
SOME STUDIES AND NEW RESULTS ON 
MULTI MICROPROCESSOR APPLICATIONS 

A THESIS SUBMITTED BY 

K. PO U LOSE JACO B 

IN PARTIAL FULFILMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 
UNDER THE FACULTY OF TECHNOLOGY 

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

DEPARTMENT OF ELECTRONICS 

KOCHI - 682022, INDIA 

1991 



ACKNOW~EDGEMENT 

I am greatly indebted to Dr.C.S.SRIDHAR. Professor, 

Department of Electronics, and Dean of Technology, for his 

kind hearted efforts in guiding and educatlng me all 

through. His intellectual pursuits have been a constant 

inspiration to me. I thank him; I thank him with love, 

respect and admiration. 

I am very grateful to Dr. K.G.NAIR, Professor and Head of 

the department of Electronics, for providing me the 

facilities. I thank him for his support and encouragement. 

I thank Dr. A.K. MENON, Professor and Head, Department of 

Computer Science, where I am presently occupied, for his 

support and for the enchanting physical environment provided. 

I am thankful to my colleagues on the faculty, for their 

unstinted co-operation throughout. My thanks to the lab staff, 

research scholars, students and administrative staff. 

Cochin University of 
Science and Technology. K. Poulose Jacob. 



CERTIFICATE 

This 15 to certify that the thes is entit led, "SOME STUDIES 

AND NEw RESULTS ON MULTI MI CROPROCESSOR APPLICATIO NS " is a 

report of the original work done by $r1, K. Poulose Jacob 

under my supervision and gUldance in the Department of 

Electronics, eochin University of Science and Technology , and 

that no part thereof has been presented for t he award of any 

other degree. 

Coch1n 662 022, 
Or . C.S . Sridhar 

Professor I 
Department of Electronics, 

eochin Un iversity of $c1ence and Technolgy. 



DECLARATION 

I hereby declare that this thesis is a report of the original 

work done by me under the supervision of Dr. C.S. Sridhar, in 

the Department of Electronics, eochin University of Science 

and Technology, and that no part thereof has been presented 

for the award of any other degree. 

eoch;n 682 022, 

10 •• 9 .. 1991. 



CONTENTS 

ACKNOWLEDGEMENT 

ABSTRACT 

Chapter 1 

1.1 
1.2 
1.3 
1.4 

Chapter 2 

2. 1 
2.2 
2.3 
2.3.1 
2.3.2 
2.4 
2.5 

Chapter 3 

3. 1 
3.1.1 
3.1.2 
3.1.3 
3.1.4 
3.2 
3.2. 1 
3.2.2 
3.3 
3.3. 1 
3.3.2 

INTRODUCTION 

Background 
Scope 
Motivation 
Outline of the work 

REVIEW OF BASIC CONCEPTS 

Architectural Class 
Software Issues 
Language issues 

Ada 
Occam 

Communication 
Trends in Modern Microprocessors 

CU8RENT STATUS OF ISSUES IDENTIFIED 

Shared Control and OMA 
Assessment of Schemes Available 
OMA in Multiprocessor 
Multichannel DMA Controller 
Re1evance 

Shared Information 
Synchronisation 
Current Practices 

Storage 
Storage Efficiency 
Relevance 

... 

i i 

1 
4 
5 
7 

12 
14 
15 
16 
Hi 
17 
20 

23 
25 
25 
28 
28 
29 
32 
33 
34 
35 
37 



Chapter 4 

4.1 
4.2 
4.2.1 
4.2.2 
4.2.3 
4.3 
4.3.1 
4.4 

Chapter 5 

5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.7.1 

Chapter 6 

6.1 
6.2 
6.3 
6.4 
6.5 
6.5.1 
6.6 

Chapter 7 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.8.1 
7.8.2 

THE NEW DESIGN 

Introduction 
The Architecture 

Registers 
Operation 
Terminals 

Simulation of the Design 
Discussion of the slmulation results 

Comparison with other similar 
Controllers 

TYPICAL SCENARIO 

Introduction 
Application Scenario 
System 
Memory Partitioned 
Implementation 
Discussion 
Theoretical Analysis 

Resource Usage Model for the System 

THE DATA BASE COMPONENT 

Introduction 
Schemes Available 
Evaluating Service Time 
Methodology 
Block Transfer and DMA 

Transfer Efficiency 
Relevance 

MAINTENANCE AND ENHANCEMENT 

Introduction 
The Problem 
Motivation 
Observation 
The MF Structure 
Scope 
Quantitative Results 
Reuse - A case report 

Relevance 
Conclusion 

39 
40 
42 
44 
46 
49 
55 

58 

65 
66 
67 
68 
73 
74 
75 
78 

83 
84 
85 
86 
91 
92 
94 

97 
101 
102 
103 
104 
105 
106 
110 
115 
117 



Chapter 8 TOWARDS IMPROVING PROCESSING 
RELIABILITY 

8.1 Introduction 118 
8.2 Current Status 119 
8.3 Methodology 121 
8.4 Adaptation 125 
8.5 Smart Assistance 126 
8.6 Observation 127 
8.7 Design Approach 130 
8.B Conclusion 130 

Chapter 9 CONCLUSION AND SUGGESTION FOR 
FURTHER WORK 132 

APPENDIX A1 135 

APPENDIX A2 137 

APPENDIX B 140 

REFERENCES 142 

PUBLISHED WORK OF THE AUTHOR 152 

-:0:-



SOME STUDIES AND NEW RESULTS 

ON MULTI MICROPROCESSOR APPLICATIONS 

ABSTRACT 

One of the fastest expanding areas of computer exploitation 

is in embedded systems, whose prime function is not that of 

computing, but which nevertheless require ~nformation 

processing in order to carry out their prime function. 

Advances in hardware technology have made multi 

microprocessor systems a viable alternative to uniprocessor 

systems in many embedded application areas. 

This thesis reports the results of investigations carried out 

on multi microprocessors oriented towards embedded 

applications, with a view to enhancing throughput and 

reliability. 

An ideal controller for multiprocessor operation is developed 

which would smoothen sharing of routines and enable more 

powerful and efficient code I data interchange. Results of 

performance evaluation are appended. 

; i 



A typical application scenario is presented, which calls for 

classifying tasks based on characteristic features that were 

identified. The different classes are introduced along with 

a partitioned storage scheme. Theoretical analysis is also 

given. 

~ review of schemes available for reducing disc access time 

is carried out and a new scheme presented. This is found to 

speed up data base transactions in embedded systems. 

The significance of software maintenance and adaptation in 

such applications is highlighted. A novel scheme of 

\prov1d1ng a maintenance fol io to system fi rmware is 

~rHentad, alongwith experimental results. 

Processing reliability can be enhanced if facility exists to 

check if a particular instruction in a stream is appropriate. 

Likelihood of occurrence of a particular instruction would be 

more prudent if number of instructions in the set is less. A 

new organisation is derived to form the basement for further 

work. Some early results that would help steer the course of 

the work are presented. 

i i i 



Chapter 1 

INTRODUCTION 

1.1 Background 

State of the art parallel computer systems can be 

characterised into three structural classes [Hwang K. et al, 

1985] : 

Pipelined computers 

Array processors 

Multiprocessor systems. 

A pipe11ned computer performs overlapped computations to 

exploit temporal parallel ism. An array processor uses 
.,,,._;i;. 

IUlt1pl. synchronised arithmatic logic units to achieve 

spatial parallelism. Multiprocessor systems achieve 

asynchronous parallelism through a set of interactive 

processors with shared resources (memories, data bases etc.). 

The fundamental difference between the array processor and 

the multiprocessor system is that the processing elements in 

an array processor operate synchronously while processors in 

a multiprocessor system operate asynchronously. 

A pipeline has several processing stages, each stage 



repeatedly executes the same lnstruction on successive pieces 

of data received from a preceding processor; thus the result 

of one processor becomes the input of the next. This 

according to Flynn's classification of architectures, is 

Multiple Instruction stream, Single Data stream (MISD).[Flynn 

M.J., 1966, 1972). The pipelining technique is 

for applications in which the major functions are 

appropriate 

dependent 

on each other and the data sets are very large, for eg. 

Signal processing of real time data. 

By Flynn's terminology, a conventional single processor 

system that works on one set of data may be called Single 

Instruction stream, Single Data stream (SIS0). This class 

comprises serial computers in which instructions are executed 

sequentially but may be overlapped in their execution stages 

(instruction level pipelining). 

In array processors, several processors under a centralized 

control, execute the same instruction, each on a disjoint set 

of data, for ego Vector addition. Classified as Single 

Instruction stream, Multiple Data stream (SIMD). array 

processors are special purpose machines suitable for 

applications where data structures like arrays are natural 

units to operate upon. These are advantageous only for 

2 



programs with a high percentage of vectored lnstructlons.

In ,multiprocessor systems, each processor can execute a

different sequence of instructions on a different set of

data. This is named Multiple Instruction stream, Multiple

Data stream (MIMD). Such asynchronous processors are the

most suitable ones for performing concurrent processing which

consist of a collection of co-operating or interacting

processes that communicate with each other.

Another class that is found to be grouped under MIMD, is the

computer network, wherein each processor 1S embedded in a

conventional computer system, and the computers are then

interconnected via communication links.

Networks, multiprocessors and array computers can be thought

of as varying along a single dimension the degree of

coupling between the processors in the system. Patnaik

defines this as the worst case processors minimum access time

to a global data structure in the

1983]. In a multi- processor, each

system. [Patnaik L.M.,

processor has direct

access to global data stored in pr1mary memory. Since

interprocessor communication occurs by sharing primary

memory, the interaction times are faster. In computer

networks, global data resident in one of the computers, may

3



have to be accessed through a hop sequence 1nvolving other 

computers. This takes more time. In array computers, the 

analog of interprocessor communication is the transfer of 

control information that occurs between the control unit and 

its associated processing elements. 

The average time between interprocess interaction becomes a 

crucial time constant of an application and provides a good 

indication of the type of multiple processor organisation 

that will be most suitable. 

1.2 Scope 

Parallel processing computers are needed for large scale 

computations often performed in application areas like 

multidimensional modelling of the atmosphere/outer space, 

numerical weather forecasting and the like. Much work ;s 

reported in enhancing such raw computing power and state of 

the art approaches achleve speeds of the order of 1000 

million megaflops or beyond. 

---

The work presented in this report is oriented towards a 

different realm of applications namely flight/rocket-

launching control, tndustrial instrumentation, data base 

4 



applications, combat vehicle control and the like. These 

applications are not exclusively computing environments 

involving number crunching, but nevertheless call for high 

availability as well as adaptability. Multiprocessors, 

espeCially those constructed of relatively low cost 

microprocessors, offer a cost effective means of achieving 

the objective. A key feature of these applications is the 

-role of computer as an information processing component 

within a larger engineering system. Systems for such 

applications have come to be known as embedded computer 

systems. The Oxford Dictionary of Computing defines Embedded 

Computer System as any system that uses a computer as a 

CQIPOnent. but whose prime function is not that of a 

ca.puter. Multiprocessor embe9ded systems have the potential 

adVantage of enhanced throughput and reliability. It is 

observed that such systems make use of time tested components 

and software, and changes are incorporated into them as and 

when new requirements arise. As a matter of fact, advanced 

'Pr~~essor architectures are not popular in those systems. 

"'----... 

1.3 Motivation 

A multiprocessor system is often described as throughput 

oriented, when it is designed to maximise the throughput of 

5 



various jobs.[Dubois M. et al, 1988J. Jobs in such an 

environment are distinct from one another and execute as if 

they were running on different uniprocessors. Pat ton gives 

some of the fundamental characteristics of 

oriented multiprocessing. [Patton P.C. 1985]: 

general purpose 

* multiple applications 

throughput 

i, • \. 
( 

V.,.' ' 
'. " 

* fail~. requirements: that of recording the last 

operational state, in the event of failure. 

* maximum number of independent jobs done in parallel 

* CPU and I/O balanced workload. 

The goal of throughput oriented multiprocessing appears to be 

obtaining high throughput at minimum cost. 

K1. holds that a loosely coupled multiprocessor with either a 

partitioned or shared data base offers the best architecture 

for a highly available system. [Kim W. 1984]. For embedded 

applications, a small amount of shared memory would be 

advantageous, owing to the fact that message passing through 

an interconnection network run the risk of messages getting 

~, threaten; n9 the re 1; abi 1 i'ty of the system. 

In spite of their advantages, a number of problems and open 

issues remain to be resolved before such systems are a 

6 



practical alternatlve to more conventional organisatlons. 

The major problems currently facing such systems are 

1. What mechanisms are appropriate that allow 

processors to share tasks and data. 

2. How would tasks now executed on uniprocessors be 

decomposed so that they can be run on a set of 

smaller processors. 

3. How should I/O devices in general and 

storage devices in particular be used 

the system. 

secondary 

as part of 

4. What hardware and software structure will allow 

the system to realize its potential for reliability 

and adaptability. 

1.4 Outline of the work 

The current work is oriented towards a multimicroprocessor 

set-up involved in embedded systems. Fig.1.1 shows a typical 

embedded computer system. Several processors may be assigned 

to support the system components. On the software side, 

among the modules present there can be one for physically 

manoeuvering the devices/controls, one for monltoring the 

system, one for data base functions and one to interact with 

the operator. These modules are required to be maintained 

7 



d
ig

it
a
l 

.... 
--' 

c
o

n
tr

o
l 

I 
1 

in
te

rf
a
c
e
 

. 
j 

d
a
ta

 
m

o
n

it
o

ri
n

g
 

) 
lo

g
g

in
g

 
sy

st
em

 
E

n
g

in
e
e
ri

n
g

 
S

y
st

em
 

~ 

'H
 d

a
ta

 
re

tr
ie

-
.... 

In
st

ru
m

e
n

-
v

a
l,

 
d

is
p

la
y

 
n

ta
ti

o
n

 
~
 

, , 
o

p
e
ra

to
r 

.....
.. 

o
p

e
ra

to
r'

s
 

in
te

rf
a
c
e
 

r 
c
o

n
so

le
 

CO
M

PU
TE

R 

F
ig

 
1

.1
 

T
y

p
ic

a
l 

E
m

be
dd

ed
 

C
o

m
p

u
te

r 
S

y
st

em
 



and adapted accordlng to modifications requlred in the 

application. Changes in basic hardware, like switching over 

to a new family of processors, are seldom. 

The various issues identified for investigation cover 

1. Impediments in DMA accession whi 1 e sharing 

tasks/data between processors. 

2. Task classificatlon and contention problems in 

shared / distributed memory. 

3. Storage efficiency for data base. 

4. Software maintenance techniques and adaptability. 

5. Sequence prediction of instruction streams. 

".\" .. 

=,,-;"'Jective of the investigation is to improve throughput 

~_ to prov1d.e an environment for cost effective processing. 

The relevance of these issues has been brought out in the 

respective sections of Chapter 3. 

Chapter 2 presents a review of the basic concepts which are 

relevant for this work. Current trends in modern 

microprocessor architectures are mentioned with a view to 

suggesting further work. 

(-
ChaPten 3 presents current status of the various issues 

\ 

9 



identified, along with their relevance. It is organised as 

three levels and work carried out at each level is reported 

in the chapters that follow. 

Chapter 4 presents a new design for a family of controllers 

that incorporates a stack and other associated controls which 

would enable more powerful data/code interchange; not merely 

between the processor and the peripheral, but also between 

processors. Results of computer simulation of the design as 

well as a comparison with popular models currently in use are 

included. 

Chapter 5 presents the scenario of a typical application 

environment. A scheme of partitioning the common resource 

memory into functional blocks is described, where each block 

;s earmarked to hold predefined classes of tasks that are 

identified. Theoretical analysis of the scheme is also 

given. 

Chapter 6 deals with the data base component of the embedded 

system and presents a review of work reported on general data 

base access. A new procedure that reduces disc access time 

is presented, along with quantitative results. 

10 



identified, along with their re1evance. It is organised as 

three levels and work carried out at each level is reported 

in the chapters that follow. 

Chapter 4 presents a new design for a family of controllers 

that incorporates a stack and other associated controls which 

would enable more powerful data/code interchange; not merely 

between the processor and the peripheral, but also between 

processors. Results of computer simulation of the design as 

well as a comparison with popular models currently in use are 

included. 

Chapter 5 presents the scenario of a typical application 

environment. A scheme of partitioning the common resource 

memory into functional blocks is described, where each block 

is earmarked to hold predefined classes of tasks that are 

identified. Theoretical analysis of the scheme is also 

given. 

Chapter 6 deals with the data base component of the embedded 

system and presents a review of work reported on general data 

base access. A new procedure that reduces disc access time 

;s presented, along with quantitative results. 

10 



Chapter 7 dwells upon software malntenance as a prelude to 

adaptability. A maintenance folio is propounded, as part of 

firmware, which would express the underlying concepts 

clearly. bringing out all pertinent information in well 

structured fields. Quantitative results are also given. A 

case report of software reuse, namely a standard assembler 

adapted to support simultaneous processing in a 

microprocessor set-up is also included. 

multi 

Chapter 8 attempts to extend the concept of software 

adaptation and suggests a well defined instruction format 

that would allow rapid decode through use of a consistent 

opcode field. with a view to assisting adaptability and 

sequence 

stream 

prediction. 

analysis, which 

Some early 

would help 

results 

predict 

on instruction 

a plausible 

sequence are also presented. This;s intended to be a 

basement for further work in the field. 

Chapter 9 presents the conclusions. Comments on the scope 

for further work in the field are also included. 

, , 



Chapter 2 

REVIEW OF BASIC CONCEPTS 

This chapter presents a review of the basic concepts 

associated with this work, and subjected to the study. 

2.1 Architectural Class 

The multi microprocessor system comes under the class of MIMD 

machines in Flynn's taxonomy. Several other efforts on 

taxonomy are reported in [Kung, 1982], [Sasu, 1987] and 

[Johnson, 1988]. Based on these studies Krishnamurthy has 

identified four attributes for a taxonomical tree. 

[Krishnamurthy E.V. 1989]. These attributes and the 

corresponding level in the case of a multiprocessor are 

i.granularity : coarse grained. 

ie., ratio of computation to communication is high. 

[Howe C.D., et a1,1987]. 

12 



ii.nature of algorithm realisation module [Kung.1982) 

mixed hardware - software. 

i;;.topology and nature of coupling 

simple (eg.bus), shared variable, lightly coupled. 

iV.control : asynchronous. 

A precise classification of complex architectures require 

additional attributes like task allocation, routing, language 

issues and such other factors. 

As regards nature of coupling, the general trend observed is: 

when the goal of the system ;s raw computing power, the 

architecture will be of the tightly coupled type. When 

general purpose applications are intended with numerous small 

modules, the coupling is necessarily of the loose type. A 

moderate coupling is preferred when a homogenous 

multiprocessor is designed with a few processors and a 

general application like a controller, in mind. 

The notion that a loosely coupled collection af processors 

could function as a more powerful general purpose processing 

facility has existed for quite some time. [Casavant T.L. ,et 

a1,1988J. 

13 



2.2 Software issues 

In order to realize the strict definition of multiprocessing, 

three options appear to be available on the software side. 

i.Design algorithm such that they take into account the 

parallel architecture. 

ii.Specify parallelism by the user, finally scheduled by 

the operating system. 

iii.Detect automatically the parallelism. 

The throughput of a multiprocessor, multiprogrammed as per 

the first option has constraints to the extent that in a 

given program, the amount of parallelism ;s not uniform and 

it is seldom that all the processors are kept consistently 

busy. Memory contentions are also bound to degrade 

performance. Detecting parallelism during 

assembly is a process which has acquired 

importance. 

compilation/ 

considerable 

The UNIX operating system makes extensive use of variants of 

FORK and JOIN for specifying concurrent processes. [Bourne, 

1980]. The fork operation splits a parent process into two 

processes, each of which can run concurrently until required. 

The join operation recomblnes the two processes into one 

'4 



process, with a provision for waiting (delay) if needed. 

Fork-Join technique is appropriate for applications in which 

no major functions require the results of another; each major 

function is independent of the others. For ego one may 

compute the median and the mean of the same set of data 

simultaneously. 

Parallelism is also specified by the command 

cobegi n P1 P2 Pn coend 

which causes processesP1, P2, .... Pn to start simultaneously 

and to proceed concurrently until they have all ended. 

parbegin P1 P2 .... Pn parend is an equivalent 

convnand. 

These statements provide a structured single entry, single 

exit control and are not as powerful as fork-join. 

2.3 Language issues 

One of the main characteristics of an embedded system is the 

need to interact with devices, all of which having their 

particular characteristics. The programming of such devices 

has traditionally been in assembly language, but of late 

languages like Ada and Occam attempt .to provide high level 

support, particularly for ditributed systems. 

15 



2.3.1 Ada 

Ada uses the word 'task' for a process to indicate a sequence 

of actions which are executed in parallel with other actions. 

The task has two parts: the specification and the body. 

Every task is written in the declarative part of some 

enclosing program unit called the parent. Burns et a1, 

presents a detailed study of Ada tasking.[Burns et a1, 1987]. 

Inter task communication can take place in elther of two ways: 

i. shared variable 

;i. message passing mechanism called the rendezvous 

In fact Ada's main innovations are its powerful rendezvous 

form of communication. 

The main purpose of its design seem to be programming real 

time systems. 

2.3.2 Occam 

Occam was originally developed for use in a single chip 

computer with a processor, local RAM and four dedicated 

input-output links The TRANSPUTER. Generally used in 

implementing parallel algorithms on a transputer type 

network, it lacks high level features such as recursion and 

16 



the pointer data type. Burns gives a detailed comparison 

with Ada.[Burns, 1988]. 

The full potential of transputers is realized only when they 

are grouped together. They use point to point communication, 

which has the disadvantage that a message may have to be 

forwarded to its destination via intermediates if no direct 

link is available. 

The PARAM computer developed by C-DAC is based on 

transputers. However they make extensive use of assembly 

level programs. Occam supports a hierarchical structure and 

is applicable for systems built from a large number of 

concurrently operating processes. 

Table 2.1 summarises the facilities provided by Ada and 

Occam. 

2.4 Communication 

The general procedure to map a problem onto a parallel 

architecture is that the programmer must first dev;de the 

problem into segments that will run in parallel, then 

determine how the processors will communlcate and synchronize 

17 



Support for decomposition of 
large programs into modules 

Support for concurrent programmlng 

Support for execution in a 
distributed environment 

Facilities for fault tolerant 
programming 

Mode of device Handling 

Ada 

Yes 

Yes 

With the 
help of tools 

Exceptions 

Shared 
memory 

Occam 

No 

Yes 

Yes 

None 

Message 
passing 

Table 2.1 Facilities provided by Ada, Occam 

18 



with one another. Shared memory and message passing, which 

characterise the level of coupling, are also the best form of 

communication between processors. 

In shared communications, data written by one processor can 

be read by all other processors in the system. Message 

passing, on the other hand is point to point communication; 

it is more restrictive of the two because each message must 

go to a specified recepient. 

The method used to synchronise processors depends on the 

approach 

blocking 

taken 

method 

to communication. Message 

that synchronises processes 

passing is 

1mplicitly; 

a 

a 

processor requesting data must suspend its operation until 

the communication process ;s completed. Shared memory 

communication is typically non blocking; a key feature is 

that the access time to a piece of data is lndependent of the 

processor making the request. 

Hybrid systems have some of "the properties of shared memory 

sytems and some of the properties of message passing. All 

memory is local to a given processor, but the operating 

system makes the machine look like lt has a Single global 

memory. As far as the programmer is concerned, hybrid 

19 



systems are coded like shared memory systems, but have data 

access delays like message passing systems. Since the access 

time depends on the distance between the owner of the data 

and the requester, the data must be laid out properly. 

Algorithms are easy to design for shared memory systems; one 

simply puts the data in memory as if running on a 

uniprocessor. Programs are hard to debug, an error usually 

occurs while picking up data from a global variable. The 

processor continues computing producing erroneous final 

result. 

error. 

There is no indication of time of occurrence of 

In message passing systems, algorithm design is hard because 

the data must be distributed so that communication traffic is 

minimized. Debugging is easier because errors usually stop 

the system at the point of error. Thus the programmer knows 

the machine status at the point where the error occurred. 

2.5 Trends in modern microprocessors 

Manufacturers tend to integrate critical peripheral functions 

on chip, to better emulate system tyoe performance. 

20 



Functions like memory management, instruction cache, data 

cache, pilelining are chosen for in-chip integration. 

MMU(Memory Management Unit) translates the virtual addresses 

generated by the CPU into real addresses. The former is 

limited only by the maximum number of bits possible in an 

address (ie.,the width of the PC), while the latter is based 

on the physical main memory. 

The cache system effectiveness depends mainly on two factors: 

* the hit rate, the frequency that the desired 

instruction / data is actually found in the cache 

* the replacement time on a cache miss, the number of 

clock cycles required to fetch an item from main 

memory into the cache, when the cache miss occurs. 

Pipelining in its simple form permits the three phases of 

fetch, decode and execute to proceed independently without 

having to wait for one instruction to finish all the three. 

The compromises that were required in order to incorporate 

these advanced features in a microprocessor, though minor 

compared to what they achieve, made a shift of emphasis from 

a complex instruction set to simplified operations. RISC 

21 



architectures evolved as a result of this trend. Gimarc and 

others list some features commonly seen in RISC.[Gimarc 

C.E.,et a1, 1987]. 

* fixed instruction format for simple decoding 

* relatively few instructions and address modes 

* highly pipelined datapath for concurrency 

* many levels of memory hierarchy 

* load store instruction set 

* hardwired instruction decoding 

* single cycle execution of most instructions. 

RIse processors have Quickly moved into many different 

application areas indicating that RISe philosophy can be 

applied to embedded systems. 

The ;860 XP, the 64 bit microprocessor recently launched by 

Intel provides a peak performance rate of 100 million FLOPS 

at 50 mHtz. It is claimed to be ideally suited to meet the 

complex number crunching computing needs of scientific, 

engineering and graphics applications. 

ceramic pin grid array, it has 

Packaged in a 262 pin 

inherent support for 

multiprocessing. 

cache controller, 

Peripheral components like ~he 

the 82490 XP cache RAM 

82495 

and 

XP 

a 

multiprocessing interrupt controller are used in 

processor system based on the 1860 XP. 

multi 

22 



Chapter 3 

CURRENT STATUS OF ISSUES IDENTIFIED 

This chapter presents a vivid picture of the state of the art 

of the various issues identified in the introductory chapter. 

Three distinct levels of sharing, namely control, information 

and storage, which are inherent in multi microprocessor 

systems are subjected to a critical review, with a view to 

enhancing the throughput. 

3.1 Shared Control and DHA 

Early definitions identify software interaction and shared 

memory as typical multiprocessor features. [Enslow P. ,1974]. 

The memory in a multiprocessor appears to play three distinct 

roles 

i. Instruction and data storage for a particular 

processor 

i1. Temporary storage for data transfers 

processors 

23 

between 



iii. Storage of instructions common to several 

processors. 

In several cases, many identical operations are performed on 

different data by different processing elements, and a 

process often becomes a resource which may have to be shifted 

from the domain of one processing element to that of another. 

The sharing of codes and the associated transfer of data 

often becomes a frequent requirement in any multiprocessing 

system. 

The current approach to handle multiprocessor systems appears 

to rely on the methods developed for uniprocessors and their 

extensions. Most systems are constructed to meet the 

specifications of a given environment with essentially known 

techniques and components. [Mohan C. et al, 1981]. A major 

constraint of a microprocessor ln a multiprocessor structure 

is the fact that the internal circuits are not available to 

the designer and all interconnections have to be done through 

the external bus. Only existing processor facIlities can be 

utilized for the structure envisaged, with no possibility of 

enhancement. [Paker Y. ,1983]. Hence extending and modifying 

an available scheme, to suit the new environment is 

advocated. 

24 



3.1.1 Assessment of schemes available 

Transfer of data between an external device and main memory 

has been a common occurrence, the external device being a 

mass storage unit or data terminal; in the current context 

another processing entity might be involved. 

If the data transfer rate to or from an I/O device is 

relatively low, then the operation can be performed using 

either programmed or interrupt I/O. But 

instructions and performing interrupt sequences 

executing 

take more 

time than ;s sometimes available. Data rates for mass 

storage devices are often determined by the devices, and the 

computer must be capable of executing I/O according to the 

maximum speed of the device. For a disk unit data rate is 

determined by the speed with which data pass under the 

read/write head, and quite often this rate exceeds 200000 

bytes per second. Thus there is less than 5 microseconds to 

transfer each byte to or from memory. For data rates of this 

magnitude, block transfers involving DMA are required. 

3.1.2 DMA in Multiprocessor 

The parallel bus which forms one of the main schemes used for 

25 



3.1.1 Assessment of schemes available 

Transfer of data between an external device and main memory 

has been a common occurrence, the external device being a 

mass storage unit or data terminal; in the current context 

another processing entity might be involved. 

If the data transfer rate to or from an I/O device is 

relatively low, then the operation can be 

either programmed or interrupt I/O. 

performed using 

But executing 

instructions and performing interrupt sequences take more 

time than is sometimes available. Data rates for mass 

storage devices are often determined by the devices, and the 

computer must be capable of executing I/O according to the 

maximum speed of the device. For a disk unit data rate is 

determined by the speed with which data pass under the 

read/write head, and quite often this rate exceeds 200000 

bytes per second. Thus there is less than 5 microseconds to 

transfer each byte to or from memory. For data rates of this 

magnitude, block transfers involving DMA are required. 

3.1.2 DHA in Multiprocessor 

The parallel bus which forms one of the main schemes used for 

25 



building multi microprocessor systems, utilizes the external 

bus of the microprocessors or lts extension as the main 

transmission medium. 

The microprocessor under program control often initiates the 

transfer of a block of data and might specify the number of 

words comprising the block. The transfer of individual words 

are however controlled by the circuitry that is separate from 

the microprocessor. The program might include instructions 

that output to the DMA control circuitry, the number of data 

words to be transferred and the beginning address of where 

they are to be located in the main memory. The program would 

then set a flag to commence the transfer. From that point, 

the program 

the 

could 

bus) 

go on to 

while the 

do some other function (not 

externa 1 control circuitry involving 

attended 

scheme. 

to the 

Fig. 3.1 

transfer. This is the conventional OMA 

shows the flowchart of the controller 

operation. The DRAWBACK of this convention is that the 

processor has to initiate each transfer of a block 

separately. This involves notifying the location of the 

block and the number of words comprising the block, generally 

mentioned as transfer parameters. 

26 



wait for 
DMA service request 11---

Request 
pending No 

Yes 

Assert 

Bus Hold request 

Bus Hold acknowl edged 

Arbitrate 
pending requests 

Execute highest 
Priority transfer 

De assert 
Bus Hold request 

Bus Hold de ack. 

Fig 3.1 DMAC operation 

27 



3.1.3 Multichannel DHA Controller 

Currently available 

several independent 

requests is resolved 

are DMA controllers, WhlCh contain 

channels. Contention between channel 

by resorting to one of the two 

programmable modes, namely fixed priority and rotat1ng 

priority. After being initialized by software, these 

controllers can transfer a block of data between memory and a 

peripheral device directly, on each channel, without further 

intervention by the CPU. Access is limited to a block of 

data sequentially located in main memory. A single palr of 

channel, when programmed appropriately, simulates memory to 

memory transfer, but successive transfers involving non 

sequential locations are impossible. 

The autoin1tialize feature, when selected by program, permits 

another DMA service without CPU interventlon upon detecting a 

valid DREQ, but the limitation is that transfer parameters 

are again the same. Further a DREQ is required to be 

generated to activate this. 

3.1.4 Relevance 

The nature of embedded systems requires the computer 

28 



components to interact with the external world. They need to 

monitor sensors and control actuators for a variety of 

devices. Devices may also generate interrupts in order to 

signal the processor that certain operations have been 

performed. When multiple microprocessors exist to support 

such a system, block transfers are required. For instance, 

different modules of a program scattered in the domain of a 

particular processor, may have to be shifted to the domain of 

another processor. 

Chapter 5. 

A typical scenario is described in 

The data base support to the embedded system (see fig.1.') is 

another unit which requires block transfer. A typical set of 

data might be required for different processing units. This 

can be accomplished by providing direct access to an I/O 

buffer by concerned processing unit memory. 

A new family of controllers is proposed in Chapter 4, which 

will take care of such transfers. The drawbacks mentioned 

are eliminated in the design. 

3.2 Shared Information 

It ;s essential that a proper framework should eXlst for 

29 



concurrent processes, that are likely to run on distributed 

systems, to share information, in order to achieve a given 

application objective. The communication structure 

might be quite complex; little is reported about 

optimally connect many processors together . 

required 

how to 

. Hoffner mentions two important concepts of 

programming namely [Hoffner Y. ,1983] : 

concurrent 

i. Mutual exclusion 

" ... it is the abstraction of 

problems"[Ben-Ari M., 1982). 

many synchronisation 

It deals with excluding 

any process from using a resource in use until it has 

been released. 

i;. Communication between processes 

the provision of data transfer mechanisms that allow, 

for example, computed results to be passed from one 

processor to another. [Bowen B.A.,et al, 1980]. 

The main feature needed in order to implement communication 

between processors, is the ability of paSSing information 

items from the addressing space of one processor to the 

addressing space of another. This can be accompl1shed by the 

shared memory scheme of writing to a particular memory 

location by one .processor and reading from that location, by 

30 



another. This is implemented by mutually exclusive accesses 

to mailboxes which are configured and maintained in such 

memory. 

A limitation of the shared memory system is that if the 

number of processors is large, performance is found to decay, 

as concurrent accesses to memory, by more than two or three 

processors, are not feasible. This is alleviated by 

providing some local memory to each pocessor and simulating 

shared memory with caching techniques. 

Another limiting factor is the memory access latency, ie., 

the delay between the instant of time when a processor emits 

an address and the time when the data is returned from 

memory. If the memory access latency exceeds about one 

instruction time, the processor must idle, until the storage 

cycle completes. [Athas w.e., et al, 1988]. But the merit of 

the scheme lies in the fact, that it allows co-operating 

programs on different processors to share information, as 

long as care is taken to ensure synchronisation. 

In the case of local memory systems, if every processor 

attempts to communicate directly with every other processor, 

the complexity of the communication network would rise 

31 



2 
proportional to p , where p is the number of processors in 

the system. In such situations, the communication has to be 

made indirect, with information passing through intermediate 

processors resulting in an increase in communication delay. 

Software is likely to be complex, so also synchronisation 

procedures. This tantamounts to a computer network, where 

the interconnection is often via serial communication links. 

Usually here, the communication takes much longer than the 

processing time involved. 

3.2.1 Synchronisation 

Synchronisation problems are found to receive a great deal 

of attention in the 11terature.[Hoare C.A.R. ,1980]. The main 

trends that can be observed are 

i. LinguistiC approach, where new constructs are 

defined. ego semaphore. 

ii. Mechanisms such as Circulating tokens to handle 

mutual exclusion or locks to handle concurrency. 

11i. Communication approach/protocols to ensure point to 

point data transfer. 

Solution for a problem of synchronisation of processes in a 

distributed system tend to differ, depending on whether the 

32 



system is installed on a multiprocessor architecture, with a 

common memory or without. If a common memory exists, 

semaphores and monitors serve as useful tools whereas a 

controller process might be necessary on 

without a common memory. [Herman D. ,1983]. 

controller would not conform much to 

an 

This 

the 

architecture 

centralised 

very aim of 

multiprocessing, owing to its limitations namely, 

i. processes are slowed down by the exchange of 

messages with the controller, since in the general 

case, it is on a remote site. 

ii. if the site containing the controller malfunctions, 

the entire system ceases to function. 

Nevertheless, if all processors in a multiprocessor shared 

one single memory, access conflicts would largely neutralize 

the performance potential of the multiple processors. 

3.2.2 Current practices 

Shared memory communication is possible with ADA, although it 

is not the preferred method. Ada does not directly support 

SEMAPHORES, but the WAIT and SIGNAL procedures can be 

constructed from Ada synchronlsation primitives. Semaphores 

can be criticized as too low level and error prone and hence 

33 



not adequate for real time domain. Nevertheless semaphores 

provide a means to program mutual exclusion over a critical 

section. 

Both Ada and Occam allow communication and synchronisation 

based on message passing. With Occam this is the only method 

available. Ada uses remote invocation with direct 

asymmetric naming. Occam by comparison, contains a 

synchronous indirect symmetric scheme. 

However, Ada programming style is a little too complex and it 

is still under debate whether some of its features are 

effective; in particular it is not known whether the tasking 

model is a natural and effective one. [Burns A. et al, 1987). 

A scheme of partitioning main memory and classifying tasks, 

with a view to obviating complex communication procedures is 

presented in Chapter 5. 

3.3 Storage 

Madnick and Donovan differentiate the three types of storage 

devices on the basis of the variation of access time T 
i j 

[Madnick et al, 1974] where 

34 



T = time to access item j given current position is 
ij 

item i; where T has a large variance, it ;s serial access, 
;j 

while constant T pertains to completely direct access. 
ij 

Direct access devices have only a small variance in T 
ij 

These components generally follow a hierarchical scheme where 

they are ranked according to their access time, storage 

capacity and cost per bit of capacity. Primary storage 

generally has the fastest access time, the smallest storage 

capacity and the highest cost per bit stored. Supplementing 

primary storage is the secondary storage which includes the 

on line DASDs (Direct Access Storage Devices) and the off-

line storage media. Fig. 3.2 shows the hierarchy pyramid. A 

faster access time is obtained by moving up the pyramid. A 

larger storage capacity and a lower cost per bit stored are 

the results of moving down the pyramid. 

3.3.1 Storage efficiency 

The optimisation of storage as a resource warrants both 

program and data to move through the storage as expeditiously 

as possible. We have storage efficiency measured by space 

time product of problem usage at each level of storage 

hierarchy. Flynn defines the cost of storage for a 

particular program as [Flynn M.J., 1972] 

35 



CPU 

S TO RAG E 

COIIPONE NTS 

DIRECT ACCESS 

STORAGE 0 E VICES 

SECONOA RY 

STORAGE HEOIA 

Fig. 3.2 STORAGE HIERARCHY PYRAMID 

36 



storage cost = 1: c s t 
i 

where i ;s the level of storage 

c is the cost per word at that level 

s is the average number of words the program used 
i 

t is the time spent at that level. 

A reduction in the components of the storage cost would add 

to throughput. 

3.3.2 Re1evance 

It is often the case that an embedded system is supported by 

a database; for ego information relating to the passengers in 

a particu1ar flight might form a database. An important 

attribute of the performance of a database is the disk to 

memory transfer rate. A new procedure that would speed up 

disk access time ;s presented in Chapter 6. Th; s is 

relevant in conventional database systems as well. 

Of late, these conventional systems are replacea by a 

dedicated machine, the Data base Machine (DBM), tailored for 

data processing environments and in most cases utilizing 

parallel processing to support some or all the functions of 

37 



the database system. An important class of DBMs is the 

Mutiprocessor Database Machine. In this class a DBM is 

organised as a set of microprocessors intercommunicating 

through a shared memory, an interconnection network or both. 

These DBMs use the shared memory or a separate 

interconnection structure to interface the system disks where 

the data base ;s stored, to the set of microprocessors. 

To sum up the discussion, it can be reasonably concluded that 

the issues identified for investigations, particularly the 

first three, are relevant in all dedicated systems, where the 

thrust ;s not so much on number crunching. The remaining two 

issues are considered individually in later chapters. 

38 



Chapter 4 

THE NEW DESIGN 

The relevance of block transfer and DMA in multiprocessor 

embedded systems has been brought out in the previous 

chapter. A family of controllers suitable for such an 

environment, can be designed. This chapter 

typical architecture of the controller that 

simulated and tested. 

4.1 Introduction 

describes a 

;s designed, 

Commercially available DMA controllers normally provide 

access to the memory of a processor, for peripheral devices. 

Generally the peripheral device (which can be notified by a 

subsequent DMA ACK signal) makes the access request. In a 

multi microprocessor environment sharing of routines between 

processors is often required. The motivation for the design 

is the difficulty encountered in transfer of data/routines 

between processors' local memory. A typical situation might 

39 



require different modules located at memory blocks that need 

not be contiguous, to be transferred to another processors' 

local memory. Earlier controllers provide a pair of channels 

that simulate memory to memory tranfer. But these channels 

can be programmed to transfer only one particular block of 

data. A serious drawback is that access is confined to a 

single block that contains sequential locations. When the 
, 

block has been completely transferred, the OMA process ends 

and the channel becomes idle. In order that the channel be 

used again, it must be reprogrammed. 

The new design takes care of these drawbacks. Non contiguous 

blocks involved in a transfer can be programmed in a single 

operation. This makes sharing of data / routines more 

efficient. It provides direct access amongst processors' 

local memory. The design can be easily upgraded to support 

larger word sizes. 

4.2 The Architecture 

Fig. 4.1 shows a typical architecture that was designed, 

simulated and tested. It includes the major logic blocks and 

the internal registers. The timing control block generates 

the internal timing and external control signals. One set of 

40 



~
 

C
S 

R
E

S
E

T
 

R
Jo

'.A
.D

'f 
C

L
O

C
K

 

A
EN

 
A

D
S

T
8

 

R
E

A
D

 
W

R
IT

E
 

EO
P/

 
T

R
M

 

D
H

EQ
 

[)
fl

C
K

 

ll
L

IJ
 

R
Q

 

HL
OA

K 

2 ~
 

V
c
 

d 

T
IM

IN
G

 
" 

C
O

N
T

R
O

L
 

A
O

O
R

 
..

 
S 

II
M

A
 

C
()

N
T

R
O

I 
T

 
A

 

T
 ~ 

IN
C

R
E

M
E

N
T

O
R

 
S

O
U

R
C

E
 

A
D

D
R

E
S

S
 

16
 I

'-
-

-
I
 -

T
E

M
P

. A
D

D
R

E
S

S
 -

1
6

 -

k=
 ->

,.
 

_ 
Q
E
f
R
~
M
J
N
1
'
~
R
 _

_
_

 
D

E
S

T
N

. 
A

D
D

R
E

S
S

 
16

 
-
I
 

T
E

R
M

. 
C

O
U

N
T

E
R

 
16

 

C
O

N
T

R
O

L
 

R
E

G
IS

T
E

R
 8

 
/
-

"
-
~
 

S
T

A
C

K
 

,. 

l.1 
W

R
IT

E
 

R
E

A
D

 
B

U
F

F
E

R
 

B
U

F
F

E
R

 

i 
) 

--
-

<
 ).

 
~ 

~ 
T

E
M

P
. 

D
A

T
A

 
8 

1"
1.'

-1 
4

.
1 

L
o

g
ic

 
b

lo
c
k

 
d

ia
g

rn
m

 

A
D

D
R

E
S

S
 

'
-

-.
l 

B
U

F
F

E
R

 4 

R
E

G
. 

A
O

O
R

E
S

S
 

D
E

C
O

D
E

R
 

1
/0

 
B

U
F

F
E

R
 

I\
()

-
I\

)
 

M
-I

I.
7

 

Il
Il

O
-l

lh
 f

 

A
!-

i-
I\

I'
· 



registers contain the addresses involved and data counts for 

individual DMA operations. The remaining are control and 

status registers for initiating and monitoring the operation 

of the controller. 

A stack is incorporated which can have as many as twelve 

locations of 16 bits in groups of three. This stack can be 

programmed to store the transfer parameters namely Source 

Address, Destination Address and number of bytes. In the 

present design, a maximum of four block transfers can be 

programmed, each specified by one of the four groups of three 

locations in the stack. Number of such groups involved is 

hence indicated by the depth of the stack. 

4.2.1 Registers 

Control Register This 8 bit reglster controls the 

operation. It is programmed by the mlcroprocessor in the 

program condition. It stores details regarding direction of 

data flow, destination device address and whether stack S is 

needed or not, along with housekeeping namely depth of stack 

used. 

Address/Status Register: This 8 bit register provides access 

to the controller for processor/device. It stores 

42 



information regarding the address of the call1ng processor or 

device as the case may be. It also denotes certain status 

conditions as shown in Fig.4.2, which will be useful in the 

system debugging phase. 

Source Address Register; This 16 bit programmable register 

holds the address of the beglnning of the source area in 

memory. 

Destination Address Register : This 16 bit programmable 

register holds the address of the beginning of the 

destination area in memory. 

Terminal Counter Register : This 16 bit programmable register 

holds the number of bytes in one block to be transferred. 

This is decremented by internal logic. 

Temporary Address Register: This 16 bit register keeps track 

of the actual address associated with the source to temporary 

data register transfer and the temporary data register to 

destination transfer. This is incremented by internal logic. 

Temporary Data Register: This 8 bit register is used for 

temporary data storage durlng transfers. Following transfer 

completion, the last word transferred can be read by the 

microprocessor in the program condition. 

43 



Fig. 4.2 shows the deta11ed bit configuration of each of the 

registers described. 

4.2.2 Operation 

The various logic blocks together prov1de the necessary 

control signals in order 

* to listen to a calling processor 

* to provide access to the registers to the processor 

* to raise HOLD signals and R/W signals 

* to sense HOLDACK and execute transfer 

* to enable all the housekeeping signals like Clear, 

buffer on and such other control signals. 

The controller itself forms an output port for all the 

processors. The CALLING processor raises a 1 level at the 

OMARQ terminal after testing the free/engaged bit in the 

status register. If free, the controller records the calling 

address in the least significant 4 bits and routes the first 

byte to the control register. This byte 1S programmed to 

indicate the specifications, namely the CALLED processor 

address in 4 bits, data direction, stack required or not and 

depth of stack. The CALLING processor signals end of entry 

by clearing its DMARQ. The controller then executes the 

transfer. Two modes are permitted depending on whether stack 

44 



b 7 1 b 61 b 5 1 b 41 b 3 1 
b 2 b, 1 b 0 1 

'---..r--' 

I 
... v 

, 
L-______ Called Processor / 

Devl.ce address 

L-_________________________ Stack needed or not 

~------------------------------ Direction: Read/Write 

L-_____________________________________ Depth of stack used 

~~------~vr------~ 

~ _________ Calling Processor/ 
Device address . 

L--------------------------Terminal Counter zero set 

~------------------------------Stack empty set 

L-__________________________________ Address Register zero set 

~--------------------------------------ControJler free/engaged 

A ~~~rs A~·J.,-
Fig. 4.2 Register bit configuration 

45 



is required or not. In mode 0 which pertalns to a single 

block transfer, stack ;s not involved and the address and Te 

registers get directly filled up. The controller then raises 

HOLDs on the CALLING and CALLED processors, receives HOlDAs 

from both and raises Read or Write signals. 

The internal logic increments the address, decrements the 

terminal counter and on finding Te zero, generates EOP, 

relinquishes HOLDs and clears all registers to zero. This is 

important as far as the address registers are concerned, 

owing to the fact that certain processor families have 

locations starting from 0000 in the ROM area, so that no 

malfunction can accidently write into any memory. 

In mode 1, where multilple blocks occur involving the stack, 

the data to all the registers, Source Address, Destination 

Address and Terminal Count are fetched from the first group 

of three locations in the stack and transfer proceeds. The 

sequence is repeated as many times as mentioned by the depth 

of the stack. 

4.2.3 Terminals 

DBO - DB7 Bidirectional 8 bit data bus 

46 



AO - A7 

AO A3 

AB - A15 

DMARQ 

DMAACK 

HOLD 

HOLD 2 

HOLD ACK 

HOLD ACK 2 

AEN 

ADSTB 

Output lower address byte for t,ansfer 

Input register address when processor 

accesses internal registers for programming. 

Also during system debugging phase, access to 

the internal registers is important. 

Output higher address byte for transfer via 

data lines. Uses latch for sending address 

through DB 

Input from processor/devlce to ottair. OMA 

service 

Output to acknowledge recognition of OMARQ 

DREQ active until corresponding DACK activated 

Outputs request to CALLING processor to 

relinquish bus lines 

Notifies CALLED processor for bus control 

Inputs informatlon that controller can acquire 

control of the bus. 

From CALLED processor, inputs consent for bus 

control 

Enables 8 bit latch containlng upper 8 address 

bits onto system address bus 

Strobes the upper address byte into an external 

latch 

47 



EOP 

READ 

WRITE 

output when Te reaches zero, terminates DMA 

service 

Input signal to read internal registers. 

Output slgnal to access data from a selected 

location. 

Input signal to load information into the 

controller. Output signal to load data into 

the selected location. 

Over and above these, there are the general re control 

terminals like CS, READY, RESET, Vcc and GND. 

Data can be transferred directly from one memory location to 

another, specified by the source and destination addresses, 

with READ and WRITE active at the same time. 

Basically the DMAACK signal is to notify peripherals when it 

has been granted a DMA cycle. This happens when the 

controller has acquired control of the bus on receipt of 

HOLDACK from processor. In a processor to processor case, in 

the event of the controller not being free tc entertain a 

REQ, it just returns a DACK to the CALLING processor. 

For getting service from the controller, certaln amount of 

48 



software is needed for each processor. Fig.4.3 shows the 

flowchart of the software. The design principle enunciated 

may be adapted to specific requirements in large systems as 

well. Only the register size need be enlarged in most cases. 

Once the controller is initiated, a serles of transfers can 

go without any CPU intervention. 

Appendix A1 gives details of a switching ~nit WhlCh can be 

used for sytems with numerous processors. 

4.3 Simulation of the design 

Chip and system designers use hardware and software tools to 

precisely list elapsed time for every event. Evaluation by 

mainframes, making use of the real time clock, is a standard 

practice. However, obtaining access to a powerful host and 

expending elaborate and exhaustive efforts for a Single chip 

design is uneconomical. Hence the Simpler, but equally 

effective PC based simulation is undertaken with C as the 

simulation vehicle. 

A program model of the design is developed and the time 

involved is estimated for the sequence of ordered events. 

49 



ASSERT REQ 

engaged 

free 
~ __________ L-________ ~ CONTROLLER REX::ORDS 

CALLING PROC.ADDR. 
Load Control Reg. 

no 

yes 

Load stack 

Load oper. regs. 

CLEAR REQ (END OF ENTRY) 

Controller 
executes transfer 

Fig.4.3 Getting service from controller 

50 



Since the state of entities remain constant be~wee~ events, 

there is no need to account for this inactive time in any 

program mode 1. 

The system command 'time' is made use of. The routine waits 

for data or eR for exit after execution. If used directly in 

time estimation, this wait can cause unrellability on the 

result, to the extent that user action need not be 

consistent. This is obviated by the following procedure. A 

file is created with just a eR in it and is directed to the 

time command. The output is now directed to another file 

named 'timefile ". The time involved in one event sequence 

is estimated by first causing timefile to be created prior 

to the sequence. Then subsequent to the sequence, 'timefile 

2' is created along the same lines. F19. 4.4 and 4.5 

represent the flow chart. The t1me involved lS now extracted 

from the two time strings, by converting the components into 

their respective integer equivalents and doing necessary 

arithmatic. 

The various events that occur in a tYPlcal transfer are 

simulated in the program as per the flowchart shown in f19. 

4.6. Transfers have been carried out involv1ng one, two and 

three blocks of data for different values of byte count. 

51 



invoke 'time' conunand 

direct a file 
containing CR into it 

store command output 
in file 1 I fi le 2 

Yes 
two time fil es 

exist 

No 

event sequence 

I end I 

Fig 4.4 Create two time files 

52 



1 
open file 1 

extract strings 
Hr: mt: sec: ms 

convert into mi llisec 

I open file 2 I 

close file 1 / file 2 

two files 
rocessed 

No 

Yes 

find difference betn. 
two time values 

Fig 4.5 Time involved in event sequence 

53 



1 
walt for 

service request 

assert 
serVlce request 

get transfer parameters 
for all blocks 

assert I 
Bus Hold request ..J 

proqram 
registers, stack 

Bus Hold Ack 
actl ve 

Load operating registers 
(in-chip) 

execute transfer 

All blocks 
No transferred 

Yes 

de-assert 
Bus Hold request 

de-assert 
service request 

Fi g 4.6 Flow of eve nts in Ai 9 0.1 

54 



Time in milliseconds have been estimated. The results are 

shown in Table 4.1. 

A second set of values are estimated for the transfer 

sequence pertaining to popular DMA controller models 

presently in use. This is represented by the flow chart in 

fig. 4.7. In a typical case where successive block transfers 

require reprogramming, a predefined sequence ,s followed in 

the program, so that any variation in actual programming 

operations is precluded. 

4.3.1 Discussion of the simulation results 

A close study of Table 4.1 shows that there is a considerable 

time gain by the proposed transfer technique. The results 

are classified for 1, 2 and 3 blocks. Consider a transfer of 

375 bytes. In one bulk, the time taken is 378 ms by Algo.1 

and 417 ms by Algo.2. If these bytes are constituted by non

sequential blocks, then the time taken by Algo.1 is 603 ms if 

they are in 2 locations and 791 ms if in 3 10ca:ions. This 

time is still of the order of 100ms less than that by 

Algo.2. The advantage can really be felt in multiple blocks 

being transferred. 

55 



No. of No. of No. of bytes in Time estimated in mS 
blocks bytes each block A 1 go. 1 Algo.2 

75 75 225 253 

150 150 264 302 

225 225 307 341 

300 300 351 390 

375 375 378 417 

2 225 75 + 150 509 592 

375 150 + 225 603 672 

525 225 + 300 675 750 

675 300 + 375 756 843 

825 375 + 450 829 907 

3 375 75 + 125 + 175 791 902 

600 150 + 200 + 250 928 1038 

825 225 + 275 + 325 1033 1176 

1050 300 + 350 + 400 1175 ~291 

1275 375 + 425 + 475 1269 1401 

Table 4.1 Performance comparlson 

56 



1 
wait for 

service rCLJuests 

assert 
service request 

get transfer parameters 
for one block 

program registers 

assert 
Bus Hold request 

fixed time delay 
(0.5 ms) 

assert 
Bus Hold Acknowledge 

execute one block transfer 

de-assert 
Bus Hold request 

all blocks 
No transferred 

..-
Yes 

de-assert 
service request 

Fig 4.7 Flow of events in Algo.2 

57 



Fig. 4.8 shows the advantages of the des1gn graphically. 

The difference in time for Algo.1 and Algo.2 are found to 

increase with number of blocks. In a sample case of the 375 

bytes transfer, the difference is seen to be highest when 

there are three blocks. Table 4.2 shows the time gain for 

the three cases. Fig. 4.9 is the variation of time gain over 

an increase in the number of blocks. 

4.4 Comparison with other similar controllers 

The design concept now enunciated was first proposed in its 

basic form in 1982.[in a special issue of the EUROMICRO 

Journal]. (Please see Appendix A2 for a Reprint). Much 

refinement and tuning has been done on the basic design. The 

principle of distinct registers for source and destination 

addresses has since been incorporated in the Intel product 

82380, as given out in the advance lnformation columns. [Intel 

Manual,1989]. Eventhough this particular controller has more 

powerful features and several other functions, the basi~ DMA 

transfer function cannot be regarded as efficient as our 

design, owing to the following limitations 

i.The 'buffer chaining process' though permits specifying 

a list of buffer tansfers, it requlres reprogramming 

58 



140 ) 

];lOO 

~ BOi) ... 
III 
C 
III 
~ 

~ 600 
M 
o ... 
~ 400 
..I( 
III 
~ 

~ 
.~ 

Eo< 200 

150 

Ago.i 

300 450 600 750 gOD 1 U SO 1200 1 3') U 1 "ll:l) 
Total number of bytes 

Fig.4.8 Performance comparison 

59 



No. of 
bytes 

375 

No. of 
blocks 

2 

3 

Time in mS 
Algo.1 Algo.2 

378 417 

603 672 

791 902 

Time gain 

39 

69 

111 

Table 4.2 Time gain for different number of blocks 

60 



U1 
.x 

3 

g 2 
.....; 
.a 
...... 
o 

20 40 60 80 100 

time gain (ms) 

Fig.4.9 Time gain variation 

61 



controller through interrupt routlnes. 

ii.lnterrupt signals are required. 

The speciflc improvement over earlier Intel models is that 

the reprogramming is done before the c~rrent transfer is 

complete. 

The 68 pin 82258, the advanced OMA coprocessor with its 

extensive features and data manipulation capabilities, may 

not be required for applications envisaged in thlS work. 

However, it makes use of the concept of distinct source and 

destination pOinters. Data transfer operatlon 1S specified 

by command blocks which reside in the coprocessor memory. 

Only the address of this command block is specified in the 

on-chip command pointer. The command block with all its 

parameters is to be loaded into internal channel registers 

before a transfer is initiated. Several such command blocks 

can be defined, which along with destinatlon list chalning of 

data, permits gathering and scattering of data blocks. This 

phenomenon which tantamounts to a transfer in'volving non 

contiguous blocks, can be reasonably assumed to be an 

adaptation of the concepts suggested In our design. 

Nevertheless, its drawback is that each set of transfer 

parameters is to be loaded into internal reglsters from the 

memory resident command block. 

62 



Another product with powerful features not1fiec by ~ntel is 

the 82389 Message Passing Coprocessor.[Intel Manual 1988]. 

It is basically a bus interface controller designed to 

offload the host CPU for interprocessor communlcation on the 

Parallel System Bus network. Its primary function is to 

support the communication protocol standard defined for the 

PSB (IEEE 1296). The device supports both phys1cal and data 

link support. The data link includes packetisation after 

receiving data from the local interface, bus arbitration, 

burst transfer and error detectlon without CPU intervention. 

But even with all lts complexities, an external DMA 

controller is required to support solicited message 

operations whereby actual data is transferred from one agent 

to another over the PSB bus. (Any device wlth an lnterface 

to the PSB bus is termed an agent). 

Quite complex in its structure, the MPC is a 149 pin grid 

array package which requires supply voltage at 6 pins and 

ground connections at another 12. It provides DMA control 

signals like ODREQ and ODACK. The former is asserted by the 

MPC to enable DMA transfer of data to It. The DMAC responds 

by performing DMA transfers to the MPC for transfer to the 

receiving agent. The OOACK is an input s19nal asserted by 

the DMAC in response to the OOREQ. 

63 



The local bus of the MPC is used to lnterface to a host 

processor. The local bus interface can be categorlsed into 

three sub interfaces: register, reference and DMA. The DMA 

interface supports data transfer between local memory and the 

MPC. 

The above discussion points to the fact that the controller 

designed ;s more suitable for applications that have been 

mentioned. 

&4 



Chapter 5 

TYPICAL SCENARIO 

5.1 Introduction 

This chapter presents a system configured as a collection of 

autonomous processing elements, co-operating to achieve a 

common goa 1 . 

considerable 

The communication overhead can be quite 

in such multiple processor environments. 

Various schemes have been implemented in typical 

architectures. For ego the Connection Machine supports two 

forms of communication within the processors, namely the 

Router and the NEWS grid.[Hillis, 1985]. In the Hypercube 

architecture, the processors are located at the ~ertices of 

the n-cube and the interconnections are the cube edges. [welty 

l. et al, 1985]. 

As mentioned earlier, ln a totally dedlcated system it may 

not be economical and efficient to go in for such techniques. 

Though transputers have come to be used 1n our country 

65 



recently, the number of systems using them are 11mlted. 

Moreover, since the thrust is not so much on number 

crunching, but on the number of operations, a different 

approach is suggested. In the embedded system environment, 

it can be observed that all processes need not get the same 

consideration from the system. It is essential therefore 

that some classification and identification of processes be 

done first, followed by actual implementation. The 

importancre of dedicated system design and the classification 

is described in the succeeding sections. 

5.2 Application scenario 

Consider a simplified flight control system. _et :here be 

eight variables which include 

Airspeed 

Aircraft heading 

Altitude 

Angle of bank 

Attitude 

Throttle 

Vertical speed 

Weight 

66 



Appendix B shows details of these variables along with 

associated controls and panel instrumentation. 

If four processors are provided for the control system and 

the variables are to be monitored and controlled every la ft, 

program modules should execute at 1 nsec. (assuming the 

airspeed works out to about 200 ft/sec). Here measurements 

interrupt the system every 1/20 of a second, some modules are 

common to different processors, some calculations like 

trajectory and banking need subroutines. Routines once set 

can go on for a long time till the position alters. When the 

aircraft is in a state of equilibrium, that is to say it 

continues to move forward at the same uniform rate of speed, 

the only critical parameter for navigation is the 

position.(equilibrium refers to steady motion and not to a 

state of rest). 

5.3 System 

The system suggested has been named the APT system, based on 

its feature of transportable processes. (A Process 

able System). The main memory is partitioned 

Transport

lnto well 

defined blocks, which would enable processes to communicate 

and co-operate in order to achieve the application Jbjective. 

67 



It adopts a conglomeration of shared and local memory with a 

view to obviating the complex communication network. 

Within the APT system, a process as defined by Lister, 

[Lister A.M., 1979) is classified into one of the four 

denoted by 0, 1, 2 and 3. Class 0 tasks are non-splittable; 

once they start execution they run to completion, unless 

interrupted. An interrupt would only suspend it. The task 

is resumed after the higher priority task is run, by the same 

processor. No switching is envisaged. 

Class 1 tasks have a hierarchical structure. This permits 

tasks to create several subtasks that can be executed in 

parallel asynchronously. 

dependent, 

classified 

synchronism 

under Class 2. 

Where the subtasks are mutually 

is required. Such cases are 

Class 3 is made up largely Of 

functional subroutines which lie in specific areas of system 

memory. The main memory blocks are brought out to be in 

harmony with the different classes. Fig.5.1 is the pictorial 

representation of the different classes. 

5.4 Memory partitioned 

The APT System memory forms a common resource (CORE) to all 

68 



(
J
)
 

<C
l 

C
L

A
S

S
 

0 

Q
 V
 

S
T

A
R

T
 

T
O

 
E

N
D

 
C

O
N

T
IN

U
O

U
S

 

C
L

A
S

S
 

1 

Q
 ~ ~ 

IN
D

E
P

E
N

D
E

N
T

 
SU

 B
-T

A
S

K
 S

 

C
L

A
S

S
 

2 

Q
 

f-
t .

....
. 

IN
T

E
R

 
D

E
P

E
N

D
E

N
T

 
S

U
B

-T
A

S
K

S
 

F
ig

. 
5

.1
 

P
ro

c
e
ss

 
I 

T
as

k
 

c
la

ss
e
s 

C
L

A
S

S
 

3 

Q
 

V
II

\.
. 

n~
~ 

~
 

u 
II

V
 

\)
 

S
U

B
 

R
O

U
T

IN
E

S
 



the constituent processors. Within the core, each processor 

has a free hold property (FHP), which is further partitioned 

into functional blocks. One such block serves as the 

concerned processor's status indicator (PSI) which holds the 

saved contents of its stack pointer, pointing towards the 

stack, where the volatile environment [Dhamke M. ,1982] of a 

class 0 task is available, if at all any such task remains 

suspended. The PSI block also holds the status of the 

processor - whether it is running a process or not, the class 

of process being run etc. This block is protected to the 

extent that it is read only as far as the other processors 

are concerned. 

One of the processor is assigned the role of Master. The 

Master will monitor the PSI block of each processor and serve 

also as system arbiter. Once the Master, which is dedicated 

to its role, allots a task to a processor, its execution 

could be from another block of FHP to which the task is 

transferred. 

(WA) block. 

This block is referred to as the working area 

The WA block is accessible to the other 

processors as well, so that upon switching, the new executor 

need scan only this pre-defined area in order to pursue the 

task. All subtasks of a class 1 task are bound to lie in the 

WA block, so that the Master can conveniently allocate 

70 



processors for their asynchronous execution. 

A class 2 task involves another FHP block, where intermediate 

results necessary for the fulfilment of another subtask, run 

on a different processor, are available. This block which 

serves as a link block, occupies a dedicated portion of the 

core which alone need be referred to by the other processors, 

for obtaining results leading to the culmination of its 

subtask. 

Yet another block would be a free space at the disposal of 

the master, which may be used by itself or assigned to the 

constituent processors. The subroutines, which farm class 

3 tasks also occupy part of this space. Moreover, as the 

switching of processes is intended to hasten throughput, it 

is likely to demand high levels of I/O activity to bring in 

more tasks or mare data. The free block provides for this 

demand as well. 

Fig. 5.2 gives details of the various blocks. 

The PSI block of the Master is distinct, in so far as it 

contains a set condition indicating its supervisory role and 

a painter towards the core area where the 

71 



-
.
j 

IV
 

0
1

 
v 

V
I 

V
I ..:
 

..
.J

 

P
S

I 

<.
)1

 
x 

~I
 

..
.J

 

u 

h
 

b
d

 

V
I 

F
m

: 
T-W

il 
3 

S>
K

L 
u 

I/
O

 

P
S

I
 

P
S

I
 

P
S

I 

~
 

It.
OR

KI
NG

 
AR

EA
 

Z»
 

I 
Nl

--L
lN

K-
-' 

V
I 

V
I 

-c
 

FR
EE

 
~I
 

I 
FR

EE
 

I 
FR

fE
 

SP
A

C
E 

SP
A

C
E 

SP
A

C
E 

11
0 

I/
O

 
I/

O
 

F
ig

. 
S

.2
 

P
a
rt

it
io

n
e
d

 
M

em
o

ry
 

sh
ow

il1
5 

lo
c
a

t 
io

n
 

o
f 

t a
s
k
 

c
la

s
s
e

s
 



scheduler/despatcher is located. Any of the slaves desirous 

of service from the Master can request and obtain it. The 

Master can also shift its supervisory role to a slave by 

transmitting its PSI block to the new Master. 

5.5 Implementation. 

The role of allocating access to the appropriate memory 

blocks to the slave processors is exclusively handled by the 

Master. Once the Master decides to grant such access to any 

one of the slaves, it will output the address code for the 

particular slave. This address code will link the Master 

Read and Slave R/W lines to the memory block via a 

multiplexor. At the same time the demultiplexor unlt opens 

the appropriate blocks, to link the internal address and the 

data buses of the slave to the external address and data 

buses of the memory block. All block access requests can be 

generated by the Master; the Slaves need not generate such 

requests. This avoids the problem of concatenation of 

requests. 

All I/O activity shall be the exclusive responsibility of the 

Master, so that any interrupt from a device would be dircted 

only towards it. The device interfaces are intelligent 

73 



enough to perform the required operations and then inform 

the Master that the operation has been completed. Each time 

an interrupt occurs, the OS can trap it, set a flag 

indicating that an I/O event is in the offing. 

5.6 Discussion 

Eventually, a process in the context of the APT system, is 

seen as a program that occupies a relatively small directly 

addressable space. This is always preferable. Very large 

linear address spaces lead to poorly structured and difficult 

to debug programs as well as possible problems in 

protection. [Lorin H., 1982). It would be convenient to have 

all vital information about each task in one place or rather 

a table, for easy reference. Each entry in the table can 

contain the task identification, its status, the entry p01nt 

of the task and a save area for its stack pointer. This last 

entry would help a processor, taking over a new assignment, 

get the correct start. 

The partitioned memory scheme presented requires transfer 

operations among the different blocks. This memory to memory 

transfer can be advantageously effected with the help of the 

controller described in an earlier chapter. The Master while 

74 



performing the allocation, can load the appropriate registers 

in the controller, which will then manoeuvre the transfer. 

Service of the controller is desired by the Master through 

the request terminal of the controller after testing the 

status bit. Each processor holds the transfer parameters in 

the locations assigned. The controller when free, can 

acquire these bytes by accessing these locations directly to 

fill up the registers. 

In the parallel bus scheme, the BUS GNT signal wlll indicate 

the availability of the bus. The controller then gets the 

right to initiate one or more bus transfers; it can use the 

address, data and control bus lines. The BUS BUSY signal may 

be tied to the ENGAGED condition of the controller so that 

the Bus Available Signal will be active only when the 

controller relinquishes Holds. 

5.7 Theoretical analysis 

Based on a model for resource usage, an analysls is done with 

a view to optimising throughput. Resources in this case, 

include 

the sake 

memory, processors, tables and utility drives. 

of uniformity in this analysis, all these 

75 

For 

are 



grouped into one class namely 'memory'. Every process uses

some 'memory' for a duration depending on the task it is

performing. For the system with 4 processors, the picture of

memory usage at the end of one task would look like a time

matrix given by

"1 = 1 0 0 1
1 1 1 4

1 1 0 0
2 1 2 2

0 1 1 0
3 2 3 3

1 0 0 1 -> {1}
4 1 4 4

where 1 .. refers to the case when a processor uses its own
"

resource, while j # denotes use of a shared memory block

or a resource earmarked for another. 1 .. includes
'J

communication as well.

1 .. is a random variable, say Poisson distributed, [Musa,
"

19871 such that

p ( 1 )

1:

where IJ is the average value.

Since no two process can use the same resource at the same

time, either a queue or a walt state w 1S generated. As a

result, by the time a job is complete, several time matrices

are to be summed up along with W matrices.

76

Ultimately the



zeros in the time matrix get filled up and will lead to a 

general T matrix given by 

1i1 T. 
~n 

T = { 2 } 

T 
n 1 

T 
nn 

where T stands for the total calender time taken by the 

complete job. 

An n processor, n resource case is assumed, but it is not 

necessary that the two be equal in number. But certain 

operations can be performed easier, if T is made square by 

padding with zeros. 

It is also possible to decouple the number of times a 

resource is called and the time it is occupied. In that case 

{1} should be split into two vector equations. Adopting the 

same procedure, the total time occupied for each resource 

can be calculated and can be formulated. 

This model is only an extension of the model presented by 

Iannino.[Iannino, 1990]. 

Xy = ayT + ~y WIT) 

It may be noted that the leading diagonal of T should be non 

zero for normal operations. In exceptional cases, like a 

77 



network, some of the elements of the diagonal may almost be 

zero. It can also be seen that if T is symmetric, the 

system will be most efficient. A bias in T will be very 

clearly inefficient. 

5.7.1 Resource usage model for the system 

Let the FHPs and shared memory be identified separately by 

respective indices. The time for which each is used is 

denoted by T i j 

where denotes processor number 

j denotes memory block of the jth processor. 

Thus after any instant T, for a small number of processors 

T = T T T 
1 1 1 2 1 n 

T T T 
2 1 2 2 2 n 

T T T 
n 1 n2 nn 

while, at any time instant if T .. J 0 then T.. tJ. 0 
.lJ J1. 

because no two processors have access to the same memory. 

If the system runs for a total time T, the best T 

(normalised) will be a constant 

78 



"( .. 
~ ] 

= for all ij, kl 

For a particular set of tasks, the total time taken for 

execution Te can be written as 

T. ::::: 
e~ 

[ T 1 [ p 1 

where P is a vector. (Pl ••.•.• Pn] represent the 

processor factor ie., which processor calls which memory 

{3} is an ideal situation where no failures or wait 

states occur. To include such an eventuality, a correc-

tion term w ;s to be added to {3}. Then 

T = ["()[pj + [W) 
e 

where W is a random time variable matrix representing 

waits and failures. The distribution of elements of W 

can be found for standard tasks. 

The"( matrix is a matrix made up of sum of Poisson matrices. 

Order of Te of course varies with each job, but the ideal 

practice is to divide the job into N number of tasks such 

that N is the number of processors. 

For maximising the throughput, Te (each element or some 

linear combination or the largest of Te) must be minimised. 

79 



A. Trivial Solution 

Te constant would be a trivial solution for w = 0 

and p = constant. 

B. Non trivial solution 

Since each of the component is job dependent, T, P and W 

must be interrelated. 

Thus if for one task, a particular processor Pr takes a 

time T . and has to wait Wr for the availabil ;ty, 
rJ 

processors can be switched and Pq might take over the 

job, such that, switch time + Wp < Wr. 

This can only be done. if the class of jobs are known in 

the form of a table and the Master divides the task 

optimally. 

Let W = Q 1 Q - 1 

where Q ;s not necessarily sparse. 

Using techniques of OR, particularly scheduling it is 

possible to find a Q and a 1 which minimises Te. 

This then calls for a W which is not entirely random and 

independent of tasks. 

80 



C. Optimisation approach 

Using methods 

differentiated 

of variational Calculus equation {4} can be 

with respect to time and the minimum value 

of Te obtained by, say the standard Lagrangian form, given 

by 

o [t][p] + W + e { 5 } 

where C is a constant matrix. 

Solution to {5} involves some transcendental equations and 

only guarantees an extrema. Differentiating {5} again and 

making the RHS non negative the matrix equation resembles the 

form of a R;ccat; equation. 

It must however be remembered that T itself is a sum of a 

large number of matrices, and in the limit can be equated to 

some 

Thus on a good approximation 

t = -AW + et -+ 

ensures non negativeness 

where.! is the result of differentiating an in,tegrated 

quantity ie., averaging out the incremental usage time. 

81 



and the solution to {5} can be written as 

[ 'r] = -AW + c' -+ { 7 } 

C'-+ integration constant 

A -+ a constant, say Lagrangian 

or I -A T- 1 W + C" -+ { a } 

where C" is another integration constant 

I is a unit matrix 

or in other words 

T- 1W C" - I 
-+ { 9} 

A 

That is average time of usage of a resource should match 

the average wait time for that resource and should be 

constant for all resources. 

In practice, this may prove quite difficult to achieve 

without the help of a very powerful OS and expensive 

hardware. But as can be read from equations {4} to {9} it is 

fairly efficient and can be implemented in APT, since it 

ensures almost temporal and spatial task distribution. 

Note Bot h T and W be in g resu 1 t of sums of random 

variables, they almost always possess an inverse. If on the 

other hand, if only a set of resources are always used, 

neglecting the others, or if a row or column of T is 0 or 

constant or non unique, existence of 1- 1is not guaranteed and 

there cannot be a solution for {a}. 

82 



Chapter 6 

THE DATA BASE COMPONENT 

6.1 Introduction 

Advanced weapon systems are becoming lncreasingly complex and 

rely upon computers and embedded systems to operate. For eg. 

the surface mobile weapon systems used by the army, rely on 

an embedded navigation system to provide operational 

direction. It incorporates a remote operating console which 

requires data bases and a high level of data exchange. 

Other similar embedded systems also are found to have a data 

base component, making use of disks. With the availability 

of large main memories of the order of gigabytes, it has 

become possible to have main memory data base systems. But 

the problems associated with the main memory being volatile 

still persist. 

One of the characteristic features of the disc resident data 

83 



base is that the amount of information that can be accessed 

at one time from the disc is a block. Gupta observes that 

the two measures of performance of disc resident data 

structures are 

i. the number of disc accesses that are required for 

common file operations (eg. search) 

ii. the disc storage utilisatiion.[Gupta G.K., 1988]. 

It has also been observed that the performance of Data Base 

Machines that make use of querry processors, would be limited 

by their disc to memory transfer rates.rBoral H. et al, 1983]. 

6.2 Schemes available 

This section reviews the various techniques that have been 

used in the past to speed up disc access time. One class of 

approach is to minimise mechanical delays. The IBM 3380 

makes use of a cached control unit where data can be 

prefetched from the discs into the control unit buffer, so 

that a read request will not involve disk access if the data 

is already in the cache. However if the access pattern 

(ratio of reads to writes) is not appropriate, it not only 

does not help, but it could also hurt the average access 

time. This is because a cache miss may be more expenslve 

84 



than a native access (without cache) due to control unit 

overheads. A write will cause a disk access whether the data 

is found in the cache or not, where it need to be updated. 

Another approach is the disk scheduling technique as 

originally described in [Oenning P., 1967J. Much work has 

been done in trying to find scheduling policies which 

minimise seek time. But in order to apply a seek scheduling 

algorithm there must be a queue on which the algorithm may 

operate. It has been observed that in reasonably well tuned 

systems, the average length of the queue is only 0.3 which is 

inappropriate for a scheduling algorithm to operate. 

Several propositions have explored the concept of track 

interleaving to achieve parallel reads. But this will 

require special expensive hardware. Further the interleaved 

bytes are to be processed to obtain a serial data stream. 

6.3 Evaluating service time 

The basic service time consists of seek, latency and RPS 

(Rotational Positioning Sensing) miss. Seek delay is the 

time required to position the access mechanism at the data 

track, rotational latency is the time required for access of 

85 



the correct data or track area. It can range from 0 to a 

full rotation of the disk. If the channel is not free at the 

time device is ready, then there is an RPS miss and that 

causes the device to make a full rotation before it can 

signal again. It may be reasonably assumed that the average 

seek time does not vary considerably with load, and that 

average latency ;s one half of a device rotation period. We 

hold that the RPS miss delay is the principal load dependent 

component of the basic service time. This chapter presents a 

scheme attempting to make the channel free as and when the 

device is ready and hence to minimise RPS miss, thereby 

reducing the number of disc accesses. 

6.4 Methodology 

In conventional DBMs, there ;s the data communication 

subsystem, which is the terminal handler that recelves user 

requests, invokes application program and delivers the 

results that it receives from the database transaction 

manager. An operating system exists to run these software 

components. The method banks on manipulating the size of the 

block that is accessed from the disc. 

In this approach, disc sectors are grouped to form segments, 

86 



the smallest made up of two sectors and called the Base 

Segment (BS). This segment size is programmable to the extent 

that one out of the several Exponential Segments (ES) can be 

selected. These are made up of 4,8,16 ... sectors as a trade 

off, forming respectively ES2, ES3, ES4 ... segments. 

Depending on the situation, the OS selects either BS or one 

of the ESs to form a single block of storage. Fig. 6.1 

presents the flowchart for the related software. 

The space allocation is handled by software with the aid of a 

segment availability table (SAT), which specifies the track 

number and starting sector number of every base segment -BS 

address- indirectly; in the sense that a free BS will be 

represented by a 0 and a used up BS by a 1. The physical 

positions of the Os and 1s in the SAT, read on a dedicated 

area of memory, will be manipulated by software to determine 

the corresponding BS address. The address of free BSs will 

be stacked on a memory block, the size of which can be 

limited to hold say 256 bytes, so that at any given time 128 

SS addresses are available if free. If number of free SSs is 

less, the stack size is also small, thereby reducing memory 

requirement. Fig.6.2 shows the flowchart for creating the ss 

stack. 

87 



( SEGKENT 
WR [rE 

SELECT 
S lZE 

SET UP FOR 
TRANSFER 

SET 
BYTE COUNTER 

LOCATE 
FREE SEGK[NTS 

SEEK 

OUTPUT 
WR [TE COMKANO 

REPEAT 
UNTIL BYl( -

COUNTER 0 

OUTPUT 8YTES 
FR0M MEMORY 

STORE BYTES 

I IN O[ SC 

RETURN I OECREMENT 
BYTE COUNTER 

END 

Fig. 6.1 Disc operation flow chart 

88 



no 

yes 

next 

yes 

SAT over 

no 

no 

Reset 
Sr. pointer 

no 

Initialize 
Tr./ Sr. pointers 

Load first SAT byte 

First bit of byte 

no 

next bit 

Increment 

Increment 
Tr. pointer 

yes 

RETURN 

Fig.6.2 Creating BS stack 

89 

yes 

no 

Store pointer 
in STACK 

yes 



The decision regarding BS or ES will select the appropriate 

segments for storage. A BS will select one address, an ES2 

will select four addresses, ES3 eight and ES4 sixteen 

addresses from the SS stack, forming corresponding single 

blocks. Before selecting the addresses for the next block, 

the control software will skip an equal number of addresses 

in the SS stack, thereby scattering the storage blocks and 

granting respite to the software for completing housekeeping 

tasks. 

During deletion, the appropriate SAT bits are reset to denote 

a free status. The free space can then be allocated on 

demand, either in part or in one block. This will minimise 

the occurrence of unused free spaces in a "full" disk, thus 

reducing the cost per bit of storage. 

The scheme presented is advantageous owing to the following 

reasons : 

i. The waste of space due to some blocks remaining 

partly filled is reduced. 

ii. The waste of space due to chain pointers is reduced 

Small blocks would require more pointers. 

The system is adaptable to environments calling &or 'large 

90 



files only', simply by enlarging the size of the base 

segment. This will reduce the size of the SAT as also limit 

the file name appendix, providing more space to the user and 

reducing housekeeping time. At the other end, the base 

segment can be retained to have the size of one sector, and 

selection of block size can be from among multiples of base 

segment. 

6.5 Block transfer and DHA 

Controllers for block devices can conveniently make use of 

DMA concepts. Here the CPU gives two items of lnformation, 

in addition to the block address the memory address 

associated and the number of bytes to transfer. After the 

controller has read the entire block from the device into its 

buffer and verified the checksum, it copies the first byte 

into the main memory, at the specified DMA memory address. 

Then it increments the DMA address and decrements the DMA 

count. The process is repeated until the DMA count becomes 

zero, at which time the controller causes an interrupt. 

The Controller described in Chapter 4 will be overtly useful 

for vectored transfers from the disk. This is particularly 

significant in the light of the demarcated primary storage, 

91 



mentioned in Chapter 5. On line data/program can be 

transferred over to the appropriate blocks, by the OS which 

will augment the file name/identity of the data block in the 

disk with the appropriate destination memory address. These 

addresses can directly go to the DMAC stacks, which will 

manoeuvre the transfer. 

6.5.1 Transfer efficiency 

In the environment of transfer discussed, we define transfer 

efficiency as the ratio of the time involved in the actual 

operative part of the job, to the total time which comprises 

the supportive part as well. Accordingly, we have 

T = T + T 
io rw hk 

where Tio represents the total time involved in the 

transfer operation 

Trw represents the actual time of read/write 

operation and 

Thk represents the time taken for associated 

housekeeping. 

Table 6.1 gives quantitative results which indicate that the 

new design cuts down T 
hk 

This ;s because, the number of 

92 



Record size Thk for fixed Thk for pro. 
in bytes block size block size 

(ms. ) (ms. ) 

256 65 65 

512 140 90 

768 210 140 

1024 290 210 

1280 380 280 

Table 0.1 T for the two schemes 
hk 

93 



seek operations is reduced as a result of the predefined 

block size; the drive head need not have to go each and every 

time to the housekeeping track to locate free sectors. Again, 

since the segments themselves are scattered, there are 

instances when one full revolution time is eliminated. 

Consequently a high efficiency of transfer can be achieved. 

6.6 Relevance 

The enhanced transfer efficiency is advantageous in data base 

applications. It has been observed that the service time is 

less. The basic measurement statistics used is the response 

time of requests that are processed by the data base systems. 

The response time of a request is the time between the 

initial issuance of the request by the user and the final 

receipt of the request set. Usually a data base system 

processes information from the secondary memory using a fixed 

size block. If the block size is allowed to change, then the 

response time would vary. It is observed that there is 

considerable improvement over response time with the concept 

of programmable block size. Table 6.2 shows the values of 

response time in seconds for different requests. Since the 

majority of the work done in a database is to retrieve data, 

we limit our measurements to only retrieve requests. 

94 



Data base Response time Improvement in 
request size fixed prograrrrnable response time 

Sic~ 
2 records 21. 5 21.5 0 

4 records 38.7 26.2 12.5 

6 records 52.5 37.4 15. 1 

8 records 67. 2 47.1 20. , 

10 records 80.0 54.9 25. , 

Table 6.2 Response time improvement 

95 



The response time is arrived at after five repetitions of 

each request. A typical block size of 512 bytes was assigned 

and records were of size 256 bytes. For the prograrrmable 

block size, the same size as that of the request, is 

assigned. 

96 



Chapter 7 

MAINTENANCE AND ENHANCEMENT 

7.1 Introduction 

Embedded systems, by their definition, must respond to real 

world events. The cost of redesigning or rewriting software 

to respond to the continuosly changing requirements of the 

real world is prohibitive. Therefore, such dedicated systems 

undergo constant maintenance and enhancements during their 

life times. Several studies reveal that software maintenance 

consumes about 50% of data processing budgets and programmers 

spend 50 to 80 % of their time doing maintenance. [Parikh G., 

1986]. 

as given 

plot of 

Par1kh. 

The cost factor involved is growing over the years, 

by Boehm.[Boehm, B.W., 1981]. Fig 7.1 shows the 

cost factors over a specified period, composed by 

In spite of the cost and time involved in maintenance, very 

little research ;s reported on maintenance techniques and 

associated tool development. This chapter presents a review 

of the work reported in software maintenance and presents a 

97 



100 ,-----------------------------, 

8J I HARDWARE I 

1955 1970 1985 

Fig_ 7.1 Cost factors · 

98 



scheme to augment systematic maintenance and enhancement. 

Martin J. et al, define maintainability as the ease with 

which a software system can be expanded or contracted to 

satisfy new requirements. [Martin J., et al,1983]. The 

problem for most maintainers is the loss of traceability. 

This is defined as the ability to identify the technical 

information which pertains to a software error detected 

during the operational phase.(Kline M.B., et al,1981]. This 

is applicable as well to post requirement changes. Belady 

believes that "old" software is an important asset, embodying 

a wealth of experience, and constitutes an inventory of ideas 

for identifying the building blocks of future systems. [Belady 

L.A., 1979]. Lehman suggests that change is intrinsic in 

software, and must be accepted as a fact of life. [Lehman 

M.M., 1980]. He further states that large programs are never 

completed, they just continue to evolve. 

Software maintenance authors have made many suggestions for 

improving the maintainability of software. These suggestions 

can be classified into three categories: 

deSign approach 

maintenance practices 

management 

99 



Silverman and others suggest a design approach with a part 

list and connection list. The part list shows functions and 

the data associated with the functions. The connection list 

shows the input output relationship between functions and 

data. [Si1verman J., et al, 1983]. 

Some maintenance practices suggested include change 

management, guidelines for modifying and retesting, and the 

like, which are generally based on local information. But 

Letovsky et a1 point out that making assumptions about the 

plan of a program on the basis of local information could 

lead to an inaccurate understanding of the program as a 

whole. [Letovsky s. et al, 1986]. 

Some guidelines offered by Mcclure for improving management 

of maintenance are to involve maintainers in design and 

testing and to provide design documentation to 

maintainers.[McClure C.L., 1981}. 

Structure chart, Data trace and Control trace are some of the 

tools available which address various areas of maintenance. 

[Ma rt i n J., et a 1, 1 983] . 

100 



Automated documentation tools are now available; using source 

program as the input, the package gives program documentation 

as the output. A typical example is the package that 

generates flowcharts for existing COBOl programs. Such 

software packages often are found to have the following flaws 

i. over documentation 

ii. complex parts of the program may still remain 

incomprehensible 

iii. the kind of graphical tool used, for instance a 

flowchart output may affect the understanding of the 

documentation. 

7.2 The Problem 

A crucial point with respect to maintenance is that an 

engineer making changes is not necessarily the implementor. 

In many cases maintenance is performed on software systems 

for which very little or no documentation is available. An 

important phase is to understand the existing program before 

proceeding to modify. Understanding of the software pertains 

to the type of information that we wlsh to find out about it. 

The ideal environment would require every variable used to be 

annotated, every subroutine accompanied by a description of 

101 



what it is intended to do, .and what algorithm it uses. 

This understanding of instruction streams is also the heart 

of automatic programming, which is projected for further work 

in the later chapter. However, a host of fundamental 

problems remain to be chipped away from many directions. An 

approach to assist programmers, rather than replace them is 

envisaged. 

7.3 Motivation 

A major motivation is the reusability factor Which is most 

significant in improving software development 

and quality. One of the problems identified by 

and others which limit reusability is the 

productivity 

Ramamoorthy 

problem of 

understanding someone else's program. [Ramamoorthy C.V., et 

al, 1988]. If the original author of the program is not 

available to answer questions about the program, then this 

problem becomes quite critical. A typical situation would be 

the environment of a training lab where multiprocessor system 

development is on the cards, making use of available 

uniprocessor systems. Low level systems like kits, trainers, 

intelligent VDUs and the like, are likely to be adapted 

102 



du ring the various exercises on lnterfacing and/or 

integration. It often happens that while handling several 

ROM chips, one loses track of which is which; the visual 

identification mark having worn out. A reading of the 

contents would give the codes, which obviously are not 

directly revealing. 

7.4 Observation 

Experience r9l~from analysing many monitors 
"------ .. 

and system 

software indicates that they are largely composed of four 

types of modules: Actions. Decisions, Loops and Transfers of 

Contro 1. 

Actions are the actual things the program does, such as 

incrementing a counter or outputting a character from a 

buffer; whereas the others are mostly supportive. A host of 

distinct memory addresses also appear which would be 

pointers, subroutine / loop branching addresses and/or flags. 

Forward and reverse jumps occur in cases where relative mode 

of addressing is permitted. Altogether, lt presents an 

intricate picture, when a hard copy listing of the software 

;s made out, the problem of overall identity not 

103 



withstanding. Understanding could be made easier if it is 

supported by systematic documentation. The basic suggestion 

is to include these systematic tips as part of firmware 

itself. Software size may become less of a constraint these 

days as memory densities rise and costs fall. 

This work incorporates a 'Maintenance Folio' in system 

firmware. A series of locations at either end of the ROM may 

be devoted to hold the MF; which shall be called the MF 

block. This matches a directory in a file storage system, 

where all pertinent information is made available. What all 

information in the MF block could be helpful, is a poser 

which requires trade-offs as well as an awareness of the 

maintenance bottlenecks, 

chapter. 

7.S The MF structure 

brought out earlier in this 

The MF starts with an ID field, which carries the identity of 

the software, expressed as a fixed number of characters, 

represented in ASCII hex, like for example, codes for S8 

MICRO OS, indicating 

Microcomputer. This 

Operating System 

is followed 

104 

for 

by 

Single 

a list 

Board 

of 



subroutines/modules available, giving their addresses as well 

as a short legend code which would characterise their 

functions. This is referred to as the MD field. Then comes 

the AD field which comprises a list of addresses; each 

address with a coded information about the one out of its 

several possible roles mentioned in the previous section. 

Depending upon the complexity of the particular software, its 

MF can have more information fields to give indications about 

Actions, Decisions or the like. This is where tradeoffs are 

required as to the degree of 'friendliness' offered. 

Each field is demarcated by a predetermined number of 

characters. Since the MF lies in a well defined location, 

either at start or at end of ROM, reading and converting to 

ASCII could be a software function; giving 'very friendly 

results'. It is argued that for any firmware, a scrutiny of 

the MF block proposed would give an insight into it and 

smoothen out maintenance procedures. 

7.6 Scope 

Parallel computers generally provide subroutine 

containing functions that can be invoked 

105 

libraries 

by the 



programmer.[Karp A.H., 1987). The MD field suggested, 

though not a library in the strict sense, accomplishes its 

role at a lower level reasonably well. The pointers which 

constitute the AD field help parameter passage as well as 

communication between processors, by providing a shared 

location. It may be noted that the pointers are necessarily 

in the RAM area. Any interested processor can have access to 

the MF block without interfering with other processor's 

activity, 

Operations on multiple processors do not necessarily occur in 

precisely the same order from run to run. Some work is 

reported in developing a parallel debugger that will record 

the order of events in a program, so that events can be 

replayed in sequence to help diagnose errors. [Howe C.D., et 

al, 1987J. It would be worth while to incorporate this 

sequence information as part of the MF block. 

7.7 Quantitative results 

In a maintenance environment, it is usually extremely 

difficult to measure productivity.[Parikh G., 

quantitative aspects of measuring maintenance 

106 

1984). Some 

programming 



productivity are 

i. Number of change requests handled by a programmer in 

a period of time may indicate productivity. 

However, some change requests may be 1arge and 

complex, while others may be simple. 

;i. Lines of code added/changed/deleted. 

Automated auditors are now available which help 

identify automatically, program changes ln the new 

source code compared to the old code. 

iii. Bebugging technique 

Bebugging means artificial inseminatlon of bugs in a 

program. The time consumed by a programmer to correct 

a bebugged program is an indication of his 

productivity. 

Quantitative measure of the benefit derived out of using the 

scheme has been arrived at by the following procedure. 

Various attributes were taken care in adopting the procedure, 

namely : 

1. Programmer experience 

Two graduate students were selected as programmers, 

who had the same exposure to microprocessor systems. 

107 



Their famillarity and programming experience may be 

reasonably assumed to be the same. 

2. Program modularity 

3. 

4. 

5. 

The same program, two copies were given to both of 

them. 

Quantity of change 

Represented by the number of lines changed, added and 

deleted per unit of time; for ego programmer hours. 

Qua 1 ity of change 

This is subjective. This is assessed in a review. 

Quality of documentation 

This is also subjective and assessed in review. 

Table 7.1 shows test results obtained for a drive controller 

software, modified with the aid of, and without the MF block. 

P1 and P2 are the two programmers who were assigned the job. 

The change required to be incorporated is the same, namely to 

change the size of the block involved in a single read/write 

operation. P1 who was aided by the MF block had a very clear 

advantage. 

The incidence of change in block size occurred in four 

different modules in the ROM supplied. 

108 



Progranvner Programmer Programmer 
Team hours for P1 hours for P2 

T1 3.2 5.8 

T2 3.6 5.4 

T3 3. 1 5.0 

T4 4.0 6.'-

TS 3.0 5.8 

Table 7.1 Test results for modification 

109 



Values for programmer hours were arrived at after repetitions 

with different set of programmers. 

Almost identical results were obtained when maintenance was 

undertaken after bebugging. P1 had distinct advantage over 

P2 in identifying the bug and to corect it. The results are 

shown in Table 7.2 

Column 1 and column 2 show programmer hours spent by P1 and 

P2 to fulfil the task, repeated for five different instances 

in each case. 

7.8 Reuse - A case report 

This section presents a sample case of reuse of typical 

software. 

Studies show that reusability is the most significant factor 

in improving software development productivity and 

quality.[Bitar I. et al, 1985]. In the multi mlcroprocessor 

context, available uniprocessor software can advantageously 

be tailored to the specific realisation. This section 

mentions a case in context. 

110 



Number of codes Programmer Programmer 
bebugged hours for P1 hours for P2 

2 0.5 1.5 
(i n same module) 

0.45 1. 55 

0.7 1. 65 

0.8 2.0 

0.65 1.9 

2 1.2 2.45 
(in separate 

module) 1.0 2.3 

1. 15 2.2 

1.3 2.4 

1.4 2.65 

Table 7.2 Test results for debugging. 

1 11 



In this work, a program is supposed to be formed by different 

modules and the total set of programs form the system. In 

other words, a unit of software that performs a small useful 

task would constitute a module. Fig 7.2 shows the hierarchy. 

Myers mentions some characteristic features of modules [Hyers 

G.J., 1978J : 

* it is a closed subroutine 

* it can be called from any other module in the program 

* it has the potential of being independently assembled. 

Yourdon ~nd others define modules as a contiguous sequence 

of statements bounded by boundary elements, having an 

aggregate identifier. [Yourdon E., et al, 1979]. This 

definition means that 

* the statements in a module follow one another from a 

logical viewpoint 

* there are distinct initial and terminal points in a 

module representation. 

A scheme which permits reuse of a low level assembler by 

adapting it to support parallel processing activity by the 

different processing elements, is presented. Most assemblers 

contemplate a modular structure of source program with 

112 



SYSTEM 

PROGRAM 

MODULE 

~ \00 

CODE 

Fig. 7.2 Software hierarchy 

113 



appropriate labels. Each line in the source program usually 

contains a statement which is split into fields like LABEL 

field, OPCODE field, OPERAND field and COMMENT field. The 

comment field, although ignored by the assembler, is 

essential to good programming style and should contain a 

clear description of the function of each line of code. This 

will simplify maintenance procedure as well as help create 

the MF structure. 

The primary function of the assembler comprises evaluating 

the fields, processing labels and assigning addresses. In a 

typical pass, the assembler identifies the labels and forms a 

label table with the addresses corresponding to each 

appearing in the next two bytes. In the modified version, a 

module pile is formed, which can be a first-in first-out 

stack; its elements being the label ID of the program 

subsets. The address counter in the assembler, which keeps 

track of each instructions address can be made use of to get 

the address of the last instruction in any module, indicating 

its size. 

This linear" list of modules may be termed a 'pipe' where all 

insertions, removals and accesses are made at the ends only. 

The pipe which is formed as an offshoot of the label table 

114 



during assembly, holds module names, their addresses and size 

information; the last helping housekeeping of appropriate 

resource blocks. Fig 7.3 shows the flowchart of the modified 

assembler (MODAS). 

7.S.1 Relevance 

Chapter 5 has introduced functional blocks in the resource 

memory and each block is earmarked to hold predefined classes 

of tasks which have been identified. In the modular approach 

discussed, classification is simpler, particularly when 

confronted at the assembler stage. The specific class to 

which a module belongs is also determined. For instance, a 

subroutine which forms a distinct class, can be identified by 

the entry label and the subsequent return instruction; an 

iterative loop will be characterised by a counter and a 

conditional branching. Presence of a memory address used as 

a pointer, would indicate reference to a value content, and 

hence dependence on another task." As a matter of fact, the 

MF structure introduced, carries such 1nformatlon as 

subroutine labels, counter and pointer addresses etc. 

, '5 



COPY OF EVALUATE FIELD FORM 

SOURCE PROGRAM & PROCESS LABEL TABLE 

~ 
ASSEMBLED 

I---CODE 

PE 1 -------

PE 2 -------

11 
PIPE: Ir PE 3 -------

PE 4 ------

Fig. 7.3 MODAS flowchart 

116 



7.8.2 Conclusion 

The pipe can be conveniently located in the block accessible 

to the various processing elements, as envisioned in Chapter 

5. Communication inter-module and intra-module, can be 

effected by writing to and reading from the block. As soon 

as an entry appears in the pipe, execution can proceed with, 

if resources permit. The MODAS pursues its task, making 

fresh 

looks 

entries in the stack. 

into the pipe for 

Each processor 

tasks pending. 

whenever free, 

Alternately, 

interrupt concepts can also be utilised advantageously. 

In the case presented, it was observed that only marginal 

changes were required to make it support a new structure. 

This purports to the significance of maintenance. The 

typical assembler was one developed in-house, for MC 6800 

processor. 

117 



Chapter 8 

TOWARDS IMPROVING PROCESSING RELIABILITY 

8.1 Introduction 

This chapter attempts to extend the concept of software 

adaptation / maintenance and presents the ground work for 

improving processing reliability. Maintenance is often 

mentioned as the twin sister of reliability.[Parikh G., 

1984J. The ultimate objective would be to make the processor 

comprehend, improve and correct programs, by itself during 

execution. This is suggested for further work; broad 

guidelines likely to help steer the work are presented. 

Current day sequential computers which are more popular than 

any other architectural class, are guided entirely by the 

instruction codes which constitute a given program. 

Processing proceeds by fetching these codes as they appear in 

the program. No facility exists to verify if a particular 

code being decoded is the correct one. Empirical 

118 



observations indicate a pattern of likelihood for instruction 

occurrence in a stream, which would help predict a plausible 

sequence. Relevant information about the codes/stream 1s 

made available to the processor, based on which a built in 

smart logic checks the appropriateness of a code in a stream. 

A new format of instruction, based on RIse ideology is 

formulated with a view to facilitating rapid decode, through 

use of a consistent opcode field; which would simplify the 

process. The corresponding organisation for the processor is 

derived. If there are too many instructions as with the case 

of else processors, level of complexity of the smart logic 

may be too high. The format presented is also helpful in 

moving programs made out of such instructions into new 

environments by a simple pre-processing. 

8.2 Current Status 

A review of instruction codes of different microprocessors 

would reveal that the pattern of bits do not follow any hard 

and fast rule within one processor or without. Eventhough 

clearly identifiable fields are present to mention opcodes 

and operands in some processors, their specific positions are 

119 



never standardised. For example, in the case of the INTEL 

8085 microprocessor model, if two MS bits alone specify 

opcodes in some instructions, there are others where two more 

LS bits are utilized; in such cases the operand field occurs 

in their midst. Again there are codes where operands are 

mentioned by LS bits alone. In another case of the MC 6800 

microprocessor, codes do not appear to have any distinct 

fields at all. It has been observed that codes devoid of 

well defined fields are unattractive; particularly when 

attempts are made to predict their sequence, as also to adapt 

them to a new environment. 

Traditionally the general trend in designing microprocessors 

has been towards increasingly complex instruction sets and 

associated architectures. But recently, a shift is seen 

towards a simple set of instructions judiciously chosen, and 

corresponding simple machine organisation. The focus has 

been in increasing the reliability of individual instruction 

streams, rather than going in for large instruction 

repertoires. [Toong H.D. et al, 1981]. In fact, a whole 

spectrum of VLSI special purpose and general purpose 

processors were developed based on the philosophy of 

simplicity and replication. [Trleaven P.C., 1984]. 

120 



8.3 Methodology 

In the new format presented, codes form decisive groups based 

on the number of operand bytes involved in the particular 

instruction. Group 0 instructions have no operands, its 

function being that of a controller; while group 1 will have 

a single operand. A mention of two operands which are 

exclusively data bytes, like the addend and augend in an ADD 

operation, constitute group 2. If mention is made of a two 

byte address, it is group 3. Thus, in a sample case of an 8-

bit instruction and 16-b1t address, two MS bits are reserved 

to demarcate one of the four groups identified. 

Next, we propose to specify the location of opcodes in the 

format. This warrants a scrutiny of the register 

organisation as well. Adverting to the concept of a sma11 

register file, which would help to have only a few simple 

instructions, an organisation is arrived at based on analysis 

of various register profiles. The analysis has been 

conducted by assigning Register Credit Values (RCV) as given 

out in Table 8.1. The registers selected for the new 

organisation are an ACe, an IX, an SP and a status register, 

apart from the PC, WhlCh is indispensable in the Van Neumann 

scheme. It may be noted that an all memory architecture 

121 



N
 

r.
.)

 

1- 2
. 3.
 

4.
 

5.
 

6
. 

F
e
a
tu

re
s 

CP
U

 

r
e
g

is
te

r
s
 

A
rc

h
it

e
c
tu

ra
l 

1 
n

d
is

p
e
n

sa
b

il
 i
ty

 

V
a
ri

a
b

le
 

L
o

c
a
ti

o
n

 
R

e
fe

re
n

c
e
 

1
6

-b
 it

 
a
d

d
re

ss
 

h
a
n

d
) 

in
g

 

F
a
st

 
In

te
rr

u
p

t 
re

sp
o

n
se

 

P
ro

g
ra

m
m

in
g

 
e
a
se

 

S
u

b
ro

u
t i

n
e
 

C
a
ll

 

TA
B

LE
 

8.
1 

R
EG

IS
TE

R
 

C
R

E
D

IT
 

V
A

LU
E 

6 
8 

0 
0 

8 
0 

8 
5 

Z
 

-
8 

0 
c.

!I 
c<

: 
~
 

N
 

~
 
~
 

-
N

 
-

-
-

<
 

U
C

t
.
.
x

u
u

u
 

U
C

l
.
U

O
l
A

J
.
.
.
.
J

t
-
U
Q
.
x
>
a
.
.
a
:
:
U
U
U
L
&
J
~
u
w
.
.
.
J
-
.
J
 

D
.
.
V

'
)
-
u

«
c
C

 
<>

. 
V

I 
-<

 
c
tl

 
C

l 
:c

 
V

I 
D

..
V

1
-

...
.. 

-
2

:
C

C
<

a
l
c

:
:
z
:
:
:
:
c

o
c

x
 

...
.. 

0 
0 

0 
0 

. 
0 

I 

. 
0 

0 
i 

0 
0 

0 
. .

 • 
· 

· 0 
. 

0 
0 

. 
0 

0 
0 

" 

. .
 . 

.. 
. 

. •
 

0 

· 
· •

 
. 0

 
0 

. .
 . 

. •
 
. 

0 
0 

0 
. 

0 
• 

· 
0 

-
-
-

-
-
-

-
-

-
-
-
-

--



would have about 47% of data references for temporary storage 

of intermediate results. [Flynn M.J., et al, 1987]. Use of 

registers is resorted to, in view of this contingency. 

In the 8-bit instruction word example, the next two MS bits 

specify the register associated with the operation. The 

remaining bits characterise the logic. Table 8.2 depicts a 

few bit patterns in the new format. The use of consistent 

opcode field, a RIse phenomenon, allow rapid decode and swift 

adaptation. Decoding of the instruction proceeds by 

identifying the group to which it belongs and then looking 

for operand specification as well as opcodes. The operand 

location is also well defined with respect to the groups. 

For a group 1 instruction, it lies invariably in the ACe. 

For group 2, one operand lies in the ACe or other register 

specified by bits b5 and b4, and the second lies in a memory 

location dedicated for the purpose, designated "MEMOP" 

Memory Operand. It would be desirable to locate MEMOP next 

to the stack area, so that whenever stack is initialised this 

address is set, which is pointed to by the SP of a virgin 

stack. 

In group 3, the two-byte address, obviously may be held by 

MEMOP together with its adjacent higher address location. 

123 



TABLE 8.2 

COD[ rOf~MA I 

Li?ilk.~ Ibslb4 Ib3 Ibz Ib 1 I b q 
lJ7 b(, glwp 

a a 0 GROUP 0 : bS b4 b3 OP b2 bl ba 

a 0 0 0 HLT x >( x don't care 

0 
0 0 1 NOP 

2 
0 a El 

3 a 1 1 01 

0 0 SI 

0 1 RtS 

0 RtCn 

GR(XJP 1 b5 b4 Reg.lndr. bJ bZ bl ba OP 

a 0 ACC 0 a a a CLR 

a IX a a a COMPl T 

0 SP 0 0 0 INCR 

Stat. a 0 1 DECR 

0 0 0 RanT 

0 0 1 ROTRT 

0 a PUSHD 

0 1 1 PULLD 

0 a a BITST 

0 0 1 DCMLAD 

0 a LDAce 

0 STAce 

GROUP 2 : b5 b4 bJ b2 bl bO 

0 0 ACC 0 0 ADD 

0 IX 1 0 1 ADDwCy 

0 SP 1 0 AND 

OR 

compare 

with [Reg] specified bv bl ba 

GROUP 3 : b5 b4 bJ GP b2 bl ba 

0 0 a lDIX x x x 

0 0 1 STIX 

0 0 lDSP 

0 1 1 STSP 

0 0 JTSub 

0 1 JSCn 

0 LDOPIM 

5TGPIM 

124 



Addressing is just direct or indexed, again a RISe feature 

namely few addressing modes. The excessive use of indexed 

computed mode of addressing, though deviates from the RISe 

scheme, is advocated as it enables shifting of routines to a 

different area of memory, by altering the initialisation 

part. This is particularly significant in the light of the 

partitioned resource memory, and the different classes of 

tasks proposed in Chapter 5. It also facilitates an 

excellent memory expansion technique using indexed mapping. 

8.4 Adaptation 

The well defined format presented, enables swift 

identification of the different attributes in an instruction. 

With few addressing modes and the prescribed operand 

locations, a simple pre-processing would enable migration of 

programs to new environments. Conversely customised 

instructions can be rebuilt after identifying opcodes and 

determining operands, by resorting to a table look-up or 

other standard cross assembler procedures. The sequence 

proceeds by first fixing the group based on the number of 

operands involved and assigning the respective bits. The 

operands are then put in the appropriate locations specified. 

125 



The opcode field is checked and the appropriate code/codes 

generated. As a matter of fact, additional codes may be 

required to accomplish the operation. 

Implementation with fewer instruction types 

requires additional instruction memory traffic. 

:>bviously 

Th is is 

alleviated by providing a small instruction cache as an on

chip buffer. This would be kept full by a prefetch logic. 

8.5 Smart Assistance 

Rapid progress in semiconductor process technology enables 

the increasing integration of systems on chip. Functions 

previously exclusive to minicomputers or large scale machines 

are now appearing in microprocessors. This latter motivation 

led to suggest an on-chip Smart Processing Support (SPS) 

which would promote a high level of system reliability. Two 

significant aspects of an lntelligent aSslstant [Kalser G.E. 

et al, 1988] have been identified: 

* it should provide an insight into the process. 

* it should be a participant in the processing by 

providing suitable instructions as and when required. 

126 



The insight is provided by the MF structure proposed in the 

previous chapter. The SPS looks for the MF and off loads its 

content to a dedicated buffer provided on chip. This will 

serve as a ready reference as regards the functional role of 

various entities identified. 

Implementing a small set of instruction would result in a 

substantial saving in control logic. Also, it reduces the 

range of probable instructions in a stream. The saved area 

on chip can be used to hold storage facility, which in turn 

is used to implement the SPS. The SPS participates in the 

processing and strives to provide suitable instructions as 

and when required. 

8.6 Observation 

Church has given the probability of occurrence of each 

different class of instructions [Church C.C., 1970) as shown 

in Table 8.3. As a preliminary attempt, only the first two 

groups which together constitute almost 7S % of all programs, 

are subjected to scrutiny. 

It is often the case that when an instruction is executed, 

127 



TABLE 8·3 

Functions Rate of occurrence 

Da ta transfers 45 % 

(LOAD, STORE, MOVE) 

Program Control 29 % 

(BRANCH, CALL, RETURN) 

Arithmet ic 10 % 

Compare 6 % 

Logical 4 % 

Sh ift / Rotate 3 % 

Bit Manipulation 2 % 

Input/Output and Control 1 % 

128 



not all possible instructions are equally likely to follow. 

For example, a LOAD ACC instruction is not followed by a 

STORE ACe with reference to the same address. Taking 

advantage of these facts, opcodes are grouped into clusters, 

where the members of a cluster are likely to follow one 

another. In another instance, an increment instruction would 

never be followed by a decrement instruction. But when it 

occurs in a counter routine which makes use of a memory 

location, then it may be followed by a store instruction. 

Another code might compare the value of the counter to decide 

on a branch operation. The SPS foresees a branch code in 

such a situation and verifies the appropriateness of the 

instruction in the stream. 

A typical case of comprehension by the SPS might occur like 

this: an instruction refers to a memory location which is 

specified as a counter flag in the MF structure. The likely 

sequence would be 

LOAD ACC 

INCR/DECR 

STORE ACC 

BRANCH CN 

129 



8.7 Design Approach 

The organisation of a typical processor, incorporating the 

SPS logic is suggested, which comprises a set of tacks. This 

is shown in fig. 8.1. These stacks provide for replacement 

of codes at instruction level, module level or supply results 

of program depending on the level of complexity. The 

structure of the logic is to be worked out. 

8.8 Conclusion 

It ;s argued that the new organisation provides a novel 

technique at improving reliability. It serves as an 

alternative to software replication, which by no means 

resolves the problem completely. The design is intended to 

be a basement; further work is suggested in modelling and 

evaluating it. The objective would be t.o.~ ... a~~! 

J9-9~ .---!:hat comprehends, improves and corrects programs. 
'- -----...,. 

Systems become more reliable when this is achieved. 

130 



w
 

M
F

 
B

U
F

F
E

R
 

ST
A

C
K

 
I N

S
T

R
U

C
T

IO
N

 
/"'

"I,
 co

d
e-

re
p

 l
a
c
e
 I 

,p 
H

 
r 

SY
ST

E
M

 
T

E
S

T
S

 
+

-
0

-
IN

s'
rR

U
C

T
IO

N
 

R
E

G
IS

T
E

R
 

F
ig

. 
B

.l
 

[ 
1 

N
T

E
I.

L
IG

I-
:N

']
' 

N
 

I 
ST

A
C

K
 

2 
A

S
S

IS
T

A
N

C
E

 
L

O
G

IC
 

Im
o

d
u

le
 

re
p

) 

D
E

C
O

D
E

R
 

D
e
si

g
n

 
a
p

p
ro

a
c
h

 



Chapter 9 

CONCLUSION AND SUGGESTION FOR FURTHER WORK 

It is very probable that future attempts at performance 

improvement in embedded applications should include multiple 

microprocessor approach. Resource sharing 

enhancement are key features for such 

and adaptation/ 

systems. Three 

distinct levels of sharing occur at Control, Informatlon and 

Storage. 

A new controller has been designed, simulated and tested. 

The test results indicate that the design supports powerful 

and efficient interchange of control codes, as well as data. 

It provides ideal controllers for multi microprocessor 

systems. This is an improvement over earlier controllers. 

A typical application scenario has been thorougnly explored. 

It has been observed that processes rank differently for 

system service. A classification of such processes has been 

done and the system subjected to analysls, w1tr a view to 

optimising throughput. Ideal condition for resource usage 

has .been arrived at. This obviates the need for powerful 

operating system and expensive hardware. 

132 



The storage level purports to the data base component of 

embedded systems, whose performance is limited by the dlSC to 

memory transfer rates. A new scheme is suggested which would 

optimise disc operatlons. Test results indicated that 

transfer efficiency, that has been defined, would be better 

with this scheme. Storage cost also is less. 

Dedicated systems are found to undergo continuous changes 

during their span of life. Enormous amount of effort as well 

as cost is saved by resorting to certain maintenance tips 

suggested. Quite different from conventional documentation, 

this is made part of flrmware. Adapting such software 1S 

easier and more effiCient, as indicated by experimental 

results. 

Groundwork for more reliable processing unlts, 

different from simple replication, has been laid. 

quite 

A new 

organisation has been arrived at with a view to ascertaining 

the appropriateness of any given code in a stream. 

133 



The problem of predicting the sequence of an 1nstruction 

stream, based on the likelihood of occurrence, may be pursued 

to the level of integrating the necessary logic on chip. 

This'promotes the level of system reliability. System level 

solutions rather than functional redundancy is adopted to 

accomplish this. It would turn out that a little hardware 

enables to support a highly reliatle system. 

The CPU architecture is to be tailored to ensure certair 

degree of 

stati st i ca 1 

autonomous 

studies 

or involuntary 

and prey 1 ous 

operations based on 

history. The logic/ 

i nte 11 i gence added to the CPL: shou 1 d .. gauge" the mind of :he 

programmer. Such intelligent processors can asslst the user 

by making the program writing process ~tself 1nteract1ve. 

The concepts are bound to have their ramifications en LANs by 

fully exploiting their potential advantages. Ore of the 

characteristic features of LAN 1S the facility whereby files 

can be transferred between any machine on the network. The 

controller developed, with its unique features, proves to be 

very effective here. More over, the disc/file server is able 

to serve more number of clients by adopt1ng the pr~9rammable 

block size cocnept. 

-:0:-

134 



APPENDIX A1 

SWITCHING UNIT 

Fig. A1 shows a matrix switch that can be used if more than 

two processors are involved. This supports the controller 

designed, to the extent of decoding CALLING and CALLED 

processor addresses and providing a Bus Switching Network. 

The 

HOLD 

CALLING decoder selects the appropriate 

and buffers the source address from 

processor for 

the controller 

ADDR. register. The data which reaches the data buffer will 

be switched to the destination processor buffers which have 

been enabled by the CALLED decoder and passed to the 

destination address indicated by the controller register. 

It is assumed that all the processors involved provide 

address and data buses, R/W control, HOLD and HOLDACK lines 

at connector. The address decoding ;s done by the 1ncumbent 

processor support hardware. 

Since only one pair of buffers are activated at a time, to 

take part in a transfer, the problem of 1nterlock will not 

arise in these operations. The controller itself provides 

access only if it is not engaged by any processor that has 

initiated a transfer. 

135 



ADDRESS BUS 

"v ",V ",v 
S - - - - - --ADDRES 

BUFFER S r-f PROC. 0 PROC. 1 1 ____ pROC.1S 

DSTN ADR 
from control ler 

SOURCE AD 
from Control 

ENABLE 

BID 
DAT 

ler 

from 
ADDR REG 

IRECTIONAL 
A BUFFERS 

- --
.. 

- -4 - to 16 from - 4 to 16 - DECODER CNTRL - DECODER - (Callinq) REG - (Called) 

,.... 
WIRED OUTPUTS 

L.j PROC. 0 PROC. 1 1===== PROC.15 I--
i-- ... 

DATA BUS 

Fig A.1 Switching unit 

136 

l-



,t.,PPENOIX A2 

MICROSYSTEMS: Archirectllr~. Integration turd Use 
C.J . • an Spl'Onsen turd L. Richter (eds.) 
North-Holland Publishing Company 
© EUROMlCRO. 1982 

A NOVEL ARCHITECTURE FOR DMA CONTROLLER 

K. Paulose Jacob 

O/E/N India Ltd 
Cochin, India 

C.S. Sridhar 

Departmer.t of Electronics 
University of Cochin 

Cochin, India 

A new D¥~ Controller architecture is proposed, combining the features 
of available controller and peripheral interfaces. It is argued that 
provision of a stack in the controller er~ances its power by enabling 
access to nor.-sequential locatio~s also. 

I. INTRODUCTION 

Commercially available Direct Memory 
Access (DMA) Controllers normally pro
vide access to the memory of a process
or for peripheral devices. These are 
programmable to the extent that start 
address and number of bytes to be acce
ssed, are written into the controller 
which in turn, by raising a HOLD or 
such signal, captures the busses and 
executes the transfer of data [1]. Also 
available are PPI's (Programmable Peri
pheral Interface) which incorporate a 
large number of ~owerful modes for data 
transfer, interrupt etc.(1,2]. Or.e 
drawback of tLe former, namely DMA 
Controller in that access is limited to 
a block of data sequentially located' in 
the main memory. For large systems 
very complex BIM (Bus Interconnection 
Module)(3] may be required for data 
exchange. 

is proposed that features of DMA 
Controllers and PPls can be combined 
in a single chip to enable more power
ful and efficient data interchange; 
not merely between the processor and 
the peripherals but also between pro
cessors. It is also shown that the 
proposed architecture can easily be 
upgraded to provide ideal controllers 
-for multiprocessor operation. 

The motivation for the design is the 
difficulty encountered in DMA access
ion of outputs in batch processing and 
sharing of routines between processors, 
particularly when non-sequential loca
tions have to be accessed. 

The scr.eme has been oriented towards a 
twin-processor operation using 
8080-8085 pair. It is felt, however, 
that the design can be extended to 
more than two processors, with equal 
efficiency, provided the individual 
CPUs are of the same :amily, e.g., 
8080, 8085, Z80, etc. Section 11 

299 

137 

describes the architectural 
details of the proposed D~A Controller. 
Section III describes the software 
required to implement the DMA Cor-trol
ler, while Section IV covers disCUSS
ions and conclusions. 

I I • THE ARC HI TEC TURE 

The architecture of the proposed con
troller 1s shown in Figure 1. 

SOURCE 

I ·2,r:l 
~ 

Fig. , 

DESTINATION 

":o-'X ••• '. __ w 

HE: PROPOSED ARCHITECTURE 

A in figure is a control section which 
generates the necessary cor-trol sig
nals for the operation. Clock C times 
the operation. AR is an address regi
ster which provides access to the 
controller for external devices. This 
register stores data regarding the 
address of the calling processor or 
device, as the case may be. Also 
contained in this, is a one bit flag 



300 K. PAULOSE JACOB and C.S. SRIDHAR 

to indicete '~NGAGED' co~diticn if more 
than one pro:essor/device wishes to 
access the co~~roller. A Control Regi
ster CR, written into by the calling 
processor, stores the details regarding 
direction of data flow, destination 
device address, and whether stack 8 is 
needed or not. TC is a terminal count
er register which stores the number of 
bytes to be transferred. AD and AS are 
the address registers buffered through 
DB tristate buffers, to the address 
lines of the processor. 

The control and logic units provide the 
necessary control signals 

to listen to a calling processor. 
to provide a~cess to the control 
register, address buffers etc. to 
the processor. 

to raise HOLD signals and R/W 
signals. 
to sense HOLDA and execute 
transfer. 
to enable all the housekeeping 
signals like clear, buffer on and 
such other control signals. 

II I. 80FTiv' ARE 

The operation of the proposed control
ler is as follows. The controller it
self forms an out pu t port for all the 
processors. The 'CALLING' processor 
raises a one level at the REQ terminal 
after testing the MSB to determine 
'ENGAGED' or 'FREE' condition. If 
free, the controller first records the 
'CALLING' address and routes the first 
byte to the centrol register. The 
data direction and the destination 
address are recorded here. A '1' or 
'0' at b4 in control register, is 
interpreted as 'STACK REQUIRED' and 
'NO STACK' respectively. bO to b3 
form the destination address. b5 is 
allotted for data direction, namely 
Read or Write into called memory. b6 
and b7 are reserved for housekeeping. 
The next bytes are routed to AD, AS, 
TC respectively, if b4 is zero; or to 
the stack, if it is a one. b6 and b7 
indicate depth of stack used. The 
controller accepts six bytes on mode 0, 
and a maximum of 24 bytes on mode 1. 

The CALLING processor si~nals end of 
entry by clearing its Req output. The 
controller then depending on the mode 
executes transfer. For eg.,in mode 
zero, the address registers and Te 
are filled up and hence the controller 
will directly raise HOLDs on the 
CALLING (source), and CALLED (destina
tion) processor, receive the HOLDA from 

138 

both and raise the R or W signal. The 
internal clock increments the address, 
decrements the terminal counter and on 
finding TC zero, relinquishes the 
HOLDs and clears all registers to zero. 
This is necessary, since for 8080 
family systems, normally locations 
starting from 0000 are in the ROM 
area. hence the registers are set to 
start from 00 level, so that no mal
function can aCCidentally write into 
any 100 mory . 

In mode 1 however, the data to all the 
registers AD, AS and TC is fetched 
from the first five locations of the 
stack and repeated b7 b6 times before 
which the clearing operations are 
executed. 

IV. DISCUSSIONS AND CONCLUSIONS 

The proposed DMA Controller is mainly 
designed towards a multiprocessor
based system. No attempt was made in 
the present work to minimise or opti
mise the pin count of the controller 
chip. For example, if the controller 
is implemented for two processors, 32 
address bus pins, 8 calling data port 
pins, 4 Hold and Hold Ack, and 2 R/W 
pins are a minimum requirement. Over 
and above these, there will be power 
supply pins. 

For getting service from the control
ler, certain amount of software is 
needed for each processor. Appendix I 
shows this software for test proce
ssors 8080 and 8085. It should alse 
be pOinted out that data lines were 
tightly coupled. In a true multi
processor set up, additional hardware 
in the form of bus swit~hing network 
will be necessary. The authors can 
only hypothesize on suc~ a support 
device and hence only a visualisation 
is presented in Appendix 11. 

The routing of bytes.for loading the 
various registers wae possible in the 
present case because they are allotted 
to the output ports of the processor 
and nearly 10 cycle time is available 
for switching. For faster output 
rates, some more thought should be 
devoted for implementation. Alternat
ely, a few locations are assigned by 
the processor for such operations, 
and the DMA Controller itself acquires 
these bytes by accessing the memory 
of the calling processors. For 
example locations 8FOO to 8FOS may be 
filled up by the 8085 processor in 
its own memory and it may raise a Req 
on the controller. The controller, 
when it is free, and subject to 
priority may access these locations by 



A NOVEL ARCHITECTURE FOR DMA CONTROLLER 301 

DMA and fill up the registers CR, AD, 
AS and TC. 

It can be seen that problems of inter
lock will not arise in these operations. 
It might also be made clear that the 
actual system described is based on 
combining discrete 8255 PPI and 6257 
DMA Controller. As a matter of fact, 
no attempt was made to fabricate a 
single chip incorporating the features 
described. 

Also, WAIT conditions were not simulat
ed since the RAMs used were compatible 
with the discrete chips described and 
the clock rate was not too high. 

iEFERENC ES : 

[lJ HCS 80 Users Manual, Intel Corpora
tion, September 1975. 

[2] 6800 Application Manual, Motorola 
Corporation, 1976. 
Hoener, S. and Roehder, W., Modular 
Multi-microprocessor architecture 
with virtual Memory, Proceedings of 
Euro Micro Symposium, Venice, 
October 1976. 

APPENDIX I 

SRRVE: LXI H, ADDR 
MYI D, STACK 
MYI C, DESTN 

TSFR: IN, 04 
ORAA 

JZ, TSFR 
CALL,FILUP 
RET 

FILUP: MOV A,D 

ORAA 
DCRA 
JZ, NSTCK 

DCR D 
MeW A,D 

Loca tions for 
memory address 
of source and 
destina tion and 
number of bytes 
for transfer. 
One if no stack, 
depth+l if stack 
is needed. 
Load into C 
destination pro
cessor address 
(bO to b3) and 
direction (b5). 

Test port 4 
If DMA Control
ler is not free, 
bO will be O. 
Continue testing. 

Test if stack is 
required. 
If not required, 
directly trans
fer 5 bytes from 
SERVE. 

NSTCK: RAR 
RAR Form control word 
GRA,C 
OUT, 06 Send control word to 

DMA 

DEEP: MVI,B,05 Load into B 5 

CHART: MOV A,M 
OUT,06 Transfer 5 bytes 
INX H 
Dell B 
JNZ, CHART 
DCRD 
JNZ ,DEEP If stack depth not 
HET zero, repeat D times. 

APPENDIX II 

A matrix switch cen be Visualised if 
more than two processors are involved. 
It is assumed that all the processors 
involved are providing their addresses 
and data buses, R/w control lines, 
HOLD and HOLDA, at some connectors 
and that the controller only HOLD's 
the CPUs. Consequently a mere setting 
up of address is required o~ the part 
of the controller; the address decoding 
being done by the incumbent processor 
support hardware. This is presented in 
Figure 2. 

Fig 2. SWITCHING UNIT 

139 



1. Airspeed 

2. Altitude 

APPENDIX B 

GLOSSARV OF AVIATION PARAMETERS 

AND PANEL INSTRUMENTATION 

Speed at which an aircraft is moving. 
Airspeed in knots(nautical miles per hour) 
is indicated on panel 

Height of the aircraft above sea level. 
Altimeter is the instrument that displays 
altitude in feet. 

3. Aircraft Heading Direction in which the aircraft flies 
through the air. 

4. Attitude 

o degree for North. 
180 degrees for South. 

Directional Gyro is the instrument that 
indicates aircraft heading. 

Pitch and roll of the aircraft as compared 
to the horizon in degrees. 

Artificial Horizon is the instrument that 
indicates attitude of the aircraft. 

5. Angle of Bank Aircraft bank angle from vertlcal ln 
degrees. 

Angle of bank is indicated by Aileron 
deflection on panel. 

140 



6. Vertical Speed 

7. Thrott le 

8. Weight 

9. Mach 

10. Rudder 

11. Elevator 

1 2 . Ail e ron s 

Rate of cllmb or descent of the airc;aft 
in feet per minute. 

Vertical speed indicator on panel displays 
the rate. 
Elevator deflection is also lndicated on 
pane 1. 

Throttle position varies from a computed 
mlnlmum idle value to a maximum value of 
1.0 for full throttle. 

Position indicated on panel. 

Influences load factor given by n = L/W 
where L is lift(lbs) and W is weight(lbs). 

Indicated on panel. 

Mach number is the ratio of the speed of 
motion to the speed of sound. 

Mach 1 = speed of sound in feet/second. 

The primary control surface attached to 
the vertical stabilizer, deflection of 
which causes the tail of the aircraft to 
swing left or right. 

The primary control surface attached to 
the horizontal stabiliser, that can be 
deflected up or down to control the pitch 
of the aircraft. 

The primary control surfaces located at 
the trailing edges of the outer wing 
panels, which, when deflected up or down, 
cause the airplane in flight to bank. 

-:0:-

141 



REFERENCES 

1. Athas, Wi 11 iam C., Seitz, Charles L., 

"Multicomputers : Message Passing Concurrent Computers", 

Computer, August, 1988. 

2. Basu A., 

"Parallel Processing Systems: a nomenclature based on 

their characteristics", Proceedings lEE (UK), 1987. 

3. Belady L.A., 

"Evolved Software for the 80's", Computer, Feb., 1987. 

4. Ben-Ari M., 

5. 

"Principles of Concurrent Programming", 

Prent ice-Ha 11 NJ, 1982. 

Bi tar 1., 

"Lessons 

Penedo M.H., 

Learned ; n 

Stuckle E.O., 

Building the TRW 

Productivity System", Proceedings COMPCON, 

Francisco CA., Spring 1985. 

142 

Software 

San 



6. Boehm, Barry W. 

"Software Engineering Economics", Englewood Cliffs, New 

Jersey; Prentice-Ha11, 1981. 

7. Bora 1 H., Dew it t D. J. , 

8. 

"Data Base Machines : An Idea Whose Time Has Passed? 

A Critique of the Future of Data Base Machines", 

Data Base Machines, Springer-Verlag, 1983. 

Bourne S.R., 

"The UNIX System", Wokingham Addison-Wesley, 1980. 

9. Bowen B.A., Buhr R.J.A., 

"The Logical Design of Multiple Microprocessor Systems", 

Prent; ce-Ha 11 , Engl ewood Cl; ffs, NJ, 1980. 

10. Burns A., 

"Progranvning in Occam 2", Wokingham:Add;son Wesley, 1988. 

11. Burns A., ListerA., WellingsA., 

"Ada Tasking", Lecture Notes in Computer Science, 262, 

1987. 

143 



12. Casavant, Thomas L., Kuh 1, John G., 

"A Taxonomy of Scheduling in General Purpose Distributed 

Computing Systems", IEEE Transactions on Software 

Engineering, February, 1988. 

13. Church C.C., 

"Computer Instruction Repertoire, Tlme for a Change", 

AFIPS Conference Proceedings, Atiantic City, May, 1970. 

14. Denning P., 

"Effect of Scheduling on File Memory Operations" 

Proceedings AFIPS Sprlng Joint Computer Conference, 

AFIPS Press, 1967. 

15. Dhamke, Hark, 

"Microcomputer Operating Systems", McGraw Hil', BYTE, 

1982. 

16. Dubois, Hichel, Scheurich, Christoph, 8rig9s, Faye A., 

"Synchronisation, Coherence and Event Ordering in Multi

Processors", Computer, February 1988. 

17. Enslow, Philip H., 

"Multiprocessors and Parallel Processing", John Wiley & 

Sons, 1974. 

144 



18. F 1 ynn, M i chae 1 J., 

"Some Computer Organisations and Their Effectiveness", 

IEEE Transactions on Computers, September, 1972. 

19. Flynn, Michael J., Mitchell, Chad L., Mulder, J. M., 

"And Now a Case for More Complex Instruction Sets", 

Computer, September, 1987. 

20. Gimarc, Charles C., Milutinovic, Veljko M., 

"A Survey of RISe Processors and Computers of the Mid 

1980s", Computer, September, 1987. 

21. Gupta, Gopal K., 

"Access Methods for Main Memory Data Bases", 

Modern Trends in Information Technology, P.V.S.Rao, 

P.Sadanandan (Eds.), Tata McGra\oi Hi 11, 1988. 

22. Herman D., 

"Towards a Systematic Approach to Implement Distributed 

Control of Synchronisation", Distributed Computing 

System, Y.Paker, J.P.Verjus (Eds.), Academic Press, 1983. 

23. Hillis W.O., 

"The Connection Machine", Cambridge MA: MIT Press, 1985. 

145 



24. Hoare C.A.R., 

"Synchronisation of Parallel Processors", Advanced 

Techniques for Microprocessor Systems, F.H.Kanna (EO.) 

Peter Perigrinus, London, 1980. 

25. Hoffner Y., 

"A Reconfigurable Multiprocessor Development System", 

Microcomputers; Developments in Industry, Business and 

Education, D.R.Wilson et al (Eds.), North Holland, 1983. 

26. Howe, Carl D., Moxon, Bruce, 

"How to Program Parallel Processors", 

September, 1987. 

IEEE Spectrum, 

27. Hwang Kai, Briggs, Faye A., 

"Computer Architecture and Parallel Processing", 

McGraw Hill, NY, 1985. 

28. Iannino, Anthony, Musa J.D., 

"Software Reliability", Advances in Computers, Vo1.30, 

Academic Press, 1990. 

29. Johnson E.E., 

"Completing an MIMD Multiprocessor Taxonomy", 

Architecture News, 16, 1988. 

146 

Computer 



30. Ka i se r, Ga i 1 E., Feiler, Peter H., PopOVlcn S.S., 

"Intelligent Assistance for Software Development and 

Maintenance", IEEE Software, May, 1988. 

31. Karp, Alan H., 

'"Programming For Parallelism", Computer, May, 1987. 

"32. Kim W., 

33. 

'"Highly Available Systems for Database Applications", 

Computing Surveys, March, 1984. 

K 1 i ne M. B. , Schne i dew i nd N. F. , 

"Life Cycle Comparisons of Hardware 

Maintainability", Proc. Third National 

Conference, Birmingham, Apr-May, 1981. 

and Software 

Reliability 

34. Kr;shnamurthy E.V., 

"Parallel Processing Principles 

Addison Wesley, 1989. 

35. Kung H.T., 

'"Why Systolic Architectures", 

IEEE Computer, 15, 1987. 

147 

and Practice" , 



36. Lehman M.M. , 

"Programs, Life Cycles and Laws of Software Evolution", 

Proceedings IEEE (Vol.68), September, 1980. 

37. Letovsky S., Soloway E., 

"Delocalized Plans and Program Comprehension", 

IEEE Software, May, 1986. 

38. ListerA.M., 

"Fundamentals of Operating Systems", Maemi 11an, 1975. 

39. Madnick, Stuart, Donovan, John, 

"Operating Systems", McGraw Hill, 1974. 

40. Mart in J., McClure C., 

"Software Maintenance: The Problem and its Solutions", 

Englewood Cliffs, NJ : Prentice-Hall, 1983. 

41 . McC lure c. l. , 

"Managing Software Development and Malntenance', 

Van Nostrand, NY, 1981. 

42. Mohan C., Silberchatz A., 

"Advances in Distributed Processing Management", Vol.II 

Heyden, London, 1981 . 

148 



43. Musa J.D., Iannino A., 

"Software Rel iabil ity 

Okumoto K., 

Measurement, 

Application", McGraw Hill, 1987. 

44. Myers, Glenford J., 

"Composite/Structured Design", New York 

Rei nhold Co., 1978. 

45. Paker Y .• 

Prediction, 

Van Nostrand 

"Multi-microprocessor Systems", Academic Press, 1983. 

46. Parikh G., 

Handbook of Software Maintenance, 

John Wiley, 1986. 

47. Patnaik L.M., 

"An Overview of Parallel Computer Archltecture", 

IEEE Short Course on Parallel Processing, 

Hyderabad, September, 1983. 

48. Patton, Peter C., 

"Multiprocessors Architecture and Applications", 

Computer, June, 1985. 

149 



49. Ramamoorthy C.V., Garg, Vijay, Prakash, AtU"I, 

"Support for Reusability in Genesis', IEEE Transactions 

on Software Engineering, August, 1988. 

50. Silverman J., Giddings N., Behane J., 

"An Approach to Oeslgn-for-maintenance", Proceedings 

Software Maintenance Workshop, R.S.Arnold (Ed. ) 

IEEE CS Press, December, 1983. 

51. Toong H.D., Gupta A., 

"An Archi tectura 1 Compari son of Contemporary 16-bi t 

Microprocessors", IEEE Micro, May, 1981. 

52. Treleaven P.C., 

"Decentralized Computer Architecture", New Computer 

Architectures, J.Tiberghlen (Ed.), Academlc Press. 1984. 

53. wt1ty l., Patton, P.C., 

"Hypercube Architectures", Proc. AFIPS., 1985. 

54. Yourdon, Edward, Constantine, L.L., 

"Structured Design : Fundamentals of a Dlsclpllne of 

Computer Progaram and System Deslgn", Engiewood Cliffs, 

NJ, Prentice-Hall, 1979. 

150 



55. Microprocessor and Peripheral Hand book, 

Volume I, Intel Corporation, 1989. 

56. Microprocessor and Peripheral Hand book, 

Vo 1 ume II, Inte 1 Corporat i on, 1988. 

57. Oxford Dictionary of Computing, 

Oxford University Press, NY, 1983. 

58. Encyclopaedia of Science and Technology, 

Volume 5, enf-fns, 
I 

McGraw Hill, 1977. 

59. MC 6800 Application Manual, 

Motorola Corporation, 1976. 

-:0:-

151 



PUBLISHED WORK OF THE AUTHOR 

1. K.Poulose Jacob and C.S.Sridhar, 

"Multiprocessor Operation", Proceedings National Symposium, 

National Academy of Sciences India, 1981. 

2. K.Poulose Jacob and C.S.Sridhar, 

"A Novel Architecture for DMA Controller', MICROSYSTEMS 

Architecture, Integration and Use, C.J.Van Spronsen and L. 

Richter (Eds.) North Holland Publ ishing Co., 1982. 

3. K.Poulose Jacob and C.S.Sridhar, 

"Data Storage in Floppy - An Optimised Format', Proceedings 

INFORMATICS - 85, International Conference, Trivandrum, 1985 

4. K.Poulose Jacob and C.S.Sridhar, 

"The APT System", Proceedings IEEE ACE-86, Conference, 

Madras, 1986. 

5. K.Poulose Jacob and C.S.Sridhar, 

HA Software Adaptation Towards Parallel Processing", Modern 

Trends in Information Technology, P.V.S.Rao, P.Sadanandan 

(Eds.) Tata McGraw Hill, 1988. 

152 



6. K.Poulose Jacob and C.S.Sridhar, 

"An Approach Towards Insight into Instruction Streams", 

Arr1ficlal Intelligence in Industry and Government, E. 

Balagurusamy (Ed.) McMillan, 1989. 

7. K.Poulose Jacob and C.S.Sridhar, 

"An Approach Towards Improving Processing Reliability", 

Proceedings SEARCC-90, Manila, Philippines, 1990. 

-:0:-

15:3 


	TITLE
	ACKNOWEDGEMENT
	CERTIFICATE
	DECLARATION
	CONTENTS
	ABSTRACT
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	APPENDIX A1
	APPENDIX A2
	APPENDIX B
	REFERENCES



