CLASSIFICATION OF HANDWRITTEN CHARACTERS: DEFINITION, IDENTIFICATION AND UTILISATION OF REGIONAL CHARACTERISTICS FOR LOWER CASE ENGLISH CHARACTERS

Thesis submitted by
R. KRISHNAN THAMPI
for the award of the degree of DOCTOR OF PHILOSOPHY
Under the
FACULTY OF TECHNOLOGY

DEPARTMENT OF ELECTRONICS
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
COCHIN - 682 022, KERALA

DECLARATION

I hereby declare that the work presented in this thesis is
based on the original work done by me under the supervi-
sion of Dr. $C . S . S r i d h a r$ in the department of Electron-
ics, Cochin University of Science And Technology and that
no part thereof has been presented for the award of any
other degree.
Cochin 682033

August 24, 1994.

CERTIFICATE

This is to certify that the thesis titled CLASSIFICATION
OF HANDWRITTEN CHARACTERS: DEFINITION, IDENTIFICATION AND
UTILIZATION OF REGIONAL CHARACTERISTICS FOR LOWER CASE
ENGLISH CHARACTERS is a report of the original work
carried out by R. Krishnan Tampi under my supervision and
guidance in the department of Electronics, Cochin
University of Science And Technology and that no part
thereof has been presented for the award of any other
degree.
Cochin $682022, ~$

ACKMOLEDGEMENTS

```
It is with a deep sense of gratitude that l recall my
association with Prof. C. S. Sridhar under whose supervi-
sion and guidance l began my forays into the field of
character recognition. This thesis is the outcome of the
education and guidance I received from Prof. C. S. Srid-
har. I wish to express my hearty thanks to him for helping
me in achieving this goal successfully.
```

I wish to express my thanks to Prof. K. G. Nair, Head,
Department of Electronics, Cochin University of Science
And Technology, Cochin for allowing me to work in the
department for my Doctoral studies.

With to record my thanks to my employer, M/S FACT Ltd.,
Udyogamandal for permitting me to undertake this higher
study.
I wish to thank my friends and colleagues for the support
they had given me during the years when 1 was pursuing my
studies.

$\begin{array}{llllllll}\text { A B S T } & \text { R A C }\end{array}$

```
A new procedure for the classification of lower case
English language characters is presented in this work. The
character image is binarised and the binary image is
further grouped into sixteen smaller areas, called Cells.
Each cell is assigned a name depending upon the contour
present in the cell and occupancy of the image contour in
the cel1. A data reduction procedure called Filtering is
adopted to eliminate undesirable redundant information for
reducing complexity during further processing steps.
The filtered data is fed into a primitive extractor where
extraction of primitives is done.
Syntactic methods are employed for the classification of
the character. A decision tree is used for the interac-
tion of the various components in the scheme, like the
primitive extraction and character recognition. A charac-
ter is recognized by the primitive by primitive construc-
tion of its description. Openended inventories are used
for including variants of the characters and also adding
new members to the general class. Computer implementation
of the proposal is discussed at the end using handwritten
character samples. Results are anaiyzed and suggestions
for future studies are made. The advantages of the propos-
al are discussed in detail.
```


CDNTENTS

CHAPTER - I

1.1 What Is Pattern Recognition 1
1.2 Applications Of Pattern Recognition 1
1.3 Basic Concepts Of Pattern Recognition 3
$\begin{array}{ll}1.4 \text { Fundamental Problems In Pattern Recognition } \\ & \text { System Design }\end{array}$
1.5 An Application - Character Recognition 7
1.6 The Problem 13
1.7 A Brief Querview Of The Following Chapters 14

CHAPTER - II

2. 1 Introduction

2.2 Literature Survey 18

CHAPTER - 111

3.1 Introduction halmantinn 29
3.2 Properties 0f Characters 29
3.3 The size Of The Character Matrix 33
3.4 The Binary Image 34
3.5 Vocabulary 41
3.5.1 Basic Vectors/Basic Polynomials 43
3.5.2 Number Df Basic Vectors/basic Polynomials 45
3.5.3 Properties Of Circular Vectors/Polynomials 46
3.5.3a Transpose 46
3.5.3b Reverse Video 47
3.5.3c Symmetry 47
3.5.3d Hex Representation 48
3.5.3e Reduction Of Higher Order Polynomial To Lower Order Polynomial 49
3.5.3f Approximation 49
3. 6 Labeling Of Words 49
CHAPTER - IV
4.1 Introduction 61
4.2 Problem Formulation 61
4.3 Features For The Class Of Images Treated 67
CHAPTER - V
5.1 Introduction 73
5.2 Filtering Preliminaries 73
5.3 Defenitions 75
5.4 Filtering Procedure 79
5.5 Evaluation Of Preservation Measure 90
5.5.1 Cell Occupancy Measure - P1 94
5.5.2 Redundancy measure - P2 94
5.5.3 Contour Retention Measure - P3 94
5.5.4 Transpose Preservent Measure - P4 94
5.5.5 Shape Weight Measure - P5 94
5.5.6 Contour Symmetry Measure - P6 94
5.5.7 Contour Weight Measure - P7 95
5.6 Filtering Steps/Procedure 96
5.7 Filtering And Retention Of Features And Its Relation With Primitives 97
CHAPTER - VI
6.1 Introduction 99
6.2 Primitives 100
6.3 Main Primitives 102
6.4 Auxiliary Primitives 103
6.5 Primitive Extrction 103
6.5.1 Extraction Of Auxiliary Primitives 113
6.5.2 Extraction Of Main Primitives 115
6.6 Tolerances in Measurements 118
6.6.1 Tolerances In Auxiliary Primitives 118
6.6.2 Tolerances In Main Primitives 119
6.7 Measurement Inventories 119
CHAPTER - VII
7.1 Introduction 121
7.2 Character Description And Primitives 123
7.3 Heirarchy In character Description 124
7.4 Rules Adopted For Character Description 125
7.4.1 Generation Character Description 126
7.5 Illustrations Of Character Descriptions 127
7.6 Open - Ended Inventories 128
7.7 Character Classification scheme 134
7.8 The Decision Tree 135
7.9 Interaction Amongst Scanning, Primitive Extraction and Character Classification 140
7.10 Computer Implementation Of The Proposal 142
7.11 Realisation Of The Decision Tree 148
7. 12 Graphcal Representation Of The Decision Tree 149
7.13 Conventions Adopted For Character Scanning 150
7. 14 Additional Branches In The Decision Tree 152
7. 15 Recognition Of The Character Variants Without Altering The Decision Tree 152
CHAPTER VIII
8. 1 Summary 157
8.2 Results of The Thesis 161
6.3 Suggestions For Future Work And The Range Of The Current work 163
REFERENCES 165

LIST OF FIGURES

CHAPTER - I
Fig: 1.1 A Grid Measuring System 5
Fig: 1. 2 Functional Block Diagram Of A Pattern Recognition System 8
Fig: 1.3 The Block Diagram Of A Character Recognition System 10
CHAPTER - III
Fig: 3.1 Binary Images Of Some Characters 36
Fig: 3.2 Cells Of The Characters Of Fig: 3.1 39
Fig: 3.3 Some Binary Words And Their Rotational Forms 40
Fig: 3.4 Some Binary Words, Their Basic Words, Number Of Rotations It Had To Undergo Arrive At The Basic Word And The Basic Ward 60
CHAPTER - IV
Fig: 4.1 A Set Of Normally written Characters 64
Fig: 4.2 A Set Of Distorted Handwritten Characters 65
Fig: 4.3 Rotational Forms of Some Basic Words In Their Cell Format 68
CHAPTER - V
Fig: 5.1a Examples Of Splitting Of Binary Words 78
Fig: 5.1b Examples Of Merging Of Two Binary Words 78
Fig: 5.2 Computation Of Preservation Measure At Cell Level 91
CHAPTER - VII
Fig: 7.1 Labeling Of The Character 129
Fig: 7.1a Labeling Of The Four Characters 130
Fig: 7.2 The Decision Tree 138
Fig: 7.3 Recognition Employing The Decision Tree 141
Fig: 7.4 Flow Diagram Of The Computer lmplementation 145
Fig: 7.5 Images Of A Few Chararctera To Show That Filtering Does Not Affect Recognizability 151
Fig: 7.6 Representation $0 f$ The Decision Tree 153
Fig: 7.7 Variants In The Decision Tree 155

LIST OF TABLES

CHAPTER - 111
Table 3.1 Characters Grouped Into The Five Classes 31
Table 3.2 Resolutions Used In Different Character Recognition System 35
Table 3.3 Basic Numbers/Basic Words And Their Rotational Forms 55
CHAPTER - V
Table 5.1 Replacement Rules For The Three Stages Of Filtering 82
Table 5.1a Filtering Rules Stage 1 82
Table 5.1b Filtering Rules Stage 11 84
Table 5.1c Filtering Rules Stage III 84
Table 5.2 Statistical Data On A Sample Set 86
CHAPTER - VI
Table 6.1 Possible Combinations Of Main Primitives 104
Table 6.2 Different Types of Auxiliary Primitives And Their Role in Character Description 106
Table 6.3 List Of Auxiliary Primitives 107
Table 6.3a Auxiliary Primitives - Two Limb Junctions 107
Table 6.3b Auxiliary Primitives - Three Limb Junctions 108
Table 6.3c Auxiliary Primitives - Four Limb Junctions 109

INTRODUCTION

1.1 WHAT IS PATTERN RECOGNITION

```
The definition of "pattern" in English dictionary is, "an
example or model". that is, some thing which can be
copied. A pattern can be defined as any distinguishable
interrelation of data. events or concepts. A pattern is
also an imitation of a model. Examples of patterns are:
The shape of a face. a table, the order of a musical note
in a piece of music.....etc. Thus recognition of a face. a
printed or handwritten word, the lyrics composed by a
poet, the diagnosis of a disease from symptoms or data
from clinical investigation,..etc, are all pattern recog-
nition problems.
The recognition of patterns include visual and aural,
recognition of spatial patterns ( pictures, fingerprints,
handwritten characters .....etc., and temporal patterns
(speech, wave forms....etc.) with the help of sensory
aids. Conceptual or abstract items can be recognized
without the help of sensory aids.
```


1.2 APPLICATIONS OF PATTERN RECOGNITION

The application areas of pattern recognition can be
grouped into the following [GR1]:
1). Man machine communications like automatic speech recognition, speaker identification, OCR systems, cursive script recognition, image understanding.
2). Biomedical applications like ECG, EEG, EMG analysis, Cytological, Histological and other sterological, applications, X - Ray analysis and diagnosis.
3). Applications in Physics like Bubble chamber events, other forms of track analysis and high energy Physics
4). Crime and criminal detection - Finger print, Hand writing, Speech, sound and Photo identification.
5). Natural resources study and estimation - Agriculture, Hydrology, Forestry, Geology, Environment, Cloud pattern and Urban quality.
6). Sterological Applications - Metal and mineral processing and Biology.
7). Military Applications - Nuclear device explosion, Radar and Sonar detection, Missile guidance and detection, Target identification, Reconnaissance.
8). Industrial Applications - CAD, CAM, Computer assisted product assembly and testing, automated inspection and quality control, nondestructive testing.
9). Robotics and Artificial Intelligence - Intelligent sensor technology and natural language processing.

1.3 BASIC CONCEPTS OF PATTERN RECOGNITION

```
The subject of pattern recognition spans a number of
scientific disciplines, uniting them in the search for the
solution to the common problem of recognizing the members
of a class in a set containing elements from many pattern
classes. A pattern class is a category determined by some
given common attributes. A pattern is the description of
any member of a category representing a pattern class.
When a set of patterns falling into a disjoint class is
available, it is desirable to categorize these patterns
into their respective classes through the use of some
automatic device. The reading and processing of canceled
checks is such a problem. Such tasks can easily be per-
formed by human beings, but machines can achieve much
    greater speeds.
Hierarchical relations exist between patterns and pattern
classes. Consider the character recognition problem. A
specified letter or numeral, no matter how it is printed
or written, retain some attributes which can be used as a
means for identification. They are identified and classi-
fied according to the observed attributes [GR6]. Thus the
basic functions of a pattern recognition system is to
deteot and extract common features from the patterns
```

describing the objects that belong to the same pattern
class and to recognize the pattern in a new environment
and classify it as a member of the pattern class under
consideration [GR2].
1.4 FUNDAMENTAL PROBLEMS IN PATTERN RECOGNITION SYSTEM DESIGN

The design of an automatic pattern recognition system involve some major problem areas [GR6]. The first one is the representation of input data which are measured from the objects to be recognized. This is a sensing problem. Each measured quantity describes the characteristics of a pattern and in turn the object. Suppose the pattern in question is a character. A grid measuring scheme as shown in Fig: 1.1, can be successfully used in the sensor [GR4]. If it is assumed that the grid has " n " elements, the measurements can be arranged in the form of a measurement vector:
Where each element x_{i} is assigned the value of 1 if the cell contain a portion of the character and is

1	1	1	:	1	1	1	1	1	:	1		1	$!$	5			2	2
1	2	0	0	0	0	0	, 3	0	0	0	0	0	θ	2	0	6	1	0
:	0	0	0	0	0	0	0	0	\bigcirc	0	2	0	0	0	\square	0	1	-
1	0	0	0	0	0	0	-	2	0	3	-	2	0	0	0	0	1	Q
1	-	\%	0	0	\%	0	0	0	5	0	θ	0	0	3	6	6	1	5
1	0	Q	0	6	$\overline{6}$	5	0	0	0	3	0	0	0	0	2	0	1	0
1	6	0	0	0	0	0	0	0	0	6	6	0	Q	Q	9	0	:	0
1	0	\bigcirc	0	\bigcirc	0	0	0	2	0	0	0	0	0	2	0	0	\pm	0
i	$\overline{0}$	0	0	2	0	0	0	0	0	9	0	2	0	2	6	C	1	2
$!$	0	2	0	0	\bigcirc	0	\bigcirc	0	0	2	b	5	0	Q	6	c	1	9
1	\bigcirc	0	0	Q	0	0	0	\square	0	0	2	0	0	0	2	2	1	?
1	0	0	0	2	0	\bigcirc	2	9	*	3	0	0	\%	\bigcirc	2	2	\vdots	2
1	8	6	0	0	0	6	0	0	\%	2	2	0	0	13	0	O	1	
$\dot{1}$	6	0	9	Q	0	0	13	Q	0	2	0	Q	6	2	-	0	1	2
i	2	0	2	0	0	\bigcirc	3	0	0	2	0	0	0	0	0	0	1	σ
1	3	0	0	2	0	2	0	2	2	0	2	0	0	2	0	10	1	2
1	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	1	0	2
0	1	0	0	0	0	3	0	3	0	0	0	6	0	0	1	:	0	0
0	0	1	:	?	:	1	1	1	1	1	1	"	1	i	1	:	1	\pm

F1g:- i. i

assigned a value of 0 otherwise.

The pattern vector contains all the measured information available about the pattern. The measurements perfarmed on the objects; of a pattern class may be regarded as a coding process which consists of assigning to each pattern characteristic. a symbol from the alphabet set $1 \quad x_{i}$.

The second problem in pattern recognition concerns the extraction of characteristic features or attributes from the input data and the reduction of dimensionality of pattern vectors. This is often referred to as the preprocessing and faature extraction problem. For example. in character recognition, strokes are often extracted as features.

system. The functional blocks are only for convenience in analysis and do not produce any isolation of interactive operations between blocks. The pattern to be recognized must posses a set of measurable characteristics and when these measurements are similar within a group of patterns the latter are considered to be members of the same class.

1.5 AN APPLICATION - CHARACTER RECOGAITION

Character recognition has been a subject of great interest to many computer scientists. engine日rs and people from other disciplines. Intensive research has been made in this field and this has made possible efficient means of entering data directly in to the computer and capturing information from data sheets, books and other machine printed or handwritten materials. Such capabilities great$1 y$ widen the application of computers in the araas like automatic reading of texts and data. man-machine communication. language processing and machine translation. Handling of bulk data generated by offices, banks and the like is made possible because of the capabilities of computers. Uhile computers can process data very quick1y. the input of data is very slow and this has been a major bottle neck in data processing.

Eig:-1.2
FLNETIGHAL ELDC: DIAGRAM OF A PATTEFN RECOGNITION SYSTEM

The block diagram of a character recognition system is shown in Fig:1.3 [GR3]. At the input end. characters typed or written are scanned and digitized to produce a digitized image. The characters are typically scanned in a horizontal direction with a single-slit reading head which is narrower but taller than the character. As the head moves across the character, it produces a signal which is conditioned to be proportional to the rate of increage of the character area. At this stage the system will start to locate regions in which data was entered. type written or printed on the input document. Once these regions are located, the data blocks are segmented into character images. Instead of keeping the images in multi gray levels, it is common practice to convert them into binary matrices to save memory space and conputational effort [SUE4]. Depending on the complexity of the character shapes and the vocabulary involved. the size of the matrix, which reflects the resolution of a digitized character. is varied to achieve speed and accuracy. Typically a character of size \quad (wide) * \quad (0 (high) pixels is sufficient for recognizing stylized type fonts, where as for handwritten English. Chinese and Indian characters, the dimension of the matrix size is comparatively high [SUE3]. After digitization. location and
9

Fig 1.3
THE BLICK DIAGRAM DF A CHARACTER RECOGNITION SYSTEM
segmentation, characters in the form of binary matrices go through the preprocessor to eliminate random noise, voids, bumps and other spurious components which might still be contained in them. In some cases normalization in size and orientation in position are performed to facilitate the extraction of distinctive features in the subsequent stages [SUE2]. Once the characteristics of the cieaned character have been extracted, they are matched to a ist of references. In many cases a knowledge base is built during the learning process to classify the characters. in addition, distance measures as well as shape derivation, shape matching and hierarchical feature matching in the form of decision trees are also used. The decision maker is influenced by the types of features that are detected. A suceessful recognition system is built on the joint operation and performance of the feature detector and classifier.

As a result of the great many styles and types of writings that can be seen in real life applications, recognition of handwritten characters is far from solved. The main problems are [GRB]:
1). Variations in character shapes, for example letters written as T and s.
2) Variations in size of the character.
3) Variations in pitch which correspond to proportional spacing. These variations affect the location and segmentation of characters.
41. Ornaments and serifs of the characters.
5). Variations in line thickness.
6). Touching of wide characters like mand w.

In order to recognize handwritten characters, the machine must be able to handle all the above problems.

Variations in handwritten characters are greater because. they can be written in innumerable ways. Since each person has his or her own ways and styles of writing, and character samples written by the same hand are not always identical in size or shape, there are an infinite number of possible character shapes. The problem of handwritten character recognition is of great interest to researchers, because even human beings are said to make about 4% error [SUE4]. Although a lot of research has been done and is going on, the following three problems still exist in the recognition of handwritten characters [SUE 5].

1) Fewer sub patterns are to be used to describe the complicated structure of handwritten characters.
2). Thinning distortion should be avoided when extracting

features.

3). Seek a universal approach applicable to both printed and handwritten characters.

The first problem can be overcome by extracting peripheral features, which require fewer sub patterns. Thinning distortions can be overcome if features are extracted from the original image itself. Still the third problem of an universal approach exists. In this work this problem is addressed in a limited way.

1.6 THE PROBLEM

The problem on hand is the recognition of LOWER CASE ENGLISH LANGUAGE CHARACTERS. To enable this goal a new approach in image coding and data reduction is presented in this work. The classification techniques used are based on syntactic method. The character samples are binarized using a square grid of size $12 * 12$. The physical dimensions of the grid depends on the size of the handwritten character and always a 12 * 12 grid is used for the digitization of the image. The binarized image is labeled. The labeling procedure adopted is a new formulation. A three digit labeling is adopted in this work. A set of features are defined for the class of images treated which help in the
filtering. The modified image is subjected to FlLTERING, *a procedure used for data reduction. The reduced image is then subjected to primitive extraction and then a computationaly simple recognition technique is applied for classifying the characters into their respective classes. Syntactic methods are employed at the ciassification stage. Table look up operation is used to simplify the procedures at image coding, data reduction and classification stages. The primitives defined are of a new kind and an openended inventory is maintained for the addition of new primitives for different descriptions of the types of images handled here and for adding new members to the group.

1.7 A BRIEF REVIEN OF THE FOLLOYING CHAPTERS

labeling procedure is adopted.

Chapter 4 discusses the need of feature selection in character recognition. The selection of suitable features for lower case English language characters is presented. It is also shown that two types of features are required for the kind of data reduction technique used.

Chapter 5 deals with data reduction techniques employed in this work. The data reduction procedure called FILTERING. is performed in three stages. Necessary rules are generated and used for filtering. A PRESERVATION MEASURE is defined in this chapter. This measure ensure that the reduced version of the image retain sufficient characteristics of the original image.

Chapter 6 deals with the selection and extraction of Primitives for further processing. Two types of primitives, Main Primitives and Auxiliary Primitives, are defined. Their extraction is also discussed in this chapter.

In chapter 7, classification of the unknown character image and its computer implementation are discussed. Rules are developed for the purpose. Again table look up method is adopted for convenience.
 future works based on the new formulation are presented.

CHAPTER - II LITERATURE SURVEY

2.1. INTRODUCTION

Chinese character recognition..etc. To my knowiedge no previous work was reported in computer recognition of handwritten lower case english language characters.

2.2. LITERATURE SURVEY:

```
The open literature on character recognition can be divid-
ed into three parts. The first deals with character de-
scription and their generation for different languages.
Classifiers based on syntactic methods form the second
part which has approaches like definition and extraction
of primitives ...etc. in them. Syntax aided decision tree
classifiers of various scripts form the third part of the
reported work.
In one of the earliest works on character recognition
[GRIM]. Grimsdale et al says that, "a description of a
character is produced in terms of the length and slope of
straight line segments and the length and curvature of
curved segments". Many authors like Narasimhan and Reddy
[NARI] describe systems with variations in the structural
approach. In other scripts, structural character recogni-
tion have been employed by, Stalling [STAL] for Chinese
characters, Seth and Chatterjee [SETH] for Devanagari,
Yoshida ..et al for Japanese, and Chinnuswamy and Krishna
moorthy [CHIN] for Tamil.
```

In [RABI], Rabinow remarks that the terms clearly written" has a loose interpretation and depends on the verdicts of the recognizer. He also makes the same comment on the term "unconstrained".

The structural description for character recognition can be found in the work of Grinsdale et al [GRIM]. This heuristically developed system does not employ any explicit syntactic technique. Narasimhan, an early proponent of syntactic description, later proposed a syntax-directed interpretation for a class of pictures in [NAR2]. in [NARI], Narasimhan and Reddy provides a syntax aided approach to the recognition of hand printed English characters. They go on to say that the syntax rules currently in use must be refined, modified and augmented continuously on the basis of experience, (ie, on the outcome of past performancel and other relevant knowledge acquired". They also mention in this work that the flexibility necessary in a recognition system should use the rules only as an aid and flexibility and openendedness shall be the basic features of a recognition system so that it can learn from and grow with experience. If the above condition is fulfilled, the system will imitate the performance of human beings. In this context it may noted that in the
scheme developed in this thesis, an effort is made to incorporate flexibility and openendedness.
The shift from syntax guided to syntax aided recognition is mainly caused by the desire to evolve a recognition system which can imitate the human beings. A perusal of the relevant literature indicates that to equal human performance the computer must possess the sophistication of the eye-brain syster which uses description as a tool. Description represents a higher level of intelifgence. A perspective discussion on description is given in [KANE].

Uhr in [UHR], offers an "alphabet" of straight lines and curves from which patterns including characters can be generated.
Marc Berthod in [BERT], explains the process of cursive
script writing. He explains the process of generation of
handwriting and implies that this is caused by the follow-
ing three types of forces.
1). Active forces due to muscular activity
2). Viscosity of muscles and articulation
3). Inertia of arms and muscles.
This work goes on to state that excepting very few works,
most reported systems relay on structural primitives". The

```
consensus on structural approach although not a very
common situation in pattegrn recognition, is mainly because
of the geometrical shapes of these characters. Berthod
goes on to explain both on-line and off-line processing in
this work.
```

In [EDEN], Eden proposed a set of eighteen strokes as
primitivs which can be deduced by symmetry about a hori-
zontal or vertical axis and by vertical shift, from a set
of four basic strokes called "hump". "bar". "hook" and
"loop". Any isolated character can be defined by the
concatenation of the Eden's primitives, where as it is not
possible to completely represent a word using these. Eden
along with Mermelstein used these primitives for the
generation of a recognition system [MER1 \& MER2].

In [BOZI], a method of estimating a correct string X from it's noisy version Y produced by cursive script writing is explained.

In [SUE1]. C. Y. Suen gives the major building blocks of the $O C R$ system. including digitization, preprocessing. smoothing, standardization and feature extraction, and classification of characters. It also presents a brief survey of the challenging problems of recognition of
handwritten characters. Suen in this analysis says that
"there exists hundreds of type fonts and thousands of print fonts, each having its own style and peculiarities and as such machine recognition of multi font and handwritten characters is far from being solved". The main problems are variations in :-
1): Character shape
2). Size
3). Pitch
4). Line thickness
5). Ornaments and serifs.

It may be noted that hand printed characters do not exhibit these many variations.

Suen goes on to say that the hand written character recognition is a problem of great interest and challenge to researchers because of the complexity of the problem.
Q. R. Wong and C. Y. Suen, in [WONG]. analyses a general decision tree classifier with overlap for large character set recognition. They say that the main advantage of a decision tree over a single stage classifier is that complex global decisions can be made via a series of simple and local decisions. to a successful character recognition system. The various features found in the iiterature are grouped in to the following two classes by Suen in this work. These are:

1) Global analysis. and
2) Structural analysis.

These two types of features are further subdivided into six categories. These categories are:
a) Distribution of points,
b) Transformations.
c) Physical measurements,
d) Line segments and edges.
e) Outline of character, and
f) Centre line of character.

Suen in this work discuss the performance and recognition rates of various systems employing these features.
C.Y.Suen and S.Mori discusses the need for standardization
in [SUE3]. In this work they discuss in detail the necessity of standardization of character shape for the automatic recognition of hand printed characters. It is argued in this work that consistency in character shape is the kay to any succemsful character recognition system. Since the written characters must be faniliar to the human eye and readable by computers, special care must be taken in the design or adoption of the shapes of these characters which nave similar geometrical and topological properties. Because of the rich contextual information available. there may not be any difficulty in the recognition even in the absence of discriminating features. But this is not the case with a computer and hence the need for the standardization in character shape.

In [SUE4]. C. Y. Suen explains the need and process of feature extraction. He describe the hand print system in some detail. It is suggested in this work that instead of using multi-gray levels it is sufficient to convert the character image in to a binary image for further processing. By converting the image into a binary image, complexity in further processing can be avoided. It is mentioned here that a matrix $5 i z e$ of $30 * 40$ is appropriate in most character recognition problems.
On hand print recognition, Suen. .et al presents a survey
of recognition algorithms, data bases, character models
and hand print standards in [suE5]. Characteristics.
problems and actual results on online recognition of hand
printed characters for different applications are also
discussed in this work. They attribute the possible
causes for errors in hand print recognition to the infi-
nite variations of shapes resulting from the writing
habit, style, education, region of origin, social environ-
ment, mood, health and other conditions of writer. as
well as other factors such as the writing instrument.
writing surface, scanning methods and machine recognition
algorithms. The paper presents the advances in hand print
recognition according to the vocabulary studied and
recognition techniques are examined and compared. They go
on to emphasize the fact that the central issue in charac-
ter recognition lies in the extraction of features. The
paper classifies the recognition techniques in to three
classes. namely, global features. distribution of points
and geometrical and topological features. It is stated in
this work that :yntactic or logic methods are more fre-
quently used in character recognition than in other fields
of pattern recognition.

Online recognition of printed characters of any font and size is dealt with in [KAHAl, by S.Kahan, T. Paulidis and H. S. Baird. They describe a system that recognizes printed text of various fonts and size for the Roman alphabet. The system combines several techniques to improve the overall recognition rate and uses a binary image. The fact that feature based methods are less sensitive to font shape and size is stressed in this work.

Some work has been done in the recognition of indian language like Devanagari, Bengali, Tamil, Telugu and Kannada. The characters in these languages are large in number and are complex in their structure. Most of the researchers adopted the strategy of splitting the characters first into primitives (line-like elements) satisfying certain relational constraints. These are then used as features and classification is done by means of a decision tree approach or topological matching procedure. Sethi \& Chatterjee, [SETH], considered loops and line-like primitives of constrained hand printed Devanagari (vowels and consonants) as features. They adopted a multistage decision process in which each stage of the decision narrows down the choice of the class membership. Sinha \& Mahabala, [SINHA], used labeling as a local feature extraction

Chatterji, [RAM], considered nine different primitives for distorted Kannada characters which were then recognized using the Viterbi algorithm.

Most of the earifer work on handwritten character recognition depended on the selection and use of primitives which are useful only to the particular procedure selected. A universal approach was not possible with these. Also the inventories of primitives were of a closed nature so that the addition of new members to the class was very difficult. In the present approach, an attempt is made to provide a universal set of primitives and the inventory of primitives is kept openended to facilitate addition of new members into the class.

Reported work on cursive script writing is very small, especially in the case of lower case English language characters.

CHAPTER 111- IMAGES AND CODING

3.1 INTRODUCTION

The theme of the chapter is the development of a new
vocabulary which when used for labeling the binary image
helps in data reduction. A fixed number of symbols are
aimed at in achieving this. This is donefor standardizing
the image shape as suggested by Suen in [SUE3].

3.2 PROPERTIES OF CHARACTERS

```
The images treated in this work are the Lower Case English
Language Characters. These are finite in number, twenty
six to be specific, and are geometric in shape [BERT].
although many variations are possible for each character.
These characters fall into the following five categories:
1). Characters which are symmetrically placed on the grid
    like the characters a.m, n, o, ...etc
2). Characters which show a predominance in the upper
    half of the grid, like p, q....etc
3). Characters which show a predominance in the lower
    half of the grid, like b, d,...etc
4). Characters which show a predominance in the left
    hand side of the grid, and
5). Characters which show a predominance in the right
```

```
    hand side of the grid.
Here the term predominance is used in the sense of higher
pixel occupancy. Even among these five classes there are
sub classes. Table 3.1 gives a list of all the twenty six
characters grouped into these five categories. Since
punctuations and numerals (Arabic) do not exhibit varia-
tions like alphabets, they are not considered here.
```

The geometrical properties exhibited by these characters
are unique and hence topological properties can be ex-
ploited successfully for further processing [BERT].
It is always advantageous to represent the character as a
binary image [ROSE]. This form of digitization enables
data reduction, thereby reducing the memory requirements.
More over binary matrices can also represent a character
image completely as effectively as any other multi-gray
level scheme. Based on this areument characters are trans-
formed into binary images.
A binary picture can be defined as a mapping of each grid
point of the picture on an orthogonal co-ordinate system
on to a set composed of ''s $^{\prime}$ (image points) and $0^{\prime} s$
(blanks) $\{A G U 1]$. This is equivalent to saying that wherev-
er a boundary of the image is present these points will

```
SET - I Characters which are symmetric about the grid
    = a, c, e, f, k, l, m, n, o s, u, v, w, x, z *
SET - II Characters which show a predominance on the
    upper half of the grid.
    * g, j, p, q, r, y =
SET - III Characters which show a predominance on the
    lower half of the grid.
    | b, d, h, i, t =
SET - IV Characters which show a predominance on the left
    hand side of the grid.
    = d, g. j, q, y =
SET - V Characters which show a predominance on the
    right hand side of the grid.
    -b, h, k, p, t"
It may be noted that the sets IV and V are only combina-
tions of characters belonging to sets Il and ll| and hence
they need not be considered as separate sets.
```

TABLE 3.1


```
only a finite number of subsets. If the area of each
subset is quite small, the number of pixels will be rela-
tively large and processing burden will be severe. The
number of pixels can be made small by increasing the area
of the subsets, but the averaging process over each subset
may then cause the pixel representation to differ signifi-
cantly from the original image.
```


3.3 THE SI2E OF THE CHARACTER MATRIX

Pictures convey most of their information through edges. That is why edges are extracted in most image understanding systems. Contours can be represented by gray level differences in pictures. When information lies in boundaries and not in textures, as in the case of characters. the sampling of pictures is equal to the quantization of parametrized contour functions. In a picture, outlines can appear any where. Therefore a uniform quantizer is the most appropriate.

```
The resolution required for digitizing a character depends
On the thickness of the lines making up the character. A
12 * 12 grid matrix has given satisfactory results.
The amount of information that can be extracted from a
sample is restricted to the resolution of the digitizer or
```

the size of the grid matrix. Higher resolution reduces the recognition error rate but does this at the cost of effort and speed. Different resolutions used by various researchers are given in table 3.2.

The use of the $12 * 12$ square grid is justified by the end results.

3.4 THE BINARY IMAGE

RESEARCH WORKER	YEAR	MATRIX SI2E
GRINSDALE. Ot al	1959	$40 * 64$
HIGHLY MAN	1962	$12 * 12$
MUNSON	1968	$24 * 24$
TOU \& GONZALEZ	1971	$60 * 60$
CASKEY \& COSTS	1972	$48 * 48$
BEUN	1973	$32 * 32$
MORI... et al	1975	$60 * 60$
THE AUTHOR	1984	$12 * 12$

[^0]| 000011111000 | 000001100000 | 000000100000 |
| :---: | :---: | :---: |
| 000100001000 | 000010100000 | 000000100000 |
| 001000000100 | 000101000000 | 000000100000 |
| 010000000100 | 000101000000 | 000000100000 |
| 010000000010 | 000110000000 | 000000100000 |
| 100000000010 | 000100111111 | 000000100000 |
| 100000000100 | 001100000100 | 000000100000 |
| 100000000100 | 011100000100 | 011111100000 |
| 100000001000 | 110010000100 | 110000100000 |
| 110000011000 | 100010001100 | 111000110000 |
| 010000111000 | 000010001100 | 100001010000 |
| 001111100111 | 000001111100 | 100110011111 |
| Character"a" | Character*b" | Character"d* |
| 010010111100 | 0000011111110 | 000000100000 |
| 010111100100 | 000001100001 | 000001000000 |
| 100110100100 | 000001000001 | 000001000000 |
| 000110100100 | 000011000001 | 000001000000 |
| 000110100100 | 000111000001 | 011110110000 |
| 000110100100 | 001101000001 | 000010000000 |
| 000100100100 | 110100000110 | 000100000000 |
| 000100100100 | 000111111000 | 000100000000 |
| 000100100100 | 000100000000 | 001100000000 |
| 000100100010 | 000100000000 | 110010000000 |
| 000100100010 | 000100000000 | 000100000011 |
| 000100100011 | 000100000000 | 000111111100 |
| Character"m" | Character"p* | Character*t* |
| Fig: - 3.1 | | |
| | LAGES OF SOME | ACTERS |

```
Depending upon the contour encountered in each cell. the
cells have various pixel occupancy.
```

The pixel occupancy is defined as the existence of a character boundary segeent in each cell, and thereby the number of 1 's in the 3 * 3 binary matrix.

Each cell can have a pixel occupancy ranging from 0 to 9. The cell with o pixel occupancy is called a NULL CELL and the cell with a pixel occupancy equal to nine is called a FULL CELL. The existence of a Full Cells is rare, where as Null Cells are very common.

Each 3 * 3 binary matrix (a cell), can be transformed into a 9 bit linear word. The transformation is effected by writing the elements of the binary matrix in a particular order, starting with the element a_{11} at the LSB, moving along the periphery of the matrix from left to right and with a_{21} at the MSB. The central element of the matrix a_{22} is treated as the carry bit. Here $a_{i j}$ are elements of the matrix:

$$
A \quad=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]
$$

This transformation give rise to a binary word, and is
equivalent to a polynomial which can be written as:

The cells are shown in Fig: 3.2. Each matrix can now be represented by an eight bit word and a carry bit 1 total 9 bits , The cell to byte transformation is unique and has a one - to - one correspondence.

Consider a binary word representing the contour in any cell. When this binary word is rotated, the central bit of the cell, that is the carry bit, remain stationary and all other bits take part in the rotate operation. Rotate left operation is chosen for coding the image in this work. Rotate right operation can also be chosen. However, a complementary set of rules are needed for further processing.

Since all but the central bit take part in the rotate operation, the basic characteristics like relative positions of bits do not change. Eight different words, including the original word, can be generated by this rotate operation from a particular binary word.

This transformation does not reduce or distort the information content in the cell. Also this transformation simplifies operations on the cells, to manipulation on

000	011	111	000	000	001	100	000	000	000	100	000
000	100	000	000	000	010	100	000	000	000	100	000
001	000	000	100	000	101	000	000	000	000	100	000
010	000	000	100	000	101	000	000	000	000	100	000
010	000	000	010	000	110	000	000	000	000	100	000
100	000	000	010	000	100	111	111	000	000	100	000
100	000	000	100	001	100	000	100	000	000	100	000
100	000	000	100	011	100	000	100	011	111	100	000
100	000	001	000	110	010	000	100	110	000	100	000
110	000	011	000	100	010	000	100	111	000	110	000
010	000	111	000	000	010	000	100	100	001	010	000
001	111	100	111	000	001	111	100	100	011	011	111
Character ${ }^{\text {a }}$				Character" ${ }^{\text {\% }}$				Character"d"			
010	010	111	100	000	001	111	110	000	000	100	000
010	111	100	100	000	001	100	001	000	001	000	000
100	110	100	100	000	001	000	001	000	001	000	000
000	110	100	100	000	001	000	001	000	001	000	000
000	110	100	100	000	111	000	001	011	110	110	000
000	110	100	100	001	011	000	001	000	010	000	000
000	100	100	100	110	100	000	110	000	100	000	000
000	100	100	100	000	111	111	000	000	100	000	000
000	100	100	100	000	100	000	000	001	100	000	000
000	100	100	100	000	100	000	000	110	010	000	000
000	100	100	100	000	100	000	000	001	100	000	011
000	100	100	011	000	100	000	000	001	111	111	100
Character* ${ }^{\text {c }}$				Character" ${ }^{\text {c }}$				Character*t*			

Fig: - 3.2

CELLS OF THE CHARACTERS OF FIG: - 3.1


```
NOTE: 1) Carry bit is not included in the binary words as
            they do not take part in the rotate operation.
    2) Some binary words have only 3 rotational forms.
    3) Some others do not have any rotational forms.
    4) Examples of these two types are the last two
        binary words in this figure.
```


Fig: 3.3

SOME BINARY UORDS AND THEIR ROTATIONAL FORMS
strings of binary words and no matrix manipulation is necessary.
Further it can be seen that the matrices are sparse ma-
trices. Computer manipulation of sparse matrices is a
difficult task and hence the cell-to-byte transformation.

3.5 VOCABULARY

Syntactic methods of recognition call for functional
wordnames. To achieve this end, a new vocabulary is de-
veloped by ascribing labels to each binary word. lf the
word names include this feature and are amenable to
arithmetic operations. procedures are simplified. lt is
difficult to choose labels which explicitly describe the
contour encountered in every cell. A most suitable label-
ing procedure, which achieves the above goals is presented
in the following.

With eight bits and a carry bit available, the total number of combinations is 512. This means that there is a space with 512 sample points. This space can be called a CIRCULAR VECTOR SPACE, similar to a linear vector space. All these 512 do not exist in real life applications due to the finite nature of the shapes encountered in character ianages.

It can be seen that the distribution of combinations is symmetrical, with the null and full words contributing to one word each, progressively increasing to 126 combinations for binary words with 4 and 5 entries of 1 's.

```
                                    110
Assume the presence of a cell C C = 000
                                    O 1
The binary word generated from C C is b
                                    O O 1
Now consider the existence of another cell C C = 100
                                    100.
The binary word generated from }\mp@subsup{C}{2}{}\mathrm{ is b}\mp@subsup{b}{2}{}=0\mathrm{ i1 000 100.
                                    1 0 0
Now consider a third cell C C = 101
    000.
The binary word generated from C C is b
Perform a rotate left operatinn on b
    110
Then CS 
    O O 1
If bl is rotated left six times, we arrive at a binary
word }\mp@subsup{b}{6}{}=0\quad11000100\mathrm{ , which is nothing but }\mp@subsup{b}{2}{}\mathrm{ above and
one more rotate left operation yields b
eight different words are present in one group.
```


3.5.1 BASIC VECTORS/BASIC POLYNOMIALS

```
The circular vector space is of the type\sum < <; ( }\mp@subsup{x}{i}{}\mathrm{ , where
```

$\mathcal{X i}_{i}$ are or 1. Hence the cell C_{1} can be representeg as a polynomial $P_{1}=x^{4}+x^{1}+x^{0}$. Here < $4=\alpha 1=\alpha_{0}=1$, and $\alpha 7=\alpha 6=\alpha 5=\alpha=\alpha 2=0$ the ceil ca can be written as polynomial $P_{2}=x^{7}+x^{6}+x^{2}$, and the ceil C_{3} can be written as a polynomial $P_{3}=x^{7}+x^{3}+x^{0}$. In all these transformations the carry bit is not considered. Now consider the polynomial P2. The binary word for this polynomial is 11000010. If this polynomial is rotated left once, we get the polynomial $x^{6}+x^{5}+x^{1}$. Rotate this polynomial one more time and the resultant polynomial is: $x^{5}+x^{4}+x^{0}$. If the rotate left operation is continued 4 more times we arrive at the polynomial $x^{4}+x^{1}+x^{0}$. which is nothing but the polynomial P_{1}. Since a modulo 8 operation is adopted P_{1} is circularly congruent with P_{2}.

It was seen earlier that there can be 8 polynomials in each group. All of them are not unique and only one among these 8 is unique. This unique polynomial is termed as a BASIC POLYNOMIAL OF BASIC VECTOR.

DEFINITIDN

A BASIC POLYNOMIAL is that polynomial which cannot be generated by the circular shift of a lower order polynomi$a 1$.

COROLLARY

A BASIC POLYNOMIAL is that polynomial which has the least binary positional weight and is unique.

Least weight is binary positional value and so has the smallest HEX number.

Consider a polynomial of the form:

$$
F_{3}=x^{7}+x^{3}+x^{0}
$$

Divide this polynomial by x^{7}. Then.

$$
F_{1}=x^{0}+x^{-4}+x^{-7}
$$

Circular congruent MOD $8=x^{0}+x^{4}+x^{1}=P_{1}$
Thus P_{2} is derived from F_{1} and between F_{1} and $P_{2} . F_{1}$ which has a smaller weight, is the BASIC POLYNOMIAL. It can be established that P_{1} is the EASIC POLYMOMIAL in this group as this is the least weighted.

3.5 .2 NUMBER OF BASIC VECTORS/BASIC POLYNOMIALS

```
The number of basic polynomials (words) that can be gener-
ated from a binary word of order "i" is oiven by the
formula,
NEP=2 - [ (i-4) ( 2 i-2 -1) ] ---\cdots-- . 1
where N E P is the number of basic polynomials and "i" is
the order of the polynomial.
For i = 4. this number is almays 2i.
```

Equation (3.1) is applicable only in the case of polynomials of order greater than "4*, but is less than "7". In this work " $i^{\prime \prime}=7$, as the carry bit is considered separately and hence,
$N B P=2^{7}-\left[(7-4)\left(2^{5}-1\right)\right]=128-93=35$.
A polynomial with all $a_{i}=0$ does not exist in space and hence the NULL MATRIX is not accounted for in these 35 BASIC POLYNOMIALS. If the binary word representing the null matrix is also accounted for, then the total number of basic polynomials become 36.

These 36 basic polynomials can generate all the other $(256-36)=221$ polynomials by the rotate left operation.

3.5.3 PROPERTIES OF CIRCULAR VECTORS/POLYNOMIALS

3.5.3a TRANSPOSE

If the polynomial is divided by g^{8} and sign is neglected the resultant polynomial will be the transpose of the original polynomial.
Consider the polynomial $P_{6}=x^{6}+x^{4}+x^{1}+x^{0}$.
Divide this polynomial with x^{8}. The resultant polynomial
$P_{6}=x^{-6}+x^{4}+x^{1}+x^{0}$
$P_{6} T \bmod 8=x^{-2}+x^{-4}+x^{-7}+x^{-8}$
$=x^{4}+x^{2}+x^{7}+x^{0}$

Writing these two polynomials in a matrix form will yield the two matrices:
$P_{6}=$

1	1	0
0	x	0
1	0	1

and

$$
P_{6}^{T}=
$$

1	0	1
1	x	0
0	0	1

The above two matrices show that by dividing the polynomial by $X_{\text {B }}^{3}$ generates the transpose of it's matrix.

3.5.3b REVERSE VIDEO

```
The complement of the original is a reverse video repre-
sentation of the cell, which is obvious.
```


3.5.3c SYMMETRY

If a division by x^{8} results in the same polynomial then it is symmetric.

Conversely a symmetric cell will have an even polynomial around 3.

Consider the polynomial $x_{4}+x_{0}$. Let this polynomial be
named as P_{1}. Divide this polynomial by X_{8}, and the resultant polynomial which is named as P_{2} is, $x^{4}+x^{8}$. These two polynomials can be represented in the matrix form as:


```
These two matrices mre one and the same and M2 is generat-
ed by rotating }\mp@subsup{P}{1}{}(\mp@subsup{M}{1}{})\mathrm{ four times right.
```


3.5.3d HEX REPRESENTATION

Let the polynomial $x^{4}+x^{1}+x^{0}$ be represented by the binary word O OOO1 0011. The HEX representation of this binary word is 13. A circular left rotation of $x^{4}+x^{1}+x^{0}$ generates $x^{5}+x^{2}+x^{1}$ and can be represented as a binary word 000100110 where the HEX representation of the last eight bits is 26. Three more rotations of the binary word yields the binary word o ooli oool. Hence HEX $13=31$. Circular congruence of HEX representations are, $15=51,19=91,1 B=B 1,1 D=D 1, \ldots$ etc.

In general all HEX word pairs Di DO will exhibit this property if DO is odd and arises out of the symmetry encountered in such cells.

3.5.3e REDUCTION OF HIGHER ORDER POLYNOMIALS TO LOUER ORDER

 POLYNOMIALSA higher order polynomial can be reduced to a lower order polynomial by dividing it with x^{k+1} provided circular congruence is maintained, where k is the highest power in the polynomial.

3.5.3f APPROXIMATION OF POLYNOMIALS

An approximation $P_{j}=P_{i}$ can be done if and only if three terms match directly or circular congruence MOD 8 is satisfied.

There are other properties also, but only properties which are of interest to this work are listed. Next section uses the above to define "words" for syntactic processing at the classification level.

3.6 LABELING OF NORDS

It was shown earlier that for 8 bit words there are 36
BASIC worDS. With the addition of the ninth bit in the
central position, another set of 36 BASIC WORDS can be generated. Thus there are two sets of Basic Words, one set with carry bit equal to 1 and another set with carry bit equal to 0 , making the total number of Basic words 72. These 72 Basic binary words constitute the basic contours encountered in the type of images treated in this work. The basic contours/basic words are given a NAME or LABEL for ease of further processing. Each cell having a pixel occupancy of " n " is given a word name beginning with "n". To show the differences in contour a second digit is added. A third digit is also added to the word name to denote the number of rotations with respect to the chosen basic word. The scheme of naming the word can be arbitrary, but it is preferable to relate this with the sparseness of the contour.

The words have been written in such a way that they are amenable to octal division. This is done with a purpose. One of the binary representations chosen in Fig:3.3 is the binary word 00000111 with a carry bit equal to 0 , representing the matrix 111 000 000.

This binary word can be represented in octal format as 007

```
The binary word has 7 rotational forms 00 001 110.
00011 100, 00 111 000, 01 110 000, 11 100 000, 11 000 001
10000 011, all words with carry bit equal to "0". The
octal representations of these seven binary words are. 016
034, 070, 160, 340, 301 and 201 respectively. The binary
words are rotated subject to the following conditions;
```

1). The carry bit remains unchanged.
2). The most significant bit flows into the least
significant bit.
3) The most significant digit in the octal format can
never be more than 3 .
The third condition is so, because, the most significant
digit has only two bits contributing to its value. Thus
the number can be considered circular and modulo 128. One
amongst the aight in the group can be considered as a
Basic word.
It can be seen from the structure of the binary numbers.
that only odd numbers can be BASIC WORDs.However only the
least positional weighted binary numbers are considered as
basic words. From the constraint that the overflow is form
MSB to the LSB, the number of basic numbers is 36 , and
constitutes 512 different combinations of binary words by
including the binary words with carry bit equal to 1 . the
number of basic numbers become 72 and account for the 512 various binary numbers.

Consider the procedure adopted for the cell to byte transformation. An octal representation is not for simplicity, alone, but for deriving the basic numbers. Consider the cell 011

001
001 . whose binary representation is 00011110 with carry bit $(C)=0$. The octal representation for the word 00111 100, which corresponds to one left shift of bits with MSB overflowing into the position of the previous LSB. This new binary word has an octal representation of 074. The six other rotational forms of this binary word when the octal representation is used, are: $170,360,341$, 303. 207 and 017. In this example during the fourth rotation, a 1 bit overflows from the MSD to LSD, and a 341 results when the previous word of 360 is rotated once. Similar is the case with the fifth sixth and seventh rotations. When 017 is rotated left once we arrive at the original word from which the operation started. The left rotate operation is merely doubling the previous octal word and means three things:
1). All octal numbers are not Basic Numbers. This is
obvious since an even number is generated from an odd number and hence can not be a Basic Number. All odd numbers are also not Basic Numbers. Examples are words like 303 and 207.
3). Only the first and hence the least (binary weighted) odd number in any group qualifies to become a Basic Number.

The above three conditions make the definition of the basic word a simple one. A least weighted 8 bit combination in a circular group is the Basic Vord.

The two conditions that a circular number should satisfy to become a BASIC WORD are:
1). It should be ODD.
2). It should have remainder MOD 64 circular.

All these conditions are satisfied by the Basic Numbers mentioned in section 3.5.

Since other words are generated from the BASIC wORD, by the rotate operation, the $M S B$ flows into the $L S B$, these words are called CIRCULAR WORDS. Table 3.2 lists basic numbers and the corresponding Basic Words.

For the image description these 72 Basic words form the
full complement of the vocabulary. However the following

```
exceptions do exist in real handwriting. Due to the con-
straint that two 1's are separated by a O bit and hence
a loss in connectivity, the binary words 01 010 101 with
carry bit equal to O and l are not eligible to become
Basic Words. Similarly the binary word 00 000 000 with
carry bit equal to i is also considered illegal as this is
only an isolated bit and its presence does not add to the
information content already present. Thus the total
number of basic words reduces to 69. Hence the required
vocabulary contains only 69 basic words and their rota-
tional forms totaling 499.
Depending on the pixels occupied by the contour in each
cell, the binary words can be grouped into 10 classes.
These 10 classes are:
1). Basic Word with no 1's in it
2). Basic Word with one 1 in them
3). Basic Words with two i's in them
4). Basic Words with three I's in them
5). Basic Words with four 1's in them
6). Basic Words with five 1's in them
7). Basic Words with six 1's in them
8). Basic Words with seven 1's in them
9). Basic Words with eight 1's in them
10). Basic Words with nine 1's in them.
```

	$\begin{aligned} & \operatorname{sic} \\ & \operatorname{sic} \end{aligned}$	NUMBER/ WORD	WORD NAME	$\begin{aligned} & \text { BASIC } \\ & \text { BASIC } \end{aligned}$	NUMBER/ WORD	WORD NAME
00	000	$000 \mathrm{c}=0$	000	00101	$111 \mathrm{C}=0$	510
00	000	$001 \mathrm{c}=0$	100	00110	$111 \mathrm{C}=0$	520
00	000	$011 \mathrm{C}=0$	200	00111	$011 \mathrm{C}=0$	530
00	000	$101 \mathrm{C}=0$	210	00111	$101 C=0$	540
00	001	$001 \mathrm{c}=0$	220	01010	$111 \mathrm{C}=0$	550
00	010	$001 \mathrm{C}=0$	230	01011	$011 \mathrm{c}=0$	560
00	000	$001 \mathrm{C}=1$	240	00011	$111 \mathrm{C}=1$	570
00	000	$111 \mathrm{C}=0$	300	00010	$111 \mathrm{C}=1$	580
00	001	$011 c=0$	310	00011	$011 \mathrm{C}=1$	590
00	001	$101 \mathrm{C}=0$	320	00011	$111 \mathrm{C}=1$	5 AO
00	010	$011 \mathrm{C}=0$	330	00100	$111 \mathrm{C}=1$	5B0
00	010	$101 \mathrm{C}=0$	340	00101	$011 \mathrm{C}=1$	5 CO
00	011	$001 c=0$	350	00101	$101 \mathrm{C}=1$	5DO
00	100	$101 C=0$	360	00110	$011 \mathrm{C}=1$	5EO
00	000	$011 c=1$	370	00110	$101 \mathrm{C}=1$	5 FO
00	000	$101 \mathrm{C}=1$	380	01010	$101 \mathrm{C}=1$	560
00	001	$001 c=1$	390	00111	$111 \mathrm{C}=0$	600
00	0.10	$001 \mathrm{C}=1$	3A0	01011	$111 \mathrm{C}=0$	610
00	001	$111 \mathrm{C}=0$	400	01101	$111 \mathrm{C}=0$	620
00	010	$111 \mathrm{C}=0$	410	01110	$111 \mathrm{C}=0$	630
00	011	011 $\mathrm{C}=0$	420	00011	$111 \mathrm{C}=1$	640
	011	$101 \mathrm{C}=0$	430	00101	$111 \mathrm{C}=1$	650
00	100	$111 C=0$	440	00110	$111 \mathrm{C}=1$	660
00	101	$011 \mathrm{C}=0$	450	00111	$011 \mathrm{C}=1$	670
00	101	$101 \mathrm{C}=0$	460	00111	$101 \mathrm{C}=1$	680
	110	$011 \mathrm{C}=0$	470	01010	$111 \mathrm{C}=1$	690
00	110	$101 \mathrm{C}=0$	480	01011	$011 \mathrm{C}=1$	6 AO
00	000	$111 C=1$	490	01111	$111 \mathrm{C}=0$	700
00	001	$011 \mathrm{C}=1$	4 AO	00111	$111 \mathrm{C}=1$	710
00	001	$101 C=1$	480	01011	$111 \mathrm{C}=1$	720
00	010	$011 \mathrm{C}=1$	4 CO	01101	$111 \mathrm{C}=1$	730
00	010	$101 C=1$	4D0	01110	$111 \mathrm{C}=1$	740
00	011	$010 \mathrm{C}=1$	4EO	11111	$111 \mathrm{C}=0$	800
00	100	$101 c=1$	4 FO	01111	$111 \mathrm{C}=1$	810
00	011	$111 \mathrm{C}=0$	500	11111	$111 \mathrm{C}=1$	900

TABLE - 3.3

three important aspects are to be considered. These are:

1) For reducing the processing complexity, the label
should indicate the pixel occupancy.
2) The label should indicate the contour features.
3) The label should assist in reducing the vocabulary size.
All these aspects can be met using the three digit label-
ing scheme proposed. The MSD indicates the number of
pixels occupied by the contour in the cell, the middle
digit indicates the family of the curve and the LSD gives
the number of rotations the basic word had to undergo to
generate the present word. It may be noted that the LSD
and the middle digit together indicate the feature in the
contour. The word name starts with a digit 0 to 9 . This is
so because the MSD indicates the pixel occupancy in any
cell. The LSD can be between 0 to 7 . An LSD of 0 indicates
that the particular word is a Basic Word. The midde digit
indicates the family identity and is given according to
the seniority of appearance of the Basic word. The word
family is used with the meaning of a group of $1 / 4 / 8$ words
belonging to the same class. Or in other words, a family
of words is a particular binary word/basic word and the
set of words generated from that particular basic word.
For example, the word name given to the binary word whose
octal representation is 133 is 560 . where as that of 067 is 520, 25067 is a smaller octal number than 133. Word names of all Basic Words are given in Table 3.2.

Now suppose that there is a cell whose binary word representation is 01110010 with a carry bit equal to 1 . The word name for this can be derived in two ways. Dne way is to use a table look up procedure where all the Basic Words and their rotational forms are stored. In this case a maximum of 124 comparisons will be necessary, where as the storage requirements are 499, three digit word names. In the second case, the word name is derived by rotating right the current word, checking if it is the least octal representation and finding out from the table of 69 Basic Words, the name of the corresponding Basic word. Add the number of rotate right operations the present word had to undergo to arrive at the Basic Word. This procedure will require a maximum of 7 rotate right operations, 16 comparisons and one addition. Here rotate right operation is used for arriving at the number of rotations the basic word had to undergo to generate the present word and not for generating 2. word from a basic word. Also in this case the vocabulary storage requirements is only 69 three digit word names. As the memory requirements and other
operations are considerably less in the second operation. this method is considered as the best suited.

and SW neighbors.

Fig: 3.4 shows a few examples in which various words. their Basic words.the number of rotations the present word had to undergo to arrive at the Basic Word and the word names of the Basic Word and the present word are given.

Present	WORD		BAS I	IC	WORD		NUMBER OF ROTATIONS	BASIC WORD NAME	PRESENT WORD NAME
00010	000	$\mathrm{C}=0$	00	000	001	$c=0$	4	100	104
10000	010	$\mathrm{C}=0$	00	000	101	$\mathrm{C}=0$	7	210	217
11100	000	$\mathrm{C}=0$	00	000	111	$c=0$	5	300	305
01000	100	$c=1$	00	010	001	$C=1$	2	3 AO	3 A 2
00001	111	$c=0$	000	001	111	$c=0$	0	400	400
01100	011	$\mathrm{C}=0$	00	011	011	$\mathrm{C}=0$	5	420	425
01001	110	$\mathrm{C}=0$	001	110	011	$\mathrm{C}=0$	1	470	471
00101	100	$\mathrm{C}=1$	00	001	011	$C=1$	2	4AO	4 A 2
11111	000	$\mathrm{C}=0$	00	011	111	$c=0$	3	500	503
01101	110	$\mathrm{C}=0$	001	110	111	$\mathrm{C}=0$	1	520	521
11101	000	$C=1$	00	011	101	$C=1$	3	5 AO	543
10001	100	$C=1$	000	011	101	$C=1$	7	5AO	$5 A^{7}$
11011	110	$\mathrm{C}=0$	011	110	111	$\mathrm{C}=0$	2	630	632
11100	011	$C=1$	00	011	111	$C=1$	5	640	645
11001	110	$C=1$	001	111	011	$\mathrm{C}=1$	6	670	576
01111	101	$\mathrm{C}=1$		1011	1111	$\bar{c}=1$	12	720	722

Fig: 3.4

SOME BINARY UORDS, THEIR BASIC VORDS, NUMBER OF ROTATIONS IT HAD TO UNDERGO TO ARRIVE AT THE BASIC UORD AMD THE VORD NAMES OF BOTH THE BINARY UORD AND THE BASIC UORD

CHAPTER IV - FEATURES AND THEIR SELECTION

4.1 INTRODUCTION

In pattern recognition, feature selection and extraction
is performed for dimensionality reduction. pattern de-
scriptors constituting the lower dimensional representa-
tion are referred to as features because of their funda-
mental role in characterizing the distinguishing proper-
ties of pattern classes.

Though the purpose of feature selection and extraction is many fold, the primary justification stems from engineering considerations. The complexity of a classifier and the complexity of its hardware implementation grow rapidly with the number of dimensions of the pattern space. Therefore it is of importance to base decisions only on the most essential discriminatory information. This is conveyed by features.

4.2 PROBLEM FORMULATION

Dimensionality reduction can be achieved in two different ways. One approach is to identify measurements which do not contribute to class separability. The problem is then one of selecting a small sub-set x_{j} of " d " features,

```
            x j, j = 1, 2, 3.....d
out of the available D measurements (sensor outputs of Y),
    Y
This dimensionality reduction process is referred to as
the feature selection. No computation is required during
pattern processing in this case. The redundant and irrel-
evant information are simply ignored.
In the second approach, all the sensor outputs are used to
map the useful information into a lower dimensional
feature space.
To solve a feature selection or feature extraction prob-
lem, three ingredients are to be specified. These are:
1). The feature evaluation criterion.
2). The dimensionality of the feature space and
3). The optimization procedure.
The factors governing the dimensionality of the feature
space are common to both the dimensionality reduction
approaches. They include, hardware or computational con-
straints, the peaking phenomenon or permissible informa-
tion losses.
The problem of feature selection in this work refers to
the selection of a set of features. which are a small sub
```

set of the original binasy words. These words should have the property of reducing the complexity of further processing.

As in any pattern recognition problem, the feature selection for character recognition is a difficult problem. More so when they are handwritten characters, writen without constraints on the writing style. This is so because of the great many styles of writings exhibited by lower case English characters. The feature selection criteria should be so chosen, that variations in writing style do not affect the recognition rates considerably. Even distortions caused intentionally should not cause difficulties at the recognition stage. Fig 4.1 shows a set of normally written characters and Fig:4.2 shows a set of distorted characters.

Feature selection procedures usually depend on the capability for evaluating the effectiveness of any sub set of any given initial set of features, and on realizing an effective strategy for searching for a "best subset" among the subset of features.

In the design of automatic classifiers. the important problems are (1) invention and (2) selection of features.

a	b	c	d
e	f	g	h
i	j	h	l
m	n	0	p
q	r	s	t
μ	v	ω	μ
y	z		

In this chapter a procedure for selecting "n" features from a set of "d" features, ["n" << "d"], without significantly degrading the system performance is presented. This procedure is named as FEATURE SELECTION in this work. The problem is therefore:

1) To define a set of "Features" for the class of images which are made up of contours, and
2) For a given image select the applicable features at a low hardware and software cost. To realize this a small sacrifice in terms of approximating certain contours is worth a try.

The approach being new, the proposed technique has certain differences with normally reported work on pattern recognition. For example, the features discussed in this chapter are not the features discussed at the recognition stage which are usually called primitives especially when syntactic methods are used. Here feature selection is done at this stage to reduce data at the filter output.

In [KSFU], K. S. Fu states that only a small number of features are required to characterize each pattern. This also augments the selection of a small number of features which are used at the filtering and subsequent stages.

4.3 FEATURES FOR THE CLASS OF IMAGES TREATED


```
\begin{tabular}{llllllll}
111 & 011 & 001 & 000 & 000 & 000 & 100 & 110 \\
000 & 001 & 001 & 001 & 000 & 100 & 100 & 100 \\
000 & 000 & 001 & 011 & 111 & 110 & 100 & 000 \\
300 & 301 & 302 & 303 & 304 & 305 & 306 & 307 \\
110 & 011 & 001 & 000 & 100 & 110 & 011 & 101 \\
001 & 000 & 001 & 101 & 100 & 000 & 100 & 101 \\
001 & 011 & 110 & 101 & 011 & 110 & 100 & 000 \\
420 & 421 & 422 & 423 & 424 & 425 & 426 & 427 \\
110 & 011 & 001 & 000 & 000 & 100 & 010 & 101 \\
011 & 010 & 011 & 011 & 110 & 010 & 110 & 110 \\
000 & 001 & 010 & 101 & 011 & 110 & 100 & 000 \\
\(4 A 0\) & \(4 A 1\) & \(4 A 2\) & \(4 A 3\) & \(4 A 4\) & \(4 A 5\) & \(4 A 6\) & \(4 A 7\) \\
111 & 011 & 001 & 100 & 010 & 101 & 110 & 111 \\
001 & 001 & 101 & 001 & 100 & 100 & 101 & 100 \\
010 & 101 & 011 & 111 & 111 & 110 & 100 & 001 \\
510 & 511 & 512 & 513 & 514 & 515 & 516 & 517 \\
111 & 011 & 001 & 100 & 010 & 101 & 110 & 111 \\
011 & 011 & 111 & 011 & 110 & 110 & 111 & 110 \\
010 & 101 & 011 & 111 & 111 & 110 & 100 & 001 \\
650 & 651 & 652 & 653 & 654 & 655 & 656 & 657 \\
111 & 011 & 101 & 110 & 011 & 101 & 110 & 111 \\
001 & 101 & 101 & 001 & 100 & 101 & 101 & 100 \\
110 & 101 & 011 & 111 & 111 & 110 & 101 & 011 \\
620 & 621 & 622 & 623 & 624 & 625 & 626 & 627 \\
111 & 011 & 101 & 110 & & & & \\
000 & 101 & 101 & 101 & & & & \\
111 & 110 & 101 & 011 & & & & \\
630 & 631 & 632 & 633 & & & &
\end{tabular}
NOTE:- Only three rotational forms for the Basic word 630
Fin: 4.3
ROTATIONAL FORMS OF SOME WORDS IN THEIR CELL FORMAT
```

the 72 basic words, the basic words are considered as
features, where as their rotational forms numbering 440 are not considered as features. The definition of the basic mord is made to aid in reducing the complexity of the recognition algorithm. Hence the definition of features also become easier. During the rotate operation of the binary word, the smallest octal representation in the group is generated. This binary word represents the contour of the shape present in the cell. As the rotate operation only changes the orientation of the curve, the Basic Words qualify to become FEATUREs and hence they are defined as FEATURES. Dnly the 69 basic words are considered eligible to become FEATURES.
While basic words define features in a region of the
image, the image itself is defined in terms of the inter-
relations between 16 such basic words or their rotational
forms, each representing a cell. Thus features by them-
selves will not be able to define an image. Hence to
define images the features defined earlier are selected in
toto and a small set of relational features are defined.
For each image, a eell and a relational auxiliary feature
are selected. This necessitates the definition of another
set of features, the aukiliary features, which define the

```
connectivity between the cells. The last digit of each
word, being the number of rotations the basic word had to
undergo to generate the present word, represents the
change in orientation exhibited by the contour from the
basic word. In the character image this indicates the
change in orientation of the part contour. As such there
could be 8 possible tendencies. This serves as an aukil-
iary feature and is called a TENDENCY. This ausiliary
feature TENDENCY, permits the system to determine the
nature of the contour, like weather it goes to the next
neighbor and in such a case to which neighbor ....etc.
The last two digits taken together indicate the continuity
of the contour. This auxiliary feature is defined as a
TENSE. Theoretically a maximum of 64 TENSE features can
exist. However only 4 of these are important in real life
applications and are selected. These are:
1) The Past Tense
2) The Past Continuous Tense
3) The Future Tense and
4) The Future Continuous Tense.
These four auxiliary features determine whether the con-
tour starts from a previous neighbor or from the cell
itself or is a part coming from/going to a future
cell ....etc.
```


$$
\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}
$$

11 1. This cell shows that there are two possible candidates to be selected as features, the horizontal line segment at the top and segment of the horizontal line at the bottom of the cell. Such problems are resolved by splitting the word arithmetically as sum or difference of two or more words. Splitting into more than two words become necessary when the word contains more than six image points. By noting the context it can be seen that, the most appropriate word can be retained and the others can be discarded. This is where the
auxiliary features become useful. The decision can be made with reference to the auxiliary feature exhibited by the previous cell, or the decision can be postponed until the neighbors are resolved. This may prove in some cases to be non converging. To ensure convergence a hierarchy is adopted, west to east and north to south in that order. While adopting the procedure, it can be seen that the basic features and the auxiliary features are all preserved. The procedure for these replacements, called FILTERING is fairly simple and involve only simple substitutions. The substitution rules are presented in the next chapter.

The two auxiliary features, TENDENCY and TENSE, are defined for the explicit purpose of arriving at the suitable replacement words at the filtering stage.

CHAPTER V - FILTERING

5.1 INTRODUCTION

Many authors describe the term FILTER as a device in the
form of a piece of physical hardware or computer software
that is applied to a set of noisy or noise free data in
order to extract information about the prescribed quantity
of interest. A filter is to perform thres basic functions
of information processing [Simol.

A FILTER in its most general sense is a device or system that alters in a prescribed way, the input that passes through it. That is any Fllier converts inputs into outputs in such a fashion that certain desirable features of the inputs are retained in the outputs while undesirable or unwanted features are eliminated. In this work the unwanted features are the 1 's and 0 's in any cell where redundant information is available. Analysis of this "FILTERING" is possible only on a heuristic basis.

5.2 FILTERING PRELIMINARIES

The objective of any pattern recognition system is to recognize and describe patterns correctly. The description can be in terms of two or three dimensional patterns and

Noise is anything in the signal which is not relevant information. Consequently any thing which is not of current interest is noise. This definition of noise is dynamic and hence any signal component which is noise at one moment or in a particular context need not necessarily be so in another context.

In the context of the present work the term FILTER is used in the following sense. FILTERING is used to achieve data reduction. The images in their binarized form contain a large amount of redundant information. These come in the form of ornaments. serifs...etc. attributable to the way and style of writing of the individuals and these are to
be removed for ease of further processing. Removal of these do not alter the basic shape of the character. This redundant information in the character is treated as noise in this case and needs to be removed. Also the presence of such redundant information makes further processing complex and hence the data reduction technique called FILTERING is to be adopted. This data reduction is achieved by the suitable substitution of one word with another word and is a new form of filtering.

5.3 DEFINITIONS

The following terms which occur of ten in this work will have the following meaning.

ORDER OF THE NORD

This is defined as the pixel occupancy rate of the cell and is denoted by the M S D of the word name.

HIGHER ORDER UORD

A word name which starts with 4 and above. The Higher Order Words have a pixel occupancy rate of 4 or more in their cells and consequently in the binary word.

LOUER ORDER UORDS

Any word name which starts with $0,1,2$ or 3 is defined as a. Lower Order word. These lower order words constitute the majority of cells in any given binary character image.

FILTERING

Filtering, the data reduction technique, refers to the process of replacing a particular word with a suitable word of the $3 x X$ eategory. Filtering helps in reducing the complexity of the information content in the image.

The output set of words/cells of an image is a subset of the input set of words in this filtering, similar to Median Filtering, Stack Filtering ...etc. Both these sets are finite.

LEVEL OF FILTERING

Filtering is done in three levels or steps. Each step of Filtering is referred to as the Level of filtering. Eg. First level of Filtering. Second level of Filtering and Third level of Filtering.

SPLITTING AND MERGING OF UORDS

Splitting is the process of separating a binary word into

```
two parts and adding o's to fill up the vacant places.
Consider for example, the binary word 01 110 111 with
carry bit equal to 0. This binary word can be spiit into
two binary words 01 110 000 and 00 000 111. The carry bit
does not have any significance in the splitting operation.
These two binary words have the same kind of orientation,
horizontal lines, one at the bottom and the other at the
top respectively. Splitting is done only in the case of
higher order words. This is done to assist in Filtering.
Fig: 5.1(a) shows a few examples.
```


PRESERVATION MEASURE

This is an eight bit word computed for both the original and replacement words to ascertain the suitability of the replacement word.

5.4 FILTERING PROCEDURE

The encoded binary image is scanned. The scanning is done from left to right. All word names which start with a 3 or O are retained. Word names which start with a 1 are discarded and in their place a word 000 is substituted. This operation does not result in loss of information as a word of order 1 is an isolated bit or in the worst case a neighbor from which the next cell gets its contour started or may be the single bit in a cell where the contour gets terminated. In any case there is no loss of information as information in only one isolated pixel is lost when compared to its neighbors where more information is readily available for further processing. The condition when this is done ensures that a separation has occurred in data of a reasonably long contour due to instrumentation and not logic.

Words of order 2 are merged with a word of order 1 resulting in words of order 3. In this case the addition of
information is to the extent of one bit in an eight bit
word. This procedure does not distort the shape is this
can easily be achieved by borriwing a single bit from a
neighbor. An addition of a bit only increase the informa-
tion content slightly and hence does not impair recogniza-
bility of the shape in the cell.

After the removal of isolated extensions andor addition of tail where needed, and depending on the image description collected, all higher order words. that is. words having a pixel ocoupaney of 4 or more, are replaced with a word of order 3. This is done as follows. The higher order word is split into two or three binary words. one of which is of order 3. This order 3 word is compared with the original word, and the Preservation Measure is computed. If the Preservation Measure is high enough. then this word of order 3 is accepted as the substitute word. However a simplification is adopted in the implemenation here in this work. A large number of substitution words have already been generated. These words are aceeptable as substitutes, as they readily agre日 with the thresholds of the preservation measure. Context also plays an important role and as explained in the preceding, in addition to table look up, ambiguity resolution call for context based
choices if the preservation measure shows more than one choice for replacement.

```
In [SUE4], Suen comments as follows: " Even with a window
size of 3 * 3, there already exists 512 possible configu-
rations. To reduce this number, similar configurations
can be grouped into one single category". He also mentions
about 5 configurations which are similar and can be
grouped into one class of a SLANT LINE. In this work also
similar configurations are grouped into one category. This
grouping has effectively reduced the number of words to be
considered for further processing. The original words and
their substitutions are givon in TABLE 5.1.
```

At this stage the image is reduced into a description
where words of order 3 or 0 exist. By adopting the above
procedure, the character images are represented using the
rotational forms of 12 basic words themselves. These are
the null word and the 11 basic words of order 3 , which are
named as 300, 310, 320, 330, 340, 350, 360, 370, 380, 390,
and $3 A O$. A statistical analysis on a sample set of 572
characters shows that the information loss by adopting the
the above procedure is very small. It can be seen from
Table - 5.2, that the 12 basic words and their rotational
derivatives contribute to 67% of the total cells occupied.

TABLE - 5.1(a)

FILTERING RULES STAGE I

Replace the original word with the corresponding substitute given below.

ORIGINAL	REPLACEMENT
000	000
100	000
20x	$30 x$ if x is even
	$30(x+1)$ if X is odd
218	30x cyclic 8
228	32\% cyclic 8
238	3AX cyclic 4
248	3AX cyclic 4
3x x	3x\%
408	30 X (if X is even
	$30(x+1)$ if x is odd
41\%	30 X (if X is even
	$30(x+1)$ if x is odd
428	$30(x+2)$ if x is even
	$30(x+3)$ if x is odd
43x	$30(x+2)$ if x is even
	$30(x+3)$ if x is odd
44x	$30 x$ if x is even
	$30(x+1)$ if x is odd
45\%	30X if X is even
	$30(x+2)$ if x is even
46x	$30(x+1)$ if x is odd
478	$30(x+2)$ if x is even
	$30(x+3)$ if x is odd
48 x	$30(x+3)$ if x is even
	$30(x+4)$ if x is odd
49x	30 X (if x is even
	$30(x-1)$ if x is odd
4AX	3AX cyclic in 4
4BX	3AX cyclic in 4
4 CX	3AX cyclic in 4
4DX	3AX cyclic in 4
4EX	3AX cyclic in 4
4FK	$3 \mathrm{~A}(\mathrm{X}+1)$ cyclic in 4
4GX	3AX cyclic in 4
50x	$30(x+2)$ if x is even
	$30(x+1)$ if x is odd
518	30 X if X is is even
52 K	30 X (if x is even
	$30(x+1)$ if x is odd

53x	$30(x+4)$	if X is even
	$30(x+3)$	if X is odd
54X	$30(x+2)$	if X is even
	$30(x+3)$	if x is odd
55\%	3AX	cyclic in 4
56x	$30(x+2)$	cyclic in 8
578	30 x	if X is even
	$30(x+1)$	if x is odd
58 x	3AX	cyclic in 4
598	3AX	cyclic in 4
5 AX	3AX	cyclic in 4
5BX	3AX	cyclic in 4
5CX	$3 A(x+1)$	cyclic in 4
5DX	$30(x+2)$	if X is even
	$30(x+1)$	if X is odd
5EX	3AX	cyclic in 4
5FX	3AX	cyclic in 4
5G\%	3AX	cyclic in 4
60x	$30(x+2)$	if X is even
	$30(x+3)$	if X is odd
618	30x	if X is even
	$30(x+1)$	if X is odd
62x	30X	if X is even
	$30(x+2)$	if X is odd
63x	308	if X is even
	$30(x+1)$	if X is odd
64X	3AX	cyclic in 4
65\%	$3 \mathrm{~A}(\mathrm{x}+1)$	cyclic in 4
66X	3 Ax	cyclic in 4
67\%	3AX	cyclic in 4
68x	3AX	cyclic in 4
69\%	3AX	cyclic in 4
6 AX	3AX	cyclic in 4
70x	30x	if X is oven
	$30(x+1)$	if X is odd
718	3AX	cyclic in 4
728	3AX	cyclic in 4
73x	30\%	if X is even
	$30(x+1)$	if X is odd
748	3AX	cyclic in 4
800	300	
900	300	

TABLE - 5.1(b)

FILTERING RULES STAGE II

ORIGINAL WORD	REPLACEMENT	
	UORD	
308	308	if X is even
	$30(x+1)$	if X is odd
318	30\%	if X is even
	30(X-1)	if X is odd
32\%	30X	if X is even
	$30(X+1)$	if X is odd
33\%	3AX	cyclic in 4
348	3AK	cyclic in 4
35 8	3AX	cyclic in 4
36X	30X	if X is even
	$30(x+1)$	if X is odd
378	3 AX	cyclic in 4
38\%	30\%	if X is even
	$30(x+1)$	if X is odd
398	3AX	cyclic in 4
ЗAK	3AX	

TABLE - 5.1(C)
FILTERING RULES STAGE III

ORIGINAL	REPLACEMENT
UORD	UORD
300	3A3
302	$3 A 1$
304	$3 A 3$
306	3A1
$3 A X$	BAX

TABLE - 5.1
REPLACEMENT RULES FOR THE THREE STAGES OF FILTERING

CHARACTER	PRESENCE OF VARIOUS groups in the sample SET									DCCUP PERCE CELL	PANCY entage PIXEL
a	23	21	148	52	20	2	-	-	-	75.6	26.2
\square	22	33		46	38	14	2	-	-	63.9	19.2
c	24	32		33	30	12		-	-	66.1	23.4
d	17	13	106	43	37	3	-	-	-	62.2	23.3
e	22	32	113	37	25	5	2	-	-	67.1	23.4
f	32	36		34	30	23	9	-	-	65.3	24.9
9	16	35	103	52	34	7	7	2	-	72.7	27.8
h	24	19		29	45	9	2	1	-	62.2	23.4
i	21	21		25	16	2	-	-	-	51.7	17.3
j	25	31			29	10	3	-	-	60.3	21.6
k	28	32	104	46	31	15	2	-	-	73.3	26.7
1	20	26		37	16	10	6	-	-	55.4	20.4
m	10	24	173		38	18	9	1	1	86.6	33.4
n	21	33	143	18	31	8	4	1	-	73.6	24.7
0	19	27	143	30	19	12	3	-	-	71.9	25.6
p	25	21	114	34	28	3	4	-	-	65.0	23.1
9	25	33		41	30	8	-	-	-	67.0	23.7
r	29	50	103	32	18	7	1	-	-	62.5	21.0
5	24	25	139	47	29	14	6	-	-	80.7	29.9
t	38	37		27	25	11	-	-	-	65.6	21.7
u	25	35	140	36	21	9	-	-	-	76.6	25.9
v	37	40	111	35	25	5	-	1	-	71.6	23.5
ω	31	30	137	28	36	13	4	-	-	79.3	28.4
*	27	20	116	46	22	9	1	-	-	68.5	24.3
y	29	25		52	36	17	1	-	-	67.3	25.5
z	36	43			51	8	6	-	-	75.3	27.7
TOTAL $6537562819 \quad 967 \quad 760254757$											
TOTAL NUMBER OF CHARACTERS $=572$											
TOTAL NUMBER DF PARAGRAPHS $=572$											
TOTAL NUMBER OF WORDS $=9152$											
TOTAL NUMEER OF CELLS $=9152$											
TOTAL NUMBER OF PIXELS $=82386$											
TOTAL CELL DCCUPANCY $=6292$											
PERCENTAGE CELL OCCUPANCY $=68.75 \%$											
TOTAL PIXEL OCCUPANEY $=20404$											
PERCENT	EE PI	XEL	OCCUP	PANC		$=$	24.7				

TABLE - 5.2
STATISTICAL DATA ON A SAMPLE SET

generated and this is used in selecting the appropriate word. Table5.1 gives the correct substitution words.

The tendency feature exhibited by the curve in the original cell is to start from the middle of the top row and proceed down to the right half. Under this situation. sub-

```
situation with the word 302 is more appropriate than
substituting with the word 300.
```

Now assume another situation, in which the north neighbor of this cell is one whose word name is 307. The byte transformation of this cell is 11100000 with the carry bit equal to 0 . It is obvious that the tendency of this curve is to start from the top, go down and continue to the next cell. But at the second level of filtration, these words will be given the word names 302 and 306 and hence these cells will be separated from each other by one column. That is, in this particular case, the line segments, two vertical line segments each in the cell will be in the right half in the case of the first cell and in the left half in the case of the second cell. This separation is however removed during the next level of filtering.

A further shape approximation is done at the third level of filtering. This is achieved by discarding the words in the group $30 x$ and replacing them with the words in the group 3AX. The words discarded are the basic word 300 and its three rotational forms, 302, 304 and 306. The words 300 and 304 are two horizontal lines and the words 302 and 306 are two vertical lines. The words 300 and 304 lie at
the top and bottom of the cell and the words 306 and 302
lie at left and right hand sides of the cell. The words 300 and 304 are replaced with the word $3 A 3$ where as the words 302 and 306 are replaced with the word $3 A 1$. This replacement only alters the position of the line segment but does not alter the information content. Therefore the shape resident in the cell after the second stage of filtering is retained. Moreover, this substitution provides continuity wherever broken line segments are caused by the use of the second level of filtering, and filling up takes place in places where there were possible gaps. Although at the third level of filtering only a substitution takes place and no data reduction is effected, the name filtering is retained for the sake of uniformity. At the end of the third level of filtering, straight line approximated image, which is slightly shifted to the centre of the cell is available. The shifting takes place generally in cells and not in the image as a whole. Only in very few cases total image shifting takes piace. However such shiftings do not destroy the basic recognizability of the image and recognition rates are not adversely affected.

5.5 EVALUATION OF THE PRESERVATION MEASURE

COMPUTATION OF THE PRESERVATIOM MEASURE - CELL LEVEL

QRIGINAL/	CARRY	EINARY REPRESENTATION			PRESERUATION BYTE BITS									REMARKS
REPLACEMENT WORD NAME	BIT				P_{0}		P_{2}		3	P_{4}	P_{5}	P_{6}	P_{7}	
402	0	00	111	100	0	1	1	1	1	0	1	0	1	7 out of B bits
303	0	00	111	000										agree. Threshold
PM MASK					0	1	0	1	1	0	1	0	1	matisfied.
485	0	10	100	110	0	1	1	1		0	1	0	1	7 out of 8 bits
300	0	00	000	111										agree. Threshold
PM MASK:					0	1	0	1		0	1	\bigcirc	1	satisfied.
532	0	11	101	100	0	\bigcirc	1	1		0	1	0	1	6 out of 8 bitE
306	\bigcirc	11	000	001										agree. Threshold
PM MASK					0	1	0	1	1	\bigcirc	1	0	1	satisfied.
580	1	00	100	111	0	0	1	1		0	1	0	1	6 out of B bits
ЗAO	1	00	010	001										agree. Threshold
PM MASK					0	1	0	1		0	1	0	1	satisfied.
635	0	10	111	011	0	0	1	1	1	0	1	0	1	6 out of 8 bits
303	0	00	111	000										agree. Threshold
PM MASK.					0	1	0	1	1	0	1	0	1	satisfied.
743	1	10	111	011	0	0	1	1		0	1	0	1	6 out of 8 bits
SAS	1	10	001	000										agree. Thresho
PM MASK.					0	1	0	1		0	1	0	1	satisfied.
345	0	10	100	010	0	0	0	0	0	0	1	0	1	6 out of 8 bits
SA2	1.	01	000	100										agree. Threshold
PM MASK					0	1	0	1	1	0	1	0	1	satisfied.
567	0	10	100	010	0	0	0	0		0	1	0	1	6 out of 8 bits
300	0	00	000	111										agree. Threshold
PM MASK					0	1	0	1		0	1	0	1	satisfied.
300	0	00	000	111	0	0	0	0		0	1	0	1	6 out of 8 bits
3AJ	1	10	001	000										sgree. Threshold
PM MASK.					0	1	0	1	1	0	1	0	1	satisfied.

0	0	0	0	0	1	0	1	Gout of 8 bits agree. Threshold
0	1	0	1	0	1	0	1	satisfied.
0	0	0	0	0	1	0	1	G out of B bits agree. Threshold
0	1	0	1	0	1	0	1	satisfied.
0	0	0	0	0	1	0	1	Gout of g bits agree. Threshold
0	1	0	1	0	1	0	1	satisfied.

$$
\overline{\Sigma^{\prime} S-: 6!\overline{1}}
$$

-88	88	80
88	08	88
88	-8	80
-10	00	-8

$$
0 \pi \quad 0 \pi \quad 0 \pi
$$

COMPutation of preservailion measure at cell level


```
that is if 12 bit positions in the PM word and the 16 bit
mask have correspondence, then it can be assumed that the
filtered image retains sufficient characteristics for
recognizability.
```

Once the cell level correspondence is ascertained, the
paragraph level correspondence is also computed. If corre-
spondence exists at this level also, it can be conclud-
ed that the filtered image retains shape features exhibit-
ed by the original image.
As was proved earlier, the sixteen cells represent an
image completely. Hence the correspondence is a necessary
and sufficient condition to conclude that the filtered
image retains sufficient information for further process-
ing. The threshold fixed for cell correspondence is 6 bit
positions and 12 bit positions for the paragraph. These
figures have been arrived at by trail and error after
considering a number of examples.
The preservation measure defines various sub measures to
determine the retention of shape features. This measure
byte is made up of seven submeasures. The MSB is a dummy
bit. The submeasures are defined severely or between
words. The submeasures are listed below.

5.5.1 CELL OCCUPANCY HEASURE - P1

The cell occupancy measure is 1 if the pixel occupancy is 3 and 4 in the replacement and original words.
5.5.2 REDUNDANCY MEASURE - P2

This is 1 if the pixel occupancy is 4 or more in the original word and O in the case of the replacement word.
5.5.3 CONTOUR RETENTION MEASURE - P3

This is 1 if two or three occupied bit positions of the original and replacement words are the same.

5.5.4 TRANSPOSE PRESERVENT HEASURE - P4

This is 1 if the replacement words matrix is the transpose of the matrix of the original word.

5.5.5 SHAPE UEIGHT MEASURE - P5

```
This is i if the ranks of the original and the replacement
matrices are the same.
```


5.5.6 CONTOUR SYMMETRY MEASURE - P6

This is 1 if the replacement word represents a matrix whose row or column is interchanged when compared with the
original word's matrix.
5.5.7 CONTOUR UEIGHT MEASURE - P7
This is 1 if at least three bits in both the original and
replacement words agree. This measure indicates that the
dominant portion of the contour is retained by the re-
placement word.
A preservation measure byta (PMB) is made up of these seven bits with P1 at LSB, P2 at the second bit position and so on and $P 7$ at the MSB-1 position. For the sake of completeness a 'O' is added at the MSB position. This PMB is compared with a symmetric mask of 01010101. if the chosen words and hence the replaced paragraph retain sufficient information, that is if Mask - PM $=$ 1, the computation will yield a l. However. if correspondence is achieved in at least six bit positions, it can be concluded that the replacement words retain sufficient information.
The bit positions of the seven sub measures have a signif-
icance. They have to be necessarily in the order pre-
scribed. otherwise the comparison with the symmetric mask
will not yield a 1 as the result.

5.6 FLLTERING STEPS / PROCEDURE

1). If the word name starts with a or 1. then name the	
	word as 000
23.	If the word name starts with a 2 , then rename the word
	with a $3 X X$ word chosen from the TABLE 5.1 (a) as the
	replacement word.
$3)$	If the word name starts with a 3, then retain this
	word.
4).	If the word name starts with a 4 or above, then choose
	an appropriate word name for replacing this word from
	the look up Table-5.2(a).
$5)$.	See if all the sixteen words have been named properly
	Proceed to stage two of the filtering procedure
61.	Retain all the words 000. 300 302. 304, 306. 3AO. 3A1
	3 A2 and 3A3.
71.	Replace all the other words with suitable words using
	the look up Table - 5.2(b).
81.	See if all the sixteen words are suitably named.
Once	the step i is also completed successfully, then
proceed to the third stage of filtration.	
91.	Retain all the words 000, 3A0, 3A1, 3A2, and 3A3.
101.	Replace all the 300 and 304 words with the word 3 A3.
11).	Replace all the 302 and 306 words with the word 3 A 3 .

12). Check and see that all the words are appropriately named.

Once all the above twelve steps are complete then the image is ready for further processing like recognition.

5.7 FILTERING AND RETENTION OF FEATURES AND IT'S RELATION UITH PRIMITIUES

The procedure of filtering produces invariants which will
ultimately replace the contours in each cell of the image.
Thus more than one type of cell may be replaced by a lower
order cell, which is representative of the essential
irreducible contour present in the cell. This many to one
correspondence operation is equivalent to defining an
invariant or a feature present in the cell with a differ-
ence in the fact that the orientation of the contour is
also indicated by the replacement cell, particularly at
the end of the second stage of filtering. Fig: 5.2 shows a
set of original cells and their replacement cells to
illustrate the point. It is shown here that the replace-
ment cell invariably retains the feature present in the
cell as long as a good preservation measure is used. The
purpose is two fold. The first is the fact that generally
features are defined and extracted to process images which

```
contain a large number of different objects. For images
which mainly are small in number and are made up of iden-
tifiable and repeatedly occurring contours or parts of
contours of fixed shapes, processing is easier if primi-
tives are defined, that is contours of fixed shape inde-
pendent of the image handled. The character images treated
in this work are basically only twenty six in number and
variations arise due to recording differences only (that
is writing individualities). Thus defining a set of primi-
tives is better for processing, particularly for recogni-
tion. To retain the wide applicability of the cell level
feature definition the correspondence that exist between
the features as defined here and primitives as used by
Others is exploited. The next chapter treat primitives and
their extraction and use in recognition of characters.
```


G_{5451-}

CHAPTER VI - PRIMITIVES AHD THEIR EXTRACTION

6.1 INTRODUCTION

This chapter describes the techniques which are employed in the extraction of Primitives. Primitives are defined first and their usefulness is described. It may be noted that the Features discussed in Chapter lV are different from the primitives discussed in this chapter. Features are defined in chapter $I V$ for reducing the information content in the image, where as Primitives discussed in this chapter are used for the classification of the unknown character. The primitives defined and extracted for character recognition in this work are a new set. The inventory of the primitives is kept openended with a view to add new primitives.

One of the important tasks in the design of any pattern recognition system is to develop methods to extract characteristics of the pattern. These characteristics are called the PRIMITIUES in syntactic pattern recognition. The primitive extraction techniques decide the recognition procedure.

A character is recognized by its description which is built out of primitives. Identifying these primitives from
the image is a complex and crucial problem. In every character recognition scheme tolerances must be provided for commonly occurring variations in primitives. The information on inter-primitive context can be made use of in assigning primitive labels.

In this classification scheme openended inventories of primitives are updated through an interactive mode of operation with the computer. The primitive extraction rules are also introduced and modified through the same mode of operation.

6.2 PRIMITIUES:

As the description of an unknown character is built up from its characteristic primitives, the addition of each new primitive to the description reduces the members in the character class and with all the primitives specified the character is classified unambiguously.

In an ideal system the primitives should enable the correct discrimination of one class of character from another class [SUE4]. Also the primitives shall contain only a small set of features [KSFU], when syntactic methods are used in the character recognition scheme. it is important to note that most reported systems relay on structural

```
primitives [BERT].
Pattern primitives are assumed to be easily recognizable.
However this is not the case in most practical situations.
As an example, strokes are considered as good primitives
for script handwriting. But they are not easily extract-
able by machines. A compromise between its use as a basic
part of the pattern and ease of recognition is often
required in the process of selecting the pattern primi-
tives [KSFU].
```

By the selection of the appropriate primitives the follow-
ing advantages are realised:
1). Tedious manual involvement can be reduced.
2). It is applicable to a range of problems.
3). Selection is not restricted by lack of human insight.
4). Primitiues can be confined to only those which are
easily implementable.
5). complexity can be related to the required performance.
6). Primitives can be chosen according to a range of
objective criteria.
In the scheme developed in this work, the parts or primi-
tives are known as:
1). MAIN PRIMITIVES (M.P)
2). AUZILIARY PRIMITIVES (A.P).

The auxiliary primitives are the interconnection between the main primitives.

The following sections present the elements in each of the two classes of primitives. All the characters can be described by choosing the appropriate elements from these classes.

6.3. MAIM PRIMITIVES:

The Main Primitives are grouped into four. They are:
1). HORIZONTAL LINES
2). VERTICAL LINES
3). RIGHT SLANT LINES
4). LEFT SLant lines.

These are further divided into four categories as follows:
1). QUARTER LENGTH LINES
2). HALF LENGTH LINES
3). THREE QUARTER LENGTH LINES
4). FULL LENGTH Lines.

The assignment of a primitive into one of the four categories is decided by the number of components, wordnames in this particular case. For example a Quarter Length Horizontal Line (QLHL) is a $3 A 3$, where as a Half Length Horizontal Line (HLHL) is a $3 A 3$ followed by a $3 A 3$ or any
combination of $3 A 3,3 A 0$ and $3 A 2$. A Quarter Length Vertical Line (QLVL) is represented by a 3A1, and a Three Quarter Length Vertical Line (TLUL) is a combination of 3A1, 3AO, and 3A2. In the case of Right Slant and Left Slant lines. this is the combination of the word names $3 A O$ and $3 A 2$. Possible combinations of these four categories for all the four main primitives are given in Table 6.1. By the con catenation of these primitives, curves can be derived and character description can be generated. This is where the use of Auxiliary Primitives arise.

6.4 AUZILIARY PRIMITIVES:

The type of Auxiliary Primitive indicate how many Main
Primitives are intersecting and converging to a junction.
The different types of Auxiliary Primitives are given in
Table - 6.2 along with the comments on their role in
character description.

The inventory of Auxiliary Primitives are given in Table 6.3 (a) to Table - 6.3 (c).

6.5 PRIMITIVE EXTRACTION

Many an author speaks of primitive extraction as the most difficult and crucial stage in any character recognition

QUARTER LENGTH LINES

```
VERTICAL 3AI
HORIZONTAL 3A3
LEFT SLANT BAO
RIGHT SLANT 3A2
```


HALF LENGTH LINES

```
VERTICAL 3A1+3A1, 3A1+3AO, 3AO+3A1, 3A1+3A2, 3A2+3A1
HORIZONTAL 3A3+3A3, 3A3+3AO, 3AO+3A3, 3A3+3A2, 3A2+3A3
LEFT SLANT 3AO+3AO The first 3AO shall be at NW
RIGHT SLANT 3A2+3A2 The second 3A2 shall be at SW
THREE QUARTER LENGTH LINES
```


FULL LENGTH LINES
VERTICAL $\quad 3 A 1+3 A 1+3 A 1+3 A 1, \quad 3 A 1+3 A 1+3 A 1+3 A O$, $3 A 1+3 A 1+3 A 1+3 A 2, \quad 3 A 1+3 A 1+3 A 0+3 A 1$, $3 A 1+3 A 1+3 A 2+3 A 1, \quad 3 A 1+3 A O+3 A 1+3 A 1$, $3 A 1+3 A 2+3 A 1+3 A 1, \quad 3 A O+3 A 1+3 A 1+3 A 1$, $3 A 2+3 A 1+3 A 1+3 A 1, \quad 3 A 1+3 A 1+3 A 0+3 A 2$, $3 A 1+3 A 1+3 A 2+3 A O, \quad 3 A 1+3 A O+3 A 2+3 A 1$, $3 A 1+3 A 2+3 A 0+3 A 1, \quad 3 A O+3 A 2+3 A 1+3 A 1$, $3 A 2+3 A O+3 A 1+3 A 1, \quad 3 A O+3 A 1+3 A 1+3 A 2$, $3 A 2+3 A 1+3 A 1+3 A 0, \quad 3 A 0+3 A 1+3 A 2+3 A 1$, $3 A 2+3 A 1+3 A O+3 A 1 . \quad 3 A 1+3 A O+3 A 1+3 A 2$, $3 A 1+3 A 2+3 A 1+3 A O, \quad 3 A 1+3 A O+3 A 1+3 A O$,

```
    3A1+3A2+3A1+3A2, 3AO+3A1+3AO+3A1.
    3A2+3A1+3A2+3A1,, 3A1+3AO+3A2+3AD,
    3A1+3A2+3AO}+3A2, 3A0+3A2+3AO+3A1.
    3A2+3AO+3A2+3A1, 3AO+3A2+3A1+3AO
    3A2+3AO+3A1+3A2, 3AO+3A1+3AO+3A2.
    3A2+3A1+3A2+3AO, 3AO+3A2+3A1+3AO
    3A2+3AO+3A1+3A2, 3AO+3A2+3A1+3A2,
    3A2+3AO+3A1+3AO, 3AO+3A1+3A2+3A1,
    3A2+3A1+3AO+3A1, 3AO+3AZ+3AO+3AZ.
    3A2+3AO+3A2+3AO, 3A2+3A1+3AO+3A2.
HORIZONTAL Replace all 3A1 by 3A3 in the previous
    to get the full complement of Full Length
    Horizontal Line
LEFT SLANT 3AO+3AO+3AO+3AO.
RIGHT SLANT 3A2+3A2+3A2+3A2.
```

TABLE - 6.1
POSSIBLE COMBINATIONS OF MAIN PRIMITIVES

TYPE	COMMENT	No. OF LINES INTERSECTING THE JUNCTION

LINE END	INDICATES THE FREE END of A LINE.	1
CORNER	INDICATES THE CORNER	2
	FORMED BY TWO LINES.	
BRANCH	indicates that a line	3
JUNCTION	is terminating at the	
	WAIST OF ANOTHER LINE.	
FOUR LIMB JUNCTION	Indicates that two lines	4
	CROSS EACH OTHER OR TWO	
	LINES TERMINATING AT the	
	WAIST OF ANOTHER LINE.	

TABLE - 6.2
DIFFERENT TYPES OF AUXILIARY PRIMITIUES AND THEIR
ROLE IN CHARACTER DESCRIPTION

IABLE 6.3(a) AUXILIARY PRIMITIUES-CORNERS

(TVO LIMB JUNCTIONS)

1) L-CORNER
(L C)
2) F-CORNER
(FC)
3) G-CORNER
(G C)
4) J-CORNER
(J C)
5) W-CORNER
(WC)
6) U-ORNER
(V C)
7) Q-CORNER
(Q C)
8) B-CORNER
(B C)
9) 2-CORNER
(2 C)
10) 7-CORNER
(7 C)
11) M-CORNER
(MC)
12) $\mathrm{N}-\mathrm{TOP}$ (N T)
13) N -BOTTOM (N B)
14) 3-CORNER (3 C)
15) O-CORNER (O C)
16) 5-CORNER (5 C)
17) LEFT SLANT (L S)
18) RIGHT SLANT (R S)
19) U-RIGHT (TOP) (URT)
20) U-RIGHT (UR)
$3 A 1+3 A 3$. ЗA3 shall be at EAST, SOUTH EAST or SOUTH neighbors of 3A1. $3 A 1+3 A 3,3 A 3$ shall be at NORTH, EAST or NORTH EAST neighbors of $3 A 1$.
3A1+3A3, ЗA3 shall be at WEST, NORTH or NORTH WEST neighbors of 3A1 3A1+3A3, ЗA3 shall be at WEST, SOUTH or SOUTH WEST neighbors of 3A1 $3 A 2+3 A O$, $3 A O$ shall be at the EAST neighbor of 3A2
3AO +3A2, 3A2 shall be at the EAST neighbor of 3AO
3A1+3A2, 3A2 shall be at the EAST neighbor of 3A1
3A3+3A2, 3A2 shall be at the EAST neighbor of 3 A3
$3 A 2+3 A 3,3 A 3$ shall be at the SOUTH neighbor of 3A2
$3 A 3+3 A 2$, $3 A 2$ shall be at the SOUTH neighbor of ЗA3
3A3+3A2, 3A2 shall be at the WEST neighbor of ЗA3
3A1+3AO. ЗAO shall be at the WEST neighbor of 3A1
$3 A O+3 A 1$, $3 A 1$ shall be at the EAST neighbor of $3 A O$
$3 A 2+3 A O$, 3AO shall be at the SOUTH neighbor of 3A2
3AO+3A2. 3A2 shall be at the SOUTH neighbor of 3A2
$3 A 2+3 A 3,3 A 3$ snall be at the NORTH EAST neighbor of 3A2
3AO + 3AO, The second $3 A O$ shall be at the SOUTH EAST neighbor of the first 3AO
$3 A Z+3 A 2$, The second $3 A 2$ shall be at
the NORTH EAST neighbor of the first 3A2
$3 A 1+3 A 2$. 3A2 shall be at the NORTH EAST neighbor of 3AI
$3 A 2+3 A 1,3 A 1$ shall be at the SOUTH WEST neighbor of 3A2

211	$\begin{aligned} & U-L E F T(T O P) \\ & (U L T) \end{aligned}$	3AO+3A1, 3A1 shall be at the SOUTH EAST neighbor of $3 A O$
221	U-LEFT	$3 A 1+3 A O$, 3AO shall be at the SOUTH
	U L)	EAST neighbor of 3Al
23)	S-CORNER	3A3+3AO, 3AO shall be at the SOUTH
	S C)	neighbor of 3A3
24)	D-CORNER	3AO+3A3. ЗA3 shall be at the SOUTH
	(D C)	EAST neighbor of 3AO
25)	A-CORNER	$3 A 3+3 A O, ~ 3 A O ~ s h a l l ~ b e ~ a t ~ t h e ~ N O R T H ~$
	(A C)	neighbor of 3A3
26)	S-CORNER	$3 A 3+3 A O, ~ 3 A O$ shall be at the SOUTH
	S C)	EAST neighbor of 3A3
27)	E-CORNER	3AO+3A2, 3A2 shall be at the SOUTH
	E C)	neighbor of 3AO
	TABLE 6.3(b) AUXILIARY PRIMITIVES - JUNCTIONS	
	(THREE LIMB JUNCTIONS)	
1)	$\begin{aligned} & 9-J U N C T I O N \\ & 19 \mathrm{~J}, \end{aligned}$	$3 A 1+3 A 1+3 A 2$, 3A2 shall be the SOUTH
		WEST neighbor of the first 3A1 and
		the second 3Al shall be the SOUTH neighbor of the first 3Al
2)	6-JUNCTION	$3 A 1+3 A 1+3 A 2$, 3 A2 shall be the NORTH
	6 J)	EAST neighbor of the first 3A1 and
		the second 3A1 shall be the SOUTH neighbor of the first 3Al
3)	$\begin{aligned} & \text { RIGHT BRANCH } \\ & (\mathrm{RB}) \end{aligned}$	$3 A 1+3 A 1+3 A 3$, 3 A3 shall be the EAST
		neighbor of the first 3A1 and the
		second 3A1 shall be the SOUTH neighbor of the first $3 A 1$
4)	LEFT BRANCH (L B)	$3 A 1+3 A 1+3 A 3$, 3 A3 shall be the WEST
		neighbor of the first 3A1 and the
		second 3A1 shall be the SOUTH neighbor of the first 3 Al
51	T JUNCTION	$3 A 3+3 A 3+3 A 1,3 A 1$ shall be the 50UTH
		neighbor of the first 3 A3 and the
		second 3A3 shall be the EAST neighbor of the first 3 A3
$6)$	1 JUNCTION	$3 A 3+3 A 3+3 A 1,3 A 1$ shall be the NORTH
		neighbor of the 3 A 3 and the second
		3A3 shall be the EAST neighbor of the first 3A3
71	$\begin{aligned} & \text { Y JUNCTION } \\ & (\mathrm{Y} J) \end{aligned}$	$3 A O+3 A 2+3 A 1,3 A 1$ shall be the SOUTH
		neighbor of either $3 A O$, or 3AO and
		$3 A 2$ shall be the EAST neighbor of
		3AO

8) B FORK
(B F)
9) B JUNCTION
(В J)
10) INVERTED Y JUNCTION (I Y J)
11) INVERTED 9 JUNCTION
(1 9 J)
12) INVERTED B JUNCTION (I B J)
13) INVERTED 6 JUNCTION (1 6 J)
14) R JUNCTION (R J)
15) Q J JUNCTION (Q J J)
16) G 7 JUNCTION (G 7 J)
17) L 2 JUNCTION (L 2 J)
18) L 5 JUNCTION (L 5 J)
19) F M JUNCTION (F M J)
$3 A O+3 A 2+3 A 2$, the second $3 A 2$ shall be the SOUTH neighbor of $3 A O$ and the first $3 A 2$ shall be the EAST neighbor of 3AO
$3 A 3+3 A 2+3 A O, 3 A 2$ shall be the EAST neighbor of $3 A 3$ and $3 A O$ shall be SOUTH EAST neighbor of 3A3 $3 A 3+3 A 3+3 A 2$, $3 A 2$ shall be the NORTH EAST neighbor of the first $3 A 3$ and the second $3 A 3$ shall be the EAST neighbor of the first $3 A 3$
$3 A 2+3 A 2+3 A 1$, $3 A 1$ shall be the EAST or SOUTH neighbor of the first 3A2 and the second 3A2 shall be the NORTH EAST neighbor of the first 3 A2
3AO+3A1+3A1, 3AO shall be the WEST neighbor of the first $3 A 1$ and the sacond 3Al shall be the SOUTH neighbor of the first 3 Al $3 A 3+3 A 3+3 A 2$. $3 A 2$ shall be the $50 U T H$ neighbor of the first 3 A3 and the second $3 A 3$ shall be the EAST neighbor of the first $3 A^{3}$ $3 A 1+3 A 1+3 A O, 3 A O$ shall be the EAST neighbor of the first $3 A 1$ and the 3A1's shall be the SOUTH neighbor of the first 3A1
$3 A 3+3 A 2+3 A 1$. $3 A 2$ shall be the NORTH EAST neighbor of $3 A 3$ and $3 A 1$ shall be the SOUTH or SOUTH EAST neighbor. of 3A3
$3 A 3+3 A 1+3 A 2$, $3 A 1$ shall be the NORTH neighbor of $3 A 3$ and $3 A 1$ shall be the NORTH EAST neighbor of 3A3 $3 A 3+3 A 1+3 A 2$, 3A2 shall be the SOUTH neighbor of $3 A 3$ and $3 A 1$ shall be the SOUTH EAST neighbor of 3 A3 $3 A 1+3 A 2+3 A 3$. $3 A 3$ shall be the SOUTH neighbor of $3 A 1$ and $3 A 2$ shall be the EAST neighbor of 3 Al
$3 A 2+3 A 1+3 A 3$, $3 A 3$ shall be the EAST neighbor of $3 A 2$ and $3 A 1$ shall be the NORTH neighbor of 3A2
$3 A 2+3 A 1+3 A 3$, $3 A 3$ shall be the NORTH EAST neighbor of $3 A 2$ and $3 A 1$ shall

TABLE 6.3(C) - AUXILIARY PRIMITIUES - JUNCTIONS

 (FOUR LIME JUNCTIONS)1) K JUNCTION
(K J)
$3 A 1+3 A 1+3 A 2+3 A O, 3 A 2$ shall be the EAST neighbor of the first 3A1, 3AO shall be the SOUTH EAST neighbor of the first $3 A 1$ and the second $3 A 1$ shall be the SOUTH neighbor of the first 3A1

OR
$3 A 1+3 A 1+3 A 2+3 A 1,3 A 2$ shall be the EAST neighbor of the first $3 A 1$, the second $3 A 1$ shall be the SOUTH neighbor of the first $3 A 1$ and the third $3 A 1$ shall be the SOUTH EAST neighbor of the first $3 A 1$
2) PLUS JUNCTION (P J)
$3 A 1+3 A 1+3 A 3+3 A 3$, the second $3 A 1$ shall be the SOUTH neighbor of the first 3A1, the first 3A3 shall be the WEST or SOUTH WEST neighbor of the first $3 A 1$ and the second $3 A 3$
shall be the EAST or SOUTH EAST
neighbor of the first $3 A 1$
3) X JUNCTION
(X J)
$3 A O+3 A 2+3 A 2+3 A O$, the first $3 A 2$ shall
be the EAST neighbor of the first
3AO, the second $3 A 2$ shall be the
SOUTH neighbor of the first $3 A 0$ and
the second 3AO shall be the SOUTH
EAST neighbor of the first 3 AO

TABLE - 6.3

LIST OF AUXILIARY PRIMITIVES
scheme. This is where human beings excel in their performance when compared to computers. A component of "intelligence" is being introduced into machines to achieve "human like" recognition capabilities as in Neural nets.

One of the basic difficulties encountered in primitive extraction is the unlimited variations or distortions in primitive shape in cursive script writing. Now the question to be answered is what are the limits of accepted variations for a Primitive?". This is a very complex question to be answered. To achieve this goal, the tolerances are made flexible. The hierarchy among the auxiliary primitives, main primitives and the character dessription itself helps in the assignment of the primitive labels.

The inventory of standard primitives was generated from a sample character set. Tolerances were gradually added with the addition of new character sets. The primitive extractor is so designed that it will articulate a primitive if it has been added to the inventory, although it may not correspond to any character. The openended inventories for Auxiliary Primitives and Main Primitives provide facility for adding new primitives with the addition/modification of the extraction rules.

6.5.1 ESTRACTION OF AUELLIARY PRIMITIUES.

The Auxiliary Primitives are sorted out by the following information made available by the scanning of the modified image.
1). Number of junctions
2). Number of limbs at a junction,
3). interconnections of each of these limbs.

The Auxiliary Primitives can be divided into two categories:

1) Those which are extracted during the first scan, and
2) Those which are extracted during the subsequent scans. The extraction of the first Auxiliary Primitive leads to the first sorting of the characters into different possible classes. However the labeling of this primitive is subject to confirmation by the relevant Main Primitive extracted later on.

The scan now proceeds along the vertical direction from this junction. The occurrence of the next junction or junctions are noted when :

1) More than one limb is intersected, or
2) A sharp change is recorded in the direction of the line.

An Auxiliary Primitive indicating the change in curvature is labeled only after the Main Primitive occuring ahead of it is extracted. Many characters contain such Auxiliary Primitives. The record of the intercepts made by the sean and the change in curvatureislant of a line pinpoint the presence of a junction.

The approach presented in this work is based on the primi-tive-by-primitive build up of the description of the character. From the complete description of the character it can be seen that some of the Auxiliary Primitives can occur only at given positions of the relevant Main Primitive. Thus for a given Main Primitive it's end or middle position is valid only for a few particular Auxiliary Primitives. Hence the Auxiliary Primitive labeling is astablished by using the context provided by the Auxiliary Primitives and the Main Primitives identified.

The parameters employed for the Auxiliary Primitive labeling are:

1) The position of the junction on the Main Primitive, that is, head. waist or tail.
2) The number of limbs intercepted by the scan at the junction.
3) The angles made by these limbs, which in this case are $0^{\circ}, 45^{\circ}$ and 90°.

It is evident that the two-limb junctions occur at the ends of primitives only. Four limb junctions occur either in the middle of a primitive with two other primitives diverging or may occur in the form of two primitives crossing each other. The three limb junctions indicate the middle of one primitive and the end of another primitive.

The Auxiliary Primitives are thus classified into different categories considering the above parameters. in the building up of a description in the recognition scheme, an Auxiliary Primitive is first labeled by an asterisk (*) but once the Main Primitive on which it is residing is extracted, the identity gf the Auxiliary Primitive is picked up from the description of the character.

5.2 EXTRACTION DF MAIN PRIMITIVES.

A Main Primitive is the realisation of the command for transcribing the part of a character. But even in a set of "normally" written characters, these primitives show distortions. For example the variations in a FLVL is so much that with all the sixty nine features defined earlier in Chapter 4, it will almost be impossible to realize a

```
recognition system. However the reduction of these primi-
tives into a small set have considerably reduced the
complexity of the recognition algorithm. Even with this
reduced number of primitives the complexity is not com-
pletely avoided. For example consider the FLVL. This Full
Length Vertical Line can be defined by any one of the
following combinations:
1).3A1 + 3A1 + 3A1 + 3A1
2).3A1 + 3AO + 3A1 + 3A1
3).3A1 + 3A1 + 3AO + 3A1
4).3A1 + 3A1 + 3A1 + 3AO
5).3AO + 3A1 + 3A1 + 3A1
61.3AO + 3AO + 3A1 + 3A1
7).3A1 + 3AO + 3AO + 3A1
81.3A1 + 3A1 + 3AO + 3AO
9).3AO + 3A1 + 3A1 + 3AO
Only nine different combinations are shown here. However a
complete set will contain 42 members. Table 6.1 gives all
the combinations that are commonly occurring in the char-
acter sample set. Another point to remember is variations
in the size of these primitives. For example a vertical
line can be any one among the four of its family.
The main primitives can be extracted using the following.
```

1). Direction of the line with respect to the datum line.
2). The length of the line.
3). The range of the line which is the straight line measure between the two end points.
4). The bearing of the line with respect to the datum line 5). The curvature at each major point.
6). The angle through which the line has turned.

The angle can be computed easily. This is the sum of all the angle changes along the line. For example consider the following combination for an FLVL, $3 A 1+3 A 0+3 A 2+3 A 1$.

In this case the angle change is zero, if all the components are in the same column. However assume the situation in which $3 A 1+3 A O$ are in the same column and $3 A Z+3 A O$ are in the next column. In this case there is an angle change of 45 . Assume another situation in which a fLVL is intersected by a QLHL, that is a three limb junction, and the angle change here is 90 . The angle changes can be computed very easily using the technique employed in this work, and is an advantage over other works.

The extraction of the Main Primitives can be done in two modes. In the first mode the measurements after each scan are "sensed" showing the gradual step by step identification of the primitive. In the second mode the primitive
extraction is attempted when the next junction is reached.

B. 6 TOLERANCES IN HEASUREMENTS

The versatility of a hand written character recognition
system is indicated by the ability to recognize characters
with large variations in their shape and size. Hence in
extracting primitives it involves the introduction of
tolerances in various primitives extracted. These are
discussed below.

6.6.1 Tolerances in Auxiliary Priaitives

```
The extraction of auxiliary primitive is accomplished by
determining one or more of the three characteristics
present in the modified character image:
1) Number of limbs at a junction,
2) Number of junctions in the image and their locations,
3) Interconnection of each of the limbs.
The hierarchy helps in classifying the auxiliary primi-
tives with respect to the main primitives already extract-
ed.
For example, when the primitives at a T-junction are
extracted and with the presence of a main primitive at a
particular position already extracted, sufficient informa-
```

tion is available to proceed further to assign a class label for the inage in question.

B.6.2 Tolerances in Main Prinitives

6.7 MEASUREMENT INUEMTDRIES

Openended inventories are maintained for the extraction of auxiliary primitives and main primitives. The measurements made are compared with values available in the inventories for the purpose of labeling the primitives. Many variations are found in these and hence tolerances are applied and a measurement inventory was gradually built up by processing the character set. Each character set was studied in detail and new feature measurements were added
whenever new ones were encountered. The addition of new
members to the inventory was done by adding the new rele-
vant information. Both these actions imply relevant
changes in the decision logic for primitive extraction.
The measurement inventories are linked to the description
inventory in the domain of labeling.

CHAPTER UII - CLASSIFICATION

7.1 INTRODUCTION

```
The various aspects of Image Coding, Features used for
Filtering and Primitive Extraction were discussed in
detail in the last four chapters. This chapter discusses
the classification procedure adopted in this work. Ini-
tially character description schemes are described, fol-
lowed by classification methods. An interaction exists
between the various stages of the scheme. The new ideas
presented are:
1) Hierarchy maintained between the Main and Auxiliary
    Primitiyes and the character description, and
2) The provision of openended inventories which makes
    possible the addition of new members to the group and
    also handles new variations in the description of the
    existing characters.
A set of rules is used for the build up of the description
of a character from an inventory of primitives. The rules
are made as simple as possible and flexible, to add new
descriptions of characters or even to add new groups of
character sets.
Recognition is also a result of proper description of the
```

image. This is very true for characters also. In the case of Kanji characters, characters represent a "picture* of the object it stands for. At the lower level where symbols which are seemingly unconnected with the object it reprisents, the character description should aim at classification or recognition. The character image is described in terms of "phrases" consisting of primitives. Classification is completed applying rules or heuristically. The recognition process in this work consists of the comparison of the "description of the character being investigated with a reference description of all the characters in the inventory. The description of the character is built up from its primitives extracted at the primitive extraction stage. With the addition of each new primitive to the description, the character class is reduced and with all the primitives specified the character is classified unambiguously.

Primitives are more purposeful in character description when compared to features. Some primitives may themselves be features while others could be combinations of features. The features proposed in this work. numbering 69 , may be appropriately used for extracting primitives.

CHARACTER DESCRIPTION AND PRIMITIVES

An example will show how description is built up employing the two types of primitives. Consider, for example the
following two combinations:

000	3 A 1	000	3 A 2	3 AO	000	000	3 A 2
000	3 A 1	3 A 2	000	000	3 AO	3 A 2	000
000	3 A 1	000	000	000	3 A2	3 AO	000
000	3 Al	000	000	3 A 2	000	000	3 AO

The first is a Y junction where as the second combination stands for a k junction. It can be seen from these two
examples that, in the case of a Y junction two ines, main prinitives, join at a point, where as in the case of the x junction, two main primitives crosg at a particular point. The elements of these kinds were discussed in datail in the previous chapter. All the characters can be described by choosing the appropriate elements from these classes.

The character images were limited to lower case English cursive script in order to achieve a coalescence in features and Primitives. As mentioned in Chapter IV, features are defined and extracted at the cell level, where as primitives are identified and used at the paragraph level. It can be established that this process does not introduce any performance degradations, as long as the number of loops and crosses are small.

7. 3 HIERARCHY IN CHARACTER DESCRIPTION

Intuitivaly it ean be felt that a hierarchy exists betwean the Main Primitives, Auxiliary Primitives and the description of the character in the classification procedure. The description of a character implies that the Auxiliary Prinitives can occur only in particular combinations in a certain character and that a primitive can occur only at
a particular position. To quote an example, the second
auxiliary primitive GC at column 4 can occur only with the second main primitive \quad mHL at row 1 and in character "p". This fact can be made use of in the step- by - step recognition scheme inplemented hare.

The recognition of the auxiliary primitives concurrently indicates the host Main Primitive. Therefore the task of primitive extraction also directly extracts the main primitives. Normally these two decisions, that is Auxiliary Primitive recognition and Main Primitive location concur. In the event of a disagreement, the latter decision prevails. A disagreधment, for instance, can occur if an auxiliary primitive is not recognized correctly or if an auxiliary primitive exists at a location where it should not exist. That is, an auxiliary primitive can occur only at designated places in a main primitive and cannot occur at any other place in a character. Conversely, the combinations of auxiliary primitive and the main primitive are fixed in any character.

7.4 RULES ADOPTED FOR CHARACTER RECOGNITIDN

A set of rules is generated for the structural description of the characters in terms of the primitives. These rules specify the order in which the primitives concatenate. The interconnections of the main primitives are indicated by
the auxiliary primitives residing in them. An analysis of the characters reveals that:
1). One and two limb junctions may occur at line gnds.
2). Three and four limb junctions seside at the waist of at least one main primitive.
3). A main primitive may have upto four auxiliary primitives residing in it.

Hence the standard description of a character takes the form:

MP1 (AP11,AP21,AP31,AP41)* MP2 (AP12,AP22,AP32,AP42)* -
 where * stands for a relational operator and "n" may vary from 1 to 4.

7.4.1 GENERATION OF CHARACTER DESCRIPTION

The following examples show how these rules can be employed in generating the characters. The notations used in generating the descriptions are described as and when they are encountered.
1). A main primitive is accompanied by the auxiliary primitives residing in it.
2). The . Tontact among primitives is denoted by a * * (plus). These can be seen in the following.

The description of the character " 0 " in which two main primitives are connected is:

```
        O=TLVL (C1,LC,FC) + TLHL (R1,FC.JC) + TLVL ( C4,
        GC,JC ) + TLHL ( R4,JC,FC )
```

where C1, C2, C3, C4 stands for columns 1 to 4 and R1, R2,
R3, R4 stands for rows 1 to 4.
3). In the case of some of the characters where a main
primitive is connected to more than one main primitive
the descriptions will be in two forms. The main
primitives may be mutually connected or disconnected.
Typical examples for the two classes are given
below. Consider the first type where the character
is described by the following:
$A=$ HLVL (Ci,LC,FC) + TLHL (R1,FC,GC) + HLVL (C3,
GC,IJ) + TLHL (R4.IJ,LC)
$D=$ QLVL (Ci,LC,FC) + QLHL (C3.FC,LB) + FLVL (C3,
LB,QC,JC) + QLRS (R4,QC) . QLHL (R4,LC,JC)
The operator "." indicates a separator, indicates the
fact that these two main primitives are non-touching.

7.5 ILLUSTRATIONS OF CHARACTER DESCRIPTIONS

A sample of lower case English language characters is given in fig:4.1. A different set with distortions is given in Fig:4.2. The description is built up in the order
in which the primitives are to be recognized. Fig: 1.1
shows the labeling of the characters employing the primi-
tives. In this figure the descriptions of the characters
are also added. Table - 7.1 give the description of all
the characters infig: - 4.1 . The description of charac-
ters in fig: 4.2 will also belong to one among this as
normalization takes place at the filtering stage. This is
an advantage of the new proposal made in this work.

7.6. OPEN - ENDED INVENTORIES

The inventories for descriptions are kept openended with a
view to include more character descriptions. This facility
permits the extension of the existing inventory to include
more character definitions of the already present classes
or adding new classes of characters to the inventory.
A powerful feature of the scheme is its versatility to
adapt to situations in which more than one description is
permitted for some of the characters. whenever there is
more than one description for a character in the invento-
ry, the recognition becomes easier. more new characters
can be included in the inventory by using suitable main
primitives andauxiliary primitives from their invento-
ries By keeping the inventories of both main primitives

```
000 3A1 ЗAЗ ЗAO See the "+" junction at row 2 column 2
        and the F Corner at row 1. The 3A1+3AO+
        3A1+3A1 in C2 is the FLVL, 3A3+3AO in
        RI is the H L at top and the 3AB+3AO+
        3A3 in R3 is the second H L.
000 3A1 000 000
```

 CHARACTER "f"
 3A1 3A3 3A1 000 See the L C at row 4, F C at row 3, G C
at row 1, and the $I \mathrm{~J}$ at row 4. The $3 A 1+$
$3 A 10003 A 1000 \quad 3 A 1+3 A 1+3 A 1$ in column 1 is the first
vertical line in C1, 3A3 in row 1 is one
$3 A 1000$ 3A1 000 of the H L's, $3 A 1+3 A 1+3 A 1$ IN C3 is the
second $V L$ and $3 A B+3 A B+3 A 3$ in row 4 is
ЗA1 ЗAЗ ЗAЗ ЗAЗ the second $H \mathrm{~L}$.
CHARACTER "a"
000 3A1 000000 See 9 J at row 4. L C at row 4, R B at
row 2, GC at row 2 and the $J C$ at row 4
$0003 A 13 A 30003 A 1+3 A 1+3 A 1+3 A 1$ in $C 2$ is the first $V L$,
3A3 in R3 is one of the two H L 's, $3 A 1$
000 3A1 000 3A1 in $C 4$, is the second $V L$ and $3 A 3+3 A 3$ in
R4 is the second H L. The 3A2 is R4 is
$3 A 2$ 3A1 3A3 $3 A 3$ the tail at the bottom left of the char
acter which is not necessary to be
identified.

CHARACTER " q "

Fig: 7.1
LABELING OF THE CHARACTER

```
    DESCRIPTION OF THE FOUR CHARACTERS
CHARACTER = 直 | FLVL [C2. PJ, FC] + HLHL [R1. FC].
    QLHL [R2, PJ] + QLHL [R2, PJ].
CHARACTER - a * FLVL [C1, LC, FC] + QLHL {R1, FC, GC] +
        TLVL [C3, GC, lJ] + FLHL [R4, LC, iJ].
CHARACTER * b " FLVL [C2, BJ, LC, FC] + HLHL [ R4, LC,
        JC] + QLVL [C4, JC, GC] + QLHL [ R2.
        GC, FC} . QLRS {R4, GJ}.
CHARACTER " q * QLVL [C1, LC, FC] + TLHL [ R1. FC. GC.
        PR2] + TLVL [ C3, GC, LB, QC] +
        QLHL [R2, PR1, LC, LB] . QLRS [R4, QC].
NOTE: In the description of the character "q", the
        notation PR1 and PR2 means parallel lines in rowi
        and row2 respectively.
```


Fig: - 7.1.a

LABELING OF CHARACTERS

TABLE: 7.1

```
CHARACTER "2" - F/T/HLUL [C1, LC, FC] + HL [R1, FC, GC] +
    H/T/FLUL [C3, GC, [J] + HL [R4, LC, IJ]
CHARACTER "b" - FLVL [C1/2, LC, RB] + T/HLHL [R2/3, RB,
    GC] + H/QLVL [ C4, GC, JC] + T/HLHL [R4,
    LC. JC]
CHARACTER "c* - F/TLUL [C1, LC, FC] + F/T/HLHL [R1, FC].
    F/TLHL {R4, LC}
CHARACTER "d" - QLVL [C1, LC, FC] + T/HLHL [R2/3, FC,
    LB] + F/TLVL [C3/4, LB, [J/(JC&QC)] +
    F/T/HLHL [R4, LC, [J/JC]/QLRS [R4, QC]
CHARACTER "e" - F/TLUL [C1, LC, RB, FC] + F/TLHL [R1, PR2
    FC, GC/7C1 + QLUL [C4, GC, JC]/GLRS[ R2,
    7C, BC] + H/QLHL [R2, PRI, JC/BC, RB].
    F/TLH4 CR4*LC]
```



```
    GCJ + FEUL CEO:GC, LB, 9J, 6J, JCJ +
```



```
CHARACTER "h" - FLVL [C1, RE]' 位HL [R2/3, RB, GC] +
    H/TLVL [CA: GGl.
CHARACTER "i" - FLVL [C2/3, IJ\ME, QC) + Q/HLHL [R4,IJ]/
    Q/HLLS [R3R4; NB] + H/RLHL [R4, IJ ]/
    Q/HLRS [R3R4, QC]
CHARACTER "j" - FLVL [C3, MC/GC, JC, 9J, 6J, LC] + QLHL
    [R4, JC, 2C] + HLRS [R4R3, 2C, 9J] + QLRS
    [R1, 6J] . QLRS [R1, MC]/QLHL [R1, GC]
CHARACTER "k" - FLVL [C2, KJ, MC/GC] + H/QLRS [R1R2, KJ] +
    H/QLLS [R3R4, KJ] . QLRS [R1, MC]/QLHL
    [R1, GC]
                                    TABLE 7.1
    DESCRIPTION OF THE CHARACTERS
```

```
CHARACTER "I" - F/TLVL [C2, PC3. UR/JC, LC] . H/QLVL [C3,
    PC2] . Q/HLHL [R4, LC] . QLHL [R4, JC]/
    QLRS [R4, UR]
CHARACTER "m" - TLUL [C2, TJ, PC3] + H/T/FLHL [R1, TJ,
    TJ, GC] + TLVL [C3, PC2, GC/TJ, PC4] +
    TLVL [C4, PC3, GC].
CHARACTER "n" - F/TLVL [C2, TJ] + H/TLHL [R1, TJ, GC] +
    F/TLUL [C4, GC]
CHARACTER "O" - F/TLVL [C1, LC, FC] + F/T/HLHL [R1, FC,
    GC] + F/T/HLVL [C4, GC, JC] + F/T/HLHL
    [R4, JC, LC]
CHARACTER "p" - FLVL [C2, RB, FC, MC] + H/QLHL [R1, PR2,
    FC. GC] + QLVL [C4, GC, JC] + H/QLHL [R2,
    PR1, JC, RB] . QLRS [R1, MC]
CHARACTER "q" - QLUL [C1, FC, LC] + H/QLHL [R1, PR2, FC,
    GC] + FLVL [C3, GC, LB, QC] + H/QLHL [R2,
    FR1, LC, LB] . QLRS [R4, QC]
CHARACTER "r" - FLUL [C2, MC. FC] + QLRS [R1, MC] +
    T/HLHL [R1, FC]
CHARACTER "s" - QLUL [C1, FC, LC] + TLHL [R1, PR2, FC]
    T/HLHL [R2, PR1, LC, GC] + H/QLVL [C4,
    GC, JC] + TLHL {R4, JC}
CHARACTER "t" - FLUL [C2/C3, LC, PJ] + HLHL [R2/R3, PJ]
    + Q/HLHL [ R2/R3, PJ]. HLHL [R4, LC]
CHARACTER "u* - FLUL [C1, LC] + T/HLHL [R4, LC, TJ/JC] +
    TLVL [C3/C4. TJ/JC]
CHARACTER "v" - FLUL [C2, MC, QC] + QLRS [R1. MC] .
    Q/HLRS [R3/R2R3, QC, UR] + Q/HLVL [C4,
    URJ
CHARACTER "W" - FLUL [C1, PC2, LC] + T/HLHL {R4, LC,
    1J, 1J/JC] + QLVL[C2,PC1, IJ] +
    T/HLVL [C3/C4, [J/JC]
    DESCRIPTION OF CHARACTERS
```

```
CHARACTER "x" - FLVL [C2/C3, TJ, IJ] + H/QLHL [R1, TJ] +
    H/QLHL [R1, TJ] . H/QLHL [R4, IJ] +
    H/QLHL [R4, [J]
CHARACTER "y" - QLUL [C1, LC] + H/QLHL [R2, LC, LB] +
        FLVL [C3, LB, JC, 9J, 6J] + QLHL [R4,
        JC, 2C] + QLRS [R3, 2C, 9J] . QLRS
        [R2, 6J]
CHARACTER "z" - HLVL [C3, GC, JC. 9J, 6J] + H/QLHL
        [R2, PR1, GC, 2C] + GLRS [R2, 2C, 7C] +
        HLHL [R1, PR2, 7C] , HLHL [R4, JC, 2C] +
        QLRS [R3, 2C, 9J] . QLRS [R2, 6J].
```


TABLE -7.1

 DESCRIPTION OF CHARACTERS
 NOTE: 1) In the case of some characters more than one choice at some of the limbs is already given. However, this is not included in Fig: 7,2, The Decision Tree. However in the computer implementation these and other variants are also accounted for.
2) F/T/H/QL indicate Full Length / Three Quarter Length / Half Length , Quarter Length Lines
and auxiliary primitives openended new primitives can be
added to their respective inventories.

7. 7 CHARACTER CLASSIFICATION SCHEME

A decision tree is used for the elassification scheme. This decision tree enables the interaction between the various elements in the classification procedure namely, the primitive extraction and character classification. The description of a character that is being classified, is built up with the location of each new primitive. Progress along any branch of the decision tree is made with the comparison of the built up description of the character with respect to a standard inventory of all the members of the lower case English language characters. With the addition of each new primitive. the comparison narrows down to the particular character in question and an unambiguous decision is reached finally. Because of the implementation of openended inventories the difficulty of many a problem like that of primitive separation, and extra primitives are avoided. This is achieved by dynamically adding more branches where ever necessary to the decision tree. The use of openended inventories permits this and helps avoid wrong classifications and minimize rejections. In a subsequent section of the chapter the

```
computer implementation of the classification scheme is
presented where a typical example is chosen to show the
primitive by primitive extraction and the final unambigu-
ous classification of the character. The variants in the
decision tree is also indicated.
```


7.8 THE DECISION TREE

```
The classification scheme described in this work uses a
decision tree for the interconnection of the various parts
like modified image scanning, primitive extraction and
the building up of the character description which in turn
helps in the correct classification of the unknown charac-
ter sample. J.R.Ullman [UMAN] in his famous book describes
the use of decision tree in pattern recognition. In [NARI]
the use of decision tree is described in the context of
hand printed Engligh letters. Many authors have used the
decision tree for the classification of particular grouf
of character sets.
An introduction to multistage classification systems has
been offered in [KURZ] and [SMAN]. It is stated in [SMAN]
that the multistage classification system closely resem-
bles the human recognition system.
```

The three main components that are involved in the design

of a tree classifier as listed out in [KURZ] are:

1). The choice of the tree structure,
2). The choice of the primitives to be used and
3). The decision rules to be used at each nonterminal node for performing the classification.

The design of the decision tree used in this scheme which is a modification of the classical approach is presented below.

The structure of the decision tree employed in this classification scheme is shown in Fig:7.2, and is based on the character description scheme described earlier in Section 7.5. Any branch lying between the ROOT (designated as start in the figure, and any one of the terminal nodes (which is the identification of the character) is the description of the character. Each node indicates the presence of an auxiliary primitive. Except for the first row of auxiliary primitives, all other nodes show the discovery of a main primitive. it can be seen that every main primitive is represented by a branch in the decision tree. With the extraction of each primitive the membership in the character class decreases in number of members who satisfy the specified characteristics. The weakness of a conventional decision tree is the fact that a wrong
branching taken at any node would affect the performance of the scheme adversely. The hierarchy of the character description scheme in this work avoids such situations. A new feature of this decision tree is the provision for introduction of new bramehes whidn lad to the original terminal node. The provision of deditional branches lead-
 variations in the same character. :

Listing the primitiuge along for anch gives the descifip
tion of a character which will be finally encountered the terminal node of the branch. The build up of the description starts with the extraction of the first auxilu iary primitive at the first node. The description of the character is enriched with the addition of every new maln primitive andfor auxiliary primitive as shown by thé successive nodes. The description of the character is. thus built up in the form shown below:

AP1*MP1.AP2*MP2APn-1* MPn24
In a few characters the auxiliary primitives may repeat. The above description is similar to the one shown earlier in section 7.4. The classic form is given in Eq:7.1, where as the actual form of generation of characters in real applications is of the form of Eq:7.2.

䱚

$\stackrel{\circ}{9}$

The decision tree shown in Fig:7.2 represents the standard form. The actual tree will contain additional branches to accommodate variants of the same character and new characters.

Recognition of characters by the decision tree is shown in Fig:7.3. Successive reduction in class with each Auxiliary Primitive and the ultimate arrival at the target character, are also shown in Fig: 7.3
7.9 INTERACTION AMONGST SCANNING, PRIMITIVE EXTRACTION AND CHARACTER CLASSIFICATION

The subsystems namely, scanning, primitive extraction and character classification interact through the decision tree. The branches of the tree describes all the haracters in the inventory. In the normal operation when a change is encountered the primitive is extracted and identified. This output is used to build the description of the character. During every such operation identification of a primitive leads to a decision at the node of the tree. The question of the character class is answered by referring to the hierarchy of the character description. Main Primitives and Auxiliary Primitives.
Hence the description dictionary is used for primitive

by primitive recognition of a character. By adopting this type of interaction the computer emulates human recognition process. As can be seen form Fig:7.2 at any node the class of later possible primitives is reduced in number: This fact itself is utilised in the primitive extractidn procedure. It can be said with certainty that for
 classification can be done with a partial scan det of character image. However even in cases where a pownem scan yields correct classification, the image is ecame completely to corroborate the earlier classifieateder
 scheme in Fig: 7.3. Eventhough at the third stage, that le extraction of the second Main Primitive RLHL" at R1, the character can be classified as " p ", the routine continues until all the primitives are extracted and the character classification is unambiguously reiterated.
7.10. COMPUTER IMPLEMEKTATION OF THE PROPOSAL

In this section the computer implementation of the new proposal is discussed. The section starts with the preparation of the data, digitization of the character, followed by a flow diagram. The primitive by primitive articulated classification of the character, through a
decision tree, is traced to show the working of the scheme.

A manual sample collection formed the first stage of the experimental work. A number of subjects were asked to write lower case English language characters on a fine graph sheet, Ey scaling, the size of each character was brought to a 12 * 12 modified grid size. No constraint was placed on the use of the writing equipment. The choice of the 12 * 12 gridensure that line continuity will be maintained, whatever be the writing aid used. For binarizing the following rule is used:

- Assign a value of 1 to a cell if the character outline passes through it. Otherwise assign the value of 0. "

The binarized image data is entered through a key board (this work was started in the year 1987), and is scanned for further processing. Currently all this can be realized using an image scanner , camera combination.

The different units of the programme are shown in the flow chart, depicted in Fig: 7.4. In the scheme envisaged there are three basic operations:
1). Scanning of the modified image
2). Primitive extraction and unifying feature and primitive definitions.

3). Classification of the character through the build up

 of thm primitives.From the implementation point of view these three opera-
tions are further subdivided into many smaller units.
The search for the character is made as follows. The data.
is fed into the computer. The search subroutine sweeps the
character image by checking the value of each pixel. The
search begins with the left top pixel, proceeds along the
row and when finally the top right pixel is reached the
scan moves over to the next row. The procedure is repeated
until the values of all the pixels are noted.
The program now moves over to the next subroutine which
groups the pixels into cells. There are nine pixels in
each cell. A naming subroutine assigns word names to all
the cells.
The image is now ready for data reduction, for which a
scheme called FlLTERING is adopted. A modified image is
available at the out put of the Filter. All further proc-
essing is done on this modified image.

Another subroutine which extracts primitives scans the modified image starting with the left bottom cell (cell
40). Once this subroutine encounters a cell where a non-

Fig:- 7.4

Fig:-7.4

Fig: 3.4
zero word name is detected the primitive extractor is brought into operation. The primitive is extracted and recorded. If no wordname is detected then the program goes to the north neighbor of the first cell. The search continues until a cell with a non zero word name is detected. The scanning of the image continues until all the cells are scanned, and all the primitives, both main and auxiliary, are extracted. The classification module now takes over and character desoription starts forming and finally the character classification is effected.

The description of the output is shown below. The character was classified primitive by primitive. The classification procedure is also presented in Fig: 7.3. Fig: 7.5 illustrates the fact that the characters do not loose their recognizability.

7.11 REALISATION OF THE DECISION TREE

The decision tree of this scheme can be realised by scanning the standard description inventory in a particular mode. The character description is written as a string from left to right. In the scan operation also, the build up of the description of the unknown character is made in the same fashion, that is from left to right. With the
addition of each new main or auxiliary primitive the new description is compared with the standard inventory. The members with which this new description does not agrae are ignored. With the growth in the addition of each new prinitive resulting in the development of the description. the number of members with which the description agrees decrease and finally the agreement comes down to just one character. Even in such cases, the character search is continued along the decigion tree until the final node is reached.

7. 12 THE GRAPHICAL REPRESENTATIDN DF THE DECISIDN TREE

A part of the decision tree is presented in figi 7. 6. Here the recognition of the characters * a and * o is presented. The decision process is explained below for the purpose of explaining the graphical representation of the decision tree.

On spotting the first primitive, a quvg at the cell 4 , the scan moves in a vertical direction moving on to the cell 31 and it spots the first vertical line, a FLUL or a TLUL. By the identification of this Main Primitive the character class reduces to a, b, e, e, h, o, u and w. The HL [Ri] does not eliminate any member from the group.
However, the extraction of $G C$ eliminates the character
"c" from the class. Discovery of VL [c3] eliminate both
"o" and "e" which leaves behind only the character "a".
Although only one or two more auxiliary features are re
quired for the final classification of the character, all
the remaining auxiliary primitives are extracted.

7.13 CONUENTIONS ADOPTED FOR CHARACTER SCAMNING

A set of conventions are formulated for the scanning of the modified character image. These are not invariant. Other conventions are also possible. The details given below cover all the characters. The scan procedure starts from the left bottom cell.

Generally scanning conventions are needed at junctions. At the first junction the system may encounter 1,2 , or 3 limbs. In the ease of 1 limb junctions there is no difficulty. In the case of 2 or 3 limb junctions a helical scan will be followed. This means that the limb encountered first by the scan in its operation will be followed only at the end. The scan will proceed to the top of the vertical limb and continue.from there to the next primitive moving in a helical path. The scan will come down to the second top primitive if the helical scan is not possible

FILTERED IMAGE OF CHARACTER

IT'S GRAPHICAL REFRESENTATIDN

0003 Al 000000 3A3 3A1 ЗA3 ЗA3 000 3A1 000000 000 3A1 ЗA3 ЗA2

CHARACTER "4:"

3A1 3A3 3A3 000 3A1 000 3A1 000 3A1 000 3A1 000 3A3 3A3 3A3 3A3

CHARACTER "a"

000000 3A1 000 000000 3A1 000 ЗАЗ ЗАЗ ЗА2 000 3A1 3A3 ЗA3 3A3

CHARACTER "d"

3AE 3A1 3A3 3A3
000 3A1 000 3A1
000 3A1 3A3 3A3
000 3A1 000000
CHARACTER " p "

3A1000000000
3A1 000000000
3 A 13 A 3 BA 3 B 1 3A1 000000 3A1

CHARACTER " n "

Fig:- 7.5
IMAGES OF A FEW CHARACTERS TO SHOW THAT THE FILTERING DOES
NOT AFFECT RECOGNIZABILITY

It may ba noted that the scanning of the modified image can be done in more than one way. Description of the character is scan mode dependent, that is, if scanned differently, even if the basis, that is the primitives, are kept the same, the description of the character will change.

7.14 ADDITIONAL BRANCHES IN THE DECISION TREE

Fig: 7.2 shows a decision tree uhich can be used for the Elassification of lower case English language characters. If a different set of data is to be classified using the decision tree, the decision tree should be modified to accommodate the members of this new class. Because of the openended inventories used in this scheme the decision tree can be made to accept more members in it, which include both new characters and variants of the existing Eharacters. The extemsion of the deeision tree to inciude both these types is shown in Fig: 7.7. A comparison of Fig: 7.7 with Fig: 7.2 show that the variants shoum are nem parallel branches added to the original decision tree.
7. 15 RECOGNITION OF CHARACTER VARIANTS WITHOUT ALTERING THE DECISIOM TREE

This approach provides for the recognition of character

Fig: 7.6
variants without altering the decision tree. The two types of variants generally seen in character recognition problem are:

1) Separation of primitives in characters.
2) Extra primitives in characters.

In the case of characters with separated primitives a rule is formulated for an acceptable limit in the distance of separation. in the case of extraprimitives another rule is laid down for the number of extraprimitives in one character. The logic of classification $c a n$ be altered slightly to accommodate these variants also.

CHAPTER - VIII COMCLLDING REMARKS

8.1. SUMMARY

This thesis has presented the follouing aspects for the reeggnition of LOWER CASE ENGLISH LANGUAGE HANDWRITTEN CHARACTERS.

1) A new uniform division of the character image into 144
pixels grouped as $3 * 3$ pixel cells in four rows and four
columns is shown possible and the 144 pixel pisture de-
scription is sufficient for the description and analysis
of the types of images handled. Single character images
are captured and from the true size, the division into
regions is carried out. Scaling is adopted for recording
the binary image.

The advantage of this new proposal is that, once the binary image is avadlable, true size of the character is immaterial, since each character image occupims only 144 bits of memory space. A seven character group occupies only $1 k$ memory which is much less than most of the previous methods.

```
The disadvantage is that, dynamic sensing of cell bound-
aries may pose hardware realization problems. However
```

```
The advantage is the following. Since only 69 basic
features are defined, syntactic processing is simpler.
Also the rules are simple because of the small number of
features. Complex rules can be eliminated in this ap-
proach. Processing required is oniy at the algebraic /
logical level of words. There im no need for semantic
processing or complex matrix operations.
One likely disadvantage is that minor ambiguities should
be resolved at the word formation stage. Else it may lead
to wrong definition of features.
4) By defining a new three stage filtering procedure,
reduction in the dimensionality of the problem is
achieved. Filtering defined in this thesis is a new con-
cept related to order filtering. Each pixel in a cell is
treated as a sample point and its distance is measured
from the cell boundary. If the distance exceeds a thresh-
old, that pixel value is either changed or nulled. Repeat-
ed filtering lead to uniform contours, which are lines
symmetric with reference to the boundaries of the cell.
Further, this nem concept automatically takes care of the
line width problems and hence line thinning algorithms are
not needed for further processing.
```

5) Primitives and features defined in this work are closely related to the features extracted and defined earlier, is sufficient for the formulation of a decision tree classifier. This is smaller than the sets used by other researchers.
```
The advantage of the scheme is the following. The decision
tree for classification can be reduced to a table look: up
operation in a large number of cases. This is particularly
true for geometrically symmetric characters and shapes
like, lower case English language handwritten characteris.
By virtue of the fact that the aumiliary primitives are a
closed subset of the main primitives which in turn is a
connected subset of the description rules, the classifiea-
tion scheme is rendered very fiexible. Further, the scheme
provides for open-ended inventory like the addition of new
primitives, alternate routing in tha decision paths ama
reduced search space at the end of each limb traverse.
6) The performance of the system is comparable to other
existing cursive script recognition systems. Some portions
of the work, like data imput, can be done manually. This
leads to slou speed of the system. Once automatic data
imput is used, the system can mork quite fast.
```

The main advantage of the system is: As against the simpler problem of hand printed characters, the more complex cursive seript recognition is tackled in this worka Similarly signature analyzers for recognition handle only a finita set of character types, for exampleg the signature of a finite number of account holders in a bank: There is no such eonstraint or limitation in tme promosad stheme.
7) An important aspect of the thesis is the open-minged inventorias for primitives and charactar daseriptione The LSe of open-ended inventories helps in the addition of neu primitives as well as mew wharacters and variants of the charactars itself. This is of great use while handling 1arge data sets.

8.2 RESULTS DF THE THESIS

The scheme was mainly intended for implementation in small machines. Hosever, the seheme can also be used in more pouerful and large manhines. The proposal uas implemented in a PC environment using IEM compatible mavhines. The classification routine was developed using a small set of lomer case English lamguage Eharacters comprising charamters of varying complexity. Subsequently a few more sets of characters umpe addad to the orioinal set. The folloum
ing conclusions are made from the tests conducted on these sets.

1) The grid size of $12 * 12$ provides sufficient information for further processing.
2) The new vocabulary developed for image coding is very useful for further processing like FILTERING, PRIMITIVE EXTRACTION and CLASSIFICATION. This new vocabulary reduces the computational efforts needed. Also the use of this new vocabulary makes the use of small machines possible.

3\}. The introduction of the hierarchy amongst the auxiliary primitives, main primitives and the character description itself is very useful in the extraction of primitives. The aukiliary primitives can be deduced from the presence of main primitives on which these aukiliary primitives reside.
4). The openended inventories make it possible to include more members in the character set, more variants for the same character and more primitives for the same character.
5). The decision tree has provided an interaction between the various units of the scheme. The structure of the decision tree selected is most suited for the purpose
of this classification scheme. Also the structure of the decision tree is based on the description of the character. Samples with separated primitives and extra primitives were recognized by the scheme without much difficulty.
6). An advantage of the scheme is that it automatically provides for the variations in the size, shape and orientation of the character.

8.3 SUGGESTIONS FOR FUTURE WORK AND THE RANEE OF THE CURRENT

 WORKThis new classification scheme was tested on a set of 1352 character samples. The data set was generated in two steps and using two groups of peaple, school/college going children whose handuriting is in the formative stage and elderly people in business/amployment ..etc. Each person mas requested to write the set of 26 characters, in a previously prepared graph sheet to enable making a 12*12 grid. These grids were of varying sizes and shapes and fifty two sample sets were collected for the analysis. The only constraint proposed was to request each individual to write the character close in size to a $12 * 12$ grid. The use of a very large sample set will improve the various decision mechanisms in the scheme. The openended inventories
used for Auxiliary Primitives, Main Primitives and the
character descriptian and also the existence of the
hierarchy among these three allow for the increase of the
data get. The larger data sets may need refining of the
primitive extraction routines. New characters and charac-
ters composed of nem primitives can be added to test the
performance of the scheme.

Certain areas of work related to the new concepts introduced in this thesis elearly fall beyond the seape of the thesis. Further research aream are therefore seen possibie, and are iisted belou.

1) Segmentation algorithms for cursive script or images where the rharacter size may show variations of more than 1:3.
2) Corrupted character image recognition like, missing or obliterated parts of a character.
3) Labeling and feature extraction for three dimensional object images. It is likely that apixel cell in a $3 * 3 * 3$ format $i s$ to be defined. The number of basic words or features is estimated at $\left[36^{3}-3 * 36^{2}\right]$. The proof and accuracy of this is to be ascertained.
4) The possible logical relationship between the features in cells and primitives in paragraphs is to be established.

REFERENCES

1) [ABUI] AGUI.T, NAKKAJIMA.M, \% ARAI.Y; "AN ALGEBRAIC APPROACH TO THE GENERATION AND DESCRIPTIDN OF EINARY PICTURES" ; IEEE TRANS. PAMI, VOL PAMI 4, NO. 6, PP 635 to 64i, 1982.
2) [EERT] BERTHDD, MARC;
"ON-LINE ANALYSIS OF CURSIVE WRITING" in COMPUTER ANALYSIS AND PERCPTION; VOL. I VISUAL SIGNALS, CHAPTER 4, PP 55 to B1, EdS. MARC BERTHDD
3) [EOZI] EOZIMDVIC R., AND SRI HARI 5. N.; "A STRING CORRECTION ALGORITHM FOR CURSIVE SCRIPT WRITING", TRAN. IEEE PAMI, VOL PAMI-4, NO. 6, NOW. 1984, PP 655 to 663.
4) [CHIN] CHINNUSWAMY, F, \& KRISHNA MOORTHY 5. E; "RECOENITION OF HAND PRINTED TAMIL CHARACTERS" PATTERN RECOGNITION, VOL.12, PF 141 to 152, 1980.
5) [KSFUI] FU.K. S;
"A STEP TOWARDS THE UNIFICATION OF SYNTACTIE AND STATISTICAL PATTERN RECOGNITION", IEEE PAMI, VOL. PAMI - 5, PP 200 to 205, MARCH 1983.
6) [ǨSFU2] FU.K゙. S;
"SYNTACTIE PATTERN RECOGNITION", in HANE EOOK OF PATTERN RECOGNITION AND IMAGE PROCESSING, EdS. T. Y. YOUNG AND K. 5. FU, ACADEMIC PRESS, NEW YORK, 198G.
7) [GRIM] GRIMSDALE R. L., SUMNER F.H., TUNIS C.J, and EILEURN T.
"A SYSTEM FOR THE AUTOMATIC RECOGNITION OF PATTERNS", Proc. OF IEE, VOL. 108 (Fart-B), PP 210 to 221, 1959.
8) [HANA] HANAKATA K. ; "FEATURE SELEETION AND EXTRACTION FOR DEEISION THEORETIL AND STRUCTURAL APPROACH", in PATTERN RECOGNITION THEORY AND APPLICATIONS, EdS. FU. K. 5 \& WHINSTON A.B, NOORDHOFF - LYEDEN - 1977.
9) [KAHA] KAHAN S., PAVLIDIE T., BAIRD H. S.; " ON THE RECOGNITIGN OF PRINTED CHARACTERS OF ANY FONT AND SIZE ", Trans. DF IEEE PAMI, VOL.PAMI-9, MAREH 1987

10) [ROSEJ ROSENFELD A., KAK A. C.: DIGITAL PICTURE PROCESSING, ACADEMIC PRESS, NEW YORK, 1982.
11) [SETH] SETHI I. K., AND CHATTERJEE B.; "MACHINE RECOGNITION OF CONSTRAINED HAND PRINTED DEVANAGARI", PATTERN RECOGNITION, VOL. 9, 1977, PP 69 to 75.
12) [SIMOJ SIMON HAYKIN.; in adaptive filter theory, prentice hall, engle wood CLIFFS, NEW JERSEY.
13) [SINHA] SINHA R. M. K., AND MAHABALA H. N.: "MACHINE RECOGNITION OF DEVANAGARI SCRIPT", IEEE TRANS., VOL. SMC-9, PP 435-441, AUG. 1979.
14) [SIRO] G. SIROMONY, R. CHANDRASEKARAN AND M. CHANDRASEKARAN.; "COMPUTER RECOGNITION DF PRINTED TAMIL CHARACTERS", PATTERN RECOGNITION, VOL. 10, PP 243-248, APR. 197日.
15) [SOM] SOM A., AND NATH A. K..; "ON SOME METHODS OF SEQUENTIAL PATTERN RECOGNITION", ISI SYMP DIGITAL TECH AND PATTERN RECOGNITION, PP 246-265, 1977.
16) [SMAN] SCHLERMANN J., AND DOSTER W.; "DECISION THEORETIC APPROACH TO HEIRARCIAL CLASSIFIER DESIGN", PATTERN RECOGNITION VOL. 17, ND. $3, ~ P P ~ 359$ to 569, 1984.
17) [STAL] STALLING W. W.; "CHINESE CHARACTER RECOGNITION", in SYNTACTIC PATTERN RECDGNITION, APPLICATIONS, Ed. FU K. S., SPRINGERVERLAG, 1977, PP 95 to 123.

2B) [SUE1] SUEN C. Y.; "CHARACTER RECOGNITION EY COMPUTERS AND APPLICATIONS", CHAPTER 23 , in HAND EOOK OF PATTERN RECOGNITION AND IMAGE PROCESSING, Ed YOUNG T. Y., AND FU K. S., ACADEMIC PRESS, NEW YORK, 1984.
29) [SUE2] SUEN C. Y.;
"DISTINCTIVE FEATURES IN AUTOMATIC RECOGNITIDN OF HAND PRINTED CHARACTERS", in SIGNAL PROCESSING 4, 1982, PF 193 to 207.

SO) [SUEJ] SUEN C. Y., MORI S.;
"STANDARDIZATION AND AUTOMATIC RECOGNITION OF HAND PRINTED CHARACTERS", in COMPUTER ANALYSIS AND PERCEPTION, VOL. I, VISUAL SIGNALS, CHAPTER I, Ed, BERTHOD M., ACADEMIC PRESS, NEW YORK.
31) [SUE4] SUEN C. Y.;
"FEATURE EXTRACTION IN AUTOMATIC RECOGNITION OF HAND PRINTED CHARACTERS", in SIGNAL PROCESSING: THEORIES AND APPLICATIONS, Eds. KUNT M., AND F. de COULON, NORTH HOLLAND PUBLISHING CO., EURASIP, 1980.
32) [SUES] SUEN C. Y., BERTHOD M., AND MORI S.; "AUTOMATIC RECOGNITION OF HAND PRINTED CHARACTERSTHE STATE OF THE ART", PROC. OF IEEE, VOL. 6 . 40,4 ; PP 469 to $487,1980$.
33) [UHR] LEONARD UHR.; PATTERN RECDGNITION, LEARNING AND THOUGHT, PRENTICE - HALL, NEW JERSEY, 1973.
34) [UMAN] ULLMAN J. R=; PATTERN RECOGNITION, BUTTER WORTH, 1973.
35) [WANG] WANG Q.R., AND SUEN C. Y.; "ANALYSIS AND DESIGN OF A DECISION TREE BASED ON ENTRDPY REDUCTION AND IT'S APPLICATION TO A LARGE CHARACTER SET RECOGNITION", TRANS. IEEE PAMI, VOL. PAMI-6, NO.4, 1984, PP 406 to 417.
36) [YOSH] YOSHIDA M., IWATA K., YAMAMOTO E., MASUI T., AND KABUYAMA Y.;
"THE RECOGNITION OF HAND PFINTED CHARACTERS INCLUDING 'KATAKANA', 'alphabets' and 'numerals'", proc. of the THIRD INT. CONF. ON PATTERN RECOGNITION, NOV. 1976, CALIFORNIA, PP 645 to 649.

GENERAL REFERENCES
GR1) MACHINE RECOGNITION OF PATTERNS, Ed. AGRAWALA A.K., ACADEMIC PRESS, NEW YORK, 1977.

GR2) PATTERN RECOGNITION THEORY AND APPLICATIONS, Eds. WHINSTON A. B., AND FU K. S., MOORDHOFF-LEYDEN, 1977.

GR() HAND BOOK OF PATTERN RECOGNITION AND IMAGE PROCESSING, Eds. YOUNG T. Y., AND FU K.S., ACADEMIC PRESS, NEW YORK, 1784.

GR4) PATTERN RECOGNITION, LEARNING AND THOUGHT, LEONARD UHR. PRENTICE-HALL, NEW JERSEY, 1977.

GR5) DIGITAL PICTURE PROCESSING, ROSENFELD A. \& KAK A. C. ACADEMIC PRESS, NEW YORK, 1982.

GRG) PATTERN CLASSIFICATION AND SCENE ANALYSIS, DUDA R. 0 8. HART P. E., WILEY-INTERSCIENCE, 1978, NEW YORK.

GR7) SYNTACTIC PATTERN RECOGNITION AN INTRODUCTION, GONZALEZ R. C., \& THOMASON M. G., ADDISON-WESLEY, READING, MASSACHUSETTS, 1978.

GRE) PATTERN RECOGNITION PRINCIPLES, TOU J. T. \& GONZALEZ R. C., ADDISON-WESLEY, READING, MASSACHUSETTS, 1974.

GR9) SEQUENTIAL METHODS IN PATTERN RECOGNITION AND MA CHINE LEARNING, FU K. S., ACADEMIC PRESS, NEW YORK, 1968.

- G5451 -

PUBLICATIONS BASED ON THE THESIS

1) R. K. TAMPI \& C. S. SRIDHAR, "A NEW CODING AND FILTERING APPROACH TO AID IN THE RECOGNITION OF NEAR GEOMETRIC SHAPES", PROC. of the $7^{\text {th }}$ International Conference on Pattern Recognition, July-August, 1984, Montreal, Canada.
2) --------, "FEATURES, DEFINITION AND EXTRACTION FOR IMAGES WITH CONTOURS", Proc. of Con.786, SPIE, April'87 NEWPORT BEACH, CALIFORNIA, U. S. A
3) -----"SEGMENTATION OF HANDWRITTEN CHARACTERS",PROC. of the $e^{\text {th }}$ International Conference on Pattern Recognition, September, 1986, Paris, France.
4) -------. "A NEW CODING AND FILTERINE APPROACH TD AID IN THE RECOGNITION OF NEAR GEOMETRIC SHAPES", PToE. of the International Symposium on Electronic Devices Circuits and Systems", 1987, Kharagpur, India.
5) --------, "NUMBER OF FEATURES FOR HANDWRITING RECOGNITION", $12{ }^{\text {th }}$ GRETSI Symposium, 1989, Juan Les Pins, France.
6) -------, "FIXED REGION LABELING AND FEATURE EXTRACTION" Communicated to ELECTRONIC LETTERS for possible publication.

[^0]: TABLE - 3.2

