0G2 , c, = T0Ic+ I , G2 = FffiDo and F = [~o ~]
where F is square matrix of order (c + 1) having O's in the first row and entries of
UO in the first column, starting with the second element and the remaining part
occupied by matrix U. A 12 in Al is described as follows: Bo records transitions to

/

\lJ (n, 1) from '1' (n, 0) and is of order ab(c+ l)r x ar where [BOl B02 . . Bo,a]

and BOj = T(O) 0 [a ej ej . . ej]' ® I; ; ej is a row vector of appropriate
order with 1 in the ph place and zero elsewhere. Bo represents transitions from
interruption to busy state. In this transition, when interruption duration exceeds
threshold, the interrupted customer gets its service repeated. Thus events in these
transitions correspond to removal of interruption followed by resumption/repeat
of service. A I3 in Al records transition to W(n, 0) from tlJ(n, 1) and is as follows:
"(la 0 f3 0 J0 I; lists rates corresponding to the transitions from busy state to
interruption state and J = (0,0). A I4 in Al records transitions to W(n,l) from
W(n, 1) and is as follows: S EB Do - "(Iar records transitions in W(n, 1) from W(n, 1)
represents no interruption to service. Now we consider the boundary blocks Do,
Co and Cl in the infinitesimal generator Q. Here Co = 0: 0 Dl and Cl = SO 0 L:
In Do entries correspond to server remaining idle and transitions occur only in
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the arrival phase without triggering an arrival. Co corresponds to transitions with
arrival and Cl those resulting in departure of customer leaving behind none in the
system.

2.2. Stability Condition.

Next we examine the system stability. We can anticipate that a very strong condi­
tion is needed here for the same since a service can get interrupted several times.
What is needed is that the rate of drift to a lower level from a given one should
be higher than that to the next higher level. This means that the Markov chain
is stable if and only if IIAoe < IIA2e where IT is the unique solution to ITA = 0,
ITe = 1 and A = Ao+ A1 + A2 . Nevertheless, it is extremely difficult to simplify
the above condition because of the complexities involved. However validity of this
condition can be checked numerically. Therefore we give two results: one a nec­
essary condition and the other is a sufficient condition for stability. These are of
independent interest as well. We need then while discussing the waiting time dis­
tribution and bounds for the expected waiting time. However these do not turn out
to be necessary and sufficient is easy to check. To start with we formally note the
necessary and sufficient condition. Its validity is well known (see Neuts(1981)[25J).

Theorem 2.2.1. In order- that the system is stable it is necessary and sufficient
that IIAoe < IIA 2e.

2.2.1 Necessary Condition

In order to derive a necessary condition we proceed as follows. We assume here that
each interruption results in resumption of service. Thus to compute the expected
value of the time spent by a customer from the time he is taken for service till he
leaves the system on being served completely, we look at random variables repre­
senting mutually exclusive and exhaustive events: S(l), (S(1) + Xl + S(2)), (S(l) +
Xl + s(2) +X 2 +S(3)), In this the S(l) remaining separate is the full service
time; in the second (S(l) + S(2)) give the full service time whereas Xl is the dura­
tion of the single interruption; in the third, (S(1) + S(2) + S(3)) provides the total
duration of service and Xl, X 2 are the durations of the intervening interruptions,
and, 80 on. The probabilities of occurrence of events represented by these random
variables are P(Service time < Strike time of the first interruption), P(Service time
> Strike time of first interruption, duration of interruption < threshold random
variable, length of service time < strike time of the interruption random variable),
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............... Thus the distribution of the required time =
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PH(o:, S).P(S(I) < Y) + (PH(o:, S) *PH(fJ, T)).P(Y < S),P(X1 < Td.
P(S(2) < Y) + (PH(o:, S) * (PH((3, T))*2).(p(y < S))2,p(XI < TI),P(X2 < Td.

( (3)PS < Y) + .
(2.2)

where Y is an exponentially distributed random variable with parameter I and TI

is the threshold random variable which is PH(6, U). We notice that the above is
convergent by comparison with the renewal function. Further it has finite expected
value since service time and interruption time have finite expectations. Now the
necessary condition for system stability can be given as follows.

Theorem 2.2.2. The necessary condition for stability of the system is that the
number of arrivals during the expected value(duration) of distribution in (2.2) is
less than one.

2.2.2 Sufficient Condition:

The total time spent by a customer in the system, from the moment he is taken
for service till he leaves the system on completion of service, can be represented

. ( (1) ) ( (I) (2) )by the random vanables S, Sp + Xl + S , Sp + Xl + Sp + X 2 + S , .
The distribution of the total time spent is the sum of the probabilities of the
mutually exclusive events represented by these random variables multiplied by the
probability of occurrence of these events. The probabilities of occurrence of these
mutually exclusive events are respectively, P(S < Y), P(S > Y),P(XI > TI)P(S <
Y), P(S > Y),P(Xl > Tl).P(S > Y),P(X2 > Td.P(S < Y), where Y is an
exponentially distributed random variable with parameter I and Tt is PH (6,U).
Thus the distribution of the time spent by a customer from the epoch at which he
is taken for service, until he leaves the system, on completion of service is given by

PH(a, S).P(S < Y) + ((PH(o:, S))*2 *PH((3, T)).P(S > Y),P(XI > Td.
P(S < Y) + ((PH(a,S))*3 * (PH({3,T))*2).(P(S > y))2,(P(X1 > Tl ))2.
(P(S < Y)), .

(2.3)
Note that in the above even, for partial service we have given the full service time
distribution. This argument leads to the following sufficient condition for system
stability.

Theorem 2.2.3. A sufficient condition for system stability is that the expected
number of customers arriving to the system during the expected duration of (2.3)
should be less than one.
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2.3. First passage time analysis

In this section, we investigate the expected length of a busy period and a busy
cycle. As a prerequisite to that, we compute the expected length of time needed
to reach level i, i ~ 1 from the level i + 1. In particular when i = 0, we obtain
the expected length of a busy period. Let Gj,l' (k, x) be the conditional probability
that the CTMC, starting in the state (i,j) at time t = 0, reaches the level i-I for
the first time at or prior to time x, after exactly k transitions to the left and does
so by entering the state(i - 1,/) for j' ~ 1. Here by (i,j) we mean the ll! state
in level i, when they are arranged in the lexicographic order. The matrix with

00 00

elements Gj,l'(k,x) is denoted by G(k,x). Let G*(z,s) = 2: zk Je-sXdG(k, x).
k=l 0

Then, for 0 < z < 1, s > 0, the matrix G*(z, s) is the minimal non-negative so-
lution to the equation zA2 - (sI - AI)G*(z, s) + AOC*2(Z, s) = O. We know that
limz_l,s-+OC*(z,s) =G = (Cjjl) where Cjl' = P{T < oo} and ((X(T), YeT)) =

(i - 1,/) I (X(O), Y(O)) = (i,j)} and T is the first passage time from the level i to
the level i - 1. Let ffilj be the mean first passage time from the level i (i > 1) to
the level i - 1, given that the first passage time started in the state (i, j), and 'ml
be a row vector with elements ffilj' Let ffi2j be the mean number of transitions to
the left during the first passage time from the level i to i - 1, given that the first
passage time started in the state (i,j). Let m2 be a row vector with elements m2j.

Then

and

ml = -aa G*(z,s)elso==O,z=1
s

= -(AI + Ao(I + G))-le.

rh2 = ~C*(z, s)e !s=O,z=:o1

= -(AI + Ao(I + G))-lA 2e.

(2.4)

(2.5)

For computing the length of a busy period we define the matrix C*(I,O)(Z, s)
and vectors m~l,O) and rh~l,O) which correspond to the first passage time from
level 1 to level 0 and C*co,O)(z, s) , ihiO,O) and m~O,O) for the first return time
from level zero to the level zero. Then C*Cl,O)(Z, s) = z(sI - AI)-lC1 + (sI ­
A1)-1AoC*(z, S)C*(l,O)(Z, s) and C*(O,O)(z, s) = (sI - DO)-lCOC*(l,O)(z, s).
Hence

m(1,o) = -~G*(1,O)(z s)e I _ _
I a ' s-O,z-l

S

= -(AI + AoG)-I(Aoml + e).
(2.6)
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m(O,O) = _~G·(O,O)(z s)e I _ _
1 as ' s-O,z-l

- D-1 (C - (I,D) + )- - 0 Ornl e .

and

m(O,D) = ~G·(O,O)(Z s)e I _ _
2 az ' s-O,z-l

o:' C - (1,0)= - 0 om2 .
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(2.7)

(2.8)

(2.9)

Note that rh~l,O) and m~D,O) represent the mean lengths of busy period and busy
cycle respectively. Thus, if the matrix G is known, (which can be computed by
Logarithmic Reduction algorithm, see Latouche and Ramaswami (1999)[21]) all
these measures can be calculated.
Next we pass on to a discussion of results related to the waiting time of a customer.
Since during the service of a customer there can be a number of interruptions, some
of which result in repetition of service whereas the rest in resumption, to derive
an expression for the waiting time distribution could be quite challenging. Yet we
make an attempt to compute the distribution function and derive bounds for the
expected waiting time.

2.4. Service Process with Interruption

To describe service process.with interruption, we assume that interruption duration
and threshold random variable are exponentially distributed while the service time
is phase type distributed. The service process with interruption can be expressed
as a Markov process 0 with 4 x a states given by {O, I} x {O, I} x {1, 2, ... , a} plus
one absorbing state. The absorbing state denotes a service completion. Let t be
the time until absorption of the process O. The process 0 can be represented by
X(t) = {(i,j,k);i=O,1;j=O,1;k=1,2, ....,a}. Ifi = 0 then the server is in
interrupted state, i = 1 means server busy or idle; if otherwise. If j = 0, then the
threshold exceeded its saturation level and on completion of interruption, service

can repeated alld[ r_esu~led] if j = 1. The[in[fi~J~:imal g[~erator] Of[t~~se :~)es]s JiS

given by o, = ~ ~o where A = ''1Ia -(TJ + 8)Ia 8Ia
[[0] ~Ia] S - -a.
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and ~o [ ~J ]. The probability distribution F(.) of T corresponding to the

initial probability vector ~ is given by F(x) = 1- ~.exp(~x)c,x~ O. It's density
function F' (x) in (0,00) is given by F ' (x) = ~. exp(~x)~o.

The Laplace-Stieltjes transform /(8) of F(.) is given by /(8) = ~.(sI _ ~)~O .
The expected time for service completion E, is given by E; = ~(-~)-le and

-.l.../1s - E.'

The noncentral moments /1} of X are given by /1: = (-1) 1i!(- ~t I e.

2.5. Waiting time distribution

At the time of arrival of a customer we have the following mutually exclusive and
exhaustive cases:
(i) Server is idle.
(ii) Server busy and the phase of service is i, 1 ~ i ~ a; there are (n ~ 0) customers
waiting.
(iii) Server interrupted. The phase of interruption removal process is j, 1 ~ j ~ b;
the phase of the threshold (random clock) is k, 0 ~ k ~ c; there are (n ~ 0)
customers waiting.
(I): In this case the customer is immediately taken for service. The probability for
this event is xoe. In this case the distribution of the amount of time spent by the
customer in the system is his service time; the distribution of this is provided in
theoremstz.I and2·2.2 respectively.
(II): Server busy and there are n customers waiting. Given the phase of service, the
remaining service time is again phase-type distributed. This part may encounter
interruption, in which case the distributions provided in Theorems12.1 andz.2.2 can
be used to get the distribution of the remaining time to be spent by this customer.
This convoluted with a phase type distribution corresponding to the service that
was going on at the arrival epoch of the customer under consideration, convoluted
further with distribution function of the time to be spent by the n customers for
their services and intervening interruptions provides the distribution of the time
spent by a customers before taken for service.
(Ill): Here first we have the phase-type distribution corresponding to the time
until completion of interruption. Then depending on whether the interruption is
completed before the random clock stopped ticking or the other way round, the
service of the customer gets resumed/repeated. Nevertheless, we may need the
number of interruptions encountered by the customer in service. The phase type
distribution arising this way, convoluted with the distribution of time required for
the service completion of the n customers provides the distribution of the time the
customer will have to spend before taken for service.
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In cases (II) and (Ill) distribution of the minimum time is n-fold convolution of
the distribution given in (2.2) convoluted with the distribution of the time un­
til the present customer (interrupted/undergoing service) completes service and
that of the maximum time is the n-fold convolution of the distribution given by
(2.3) convoluted with the distribution of the time until the present customer (in
service/interrupted) completes service. Their expected values give respectively, the
lower and upper bounds for the expected waiting time. In the section providing
numerical illustrations, we throw some light on these also. It may be instructive
to look at the problem in the following perspective. Assume that all distributions
involved are exponential with parameters as described below. Inter arrival times,
service times, inter arrival times of interruption, interruption duration and ran­
dom (threshold) clock are exponentially distributed with rates ,x, J1, I, a, and (3
respectively. Of course, in this case there is no distinction between resumption and
repetition of service and so each interruption results in repetition of service. Thus
a complete service time has the distribution

((Exp(IJ) ~ t)).P(Exp(J1) < Exp(f)) + ((Exp(J1) ~ t)*2 * (Exp(J1) :::; t))).

P{Exp{IJ) > Exp(/)).P(E:rp(IJ) < Exp(f)) + ((Exp(J1) ~ t))*3* ( )
2 2 2.10

(Exp(a) ~ t))* ).P(Exp(IJ) > ExpCi)) .

P{Exp{J1) < ExpCi)) + .

where Exp(x) stands for exponential random variable with parameters x and *n
denotes n-fold convolution of the function with itself. The above series converges
as it is dominated by a converging geometric series. Note that the above expression
does not involve the exponential random variable with parameter (3 corresponding
to the threshold clock for reasons indicated earlier.

Theorem 2.5.1. A necessary and sufficient condition [or this queueing model, with
all under'lying distributions exponential with parameters as indicated above, to be
stable is that ,x. (Expectation oj distribution junction given by (2.10))< 1.

In order to have distinction between repeat and resumption of service, hence­
forth we assume that service time is not exponentially distributed. Any distribution
function for service time other than exponential will serve the purpose.

2.6. Stationary distribution

Since the queueing model under study is an LIQBD process, its stationary distri­
bution (if it exists) has a matrix-geometric solution. Assume that condition for
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system stability is satisfied. Let the stationary vector x of Q be partitioned by the
levels into sub-vectors Xi for i ~ O. Then Xi has the matrix-geometric form

Ri - I f . <, 2
Xi = Xl or z ~

where R is the minimal non-negative solution to the matrix equation

and the vectors xo, Xl are obtained by solving the equations

xoDo+ X1C1 = 0,

xoCo+ Xl (AI + RA2 ) = 0

subject to the normalizing condition

(2.11)

(2.12)

(2.13)

(2.14)

From the above equation, it is clear that to determine x, a key step is the
computation of the rate matrix R.

2.7. Performance Characteristics

Some useful descriptors of the model are listed below.

00

1. Mean number of customers in the system= L nXne = Xl (I - R)-2e
n=l

00

2. Fraction of time the server is busy= L Xn1e
n=l

00

3. Fraction of time the server remains interrupted= L xnoe
n=l

4. Thus the fraction of time the server is idle=xoe

5. Fraction of time service is in interrupted state
00 00

+Fraction of time service is going on= L xnoe + L xnle
n=1 n=l

00

6. The rate at which server break down occurse-y L X n1 e
n=1
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7. The rate at which repair completion (removal of interruption) takes place
00 a b c r

before the threshold is reached ) R}vT = L L L L L Xn,O,i,j,k,1 TjO
n=l i=l j=l k=ll=l

where 'Do is the yth component of TO

8. Rate at which repair completion takes place after the threshold is reached
00 a b r

R'T = L: L:L:L:Xn,O,i,i,O,1 sgj
n=l i=l j=ll=l

00 a r

9. Effective service rate R'T = L L L X n,l,i,1 sf
n=l i=11=1

10. The probability of a customer completing service without any interruption=
P(service time< an exponentially distributed random variable with parameter

00

,) and is given by J (aeTUTO)e--yudu = aCTI ~ S)-l SO

°
11. The probability that a customer encounters at least one interruption during

his service= P(service time> an exponentially distributed random variable
with parameter ,) =1-P(Service time <an exponential random variable with
parameter ,) = 1 - aCTI - S)-1 SO .

12. Probability of m consecutive services with at least one interruption each=
(Probability that a customer encounters at least one interruption during his
service)?' = (1 - aCTI - S)-lSO)m

13. Probability that an interruption completion takes place before the thresh­
old is reached= P(lnterruption random variable>threshold random variable)
=Phase type distribution with representation (/3, L) of order be+b+ e where

[

T®I+I®U I®U
o

TO®l]
/3 = [{1 ® 8,8c+ 1{1, {1b+18] and L = 0 T 0

o 0 U

14. Probability that an interruption completion takes place after the threshold is
reached= P(interruption random variable<threshold random variablej e Phase
type distribution with representation [{1 ® 6,T ® I + I ® U]

2.8. Numerical Examples

In order to illustrate the performance of the system, we present some numerical

1 L D [
- 6.5 0.25] D [6.0 0.25] S [-12.0 6.0 ]

resu ts. et (J = 0.25 -0.75 ' 1 = 0.25 0.25 ' = 6.0 -12.0 '
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T = [-12.0
3.0

uO = [ ::~ ].

3.0 ], U = [-12.0 8.0 ] So =
-12.0 8.0 -12.0 [6.0] TO

6.0 ' [
9.0 ]
9.0 '

When , is progressively decreased and comes closer and closer to zero, our
model converges to classical queueing problem without interruption. Thus the
ratio g~~: converges to the traffic intensity p of the classical case when, tend to O.
This is illustrated in Table 1. In this IT is the stationary vector of the infinitesimal
generator A = Ao+ Al + A2 .

Table 1:

Let Nm ean = Mean number of customers in the system.
18 ,

••
,.
'2

10

Nmelll

Fig. 2.1: Gamma versus Mean Number of Customers in the system

To investigate the effect of, on the idle and busy time of the server we introduce
the following notations, Fid1e= Fraction of time the server is idle, Fin t = Fraction of
time server is interrupted and ~dle+1m8Y= Fraction of time server idle+ Fraction of
time server busy. Thus we have results given in

Also introduce the notations RBD= Rate at which server breakdown occurs and
E sn= Effective service rate.

We notice from figure 2.1 that the average number of customers increases with
increase in the interruption rate; of course this is as expected. Also when interrup­
tion duration exceeds threshold, the customer need to get its service repeated. Since
the arrival rate is constant, the number of customers increases with increase in the
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Fig. 2.2: Gamma versus Fint' Fidle, Fidle+busy

30_.'0 --,- __

E_

1St
I

'0

,-

0.' 1.' 2~

Gamma

•.s

Fig. 2.3: Gamma versus Rate at which server breakdown occurs and Effective
service rate

interruption rate. Since no reneging takes place, each customers has to wait for his
turn of service. In fig.2.2, we see that fraction of time server is idle decreases with
increase in the interruption rate and fraction of time server is interrupted increases
with increase in the interruption rate. fig.2.3 shows that rate of server breakdown
and effective service rate increase with increase in the interruption rate.
Next we define a busy period as the length of time starting with an arrival to an
ideal system, until the server becomes free for the first time (no customer left).
Then with T increasing the expected length of busy period should increase. This
is demonstrated in fig. 2.3. The calculations are based on the expressions for first
passage time as obtained in section 5.
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Fig. 2.4: Gamma versus expected total cost

2.9. Cost Function

To construct a cost function we assume that interruption produces higher revenue
to the system. For example server may be assigned to serve a high priority customer
leading to increased income to the system. Let the per unit time revenue on this
be Cl. However there is associated holding cost of the customer whose service got
interrupted and also that of the remaining customers waiting in line. The holding
cost (C3 ) of customer whose service got interrupted can be taken to be higher than
that for those waiting in the queue (C2 ) . Hence here we assume that the holding
cost of interrupted customer is greater than those waiting in the queue. Idle time
also involves an expenditure to the system. \Ve denote by C4 the cost per unit time
of server remaining idle. Thus we introduce the per unit time cost as follows:
Cl =Revenue per unit time interruption, C2 =Holding cost of the customer waiting
in the queue, C3=Holding cost of the customer interrupted and C4=Cost(expense)

when the server is idle. Total Expected Cost=-(Fraction of time interrupted) Cl+
(Mean number of customers in the system)C2+ (Fraction of time interrupted)C3+
(Fraction of time server idle)C4 • 'We fix C2 = $ 50, C3 = $ 75 and C4 = $ 25. It
is seen from fig.2.4 that the total expected cost decreases first and then increases
with increasing / for sufficiently large values of Cl' In the case of moderately large
values of Cl, the expected total cost shows an increasing trend with 'Y .

Model 11: Queue with Finite Number of Interruptions
So far we have permitted any number of interruptions to befall during the service of
a customer in this section we restrict this to a finite number . The arrival process,
interruption process, phase of service, phase of interruption time, threshold phase
are all following the same distributions as in model I. Let N be the maximum
number of interruptions encountered by a customer in service.
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The service time, interruption time and the threshold random variables are
all mutually independent PH-distributed with representations (a,S), (f3,T), (O,U)
and of orders a.b,c respectively. Write So = -S~, TO = -Tf;; and UO = -U~

where f;; is a column vector of l 's of appropriate order and B1(t ), B2(t ) are
the random variable corresponding to number of interruptions and number of
occasions in which duration of interruption exceeds threshold random variable.
All other variables have same meaning as described in model I. Let X(t) =

(N(t), Set),B1(t), B2(t), SI(t), S2(t),Ss(t), M(t)); then {X (t) : t ~ a} forms a con­
tinuous time Markov chain (CTMC) with state space whose nth level is given by
£(n)=U Wen, /), 1= 0, 1. The subsets of Wen, I) are defined as {(n, 0, is.i«. ill i2 , is, i4 )

I

;0 ~ jl ~ N - 1,°~ 12 ~ J1 , 1 ~ i 1 ~ a, 1 ~ i 2 ~ b, 0 ~ is ~ c, 1 ~ i 4 ~ r}, and
{(n, 1,ii. j2, 'il, i4);0 ~ i, ~ N, 0 ~ j2 ~ Ji, 1 ~ i 1 ~ a, 1 ~ i 4 ~ or}.

Note that when N(t) = 0, the only other component in the state vector is
M(t). Also when Set) = 1, the last two components in the state vector stand
for the phases of service time and arrival process respectively. Note that by the
assumptions made above the CTMC {X(t),t ~ O} is a level independent quasi­
birth (LIQBD) and death process with infinitesimal generator matrix Q

Do Co 0 0
Cl Al Ao 0 0

Q= 0 A2 Al Ao 0
(2.15)

0 0 A2 Al Ao
0 0 0

In the above boundary matrices Do, Co and Cl have different dimensions and
these are further different from those of Aa, Al and A2 . First we shall describe
the matrices Aa, Al and A 2 appearing in the repeating part. la 18' L, 18' l(c+I) 18'
IN(N+l)/2 18' D 1 and la 18' I(N+l)(N+2)/2 18' DJ records transitions to Wen + 1,0) ,
Wen + 1, I) from wen, 0) and wen, I). All other components are zero matrices. Here
la 18' t, ® I(c+l) 18' IN(N+l)/2 ® D I and la ® I(N+l)(N+2)j2 181 o, are square matrices
corresponding to arrival of customers to the system when the system is in inter­
rupted and busy state of the server, respectively. Obviously Aa is a square matrix
of order ab(c + l)rN(N + 1)/2+ar(N + l)(N + 2)/2.

Similarly A2 corresponds to departure of a customer after completing the ser­
vice. Before completion of service there may be a number of interruptions. The
only non zero element in A2 is the transition to wen - 1,1) starting from W(n, 1)

and is the matrix [e(N+l)(N+2j/2 ® SOa ® In [OJ] . Since there cannot be a departure

while remaining in interruption state and with transition from interruption state to
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busy state, such positions are represented by zero block matrices. The block matrix
Az is square matrix of order ab(c+ l)rN(N + 1)/2+ar x (N + 1) x (N + 2)/2.

Now we discuss the matrix Al which records transitions in W(n,.) starting from
Wen, .). The components in Al are FI , F2 , F3 , F4 corresponds to transition from
W(n,O) to W(n,O), W(n,O) to W(n,l), W(n,l) to W(n,O) and W(n,l) to W(n,l)
respectively.

Here continuing in the interruption state is represented by the matrix F I and is
of order ab(c+ l)rN x (N + 1)/2, where only transitions due to interruption and
threshold phase changes occur. We have F I = IN(N+I)/2 ® la ® H, H = Cl ffi C 2 ,

Cl = T e IC+ll C2 = F EB Do and F = [~o ~] where F is square matrix

of order (c + 1) having 0's in the first row and entries of UO in the first col­
umn, starting with the second element and the remaining part occupied by ma­
trix U. F2 in Al is of order ab(c+ l)rK(K + 1)/2 x ar(N + l)(N + 2)/2 and

isF2 = [(OJ diag(FJi-I,i»)]; 1 ~ i ~ N; wherediag(FJi-l,i») isadiag-

onal matrix whose i t h diagonal element is FJi-1,i), which lists the transition to
111 (n, 1) starting from W(n, 0) on completion of interruption. Here the matrix
FJO,l) = (FJ~,I), FJ~,l)j represents transition from interruption state to busy state
on completion of the first interruption. In that, matrices FJ~,1) , FJg,J) corre­
sponding to first interruption completion takes place before threshold is reached
and after threshold is reached respectively. Here FJ~,l) = (Bm, Boz, ......... , Boa)'
where B oj = TO ® [0, ej, ej, .....,ejj' ® la and ej is a row vector of appropriate order

. I Li h ·th I d I I 17(0,1) - [B' B ' B ' j' 'hWIt 1 III t e J p ace an zero e sew iere. rZ2 - 01' OZ' , Oa were

B ' - TO [- 0- 0- O-j' I H h . p,((i-I),i) - di [ (0,1) (0,1)]oj - ® a, , , ..... , ® a' ere t e matrix 2. - uu; F2 1 FZ2

is a diagonal matrix of order i whose diagonal element is [FJ~,I) FJ~,l)]. F3 ap­

pearing in Al records the transition to W(n,O) starting from Wen, 1) is the matrix
I(N+1)(N+2)/2 ® ,lb 0/3 ® J ® la where J = (0,8).

F4 lists transitions in W(n, 1) starting from \l1 (n, 1) . Since there is bound on
number of interruptions (N), no interruption during the service of the customer who
has already N interruptions. The matrix F4 is given by F4 = IN(N+1)/2 ® [8 EEl Do ­

,Iar , 8 EB Do]' Now we consider the boundary blocks Do, Co and Cl in the infinitesi-

[
[0] 1

mal generator Q. Here Co = [[0]01, [a 0 Dd, [0]02] and Cl = to. 80 to. I j
e(N+1)(N+zl/2'C>1 '0' a

The matrices [0]01 and [0]02 are matrices of dimensions 1" x (N(N + 1)abcr)/2 and
r x ((N + l)(N + 2)abcr)/2, r x ((N2 + 3N + 1)ar)/2 respectively. In Do, entries
correspond to server remaining idle and transitions occur only in the arrival phase
without triggering an arrival. Co corresponds to transitions with arrival and Cl



2.10. Stationary distribution

those resulting in departure of customer leading behind none in the system.
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2.10. Stationary distribution

Since the model is studied as an LIQBD process, its stationary distribution (if it
exists) has a matrix-geometric solution. Assume that condition (*) is satisfied. Let
the stationary vector 1r of Q be partitioned by the levels into sub-vectors n, for
i ~ O. Then 1ri has the matrix-geometric form.

Ri - I f . <; 21ri = 1rj or i ~

where R is the minimal non-negative solution to the matrix equation

and the vectors 1ro, 1rI are obtained by solving the equations

1roDo + 7l"ICl = 0,
1roGo+1rl(Al + RA 2 ) = 0

subject to the normalizing condition

(2.16)

(2.17)

(2.18)

(2.19)

From the above equation, it is clear that to determine 7l", a key step is the compu­
tation of the rate matrix R.

2.11. Analysis of Service Process

Expected Service Time

The Markov Process is X(t) = {B(i),S(i),S3(t),SI(t)} . Here B(t) denotes
the number of interruptions already encountered by the customer in service, S(t)
corresponds to state of the server, S3(t) is the phase of threshold random variable
and SI (t) corresponds to phase of service at time t. The X be the time until
absorption of the process X(t). The state of the process can be represented by
X(t) = {(n,i,},k) : i = 0,1;} = 0,1;1 ~ k ~ a}. (a) If i = 0 the system
is interrupted and 1 otherwise. (b) If i = 0 then the number of interruptions
n = 0,1, .... , N - 1, including the present one. (c) If i = 0 then the value of j = 0
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or 1 which corresponds to threshold random variable. The saturation of thresh­
old is indicated by j = 0 and non saturation by j = 1. (d) The service time is
phase type distributed with representation {(X, 5) of order a. The service phases
are 1,2,... .a and one absorbing state.

The in[fi;~~els:a[1~EFat:r(;i~l:i)s:.r]oces[s[~J gi;:~lb: [ (J(~! a) ~ ] ]

Ll- and Llo -
- [ IN-l ® [[OJ ,la)] [ IN - l @ (5 -,la) [OJ -

~ ~ 5

[ e ~150 ] where e is a column vector of l's of order N + 1. Here Q = [t ~O]
and the initial probability vector of Q is given by ~ = (0.0', ex, 0). The probability
distribution F(.) of X corresponding to the initial probability vector ~ is given by
F(x) = 1 - ~.exp(6.x)e,x ~ O. Its density function F'(x) in (O,oo) is given by
F'(x) = ~.exp(6.x)6.°. The Laplace-Stieltjes transform /(8) of F(.) is given by
/(s) = ~.(sl - 6.)600 .

The expected time for service completion E; is given by E; = ~(-6.)-le and
fts = ~.' The noncentral moments ft~ of X are given by 11: = (-l)ii!( -6o)-le. In
order that the system is stable the number of arrivals during the effective service
time of a customer should be less than one. The we have

Theorem 2.11.1. The system is stable iff .A < fts.

2.12. Expected number of Interruptions

To calculate the expected number of interruptions during a single service, we con­
sider the Markov process X(t) = (N(t), 5(t), S3(t), Sl(t)) where N(t) is the number
of completed interruptions, S(t) = 0 or 1, corresponding to interrupted service or
not, and S3(t) is the phase of threshold random variable and SI(t), phase of ser­
vice time. Here interruption time, threshold random variable are exponentially dis­
tributed with rates 6, .,., and service time is phase type distributed and of representa­
tion (a, S). X(t) has the state space {t:,}U{O, 1,2, ..... } x {O, 1}x {O, I} x {1, 2, ... , a}
where t:, is an absorbing state which denotes the service completion. The infinites­
imal generator matrix is

00000
Bo Co CIaO
A2 0 Al Ao 0
A2 0 0 Ai AoQ= A2 0 0 0 Al Ao
o
o
o
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where Bo = So, Co = S - ,la, Cl = [110. [0]].

[
0 ] [ ( -5(e @ a) [0] )

The matrix A, = kl ,A, ~ ~1. [Ol-(~ j 0)1.

[
[0] [0]]

and Ao = ,la [0] .
Let Pi be the probability that an absorbtion occurs with exactly i interruptions,
the Po = a(-ColBo) and Pi = a(-ColBo)(AI I AO)i-l(-AllA2 ) , i = 1,2,3, .......
Expected number of interruption before absorption is
E = ((1 - (-AI lA

o))(l- N)(-AIlAo)N + (-A1IA
o)(1 - (-AIIAo))N-l)

(I - (-AllAo))-le.

2.13. Expected Waiting Time

To find the expected waiting time of a customer who joined in the queue, we tag
the customer by giving his token number as r, Now we consider the Markov process
X(t) = (N(t), S(t), B(t), S3(t),SI(t) where N(t) denotes the rank of the customer,
S(t) the state of the system, B(t) corresponds to number of customers, S3 that of
threshold random variable and SI(t) the service phase. The value of N(t) is r if he
joins as the kt h customer in the queue. N(t) reduces to 1 if the customers ahead of
him leave the system after completing their service. If S(t) = 0, state space of X(t)
asX(t) = {k, k - 1, k - 2, .......3,2, I} x{O, 1,2, ....., N -l}x {O, l}x {I, 2, a} and
ifS(t) = 1, then it is {k,k-1,k-2, .......3,2,1} x {O,1,2, ..... ,N} x {1,2, ,a}.
Also there is one absorbing state which denotes the tagged customer is selected
for service. Thus the infinitesimal generator Qof the process X(t) takes the form

Al A2 0 0 0 0
o Ai A2 0 0 0
o 0 Al A2 0 0

Q = [6 ~o] where U

o
o
o
o
o
o
o

eN+l ® SO

o 0 0 0 Al A 2 0 0
o 0 0 0 0 Al A2 °
o 0 0 0 0 0 0 Al

and Uo
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[[~ ~] ]
and A2 = [0] I

N
+

1
0 SO ® 0: .

Expected waiting time of a customer who joins the queue as r t h customer =
-A11(I - (A2A1

1Y )(I - A2Ad-
1

2.14. Performance Characteristics

Some useful general descriptors of our model arc listed below.

00

1. Mean number of customers in the system= L U7rne = 7r1(1- R)-2 e
n=l

00

2. Fraction of time the server is busy= L 7rn1e
n=l

00

3. Fraction of time the server remains interrupted= L 1rnoe
n=l

4. Thus the fraction of time the server is idle=7roe

5. Fraction of time service is in interrupted state
00 00

-l-Fraction of time service is going on= L 7rnoe + L 1rn1e
n=l n=l

00

6. The rate at which server break down occurs--v L 7rnle
n=1

7. The rate at which repair completion (removal of interruption) takes place be-
00 N XI a b c r

fore the threshold is reached) R5vT = L L L L L L L 1rn,O,XI ,x2,i,j,k,1 Tl
n=l xI=l x2=1 i=l j=l k=ll=l

where s8i is the i'" component of TJ

8. Rate at which repair completion takes place after the threshold is reached
00 N Xl a b r

Rf = L: L L: L: L: L: 1rn ,O,X l ,X2,i ,i ,O,1Tl
n=1 xI=1 x2=1 i=1 j=11=1

00 N XI a r

9. Effective service rate Rf = L E L: E E 7rn ,l ,x I ,X2,i,l 8~J
n=1 XI=Ox2=Oi=11=1

10. The probability of a customer completing service without any interruption=
P(service time < an exponentially distributed random variable with param-

00

eter -y) is given by J(o:eTUTO)e-'"Yudu = ab! - 8)-1 SO
o
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2.15. Numerical Results

To illustrate numerically we fix the following values:

N 3 2 b 2 2 2 D [
- 6.5 0.25] D [6.0 0.25]= , a= , = ,c= ,r= ; 0 = 0.25 0.75 ' 1 = 0.25 0.25 '

S = [-12.0 6.0 ] , T = [-12.0 3.0 ], U = [-12.0 8.0 ],
6.0 -12.0 3.0 -12.0 8.0 -12.0

SO = [6.0 6.0 J', TO = [9.0 9.0 r, UO= [4.0 4.0 r. a = [0.4 0.6],
{3 = [0.3 0.7 J, <5 = [0.5 0.5].

0--·......... ·,--
• I

Fig. 2.5: Gamma versus Mean Number of Customers in the System.
This shows that the mean number of customers in the system increases with

increasing interruption rate, at a nonlinear rate.

0.4;

.._._-----'- ----, .

'------,

e ,

Fig. 2.6: Gamma versus Fraction of Time the Server is Interrupted.

From this figure we learn that the fraction of time the server is interrupted in­
creases with increasing interruption rate. From the figure 2.7 we get a clear picture
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U5,-----

om---­
e

Fig. 2.7: Gamma versus Fraction of Time the Server is Idle.

about the idle time. The idle time decreases with increasing rate of interruption
This figure 2.8 points to the fact that effective service rate decreases with increasing

Fig. 2.8: Gamma versus effective service rate.

interruption rate.

Increase in the values of I results in increase in breakdown. This is verified in
the figure 2.9. Note that, though the relationship between the two is linear, the
constant of proportionality is less than one service we are at type I counter like
situation.
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Fig. 2.9: Gamma versus Fraction of time the Server breakdown occurs.
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v

o s.:""~"'S.:at:r'lg"J:.d.,

o Inlto-<>t>li~.. 'I..:<l~

o 5c.....,~o.::",""lchQn"l"dc

Fig. 2.10: Tree structure of the model

2.16. Cost Function

2.16.1 Cost function I: Here we take into account cost in­
volved with events such as Interruption, Non-interruption,
Repeat and Resumption

In this model interruption can occur at any time during a service. Here we can
consider interruption as the server disconnecting current service temporarily and
to take up better assignment which gives higher income. Every interruption results
in repeat/resumption of service. Tree structure of the model is shown in 2.10.



Chapter 2. On a Queue With Interruptions and Repeat or Resumption of
40 service

Ol-or-
o I so""'oeom_

o I seMce Interruption

Fig. 2.11: Tree structure of the model

Repeat/resumption of service just after interruption results in an additional cost
to the server. We label the variables in the following way: Pi be the probability
of the occurrence of i th interruption. C, be the additional benefit due to i th

interruption and C; that of non interruption. Ti be the probability of repetition of
service just after it h interruption and 1 - 'f'i that of resumption of service. R; be
the cost incurred to the system due to repeat of service just after i th interruption
and 9i that of resumption.

If a customer completes his service without any interruption then Expected rev­
enue at that stage=(l - Pl )C~. If customer completes service after 1st interruption,
then Expected revenue at that stage=2pl C1 + (1 - '1'1)91 + r1Rl + 2(1 - P2)C; If
customer completing service after 2n d interruption, then Expected revenue at that

2 2 2

stage=22 L PiCi+2 L (1 - ri)Yi + L r.R; + 22(1 - P3)C;, Continuing like this if a
i=1 i=1 i=1

customer completing service after Nth interruption,
N N N

then Expected revenue at that stage=2N E PiCi+2N-l E (1 - ri)9i + E 'f'iRi +
i=l i=l i=1

2N(1 - PN+1)C~+l'

2.16.2 C051: Function 11: A Decision process, namely, de­
cide to interrupt or not to interrupt a service at the
epoch at which interruption occurs.

The model is explained using the tree structure in 2.11.
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We find the minimum 'cost/maximum revenue function by dynamic program­
ming approach. Consider a dynamic system which is reviewed at the end of each
interruption i, i=O,l, ,N. At each review the system is classified into one of the
possible number of stages and subsequently a decision has to be made. The set
of possible stages is denoted by 6. For each stage j E n, a set n(j) of decisions
or actions is given. The set 6 and the action sets nu) are assumed to be finite.
The economic consequences of the decisions taken at the review times (decision
epochs) are reflected in costs. This controlled dynamic system is called a discrete­
time Markov decision model when the following Markovian property is satisfied.
If at a decision epoch the action action n(j) = {interruptions, noninterruptios}
is chosen in state i, then regardless of the past history of the system, the follow-
ing happens. Here stage space is 1,2, , N E 6 and action sets n(j) =
{interruptions, noninterruptios}.

Let pi be the probability that an interruption occur after (i - 1)th interruption
and 1 - pi that of no interruption. i.c be the cost due to i th interruption and zero
that of no interruption. l be the additional benefit due to an interruption (inter­
ruption here considered as leaving the current customer in service temporarily and
serving another customer for higher income).

Total return up to state 1 = p(l - c).
Total return up to state 2 = p2(l - 2c}+ p(l - c)
Continuing like this total return up to state N is
F(N) = lp (l_pN) _ cp (l_pN + P(I-NpN-1+(N-l}pNl)

l-p l-p (1-p}2

Optimal N is given by second derivative test in calculus and optimal value of N is
l+~

2c



Chapter 3

On a Queue with Interruptions
Controlled by a Super Clock and
Maximum number of
Interruptions

In this chapter we study an infinite capacity queueing system with single server.
Two models are discussed. The general features are first indicated. A customer on
arrival to an idle system immediately joins service. Arrival of customers constitute
MAP. Each service may be subjected to interruption involving a maximum of N
interruptions. Interruptions occur according to a Poisson process of rate 'Y and
duration of each interruption is PH distributed. Repeat / resumption of interrupted
customers service is decided by a comparison between duration of interruption and
a threshold random variable which is also PH distributed. 'When the duration of
interruption exceeds the threshold random variable the interrupted customer gets
its service repeated on completion of interruption; otherwise it is resumed after the
interruption is removed. During service period of a customer if the total duration
of interruption exceeds a super threshold (also PH distributed) or total number of
interruptions encountered by that customer reaches its peak (N), whichever occurs
first, no further interruption is permitted. ie from that point on, the customer
completes its service without any further interruption. Now we turn to the two
specific models; In model I, it is assumed that with the realization of the super-

Some results of this chapter are included in the following papers: A. Krishnamoorthy, P.K.
Pramod, and S.R. Chakravarthy, A note on characterizing interruptions with phase type distri­
bution, European Journal of Operations Research (communicated),2009
It was also given as Invited talk by Krishamoothy, A, to the special session on Matrix Analytic
Methods of INFORMS Applied Probability Conference, Cornel University, Ithaca, USA, July
2009.
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clock, the interruption is removed. Instead the present interruption is allowed to
continue; no further interruption is permitted. However in model I I, immediately
on realization of the super-clock, the current interruption is removed. Long run
system state distribution is obtained under stable regime. Several performance
measures are evaluated. Numerical illustrations of the system behavior in both
cases are also provided. An optimization problem is numerically analyzed.

3.1. Model Description

As in the previous chapter, we assume here also that the process of interruption
follows the type-I counter and bound on maximum number of interruptions. In ad­
dition to this upper bound on the number of interruptions, we bring in super-clock.
The random/threshold clock and the duration of interruption of chapter 2 remain
intact here also. The super-clock has a great role to play here. The two models
considered here reveal the role of the super-clock. The process of interruption that
befalls the customer in service is controlled as following. No further interruption
is permitted to befall on the customer in service in case either the super-clock is
realized or the maximum number of interruptions permitted is arrived at. In model
I, we allow the current interruption to continue even if the super-clock is realized.
In model 2, however, we insist that the interruption is removed the moment the
super-clock is realized. The effects of these distinct assumptions on the perfor­
mance of the system are quite revealing. More on super-clock and the models will
be stated in the sequel.

In this section, we describe the queue with a single server subject to interrup­
tions, has in addition to all components a classical queue, two random clocks. We
call the first one the threshold clock as in the previous chapter, and the second,
a super clock. The competition between interruption time and threshold clock
decides whether to repeat/ resume the interrupted service. In case the interrup­
tion time exceeding threshold random variable then, on completion of interruption
the interrupted service is repeated; otherwise it is resumed. The super threshold
random variable acts like a control on the duration of interruptions. The super
clock is set at position zero at the time a new service starts. The moment the
first interruption strikes this starts to tick until the interruption is removed or the
random variable describing the super clock is realized, whichever occurs first. The
same customer is not subject to any further interruption in case the super clock
is realized first. Else it can be interrupted, in which case the super clock starts
from where it stopped ticking at the conclusion of the previous interruption of
the present customer in service. The competition between interruption time and
threshold random variable decides the repeat/ resumption of the interrupted ser-
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vice. When interruption time exceeds threshold random variable, on completion
of interruption, interrupted service is repeated; otherwise it is resumed. No more
interruption takes place once the super clock reaches saturation point. Also the
number of interruption reaches its maximum level, no more interruption is allowed.
The detailed discussion of the two Queueing Model follows:
The Arrival and service processes are described as in chapter n. The arrival of cus­
tomers to the queue is modelled by MAP with r phases represented by (Do, D l ) , Do
and D, are square matrices of order r. The matrix Do has strictly negative diagonal
entries and non negative off diagonal entries, and is invertible. Also (Do+Dde = 0
where e is a column vector of appropriate order. The Service Process the absence
of interruption service times of customers are independent phase type distributed
with representation (a, S). Then it has probability density function aexs So and
mean service time is a( -S)-le. When the server is interrupted the service phase,
where interruption occurred, is recorded. Since the convolution of two phase type
distribution is again phase type, the total service time of a particular customer is
also phase type distributed.

The status of the server is designated by Set) which takes 0 or 1 depending
on whether server is in interrupted state or in busy mode, respectively. Here we
specify once again the rules governing the interruption and the service after inter­
ruption. The components of interruption are: the interruption process, a threshold
clock, a super clock, the maximum number of interruptions a customer may en­
counter during its service and the duration of an interruption.(a) The threshold
clock and the service, on completion of interruption, are as described in chapter
2. The threshold random variable is PH distributed with representation (8, U) .(b)
The super clock acts like another threshold which is also called super threshold
random variable, decides, in model II and partially in model I, the maximum time
a customer can be interrupted . If super clock reaches its saturation point, then
no more interruption takes place to the customer in service and interrupted cus­
tomer completes its service on completion of present interruption (model 1). The
duration of the super-clock is a random variable which is PH distributed and hav­
ing representation (ry, L). (c) The onset of interruption forms a Poisson process
with rate {. (d) Duration of interruption is governed by a phase type distributed
random variable.

Remarks:
At the strike of the first interruption to a customers service, threshold clock and
super threshold starts ticking. The repeat or resumption of service on completion
of current interruption is decided by the current status of interruption time and
threshold clock. When interruption time exceeds threshold random variable the
customer repeats its service else it is resumed. The super-clock ticking stopped at
the instant interruption is removed. Nevertheless, at the next interruption epoch,
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to the same customer, the super-clock starts ticking from where it stopped on com­
pletion of the previous interruption. Only either on its realization or the present
customer leaving the system, the super-clock is set to zero. 'When super thresh­
old random variable reaches its saturation level no more interruption allowed and
the customer who is serving complete its service with out any interruption. If the
number of interruption reaches its maximum level N, then no more interruption
is allowed during the remaining service of the present customer. The minimum of
these two, whichever occurs first gives the red signal for the interruption.

3.2. Model I

Let N(t), Set), B](tL Sl(t), S2(t), S3(t), S4(t) and M(t) denote the number of cus­
tomers in the system, state of the server, the number of interruptions, the phase of
the super clock, the service phase, the interruption phase, the phase of the threshold
and the arrival phase, respectively. The process 0 = {(N] (t), Set),SI(t), S2(t), S3(t)
S4(t),M(t)), t ~ O}; is a continuous time Markov chain (CTMC) which turns out
to be LIQBD with nth level given by e(n)=U W(n,l), l = 0,1. The subsets of

I
lJt(n, l) are defined as {(n, 0,)], it, i2, 'i3 , i4, i5 ) ; 0 « i, ~ N - 1, 0 ~ i] ~ d, 1 ~ i2 ~
a,l ~ i3 ~ b,O ~ i 4 ~ e,l ~ i5 ~ r}, {(n,l,0,i2,i4);1 ~ i2 ~o.,l ~ i4 ~ T}
and {(n,1,)],i},i2 , i4 ); O ~)1 ~ N,D ~ i] ~ d,l ~ i 2 ~ a,l ~ i4 ~ r}. The
random variable B(t) counts the number of interruptions excluding the current
one if S(t)=O and the completed number of interruption if S(t)=l. The threshold
clock is set to zero position on completion of each interruption and start ticking at
the beginning of a new interruption. The super clock counts the total interruption
time (not completely,since the last interruption continues even the super clock is
saturated) of a particular customer. The states in Ware listed in lexicographical
order. We now describe the infinitesimal generator Q of this CTMC. Note that
by the assumptions made above theCTMC {X(t), t ~ O} is a level independent
quasi-birth and death process (LIQBD).

We have
Do Co 0 0 0 0 0
C] Al Ao 0 0 0 0

Q= 0 A2 A] Ao 0 0 0 (3.1)
0 0 A2 A] Ao 0 0

The matrix Ao describes the arrival of customers to the system. The only non­
zero elements in Ao are I N(d+l)ab(c+l) Q9 D] and I(N(d+l)+])o.® D 1 which record the
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transition rates to Wen + 1,0), Wen + 1,1) starting from W(n,O) and W(n,l), re­
spectively. The matrix A2 records transition rates corresponds to departure of
customer after completing the service. The only non zero block matrix in A2 is
[A~ll [0]] which represents the transition from busy state to itself. The matrix

A~ll = e(N(d+l)+ll ® (SO ® Q ® I r ) records transition rates in Wen - 1,1) starting
from Wen, 1). Since there is no departure in other transitions, they are listed as
zero matrices.

Now we describe the matrix Al which records transaction within W(n,.) from
'lI(n, .). The components in Al are All, A12 , A13 , A 14 which record transitions
from \.lI(n, 0) to \.lI(n, 0); W(n,O) to Wen, 1); 'lI(n, 1) to 'lI(n, 0) ; 'lI(n, 1) to Wen, 1),
respectively. The matrix IN ® H 3 records transactions in W(n,O) starting from
'lI(n, 0) where H3 = G4 EB ~ , and HI = G2 EB G l . Here the matrix
Cl = FI EB Do, G2 = T ® J (c+ll' and G4 = F2 ® Iab(c+l) where

Fl = [~o ~] and F2 = [20 ~]. The matrix A 12 = [[0] IN ® la ® B ]

lists the rate correspond to repeat/ resumption of service on completion of inter­

ruption with B = [Bu , B12 , ..... , BIb] and B l j = TO ® [a, e, e, .....e( ® L: A 13 =

[[0] diag[AW,Agl] where diag[AW, Agl] is a diagonal matrix with diagonal el-

ements A~~ and Ai~ which represent transitions corresponding to busy state to

interruption state; A~~ = ,la ® fj ® {3 ® '6 ® t, and A~~ = IN - l 0, [[0] Id]' ®

la ®(3 05 0Ir. Since the saturation of super threshold clock just after interruption
is impossible, it is represented by the zero block matrix.

Now turning to Al 4 : we have A14 = diag [A~~ A~~ Ai~] the elements

A~~l , A~~ and A?2 which record transitions from W(n,l) to itself. The matri­

ces Ai~, A~~, A~~ records transitions in W(n, 1) which correspond to service of a
customer whose is not interrupted so far; i times interrupted, 1 ~ i ~ N - 1
and and N times interrupted, respectively with Ai~) = S EB Do - ,Iar , Ai~l =

d,tag [ S EB Do, Id 0 S EB Do-,Iar ] . The matrix Ai~ = Id+10 [S EB Do]. The ma­

trix Al 4 corresponds to transitions when the server is busy. Ai~ denotes transition
in busy state when super threshold reaches its saturation level. When super thresh­
old is saturated we make sure that no further interruption occurs. The matrix A~~

corresponds to transitions when super threshold is not saturated. A~~ describes
transition rates in busy state when the number of interruption has reached maxi­
mum level.
The matrices Do, Co and Cl are, respectively the transitions from level 0 to 0; level 0

to 1 and level 1 to 0 where Co = [[0] Q ® o, [0]] and Cl = [ [0] (S(O) I] .
e(N(d+l)+1) ® ® r
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Now we turn to the analysis of Model I. Here a customer in service without be
subject to further interruptions on realization OIl the super-clock/maximum number
of interruptions which one occurs first. However the present interruption is allowed
to be continued even on realization of the super-clock. First we analyze the service
time of a customer . By this we mean, the time duration starting with admission
to service counter up to leaving the system on completion of service. Thus this
includes the intervening interruptions and consequent repeat/resumption of service.

3.3. Description of the phase type distribution
for the services

The focus of this section is to describe the time it takes to process a job once it enters
into the service facility. We assume that the service times are of phase type with
representation given by (et, S) of order a. The services are subject to interruptions
and the interruption process is assumed to follow a Poisson process with rate f.

When the current service is interrupted for the first time three clocks, referred to a."
(a) super clock, (b) interruption clock, and (c) threshold clock, will simultaneously
be started. The durations of these clocks are of phase type with representations
given by, respectively, (71,L) of order d, ({3,T) of order b, and (6,U) of order c.
Once the interruption clock expires the service of the interrupted job will begin
again. The service will resume (from the phase where the service got interrupted)
or repeat (like a new service) depending on whether the interrupted clock expired
before the threshold clock or not. This is irrespective of whether the super-clock
expired or not. However, if the super-clock expired before the interruption clock,
then the service of the current job will not be interrupted anymore once the service
begins again for this job. On the other hand, if the interruption clock expires
before the super clock, the phase of the super-clock will be frozen and will resume
from this phase should there be an another interruption for the existing job. For
the job under service, the number of interruptions will be tracked and when this
number attains a pre-specified threshold value, N < 00, no further interruptions
are allowed. Thus, the super clock will play no role (assuming it is not yet expired)
from the moment when the service begins for the current job from the (N - l)fh
interruption.

Note that a phase type distribution is defined as the time until absorption in a
finite state irreducible Markov chain with one absorbing state. For details on PH
distributions and their properties, we refer the reader to [25].

Let X denote the duration of the effective service for a job. That is, X is the
time between the arrival of a job to the service facility until it leaves the facility
with a service. Note that this service time may po~sibly have i, 0 :::; i :::; N
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interruptions, and each interruption may cause the service to either resume from
where it got interrupted or repeat from the beginning. Thus, we refer to X as the
effective service time to distinguish this from the service time given by (a, S). Note
that when I = 0 (that is, when there are no interruptions) then the effective service
time is same as the service time. We will show that X follows a PH-distribution.
Towards this end, we first define J1(t), J2(t), J3(t), J4(t), and J5(t), respectively, to
be the number of interruptions seen by the current job in service, the phase of the
super clock, the phase of the current service, the phase of the interruption clock,
and the phase of the threshold clock, at time t. Note that some of these phases
will be frozen or not defined. For example, when the service is going on, the phases
of interruption clock and the threshold clock will not be defined as they are not
turned on, and the super clock may not be defined or when defined it will be frozen.
Let * denote the absorbing state that corresponds to the completion of the current
service.

The states and their description are given in Table 1 below. For use in sequel,
we now define sets of states as follows.

• i' = {(i*,j2) : 1 ~ j2 ~ a}, for 1 ~ i: ~ N - 1

• 0 = {(O, j2) : 1 ~ 12 ~ a}

• i= {(i,]2,]3): 1 ~]2 ~ a,l ~j3 ~ b}, for 1 ~ i ~ N-1

, , A

• i = {(i,j2,j3,j4) : 1 ~ j2 ~ a, 1 ~ j3 ~ b, 1 ~ j4 ~ cl, for 1 ~ i ~ N - 1

- -
."2 = i.O"jl,j2,j3,)4): 1 ~ jl ~ d,l ~)2 ~ a,l ~)3 ~ b,l ~)4 ~ cl, for

1~1~N-l

• N= {(N,h): 1 ~j2 ~ a}

- -

• N= {(N, j2, ]3) : 1 ~ j2 ~ a, 1 ~ ]3 ~ b}
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Table 1: The states and their description
States Description

{(i*,h) : The super clock expired and the current service
1 ~]2 ~ a, is in phase i, no more interruptions from these states possible.

1 ~ i* ~ N - I} The Humber of interruptions for the current service is i",
The number of interruptions is at its maximum with

{(N,h) : 1 ~ 12 ~ a} the current service in phase ]2.
{O,j) : 1 ~ 12 ~ u} The current service has seen no interruptions so far

and the service is in phase h.
{(i,jl,h) : 1 ~ jl ~ d, The phase of the service is in state h with the

1 ~ 12 ~ a, super clock frozen in state iI and
1~i~N-1} the number of interruptions so far is i.

The super as well as threshold clocks have expired
{(i,hJa): 1 ~ 12 ~ a, with the interruption clock in state j3; the service phase is

1 ~ h ~ b, frozen in ]2 and the number of interruptions including the
l~i~N-l} current one is i. The service will he repeated from these states.

The super clock has expired with the interruption

{(i,j2,j3,]4) : 1 ~]2 ~ a, clock in state j3 and the threshold clock in u: the service
1 ~ la ~ b,1 ~]4 ~ c, phase is frozen in state 12, and the number of interruptions

1~i~N-1} including the current one is i.
The threshold clock has expired with the super

{(i,jllh,h) : 1 ~ ii ~ d, in phase i., the interruption clock is in state h; the service
1 ~ 12 ~ a, 1 ~ j3 ~ b phase is frozen in h and the number of interruptions including
l~i~N-1} the current one is i..

The super clock is in state )1,

{(i,iI,h,h,)4) : 1 ~ i, ~ d, the interruption clock in state h,the threshold clock in ]4;

1 ~ j2 ~ a, 1 ~ Ja ~ b, the service phase is frozen in state 12, and the number

1 ~)4 ~ c,l ~ i ~ N - I} of interruptions including the current one is i.
The service phase is frozen in state 12 with the number of

{(N,h,h,j4) : 1 ~ 12 ~ a, interruptions at its maximum limit of N; both interruption
1 ~ j3 ~ b,l ~j4 ~ c} and threshold clocks are in phase is. and ic; respectively.

The service phase is frozen in state h with the number of

{(fil,j2,j3) : 1 ~ j2 ~ a, interruptions at its maximum limit of N, and
l~iJ~b} the interruption clock is in phase i-:

For use in sequel, let e(r), ejCr) and L; denote, respectively, the (column) vector
of dimension r consisting of 1's, column vector of dimension r with 1 in the lh
position and 0 elsewhere, and an identity matrix of dimension r. When there is
no need to emphasize the dimension of these vectors we will suppress the suffix.
Thus, e will denote a column vector of 1'8 of appropriate dimension. The notation
"I" appearing in a matrix will stand for the matrix transpose. The notation ® will
stand for the Kronecker product of two matrices, and ffi stands for the Kronecker
sum of two matrices. Thus, if A is a matrix of order m x n and if B is a matrix of
order p x q, then A ® B will denote a matrix of order mp x nq whose (i,j)th block
matrix is given by aijB. The Kronecker sum, A ffi B of dimension mp is defined
by A ® I + I ® B. For more details OIl Kronecker products and sums, we refer the
reader to [4], [24].
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The Markov process {Jl(t), J2(t), J3(t), J4(t), J5(t)) : t ~ O} with the absorbing
state * is defined on the state space

n = {~'* : 1 ~ t: ~ N} U{N}U{O} U{i : 1 ~ i ~ N - I} Uti : 1 ~ i ~ N}

Uti : 1 ~ i ~ N} un :1 ~ i ~ N} u{i: 1 ~ i ~ N} U{*}

and its infinitesimal generator is given by

Q=(~ TO) (1)o '

where

Tl,l 0 0 0 0 0 0 0 0 0
0 T2,2 0 0 0 0 0 0 0 0
0 0 T3,3 0 0 0 0 T3,s 0 0
0 0 0 T4,4 0 0 0 T4,s T4,g 0

T= T5,1 0 0 0 T5,5 0 0 0 0 0
(2)

T6,1 0 0 0 T6,5 T6,6 0 0 0 0
0 0 0 T7,4 T7,5 0 T7,7 0 0 0
0 0 0 TS,4 0 TS,6 TS,7 Ts,s 0 0
0 T9,2 0 0 0 0 0 0 n,g T9,1O
0 T lO,2 0 0 0 0 0 0 0 TlO,lO

with

T7,7 = 10 [L $ (I 0 T)], Ts,4 = 1010 10To0e, TS,6 = 10L001 0 1 ® I,

TS,7 = 10 10 I 0 /®UO, Ts,s = 10 [L $ (I ® (T $ U))], T9,2 = 10To®e,

Tg,g = 10 (T $ U), T9,lO = /010 1®Uo, T lO,2 =eo:®To, TlO,lO = 10 T,
(3)
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where
e®SO

So
So

e®SO

o
o
o
o
o
o

, (0 IN-2)
I N - 1 = 0 0 '

Theorem 3.3.1. The effective service time, X, is of phase type with representatioti
(C, T) of order (N + l)a + Nab(c + 1) + (N - 1)da[1 + b(c + 1)], where

and T is as given in (2).

f3 = (0,0,0:,0,0,0,0,0,0,0) , (4)

PROOF: First note that a new service will begin in level 0 in state (0, j.J.) with
probability given by ah (2). Once the service begins it can end with or without
interruptions and looking through all possible transitions, one will see that the
transition matrix is given by T as given in (2). Thus, the service time is nothing
but the time until absorption into state * starting from the level O. This results ill
the form of the initial probability vector as given in (4).

Now will show how the mean, /lr', and the standard deviation, (Jr, of (C, T) can
be computed recursively (and explicitly). Recall ([25]) that the mean and standard
deviation of X is given by

(6)

Due to the special structure of the matrix T given in (2), we can compute the mean
as well as the standard deviation of T explicitly and recursively. First, we define

We further split the vectors on the right side of (7) as

U = (UI,' .. ,UN), V = (VI,'" ,UN-d, W = (WI,'" ,wN-d
x = (Xl,'" 'XN-d, Y = (Yl"" ,YN-l)' % = (%1,'" ,ZN-d·

(7)

(8)

Note that the vectors Ui, 1 ~ i ~ N, U, and Vo are of dimension a; Vi, 1 ~ i ~ N-1
are of order da; Wi, 1 ~ i ~ N - 1 are of order ab; Xi, 1 ~ i ~ N - 1 are of order
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abc; Yi' 1 :::; i :::; N - 1 are of order dbc; Zi, 1 :::; i :::; N - 1 are of order dabc; aN is
of order abc and bN is of order ab.

Exploiting the special structure of T and using the notations in (7) and (8), it
is easy to verify the following equations.

Z1 = /,vo[1]@I@,I3@6][-(L $ (I0 (T 6' U)))J-l,

Y1 = zdI 0 I @ 10UO][-(L $ (1 @ T))J-1 ,

Xl = zl[LO@1 @1 0 1][-(1 @ (T EB U))j-l,

W1 = [X1(1 @10UO) + Yl(LO@I 0 1)][-(1 0 T)J-1 ,

Ul = [wI(e0TOo) + X1(10T00e)j[-Stl,

Vi = [Yl(1 @eo®TO) + Zi(1 0 I@T00e)][1 0 hI - S)]-l, 1:::; i:::; N -1,

Zi = /,vi-dI 0 10,1306][-(L $ (I ® (T $ U)))]-l, 2:::; i :::; N - 1,

u, = zd1 0 I 0 1@UO][-(LEB (1 ® T))]-l, 2:::; i:::; N -1,

Xi, = z,[L001 @ 1 @ 1][-(10 (T EB U))]-l, 2 :::; i :::; N - 1,

Wi = [Xi(1 0 I0UO) + Yi(L00I @ 1)][-(I ® T)]-1, 2:::; i :::; N - 1,

aN = /,[vN-1(e 0 I ® {3 ® 6)][-(I 0 (T 6' U))]-l,

bN = [aN(I @ I 0 UO)[-(I @ T]-l,

(9)
By looking at the order in which the equations are displayed in (9), one can see
the explicit evaluation of the vectors needed in the computation of J.i~, which is
obtained as

J.i~ = ue + iie + voe + ve + we + xe + ye + ze + aNe + bNe. (10)

Similar to getting an explicit expression for ((_1')-1 one can derive an explicit ex-
pression for (( -1')-2 by replacing the role played by f3 in (9) with (u, u, Vo, V, W, X, Y, z, aN.:~
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The details are omitted.

Note that some of the explicit expressions in (9) involve matrices whose orders
may become very large as the values of d, a, b, and c become large. In that case
one can exploit the structure of these matrices. Some examples to this extent can
be seen in [25]. In any computational aspect, it is very important to have some
internal accuracy checks. In the case of the computation of f.J.t', one can use the
fact that ({-'f)-liD = 1, which reduces to

[11 -+ "0 +t,U;] So -+~ ",(e 0SO) ~ I. (11)

In the case of the computation of (7t, one can use the fact that ({ - T)-2i'0 = /-It,.

3.4. Numerical Examples

In this section we discuss some interesting numerical examples that qualitatively
describe the phase type distribution modeling the interrupted services. The correct­
ness and the accuracy of the implementation of the recursive and explicit schemes
are verified by a number of accuracy checks such as the one listed int l l ). As an
additional accuracy check, we obtained the numerical solution for the exponential
clocks' case in their simple forms. Next, we implemented the general algorithm,
but using the following PH representation: Let R be an irreducible, stable matrix
with eigenvalue of maximum real part -e < O. Let a denote the corresponding left
eigenvector, normalized by ae=1. The PH representation (a, R) reduces to the
exponential distribution with rate e. The general algorithm does not utilize this
fact in any manner, but the numerical results agreed very much.

In addition to the measures, liT' and (71', given in (6) there are other measures
that can be constructed. A few are listed below along with their formulas.

1. Probability of i interruptions without the super clock expiring: The
probability, p"SCNX that exactly i interruptions occur during a service without the
super clock expiring is given by .

voSo, i = 0,

pSCNX =
•

uSa, i = N.
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2. Probability of i interruptions with the super clock exprrmg: The
probability, ~SCEX that exactly i interruptions occur during a service with the
super clock expiring is given by

3. The mean number of interruptions during a service completion: The
mean, PIPS, number of interruptions that occur during a service completion is given
by

u-«
PIPS = L i[~SCNX + PiSCEXl + NP!.rCNX.

i=l

4. Probability of a service completion in which neither super clock
expires nor the maximum interruptions occur: The probability that a service
completion occurs without the super clock expiring as well as the maximum number
of interruptions allowed (which is N) is not attained is given by

N

pSCNXNI = 1 - [LUiS O + uSol·

i=l

5. Probability of a service completion with no interruption: The proba­
bility that a service is completed without any interruptions is given by

Note that the above probability is nothing but P(X < Y) where X follows a phase
type distribution with representation (a, S) and Y is exponential with parameter,.

We consider the following set of PH-distributions for our numerical examples.
For specific example under consideration, we will identify the choice for each of the
four input PH-distributions as follows. By ER - SC we will denote that the super
clock (SC) has a PH-distribution given by ER (Erlang of order 5). We use ST for
the service time; I P for the interruption clock and TC for the threshold clock.
Erlang of order 5(ER):

a = (1,0,0,0,0),S =

Exponential(EX) :

-1 1 0 0 0
o -1 1 0 0
o 0 -1 1 0
o 0 0 -1 1
o 0 0 0 -1

a = 1,S = ( -1 )



Chapter 3. On a Queue with Interruptions Controlled by a Super Clock and
56 Maximum number of Interruptions

Hyperexponential(HE) :

(

-100
ex = (0.6,0.3,0.1), S = ~

o
-10
o

All these three PH-distributions will be normalized so as to have a specific (given)
mean. However, these are qualitatively different. For example, the coefficient of
variation of these three distributions ER, EX, and HE are, respectively.G.dd'Zz},
1, and 3.18497.
EXAMPLE 1: The purpose of this example is to see the effect of the variability in
the four PH-distributions on the four measures: f.L'h (TtildeT, f.LIPS, and (TIPS. Here
we fix N = 20, 'Y = 1, f.L~ = 4.0, f.L~ = 1, It; = 2, and f.L~ = 2. These measures
are displayed for various combinations of the distributions for the super clock, the
service time, the interruption time, and the threshold clock in Table 2 below.
An examination of this table reveals the following.

• When service times have less variability (like Erlang), the four measures: the
effective service mean, the standard deviation of the effective service time, the
mean and the standard deviation of the number of interruptions appear to
increase with increasing variability in the threshold times. This observation
appears to be true for all the distributions considered for the interruption and
for the super-clock. However, for service times having more variability (like
hyperexponential), these two measures appear to decrease with increasing
variability in the threshold times. This observation appears to be true for all
the distributions considered for the interruption and for the super-clock.

• In the case of exponential service time, the four measures under consideration
are insensitive to the distribution for the threshold clock. However, this
measure depends on the type of distributions assumed for the super-clock
and the interruption clock. This is to be expected due to the memoryless
property of the service times.
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Tabl<l ~. Mfla~ur~H for Vad01l8 combtneefone
ER. P EX. P HE-JP

";H.- ,,;x- i";- .>-;H.- ,,;x- H";- .>-;H.- ,,;x-

P'."" 3.05337 3.12978 3.28708 2.98057 3.06744 3.26830 2.97196 3.05405 3.31578

ER-ST <T•• 2.47212 2.53038 2.66605 2.87395 2.93116 3.07304 6.49081 6.58266 6.86211
Jl'T'." 0.94294 0.96430 1.00453 0.92254 0.94878 1.00591 0.95325 0.9794' 1.06198
<T'ps 0.9 088 0.99923 1.04790 0.97220 1.01295 1.09577 1.03 13 1.08319 1.22449
~i..;J 2.57423 2.57423 2.57423 2.59812 2.59812 2.59812 2.77782 2.77782 2.77782

ER-se EX-ST rr.r, 2.70037 2.70037 2.70037 3.06655 3.06655 3.06655 6.46701 6.46701 6.46701

?LJP' 0.78711 0.78711 0.78711 0.79906 0,79906 0.79906 0.88891 0,88891 0.88891
<TIPS 0.95976 0.95976 0.95976 1.01090 1,01090 1.01090 1.20281 1,20281 1.20281
P-,-.I 1.3U9U", 1._3914 1.10992 1.38909 1.3U_49 1.144:48 '40' 1.OU960 1.30768

HE-ST o-s, 2.81346 2.63022 2.22823 3.07857 _.89023 2.49919 5.80647 5.42487 4.73198
I' 'D' 0.37569 0.36102 0.33703 0.40831 0.385"'1 0.34847 0,55250 0.50482 0.41578
CTTP.C:: 0,7433 0,70526 0.64523 0.85719 0.79074 0,68502 1.37912 1.20564 0,89689

Jl...r.' 2,8924 2,95931 3,10183 2.86836 :4,94350 3,12:438 2.89 7 ".969.0 3.20166

ER-ST <TT _.4:4314 _.48900 ".65168 ".83986 ".890"3 3.U49UU e.37,.7\1 0.4:>101 6."9,85
Jlrp.c:: 0.86983 0.8"" 82 0.92355 0.87098 0.89255 0.94159 0.9170' 1.93944 1.00995
(lIP' 0.94.63 0.9 608 1.0364. 0.9.0..9 0.9 91 1.0"39" U.99" .u306", .16277

1'''..;.' 2.45024 2.45024 2.45024 2.50000 2.50000 2.50UUO 2.69414 2.69414 2.611414

Ex-se EX-ST <T,- ".018.. ".ol",;<u ;<.O''''''U I.UOUUU i.UUUUU I.UUUUU 0.:"380 6.31385 6.3 385

"'DO 0.72512 0.72512 O. 2512 0.75000 0.75000 O. 5000 0.847U· 0."'4 0 U.84707
<T'P.O 0.92319 0.92319 0.92319 0.96825 0.96825 0.96825 1.14259 1.14259 1.14259
Jt,.,! 1.29836 1.23368 1.11010 1.37716 1.29683 1.14427 1.73074 1.58556 1.30352

HE-ST "T 2.66132 2.69388 2.31756 3.11226 2.935U6 :4.55405 5.65774 5.32648 4.69555

"'DO 0.34814 0.33631 0.31701 0.38123 0.3632 0 ..1326 0.51298 .4 507 0.40U79
o r s 0.70075 0.66379 0.60654 0.80665 0.74659 0.65134 1.27432 1.12518 0.85 56

/-L'-'J 2.56094 2.60246 2.69460 2.57985 2.62636 2.74136 2.68449 2.73126 2.88733
ER-ST "T :4.U3962 :4.U885U :4.:.!:4463 2.53:4U4 2.56863 :4.6822 6.01089 6.05561 6.20928

u t r s 0.71925 O. 2772 U.14551 0.73822 0.74856 O. 7361 0.81541 0.82688 0.86682
<T,po 0.76376 0.78754 0.83871 0.77553 0.80200 0.86540 0.85985 0.88514 0.96963
~,;'I 2.19963 ... 19963 2.19963 :4.2562. ... 256:44 :4.25624 ".46u63 ".'0063 ,. .•ou63

HE-se EX-ST UT 2.26447 2.26447 2.26447 2.67709 2.67709 2.67709 5.85890 5.85l:!90 5.85890
/1orpg 0.59982 0.59982 0.59982 0.62812 0.62812 0.62812 0.13031 0.73031 0.73U31
(1IPS U.74525 0.74525 0.74525 0.78993 0.78993 0.78993 0.95773 0.95773 0.95 73
~-r.1 1.28125 1.22610 1.11105 1.34817 1.28312 1.14487 1.61912 1.51912 1.29230

HE-ST <TT 2.95707 2.81630 2.46797 3.17185 3.02778 2.67505 5.26812 5.05473 4.588U9
JL P' 0.29629 0.29096 0.28229 0.31985 0.31154 0.29658 0.41473 0.39649 0.35665
(1IPS U.5751 U.5525U 0.51902 0.65213 0.61616 0.55960 0.99015 0.90095 0.13816

As mentioned earlier the probability that a service completion occurs before any
interruptions given by abI - 5J-1SOis independent of the other PH-distributions
and the values for this probability for the set of PH-distributions under study are
given in Table 3. From this table we see that hyper-exponential times that have
the largest variability yields the highest probability of service completion without
any interruption.

Suppose we now look at what happens to the probability of a service completion
with exactly one interruption with super clock expiring. That is, we look at the
probability PlSCEX. Table 4 gives this probability for the different scenarios under
consideration. It is interesting to note that this measure appears to be independent
of the type of distribution used for the threshold clock.

f pSCEX f diff t eccnarioT hi 4 V Ia c a ucs 0 or ) crcn ~ en r r ~

ER-ST EX-ST HE-ST
!>H.-It ',x- HE- ,"",-IP EX-IP HE-IP ER-IP EX-IP HE-IP

ER-se 0.U8664 0.11121 0.06638 0.07242 U.09297 0.05549 U.03712 0.04764 0.02844
EX-S U.22674 0.19937 0.10798 0.18954 0.16667 U.09027 0.09 14 0.08541 0.04626
HE-se 0.44247 U.3/SU30 0.23773 0.36988 0.32544 0.19873 0.18956 0.16678 0.10185
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EXAMPLE 2: The purpose of this example is to see the effect of [ on !-Lt,.
Towards this, we fix N = 20, f-l~ = 4.0, f-l; = 1, f-l~ = 2, and f-l~ = 2.. \Ve fix all
but one of the four PH-distributions to be either Erlang (ER) or hyperexponential
HE, and vary the other one to be one of ER, EX, and HE. Note that these
representations are normalized so as to have the specified mean. In Figures 1 and
2, respectively, we display f-lt" as functions of [ for these two sets of scenarios.
From Figures 1 and 2, we note that a larger variability for the interruption times
(when other times have significantly less variability) yields high values for the
effective mean service time for almost all values of [. However, having a higher or
lower variability among the threshold times appears to have very small significant
effect on this measure for a fixed value of /. However, as [ is increased, the
effective mean service increases and approaches a constant (which depends on the
type of distributions used) and the rate of approaching the constant value is high
for lower variability distributions (Figure 1) as compared to higher ones (Figure
2). In both the figures we notice that only in the case of varying interruption times
from Erlang to hyper-exponential we see the effective mean service time appears to
increase with increasing variability. In other cases this measure appears to decrease
with increasing variability.

3.5. Stationary distribution

Since the model is studies as a LIQBD process, its stationary distribution (if it
exists) has a matrix-geometric solution. Assume that condition (2) is satisfied. Let
the stationary vector x of Q be partitioned by the levels into sub-vectors Xi for
i ~ O. Then Xi has the matrix-geometric form

Ri- i f ....... 2Xi = Xl or 't ~

where R is the minimal non-negative solution to the matrix equation

Ao+ RA I + R2A2 = 0,

and the vectors Xo,Xl are obtained by solving the equations

xoDo + XICI = 0,

xoCo+ xl(A l + RA2 ) = 0

subject to the normalizing condition

(3.2)

(3.3)

(3.4)

(3.5)

From the above equation, it is clear that to determine z , a key step is the compu­
tation of the rate matrix R.
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Theorem 3.5.1. The process {X(t), t ~ O} is stable if and only if nD,« < -4­
JJr

where 1r is the stationary vector of D = Do + D1 and 1-L~ is the mean effective
service time.

3.6. Performance Characteristics

Some useful general descriptors of our model are listed below.

00

1. Mean number of customers in the system= E nXne = Xl (I - R)-2e
n=1

00

2. Fraction of time the server is busy= E X711e
n=1

00

3. Fraction of time the server remains interrupted= E xnoe
n=1

4. Thus the fraction of time the server is idle=xoe

5. Fraction of time service is in interrupted state
00 00

+Fraction of time service is going on= E xnoe + E X n1e
n=1 n=1

00

6. The rate at which server break down occurse-y E Xnle
n=1

7. Rate at which Interruption completion takes place before threshold is reached
Itjb

ooNdab er

= E E E E E E E Xn,O,i,j,k,I,j' ,u 'If
n=1 i=1 j=O k=11=1 i' =1 u=l

S. Rate at which interruption completion takes place after the threshold is
reached RI a

ooNdabr

= E E E EEL: Xn,O,i,j,k,l,o,u'If
n=1 i=1 j=O k=11=1 u=1

9. Rate at which service completion(with atleast one interruption) takes place
before super threshold is reached Res b

00 N d a r

= L: EEL: L: Xn,l,i,j,k,u S2
n=1 i=O j=O k=1 u=1
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10. Rate at which service completion (with atleast one interruption) takes place
after super threshold is reached Frs a

00 Nor

= L: L: L: L: X n,l,i,O,k,u 52
n=1 1=0 k=1 u=1

000 r ooNdo r

11. Effectiveservice rate Eg = L: L: L: Xn,I,O,k,u 82+ L: L: L: E E Xn,l,i,j,k,u SZ
n=1 k=1 u=1 n=l i=Oj=Ok=l u=1

3.7. Numerical Results

We illustrate the behavior of performance measures with variation in the incidence
rate "Il of interruption. For this we fix the following values:

N b 2 2 d 2 2 D [
- 6.5 0.25] D [6.0 0.25] L

=3, a=2, = ,c= , = , t= ; °= 0.25 0.75 ' 1 = 0.25 0.25 ' =

[
-12.0 5.0 ] , S = [-12.0 6.0 ] , T = [-12.0 3.0 ] , u = [ -12.0

5.0 -12.0 6.0 -12.0 3.0 -12.0 8.0
, , I I

LO = [7.0 7.0] ,SO = [6.0 6.0], y<J = [9.0 9.0], UO = [4.0 4.0],
T1 = [0.3 0.7], a = [0.4 0.6], (3 = [0.3 0.7], 8 = [0.5 0.5] .

r
I:..
I~

J.
',-~,- -.~- -i.--~--.•---:-----:,

Fig. 3.1: Gamma versus Mean Number of Customers in the System

As expected, mean number of customers in the system increases with increasing
value of "I.

The Figure 3.2 indicates that with increase in the value of "I, the fraction of
time the server remains interrupted increases.

One expects that the fraction of time the server remains idle (no customer in
the system) decreases with increase in value of "I. Experimentally this is validated

8.0 ]
-12.0
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Fig. 3.4: Gamma versus Effective Service Rate
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3.8.

Fig. 3.5: Gamma versus and Rate at which server break down occurs

Model 11

In Model I, the current interruption was allowed to continue even on saturation of
the super-clock. However, no further interruption was permitted. In the present
model, it is assumed that the moment the super-clock is realized, the interruption
is removed. The super-clock saturation did not have any pronounced impact on the
effective service time of a customer in Model I. However, the additional assumption
brought in here shows that the impact of the super-clock is indeed remarkable. This
will be revealed in the numerical illustration. Thus we study the case of a customer
whose interruption completion takes place at the moment when the super threshold
is saturated. A physical realization of this is the following: On getting interrupted
the service of the present customer is suspended. During this interrupted state if
the super-clock realized, then immediately another server (hired from within the
system) is assigned to complete the service of the interrupted customer. This way
the system is made more efficient in the sense that queue length will decrease and
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service will increase. We proceed to the mathematical model:

Let N (t) denotes number of customers in the system at time t and state of
the server be Set): Set) = 1 the server is busy and Set) = 0 indicates that it
is interrupted. The variable B(t) counts the number of interruptions the cus­
tomer in service/interrupted has already undergone. The super threshold ran­
dom variable is described by SI(t). Since current interruption is removed the
moment the super threshold is saturated, the super threshold saturation point 0
is not in interruption state, but it keeps its position in busy state. The service
phase, interruption phase and threshold random variables are expressed by the
variables S2(t), S3(t) and B4(t ), respectively. Here as in model I, super threshold,
service phase, interruption phase and threshold random variable are all PH dis­
tributed with representation (ry, V), (a, B), ({3, T) and (D, U). The process X 2(t) =
{(N(t), B(t), B(t), BI (t), B2(t ),B3(t ),B4(t ), M(t», t ~ O}; is a continuous time Markov
chain (CTMC) which turns out to be LIQBD with nth level given by £(n)=U Wen, l),

I

I = 0, 1. The subsets of Wen, I) are defined as {(n, 0, it, i l , i2 , i3 , i4 , is);°~ i, ~ N-
1;0 ~ i l ~ d; 1 ~ iz ~ a; 1 ~:"3 ~ b;O ~ i 4 ~ c;1 ~ is ~ r}, {(n, 1,jl,i I , i 2 , is);0 ~

i. ~ N;O ~ i I ~ J.; 1 ~ i2 ~a; 1 ~ is ~ r} and {en, 1,0,i2 , is);0 ~ i 2 ~ a, 1 ~ is ~

r}. Then {X2(t ), t ~ O} is a level independent quasi birth and death process.

Do Co 0 0 0 0 0
Cl Al Ao 0 0 0 0

Q = 0 A2 Ai Ao 0 0 0
o 0 A2 Al Ao 0 0

(3.6)

The matrix Ao,Al and A 2 correspond to transition from level W(n,.) to W(n+ 1, .);
W(n,.) to Wen, .)and W(n,.) to Wen-I, .), respectively. The matrix IN(d+l)ab(c+l) ®
D} records transition rates to W(n+ 1, 0) from Wen, 0). The matrix I(N(d+I)+l)a®DI
records transitions to Wen + 1,1) starting from Wen, 1). All other components in
Ao are zero matrices. While service completion takes place only during the service
.. [ [0] [0]] (1) SOperiod, A2 IS of the form A 2 = [0] [A~l) [011 ,where A2 = e(N(d+l)+I) ® ®

0: ® t..

The components in Al are All, A 12 , A I 3 and A 14 which record transitions to
W(n,.) from W(n, .). The matrix All records transition within W(n,O) and is given
by: All = I N ® H 3 where H 3 = C4 tBH" - and HI = C2EBC1 . Here the
matrix Cl = FI tBDo, C 2 = T®Ic+ 1, . and C 4 =V~Ia®h0I(c+I)'

The interruption states to busy state transition is de~cribed by A12 = [[0] Ag)]
with A~~) = [IN-I®\!D)®E IN-10Id®B] where B = [Bu,BI2, ..... ,Bla]

and E = [Ell, E 12, ...... , E Ia]. In this B l j = T" ® [a, ej, ej, .....eiJ' 0 t; and E l j =

eb 0 [a, ej, ej, .....eiJ' ® L:
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[0] ]
[0]
A~~

Service phase change during busy period is described by A l 4 = [1~r l~!}
[0] [0]

(1) (2) [ T $ Do [0] ]
where A l 4 = T $ Do - "(Iar , A l 4 = I N - l ® [0] Id ® [8 EB Do _ "(I

ar
] and

A~~) = Ia+1 ® [8 $ Do]. The matrices Do, Co and Cl are, respectively the transi­
tions from level 0 to 0; level 0 to 1 and level 1 to 0 where Co = [[0] a ® D 1 [OJ ]

and Cl = [ [0] 0 ]
e(N(d+I)+I) ® (8( ) e 11') .

3.9. Description of the phase type distribution
for the services

The focus of this section is to describe the time it takes to process a job once
it enters into the service facility. We assume that the service times are of phase
type with representation given by (a, S) of order a. The services are subject to
interruptions and the interruption process is assumed to follow a Poisson process
with rate {. When the current service is interrupted for the first time, three clocks,
referred to as super clock, interruption clock, and threshold clock, respectively, will
simultaneously be started. The durations of these clocks are of phase type with rep­
resentations given by, respectively, (T/, L) of order d, ({3, T) of order b, and (6, U) of
order c. Once the interruption clock expires/super-clock realizes, whichever occurs
first, the service of the interrupted job will begin again. The service will resume
(from the phase where the service got interrupted) or repeat (like a new service)
depending on whether the interruption clock expired before the threshold clock or
not. In addition, if the super-clock expired before the interruption clock, then the
service of the current job will not be interrupted anymore once the service begins
again for this job. On the other hand, if the interruption clock expires before the
super clock, the phase of the super-clock will be frozen and will resume from this
phase should there be an another interruption for the existing job. For the job
under service, the number of interruptions will be tracked and when this number
attains a pre-specified threshold value, N < 00, no further interruptions are al­
lowed.



Chapter 3. On a Queue with Interruptions Controlled by a Super Clock and
66 Maximum number of Interruptions

Let X 2(i ) denote the duration of the effective service for a job. That is, X 2(t ) is
the time between the arrival of a job to the service facility until it leaves the facility
with a service. Note that this service time may have i, 0 :::;; i :::;; N interruptions.
and each interruption may cause the service to either resume from where it got
interrupted or repeat from the beginning. Thus, we refer to X2 (t ) as the effective
service time to distinguish this from the service time given by (0, S). Note that
when I = 0 (that is, when there are no interruptions) then the effective service
time is same as the service time. We will show that X 2 (t ) follows a PH-distribution.
Towards this end, we first define Jt(t), J2 (f ), J3 (t ), J4(t), and J5 (t ), respectively, to
be the number of interruptions seen by the current job in service, the phase of the
super clock, the phase of the current service, the phase of the interruption clock,
and the phase of the threshold clock, at time t. Note that some of these phases
will be frozen or not defined. For example, when the service is going on, the phases
of interruption clock and the threshold clock will not be defined as they are not
turned on, and the super clock may not be defined or when defined it will be frozen
indicated that it is realized. Let * denote the absorbing state that corresponds to
the completion of the current service.

The states and their description are given in Table 1 below. For use in sequel,
we now define sets of states as follows.

• i* = {(i", j2) ; 1 ~ j2 ~ a}, for 1 :::;; i: :::;; N - 1

• i = {(i, i., jz) : 1 ~ i, ~ d, 1 ~ jz :::;; a}, for 1 ~ i ~ N - 1

- -
• i = 1(i,j1,j2,j3,j4) : 1 :::;; j1 ~ d, 1 ~ j2 ~ a,l :::;; j3 ~ b,l ~ j4 ~ cl, for
l~i~N-l

- -
• N= {(N,j2' J3) ; 1 ~ j2 ~ a, 1 ~ j3 ~ b}
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Table 1: The states and their description

67

States Description
{(i·,j2): The super clock expired and the current service

1 ~ 12 ~ a, is in phase j; no more interruptions from these states possible.
1 ~ c: ~ N - I} The number of interruptions for the current service is i·.

The number of interruptions is at its maximum with
{(JV,j2) : 1 ~)2 ~ a} the current service in phase 12.

{D,j): 1 «» ~ a} The current service has seen no interruptions so far
and the service is in phase h.

{(i,jl'jz) : 1 ~ i, ~ d, The phase of the service is in state 12 with the
1 ~ j2 ~ a, super clock frozen in state it and

l~i~N-1} the number of interruptions so far is i.
The threshold clock has expired with the super

{(i,jI,j2,j3) : 1 ~ jl ~ d, in phase )1, the interruption clock is in state )3; the service
1 ~ 12 ~ a, 1 ~ ]a ~ b phase is frozen in )2 and the number of interruptions including

l::;;i~N-l} the current one is i..
The super clock is in state )1>

W')I,h,h')4) : 1 ~ jl ~ d, the interruption clock in state h,the threshold clock in )4;
1 ~ 12 ::;; a, 1 :=; 13 ::;; b, the service phase is frozen in state 12, and the number

1 ::;; j4 ::;; c, 1 ~ 1. ~ N - I} of interruptions including the current one is i.
The service phase is frozen in state 12 with the number of

{(JV,j2,j3,j4) : 1 ~ j2 ~ a, interruptions at its maximum limit of N; both interruption
1 ~ j3 ::;; b,1 ::;; ]4 ~ c} and threshold clocks are in phase 13, and )4, respectively.

The service phase is frozen in state h with the number of

{(N,h,13) : 1 ::;;]2::;; a, interruptions at its maximum limit of N, and
1::;; 13 ~ b} the interruption clock is in phase )3.

The Markov process {J1(t), J2(t ), het), J4(t ), Js(t)) : t ~ O} with the absorbing
state * is defined on the state space

- - ....--
u{i :.1 ~ 7~ N - I} U{N} U{N} U{*}

and its infinitesimal generator is given by

Q=(~
TO ),0

where
T1,1 0 0 0 0 0 0 0
0 T2,2 0 0 0 0 0 0
0 0 T3,3 0 0 T3,6 0 0

T= 0 0 0 T4,4 0 T4,6 T4,7 0
TS,l 0 0 TS,4 n,5 0 0 0
T6,1 0 0 T6,4 T6,5 T6,6 0 0

0 T7,2 0 0 0 0 T7,7 T7,8

0 Ts,2 0 0 0 0 0 Ts,s

(1)

(2)
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with

n,1 = IN 0 LO 0 e0~ T5,4 = I&; I0e0.0To,
n,5 = 10 [L Et! (I&; T)], T6,l = IN 0 e &; fa ® L® e

Tfj,4 = I&; I0 f0T°&;e,

T7,7 = 10 (T Et! U), T7,s = I&; I &; I0Uo, TS•2 =e0.0TO
, Tg,s = I 0 T,

(3)
where

e&;So
So
So

e&;SO
o
o
o
o

A (0 I N - 2 )
f N - 1 = 0 0 '

Theorem 3.9.1. The effective service time, X 2(t), is of phase type with represen­
tation «, T) of order (N + l)a + Nab(c + 1) + (N - l)da[l + b(c + 1)], uihere

and T is as given in (2).

<= (0, 0, a, 0, 0, 0, 0, 0) , (4)

PROOF: First note that a new service will begin in level 0 in state (O,j2)
with probability given by (}:j2' Once the service begins it can end with or without
interruptions and looking through all possible transitions, one will see that the
transition matrix is given by t as given in (2). Thus, the service time is nothing
but the time until absorption into state * starting from the level O. This results in
the form of the initial probability vector as given in (4).
Now will show how the mean, J1.T', and the standard deviation, ar, of «, T) can
be computed recursively (and explicitly). First recall ([25]) that the mean, J1.~, of
(a, S), is given by

J1.; = a (-B)-le.

Recall ([25]) that the mean and standard deviation of X is given by

(5)

(6)



3.9. Description of the phase type distribution for the services 69

Due to the special structure of the matrix t given in (2), we can compute the mean
8..<; well as the standard deviation of t explicitly and recursively. First, we define

('(_1')-1 = (u,u,vo,v,Y,z,aN,bN). (7)

We further split the vectors on the right side of (7) as

u = (UI,'" ,UN), V = (VI,'" ,UN-d, Y = (Yl'''' , YN-l)' Z = (ZI,'" , ZN-I).
(8)

Note that the vectors Ui, 1 ~ i ~ N, u, and Vo are of dimension a; Vi, 1 ~ i ~ N -1
are of order da; Yi' 1 ~ i ~ N - 1 are of order dab; z., 1 ~ i ~ N - 1 are of order
dabc; aN is of order abc and bN is of order ab.

Exploiting the special structure of T and using the notations in (7) and (8), it
is easy to verify the following equations.

Vo = ab1 - stt,

ZI = ,vo['1]010.B06][-(L EB (I 0 (T EB U)))]-l,

u, = zIl1 ® I ® I®UO][-(L EB (I 0 T))]-l,

a
Ul = [YI(~0e~ +Zl( e®Ia0L0e)][-S]-1,

Vi = [YI(I ® ea0TO) + Zi(I ® 10TO®e)][1 0 (;1 - S)]-1, 1 ~ i ~ N - 1,

z, = lVi-ill ® 10.B00][-(L EB (I 0 (T EB U)))]-l, 2 ~ i ~ N - 1,

u. = zi[1 0 I ® 10UO][-(L EB (I ® T))j-I, 2 ~ i ~ N - 1,

aN = l[vN-I(e 0 I 0.B 0 6)][-(I 0 (T EB U))]-l,

bN = [aN(I 0 I 0 UO)[-(I 0 T]-I,

(9)
By looking at the order in which the equations are displayed in (9), one can see
the explicit evaluation of the vectors needed in the computation of /LT" which is
obtained as

/IT' = ue +ue + voe + ve + ye + ze + aNe + bNe. (10)

Similar to getting an explicit expression for C(-T)-I one can derive an explicit ex­
pression for C( - T)-2 by replacing the role played by ( in (9) with (u, u, Vo, V, Y, Z ,ow/bl{)
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The details are omitted.

Note that some of the explicit expressions in (9) involve matrices whose orders
may become very large as the values of d, a, b, and c become large. In that case
one can exploit the structure of these matrices. Some examples to this extent can
be seen in [25]. In any computational aspect, it is very important to have some
internal accuracy checks. In the case of the computation of IJ..t', one can use the
fact that (( -T)-li'0 = 1, which reduces to

(11)

In the case of the computation of at, one can use the fact that (( -T)-2i'0 = 1J..1'"

3.10. Numerical Examples

In this section we discuss some interesting numerical examples that qualitatively
describe the phase type distribution modeling the interrupted services. The correct­
ness and the accuracy of the implementation of the recursive and explicit schemes
are verified by a number of accuracy checks such as the one listed in(l1). As an
additional accuracy check, we obtained the numerical solution for the exponential
clocks' case in their simple forms. Next, we implemented the general algorithm, but
using the following PH - representation: Let R be an irreducible, stable matrix
with eigenvalue of maximum real part -() < O. Let a denote the corresponding left
eigenvector, normalized by ae=l. The PH- representation (a,R) reduces to the
exponential distribution with rate e. The general algorithm does not utilize this
fact in any manner, but the numerical results agreed very much.

In addition to the measures, J-L1" and at, given in (6) there are other measures
that can be constructed. A few are listed below along with their formulas.

1. Probability of i interruptions without the super clock expiring: The
probability, ~SCNX that exactly i interruptions occur during a service without the
super clock expiring is given by

pSCNX =,
ABOu 2' i=N.
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2. Probability of i interruptions with the super clock exprrmg: The
probability, plCEX that exactly i interruptions occur during a service with the
super clock expiring is given by

pSCEX - uSo 1 ~ i ~ N - 1
i -t, """''' .

3. The mean number of interruptions during a service completion: The
mean, JifPS, number of interruptions that occur during a service completion is given
by

N-l

JifPS = L i[~SCNX + plCEXl + NP~CNX.

i=l

4. Probability of a service completion in which neither super clock
expires nor the maximum interruptions occur: The probability that a service
completion occurs without the super clock expiring as well as the maximum number
of interruptions allowed (which is N) is not attained is given by

N

pSCNXNf = 1 - [2: UiSO + uSO].

i=l

5. Probability of a service completion with no interruption: The proba­
bility that a service is completed without any interruptions is given by

Note that the above probability is nothing but P(X < Y) where X follows a phase
type distribution with representation (0:,S) and Y is exponential with parameter
"t.

3.11. Stationary distribution

Since the model is studies as a LIQBD process, its stationary distribution (if it
exists) has a matrix-geometric solution. Let the stationary vector x of Q be parti­
tioned by the levels into sub-vectors Xi for i ? O. Then Xi has the matrix-geometric
form

Xi = x1Ri
-

1 for i? 2

where R is the minimal non-negative solution to the matrix equation

(3.7)

(3.8)
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and the vectors Xo, Xl are obtained by solving the equations

xoDo + XICI = 0,

xoCo+ xI(AI + RA2) = 0

subject to the normalizing condition

(3.9)

(3.10)

From the above equation, it is clear that to determine x, a key step is the compu­
tation of the rate matrix R.

Theorem 3.11.1. The process {X(t), t ~ O} is stable if and only if 1rD1e < +
Jly

where 1r is the stationary vector of D = Do + D I and IJ~ is the mean effective
service time.

3.12. Performance Characteristics

Some useful general descriptors of our model are listed below.

00

1. Mean number of customers in the system= L nXne = Xl (I - R)-2e
n;:l

00

2. Fraction of time the server is busy= L Xnle
n;:l

00

3. Fraction of time the server remains interrupted= L xnoe
n=l

4. Thus the fraction of time the server is idle=xoe

5. Fraction of time service is in interrupted state
00 00

-l-Fraction of time service is going on= L xnoe + L Xnle
n=l n=l

00

6. The rate at which server break down occurs-e-r L Inl e
n=l

7. Rate at which Interruption completion takes place before threshold is reached
RIb

ooNdab eT

= L L L L L L L Xn.O.i,j,k,I,i' .u 1/0
n=l i=1 j=O k=ll=l j'=1 u=l
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8. Rate at which interruption completion takes place after the threshold is
reached RI a

00 N dab T

= L L L L L L Xn,O,i,j,k,l,O,u 1[0
n=l i=1 j=O k=ll=l u=1

9. Rate at which service completion(with atleast one interruption) takes place
before super threshold is reached R~ b

00 N d a T

= L L L L L X n,1,i,j,k,u S~
n=l i=Oj=Ok=1 u=1

10. Rate at which service completion (with atleast one interruption) takes place
after super threshold is reached Rsa

00 N a T

= l: l: l: l: X n,1,i,O,k,u S~
n=1 i=O k=1 u=1

ooa T ooNda T

11. Effective service rate Eg- = l: l: l: Xn,l,O,k,u s2+ l: l: l: L L X n,1,i,j,k,u s2
n=l k=l u=l n=1 i=Oj=Ok=l u=l

3.13. Numerical Results

The numerical experiments in this sections show the marked deviation between
models I and II discussed in this chapter. The effect of terminating interrup­
tion 011 realization of the super clock improves the system performance remark­
ably. For example fix the input parameters: N=3, a=2,b=2,c=2,d=2, r=2jDo =

[
-6.5 0.25] ,D

1
= [6.0 0.25], L = [-12.0 5.0 ], S = [-12.0 6.0 ],

0.25 0.75 0.25 0.25 5.0 -12.0 6.0 -12.0

T= [-12.0 3.0 ], u= [-12.0 8.0 ],
3.0 -12.0 8.0 -12.0

LO = [7.0 7.0 r'SO = [6.0 6.0 r, TO = [9.0 9.0 r, UO = [4.0 4.0 r,
ry = [0.3 0.7], a = [0.4 0.6], (3 = [0.3 0.7], 0 = [0.5 0.5].

Fig. 3.6 shows that increase in mean number of customers in the system is very
much reduced, compared to the same situation discussed in Fig.3.1.

Fraction of time server is interrupted increases again; nevertheless, it is not that
rapid unlike its counter part in Fig. 3.7

Idle time decrease with increase in , (see Fig. 3.8); however, this not that much
performed unlike that given in Fig. 3.3.

Here again effective service rate should decrease with increase in value of ,;
nevertheless it is not that sharp compared to model I (see Fig. 3.4 and 3.9).
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Fig. 3.6: Gamma versus Mean Number of Customers in the System.
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Fig. 3.7: Gamma versus Fraction of Time the Server is Interrupted.

The behavior of rate of breakdown with increase in value of 'Y is insensitive
to the way the server interruption is removed. The two figures 3.5 and 3.10 are
therefore identical.
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Fig. 3.8: Gamma versus Fraction of Time the Server is Idle
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Fig. 3.9: Gamma versus Effective Service Rate.
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Fig. 3.10: Gamma versus Effective Service Rate and Rate at which server break
down occurs



Chapter 4 .

Queue with Preemptions and
Repeat or Resumption of
Preempted Service

One of the objective of this chapter is to generalize results in Chapters 2 and 3 were
concerned with customers of the same priority. Though we would very well inter­
pret an interruption as the server processing a high priority customer, the models
were basically confined to single priority. Otherwise questions like arrival process
of priority customers, description of waiting space of such customers would arise.
The present chapter is concerned with a two-priority service system. In contrast
to fixing N as the upper bound for number of interruptions of a low priority cus­
tomers service, the customer is given the option to choose the maximum number
of interruptions he is willing to undergo, subject to a maximum of N. Nevertheless
the customer who chooses to undergo interruptions closer to N (say> N /2) will
be given incentives, which will not be available to those who do not opt for such
length interruptions. Specifically we assume that qi, 0 ~ i ~ N, is the probability
of a low priority customer opting for maximum of i interruptions. Thus the results
here generalizes those of chapter 3. Specifically we concentrate on a single server
queueing model consisting of two queues-an infinite capacity queue of low priority
customers and a finite capacity N of high priority customers. Customers join the
system according to a MMAP. If the server is free, at the epoch of an arrival of a
customer (low priority/high priority) can immediately join for service. An (N +1)
faces solid figure with the face marked 0 to N, is tossed at the beginning of the
service of an ordinary customer. i th face turns up with probability qi (0 ~ i ~ N).
This decides the maximum number of priority customer(s) allowed to be served
during the service of the specified ordinary customer. During the service of a low
priority customer preemption can take place by the arrival of a high priority cus-
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tomer. Then the preempted customer waits at the head of the low priority queue
till either the high priority queue becomes empty or the maximum number of high
priority customers permitted to be served, as per the outcome of the toss of solid
object, whichever occurs first. The restartj resumption of preempted customer's
service takes place when the high priority queue becomes empty or the maximum
number of high priority customer's service permitted during his effective service
is realized. vVe introduce a threshold random variable which competes with the
duration of each preemption; if this realizes before completion of preemption then
the preempted customer has to get its service repeated; otherwise the service is
resume. Here the random variable corresponding to low priority customers service,
high priority customers service and threshold random variable are all distinct and
independent PH distributed. The system is analyzed under stable regime. A few
useful measures for system performance are obtained. These help in designing an
efficient system. Numerical results are provided to illustrate the system perfor­
mance . vVe also examine the optimal value of N.

4.1. Mathematical Model

We consider a queueing model in which arrival of low priority and high priority
customers occur according to MMAP with representation (Do, DI ) of order r. The
arriving customer is of low (high) priority with probability PI (P2)' If the server is
idle, an arriving customer (low priority or high priority) can immediately join for
service. During low priority customers service the arrival of high priority customer
preempts him, provided the number of high priority customers served during his
preernptions has not reached the maximum allowed by the outcome of the solid
figure by his own initial choice, and the preempted low priority customer waits
as the head of the infinity capacity queue of low priority customers. Subsequent
high priority customers arriving during that period wait in the finite capacity (K)
queue. An N +1 faced solid figure with markings 0, 1, ...... , N, respectively is tossed
at the beginning of a low priority customers service; let qi be the probability that
the tossing results in i, (0 ::;; i ::;; N) , then i is the maximum number of high
priority customers allowed to be served during his service period. It may hap­
pen there is no priority customer present to be served during the effective service
time of a low priority customer, even when the experimental outcome is i(~ 1).
The moment preemption takes place the threshold random clock starts ticking.
The preempted customer gets its service repeated /resumed when the high prior­
ity queue becomes either empty or the number of high priority customers served
during his service period reaches its maximum, whichever occurs first. When the
preemption time exceeds a threshold random variable, the interrupted customer
gets its service repeated on completion of preemption; else the service is resumed,
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that is it starts at the point where it got preempted. Duration of services of low
and high priority customers are PH distributed random variables with represen­
tations (a, S) and ({3, T), respectively; the threshold r.v is PH distributed with
representation (0,U). All these random variables are mutually independent.Write
S° = -Sf:., TO = -Tf:. and UO = -U~ where f:. is a column vector of l's of
appropriate order. Let N1(t) , N 2(t), Set), B1(t) and B2(t) denote, respectively,
the number of low priority customers, high priority customers, status of server,
maximum number of high priority customers permitted to be served during a low
priority customers service and the number of high priority customers so far served
, including the present one , if a high priority service is going on by preemption.
When Set) = 0, the server is busy with high priority service and a preempted
low priority customer is waiting as the head of the queue; when Set) = 1, the
server is busy with high priority customer with no preempted customer waiting
and Set) = 2 stand for the server busy with low priority service. The process
X(t) = ((NI (t), N 2 (t ), Set), BI(t), B2(t), Sl(t), S2(t), S3(t), M(t)), t ~ O}; is a con­
tinuous time Markov chain (CTMC) which turns out to be LIQBD with nth level
given by £(n)=U \lI(n, m, l), 0 ~ m ~ K, l = 0, 1,2. The subsets of \lI(n, rn, l) are

1

defined as {en, rn, 0,jI,j2, i l , i2 , i3 , i4) ; 1 ~ jl ~ N; 1 ~ j2 ~ jI; 1 ~ i I ~ a; 1 ~ i2 ~

b;°~ i3 ~ c; 1 ~ i4 ~ r}, for 1 ~ rn ~ K, {(n, m, 1, i2 , i 4) ; 1 ~ i2 ~ b; 1 ~ i4 ~ r}
and for °~ m ~ K, {(n,rn, 2,jI,j2,iI,i4); 1 ~ jl ~ N; 1 ~ j2 ~ jl; 1 ~ i 1 ~ a; 1 ~
i 4 ~ r} . The states in \lI are listed in lexicographical order.The transitions among
subsets \lI(n, m, I); l = 0,1,2 are as follows:

• For 1 ~ m. ~ K, IK ® IN(N+l)/2 ® la 0 t, 0 I(c+l) ® P1DI, IK ® t, 0 PIDl
and I(N(N+Il/2)+KN 0 la ® P1D1 records transition rates to states in wen +
1, tn, 0), \lI(n + 1,m, 1) and Wen + 1,m, 2) respectively, starting from states in
\lI(n, m,0), \lI(n, m, l)andW(n, rn, 2).

• The matrix D = (Dlihx(N+l)' i = 1,2, ...... , N + 1 is a column vector with
components Du, D 12, , D1,N+l; D li = TO®Qi-lei®o:0Ir, 1 ~ i ~ N +1;
records transition rates at the beginning of low priority service on completion
of a high priority priority customers service where ei is a column vector of
order i with 1 in the 1st place and zero elsewhere.

• The matrix Q = (QldlX(N+l)' i = 1,2, ...... , N + 1 is a column vector with
components Qll,Q12 ......... ,Ql,N+l; o; = SO®Qi-lei0o:0ft, 1 ~ i ~ N +1;
records transition rates at the beginning of low priority service on completion
of a low priority customers service in state 2 where ei is a column vector of
order i with 1 in the 1st place and zero elsewhere.

• The matrix B = (Blihxa, i = 1,2, ...... , a is a column vector with components

B ll , B 12......... , B1,a; B1i = TO ® [a ej ej' ej r 0 t, , 1 ~ i ~ a;
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records transition rates corresponding to repeat/resumption of preempted
low priority customer's service on completion of a high priority customer's
service, where ei is a column vector of order 1 in the i th place and zero
elsewhere.

• For 1 ~ m ~ K, the matrices TO 0 f3 0 In t, 0 P2Dl records transition
rates to states in w(n, m ~ 1,.) and w(n, m + 1,.) respectively, from states in
W(n, m, .);

The infinitesimal generator of the Markov chain governing the system is given
by

Co Cl 0 0 0 0 0

C2 A1 Aa 0 0 0 °
Q = 0 A2 Al AD 0 0 0

o 0 Az Al Ao 0 0
(1.1)

• The matrix Co = [cai,j)] represents a square matrix of order r(Kb + 1)

which corresponds to transition from i to i, when the system is free with
low priority customer; 0 ~ i'la ~ K. The matrices Do, f3 iZI P2DI, TO 0 t,
specifies elements of C6°,o), Co0,1) and C61

,0) ,respectively. h 0 P2D1 provides
the elements of Cai

,i+ 1) , 1 ~ i ~ K - 1 and TO iZI (3 0 I, lists the elements
of C~i,i-I) , 2 ~ i ~ K , while S2 E9 Do records the transitions in Cgi,i) ,
1 ~ i ~ K - 1 , T E9 Do E9 P2D1 corresponds to the transition rates in Cgi,i) ,
i=K.

• The only non zero block in Cl are the transition from w(n, m, .), n=m=O to
W(l, m, 2); 'It(0, m, 1) to W(l, m, 1) and are denoted by ci1

) , ci2
) respectively.

Here ci1
) = [C~11) [0]] where cl11) = [El E2 . . E N + l ] with

E, = qi-1ei 0 a 0 P1DI• e, is a 1 x i row vector having 1 in the pt place and
zero elsewhere. The matrix ci2

) = [ I K ® t, ® Pl D l [0]] records arrival of
a low priority customer when server's state is 2.

• The matrix C2 = [[0] C~l)] I where block [0] indicates no service comple­

tion of low priority customer during state 0 and 1 of the server. The matrix
e(N+l)(N+2)/2 iZI So e t, in C~I) records transition from Wen, 0, 2) to Wen,0,2),
if n = 1 and IK ® eN ® (SO iZI f3 ® Ir ) lists the transition rates to 'It(0, m, 1)
from \}J(1, m, 2), 1 ~ m ~ K.
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• The matrix Aa records arrival of low priority customers in to the system where
the only non zero elements are diagonal ones. The matrices IK @IN(N+l)/2 @

Ia®Ib®I(c+l)@P1D1 ,IK@h®p1D1 and I((N+1l(N+2l/2l+KN®Ia®P1D1 in Al
lists the arrival of low priority customer within states Wen, rn, 0), Wen, m, 1)
and Wen, rn, 2).

• The matrix A2 in Q lists the service completion of low priority service. The

matrices A~ll = [[0] I K ® eN ® SO @ f3 ® t. J' and

A~2l = [ e(N+ll(N+2l/2 ® Z [0]] where Z = (Zli)~XN+1' i = 1,2, ...... , N + 1
is a column vector of Zu, Z12, '" ......
, ZIN+l; Zli = SO ® qi-lei ® ex ® L; 1 ~ i ~ N + 1 records transition rates
in W(n -1,0,2), W(n -1,rn,2) of A2 , starting from states in w(n,O,2) and
Wen, m, 2) respectively.

• The matrix Al in Q records transition from Wen, rn, l) to itself. The compo­
nents in Al are All, A12, A13 , A14 , A 15 and A16 each of which records tran­
sition rates from states in Wen, m, 0) to Wen, m, 0); wen, m, 0) to Wen, m, 1);
Wen, m, 1) to Wen, m, 1); Wen, m, 1) to Wen, rn, 2); wen, rn, 2) to Wen, m, 0)
and Wen, m, 2) to Wen, m, 2).

(a) The matrix All is as follows: IN(N+ll / 2 ® la ® H, where H = G1 EB G2 ,

G1= F$Do, F = [~ ~O]' G2= T@Ic+1 records transitions to Wen, m, 0)

from Wen, m, 0), 1 ~ m ~ K - 1 , IN(N+l)/2 ® la ® t, ® I(c+l) ® P2Dl records
transition rates from Wen, m, 0) to wen, m + 1,0), 1 ~ m ~ K - 1 and
IN(N-t-l )/ 2 @ la ® (H EB P2Dl) If m = K. IN(N+ll/2 ® la ® T(O) ® f3 ® IC+1 ® I,.
records transition rates from Wen, m, 0) to Wen, m - 1,0), 2 ~ m ~ K.

(b) The matrix Al~ records transitions in W(n, m, 2) from W(n, m, 0) and
is as follows: The matrix [[0] diag [( [01 diag(Ij B) )] ] , 1 ~ j ~ N ,
diag [( [0] diag(IjB))] denote a diagonal matrix whose i th diagonal ele­
ment is ([0] diag(IjB)) and diag(IjB) is a diagonal matrix whose j diag­
onal element is I J B, I j is the identity matrix of order j, records transition
from Wen, 1,0) to wen, 0, 2). The matrix diag [eiB] ,2 ~ i ~ K is a diagonal
matrix with i th diagonal element e.B where e, is a column vector of order i
with 1 in the 'ith place and 0 elsewhere, records transition from Wen, m, 2) to
W(n,m -1,2), 2 ~ m ~ K.

(c) The matrix A13 lists transition rates in Wen, i, 1) to w(n,j,l), 1 ~

i,j ~ N. Diag[T$Do] records transition rates in Wen, m, 1) from Wen, m, 1),
1 ~ m ~ K -1 and T$DoEBP2Dl if m = K. diag[h®P2Dl], 1 ~ i ~ N-1
lists transition rates in Wen, m + 1,1) from Wen, m, 1) and diag[TJ ® f3 @ IT]
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corresponds to transition rates to Wen, m - 1,1) from Wen, m, 1), 2 ~ i ~ K.

(d) The matrix A14 records transition rates in W(n,i,2) from W(n,j,1).
1 ~ i,j ~ K where the transition to Wen, 0, 2) from Wen, 1, 1) is Ai~) =

[Wu Wl 2 . . W1(N+l)] and W1i = TO 1&1 qi-lei ® 0: ® IT where ei is a
row vector of order i with 1 in the 1st place and zero elsewhere and other
transition in A14 are [0] block matrices.

(e) The matrix A15 in Al records transition rates in Wen, m, 0) from Wen, m, 2)
and such transition arises only when the system is busy with low priority
service and m=O. Thus in A1S , transition to Wen, 1,0) from Wen, 0,2) is de-

scribed by A1s(l ) and is described as follows: A1s(1) = [[0] Ai;1) rwhere

Ai~1) = diag (Ii(Ia ® j3 ® (5 ® P2DI») , 1 ~ i ~ N .

(f) The matrix A16 records transition rates to Wen, j, 2) from Wen, i, 2),
o ~ i,j ~ K, where the matrix I(N+1)(N+2l/2 (8) (S EB Do) lists transition
rates in Wen, 0, 2) from Wen, 0, 2). IN ® (S $ Do) lists transition rates within
Wen, m, 2) for 1 ~ m ~ K -1 and IN ® (SEBDo) if m=K while IN®Ia®P2DI
records transition in Wen, m + 1,2) from Wen, rn, 2), 1 ~ m ~ K - 1.

4.2. Description of the phase type distribution
for the services

The focus of this section is to describe the time it takes to process a job once it
enters into the service facility. We assume that the service times are of phase type
with representation given by (a, S) of order a. The services are subject to preemp­
tions. When the current service is preempted for the first time, counting clocks,
which counts the number of priority customers served during his service period, pre­
emption time (service time of current high priority customer), and threshold clock,
respectively, will simultaneously be started. The preemption clock and threshold
clock are of phase type with representations given by, respectively, ({3, T) of order
b, and (8, U) of order c. Once the high priority queue becomes empty/the number
of high priority during the customer's service period reaches its maximum allowed
level, whichever occurs first, the service of the preernpted job will begin again. The
service will resume (from the phase where the service got interrupted) or repeat
(like a new service) depending on whether the interruption clock expired before the
threshold clock or not. In addition, if the number of preemptions during the cus-
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tomers service reaches its maximum allowed level, then the service of the current
job will not be preempted anymore once the service begins again for this job. On
the other hand, if the preemption clock expires before the number of preemption
reaches its maximum, determined by that customer at the beginning of his service,
the counting end temporarily and will resume from this should there be another
preemption for the existing job.

Following the procedure indicated in the previous chapter we will be able to
compute the phase type distribution governing the effective service time. Mean
of this phase type distribution can be computed in the usual manner. Thus the
system is stable iff the effective service rate is larger than the arrival rate.

4.3. Stationary Distribution

Denote by x the stationary vector of X(t), and partition x in to sub vectors
x(n, m, l), 0 :::;; ti :::;; 00,0 :::;; m :::;; K, l = 0, 1,2. and satisfying the condition xQ=O
and xe=l. The vectors x(O) and x(l) are obtained by solving the equations

x(O)CO+ x(1)C2 = 0,

x(O)C1 + x(1)(A1 + RAz) = 0

subject to the normalizing condition

x(O)e + x{l)(I - Rt1e = 1

where R is the minimal non-negative solution to the matrix equation

(4.2)

(4.3)

(4.4)

From these results, we obtain some interesting measures which helps in design of
the system. Some of them are as follows:

4.4. Performance Measures
00

(a) The mean number of low units in the system, ElPs = En x(n).
n=O

00 K
(b) The mean number of high priority units in the system, Ehps= E E m x(n, m)

n=Om=O
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r
(c) The fraction of time the server is idle=E x(O, 0, l).

1""1

00 K
(d) The fraction of time the low priority customer is preemptede- E E x(n, m; 0)

n=1 m=1

(e) Fraction of time the server is busy with high priority customer (with no pre­
00 K

empted customer in the system)= E E x(n, m, 1).
n=1 m=1

(f) Fraction of time the server is busy with high priority customer (with pre-
empted customer in the system)=

00 K

E Ex(n,m,2).
n=1 m=l

(g) Fraction of time the server is busy with low priority customer =
00 N jl a r 00 00 N a r

EEL: EL: X n,O,2,iI,i2,i,/+ EEL: EL: Xn .m ,2,i l .iI ,i .l ·
n=ljl=0i2=Oi=11=1 n=1 m==1 il=1 i=11=1

00 N j1 a r
(h) Effective service rate of low priority customer= EEL: E E X n ,O,2,j I, j z ,i ,l S?

n=l iI=Oh=O i=ll=]
ooooNar

+EEL: E E Xn,m,2h,il,i,1 sp
n=l m=l il=l i=ll=l

4.5. Stability Condition.

We examine the system stability. What is needed is that the rate of drift to any
lower level from a given level should be higher than that to a higher level. This
means that the Markov chain is stable iff

(4.5)

where IT is the unique solution to ITA = 0, ITe = 1 where A = Ao + Al + A2 .

The above condition implies that the arrival rate should be less than the effective
service time (reciprocal of the expected time to completely serve a customer).

4.6. Numerical Results

For the above input parameters we have plotted 4 graphs in Fig. 4.1. These rep­
resent variations in the mean number of low priority customers against increasing
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value of the probability of customers of that priority.

K N b 2 D [
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Fig. 4.1: PI versus Mean Number of Customers in the System

Depending on the outcome of the toss ( t he decision of the low priority customers
to allow none , one or two priority customers to be served during its effective service
lime) , we have the four graphs given in Fig. 4.1. (i) '10 = I;q, = q, = 0 (ii)
'10 ~ 0.8, q, = 0.2, q, = 0 (iii) '10 = 0.6;q, = q, ~ 0.2 (iv) '10 = q, = 0.33;q, = 0.34.
At PI = 0.2 all the above result in almost the same mean number of customers; at
Pt = 1.0 (no high priority customer turns up) all these have the same value , which
is not surprising. Fig. 4.2 provides the behavior of fraction of time server is busy
with high priori ty customer for increasing value of Pi in t he four cases discussed in
Fig. 4.1. Note that at PI = 1 this fraction turns out to be zero.

Fig. 4.3 provides the fraction of time the sever is busy with low priority cus­
tomers with increasing value of PI in the four cases indicated in Fig. 4.1 and 4.3.
As expected when Pt = 1 (when all arrivals are of low priority) , the fract ion of time
the server is busy serving low priority, turns out to be the maximum. Similarly the
fraction of time the server is busy serving high priority customers decrease with
increase in PI value (see Fig. 4.4)

An unexpected behavior of effective service time versus Ph when PI > 0.8 is
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Fig . 4.2: PI versus Fraction of time the server is busy with high priority service but
no preempted customer in the system

seen in the case qo = 1.0 and Qo = 0.6, ql = (1'J = 0.34. It decreasing for increasing
PI in the range (0.8,1.0) . The four graphs in Fig.4.6 are on expected linea.
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Fig. 4.3: PI versus Fract ion of time the server is busy with low priority service

-
I-t I
J-.
, I

J-
•I-.-f.-
1-

li u u .,
"

- Y' .......-- "' ......
-~ .....,- -..-

Fig. 4.4: Pl versus Fraction of time the server is busy with high priority service
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Fig. 4.6: PI versus fraction of time the server is idle



Chapter 5

Discrete time Queue with
Interruptions and Repeat or
Resumption of Service.

In chapter 2 through 4 we considered continuous time LIQBD which represented
some of the lively problem in queues with interruption. We have progressively
moved from simple models to more complex to more complex situations. Since
the counterparts in discrete time is least studied we move to that in this chapter.
In this chapter an infinite capacity single server discrete time queue to which cus­
tomers arrive according to a PH distributed inter arrival process. If the system is
idle an arriving customer go to his service started immediately. During the ser­
vice more/one/none interruptions can occur and arrival of interruption process is
geometrically distributed with parameter 'Y. When interruption occurs the thresh­
old random clock starts ticking. When the duration of an interruption exceeds
threshold random variable the interrupted customer has to undergo the service
right from the beginning on completion of interruption; else his service is resumed.
Several performance measures are evaluated. Numerical illustrations of the system
behavior is also provided.

5.1. Model Description

Here we consider a discrete-time queueing system where the time axis is divided
into intervals of equal length, called slots. In continuous-time queues, the prob­
ability of more than one event such as an arrival and a departure or two de­
partures or more event taking place during a very short interval of time is zero,

89
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whereas it is not so in discrete-time queues. Let the time axis be marked by
0,I,2,3, ,m, Suppose the departures and interruptions occur in (m-,m),and
the arrival occur in (m,m+). In this queueing model arrival process follows phase
type distribution represented by (c{, L) of dimension. Here the mean inter arrival
time 1= 1 - L1. The service time,interruption time and threshold random variable
are also phase type distributed. The phase type represent.ation of service time,
interruption time and threshold random variable are ({j, S),OZ, T),(i5, U) and mean
service times are s = 1-SI, t

f = 1-TI, 'U = 1-Ul respectively. During service an
interruption can occur where the interruption process is geometrically distributed
with parameter f. 'When the service is interrupted the server goes for interrup­
tion or vacation and threshold random clock starts ticking. Then a competition
between interruption time and threshold random variable starts. On completion of
interruption the interrupted customer may repeat /resume its service based on the
following rule: If the interruption time exceeds threshold the interrupted customer
gets its service repeated from the very beginning; else its is resumed.

The state of the system at time n be Pn and its value is 0 if it is in interrupted
state and 1 otherwise. If Pn = 0, let the number of customers in the system includ­
ing the one in service be Hn , the service phase be En, the phase of arrival be In,
the phase of interruption time be Dn and the threshold random variable be En. If
Pn = 1 there are only three LVS; the number of customers, service phase and arrival
process. The process n = (Hn , Fn, Bn, Dn, En' I n) is a discrete time rnarkov chain
whose nth level is given by l(n) = U'I/;(n, 1); n ~ 1,1 = 0, 1. The subsets of 'ljJ(n, 1)

I

are defined as {(n,0,il , i2 , i 3 , i4);I ~ i l ~ a;l ~ i 2 ~ b;O ~ i 3 ~ c;l::;; i 4 ::;; r},
,{en, 1,il,i4 ) ; 1::;; i l ::;; a, 1::;; i4 ::;; r} _ Consider the Markov chain

described by li. = {(O, I n) U iii; 0, e; ti; En' I n) U in.; 1, En, I n)} , n ~ O.
Co Cl
C2 Al An

The LIQBD has transition probability matrix \(1 = A2 Al A o
A2 Al Ao

Transition from level 0 to 0 is represented by the matrix Co = L. When the system
is idle an arriving customer is immediately taken for service. This part of'ljJ is given
by Cl- We have Cl given by Cl = [[0], (3 0 ['0:]. The matrix C2 corresponds to
transitions on completion of the service of a customer the server is in level 1 and

the matrix is as follows: C2 = [ So[~ L ] .

[

Ao(l) A~2)]
Here A o records transitions to '1/;(n+1,1) from '1/;(n, l) given by An = A (3) A (4) .

u 0

A~l) corresponds to transition during interruption period. The matrix A~l) = le>. ®
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T@U®l'Q; where 0 = [~ ~o]. Write the matrix A~2) = [FI F2 . Fa ] I

where Fj = TO @ [(3 ej ej . . ej J' ® z' a corresponds to level change from
n to n + 1 when the interruption state changes to busy state. In a discrete time
queueing system more than one event can takes place at an epoch. Here the in­
terruption mode first changes to busy and then an arrival occur. Consider the
matrix Ai3) = ,S@T/ @ ~ @z'a. This matrix is related to arrival of customers when
the system state changes from busy to interruption. The matrixA~4) = S ® [la

corresponds to arrival of customers during busy period.

Now we describe A2 · The matrix Az can be represented as [l~L l~l)] where

A~) = SOf3 @ L and A~ll = ,Soe ® T/ @ J ® L which designate level change from n

to n - 1. Here A~I) refers to departure of a customer along with the server chang­
ing from busy to interruption state and A~~ = SOp @ L. corresponds to
departure and server continuing to be busy with the next customer in line.

The matrix Al which corresponds to transitions within level, and is as follows:

[

A(1) A(Z)]
Al = ~3) t4) .Here continuing in the interruption state is represented by the

Al Al
matrix A~I) = Ja@T@U@L and is order, where only transition due to interruption,

threshold and arrival phase change occur. Here U = [Jo ~]. The matrix

A~Z) in Al is of order ab(c + l)r x a:r and A~2) = [K I Kz . . . K a J' where

K, = TO 0 [f3 ej ej . ej] T @ l'Q; and ej is a row vector of appropriate order

with 1 in the i" place and 0 elsewhere. The matrix A~2) correspond to transition
from interruption to busy state. In this section when interruption time exceeds
threshold, the interrupted customer gets its service repeated. Thus events in these
transition corresponds to removal of interruption followed by repeat/resume of
service. Occurrence of interruption during service is indicated by the matrix Ai3

)

and is given by Ai3
) = ,S @ 11 ® J0 L + ,Sue ® 1] ® 5® l' a. The first term in

Ai3
) stands for no service completion and arrival prior to interruption. The second

term stands for a service completion and an arrival take place before it skips to
(4) I (I-I) ,

interruption. The matrix Al = (S ® L + SOj3 0l Q;Jwhere c5 = (0, 8), shows that the
system maintain its status when it is busy with no arrival and service completion
in the first term and an arrival and departure in the second term.
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5.2. Stationary Distribution

Let A = Ao + Al + A2 and tt = 7fA, 7fl = 1. The LIQBD is positive recurrent
if 1rAo1 < 1rA2 1. Let x be the invariant vector of P with x = xP, z I = 1 where
x = [XQ, x}, ........]. By the matrix-geometric theorem (Neuts (1981)[25]) we have
Xi+l = XiR, where R is the minimal non-negative solution to R = Ao+RA I + R2 A2

and the vectors Xo, Xl are obtained by solving the equations

xoCo+xlGo!: =Xe

xoG! + xI(A1 + RA2 ) = XI

subject to the normalizing condition

xoe + Xl{I - R)-le = 1,

(5.1)

(5.2)

where [XQ, Xl] is the invariant vector of the stoehastic matrix [ Co Cl ]
C2 At + RA2 .

5.3. Description of the service process in Dis­
crete time queue

In this section we describe the time it takes to process a job once it enters into the
service facility. We assume that service time, interruption time, threshold random
variables are all independent phase type distributed random variables, with repre­
sentations (a, S), ((3, T) and (6,U) respectively. Let X denote the duration of the
effective service for a job. ie, X is the time between the arrival of a job to the service
facility until it leaves the facility. There is no restriction on number of interruptions
during the service of a customer. The interruption occurs to the service of a cus­
tomer with rate I which is "distributed geometrically. We define J1(t ), J2 (t ), J3 (t )
respectively, to the phase of service, phase of interruption and phase of threshold
random variable. The states and their description are given in the following table:

{Jl, }
1 ~ J1 ~ a The service is in Phase J 1
{(J1,J2) } The threshold clock is expired, the interruption clock is in state J2

, the service phase is frozen in state J 1 .
{Jl,h J3 } The interruption clock is in state J2, the threshold clock is in state J 3

and the service phase is frozen in state J1.

The Markov process {Jl(t), J2{t ), J3(t )} : t ~ 0 with absorbing state * is defined
on the state space
n = {(O,J2);1 ~ J2 ~ a}U{(J1,h);1 ~ J1 ~ a,l ~ J2 ~ b}U
{(J1 , J2 , J3); 1 ~ J I ~ a, 1 ~ J2 ~ b, 1 ~ J I ~ c}
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and its infinitesimal generator matrix is given by
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(5.3)

where

. Where

[

LlOl
Ll = Lln

Ll21

o
Ll 12

Ll 22

Ll
03

]

Ll~3
(5.4)

LlOl = S -if, Ll 03 = 1/3 ® 0 ® I
Lln = TO ® Q, Ll12 = I ® T

Ll2 1 = I ® TO ® e, Ll22 = I ® T ® UO

Ll 23 = 10 (T eo U)
and

AO = (SO 0 0) I •

Theorem 5.3.1. The effective service time, X, has phase type distribution with
represetitaiioti ((, Ll) of order a-t-be-t-ube, where ( = (Q, 0, 0) and Ll is given in 5.4.

Proof. First note that a new service will begin in level °in state J 1 with probability
(Xjl' Once the service begins it can end with or without interruptions and looking
through all possible transitions, one will see that the transition matrix is given in
Ll. Thus, the service time is nothing but the time until absorption into state *
starting from level O.
Mean tJ.~ = (~-Ll)-le and standard deviation of X is IJLl = J2(rr-~-2e - J.t~'.

Due to the special structure of the matrix ~given in (2), we can compute the mean
as well as the standard deviation of X explicitly and recursively. First, we define

f3f[~b.!;-1 = (u,v,w),.

Using the above equation and exploiting the special structure of Ll, we get
'U~" ~nd- 'W'

. Also we get the expression for 11.~' = ue+ve+we. 0

5.4. Stability Condition.

Theorem 5.4.1. The Markov chain {Xt, t ~ O} is stable if only if0«(-£) le < I-'~ .
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5.5. Expected waiting time

We compute the expected waiting time of a tagged customer and is positioned r in
the queue at the arrival epoch. We consider the Markov process {N(t), S(t), J(t)}, t =
0,1,2, ..... , where N(t) is the rank of the customer, S(t) = {0,1} as the state of
the server, J(t) as the phase of the service process at time t. The r'" rank of the
customer may decrease to r - 1 when the present customer in service leave the
system after completing his service.
\Ve arrange the state space of X(t) as.{r, r -1, , 3,2,1} x {a, 1} x {I, 2, , a} x
{*} where * is an absorbing state which denote the tagged customer is selected for
service.

The infinitesimal generator Q= [~ ~O] where.3. =

Al A2

Al A2

Al A2

iL
and .3.0=[ 0 0 o. B J' where fJ = [0,5°1'. The matrix Al = [An A12]A13 A14

and All = Ia®T0U ,A12 = [Bll B 12 e., J' where B 1j = TO® [{3 ej ej

,.413 = ,S 0 Tf 0 J and A14 = S. The matrix A2 = [_0 _0] where
A2l A22

A21 = ,S°{3 0 Tf e J and A22 = (S°(3 e L) (1 - ,).

Expected waiting time of a customer who joins the queue as r t h customer
=-A1l (I - (A2A11yU - A2Al ) - 1

5.6. Performance Characteristics

Some useful descriptors of the model are listed below.

00

1. Mean number of customers in the system= 2: nxne = Xl (I - R)-2e
1'1=1

00

2. Fraction of time the server is busy= 2: X n1e
1'1=1

00

3. Fraction of time the server remains interrupted= L xnoe
1'1=1
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4. Thus the fraction of time the server is idle=xoe

5. Fraction of time service is in interrupted state
00 00

+Fraction of time service is going on= L xnoe + L X nl e
n=l n=1

00

6. The rate at which server break down occursevy L Xnl e
n=1

95

7. The rate at which repair completion (removal of interruption) takes place
00 a b c r

before the threshold is reached ) RNT = L L L L L Xn,O,i,j,k,1 TjO
n=1 i=l j=1 k=11=1

where TjOis the ph component of TO

8. Rate at which repair completion takes place after the threshold is reached
00 a b r

R'T = L L L L :I:,,\,O,i,j,O,I1jo
n=1 i=1 j=11=1

00 a t

9. Effective service rate R'T = L L L Xn,l,i,l Sp
n=l i=11=1

10. The probability of a. customer completing service without any interruption=P(scrvice
timc-; ge~et-((cally distributed random variable with parameter ry).

5.7. Numerical Results

In order to illustrate the performance of the system, we fix the following values:

L = [0.3 0.2] S = [0.2 0.1] T = [0.2 0.1]
0.2 0.3' 0.1 0.2' 0.1 0.2 '

U = [0.5 0.2] LO = [ 0.5 ] SO = [ 0.7 ], TO = [ 0.7 ], uO = [ 0.3 ].
0.2 0.5 0.5 0.7 0.7 0.3

Fig. 5.1 indicates that mean number of customers in the system increases with
increasing ,.

In this model, fraction of time the server is interrupted increases with increasing
interruption rate. It is seen from Fig. 5.2 that the graph is almost linear in shape.

Like other models fraction of time the server is idle decreases with increasing
interruption rate ,.
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Fig. 5.1: Gamma versus Mean number of customers in the system
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Fig. 5.2: Gamma versus Fraction of time the server is interrupted

With increasing interruption rate from 0 to 0.25, the effective service rate de­
creases gradually, which is seen in Fig. 5.4.

Like other continuous time models in this thesis, the rate at which sever break
down also increases with increasing interruption rate and the curve is linear (see
Fig. 5.5).
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Chapter 6

A Comparison Study and
Conclusion

.!

-,

-,-........... ~I."' ,', . I'! \ \' /,'

In this chapter we compare, wherever possible, the models that were discussed in
chapters 2 through 4. Since chapter 5 is on discrete time queues, we do not go for a
comparison of that with the rest of the models discussed. However a brief mention
of what has been done there will be made.

We recall that in the second chapter two problems were discussed. In the
first one we did not specify any upper bound on the number of interruptions a
customer can encounter whereas in the second we imposed an upper bound. Then
Fig. 6.1 shows that the mean number of customers in the one without a bound
for interruption turns up to has much larger number of customers even moderately
values of I than that for the second problem. For example, when I = 6 the first one
has more than 50 customers on the average, whereas the second has only half that
number. When a super clock to control the interruptions is introduced (chapter
3) there turned out to be further drop in the mean number of customer with
increasing values of I in comparison with the two models of chapter 2. However,
on realization of the super clcok, the present interruption is not terminated to
the customer in service; instead it is allowed to continue until its natural end
and thereafter no interruption is permitted to that customer. This is model I
of chapter 3. In contrast, in model 2 of that chapter the present interruption is
instantly terminated and no further interruption is permitted to the customer in
service. This has substantial effect on the mean number of customers in the system­
a drastic reduction in that number is the outcome. So this model is an excellent
design where customer impatience is involved.

In terms of several other performance measures also model 2 of chapter 3 is
the best and worst performance is presented by model I of chapt.er 2. This is not



100 Chapter 6. A Comparison Study and Conclusion

•
I _co-- ~_,- _1:--_ _ a _ •.- _ _ a _ _

11
I · ·• IJ.,
j)
J I.,

I = :'. • • • •

Fig. 6.1: Gamma versus Mean Number of ClL..tomers in the System

-- ,,_.-_1:_'-_.._.-_.-.

• •• • •
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Fig. 6.3: Gamma versus Fraction of time the server is idle

surprising since model I of chapter 2 permits unlimited number of interruptions to
a customer, whereas the remaining three models bring in restrictions on the num­
ber of interruptions. Fig.6.2, 6.3 and 6.4 provide comparison of the performance
measures; fraction of time server is interrupted, fraction of time sever is idle and
effective service rate against incidence of interruption, between the four models . In
all cases model 2 of chapter 3 is superior to all other models and , as mentioned
earlier, model I of chapter 2 is the worst performing one.

Finally, coming to the traffic intensity: note that model 2 of chapter 3 has least
traffic intensity whereas model I of chapter 2 has t he highest. This leads to the
conclusion that the super clock has a telling effect on reduction in congestion; this
is further enhanced by the termination of interruption of the present customer at
the epoch of realizat ion of the super clock itself. This scenario is presented in Fig.
6.5. Here the graph presents the growth of traffic intensity with increase in value
of 1 .

In Chapter 5 we concentrated only on t he discrete time version of model I of
Chapter 2. A few performance measures are computed.

In conclusion , this thesis is a study of queues with inte rruption of service . Sec­
ond interpretations of interruption are considered depending on the context. In
contrast to earlier work on queues with interruption, we have succeeded in design­
ing a rule to decide whether to resume from where the service was interrupted or
repeat the whole thing from the very beginning. The congestion that occurs in
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these models is mainly due to the decision to repeat a service consequent to an
interruption. Nevertheless, if handled properly, interruption of service can be an
added source of income to service stations.

We did not elaborate on discrete time queue with interruptions. This is a prob­
able area where quite a bit can be done. Even in the case continuous time models
discussed in this thesis, variations can be effected. One such variation is the fol­
lowing: instead of repeating the service from scratch, when the decision is to go for
repetition, repeat from where it started after the interruption prior to the present
one. This results in as sort of Markov dependence.

It may be noted that the models discussed in this thesis has a wide range of
applications, a few of which have been indicated already.
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