Catalysis by some metal oxides modified with phosphate ions

S Sugunan*, H Suja, C S Deepa, K Sreejarani & M V Ouseph

Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India

Received 14 July 2000; revised 3 June 2002

Surface acidity of phosphate modified La_2O_3 , CeO_2 and SnO_2 has been estimated by titrimetric method using Hammett indicators. Mixed oxides of tin and lanthanum have also been prepared and subjected to phosphate modification. Surface characterization of the samples has been carried out using XRD, surface area, thermal analysis and IR spectroscopy. Phosphate content in the samples has been chemically estimated. The catalytic activity for benzylation and esterification reactions has also been investigated.

Metal oxides find wide application in the field of heterogeneous catalysis. Slight modifications of the metal oxides may result in enhanced catalytic activity and selectivity. Considerable attention has been given to anion modified metal oxides since the first serious report of superacidity came in early 1980s^{1,2,} Numerous studies have been devoted to investigate on the sulphated metal oxides³⁻⁵ but only a few reports have appeared on phosphate modified oxides⁶⁻⁸. The present paper deals with a comparative evaluation of the surface properties of pure and phosphate modified metal oxides of La, Ce and Sn. Mixed oxides of Sn and La were also subjected to study. The catalytic activity of these oxides was studied for test reactions such as benzylation and esterification. The data have been compared with those for the unmodified oxide.

Materials and Methods

The rare earth oxides were prepared by the hydroxide method⁹ from their nitrate salts [lanthanum nitrate, cerium nitrate (99.9% pure) IRE, Udyogamandal]. The precipitate was dried overnight at 120°C and then calcined for five hours at 300°C. Tin oxide was prepared from stannic chloride solution (prepared from stannous chloride by oxidation with aqua regia) by the hydroxide method. Mixed oxides were prepared by co-precipitation method¹⁰ from a mixture of rare earth nitrate and stannic salt solution in required proportions. The precipitate was filtered after washing, dried overnight at 110°C and calcined at 500°C for five hours.

Phosphate modified samples were prepared by suspending the oxide samples in H_3PO_4 solution or NaH₂PO₄ solution as the case may be for 20 hours. It was then filtered without washing followed by drying

at 120°C overnight and calcination at 300°C for 5 hours. Phosphate modification was achieved by using H₃PO₄ solutions of varying concentrations. H₃PO₄ solutions, 0.1 *M*, 0.3 *M* and 0.5 *M*, were used for modifying La₂O₃ and the systems are designated as PLa(0.1), PLa(0.3) and PLa(0.5) respectively. CeO₂ modified with 0.1 *M*. H₃PO₄ is denoted as PCe(0.1). NaH₂PO₄/H₃PO₂ buffer 0.1 *M*, at *p*H 4 was also used as modifier for CeO₂ and La₂O₃ and the systems are designated as PLa and PCe respectively. The phosphated analogues of mixed oxides were prepared by using 0.1 *M* H₃PO₄ as modifier. The various mixed oxide systems prepared and the notations used are as follows:

Composition	Mixed oxide	Phosphated analogue
SnO ₂ (100%)	Т	b.L.
SnO ₂ (80%),La ₂ O ₃ (20%)	TL82	PTL82
SnO ₂ (60%),La ₂ O ₃ (40%)	TL64	PTL64
SnO ₂ (40%).La ₂ O ₃ (60%)	TL46	PTL46
SnO ₂ (20%),La ₂ O ₃ (80%)	TL28	PTL28
La ₂ O ₃ (100%)	L	PL

The amount of phosphate in the modified samples was estimated chemically¹⁰. Specific surface area was measured by the BET method using low temperature nitrogen adsorption in a Gemini Micromeritics surface area analyser. XRD patterns were recorded using CuK α radiation using Rigaku-Miniflux. Thermal analysis was carried out using Shimadzu TGA-50 at a heating rate of 10°C /min in nitrogen atmosphere. Surface acidity/basicity measurements were carried out by titrimetric method using Hammett indicators.

The liquid phase benzylation of toluene was carried out by adding 0.1 g of the catalyst to 10 ml toluene and 1 ml benzyl chloride in an R.B flask. The mixture was refluxed with stirring for 1 hour. The esterification was carried out by stirring 0.5 ml acetic acid and 10 ml butanol in presence of 0.3 g of the catalyst in an RB flask at 98°C for five hours. The products were analysed using a Chemito 8610 Gas chromatograph.

Results and Discussion

The concentration of phosphate ions obtained by the chemical analysis is given in Table 1. Surface concentration of phosphate ions per unit surface area was also calculated. The amount of phosphate ions was found to increase with an increase in the concentration of the H₃PO₄ solution used. The surface concentration of phosphate ions obtained in certain samples was higher than the values reported in the case of anatase⁶⁻⁸. The phosphate content of La₂O₃ samples decreased when NaH₂PO₄ was used as the modifier while an appreciable variation could not be observed for CeO_2 . The phosphate uptake by CeO_2 was quite low when compared to La₂O₃. The phosphate content was quite low for SnO₂ also. In the case of mixed oxides, the phosphate content gradually increased with increase in the amount of La incorporated.

In spite of the high phosphate concentration, XRD analysis confirmed the localisation of phosphate ions mainly on the oxide surface without detectable amounts of a three dimensional phosphate phase. Phosphate ions can be considered to be finely dispersed on the oxide surface. The intensity of XRD peaks was found to decrease upon phosphate modification as a result of the retardation of crystallisation. Such lower degree of crystallinty of modified oxides as compared to pure oxides is already reported¹⁻⁵. In mixed oxide systems the intensity of diffraction peak corresponding to SnO₂ decreased as the % of La₂O₃ increased and new peaks corresponding to crystalline La₂O₃ started appearing. No compound formation was observed in these mixed oxide systems calcined at 500°C. Peak intensity of the mixed oxide systems was also reduced due to phosphate modification.

The specific surface area of modified samples was found to be higher than that of the corresponding unmodified samples, which can also be attributed to the delayed crystallisation³. The phosphate groups being well dispersed on the surface prevents the oxide

Table 1 — Phosphate content of various samples						
% of phosphorus	Phosphate ions/nm ²					
2.81	7.26					
4.02	11.209					
4.95	14.78					
2.13	6.24					
0.39	3.62					
0.42	3.80					
0.25	0.52					
2.86	4,70					
3.44	5.66					
3.50	6.48					
3.90	7.89					
	- Phosphate content of va % of phosphorus 2.81 4.02 4.95 2.13 0.39 0.42 0.25 2.86 3.44 3.50 3.90					

particles from coming closer during calcination. It was also observed that the surface area of the phosphated samples decreased with increase in surface phosphate concentration obtained using higher concentrations of H_3PO_4 solution. In the case of mixed oxides, incorporation of La₂O₃ was found to result in an increase in the surface area value. But as more and more of La₂O₃ was introduced, the surface area was found to decrease probably due to agglomerisation. Thus TL82 showed the maximum and TL28 the minimum surface area. The same trend was also observed for the phosphated analogues.

The thermal stability of modified oxides was tested by thermogravimetric analysis. The TG curve of La(OH)₃ shows an initial weight loss at 100-200°C due to the removal of adsorbed water. This is followed by formation of hexagonal LaOOH intermediate (250-350°C) which is finally converted into La_2O_3 (350-420°C)^{11,12}. The final weight loss (450-800°C) corresponds to the decomposition of the surface carbonate layer that is formed by the interaction of basic lanthanum hydroxide with the atmospheric CO_2^{13} . In the case of $Ce(OH)_2$ an initial weight loss due to loss of adsorbed water was observed. During the temperature range of 250-450°C, water formed by the combination of adjacent OH groups was eliminated leading to the formation of CeO_2 .

The phosphate modified samples in both the cases show a gradual weight loss due to the slow removal of adsorbed and structural water. There is no prominent weight loss indicating the thermal stability of the phosphate-modified samples. Enhanced thermal stability of phosphated anatase has been previously reported⁶. The presence of phosphate ions in the modified samples was further confirmed by IR spectra, which showed a broad peak around 980-1080 cm^{-1} , which can be assigned to the P-O stretching mode of phosphate anion¹⁴.

The results of the acidity/basicity measurements by Hammett indicator method are given in Tables 2-5. Phosphate modified La_2O_3 samples were found to be acidic except in the case where NaH_2PO_4 buffer was used as the modifier. Modified catalyst still remained basic but the basicity was lower than that of pure La_2O_3 . The concentration of H_3PO_4 solution seemed to have a negligible effect on the acidity. In spite of the increase in the phosphate content, acidity remained more or less the same.

Unmodified CeO2 was slightly acidic with acidic

sites of $Ho \leq 7.2$. But phosphate modification resulted in the development of acid sites of Ho between 4.8 and 7.2. Thus the acidity and acid strength was found to increase upon phosphatation. In the case of ceria not much difference was found in the acidity generated by H₃PO₄ and NaH₂PO₄ modifiers. Even though ceria is more acidic than La₂O₃ the phosphated samples exhibited reverse trend with phosphated La₂O₃ being more acidic. This may be due to the higher phosphate content or due to the difference in the mode of adsorption. The acidic sites in SnO₂ are present at Ho 4.8 and 7.2 and basic sites at Ho 3.3. Thus SnO₂ is found to possess weakly basic and

Table 2—Acidity/basicity of La ₂ O ₃ and phosphate modified La ₂ O ₃ activated at various temperatures								
Sample	Temp	Basicity(mmol/g)			ol/g) Acidity			
	(°C)	$H_0 \ge 3.3$	$H_0 \ge 4.8$	$H_0 \ge 7.2$	$H_0 \leq 3.3$	<i>H</i> _o ≤ 4.8	<i>H</i> ₀ ≤ 7.2	
La_2O_3	300	1.23	0.25	0.23				
	500	1.10	0.22	0.21				
	700	1.01	0.20	0.19				
$PO_4^{-3}/La_2O_3 (0.1M H_3PO_4)$	300				0.32	0.32	0.37	
	500				0.22	0.27	0.35	
	700				0.12	0.25	0.30	
$PO_4^{-3} / La_2O_3 (0.3M NaH_2PO_4)$	300				0.31	0.32	0.55	
	500				0.23	0.25	0.36	
	700				0.16	0.21	0.25	
	300				0.27	0.38	0.55	
PO_4^{-3}/La_2O_3 (0.5 <i>M</i> H ₃ PO ₄)	500				0.23	0.25	0.38	
	700				0.18	0.23	0.27	
$PO_4^{-3} / La_2O_3 (0.1M NaH_2PO_4 / 0.1M H_3PO_4) =$	300	1.04	0.15	0.13				
	500	0.88	0.14	0.11				
	700	0.31	0.13	0.05				

Sample	Temp		Basicity(mmol/g)			Acidity (mmol/g)	
	(°C)	$H_{\rm u} \ge 3.3$	$H_{o} \ge 4.8$	<i>H</i> ₀ ≥ 7.2	$H_0 \leq 3.3$	$H_0 \leq 4.8$	$H_0 \leq 7.2$
	300	0.08	0.05				0.13
CeO ₂	500	0.05	0.03				0.20
-	700	0.03	0.02				0.03
PO_4^{3}/CeO_2	300	0.05				0.08	0.28
$(0.1M H_3PO_4)$	500	0.03				0.05	0.25
•	700	0.01				0.04	0.05
PO_4^{-3}/CeO_2	300	0.06				0.05	0.23
0.1MN aH-PO ₄)	500	0.12				0.03	0.08
2	700	0.01				0.02	0.04

Table 3 - Acidity/basicity of CeO₂ and phosphate modified CeO₂ activated at various temperatures

Table 4 — Acid strength distribut	ion of SnO ₂ and PO ₄	³⁻ /SnO ₂ at v	arious temperatures
		_	-

Catalyst	Catalyst Temp Basicity			Acidity			
	(°C)	<i>H</i> ₀≥3.3	<i>H</i> ₀≥4.8	$H_0 \ge 7.2$	<i>H</i> ₀≤3.3	$H_0 \leq 4.8$	<i>H</i> ₀≤7.2
Т	300	0.05	-	-	-	0.21	0.26
Т	500	0.10	-	~	-	0.08	0.09
Т	600	-	-	-	0.030	0.13	0.29
PT	300	-	-	-	0.16	0.51	0.53
PT	500	-	-	-	0.32	0.37	0.55
PT	600	-	-	-	0.21	0.34	0.63

Та	ble 5 — Acidity/ba	sicity of Sn-La mixe	ed oxides and its pho	osphated analogues	activated at 600 °C	
Sample		Basicity(mmol/g)		Acidity (mmol/g)		
	$H_{\rm o} \ge 3.3$	<i>H</i> ₀≥ 4.8	<i>H</i> ₀ ≥ 7.2	$H_0 \leq 3.3$	$H_0 \leq 4.8$	<i>H</i> ₀ ≤7.2
Т				0.03	0.13	0.29
TL82	0.42	0.11	0.08			
TL64	0.32	0.04	0.03			
TL46	0.26	0.05	0.02			
TL28	0.25	0.03	0.03			
La	1.01	0.20	0.19			
PT				0.21	0.34	0.63
PTL82				0.44	0.52	0.55
PTL64				0.53	0.53	0.58
PTL46				0.39	0.37	0.21
PTL28				0.24	0.32	0.34
PLa(0.1)				0.12	0.25	0.30

acidic sites. Incorporation of basic La_2O_3 to SnO_2 decreases the acidity and the mixed oxides were found to be basic. The phosphated analogues were, however, acidic and followed the same trend as that of pure oxides.

The increase in acidity upon phosphation can be assigned to the electron withdrawing effect of the phosphate group, which makes the metal center more electron deficient. Generally, H_3PO_4 modified samples were found to have a greater acid strength and acidity than NaH₂PO₄ modified ones.

Flaig Bauman *et al*¹⁵ have proposed a mechanism in which adsorption occurs by an exchange process between surface hydroxyl groups and $H_2PO_4^-$ ions in solution, H_3PO_4 being dissociated only to the first degree at *p*H< 7. The following structure (I) is postulated. When NaH₂PO₄ is used as the modifier, one of the OH groups is replaced by ONa.

The second mechanism involves the dissociative adsorption of H_3PO_4 leading to the blockage of Lewis acid sites and the proposed structure is denoted as II. On heating, dehydroxylation occurs leading to

bridged structures as given in Scheme 1.In this case Bronsted acidity is generated. When NaH_2PO_4 is used the H⁺ of the P-OH groups are converted into P-ONa which will reduce the Bronsted acidity. This explains the lowering of acidity in this case.

The catalytic activity was tested for benzylation and esterification reactions and the results are given in Table 6. Lewis acid sites are believed to be more active towards benzylation reaction than Bronsted sites, whereas esterification in liquid phase is considered to be mainly catalysed by Bronsted acid sites.

The modified La_2O_3 and SnO_2 samples showed a lesser activity towards benzylation reaction compared

Scheme 1

	Table 6 — Dat	a on the catalytic activ	ity towards benzylation	and esterification		
Catalyst Su	Surface area	Benzylati	on reaction	Esterification reaction		
	(m²/g)	Conversion %	Rate constant $(10^{-7} \text{ s}^{-1} \text{m}^{-2})$	Conversion %	Rate constant $(10^{-7} \text{ s}^{-1} \text{m}^{-2})$	
La_2O_3	44.92	16.78	11.36	31.66	4.69	
PLa(0.1)	75.64	14.08	5.61	70.78	9.10	
PLa	66.27	18.74	8.60	-	-	
CeO_2	34.80	57.15	1.59	67.98	17.62	
PCe(0.1)	40.92	68.65	1.61	59.59	9.8	
PCe	41.46	79,24	2.04	-	-	
Т	40.01	88.82	15.19	12.30	1.82	
PT	93.08	51.00	2.13	70.68	7.32	
TL82	82.01	72.17	4.33	65.84	7.28	
PTL82	117.94	74.38	3.21	59.52	4.26	
TL64	63.99	92.58	11.29	69.77	10.40	
PTL64	104.95	84.76	4.98	36.50	2.40	
TL46	61.86	85.15	5.16	87.40	18.60	
PTL46	104.87	56.39	3.72	46.35	3.30	
TL28	59.87	84.90	8.77	83.99	17.00	
PTL28	95.95	88.32	6.21	73.51	7.69	

to pure oxides irrespective of the higher acidity and surface area values whereas the reverse trend was observed for esterification. This leads to the assumption that the phosphate modification in these cases occurs by the blockage of Lewis sites thereby leaving them inaccessible for the reactant molecules during benzylation reaction. The Bronsted sites created during the process, catalyse the esterification reaction. This trend was completely reversed for CeO₂. In the case of CeO₂, Lewis acid sites can be assumed to be more active resulting in a better activity towards benzylation reaction.

In the case of mixed oxides, TL64 was found to be the most active towards benzylation. This is consistent with the fact that maximum acidity was observed for the same. The modified oxides were less active towards benzylation suggesting that the Lewis acid sites are weaker compared to pure oxides. However the esterification results also showed the same trend with the modified oxides.

To conclude phosphation generally leads to an increase in surface area and a decrease in crystallinity and the samples are thermally stable. Phosphation can occur through adsorption atco-ordinatively unsaturated Lewis acid sites and exchange of OH groups by $H_2PO_4^-$ ions. The catalytic activity and surface acid-base properties mainly depend on the amount of phosphate adsorbed and also the nature of adsorption.

Acknowledgement

The authors wish to acknowledge their sincere gratitude to the CSIR, New Delhi for the award of Junior Research Fellowship to H S and K S

References

- 1 Hino M, Kobayashi S & Arata. K, J Am chem Soc. 101 (1979) 6439.
- 2 Hino M & Arata K, J chem Soc Chem Commun. (1980) 851.
- 3 Song X & Sayari A, Catal Rev Sci Eng, 38 (3) (1996) 329.
- 4 Sohn J.R & Jang H J, J molec Catal, 64 (1991)349.
- 5 Saur O, Bensitel M, Saad A B M, Lavalley J C, Tripp C P & Morrow B A, J Catal, 99 (1986) 104.
- 6 Hadjiivanov K I, Klissurski D G & Davydov A A, J Catal, 116 (1989) 498.
- 7 Cornejo J, Steinle J & Voehm H P, Naturforsch, 33 (1978) 1238.
- 8 Munuera G, Moreno F & Prieto J A, Z Phys Chem, 78 (1972) 113
- 9 Snell F D & Ettre L S, Encyclopedia of industrial chemical analysis, (Interscience, NewYork), 17 (1973) 475.
- 10 Vogel A I, Text book of quantitative inorganic analysis, 4th edn., (1976) 756.
- 11 Rosynek M P & Magnusen P T, J Catal, 46 (1977) 402.
- 12 Ambroshi M N & Dvornikova L M, Zh Neorg Khim, 11 (1966) 86.
- 13 Rosynek M P & Magnusen P T, J Catal, 48 (1977) 417.
- 14 Nakamoto K, IR spectra of inorganic and co-ordination compounds, (Mir, Moscow), (1966).
- 15 Flaig-Baumann R, Herman M & Boehm H P, Z Anorg Allg Chem, 372 (1970) 296.