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ABSTRACT

Submarine hull structure is a watertight envelope, under hydrostatic pressure

when in operation. Stiffened cylindrical shells constitute the major portion of these

submarine hulls and these thin shells under compression are susceptible to buckling

failure. Normally loss of stability occurs at the limit point rather than at the

bifurcation point and the stability analysis has to consider the change in geometry at

each load step. Hence geometric nonlinear analysis of the shell forms becomes. a

necessity. External hydrostatic pressure will follow the deformed configuration of the

shell and hence follower force effect has to be accounted for.

Computer codes have been developed based on all-cubic axisymmetric

cylindrical shell finite element and discrete ring stiffener element for linear elastic,

linear buckling and geometric nonIinear analysis of stiffened cylindrical shells. These

analysis programs have the capability to treat hydrostatic pressure as a radial load

and as a follower force.

Analytical investigations are carried out on two attack submarine cylindrical

hull models besides standard benchmark problems. In each case, the analysis has

been carried out for interstiffener, interdeepframe and interbulkhead configurations.

The shell stiffener attachment in each of this configuration has been represented by

the simply supported-simply supported, clamped-clamped and fixed-fixed boundary

conditions in this study.

The results of the analytical investigations have been discussed and the

observations and conclusions are described. Rotation restraint at the ends is

influential for interstiffener and interbulkhead configurations and the significance of

axial restraint becomes predominant in the interbulkhead configuration. The follower

force effect of hydrostatic pressure is not significant in interstiffener and

interdeepframe configurations where as it has very high detrimental effect on

buckling pressure on interbulkhead configuration. The geometric nonlinear

interbulkhead analysis incorporating follower force effect gives the critical value of

buckling pressure and this analysis is recommended for the determination of collapse

pressure of stiffened cylindrical submarine shells.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

More than two third of the earth's surface is covered with water.

Submersibles are primarily employed to observe and explore the subsea

environment. Submarine is a submersible which operates in deep waters and can be

defined as hydrodynamically designed one atmos, pressure chamber, and which

maintains its structural integrity at the chosen diving depth and functions as a

floating vessel on surfacing.

Besides the submarines for warfare there are commercial submarines, which

are used in the offshore industry for underwater exploration, repair and maintainence.

For the functional environment for the crew, submarines are essentially designed as

atmospheric pressure chambers and consequently the hull has to withstand safely the

hydrostatic pressure prevailing at the operational depth.

1.2 HULL GEOMETRY

High hydrostatic pressure is best withstood by axisymmetric structural

forms (Jackson, 1983). The pressure hull of a submarine is often constructed from

various combinations of cylinders, cones and domes. The pressure hull is mainly a

cylindrical pressure vessel and the changes in hull diameter are accomplished

through conical sections. The fore and aft ends of the hull consist of domed and/or

conical end closures. These hull forms are hydrodynamically efficient and possess

better overall strength. Usually the cylinders are stiffened with rings and/or stringers

(Burcher and Rydill, 1994).

1.3 STRUCTURAL BEHAVIOUR

Stiffened cylindrical shells are essential components in various hydrospace,

aerospace and terrestrial structures. Cylindrical shell structures by virtue of their
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shell geometry carry the applied loads primarily by direct stresses lying in their plane

accompanied by a little or no bending. External hydrostatic pressure induces

compressive stress resultants in the cylindrical shells and may cause buckling at a

pressure, much lower than the axisymmetric yield. Subsequently analytical

investigation on buckling of such shell forms is the major problem to be addressed.

The introduction of stiffeners considerably increases the buckling strength of the

shell and is a satisfactory solution for increasing the strength of the shell.

The primary modes of failure of a stiffened cylindrical shell are considered

to be buckling of shell between ring stiffeners identified by dimples or lobes around

the periphery of shell plating; yielding of shell between ring stiffeners usually

appearing as axisymmetric accordion pleats and general instability characterized by

large dished-in portions of stiffened cylinder wherein the shell and the stiffeners

deflect bodily as a single unit (Connstock, 1988). Third mode of collapse is

sensitive to spacing of bulkheads or deepframes and the scantlings of supporting ring

frames, The general instability is very much sensitive to initial imperfections.

The simultaneous occurrence of all modes of failures described earlier has

been argued by theoreticians as being the only criterion to be considered for the

optimum design.

1.4 STRUCTURAL ANALYSIS OF CYLINDRICAL SHELLS

Classical methods are available for deflections, stresses and buckling

pressures of ring stiffened cylindrical shells under hydrostatic pressure. But these

are not applicable to actual submarines with stiffeners of various shapes and

nonuniforrn spacing and shells with complex boundary conditions. Numerical

solution schemes like finite difference and finite element methods can effectively

be employed in these situations.

1.5 FINITE ELEMENT ANALYSIS OF STIFFENED CYLINDRICAL SHELLS

Finite element method is an efficient numerical technique for the study of

the behaviour of various structural forms, The finite element method requires the

actual submarine structure to be replaced by a finite element model, made up of
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structural elements of known elastic and geometric properties. The objective

therefore, is to develop a model, which simulates the elastic behaviour of continuous

structure as closely as required. The finite element modeling of stiffened cylindrical

shells can be done either using a smeared model or stiffener shell model. Various

finite element models of stiffened cylindrical shells, viz.. orthotropic shell model.,

discrete stiffener model and superelement model are generally used in the analysis.

The hydrostatic pressure can be idealized as uniformly distributed external

load acting on the periphery of the shell, which can be converted into consistent load

vector. Since hydrostatic pressure is a displacement dependant load, nonlinear

analysis has become a necessity and hence finite element method is preferably

adopted.

1.6 FINITE ELEMENT MODELING OF UNSTIFFENED CYLINDRICAL

SHELLS

Unstiffened cylindrical shells subjected to external hydrostatic pressure can

be modeled using axisymmetric elements, facet elements or general shell elements.

Singly curved shell finite elements were first developed in axisymmetric

form for the analysis of shells of revolution. Since the hull of the submarine is

stiffened cylindrical shell under axisymmetric loading, axisymmetric shell finite

elements can be effectively used for analysis. Elements with axisymmetric geometry

and asymmetric displacement functions (designated as rotational finite elements) can

be effectively used for stability and geometric nonlinear analyses. In these types of

elements shell nodes are nodal circles. The shape functions are obtained by

combining polynomials along meridional direction and trigonometric functions in

circumferential direction. Axisymmetric structures subjected to nonaxisymmetric

loading can also be analysed using these elements.

Generally axisymmetric elements are efficient in achieving a state of

constant strain and rigid body modes and in eliminating membrane locking and shear

locking problems compared to general shell elements (Cook et al, 1989). The major
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drawback of these elements is that proper analysis is not possible in the presence of

irregularities or discontinuities within the shelL

In facet element modeling, the assembly of elements gives a geometry,

which approximates the actual shell surface. The shell behaviour is achieved by the

superposition of stretching behaviour (membrane element) and bending behaviour

(plate bending element). The concept of the use of such elements in shell analysis

was suggested by Greene et al (1961). The attractive features of this modeling are

simplicity in formulation, easiness to mix with other types of elements and the

capacity of modeling rigid body motion. Geometric nonlinear analysis based on

corotational kinematics can be done effectively using these elements (Ramm, 1982).

However, there are some drawbacks such as the lack of coupling between stretching

and bending within the element and the discontinuity of slope between adjacent plate

elements, which may produce bending moments in the regions where they do not

exist. These are available in rectangular, quadrilateral and triangular shape together

with coordinate transformations,

The curved elements have been developed with a view to overcome the

limitations of facet elements and are generally used for general shells or shells with

geometric discontinuity. Based on basic assumptions and theories., two types of

curved elements have been formulated, viz., elements based on classical shell

theories and degenerated shell elements.

1.7 FINITE ELEMENT MODELING OF STIFFENED CYLINDRICAL SHELLS

Various finite element models of stiffened cylindrical shells are orthotropic

shell model; discrete stiffener model and superelement model and are described

subsequently.

In the orthotropic approach, the ring stiffeners are blended with the shell

such that the ring-stiffened shell is represented as an unstiffened but orthotropic

cylindrical shell having different constitutive relationships in longitudinal and

circumferential directions.
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In the orthotropic shell modeling, stiffeners are assumed to interact to such a

degree that these can be smeared into the shelL The compatibility of the plate and the

stiffener gives rise to internal stresses, which results in change in constitutive

relations in two mutually perpendicular directions. These constitutive relations can

be effectively derived from the compatibility of the shell and the stiffener. The

orthotropic approximation is applicable to geometries where there are a large number

of closely and equally spaced rings and\or stringers, in which the stiffened hull is

modeled using orthotropic shell elements.

In discrete stiffener model the stiffener is modeled as rings or an assembly

of curved beam finite elements defined by cross sectional area and eccentricity of the

cross section from the shell middle surface. In this model the stiffeners are assumed

to be concentrated along the nodes of the shell elements. This model introduces

certain inconsistencies such as the lumped stiffeners, indicating a coupling only

along the nodes to which it is connected. Secondly the stiffeners inside the shell

element are shifted to a new position in the lumped model,

The superelement modeling generally consists of merging a group of

subelements into an assembly followed by the reduction of internal degrees of

freedom that are local to a given superelement. The remaining degrees of freedom

are termed as retained or super degrees of freedom. It is the process of substructuring

technique followed by static condensation. The degrees of freedom normally retained

are those, which are required to connect the superelement. The superelements may

in turn be used as subelements for new assemblies on higher level. In this way a

multi level hierarchy of superelement may be established. The highest level in such a

hierarchy will represent the complete structure. Hybrid beam elements (in which

axial and bending stiffnesses are based on different cross sections) or eccentric beam

elements (in which element nodes are not located along the stiffener centroidal axis)

can be effectively used as the special elements or superelements (Hughes, 1986).

1.8 TYPES OF ANALYSES PERFORMED

Finite element analyses performed for the stiffened cylindrical shells of

submarine are linear static analysis, linear buckling analysis and geometric nonlinear

analysis.
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1.8.1 Linear Static Analysis

Linear static analysis is the strength analysis in which the principle of super

position is valid. It is based on the small deflection theory where stress strain

relations and strain displacement relations are linear. In this method of analysis the

change in geometry of the structure is not taken into account while deriving the

equilibrium equations. The linear static analysis of the stiffened cylindrical shell can

be performed by solving the general finite element equilibrium equations, consisting

of linear elastic stiffness matrix and load vector. Deformation pattern and stress

resultantscan be calculated.

1.8.2 Linear Buckling Analysis

Buckling phenomenon is the major failure mode associated with thin walled

cylindrical structures subjected to external pressure. The structure can suffer

instabilityat a pressure, which may be only a small fraction to cause material failure.

The buckling phenomenon associated with thin walled circular cylindrical shell

subjected to uniform external pressure can be explained using the load deflection

curveshown in fig. 1.1 (Rajagopalan, 1993).

y
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Fig. 1.1 Bifurcation buckling

The first regime OR, called the prebuckling state, determines the

axisymmetric state of stress due to axisymmetric pressure load on the perfect
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cylinder. The prebuckling path is linear. The second regime RS, called the buckling

stage and the load deflection curve for a perfectly circular cylinder subjected to

uniform external pressure splits into two at the point R. At this point the ·lo~d

deflection curve can be either RS or RS1 and the pressure Pb is called bifurcation

buckling pressure.

In the linear prebuckling analysis, change in geometry prior to buckling is

neglected. The prebuckling deformations are neglected and hence stiffness matrices

are evaluated at the original undeformed configuration.

Bifurcation buckling pressure is determined from linear buckling analysis.

Linear buckling analysis is performed by constructing linear elastic stiffness matrix

signifying the internal strain energy and geometric stiffness matrix representing the

work done by the prebuckling stresses on the buckling displacement of the complete

structure. The elastic stiffness matrix, [Ko] and the geometric stiffness matrix [Kg]

are evaluated at the original undeformed configuration. The geometric stiffness

matrix at any load level [KG] is linearly related to the initial geometric stiffness

matrix [Kg] by a parameter A, which is a nondimensional function of load applied

(Felippa, 1999).

.•....•..•............ 4. (1.1)

During buckling the total stiffness matrix becomes singular or the

determinant of the total stiffness matrix vanishes. The eigen value problem of

instability is therefore formulated as

([Ko] +[KG] ) { 8} = 0

([Ko]+ Ab [Kg]) {()} =0

The buckling pressure is evaluated for the condition

I[Ko]+ Ab[Kg] I=0

where Ab is the nondimensional buckling pressure.

••••••••••••••••••• 4 ••• (1.2)

....................... (1.3)

•••••••••• 4 ••••••••••••• (1.4)

In the solution, eigen values will be the buckling pressure and eigen vectors

will be the buckling mode. Linear prebuckling analysis has the advantage of avoiding

a full nonlinear analysis, which may be expensive and time consuming. This method
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IS effective in cases of cylinder subjected to hydrostatic loading, in which

prebuckling deformations are small. Linear prebuckling analysis is effective in

cylindrical shell structures made of steel in which buckling occurs in the elastic

range. Cylindrical shell under hydrostatic pressure is not much sensitive to initial

imperfections and hence linear buckling analysis can be adopted.

Linear buckling analysis predicts the collapse pressure at the bifurcation

point and the postbuckling regime is left untouched. Geometric nonlinear analysis

has been recommended to make the investigations of buckling behaviour complete.

1.8.3 Geometric Nonlinear Analysis

In structural mechanics a problem is nonlinear if the stiffness matrix or load

vector depend on displacements. The cause of nonlinearity may be material or

geometric. The material nonlinearity may be due to nonlinear stress-strain relations

and geometric nonlinearity may be due to nonlinear kinematic relations i.e. nonlinear

strain-displacement relations (large displacements) and large strains.

The prebuckling deformations of the cylindrical shell causes rotation of the

structural elements and primary equilibrium path will be nonlinear from the outset.

The ring stiffened shell with high degree of orthotropy may experience significant

nonlinear prebuckling deformations. The critical load could not be determined with

sufficient accuracy if prebuckling nonlinearity is neglected. Normally the loss of

stability occurs at the limit point rather than at the bifurcation point. In such cases the

critical load must be determined through the solutions of nonlinear system of

equations.

The geometric nonlinearity in which the nonlinear effect arising from

nonlinear strain displacement relations and nonlinearity due to follower force effect

of hydrostatic pressure are to be taken into consideration for stiffened cylindrical

shell subjected to hydrostatic pressure. These two are smooth nonlinearites and

incremental iterative procedure can effectively be used as solution strategy.

The key component of the finite element nonlinear analysis is the solution

of nonlinear algebraic equations that arise upon discretization. This difficulty is
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overcome by the concept of continuation, which is also called incremental analysis

(Crisfield, 1980). In this method the analysis is started from an easily computable

solution (for e.g. the linear solution) and try to follow the behaviour of the system, as

actions applied to it are changed by small steps called increments. In the incremental

iterative methods one or more iteration steps are included to eliminate or reduce the

drifting error, which are there in purely incremental methods (Felippa, 1999).

Out of three types of incremental iterative procedures, viz., load control,

displacement control and arc length control, load control method is the basic one, and

is generally adopted in the analyses mentioned earlier.

The essential feature of geometric nonlinear analysis is that the equilibrium

equations must be written with respect to the deformed geometry, which is not

known in advance (Bathe, 2001). Corotational kinematics is adopted for the

generation of equilibrium equation at the deformed configuration i.e., for the

generation of tangent stiffness matrix and the load vector at the deformed

configuration. The reference configuration is split. Strains and stresses are measured

from the corotated configuration where as the base configuration is maintained as a

reference for measuring rigid body motion.

1.9 FOLLOWER FORCE EFFECT OF HYDROSTATIC PRESSURE

Conventional structural analysis involves loads that do not change their

direction during deformation process and such loads are called conservative loads.

The direction of the external loads such as water pressure or wind forces in the real

situation may be changed during the deformation and the forces induced by such

loads are called follower forces or polygenetic forces. These forces remain normal to

the surface upon which they act throughout the load displacement history. Follow,er

force effects are to be considered in the analysis of practical structures such as

pressure vessels, cooling towers etc.

In the case of follower force the direction of the applied force is dependent

on displacement, and to account for this additional stiffness terms, pressure stiffness
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matrix must be added to the conventional stiffness matrix to take care of the pressure

rotation effects ..

Normally structures with follower force do not have proximate equilibrium

position. These structural systems change to instability directly from the prebuckled

equilibrium configuration and geometric nonlinear analysis becomes a necessity. The

linear prebuckling analysis is restricted to static criterion, which is restricted to

conservative loads. But for structures not having any loaded free edges or if' a

constant pressure is acting on a fully enclosed volume (like submarine pressure hull),

polygenetic force effect will be weak and hence the structure is amenable to

bifurcation buckling analysis. So the pressure rotation effects can also be handled

within the realm of bifurcation buckling analysis.

Pressure rotation effects are important in cylindrical shells only when the

shell buckles with a smaller number of waves in the circumferential direction, a

phenomenon that occurs on long shells. Hence there is sufficient scope for including

follower force effect originating from hydrostatic pressure in the collapse pressure

prediction of submarine shells

1.10 DESIGN ASPECTS OF SUBMARINE HULLS

A landmark paper on submarine design is presented by Arentzen and

Mandel (1960). The design procedure forwarded by Kendrick (1970) has received

acceptance in European codes (BS 5500 and DnV). According to Kendrick the

advantage in submarine strength prediction is that the hydrostatic loading is well

defined. Under static conditions the ring-framed cylinder may fail by general

instability, inter frame buckling or yielding of the plate between frames. Overall

collapse between bulkheads or general instability is a low order-buckling

phenomenon due to insufficiently strong frames in relation to the compartment

length. Reducing the effective compartment length and! or introducing stronger ring

frames can markedly increase the buckling pressure. Kendrick has published about

half a dozen design papers. His design method is based on the philosophy that it is

more practical to arrange the prime mode of collapse that determine the main weight

and cost of the vessel should have an adequate but not excessive strength margin. But
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other forms of collapse mode that require considerable analytical effort for accurate

collapse prediction but little material to avoid premature buckling can be avoided by

using generous margins of elastic buckling pressure for the appropriate mode.

A rational submarine hull design proposes scantlings for an optimum

structural form, which has adequate safety at the operational diving depth. The

designer has to take into account many uncertainties and unavoidable situations like

slight variation in material characteristics, deviations from circularity and other

departures from ideal, which may occur in construction or service. Residual stresses

particularly in frames, stress concentrations, inaccuracies in computing statically

indeterminate systems and possibility of submarine exceeding its operational depth

due to control malfunctions or as a deliberate manoeuvre to avoid attack as reported

by Daniel (1983) etc., are also to be taken into account. There has to be reasonable

stress analysis or strength estimation done before arriving at the final scantlings.

The stiffeners are the principal structural members that support the shell

membrane and maintain its integrity. Actually externally welded frames are more

stable than internal frames (Gonnan & Louie, 1994). It also allows better utilization

of internal spaces. However, these experience tensile stresses in a corrosive

environment and are more likely to have separation from shell plating under dynamic

loading and hence not adopted usually. From the hydrodynamic point of view

internal frames are preferred.

1.11 ORGANISATION OF THE THESIS

This thesis is presented in six chapters. In the first chapter an introduction

for submarines, structural action of underwater shells and method of structural

analysis employed are given. Brief description of type of finite element analyses of

stiffened cylindrical shells is presented.

In the second chapter a review of literature on finite element analysis of

cylindrical shell is presented and the objectives of the present study are given here.

Third chapter describes the linear static analysis of stiffened cylindrical

shells. The description of the all-cubic element and discrete stiffener element used in
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the analysis are given. The validation of computer code developed and numerical

investigations of stiffened cylindrical shell models of submarines are included.

Fourth chapter describes the linear buckling analysis of stiffened cylindrical

shells, which predicts the collapse pressure of submarine hull. Validation and

analytical investigation of submarine cylindrical shell models are included

subsequently.

The description of the nonlinear analysis of stiffened cylindrical shell is

given in the fifth chapter. Development of software and results of numerical

investigations are described. Conclusions and scope for future work are given in

chapter 6.

The details of elements of stiffness matrices are given in Appendix A and

classical solutions and Rulebook provisions for the analysis of stiffened cylindrical

shells are depicted in Appendix B.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 INTRODUCTION

Stiffened cylindrical shell forms are extensively used as structural

components in naval and offshore industry. Buckling analysis of these shell forms

are very relevant in subsea applications since the hydrostatic pressure induces

compressive stress resultants in shell membrane, An attempt has been made here to

realize the state of art in the analysis and design of cylindrical shells. Literature

describing early classical closed form solutions as well as finite element analysis of

stiffened cylindrical shells are reviewed and presented under subheadings classical

methods, axisymmetric cylindrical shell finite elements, follower force effect and

design aspects.

2.2 CLASSICAL SOLUTIONS

Classical solutions for linear and buckling analysis of unstiffened cylindrical

shells are available through Timoshenko (1961), Flugge (1962), Donnell (1976),

Novozhilov (1959), Kraus (1967) and Brush and Almroth (1975).

2.2.1 Shell Buckling

The buckling pressure of an unstiffened shell with uniform thickness with

simply supported boundary condition is given by von Mises as eqn. 2.].

P
c
=C[~E(t~D)] l l(tlDi [(n

2+m2

i -2n
2

+1] + 2m
4

2 2 J (2.1)
~n +m /2-1~ [ 3(l_~2) (n +m )

Where m = nR/Ls

van Mises' expression is still widely used because it has been presented in a

relatively simple form and gives slightly conservative values (Faulkner, 1983).

Windenburg and Trilling (1934) have developed another simplified equation based
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on von Mises' to predict the collapse pressure under hydrostatic pressure loading and

this is given as eqn.2.2.

2.24E(t/D)5/2

........................ (2.2)

Analytical solutions for buckling analysis of unstiffened cylindrical shells

are giyen by Batdorf (1947) and Nash (1954).

Reis and Walker (1984) have analysed the local buckling strength of .ring

stiffened cylindrical shells under external pressure. The collapse pressure is

calculated by assuming failure to occur when the material reaches a plastic stress

state. Ross (2000) has observed that many vessels buckle at a pressure that are

considerably less than those predicted by elastic theory and introduced a plastic

knockdown factor PKD by which the theoretical elastic instability buckling pressure

is to be divided, to get the predicted buckling pressure. The value of PKD can be

taken from the semi empirical chart developed by Ross.

2.2.2 Shell Yielding

Von Sanden and Gunther (Cormstock, 1988) have developed two equations

to predict the pressure at which yielding of the shell occurs at frame and midbay,

For yielding at frame

2ay (UD)
p =

0.5+1.815K«O.85-B)/(1+P))

For yielding at midbay

2cry(t/D)
p

1+H «O.85-B)/(1+P))

........................ (2.3)

......................... (2 ..4)

More exact analysis has been made by Salemo and Pulos to include the

effect of axial loading (Jackson, 1992).
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2.2.3 General Instability

Classical solutions for general instability of ring-stiffened shells under

hydrostatic pressure are given by Kendrick (1953), Bijlaard (1957) and Galletly

(1957). Kendrick has presented a classical variational formulation of the differential

equation of buckling analysis of ring stiffened cylindrical shells. By assuming a half

sine wave between supports as the buckling deformation and proper allowance for

shell distortions between frames, collapse pressure has been predicted by Kendrick

(1965) using Ritz's procedure for simply supported - simply supported boundary

conditions and has been extended for clamped boundary condition by Kaminsky

(1954). Displacement field used by Kendrick has been modified by Ross (1965) and

general instability analysis of ring stiffened cylindrical shells has been performed

incorporating various degrees of rotational restraint at the boundary.

Bresse has developed an expression for elastic collapse of infinitely long

ring-framed compartments (Timoshenko, 1961). Bryant has modified the formula

developed by Kendrick by combining van Mises' and Bresse's relations for the

determination of the overall buckling pressure of ring stiffened cylindrical shell with

simply supported boundary conditions and is available in the form as,

Buckling pressure of stiffened cylindrical shell P, = Per + Pes (2.5)

Pcf = buckling pressure of ring stiffeners = {[n2-1] EI/R3L}

Pcs = buckling pressure of shell = Et/R {m4/([n2_1+(m2/2)][n2+m2] 2)} (2.6)

and m = 1tR/Ls

Bryant's two-term approximation to the overall buckling pressure has

gained wide acceptance because of its simplicity (Faulkner, 1983). The effect of

imperfections on buckling pressure has been investigated and an expression has been

developed by Bijlaard (1957).

The critical pressure for general instability of ring stiffened, stringer

stiffened and ring and stringer stiffened cylindrical shells are computed by Bodner

(1957). Baruch and Singer (1963) have carried out general instability analysis of

stiffened cylindrical shell by considering the distributed eccentric ring stiffeners and

stringers separately. The well-known superiority of rings over stringers for
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cylindrical shells under external pressure is very clearly brought out. The effect of

eccentricity of stiffeners is more pronounced for rings than for stringers. Voce (1969)

has developed a solution procedure based on energy method for general instability of

orthotropic ring stiffened cylinders under external hydrostatic pressure for simply

supported boundary condition. Kempner et al (1970) have developed a procedure to

determine the stresses and deflections incorporating the effects of large rotations,

initial deflections and thick shell effects. Singer (1982) has extended buckling

analysis for imperfect stiffened shells. Wu and Zhang (1991) have developed a

nonlinear theoretical analysis for predicting the buckling and post buckling loads of

discretely stiffened cylindrical shells.

Karabalis (1992) has made a simplified analytical procedure, which can be

used as an effective method in checking the design of stiffening frames of cylindrical

fuselages with or without cutouts for failure by general instability. The general

instability mode of failure of cylindrical shell is independent of geometric

discontinuity like cutouts. Any loss in moment of inertia due to the cutouts must be

proportionately compensated by gain in bending stiffness, which can be realized by

the addition of reinforcement possibly at the edges of the cutouts. However large

reinforced cutouts would fail due to local instability at the edges of the cutouts. It is

recommended that the proposed criteria can be used for design and calculation in the

absence rigorous finite element analysis. Huang and Wierzbicki (1993) have

developed a simple analytical model that describes the plastic behaviour of a curved

cylindrical panel with ring stiffeners. Energy methods are used to analyse the plastic

tripping response of the structure. In order to derive a closed form solution to the

problem, a number of simplifications are made such as the material is treated as fully

plastic and the energy corresponding to lateral bending of stiffeners are neglected.

Tian et al (1999) have carried out elastic buckl ing analysis of ring stiffened

cylindrical shells using Ritz's procedure, which can be used as a reference source for

checking the validity of other numerical methods and software for buckling of

cylindrical shells.

Barlag and Rothert (2002) have developed an idealization concept for

stability analysis of ring reinforced cylindrical shells under external pressure..A
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monograph is introduced based on the stability equation to determine the local and

global buckling pressures of ring stiffened cylindrical shells under external pressure

based on Flugge's strain displacement relations.

The scope of the classical methods is limited to simple boundary

conditions, uniform shell thickness, regular stiffeners and uniform spacing.

2.3 AXISYMMETRIC CYLINDRICAL SHELL FINITE ELEMENTS

Axisymmetric cylindrical shell elements are singly curved, straight meridian

elements. A few relevant papers on axisymmetric shell elements have been reviewed

and presented. Review of literature on finite element modeling of unstiffened and

stiffened cylindrical shells is described subsequently.

2.3.1 Unstiffened Shells

Grafton and Strome (1963) have presented the conical segment elements for

the analysis of shells of revolution. Improvements in the derivation of element

stiffness matrix are presented by Popov et al (1964). Percy et al (1965) have

extended these formulations for orthotropic and laminated materials.

Navaratna et al (1968) have made a linear bifurcation buckling analysis of

unstiffened shells using an axisymmetric rotational finite element in which the

membrane displacements are approximated by linear polynomials and the radial

displacement by cubic polynomial. Trigonometric functions are used to characterize

the buckling waves in circumferential direction. Later this element has been used to

study the influence of out of roundness on buckling theory of unstiffened shells. A

systematic procedure to obtain the geometric stiffness matrix and subsequently the

buckling load through variational approach is presented. Me Donald and White

(1973) have studied the effect of out of roundness in buckling strength of unstiffened

shells. Ross (1974) has carried out lobar bifurcation buckling analysis of thin walled

cylindrical shells under external pressure using axisymmetric finite element based

linear-linear-cubic shape functions. Venkiteswara Rao et al (1974) have reported a

rigorous linear buckling analysis using axisymmetric finite element based all-cubic

shape functions. Surana (1982) has developed a nonlinear formulation for
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axisymmetric shell elements. Cook has (1982) developed a finite element model for

nonlinear analysis of shell of revolution. Rajagopalan and Ganapathy Chettiar (1983)

have developed an all-cubic axisymmetric rotational shell element for modeling the

cylindrical shell in the interstiffener buckling analysis. Ross and Mackeny (1983)

have carried out deformation and stability studies ofaxisymmetric shells under

external hydrostatic pressure using linear-linear-cubic axisymmetric finite elements.

Gould (1985) has formulated and used axisymmetric shell elements for linear and

nonlinear analysis.

Rajagopalan (1993) has developed a reduced cubic element based on

condensation concept for stability problems. Internal nodes are introduced in the

axisymmetric cylindrical shell element so as to permit cubic polynomial to be taken for

modeling the membrane displacement in the meridional direction. The internal nodes

are eliminated by geometric condensation procedure so that the condensed element

will have only fewer degrees of freedom and hence computationally efficient.

Ross et al (1994) have carried out vibration analysis ofaxisymmetric shells

under external hydrostatic pressure. Both shell and surrounding fluid are discretized

as finite elements. It is reported that dynamic buckling can take place at a pressure

less than that of static buckling pressure.

Koiter et al (1994) have investigated the influence ofaxisymmetric

thickness variation on the buckling load of an axially compressed shell. Mutoh et al

(1996) have presented an alternate lower bound analysis to elastic buckling collapse

of thin shells of revolution. Axisymmetric rotational shell elements whose strain

displacement relations are described by Koiter's small finite deflection theory have

been used for the analysis. In this element the displacements are expanded

circumferentially using a Fourier series.

Sridharan and Kasagi (1997) have presented a summary of the work carried

out in Washington University on buckling and associated non-linear responds and

collapse of moderately thick composite cylindrical shells.
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Ross et al (2000) have carried out the inelastic buckling analysis of circular

cylinders of varying thickness under external hydrostatic pressure. Analytical results

are verified by experimental investigations. Gusic et al (2000) have analysed the

influence of circumferential thickness variation on the buckling of cylindrical shells

under external pressure by means of finite element bifurcation analysis. Two

different finite element codes, one with quasi-axisymmetrical multimode Fourier

analysis and the other with 3D shell element are used. Numerical integration of

Fourier series permits the introduction of geometric and thickness imperfections at

the integration points.

Correia et al (2000) have used higher order displacement fields with

longitudinal and circumferential components of displacements as power series and

the condition of zero stress at top and bottom surfaces of the shell are imposed.

Combescure and Gusic (2001) have carried out nonlinear buckling analysis of
cylinders under external pressure with nonaxisymmetric thickness imperfections

using axisymmetric shell elements. Gould and Hara (2002) have reported recent

advances in the finite element analysis of shell of revolution. Sze et al (2004) have

discussed about popular benchmark problems for geometric nonlinear shell analysis.

2.3.2 Stiffened Shells

Ross (1976) has carried out stability analysis of ring reinforced circular

cylindrical shells under external hydrostatic pressure. Subbiah and Natarajan (1981)

have carried out a finite element analysis for general instability of ring-stiffened

shells of revolution using axisymmetric shell elements. They have used linear-linear

cubic element for the finite element modeling of the shells. This smeared model

analysis predicted a lower bound buckling pressure. Influence of various boundary

conditions on buckling pressure has been investigated and reported. A rigorous

derivation for potential due to hydrostatic loading as follower force and subsequent

reduction in buckling pressure has been reported.

Subbiah (1988) has made a nonlinear analysis of geometrically imperfect

stiffened shells of revolution. A nonlinear large deformation finite element analysis

has been carried out for the general instability of ring stiffened cylindrical shells
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subjected to end compression and circumferential pressure. Smeared model

technique is adopted. A combined nonlinear and eigen value analysis is presented to

determine the critical pressure for initially imperfect stiffened cylinders. The

buckling pressures of thin shell structures are very much sensitive to initial

imperfections. This is one of the major reasons for poor correlation between

theoretically predicted and experimentally obtained buckling loads. The only way to

overcome this discrepancy is to analyse the shell as a nonlinear large deformation

problem with initial imperfections.

Rajagopalan (1993) has used a discrete ring stiffener element and

axisymmetric cylindrical shell element to model the stiffened cylindrical shell.

General buckling analysis has been carried out by rigorous stiffener modeling using

annular plate bending elements and shell elements. The superelement modeling of

stiffeners introduces off shell nodes, which are eliminated by geometric condensation

procedure. Ross (1995) has carried out plastic buckling analysis of ring stiffened

cylindrical shells under external hydrostatic pressure.

Kasagi and Sridharan (1995) have investigated the imperfection sensitivity

of ring stiffened anisotropic composite cylindrical shells under hydrostatic pressure

using an asymptotic procedure. The displacement function takes the form of exact

trigonometric function along the circumferential direction and p-version in other two

directions. Sridharan (1995) has extended an analysis of stiffened cylindrical shells

under interactive buckling. Effects of interaction of local and overall buckling is

analysed using finite elements, in which the local buckling information is embedded.

Schokker et al (1996) have carried out dynamic instability analysis of ring stiffened

composite shells under hydrostatic pressure.

Stanley and Ganesan (1997) have investigated the natural frequencies of

stiffened cylindrical shell (both short and long) with clamped boundary condition.

Two nodded cylindrical shell element with four degrees of freedom per node is used.
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2.4 RING STIFFENED CYLINDRICAL SHELLS WITH OTHER TYPES OF

FINITE ELEMENTS

Kohnke et al (1972) have made a finite element analysis for eccentrically

stiffened cylindrical shells using 48 degree of freedom shell elements. Giacofci

(1981) has developed modeling techniques for the analysis of stiffened shell

structures. Tsang and Harding (1987) have made plastic and elastic analysis of ring

stiffened cylindrical shells by using finite element program FINAS. Zhen and Yeh

(1990) have developed a new method of analysis capable of predicting nonlinear

buckling load for stiffened cylindrical shells. Pegg (1992) has made a numerical

study of dynamic buckling of ring-stiffened cylinders using general shell elements.

Omurtag and Akoz (1993) have developed mixed finite element formulation for

eccentrically stiffened cylindrical shells. A rectangular four nodded shell element and

a two nodded circular bar element are used for the analysis. Chen et al (1994) have

carried out buckling analysis of ring stiffened cylindrical shells with cutouts by

mixed method of finite strip and finite elements. Finite strip and finite elements are

connected together by specially developed transition elements. Goswami and

Mukopadhyay (1995) have carried out geometrically nonlinear analysis of laminated

stiffened shells. Li et al (1997) have made an adaptive finite element analysis method

for shells with stiffeners.

2.5FOLLOWER FORCE EFFECT

Bodner (1958) has described the buckling of infinitely long cylindrical shell

under various distributed load systems with and without considering the follower

force effect. The buckling load for hydrostatic pressure is found to be lower than that

for the uniformly distributed conservative load system.

Hernnan and Bungay (1964) have studied the stability of elastic system

subjected to nonconservative forces. Oden (1970) has developed an approximate

method for computing nonconservative generalized forces on large deformation

problems.
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Hibbit (1979) has discussed about the importance of coupling of the

follower force effect with the tangent stiffness matrix of the structure for the accurate

solution of the problems. In presence of free loaded ends, the system become

nonconservative, hence leads to an unsymmetric matrix .. Loganathan et al (1979)

have carried out a study of effect of pressure stiffness in shell stability analysis. The

analysis is carried out in deep and shallow shell situations with and without pressure

stiffness matrix. The analysis without follower force effect leads to bifurcation

buckling modes and with pressure stiffness matrix, the mode of instability changes to

a limit point phenomenon. In general, the inclusion of pressure rotation effect will

introduce unsymmetric stiffness matrices into the finite element equations. Under

such circumstances, the classical bifurcation concept is no longer valid. The solution

of unsymmetric simultaneous system of algebraic equations is very tedious. But in

some cases, such as uniform external pressure on cylindrical shells, the pressure

stiffness matrix is symmetric. Although the problem of follower forces is in general

a noncoservative-loading problem, the symmetric matrix is conservative in character.

Mang (1980) has derived techniques to impose symmetricability to pressure stiffness

matrix. According to him the buckling pressure derived for a cylindrical shell with

unsymmetric pressure stiffness matrix differs very little from the buckling pressure,

resulting from an alternative symmetric pressure stiffness matrix.

Subbiah and Natarajan (1981) have analysed the follower force effect of

hydrostatic pressure in the finite element analysis for general instability of ring

stiffened shells of revolution using axisymmetric shell elements. A rigorous

derivation for potential due to hydrostatic loading including follower force effect has

been presented. Substantial reduction in buckling pressure due to follower force

effect has been reported. Carnoy et al (1984) have carried out static buckling analysis

of shells subjected to follower pressure by finite element method. Tomski and

Przybyski (1987) have studied the behaviour of a clamped, elastically supported

planar structure under follower force.

Hasegawa et al (1988) have investigated the elastic instability and nonlinear

finite displacement behaviour of special thin walled members under displacement

dependant loadings. When the load stiffness matrix is un symmetric indicating the

nonconservativeness of the load, the dynamic stability becomes a matter of great
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concern and hence the mass matrices of the special thin walled members are derived

in the study to examine its possibility. The methods of analysis presented in the paper

have been of four types, static instability analysis called divergence, dynamic

instability analysis called flutter, static nonlinear finite displacement analysis and

static linearised finite displacement analysis.

2.6 DESIGN ASPECTS OF SUBMARINE HULLS

Faulkner (1983) has made a discussion about the design practices used in

BS 5500 (1976). According to him the interframe shell collapse determines the main

weight and cost and safety factors should be chosen by ensuring this as the prime

mode of failure. This paper is not meant to provide a comprehensive coverage of

structural design but concentrated on the philosophy and underlying essentials of

strength formulations and design.

Gorman and Louie (1991) have developed an optimization methodology,

which explicitly considers shell yielding, lobar buckling, general instability and local

frame instability failure modes. Quantitative results on the effects of hull circularity

is also presented. Some novel results for the buckling performance of

nonaxisymmetric rings are further presented to identify the design payoff of new

software tools. Empirical relations are used to get the principal characteristics desired

of pressure hull material from weight displacement ratio. The hull wall architecture

has also been commented.

Jackson (1992) describes the concepts of design that has been developed

over a number of years. The optimum length to diameter ratio is 4 to 6. Neto et ,al

(1996) have determined the collapse pressures of ring stiffened cylindrical sheIls

under hydrostatic pressure using code formulations and elastic plastic finite element

analysis.

Bushnell and Bushnell (1996) have developed an approximate method for

the optimum design of ring and stringer stiffened cylindrical shell panels and shells

with imperfections. The PANDA.2 computer program for minimum weight design

of stiffened composite panel is expanded to handle optimization of ring and stringer

stiffened cylindrical panels and shells with three types of initial imperfections in
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the form of buckling modes, any combination of which may be present; local, inter

ring and general.

Das et al (1997) have made a reliability based design procedure of stiffened

cylinder using multiple criteria of optimization techniques. The various limit states of

orthogonaly stiffened cylindrical shells have been used and they include bay

instability, frame bending and frame tripping. A rational comprehensive analysis is

required for a safe effective design.

2.7 SCOPE AND OBJECTIVES

For the linear analysis of ring stiffened cylindrical shell with simple

boundary conditions, closed form solutions are available. However, a definite

necessity is felt for the solution of the problem for various practical configurations

and boundary conditions. Finite element method can be adopted for the analysis of

stiffened cylindrical shells owing to its versatility. Finite element modeling of

stiffened cylindrical shell can be done either using a stiffener shell model or a

smeared model. The hydrostatic pressure acting at a considerable depth can be

treated as uniformly distributed pressure loading and consistent load vector can be

formulated. Efficient cylindrical shell elements and circular stiffener elements are

available in the literature, which can be employed for the analysis of subsea stiffened

cylindrical shells. The analytical investigations of cylindrical shells constituting the

submarine hull are classified documents and are rarely found in literature; hence it is

found apt to carryout such investigations to provide design recommendations. 'A

definite need is felt to have a software based on an efficient finite element to analyse

the stiffened cylindrical shell for various boundary conditions, incorporating the

follower force effect.

Scope of the work is to conduct linear elastic, linear buckling and geometric

nonlinear analysis of stiffened cylindrical submarine shells incorporating the

follower force effect of hydrostatic pressure.
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Theobjectives of the thesis are listed below.

• To develop a software based on all-cubic axisymmetric cylindrical shell finite

element and discrete ring stiffener element for linear elastic, linear buckling

and geometric nonlinear analysis of stiffened cylindrical shells.

• To implement the software in pc environment and use it to predict the stress

resultants, linear buckling pressures and collapse pressures for various

boundary conditions and configurations of the shell and stiffener.

• To study the influence of follower force effect due to hydrostatic pressure on

the collapse pressure of stiffened cylindrical submarine shells.
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CHAPTER 3

LINEAR STATIC ANALYSIS

3.1 GENERAL

Axisymmetric shell finite elements can effectively be used for analysis of

stiffened cylindrical shell under axisymmetric loading. In the present study discrete

stiffener cylindrical shell model of the submarine hull is proposed, in which the shell

is modeled using all-cubic axisymmetric shell finite element and the stiffeners, using

discrete ring stiffener finite element presented by Rajagopalan (1993).

3.2 FINITE ELEMENT MODELING OF CYLINDRICAL SHELL

An all-cubic axisymmetric cylindrical shell finite element has been used in

the finite element analyis of cylindrical shells.

3.2.1 Geometry, Displacement Field and Shape Functions

The all-cubic axisymmetric thin cylindrical shell finite element represents

meridian of a cylindrical shell it models. The geometric features of the cylindrical

shell segment are radius, thickness and length(R,t,L).

Displacement field of the all-cubic element used in the present study

consists of meridional, tangential and radial displacements (u, v, w),

The element is bound by two end nodal circles with six degrees of freedom

per each and the degrees of freedom at nodal circle 1 are meridional, tangential and

radial translations (UI, VI, WI), Uxl,Vxl and the meridional rotation <f>1(Wxl ).

The corresponding values at nodal circle 2 are U2, V2, W2~ Ux2~ Vx2 and <P2.

Nodal degrees of freedom u, V, wand q> are shown in fig. 3.1
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Fig. 3. 1 All- cubic cylindrical shell finite element

Finite element representation of the displacement field and the meridional

rotation are given below, in which the polynomial and the trigonometric terms

represent the meridional field and the sinusoidal variation in the circumferential

direction.

v . (3.1)

The meridional rotation <p at the interior nodal circle is given by

<p = aw/ax=[N~1 Wt + N~2 <PI +N~3 W2 + N~4 q>2] cosn e

where

1_3~2 + 2;3; N2= L (~-2 ~2 + ~3); N3=3 ~2- 2 ~3; N4=L (_~2+ ~3); }(3.2)

1/L(-6~+ 6~2) ; N1;2=(1-4~+3~2 ); N~3= IlL (6~-6 ~2) ; N~4=(-2 ~+3 ~2);

where ~ =x/L

3.2.2 Strain Matrix

Strain displacement relations are adopted from Sander's theory [1963]. The

total strain E is composed of linear component EL and nonlinear component EnL.

Thus the strain vector can be written as

......................... (3.3)

where {E} is the vector of generalized strains containing the in-surface strains

Ex, E e and ExO and curvatures \vx, We and \VX o.
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The strain field can be expressed as

Ex Ux 1/2Wx
2

Ea 1/R (vo-w) ~ (vIR + we/R)2

ExG (vx+ue/R) WxWe / R

= + 0 ....(3.4)\11x W xx

\tie 1/R2 (weo +vo) 0

'Vx8 2/R (wxo + v.) 0

The linear elastic generalized strains are expressed as eqn. 3.5

Uxl

VI

Ex
Vxl

Ea WI

Exe
<PI

't'x
= [B] U2

Ux2
'VG

V2
'VxO Vx2

W2

.................. (3.5)

<(>2

where [B] is the small strain displacement matrix

.................. (3.6)

where [Cl is the diagonal matrix of size 6 x 6.

cosnS
cosn8

[Cl := sinnf

cosn8
cosn8

sinn8

........................ (3.7)

and [B]] is a matrix of order 6 x 12 whose elements are functions of non

dimensional meridional co-ordinate ~.

3.2.3 Constitutive Matrix

Constitutive matrix [D] for elastic shell problems is shown in eqn. 3.8
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v 0 0 0 0

v 0 0 0 0

[D] = Et! (1-v2
)

0 0 ( I-v)/2 0 0 0 ......(3.8)

0 0 0 t2/12 vt2/12 0

0 0 0 vt2/12 t2/12 0

0 0 0 0 0 (l-v)t2/2

3.2.4 Linear Elastic Stiffness Matrix

The linear elastic stiffness matrix can be obtained using the eqn.3.9

(Zienkiewicz, 1979) given below.

I" jL T[k] = [B] [DJ [B] R de dxo 0

which can be expressed using the eqn.3.6 as

I" j I T[k] = RL [B 1
] [Cl [D] [Cl [B 1

] de d;o 0

........................ (3.9)

..................... (3.10)

Substituting for the integrants and performing the circumferential

integration, [k ] can be obtained as

v 0 0 0 0

v 0 0 0 0
1

0 0 ( I-v)/2 0 0 0
[k]= (1tRLEt/(1-v2

) ) f[B 1
]

T

0 0 0 12/ 12 vr/12 0
[B

1
] d ~ (3. ] 1)

0

0 0 0 vt2/12 t2/ 12 0

0 0 0 0 0 ( I-v)t2/24

The present study is based on the linear elastic stiffness matrix given vide

eqn.3.11 and the complete coefficients of stiffness matrix is available elsewhere

(Rajagopalan, 1993) and is given in clause A.I of Appendix A.
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3.2.5 Load Vector

Hydrostatic pressure is treated as uniform pressure of intensity p acting

normal to the element face. The consistent load vector due to surface pressure is

given by

{Q} = f f [N]T P dA =2 P 1CRL r[N]T de, .............................. (3.12)

3.2.6 Evaluation of Displacement

Displacements are calculated from the equilibrium equation in the form

[K] {8} = {Q} using Gauss elimination procedure.

3.2.7 Recovery of Stress Resultants and Principal stresses

The membrane stress resultants, Nx, Ne and Nxo and the bending moments

Mx, Me and Mxo are evaluated using the relation given in the eqn.3 .13.

Nx

No

Stress resultant == = [D] [B] {o}= [S] {8} ........................ (3.13)

The elements of [S] matrix are developed and are given in clause A.2 of Appendix A.

(3.14)

l
I

where o x = Nx/t, 08 = No/t and r x9 = Nxe It at the middle layer and

Clx== Nx/t+ 6 Mx/t
2

,O'e = No/t + 6 Me/t2 and t x6 == Nx9 It + 6 Mxe/t2

Principal stresses 0'1 and 0'2 are evaluated at the middle layer from the

membrane stress resultants and at the outer layers from the combined effect of

membrane and bending stress resultants.

0'1 =1/2(o-x + O'e) + 1/2"«crx -ae)2+ 4! xe2
)

at the outer layer
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3.3 FINITE ELEMENT MODELING OF STIFFENED CYLINDRICAL SHELL

It is proposed to model the shell with all-cubic axisymmetric shell finite

elements and stiffeners using discrete finite elements. All-cubic axisymmertic shell

element has been described in section 3.2. The description of geometry and relevant

matrices of the discrete stiffener finite elements are described subsequently.

3.3.1 Discrete Ring Stiffener Element

The ring stiffener of the submarine cylindrical shell is modeled as a discrete

ring defined by cross sectional area and eccentricity of the cross section of the ring

from the shell middle surface. The stiffeners are attached to end nodal circles of all-

cubic axisymmetric shell finite elements and hence introduce no additional nodes.

The stiffness matrix of the ring stiffener element is calculated and is transformed to

shell node, at which the particular ring stiffener is attached. The stiffener element is

built on the assumption that its behaviour can be completely described by centroidal

degrees of freedom, which are u., Vr, w, and <pr. Geometry and degrees of freedom of

the discrete ring stiffener element are shown in the fig. 3.2.

RR!" Rt
I •
1 •
I f
, I.. :.......---.UR-·_·_·_·_·---r

I
I
I
J

••
___~----_._-- ---.i.

11

Fig. 3.2 Discrete ring stiffener element

The stiffener and the shell middle surface displacements are related by the

eqn.3.15. The stiffener is rigidly attached to the shell and hence the displacements

u, =u-e cp; vr=l/R (R, v - e( 8w / 8S)); W r = wand q>r==<P ••...•....••... (3.15)

3.3.2 Elastic Stiffness Matrix of Ring Stiffener Element

Elastic stiffuess matrix of the ring stiffener element corresponding to its

centroidal degrees of freedom is derived by considering the strain energy of the ring

stiffener. The axial, in-plane bending and St. Venant torsional energies are considered.
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The present study is based on the linear elastic stiffness matrix and the

complete coefficients of stiffness matrix are available elsewhere (Rajagopalan, 1993)

and are given in clause A.3 of Appendix A.

3.3.3 Transformation Matrix for Stiffener

............. (3.17)

{Sr} =[T] {3}

where [T] is the transformation matrix.

Ur 1 0 0 0 0 -e
0 0 0 0 0 0 0
Vr 0 0 Rr/R 0 nelR 0
0 0 0 0 0 0 0
W r 0 0 0 0 1 0
<pr 0 0 0 0 0 1

The transformation between the stiffeners centroidal degrees of freedom and

the shell degrees of freedom can be expressed by the following matrix equation.

(3_16)

3.3.4 Formulation of Stiffness Matrix of Stiffened Shell Element

In the discrete stiffener modeling, the properties of the stiffener are lumped

to the corresponding nodal circle of the shell element. So the process of formulation

of stiffness matrix for the stiffened shell element consists of the identification of the

nodal circle to which the stiffener is attached and the algebraic addition of

transformed stiffness matrix to the corresponding shell nodal degrees of freedom.

3.4 ASSEMBLY OF GLOBAL MATRIX

3.4.1 Stiffness Matrix

The global stiffness matrix of the stiffened cylindrical shell finite element

model is obtained by computing the element stiffness matrix of each shell element

and assembling them by posting them in appropriate global locations determined by

node numbering and connectivity. The transformed stiffness matrix of the stiffener

element are added to the relevant locations.

3.4.2 Load Vector

Consistent load vector is added algebraically at the junction of two stiffened

shell elements. Since the load is the uniform radial pressure, equivalent joint

moments gets cancelled at the joints and the equivalent joint loads get added up.
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3.5 SOFTWARE DEVELOPMENT

Software has been developed in C language for the linear static analysis of

stiffened cylindrical shells, which can be effectively used fOf, unstiffened ones also.

The description of the program for the analysis of stiffened cylindrical shell is

explained in subsequent sections.

3.5.1 Flow Chart

The schematic diagram is given in fig. 3.3a and the hierarchal order of

operations is given in the flowchart (fig. 3.3b).

MAIN PROGRAM
Shell stiffness

INPUT DATA

Geometric and Elastic stiffness matrix Stiffener stiffness

material properties
generation of shell element,
elastic stiffness matrix

of shell, stiffeners, generation of the stiffener

deep frames etc."
element, elastic stiffness Stiffened shell
matrix generation of stiffened stiffness

spacing of shell element, evaluation of

stiffeners, deep consistent load vector, Consistent load

frames and
assembly for global stiffness vector
matrix and load vector,

bulkheads. imparting boundary ... ~I
Boundary

Boundary
conditions, computation of conditions
nodal displacements and

conditions -simply stress resultants at salient Displacement
supported, clamped points and principal stress .. • evaluation

or fixed, loading
recovery at middle and outer

~
layers

details Stress resultant I
Principal stress
evaluation

OUTPUT PARAMETERS
Meridional, tangential and.radial displacements, meridional
rotations
Meridional, tangential and shear stress resultants
Meridional.tangential and twisting moments
Principal stresses at the middle and inner layers

Fig. 3.3a Schematic diagram for linear static analysis
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Call stiff

Stop

Fig. 3.3b Flowchart for linear static analysis
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3.5.2 Program MAIN

The geometric data of the shell is obtained from the input file.

The execution of the program is as follows. The elastic stiffness matrix of

the shell element is calculated by the function shell and that of the stiffener by the

function stiff. These are assembled to form global stiffness matrix using the function

assemb. Then the boundary conditions are imparted with function be. The consistent

load vector for the given pressure load is calculated and integrated by the function

load. The displacements are evaluated using the function gauss. The function stress

calculates the stress resultants and principal stresses.

3.5.3 Description of Functions

Function shell

This function is used to calculate the elastic stiffness matrix of the shell

element, which is a 12x12 symmetric matrix described in section 3.2.4. The variables

required for the evaluation of stiffness matrix are radius R, length L, thickness t, the

modulus of elasticity E of the shell material and the number of shell elements

required to model the hulL

Function stiff

Elastic stiffness matrix of the stiffener element is evaluated by the function

stiff The input details are the sectional properties of the stiffeners and the

eccentricity of the centre of gravity of the stiffener from the shell middle surface.

Function assemb

The function assemb is used to assemble the stiffness matrices of the

individual shell elements and the stiffeners to form the global stiffness matrix.

Function be

This function incorporates the stipulated boundary condition for the

stiffened shell. Four types of boundary conditions have been incorporated which are

used in the stiffened cylindrical shell analysis. Fixed boundary condition is
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implemented by arresting all SiX degrees of freedom. For clamped boundary

condition, all degrees of freedom are arrested except the axial membrane

displacement u. For simply supported boundary condition the axial membrane

displacement u and the meridional rotation q> are kept unrestrained. Axisymmetric

boundary condition is incorporated by arresting all translations normal to the plane of

symmetry (u) and all rotations in the plane of symmetry (u, and Vx ).

Function load

It calculates the consistent load vector for the individual element using the

eqn.3.12 and assembles to form the total load vector. The input data required for the

function is the pressure intensity p.

Function gauss

The function gauss IS the standard subroutine for Gauss elimination

procedure and evaluates the nodal displacements. The results are delivered through

the output file.

Function stress

The function stress is used to evaluate the stress resultants described in

eqn.3.13. From the stress resultants stresses are evaluated. Principal stresses are

evaluated using the eqn.3.14.

3.6 NUMERICAL INVESTIGATIONS

Validation of the program and the analytical investigations of submarine

cylindrical shell models are explained in subsequent sections.

3.6.1 Validation

Validation of the program is done using the example from Flugge (1962)

designated as BMP 1 in this study. The geometric features of ring stiffened

cylindrical shell are shown in fig. 3.4.
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Fig. 3.4 Geometric features of ring stiffened cylindrical shell BMPl

(Flugge, page 286,1962) (all dimensions are in inches)

Uniform external pressure is 420 psi, modulus of elasticity of the material of

the cylinder is 3xl07 psi and Poisson's ratio is 0.3. The finite element model of

stiffened shell is given in fig. 3.5.

o

Eccentricity

L..--"""-- ........--'-- -.........._.&....--~---a-- ....Ioo.-_........_--.&. +- Shell e1ement

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 +-element numbers
o 0 0 o~o 0 0

Discrete ring stiffener element

Fig. 3.5 Finite element model of ring stiffened cylindrical shell BMPl

The linear static analysis has been conducted using the software developed

to predict radial deflection, circumferential stress and the meridional moment for

fixed-fixed boundary conditions.

3.6.2 Linear Static Analysis of Submarine Models

Analytical investigations are carried out on submarine stiffened cylindrical

shells models designated as M 1 and M2. The submarine cylindrical shell models are

taken from Pradeepkumar (1988) and Jacob (1989). These are hull models of attack
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submarine designed as per BS 5500. The design specifications of M 1 and M2 are

given in table 3.1.

Table 3.1 Design specifications of submarine models Ml & M2

Description MI ; M2
---,•..,-_. .__._....._- i ---_.- ~~... _...~..

Type of ship I Attack Submarine i Attack SubmarineI
I

iI .._........_- -_.......-.---

Submerged displacement (t)
I

2400 !
3000I

i I

I
_._..,--------t-

Diving depth (m)
I

300 i 300I
-.........._....

i
. . .,.--1- --

I

Submerged speed (Kn) J-- 25 i 22
--.---

I
_... '.~ ._..•._--

Surface speed (Kn)
I

20 i 11
._-_..'-"--' I

I

I

Material of construction Hy 100 USA
---1

Hy 110 USA

Yield strength (Nzmnr') ----~ 700 I 780
·--·-t-·~ _. --.. -...----.--..-----

Total pressure hull length (m) I 52.4 I
46.1I

-- i
-_ ..._.... _.

!
-_.-

Hull diameter (m) I 7.7 8.7
I i ._._.... _.. ... ........ - --- - _..__._------_.

Overall height (m) ! 14.0 14.0
I ~

_--.. .• "'._--.i-- ••

Modulusof elasticity (N/mm2
)

I

210000 ! 210000
-....._....._..._.- t----. _. -_.

i

IPoisson 's ratio I 0.3 0.3

The cylindrical shell is properly stiffened with stiffeners, deepframes and

bulkheads. Geometric features of stiffened cylindrical shells of MI and M2 are

given in table 3.2 and shown in figs. 3.6a, 3.6b, 3.7a and 3.7b.

Table 3.2 Geometric features of submarine models Ml & M2

Description M1 (mm) M2 (mm)

Length of the shell between compartments 13200.00 20000.00

Radius of the shell 3850.00 4350.00

Thickness of the shell 34.00 34.00

Length of the shell between stiffeners 550.00 833.33

Length of the shell between deepframes 1650.00 2500.00
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_ deep frames at 1650c/c

Stiffeners at 550 c/c

L,~18r

T
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41 27

TT l+- 226 ~
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T
13200

Bulkheads at 13200 c/c

1
Fig. 3.6a Stiffened cylindrical shell of Ml between two bulkheads

(all dimensions in mm)

1650

+
shell

* l4 I

i Y ~~CJ[l i
: ,~o :
: ~ Stiffener:
: 00 Deepframe :
• ~ I

• I
• It I

• I
• I
• It I

• I
• II IL J

Fig. 3.6b Stiffened cylindrical shell of Ml with deepframes (all dimensions in mm)

deepfrarnes at 2500 c/c

! I

Stiffeners at
833.33 c/c

1

Bulkheads at 20000 c/c

20000

Fig.3.7a Stiffened cylindrical shell of M2 between two bulkheads
(all dimensions in mm)
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2500
Shell
+

833.33

~I

stiffener
Deepframe

Fig. 3.7b Stiffened cylindrical shell ofM2 with deepframes (all dimensions are in mm)

The L/R values for three configurations, viz., (a) cylindrical shell between

stiffeners (interstiffener), (b) stiffened cylindrical shell between deepframes

(interdeepframe) and (c) stiffened cylindrical shell between bulkheads

(interbulkhead) and Rlt values for M1 and M2 are given in table 3.3.

Table 3.3 The L/R values for three configurations and Rlt values for Ml and M2

1 IRatio I Shell configuration i M 1 M2

! Interbulkhead, 11 I
Rlt 1

1 interdeepframe & 113.24 I 127.9
interstiffener

! I I

I Interbulkhead i 3.429 j 4.598
L~~---~-------~.__._-_._---_.__.-....----+-~--------

LlR L Interdeepframe J---~~~----_. i 0.57

I Interstiffener i 0.14 I 0.19

From the values given in the table 3.3, it is observed that M 1 is shorter and

thinner than M2. The analysis has been carried out for uniform external pressure of

3.016 Nzmm", which is the hydrostatic pressure at the designed depth of 300m for

Ml andM2.

The submarine cylindrical hull has been analysed for three configurations..

viz., (a) cylindrical shell between stiffeners, (b) stiffened cylindrical shell between
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deepframes and (c) stiffened cylindrical shell between bulkheads. In each case the

ends of the shell are treated as fixed.. Linear static analysis has been carried out to

predict deformations, stress resultants and principal stresses in the above-mentioned

configurations.

Analytical investigations are carried out for interbulkhead portions of M1

and M2 without attaching stiffeners. Finite element deflection and stresses of long

unstiffened shell is compared with classical solutions.

3.7 RESULTS AND DISCUSSION

Software based on all-cubic axisymmetric cylindrical shell element and

discrete ring stiffener element for linear static analysis is developed and operational

in pc environment. The program is validated with Flugge's problem (BMP1).. The

variation of radial deflection, circumferential stress resultant and the radial moments

are presented in figs.3.8, 3.9 and 3.10 respectively. Flugge's classical solution and

authoress' solution are given in table 3.4.

u; 0.03
Cl>

13 0.025
c:

~ 0.02-------
o
~ 0.015
c;:::::
~ 0.01 ---

~ 0.005 .
tu
a: 0--

D 5 10 15 20 25

Length of the shell between stiffeners (inches)

Fig.3.8 Variation of radial deflection for BMPl

o
-5000

-10000
-15000
-20000

o 5 10 15 20 25

Length of the shell between stiffeners ( inches)

Fig.3.9 Variation of circumferential stress for BMPl
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-4000

Length of the shell between stiffeners(inches)

Fig.3.10 Variation of meridional moment for BMPl

Table 3.4 Comparison with Flugge's results

% variation
(upper bound)

3.0

i Flugge's closed I Obtained
I fu~w~tioo~__v_a_Iu_e_s__~_~ ~_~
I

I 0.0233 0.024

Description

4223 4295 1.70

19200 19255 0.28

I

From the table 3.4 it can be seen that the obtained results are having

upperbound values of 3.00/0 for radial deflection 1.7% for meridional moment and

0.28% for circumferential stress resultants.

Analysis has been carried out for interstiffener, interdeepframe and

interbulkhead configurations for M 1 and M2. The variation of radial deflection,

major and minor principal stresses at middle and outer layers, meridional and

circumferential stress resultants (Nx, NQ), meridional and circumferential moments

(Mx, MQ) are graphically presented through figs. 3.11 to 3.18 for interstiffener

configurations. Respective values for interdeepframe configuration and

interbulkhead configuration are shown in figs. 3.19 to 3.26 and figs. 3.27 to 3.34

respectiveIy.
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It is observed that for various configurations the maximum value of radial

deflection is at midbay of stiffeners for shell between bulkheads configuration. The

values are 4.57mm for MI and 7.05mm for M2. The maximum values of principal

stresses occur at the outer most layer of midbay of stiffeners for shell between

bulkheads configuration. These stress values are 284.723 N/mm2 and 378.410

N/mm2 for Ml and M2 respectively.

The meridional and circumferential stress resultants are also having their

peak values for shell between bulkheads. The maximum values for Nx and NQ for

MI are 4445.62 N/mm and 9786.81 N/mm. The corresponding values for M2 are

6253.27 N/mm and 12685.95 N/mm respectively.

The meridional and circumferential moments have maximum values for

interstiffener analysis. Mx and MQ for Ml are 33162.72 N-mm1mm and 9948.81

N-mmlmm in the middle portion while the corresponding values at the fixed ends are

58315.69 N-mm1mm and 17494.0 N-mmlmm. The Mx and MQ for M2 are 6253.27

N-mm1mm and 12685.95 N-mm/mm at the middle and 86621.43 N-mmlmm and

25995.71 N-mmlmm at the ends respectively.

The radial deflection with and without stiffeners is plotted in figs.3.35 and

3.36 for MI and M2 respectively. The results of radial deflection without stiffeners

are compared with that of the classical solution for long shells and is given table 3.5.
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Fig. 3.35 Variation of radial deflection for interbulkhead configuration of Ml
with and without stiffeners
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Fig. 3.36 Variation of radial deflection for interbulkhead configuration of M2

with and without stiffeners

Table 3.5 Comparison with classical solutions for radial deflection for long

shells

I Radial deflection (mm) I
Model I 0/0 variation

I Finite element I Classical solution i
Ml 6.06 6.26 I 3.19I

~-

M2 I 7.83 7.99 I 2.00

For long unstiffened shells between bulkheads analysis using all-cubic

axisymmetric shell element gives lowerbound values of 3.19% and 20/0 for models

M1 and M2 for radial deflection.
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CHAPTER 4

LINEAR BUCKLING ANALYSIS

4.1 INTRODUCTION

The linear buckling analysis of the stiffened cylindrical shell has been

described in this chapter for two load cases, treating hydrostatic pressure as a radial

load as well as a follower force.

4.2 HYDROSTATIC PRESSURE AS RADIAL PRESSURE LOAD

Determination of bifurcation buckling pressure involves the formulation of

linear elastic stiffness matrix and the geometric stiffness matrix (eqn.l A). Linear

elastic stiffness matrix has been described in the section 3.3 and 3.4. Formulation for

geometric stiffness matrix is explained subsequently.

4.2.1 Development of Geometric Stiffness Matrix

The basic expression for geometric stiffness matrix is given by Zienkiewicz

(1979) based on the principle of virtual work.

For large displacements problems the strain matrix [B] can be represented as

[B] == [B] + [Bnl] ........................ (4.1)

where [B] is the usual small displacement matrix encountered in the linear

infinitesimal strain analysis. In general [Bnl] is linear function of nodal displacement

{<5 }. Using that [B], the total large displacement stiffness matrix [Knl] is derived

[Knl] = v {[B] T[D][Bnl] + [Bn1] T[D][Bnll + [Bnl] T[D][B]} dv (4.2)

This expression contains the terms, which are linear and quadratic in {S.}.

The total tangent stiffness matrix can be rewritten as

[KT] = [K] + [Ko] + [KnlJ
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where [K] is the linear elastic stiffness matrix, [KG] is the geometric stiffness matrix

and [Knl] is due to large displacement effect. In linear stability problems large

displacement effect is less important and hence [Knll has been neglected in the

present study.

At the buckling stage stiffness matrix becomes singular, hence

....................... (4.4)

In linear buckling analysis. this relation can be rewritten in terms of prebuckling

stress resultant as

........................ (4.5)

where A is the nondimensional buckling load and [Kg] is the geometric stiffness

matrix derived in the initial configuration.

Geometric stiffness matrix has been derived from the expression

(Zienkiewicz, 1979) given below.

. (4.6)

According to Sander's (1963) theory the nonlinear generalized strains for

stiffened cylindrical shell consist of linear and nonlinear membrane strains and linear

bending strains. This assumption will lead to the prebuckling stress resultants as

given in eqn.4.7.

The basic expression for geometric stiffness matrix is given as

J T [ax 0 J[Kg] = v [G] 0 Go [G] dv ........................ (4.7)

where CJx and (Je are the prebuckling stresses and [G] is constructed from derivatives

of shape functions.

4.2.2 Geometric Stiffness Matrix of the Shell Element

Geometric stiffness matrix [kg] of the all-cubic cylindrical shell element

already derived in section 3.2 is obtained from eqn.4.7.
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The general expression is

kg!,] kgL2 kgI.3......•••••• kg1.l2

•..•..••.••.••••••.•.•..•.••••••• ka212
c '

(4.8)

The geometric stiffness matrix proposed by Rajagopalan (1993) is used in

the present study and is given in clauseA.4 of Appendix A.

4.2.3 Geometric Stiffness Matrix of the Discrete Stiffener Element

The geometric stiffness of the discrete ring stiffener element already

described in section 3.3 is obtained from the following expression.

w = Iv (J {E a}nL dv ....................... (4.9)

where (J is the prebuckling axial stress and {Ee}nl. is the nonlinear buckling strain.

The expression for 4x4 geometric stiffness matrix of the discrete ring stiffener

element is obtained as

..................... (4.10)

where aqi,aqj be the displacement vectors. The matrix obtained is transformed into

6x6 in global coordinate using the transformation matrix given in eqn.3.17

The geometric stiffness matrix proposed by Rajagopalan (1993) is used In the

analysis and is given in clause A.5 of Appendix A.

The transformed geometric stiffness matrix of the stiffener element is added

to the relevant locations of the global geometric stiffness matrix of the shell.

4.2.4 Prediction of Linear Buckling Pressure

The finite element model of the stiffened cylindrical shell for linear

buckling analysis is same as that of linear static analysis. The elements of [k] and

[ko] are derived in terms of circumferential wave numbers.
o
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The solution procedure adopted for obtaining the linear buckling pressure is

the determinant search procedure. A value of Ais assumed and the determinant of the

matrix is calculated. The process is repeated by changing the value of A until the

determinant changes its sign. The value of A for zero determinant is the buckling

pressure. This procedure is repeated for possible values of circumferential wave

number. The minimum of these buckling pressures defines the buckling pressure of

the shell.

4.3 FOLLOWER FORCE EFFECT DUE TO HYDROSTATIC PRESSURE

H) drostatic pressure is considered as follower force in the second phase of

analysis. The development of pressure stiffness matrix for the stiffened cylindrical

shell from the virtual work principle is explained in the subsequent sections.

4.3.1 De' clopment of Pressure Stiffness Matrix

Expression for the work done by hydrostatic pressure during pressure

rotation phase den ved by Me Donald and White [1973] has been used to derive the

basic expression for pressure stiffness. Deformation of infinitesimal area dx Rd8 of

shell surface is considered and the pressure vector will be acting in the direction of

the normal vector of that deformed surface.

In a cylindrical shell, the displacement vector d8 can be represented as

d8 = ut + vj + wk ..................... (4.11)

where u,v and lV are the axial circumferential and normal displacements respecti vely

and i,} and k are unit vectors in these directions. The infinitesimal area on the shell

sutface R dB dx deforms into (1 +eO) Rd8(1+cx) dx

where ex = duldx and GO == l/R (w+dvlaO) ~ h (4.12)

The unit vector in the direction normal to the deformed surface becomes kl
.

k' - dw. 1 ( aw). k= -- l + - v- - ]+
dX R as
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where dwldx and (v-dwlde )1 R are the meridional and circumferential rotations

respectively.

The hydrostatic buckling pressure now acts on the new area in the direction of k'

pI = p(1+£x)(1+f,(J )R di) dx 11 .............................. -. (4.14)

where pI is the modified pressure.

Substituting kl from eqn.4.13 in eqn.4.14 and on neglecting the higher powers

pI = (-JwIJx i+lIR(v-dwIJO)j+(Julax +l1R (w+iJvlae)) k) R dB dx (4.15)

The dot product of the pressure force vector and the buckling displacement

vector will be the work done by the hydrostatic pressure on the pressure rotation

phase.

The work done is given by

Q = ~ JJpI.d{c5}
2

Substituting the eqn .4.11 and 4.15 in eqn .4.16

...................... (4.16)

Q = pl2] J[{(-dwlax)u+lIR(v-dwlde)v+ {dulJx +ltR (lv+dvldi))w ) R dO dx (4.17)

The eqn.4.17 can be elaborated and can be written in a matricised form for a

particular finite element as

Q = l12{ 5J [kp] {DJ ..................... (4.18)

where {8} be the nodal degrees of freedom which is related to the displacement by

means of shape functions and [kpl the pressure stiffness matrix.
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Comparing the eqn.4.17 and 4.18, [kp] can be arrived at. The finite element

substitution of [kp] with all-cubic axisymmetric shell element will be a 12x12 matrix

in the form

kp1.1 kp l. 2 kp1,3· · · · · · · · · kp I, 12

............................... kpJ2,12

...................... (4.19)

All the terms in the pressure stiffness matrix proposed by Rajagopalan (1993), which

are used in the present study, are given in clauseA.6, Appendix A.

4.3.2 Buckling Pressure Prediction

The linear buckling analysis with follower force effect is carried out using

pressure stiffness matrix along with linear elastic and geometric stiffness matrices.

[Kg] and [Kp] are added algebraically so as to form the matrix [Kgp] and is used in

the general expression for linear buckling as

..................... (4.20)

The nondimensional buckling load A is evaluated using the procedure explained in

section 4.2.4.

4.4 DEVELOPMENT OF SOFTWARE

A computer code has been developed to determine the interstiffener

buckling pressure and overall buckling pressure of stiffened cylindrical shell. The

program implementation and various functions that constitute the core of the

program are explained in subsequent subsections.

4.4.1 Flow Chart

The schematic diagram for linear buckling analysis is given in fig. 4.1a and

the hierarchal order of operations is given in the fig. 4.1 b.
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Shell clastic stiffness

MAIN PROGRAM
--01 ... Shell geometric stiffnessINPUT DATA ...

Elastic, geometric and pressure
Circumferentia1

--01 ... Shell pressure stiffnessstiffness generation of shell
..... ..

wave number, element, the stiffener element,
probable range of and the stiffened shell element,
buckling pressure, assembly for global stiffness

Stiffener elastic stiffness...geometric and matrix, imparting boundary ..
material properties

.........
conditions, prediction of

of shell, stiffeners, collapse pressure corresponding
deep frames etc., to circumferentiaI wave .... ... Stiffener geometric
spacing of stiffeners, number, prediction of absolute

.... ...
stiffness

deep frames and minimum collapse pressure and
bulkheads. corresponding circumferential Assembled global stiffness
Boundary conditions wave number matrix
-sirnply supported, L I Boundary condition
clamped or fixed,

I
f+-

~

L.-.....+
Collapse pressure
prediction

."

OUTPUT
Circumferential wave number-

buckling pressure
Absolute minimum buckling

pressure

Fig. 4.1a Schematic diagram for linear buckling analysis
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n:= n+l

Call assemb

+

B

yes

yes

P> PI

~...===~--0
p~p+~p

+
Call geoshell

STOP

Fig. 4.1b Flowchart for linear buckling analysis
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4.4.2 Program MAIN

The execution of the program is as follows. The elastic stiffness matrix of

the finite shell element and the stiffener element are calculated for a given value of

circufemtial wave number. These matrices are assembled to form global elastic

stiffness matrix. For different values of pressure (p) starting from pI to p2 with an

increment of 6.p, the geometric stiffness matrix of the shell and the stiffener element

and the pressure stiffness matrix of the shell are calculated and the global stiffness

matrices are formed by calling an assembly program. For each value of p the

determinant of the sum of the global stiffness matrices of the shell and the stiffener is

finally calculated. A plot is made with p Vs the determinant. The value of p

corresponding to zero determinant is the linear buckling pressure corresponding to

that value of n. The procedure is repeated for various values of n. Minimum of all

these buckling pressures is the actual collapse pressure. The main program calls in

turn a number of functions at appropriate stages to perform the above-mentioned

operations. The functions shell, stiff and assemb are already explained in section

3.5.3. The remaining functions are described below.

4.4.3 Description of Functions

Function geoshell

The geometric stiffness matrix of the shell element is evaluated by the

geoshell function as described in section 4.2.2 for each load increment.

Function geostiff

This function calculates the geometric stiffness matrix for the stiffener

element as explained in section 4.2.3.

Function pressures!

This function calculates the pressure stiffness matrix of the shell element as

explained in section 4.3.1.
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Function matdet

This function is used to determine the value of the determinant of the sum of

the global stiffness matrices [K], [Kg] and [K»], as explained in section 4.2.4.

4.5 NUMERICAL INVESTIGATIONS

To validate the program developed for interstiffener buckling analysis using

all-cubic element, a stiffened cylindrical shell suggested by Kendrick [1970]

designated here as BMP2 has been attempted. The geometric features are shown in

fig.4.2a.

I
I+- 40

r
_._._._._._~---_._._---------_._-----_._._-------_._.-·_·-·-·--f------·_·--_·_-·

1 106.5

11 T__T__IJ
Fig.4.2a Geometric features of BMP2 (all dimensions are in inches)

The finite element model is given in fig. 4.2b, in which the interstiffener

region of the shell is divided into sixteen elements.

shell element

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .- element numbers

Fig. 4.2b Finite element model of interstiffener portion of BMP2

Influence of simply supported - simply supported (s.s-s_s), clamped - clamped

(c-c) and fixed-fixed (f-f) boundary conditions on linear buckling pressure is
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investigated. Influence of derivatives of degrees of freedom is also studied by

arresting those degrees of freedom at end nodal circles for s.s-s.s boundary

conditions.

General instability studies are conducted on stiffened cylindrical shell

designated as BMP3 suggested by Kendrick (1970) is shown in figs. 4.3a and 4.3b.

30 ~ 30 .... 1 30 30 30
t ~.

7.36

~

+
+

0.32

bulkhead
_.._---_._._-----_.------j-._._._---_._.-._._._._._-_._._._._-_._._._--.- _.-

100

1 stiffener

L-.-_~ .64

Fig. 4.3a Geometric features of BMP3
(All dimensions are in inches)

Fig.4.3bCross sectional
details of stiffener

(All dimensions are in inches)

The shell skin is modeled using all-cubic axisymmetric shell elements and

stiffeners using discrete ring stiffener elements. The finite element model is given in

fig. 4.3c in which the stiffened shell is divided into 30 elements with attachment of

stiffeners at interval of six elements.

Element
numbers

o o
e
o-L~ 0

Eccentricity

Shell element
~ 0 0

Discrete ring stiffener

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ]5 16 17] 8 19 20 21 22 23 24 25 26 27 28 29 30/ .

Node numbers

Fig. 4.3c Finite element model of BMP3
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Linear buckling analysis has been carried out for stiffened cylindrical hull of

attack submarines designated as Ml and M2. Design specifications, geometry etc.,

are described in tables 3.1 and 3.2 and in figs. 3.6a, 3.6b, 3.7a and 3.7b. Analysis has

been carried out for the three configurations viz., cylindrical shell between

stiffeners (interstiffener), stiffened cylindrical shell between deepframes

(interdeepframe) and stiffened cylindrical shell between bulkheads (interbulkhead).

The shell is considered to be attached to the stiffeners, deepframes or bulkheads as

the case may be. The scope of the numerical investigation has been extended to

realize the influence of possible boundary conditions. The follower force effect of

hydrostatic pressure is also investigated for M 1 and M2 for the three configurations

and the three boundary conditions already considered for radial load case.

4.6 RESULTS AND DISCUSSION

4.6.1 Interstiffener Buckling Analysis of BMP2

The buckling pressure is evaluated from the linear buckling analysis of BMP2

using determinant search procedure explained in subsection 4.2.4. The determinant

search procedure is carried out for various values of n for each case studied. A typical

determinant Vs buckling pressure for s.s-s.s boundary condition for BMP2 with

circumferential wave number 12 is shown in the fig. 4.4. The value of the pressure

corresponding to zero determinant gives the buckling pressure (765 psi).

~ -1000
c
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en
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-600 -aoo -200

6
4
2·

o
-2 0
-4

-6
-8

-10

-12

Buckling pressure (psi)

Fig. 4.4 Determinant Vs buckling pressure of BMP2 for interstiffener linear

buckling analysis for s.s-s.s boundary condition for minimum buckling pressure

with circumferential wave no. 12
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The buckling pressure has been evaluated from the linear buckling analysis

of BMP2 for s.s-s.s, c-c and f-f boundary conditions. The convergence study has

been conducted by choosing finite element model with 6, 12.. ]8 and 24 elements.

Linear buckling pressure for three above mentioned boundary conditions and for

finite element models are shown in table 4.1 ~

Table 4.1 Linear interstiffener buckling pressures of BMP2 for various

boundary conditions and finite element models

Buckling pressure (~s.!) ._.. . ...
~ ... Bound~ry; condition~_ ; 'n -----iI

Circumferential L-- S.s-s.S • c-c ; f-f
wave ! 1- _~O~Of..... I No. 0(---

no. (n) ~__ , No. of ~lements I . ~Qlents ,'H ele~ents_..

I 6 i 12 I 18 I 24 ! 18 24 i 18 i 24

t------~ ! 1292 ~- 1104 1.1048 i 1028 _: '15~W1662
__. 10 J1044 I 928 I 892 l 8~~~. I 1397 : .1468 ! 145~_

• 1_1~__I 833 L!~-..; 1290 ! 12~0 I 1372:_._1362

e--.' 12 .. ! 828 l!.~~ I 765 I.. 765 l!~~lu i 1210 1. 1262 ! 126~__

13 i 804 i 7811 766 I 766 i 1174 t 1174 I 1219 i 1219

......---__1_4 '--'1 8~~1'-'7-99j 788 ··1 788 ~ 1163 11163---1120~.I--i202
15 ! 844 t 835 i 828 I 826 I 1175 ! 1173 I 1207 1205

1--_-._-.-1-6 1892--, 883 _ Il

i

876 rm-r-1200 1.. 11'99 ; 1?2?__122~
17 1-;;- I 942 I 932 i 932 i 1339 I 1237 I 1262 1260

The minimum buckling pressures and corresponding n values are given in

bold. The minimum buckling pressures are 765 psi (n=12), 1163 psi (0=14) and

1202 psi (n=14) for s.s-s.s, c-c and f-f boundary conditions. For s.s-s.s boundary

condition, the buckling pressure converges to 765 psi. The reference value for this

case is 749 psi (table 4.2) as reported by Kendrick (1970). On analyzing the

influence of end restraints it is observed that there is an increase in buckling pressure

by 57% for f-fboundary condition and 52% for c-c boundary condition.

The variation of critical buckling pressure Per against circumferential wave

number (n) for the three boundary conditions are shown in fig. 4.5.
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Fig. 4.5 InterstitTener linear buckling pressures of Bl\lP2 for

various boundary conditions

The comparison of the buckling pressure predicted by the authoress with

those pred icted by Kendri ck and von Mises ( 1970) is shown in table 4.2.

Table 4.2 Compa r ison with Kendrick's and vun Mises' results for Bl\lP2

Circ umferential Buckling pressure (psi)

wave no. (n) Kendrick' s results von Mises' results Obtained results

IQ 841 843 879

11 799

12 749 751 765

13 753 755 766

For s.s-s.s.s boundary condition the buckling pressure is higher by 2.1%

than Kendrick's and 1.9% than von Mises' results. But in all cases the minimum

buckling pressure occurs at a circumferential wave 00.12. The results prove the

adaptability of the program for linear bucklin g analysis.
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4.6.2 Influence of Nodal Degrees of Freedom, which are Derivatives of Displacements

The influence of derivatives of displacements viz., u, and v, when used as

degree of freedom on buckling pressure is given in table 4.3.

Table 4.3 Influence of derivatives of displacements u, and v. in

interstiffener buckling analysis of BMP2

~ Buck!ing pressure (psi)i ...__._- ....

Circumferential wave i
i s.s-s.s

no.(n) ~
.__..._- - ...._..•- ..._-

I
;

u, and v. not arrested u, and v, arrested
i _.__.

!
".--- _.-

9 I 1028 i 1097I
I·~ . _ ...._.....--- I _........ _.

~._----.. I

10 I 879 939I

~•._..
! I ._.....-- _.....

11 I 799 ~-_. 850r

I -_ .. .-._-

12 j 765 I 809
1--------.----_.- .... ~~_.. -._ .... -'---

13 766 i 801I
_. --- ...... _-- I - -_ .."--' _.__ ._ .......

14 788 818
_._-_.-. _. j ._ ...- .. _.._------

15 826 I 856
I i_.....
I

_._- -_..... ...._--_._-

16 i 876 i 898I

l-...~"-.-I
.._,...-

I
_......_.... , . - .._---

I

17 I 932 I 946
i i

On arresting the derivatives u, and v, at the supports, the linear buckling

pressure has increased from 765 psi (n==12) to 801 psi (n::::;13) showing 4.7% increase.

4.6.3 Analysis of Stiffened Cylindrical Shell of BMP3

Table 4.4 gives the variation of buckling pressure for general instability

analysis of BMP3 for various circumferential wave numbers for s.s-s.s, c-c and f-f

boundary conditions. The minimum buckling pressures and corresponding n values

are given in bold. The variations of buckling pressure against n for three boundary

conditions are given fig. 4.6.
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Table 4.4 Linear buckling pressures of BMP3 for various boundary conditions

Circumferential Buckling pressure (psi)
~--_.-

waves no. (0) S.. s-s.s I c-c i f-f
I I

1 ~ 3731 3791 ! 3791I
I

2 3645 3709 ! 3709
! -

3 3443 3505 3527
_.._._-

4 3255 3285 3329

5 2949 2987 3003
--

6 2525 2529 I 2529

7 I 2069 I 2091 i 2091
f--------. I

I
i

8 I 1729 1765
i

1765

9 I 1493 I 1535 I 1535I

10 1339 1383 I 1383i
11 1247 1291 i 1291I

12 l 1203 1243 I 1245
13

l

1193 i 1231 I 1233i
14 1211 I 1247 i 1247

! I
--

15 1251 I 1281 1283

16 i 1305 I 1333 I 1335i

--_.•......•.._-----_ .. - -----_.- .. '_.'---'-' ".._-------- -----_._ _._--- _--_ _._-
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32
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o
Circumferential waves no. (n)

._----_.._~.._... -_.._. , .. _.__.- •...._......_--.

Fig. 4.6 Linear buckling pressures of BMP3 for various boundary conditions

The critical buckling pressures are obtained as 1193 psi, 1231 psi and 1233

psi for circumferential wave no. 13 for all the three boundary conditions studied.
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The buckling pressure for f-fboundary condition is 3.2% and c-c boundary condition

is 3.1% more than s.s-s.s boundary condition. These results are compared with the

values published by Kendrick [1970] and with values obtained using Bryant's

formula [Rajagopalan1993] in table 4.5.

Table 4.5 Comparison with Kendrick's and Bryant's results for BMP3

Circumferential wave i
I

Buckling pressure (psi)I

no. (n) !
-----".. -- I ---" .........!._. ... _.... .-

I Bryant's
i Kendrick's results i Obtained resultsn I

i formula
~._.- I ! -_....... i ..•~

. ...__ . ._-

2 ! 16399 i 4596 3645
f-.-_.... I 1- _. ._.. ._._-

3
I

4748 I 3996 I 3443

I =1
_.... _-

4
~

3785
~

3401 3255
'--_••• W_ ..... ~ ..._--

5 i 5019 3518 ! 2949i ,
... _- _...._.. I .. 1 ~-

._ .. ... _----

6 7043 i 3214 2525
----_.._. i .- I .....,-- i ..- ......

I

7 ! 9568 i 2924 i 2069
-_._-~ ~ ..__.. i - - _..... _--

8 12524
I

2676 I 1819
~

I
I

-_._.._,.

! ..._----_. i ... _., ..-.-.__._-I

9 I 1493
I

j
f---. _. -.

~-- I _.........._. i .__... _.......

10 i I 1339
-_ .. -.. - .L 1------ !

_._- ....._._._----

11 I I 1247
i ~_.•._.~-_. !

_..._.......
! _... _._-----_.-

12 i i i 12031------ I

f-------~ .. -.-..~-- I ~ .. - .......... - ! 0-". ....-

13 I ! 1193i I+ .._-_. I
..- ....... -_. __ ............ I _.__.... -------

14 I 1211t_._...~- ! ---t-..._._...... ---.- I .-_... ~ - .....-

15 i i -_..L 1251
_... __ .

I
_. I ......

16 I
I

i 1305i

Kendrick's and Bryant's results are having a local minimum at n==4 referring

to the general instability mode i.e. one lobe in longitudinal direction. It implies that

for a given L/R ratio there exists a value of n, which gives the minimum buckling

pressure in the general instability mode. Kendrick's results has a tendency to decline

after n=5. The results are available only up to n=8. The authoress' results are

declining continuously and reaches the minimum value at n=13. The higher values of

n refer to the interframe buckling mode with as many longitudinal lobes as frame

spaces. There exists a value of n, for which the collapse pressure in the interframe

mode is minimum.
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4.6.4 Interstiffener Buckling Analysis of Submarine Models

Interstiffener buckling values for M1 for various n values are shown in table

4.6 and shown in fig. 4.7.

Table 4.6 Interstiffener linear buckling pressures for Ml for
various boundary conditions

Circumferential wave j Buckling pressure (N/mn12
) _ .. ...

=-···---~~~t~>-····-~---_·-+---_·---u~_{!~-~--.--- .. ---J ---- -.~~~~-- ··_-·····k~=--~~·:
3 i 64.881 64.640 I 19.980
4 63.971 63.780 ..---l__. ~~4~_ .. .__
5 62.723 62.720: 19.240
6 61.622 61.500: 18.820

~~~~~~~~~~~~~~~ ~---_ .._-------~~--

7 60.282 I 60.140 i 18.360
-·-···-----···-·-·--8-------- i 58.764 I 58.701 I 17.960

~ 9 +-- 52.231_._.._._.__l. ._... __~.7)?J._.. ~--17.54L_
10 I 55.682 I 55.642 ! 17.100_
11 i 54.162 I 54.121 i 16.880

1----
1_2__+ 52.622 t--.~---~J-~~02-.-- ... __ ..: _.__ )_~!i~Q.__ ._

__ ._ .._._ ....J~ .....__+. 51.211 ! 51.160 16.470
14 I 49.799 I 49.760 16.400
15 I 48.499 : 48.460 16.380

20 43.381 j 43.344 17.120
__.___. __.__..].1 .___ 42.780 I 42.736 I 17.412

....--- 2_2------J 42.060 .---i 42.011 ----.- .... l- .__ .~.~.~~~ __ . _
_... __ _.-------~--.----___L 41.661 i 41.601 I 18.764

24 i 41.261 -l. ..---------~JJQ~ .. --.-----i-.---------....----

~~ ! :~:~~~ ~ _;i;i~_.__.__._-~Jm-u-.-- .un ._ .... _._C ...m.. _

28 40.366 i 40.300_.__-__-1- ..-.-
29 i 40.332 j 40.286 I

30 i 40.330 40.283 I

31 L. iO.38~_.__.__. ,.+---- 40.341 -1------...-.-.-----------
32 l 40.622 i 40.460 I
33 ~ 40.930 ! 40.650 !

-----.--..... -----.----.--....-+--.--- .--t- +-.--.-.----.---
34 , 41.300 I 40.990 ± .__ ..__
35 ; 41.620 ! 41.340 _

.--~.. .. 35 ; 42.102 ! 41.830 : ----

37 1 42.582 ----+ 42.270 i

38 I 43.122 I 42.770 I

39 43.822 i 43.410
40 i 44.38 ! 43.970
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Fig. 4.7 Interstiffener linear buckling pressures for Ml for various

boundary conditions with and without follower force effect

The buckling pressures for f-f, c-c and s.s-s.s boundary conditions have

been obtained as 40.330 N/mm2 (n = 30), 40.283 Nzmrrr' (n=30) and 16.380 N/mm2

(rr- 16) respectively. The interstiffener buckling pressure values for M2 for various n

values are shown in table 4.7. Variation of Per with n is shown in fig. 4.8.
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Table 4.7 Interstiffener linear buckling pressures of M2 for
b d ditivarious OUR ary con I Ions

Circumferential wave Buckling pressure (Nzmrrr')
no. (n) f-f c-c s.s-s.s

1 31.762 31.262 17.042
2 30.960 30.514 16.710
3 30.150 29.820 16.352
4 29.262 28.922 15.940
5 28.034 27.862 15.420
6 26.780 26.716 14.920
7 25.552 25.489 14.360
8 24.262 24.240 13.840
9 23.062 23.026 13.369
10 21.922 21.877 12.940
11 20.928 20.880 12.580
12 19.960 19.920 12.280
13 19.140 19.109 12.042
14 18.420 18.360 11.860
15 17.820 17.745 11.740
16 17.300 17.225 11.660
17 16.884 16.783 11.660
18 16.580 16.458 11.680
19 16.160 16.103 11.740
20 16.020 15.980 11.860
21 15.980 15.880 12.042
22 16.000 15.940 12.182
23 16.244 16.183 12.422
24 16.480 16.280 12.72

_._~ ~.-_ ..-- .'._._ _ _----_ _~.~_._-_.._--_.__ __._---_._.. --.-.. --_._--

25 30

5 ..:
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~E 30 ~
E
Z 25 ~'_.

-+-f-f ...~. c-c.

f-f with ffe

Fig. 4.8 Interstiffener buckling pressures for M2 for various boundary
conditions with and without follower force effect
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The buckling pressures for f-f, c-c and s.s-s.s boundary conditions have

been obtained as 15.980 Nzmrrr' (n=21), 15.880 N/mrn2 (n=21) and 11.660 N/mm2

(n == 16) respectively.

Percentage reduction in linear buckling pressure value for change in end

condition from rotation restraint (f...f and c-c) to s.s-s.s is 60 for M 1 and 30 for M2.

The influence of axial restraint (u) is negligible. The reduction in buckling pressure

is less than 1% from f-fto c-c boundary condition for M1 and M2.

From the above observations it can be concluded that for S.S'-S.8, the

interstiffener buckling pressure is the lowest and collapse occurs at lower value of n

compared to c-c and f-f boundary conditions. The collapse pressure predicted for

fixed boundary condition is the highest and is at a higher value of n. Fixity at the

ends reduces the effective length and the shell in effect becomes shorter and buckles

at a higher pressure and at higher circumferential wave number.

The effect of L/R ratio on buckling pressure and on circumferential wave

number is more pronounced with end restraints. Here L/R ratios for interstiffener

portions for MI and M2 are 0.14 and 0.19 respectively. The observation that the

circumferential wave number is inversely proportional to L/R ratio (Windenburg and

Trilling, 1934) is reflected in the results of the present study.

From M 1 to M2, as L/R ratio changes from O, 14 to 0.19 and Rlt ratio from

113 to 128, there is a reduction in collapse pressure by 60% for rotation restraint and

30°it> for s.s-s.s cases.

Both M 1 and M2 are designed for diving depth of 30001. Among M 1 and

M2., Ml , which is shorter and thicker, buckles at a higher pressure compared to M2.

These interstiffener buckling pressures indicate a factor of safety of 13.4 and 5.4 for

end restraint and simply supported conditions for M 1. The corresponding values are

5.3 and 3.8 for M2.

4.6.5 Interdeepframe Buckling Analysis of Submarine Models

Linear buckling analysis of stiffened cylindrical shell portion between

deepframes is conducted for M 1 and M2. The buckling pressure values for M 1 for
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various n values are given in table 4.8. The critical values are shown in bold. The

variation of Per with n is shown in fig. 4.9.

Table 4.8 Interdeepframe linear buckling pressures for Ml for various

boundary conditions

Circumferential wave Buckling pressure (N/mm2
)

no. (n) f-f c-c S,S-S,S

1 28.280 28.260 22.540
2 27.520 27.506 22.400
3 27.020 27.060 22.380
4 26.820 26.810 22.260
5 26.660 26.642 22.040
6 26.360 26.340 22.000
7 26.060 25.988 21.866
8 25.640 25.630 21.762
9 25.310 25.302 21.664

10 24.980 24.972 21.604
11 24.730 24.726 21.588
12 24.530 24.528 21.584
13 24.380 24.373 21.640
14 24.280 24.272 21.780
15 24.250 24.242 21.980 .

16 24.242 24.240 22.120
17 24.320 24.310 22.360
18 24.380 24.360 22.640
19 24.570 24.550 22.780
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The collapse pressure values are 24.242 N/mm2 (n =16) for f-f, 24.240 Nzrnrrr'

(n=16) for c-c and 21.584 N/mm2 (n=12) for s.s-s.s boundary conditions for Ml.

For M2 the buckling pressure values for various n values are shown in table

4.9. Variation of Per with n is shown in fig. 4.10.

Table 4.9 Interdeepframe linear buckling pressures for

M2 for various boundary conditions.

Circumferential Buckling pressure (N/mm2
)

wave no. (n) f-f c-c I S,S-S,s

1 I 18.280 18.260 I 16.330
2 I 17.930 I 17.920 ~ 15.980

! I I
3 17.368 : 17.360 ~

15.030
4 16.882 16.860 I 15.580
5 16.242 16.220 14.020
6 15.542 15.520 13.380
7 14.860 14.840 13.080
8 14.240 14.220 i 12.680
9 13.640 13.620 12.320
10 13.140 13.120 i 11.960I
11 I 12.710 12.680 i 11.680
12 I 13.364 I 12.340 I 11.380
13 12.090 I 12.060 j 11.210
14 11.868 11.840 I 11.090
15 11.780 11.752 11.040
16 I 11.730

I
11.710 I 10.990

17 11.660 11.610 11.020
18 11.690 11.660 11.120
19 11.810 I 11.780 11.320
20 I 11.950 i 11.900 I 11.520

151010 i5
Circumferential wave no. (0)

19··_··········_······ -- _-.
~-; 18 -.
E 17 .;
~, 16 .,

~ 15 ~
[ 14 ~

~ 13 -
~ 12
§ JJ.

10 +-- -.----,- -.-.. ---- -..__ __ _-..- --
o

...__..._---_....._.. _-.."

::

_._- .._._-~~._----=----=----=---- ~- --~~- ~.-:" :._~-.._.._~~:-- ";' _._:.:.::=.=::_ .. _._._._-

Fig.4.10 Interdeepframe linear buckling pressures for M2 for various
boundary conditions

74



The collapse pressure values for M2 are 11.660 Nzmnr' (n = 17), 11.610

N/mm2 (n = 17) and 10.990 N/mm2 (n= 16) respectively.

Percentage reduction in linear buckling pressure value for change in end

condition from rotation restraint (f-f and c-c) to s.s-s.s is 11 for M1 and 6 for M2.

The buckling pressure is not much influenced by axial restraint (u) and the change in

buckling pressure by the release of axial restraint is negligibly small.

It is observed that the linear buckling pressures for interdeepframe

configuration are less susceptible to boundary conditions compared to interstiffener

buckling pressures.

The shell between deepframes can be considered as a short shell having L/R

ratio 0.43 and 0.57 for M1 and M2 respectively. The various factors influencing the

interdeepframe linear buckling pressure are L/R and Rlt ratios of the shell as well as the

strength and spacing of stiffeners between deepframes. The observation is that there is a

reduction in buckling pressure by 50% irrespective of the type of boundary condition.

4. 6.6 Interbulkhead Buckling Analysis of Submarine Models

The buckling pressure values for M 1 for various n values are shown in table

4.10. The critical values are shown in bold. Variation ofPer with n is shown in fig. 4.11.

Table 4.10 Interbulkhead buckling pressures of stiffened cylindrical

shell for Ml for various boundary conditions

Circumferential waves I Buckling pressure (N/mm2
) _._- ._---

no. (n)
I

f-f I c-c i S.s-s.s........- .... _ ...... r- __

!
._.,.

1 19.724 19.720 : 10.696_._...
! 1---- I . •. _"••r"_ --

2
l

15.226 i 10.194 L 10.146
! u

3 i 16.090 i 16.084

---~
16.080I I. ,........- _.- _............

4 L- 17.694 I 17.688 17.682
---- '."-'- I ..__..-

5 ~~20.492
I

20.488 20.482i
.._-_.~--_._ .. _._ .. -_...~ I

6 I 22.992 I 22.986 I 22.980_._--_._ ..__.....•-... _.- r-. I -- - ----------

7 j 23.872 i-- 23.868 I 23.860_....... _..._-_ •.._--_.._---
8 i 24.320 -L 24.312 i 24.306

i ._....•.•, -- ..__ ... _._--_.-

9 I 24.636 ! 24.628 24.622
..'-- l _..._.._....+-- ._--.

10 i 24.818 24.838 ! 24.804~ :f-----...._ •. _-. I i ...... _ ......... -._... _...._.._--

11 24.816 24.581 I 24.802; !
......... _.... - i !

--_ ..__ .__ .._--

12
!

25.436 I 25.430 ....~?:1~~_.__.__! i. -- ..._-- ._.-
I13 25.690 25.684 ! 25.680._-_._ .•... ,._ ....._..---- I --- ~ I ..--'.-' .. -_._--

14 I 25.990 i 25.986 25.982
~----_._..._- I t==-.-.I6..306

-_. _.._.._.-

15 I 26.310 26.304
.._ ........ -. !

I
._. _._ ..._-

16 i 26.650 i 26.646 26.642
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The buckling pressure values for M2 for various n values are given in table

4.12. The variation of Per with n is shown in fig. 4.12.

Table 4.11 Interbulkhead buckling pressures of stiffened cylindrical

shell for M2 for various boundary conditions

Circumferential Buckling pressure (N/mm2
)

-,-
wave no. (n) f-f i c-c s.s-s.si

1 10.062 I 10.058
I

10.044

2 7.150 6.740 6.510
3 7.740 7.150 7.120

4 10.068 10.064 10.062

5 13.984 13.982 13.980

6 14.906 14.902 14.900
--

7 I 14.902 13.998 13.994
.....-

8 14.726 14.722 j 14.720
-~., .

9 14.548 14.544 14.542
.-

10 14.446 I 14.444 14.442

11 14.422 I 14.418 t 14.416I "-

12 14.486 I 14.482

I

14.478
I

.__.".'

13 i 14.602 ! 14.598 14.596

14 14.806 14.802
I

14.7981

i
I

_.

15 I 15.006 15.002 15.000I ._.._-

16 15.340 I 15.336
I

15.334L .-
17 15.706 15.702 I 15.698!
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M2 for various boundary conditions

The buckling pressure values are 15.226 Nzmm", 10.194 N/mm2 and 10.146

N/mm2 (all for n==2) for Ml and 7.150 N/mm2
, 6.740 N/mm2 and 6.510 Nzmrrr' (all

for n=2) for M2 for f-f, c-c and S.S-S.s boundary conditions. On considering the shell

between bulkheads, which is comparatively a long shell (L/R ratio is 3.42 for Ml and

4.59 for M2) the shell buckles in bending mode with n=2. The cylinders collapse in

an overall manner. The general instability failure occurs at a circumferential wave

number 2. Thereafter the buckling pressure increases and apparently reaches a

maximum value and decline again to give a second local minimum at a harmonic

number of 12 or 13 depending upon the boundary conditions.

Percentage reduction in linear buckling pressure value for change in end

condition from rotation restraint (c-c) to S.S-S.s is less than 1 and 3 for Ml and M2.

But there is a considerable reduction in buckling pressure due to the release of axial

restraint (u). The reduction of buckling pressure is 33% for Ml and 6% for M2. The

observation, made by Brush and Almroth (1975) that for general instability failure

the rotational restraint (w, = 0) is less influential than axial restraint (u==O) is reflected

in this work. Collapse pressure values for MI & M2 are 10.146 N/mm2 and 6.510

N/mm2 respectively and occur at n=2.

For linear buckling analysis, the buckling pressure is critical on considering

the interbulkhead configuration for simply supported boundary condition.

4.6.7 Follower Force Effect of Hydrostatic Pressure

Interstiffener buckling pressure values for M1, for various n values, with

follower force effect incorporated, are shown in table 4.12. The minimum buckling

77



pressures and corresponding n values are given in bold. Variation of Per with n is

shown in fig. 4.7. The corresponding values for M2 are given in table 4.13 and is

shown in fig. 4.8.

Table 4.12 Interstiffener linear buckling pressures for Ml for various

boundary conditions with follower force effect

f-f
65.760

____-+--- u ...".

-----_ ---

--------_._.

-·--+-1-----··-· ..-.--+------

I

i

!
i

-----+--i-..--------
i
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Table 4.13 Interstiffener linear buckling pressures for M2 for various
boundary conditions with follower force effect

Circumferential Buckling pressure (N/mm2)

wave no. (n) f-f c-c S.S-S.s

1 31.260 31.220 16.640

2 30.560 30.490 16.392

3 29.850 29.770 16.281

4 29.062 29.000 15.869

5 27.879 27.800
:

15.351

6
I

26.600 26.523 14.870

7 25.402 25.342 13.305

8 24.132 24.069 13.780

9 22.900 22.831 13.302

10 21.780 21.702 12.872

11 20.798 20.720 12.520

12 19.820 19.762 12.220

13 19.002 18.971 11.982

14 18.304 18.259 11.800

15 17.687 17.619 11.681

16 17.167 17.107 11.600

17 16.735 16.685 11.620

18 16.440 16.391 11.640

19 16.027 15.97 11.680

20 15.90 15.859 11.800

21 15.92 15.830 11.940

22 15.91 15.860 12.102

23 16.068 15.990 12.342

24 16.1612 16.1002 12.640

Buckling pressures for f-f, c-c and S.S-S.s boundary conditions for Ml has

been obtained as 40.428 N/mm2 (n==30), 40.202 N/mm2 (n=30) and 16.260 Nzrnrrr'

(n=16) respectively.
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And the corresponding values for M2 have been obtained as 15.920 N/mm2

(n= 21), 15.830 N/mm2 (n =21) and 11.600 Nzmrrr' (n = 16) respectively.

The effect of follower force on linear buckling of MI and M2 are given in

table 4.14 and 4.15 respectively.

Table 4.14 Effect of follower force on interstiffener minimum

linear buckling pressures of Ml

0.2

0.2

0.7

.. _~ % reduction

__._.. L-----------I

f-f

c- e

s.S - s.s

Boundary
condition

1 Buckling pressure (N/mm2
) & (n)

I Without follow~;'- i With follower force
i

I force effect i effect
1---------..- ._.J_- ~~---.---------_+_

I

______---+-__40_.3_30(30) L 40.2~~~~~_)_-+- _

I

40.283(30) ..._+--- 40.202(30)

16.380(16) f 16.260(16)

Table 4.15 Effect of follower force on minimum linear buckling pressures of M2

Boundary
I

Buckling pressure (N/mm2)& (n)
~ % reduction

condition
I

Without follower i With follower force
i

I force effect
I

effect i----_..-.. ..- -

f-f I 15.980(21) I 15.920(21)
i

0.4I
I

.- I --_.... ..._-

c- c I 15.880(21) I 15.830(21 ) -J-- 0.3
---_._--_..~~ .._-~ j _..._.. ----J

i i
!s.s - s.s

I
11.660(16) I 11.600(16) 0.5

i i

The reduction in buckling pressures are 0.20/0, 0.20/0 and 0.7% for Ml and

0.4%, 0.3% and 0.5% for M2 for f-f, e-c and s.s-s.s boundary conditions respectively.

It is obvious from the results that for interstiffener buckling, where the shell buckles

with large number of waves in circumferential direction, the influence of follower

force effect is very much limited.

Interdeepframe buckling pressure values for M 1 for various n values are

given in table 4.16. The minimum buckling pressures and corresponding n values

are given in bold. Variation of Per with n is shown in fig. 4.9.
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Table 4.16 Interdeepframe linear buckling pressures for Ml

for various boundary conditions

Circumferential
wave no. (n)

27.952

21.664

24.182

24.162

24.144

24.180

24.160

24.144

21.680

21.878

22.788

22.676
! ..~----

i____--+-!on ... -- ._.. ..-._-_

!
!

Buckling pressures for f-f, c-c and s.s-s.s boundary conditions for M 1 has

been obtained as 24.144 Nzrnnr' (n=16), 24.144 N/mm2 (n=16) and 21.482 Nzrnrrr'

(n=12) respectively.

Interdeepframe buckling pressure values for M2 for various n values are

givenn in table 4.17. The minimum buckling pressures and corresponding n values

are given in bold. Variation ofPcr with n is shown in fig. 4.10.
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Table 4.17 Interdeepframe linear buckling pressures for M2

for various boundary conditions

I Buckling pressure (N/mm2
)Circumferential !

wave no. (n)
r-----------......-...-..IJ.- ...... - ...._- ... ~,...._- --

: f-f c-c s.s-s.s
-+- -.._--- _.--~ ...._--- I --

I
;

18.150 I 18.132 I 16.0141

I I I
I

.._-_._.-.!--- I .. -

2 i 17.750 i 17.734 I 15.850
I ------------.-----t--

3 17.230 I 17.212
I

14.908I_._._...-4-
I

_.. _-- .-

4 16.730 I 16.708 I 14.434I I_......- ......... ---.- .. i I --_ ... _.__ .__..._---

I

i !

5 16.150 i 16.114 13.902
i i-'-'," ....._._--- -----+- ----_... ,. .. ._- ._----

6
I

15.410 i 15.380 13.250I
----"""'- ................_-_.. I ._...---.....-._-

7 I 14.720
I

14.692 12.950
..._- ....--....

I
--- ._.. - ........ ,...

8 I 14.1 ?O___.l 14.118 12.530
_.....-...---- I _..._.-

9
i

13.520 I 13.480 12.202j
.... .-..........-.........-- i I ....._.__ •. .1 ............... --_.- _._-_.-

10 13.032
I

13.000 11.840_..•...-_...

11 12.618 i 12.580 11.530
I---._~._.' ._- i I _.. _-----r----.

I I12 12.250 l 12.216 11.250
!-._- i ----I

13
I

11.980 11.940 I ] 1.089
I

.. - ._..---~-- ---
! I

14 I 11.780 11.74~ 10.974
! ...._.......,_....- --_...

t

11.700 10.93015 I 11.670i I
f------.- - -. __.-.. ! .- -----f-.... -. ~ .... --.

16 1 11.670 11.624 ______1 10.860
--_ ... _ ....... L--... ---_.- .

17 t 11.538 [ 11.500 10.980
----

! ..._....-- ..... _.- _._._- ... -

18 11.550
;

11.520 11.120
_.• ---_ ..-

19 11.660 11.620 11.250
,._ ..._....._.......,._.. I -_._.. ----

20 11.786 11.742 ! 11.408!

Buckling pressures for f-f, c-c and s.s-s.s boundary conditions for M2 has

been obtained as 11.538 N/mm2 (n= 17), 11.500 N/mm2 (n--17) and 10.860 N/mm2

(n== 16) respectively.

The effect of follower force on interdeepframe linear buckling pressures of

M1 and M2 is given in table 4.18 and table 4.19 respectively.
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Table 4.18 Effect of follower force on interdeepframe minimum

linear buckling pressures of Ml

~UCkIingpressure (Nzrnm'') & (n)
I

Boundary
condition Without follower force- , With follo~er force % reduction

i.. ... _ effe~t I _.... effect_ ...
I

f-f 24.242(16) i 24.144(16) 0.4! i
r------- i I ....._-

I
I

24.240(16) 24.144(16) 0.4c- c
I--

s.s - s.s 21.584(12) 21.482(12)
I

0.5

Table 4.19 Effect of follower force on interdeepframe minimum linear

buckling pressures of M2

: 1.0
----.---..~ ------i-------- ...-.-----1

i
: 1.1

11.500(17)

10.860(16)10.990(16)

f-f

c- c

s.s - s.s

Boundary
condition

i Buckling pressure (Nzmrrr') & (n)
~ % reduction
! Without follower With follower force

t------~.-._---_.! ~o;.:e6~~~e;; 11 ~::~~: 7;- ..--T--"~-.~-"
----1- ! .. ------....

I
1-----------11- 11.610(17)

I
I
I

There is a reduction in buckling pressure by 0.4%, 0.4% and 0.5% for M 1

and 1.0% 1.0% and 1.1 % for M2 for f-f, c-c and s.s-s.s boundary conditions. The

follower force effect is negligible since the shell is a short one and buckles with more

number of circumferential waves.

Interbulkhead buckling pressure values for M1 for various n values are

given in table 4.20. The minimum buckling pressures and corresponding n values are

given in bold. Variation of buckling pressure with n is shown in fig. 4.11.

For M2 the buckling pressure values for various n values are given in table

4.21. The criticalvalues are shown in bold. Variation ofPer with n is shown in fig. 4.12.
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Table 4.20 Interbulkhead linear buckling pressures for Ml
for various boundary conditions

-.....,.-----------::::.........:::..---------,-------'-------- _.._-----1

s.s-s.s

I

~~--
_··_·_···------+I--~----~

-_.~-----~-~..---_--~---------

~.. ~- 1

I

Table 4.21 lnterbulkhead linear buckling pressures for M2 for various'
boundary conditions

Circumferential I ~__B---.U~_k_li_ng=--p:::~r_essure(N/mm
2

) _.-....- .... .....

wave no. (n) I: f-f ! c-c i s.s-s.s
e------- 1 ; 9.620 I 9.618 i······· 9.616-

2 i 6.540 t--. 6.160 ± 5.950 __w--_

------3---,.·_--+-I-~n-6.950 I 6.948 ~ 6.942 --
----~- i I

e------. 4 i 9.960 1--9~256 T-=------- 9.952 -- ~-
f--__ ... 5 .1 13.846 ! 13.8~±----+--- }}.840 ___

f--.__ __6__-1~ 14.766 .. i 14.762 _. i l~.'Z~Q.._

-·---··--..·--;----t~:-·-··- ~~:~~~ .__±_~~{---~-J1:~-~1 -=
9 i 14.428 i 14.42~_ I 1~:~_2_4 _

r--.-...-----J-O--l 14.326 I 14.3~4 ~-.}.4.322
r--- ._.... _

1_1__ :: .. 14.308 ~ 14.3_04 I ...__~4_.3_0_2__•
12 14.368 14.364; 14.360

----.-..-~~.---- r------., i ----- ..-----

f--.." ...----~~------- ; ~~:~~5_+_-+t-~~: i ----i::~~ ---
-------·--··---+-1----··--- I .."._._- I .-"- .. -..-

15 i 14.968 i 14.964 14.962
t---.__.~---+---I--,------~ I -------

16 -11,'_ 15.270 i 15.266___!_5.?~'! _
17 15.588! 15.584 15.578
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The collapse pressure values for general instability failure are 10.582 N/n1ill2,

6.986 N/mm2 and 6.944 Nzmm' (all for n=2) for Ml and 6.540 Nzmnr', 6.160 N/mm2

and 5.950 N/mm2 (all for n==2) for M2 for f-f.. c-c and s.s-s.s boundary conditions.

The effect of follower force on interbulkhead buckling of M1 and M2 are

given in table 4.22 and table 4.23 respectively.

Table 4.22 Effect of follower force on interbulkhead minimum

linear buckling pressures of Ml

30.5

31.5

31.6

f-f

c- c
s.s - S.s

Boundary ~_ Buckling pressuT (N/mm
2
)& (n) . j

condition ! Without follower With follower force i % reduction

i f~~~~;:~~;t 1. 1O~~~;:2) ----L
! 10.194(2) I 6.986(2)

I 10.146(2) I 6.944(2)

Table 4.23 Effect of follower force on interbulkhead minimum
linear buckling pressures of M2

Boundary
Buckling pressure (N/mm2)& (n)

, -_.
% reductionWithout follower I With followercondition i

force effect i force effect

f-f 7.150(2) +-- 6.540(2) 8.5.. -..-_ ...- -.....

c- c 6.740(~~_._----J 6.160(2) 8.6
._.......

6.510(2)
I

5.950(2) 8.6s.s - s.s

There are reductions in buckling pressures by 30.50/0, 31.50/0 and 31.5% for

M1 and 8.5%, 8.6°16 and 8.6% for M2 for f-f, c-c and s.s-s.s boundary conditions.

The follower force effect of hydrostatic pressure has very high detrimental

effect in the case of general instability failure, which is the case of long shells in which

shell buckles with 2 or 3 waves in the circumferential direction. The collapse pressure

reduction due to pressure rotation effect is about 31% for Ml and 9% for M2.

For linear buckling analysis with follower force effect, interbulkhead

buckling pressure for S.S-S.s boundary condition becomes critical. Design pressure

for two submarines has been 3.016 N/mm2 corresponding to diving depth of 300m.

Subsequent safety factor is 3.364 and 2.158 for MI and M2 respectively.
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CHAPTERS

GEOMETRIC NONLINEAR ANALYSIS

5.1 INTRODUCTION

The geometric nonlinearity arising from nonlinear strain displacement

relations is considered in the present study. The follower force effect together with

geometric nonlinearity is considered further.

The concept of equilibrium path plays a central role in explaining nonlinear

structural analysis. An attempt is made to plot the equilibrium path for stiffened

cylindrical shell under external pressure loading. Determination of equilibrium path

involves elastic and geometric stiffness matrix in the defonned configuration.

Deformations are computed at intermediate load levels by iterative procedure. The

pressure at which the stiffness of the structure vanishes is taken as nonlinear buckling

pressure

5.2 HYDROSTATIC PRESSURE AS RADIAL PRESSURE LOAD

5.2.1 Methodology

Hydrostatic pressure is considered to be radial to the undeformed cylinder and

can be treated as dead load in the analysis. For this conservative loading, the

equilibrium equations can be derived from the principle of stationary potential energy.

In the finite element geometric nonlinear analysis the basic problem is to

develop equilibrium equations corresponding to applied loads in the deformed

geometry, taking into account all nonlinearities and to seek the solution of these

algebraic equations through out the complete history of load application (Bathe,

2001). Tangent stiffness matrix and the load vector are used to generate the

equilibrium equation at a particular load step.

A load-control incremental-iterative procedure (Cook et al, 1989) is adopted

for the geometric nonlinear analysis in the present study. In this method several
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monotonically increasing load levels are required to predict the state-control

response (fig. 5.1).

y

t
"'C
~
e.....

load control line

UB (U+AU) Vc displacement x

Fig. 5.1 Load control incremental - iterative procedure

The analysis starts from a linear solution and then tries to follow the

behaviour of the system as actions applied to it are changed by small steps called

increments. To eliminate or reduce the drifting error, the incremental step is followed

by one or more iteration steps (Felippa, 1999).

Load control incremental - iterative procedure can be summarized ~s

follows. The solution for the discrete load step P (PA) is known and that the solution

for the next load step p+~p (Ps) is required, where ~p is the suitably chosen load

increment. Hence for the load step PA+~p the equilibrium equation relating the

external nodal load and the internal forces can be written as

P+~P{R} - P+t1P {F} = 0 ....................... (5.1)

Where P+t1P{R} is the equivalent nodal loads and P+t1P{F} is the resistive forces

developed due to internal stresses ( the left superscript denotes the load step level

P+~P).
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Since the solution is known at the level P only and P+8P {F} cannot be computed

directly, the equation is written as

p+tlP {R} - P {R} = {~R} = {~F} ........................ (5.2)

Where {L\R} is the increase in equivalent nodal loads due to increase in load level

{~P}and {~F} is the increment in internal nodal forces

.................................... (5.~)

where t[PKT] is the initial tangent stiffness matrix at the load level P and {L.\U} I the

displacements at the first iteration. From the Eqn. 5.3

........................ (5.4)

These displacements are transferred to the elements to get the deformed

configuration.

Assuming each element to be in the new coordinate axes, which is the

rotated one, the tangent stiffness matrix t [P+ 8P KT] 1 is calculated. The new

incremental equivalent force vector, {~F} 1 is calculated using the relation

.................................... (5.5)

The difference load vector {dQ} I is calculated at the first iterative level

....................... (5.6)

and {~Q} 1 is used for the recovery of the displacements {~U}2

....................... (5.7)

These displacements are further added to nodal coordinates to get the current

deformed configuration and hence the new tangent stiffness matrix t [P+ ~p KT] 2
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At the end of iteration, the solution obtained should be checked for

convergence using the condition

{~U}i <= EO
{i\U}

Where sD is the displacement convergence tolerance limit.

••••• 9 ••••••••• ~ ••••••• (5.8)

(Since the vector {~U} is not known, it can be taken as equal to L{LiU}i ). This

process is continued to the next incremental step (Ps to Pc).

Finite element formulation for geometric nonlinear analysis in the present

study is based on corotational kinematics, which accommodates the large

displacement matrix (eqn.4.3) by adjusting the element coordinates in the

computation of stiffness (Zienkiewicz, 1979). It is effective in problems involving

finite rotations and small strains. Besides existing small strain (linear) finite element

libraries can effectively be adopted to such formulation (Crisfield, 1981).

5.2.2 Corotational Kinematics and Generation of Total Tangent Stiffness Matrix

Corotational kinematics is used to generate relevant stiffness matrices

(Felippa, 1999) and is described subsequently, In corotational description the

reference configuration is split up or decomposed into initial or base configuration

and corotated configuration. The corotated configuration follows the element like a

shadow. The total displacement of the structure is considered to be composed of

rigid body and deformational displacement Purely geometric approach .is

implemented for the separation of deforrnational displacement, which is measured

with respect to corotated configuration, from the rigid body motion. Strain energy

expression is based on the strains and the stresses from purely defonnational

displacernents, expressed in terms of total displacements. Tangent stiffness is derived

from this strain energy expression.

Fig. 5.2 gives the corotational motion description of the element.

(Deformations are grossly exaggerated for better visibility.)
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(X,y,z)

ux,«
"-"-+-""""7""---+-----.....

Uyl Y,y

Co - Base or initial configuration
C - Current configuration
CR - Co rotated configuration

uyo

Co Po(X,Y,Z)

---.Lo Uxo Ux2

Fig. 5.2 Corotational kinematics (Felippa, 1999)

Assume that the element is in the global X-axis in the reference

configuration C, with the origin located at the mid point. The motion in the (X., Y,

Z) space carries it to the current configuration C~ The corotated configuration eR
follows C and occupies a symmetric position. An element coordinate system, also

called the local system is denoted by (xo
e
, Yoe,zoe ) in the initial stage and (xe,yC.,ZC)

in the corotated stage.

This system follows the element motion so that XC is aligned to the element

longitudinal axis. In the reference configuration Co, the element axes (XO
C

, Yoe, zoe)

coincide with (X, Y, Z). In the corotated configuration the element axes (XR
C

, YRc
,

ZRC) coincide with (x", ye, z"). The figure depicts the motion of a typical particle, P,

(X, Y, Z) to PR (XR, YR, ZR) in eR and P (x, s, z) in C.

........... ~ (5.9)y-y

z-Z

{u} = {x - X} =

The total particle displacement in the global coordinate is

x-X

The total displacement is spilt into a rigid body displacement UR and purely

defonnational displacement u
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where

u UR + U = ( XR -X) + (x - XR) ..................... (5.10)

DJ
T X Uxo

n2 y + Uyo [Tr]TX + Uo .......(5.11 )

n3 Z Uzo

where [ T, ] is called the coordinate rotation matrix and 1, m and n are the direction

cosines

{x}

x

y

z

X+ux

Y+uy

Z+uz

=X+u=[I]X+u ...................... (5.12)

where [I] is the unit matrix

On extracting the deformational displacement

Ux x - I-It -12 -13 X ux-uxo1
{U} Uy ::::: y -m2 1- m2 -m3 y + Uy-Uyo .... (5.]3)

Uz Z ..nl - 02 I-n3 Z Uz-UzoJ
In the matrix form

u ==[ I -TrT
] X + u - u,

This can be transformed into element coordinates

................................. (5.14)

(5.15)

The extraction of deformational displacements is nonlinear since direction

cosines are nonlinear functions of global displacements.

The strain energy can be derived from only purely defonnational motion

(not including the rigid body motion) using the eqn.5.15. The second variation of the

energy expression of the circular cylindrical shell subjected to dead surface pressure

can be utilized for the derivation of tangent stiffness matrices as suggested by Brush

and Almroth (1975). Matricisation of it gives rise to element total tangent stiffness

matrix in the current configuration.
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....................... (5.16)

The total element tangent stiffness matrix t[kT] in the current configuration

can be decomposed as below.

. (5.17)

where [k-] is the total element tangent stiffness matrix in the previous configuration,

which may be the undeformed configuration in the first iteration and is obtained by

adding elastic stiffness and geometric stiffness matrices [k] and [kG].

...................... (5.18)

[TR] is the transformation matrix and is given below as eqn.5.19.

Tr 0 0 0

0 Tr 0 0
...................... (5.19)TR =

0 0 Tr 0

0 0 0 Tr

where [ T, ] is called the coordinate rotation matrix explained in eqn.5.11.

The pre and post multiplication of transformation matrix, which contains

trigonometric function, imparts nonlinearity to the total stiffness matrix.

5.2.3 Transformation Matrix

The transformation matrix is derived from coordinate rotation matrix,

which is implicitly defined by node displacements through trigonometric relations

derived from the orientation of the element with respect to global axis.

The coordinate rotation matrix for the finite element considered is given

as expression 5.20.
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ex Cv Cz

CxCv coso-Cgsinc ~(CX2+CZ2)cosa - CyCZcosa+ Cvsinu

Tr= ~(CX2+CZ2) ~(CX2+CZ2) (5.20)

c,c, sinn-Czcosu -"CCx2+Cz2)sina. - CyCzsina.+ Cvcosc

~(CX2+Cz2) ~(Cx2+CZ2)

where

ex = XL/L, Cy = YJL, CZ = ZJL

Where

............................ (5.21)

Xo is the undeformed length of the element, Lo and Y0 and Zo are zeroes in the

undefonned configuration and changes on each iteration step accordingly.

..................... (5.22)

where Xky Yky and Zky are the coordinates of the additional node chosen lying on the

element principal

(Krishnamoorty,1987).

plane with respect to the rotated system of axes

5.2.4 Tangent Stiffness Matrix

The tangent stiffness matrix is developed using the eqn.5.17 and eqn.5.18.

In the eqn.5.18 linear elastic stiffness matrix [k] is from the section 3.3 and section

3.4 and geometric stiffness matrix [kG] from section 4.2.
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5.3 FOLLOWER FORCE EFFECT OF HYDROSTATIC PRESSURE

In the geometric nonlinear analysis treating hydrostatic pressure as a

follower force, the pressure stiffness matrix is to be updated in every iteration. This

is implemented through modifying the conventional tangent stiffness matrix by the

addition of pressure stiffness matrix.

[kTJ == [ k] +[ kG ] +[kp] . (5.23)

In the expression 5.23 linear elastic stiffness matrix [k] is described in the

section 3.3 and section 3.4 and geometric stiffness matrix [kG] in section 4.2 and the

pressure stiffness matrix in subsection 4.3.1.

The tangent stiffness matrix in the current configuration is obtained by pre

and post multiplication of the initial tangent stiffness matrix by the transformation

matrix given in eqn.5.19.

. (5.24)

The methodology adopted is same as that explained in subsection 5.2.1.

5.4 SOFTWARE DEVELOPMENT

Software is developed in C language for geometric nonlinear analysis of

stiffened cylindrical shell, treating hydrostatic pressure as radial and as follower

force.

5.4.1 Flow Chart

The schematic diagram is given fig. 5.3a and the hierarchal order of

operations is given in the flowchart (fig. 5.3b).
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MAIN PROGRAM

Absolute
minimum
buckling
pressure

Circumferc
ntial wave
number
non linear
buckling
pressure

Stress resultants and principal stress
evaluation. Determinant evaluation
Equilibrium path plotting
Buckling pressure prediction.
Repetitive procedure for next
circumferential wave number.
Prediction of absolute minimum collapse
pressure

INCREMENTAL PROCEDURE
Initial load increment
Linear static analysis to predict linear
nodal displacements

OUTPUT
Equilibriu
m path
nonlinear
load

ITERATIVE PROCEDURE deflection
Calculation of nodal coordinates curve

Nonlinear
Development of element transformation
matrix buckling

Development of element tangent pressure
Stress

stiffness matrix in the deformed
resultants

configuration and
Assemblage to global tangent stiffness
matrix principal

..-.... Calculation of equivalent nodal force 1<lIII~__-""'~ stresses at
.... particular

vector load levels
Evaluation of net load vector
Net nodal displacement calculation
Total displacement evaluation
Tolerance limit checking

INPUT DATA

Geometric and
material
properties of shell,
stiffeners, deep
frames etc.,
spacing of
stiffeners, deep
frames and
bulkheads.
Boundary
conditions 
simply-
supported,
clamped or fixed,
Circumferential
wave number and
probable range of
buckling pressure.

Fig. 5.3a Schematic diagram of geometric nonlinear analysis
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Call pressurest

Call assemb

Call cok

+

Call transform

Call load

+
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Call netload

Call gauss

Call deflection

Call next load step

Fig. 5.3b Flowchart for geometric nonlinear analysis
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5.4.2 Description of the Program MAIN

The function MAIN initially calculates elastic geometric and pressure

stiffness matrices of the cylindrical shell. It also calculates elastic and geometric

matrices of the stiffener. It assembles total stiffness matrix and incorporates the

effects of stiffeners. The boundary conditions are accommodated and the equivalent

joint loads are calculated. The displacements are calculated as per linear static

analysis, and are used to predict the coordinates of the deformed configuration.

As the next step, based on these new coordinates, the transformation matrix

and subsequently tangent stiffness matrix of each element are developed. Tangent

stiffness matrix is then assembled to get the global tangent stiffness matrix. The net

nodal loads based on current displacements are calculated by subtracting the nodal

forces from the equivalent joint loads. Using these net nodal loads, the incremental

displacement is calculated by performing Gauss elimination. The displacement after

first iteration will be the sum of initial displacements and incremental displacements.

The iteration is continued till tolerance limit is attained. Determinant of total tangent

stiffness matrix is evaluated. Then the procedure is repeated to next load increment.

The stresses are calculated at each load levels. This software is developed

exclusively to calculate the buckling pressure of stiffened cylindrical shells.

However, using the functions, deflection and stress, the deflections, stress resultants

and principal stresses can also be determined.

5.4.3 Description of Functions

The functions shell, stiff, be. load and gauss from the linear static analysis

(section 3.5.3) and functions geoshell, geostiff, pressures! and matdet from linear

buckling analysis (section 4.4.3) are used with some modifications. Functions

developed for geometric nonlinear analysis besides those mentioned above are

explained subsequently,

Function cok

This function is used to incorporate the effects of elastic stiffness matrix

[k.], geometric stiffness matrix [kG] and pressure stiffness matrix [k-] of the shell

element to get [kT] .
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Function eoks

It is used to incorporate the combined effects of elastic stiffness matrix [k.]

and geometric stiffness matrix [kgs] of the stiffener.

Function assemb

Function assemb is used to get the assembled global stiffness matrix [K] of
the unstiffened cylindrical shell.

Function stassemb

This function includes the stiffness matrices of the stiffeners to get the

global stiffness matrix [Ks] of the stiffened cylindrical shelL

Function eoor

This function calculates the new displaced co-ordinates of nodal points of

each element after the displacement evaluation by Gauss elimination procedure (step

for generating tangent stiffness matrix).

Function transform

Function transform develops the transformation matrix for each element

based on the new displaced position.

Function eke

eke calculates the tangent stiffness matrix of each element based on the

corresponding transformation matrix.

Function ass

This function assembles the tangent stiffness matrices to get global tangent

stiffness matrix.

Function ssta

Function ssta incorporates the effect of stiffeners.

Function nodf

It calculates the nodal loads based on first iteration.
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Function netload

Function netload calculates the net effective load by subtracting nodal

forces from equivalent joint load.

Function tolerance

Function tolerance determines whether the iteration is to be stopped or

continued..

5.5 NUMERICAL INVESTIGATIONS

Validation of the program is done using the benchmark problem (BMP4)

suggested by Moradi and Parsons (1993). The geometric features of ring stiffened

cylindrical shell are shown in fig .. 5.4.

-.10.34 I+-

2.38
!""""""- ~ I l-

0.13

T

1--

tshell = 0.023 4

tstiff == 0.017

~_Jl ._._._._._._._. ._. ._._._._._._._. .~
Fig. 5.4 Geometric features of ring stiffened cylindrical shell (BMP4) (All

dimensions are in inches)

Modulus of elasticity of the material of the cylinder is 1..04 x 107 psi and

Poisson's ratio is 0.3. s.s-s.s boundary condition has been adopted.

Linear buckling pressure and results from geometric nonlinear analysis have

been compared for BMP2 (Kendrick, 1970), the geometry of which is given in

fig. 4.2a. The variations of buckling pressures with circumferential wave numbers

are predicted and the critical values are compared. The influence of various boundary

conditions viz., fixed-fixed, clamped-clamped and simply supported-simply

supported on nonlinear buckling pressure is investigated. A comparative study is

made between linear and nonlinear buckling (limit point) pressures for above-
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mentioned boundary conditions. Equilibrium path is drawn for simply supported

simply supported boundary condition and the limit point pressure is observed.

Geometric nonlinear analysis has been conducted on stiffened cylindrical

shell of Kendrick's example (BMP3), which has been shown in fig. 4.3a. The shell

skin is modeled using all-cubic axisymmetric shell element and stiffeners using

discrete ring stiffener element. The variations of buckling pressures with

circumferential wave numbers are predicted. Influence of f-f, c-c and s.s-s.s

boundary conditions on nonlinear buckling pressure is investigated. A comparative

study is made between linear and nonlinear buckling pressures for the above

mentioned boundary conditions. Equilibrium path is drawn for f-f boundary

conditions.

Geometric nonlinear analysis has been carried out for stiffened cylindrical

hull of attack submarine models Ml and M2 have been given in section 3.6.2.

Geometric features of stiffened cylindrical shells of submarine M 1 and M2 are given

earlier in table 3.2 and in figs. 3.6a, 3.6b, 3.7a and 3.7b. Geometric nonlinear

analysis has been carried out for the three configurations dealt in the linear buckling

analysis viz., cylindrical shell between stiffeners (interstiffener), stiffened cylindrical

shell between deepframes (interdeepframe) and stiffened cylindrical shell between

bulkheads (interbulkhead). The variations of buckling pressures with circumferential

wave numbers are predicted. The scope of the numerical investigations has been

extended to realize the influence of possible boundary conditions.

A comparative study is made between linear and nonlinear buckling

pressure for Ml and M2 for the above-mentioned configurations, for f-f c-c and s.s

s.s boundary conditions. The equilibrium paths or nonlinear load deflection curves

are plotted with maximum radial deflection Vs hydrostatic pressure for M 1 and M2

for the three configurations for f-f boundary conditions for wave numbers

corresponding to minimum buckling pressures. The limit point buckling pressures

can be observed from that. For a comparative study the linear load deflection curves

are also plotted along with the equilibrium path diagrams.
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The follower force effect of hydrostatic pressure is also investigated for M 1

and M2 for the three configurations. The influence of various boundary conditions

viz., fixed-fixed, clamped-clamped and simply supported-simply supported on

nonlinear buckling pressure with follower force effect is investigated. The

equilibrium paths are drawn including pressure rotation effects. The linear load

deflection curves are also plotted along with the equilibrium path diagrams. A

comparative study is made between linear and nonlinear buckling pressure for M 1

and M2 for the above-mentioned configurations.

5.6 RESULTS AND DISCUSSION

5.6.1 Validation

The buckling pressure evaluated from geometric nonlinear analysis of

BMP4 for s.s ...s.s boundary conditions are given in table 5.1. The minimum buckling

pressure and corresponding n value is given in bold, The nonlinear buckling

pressures Per against circumferential wave numbers (n) for s.s-s.s boundary

conditions are shown in fig, 5.5.

Table 5.1 Nonlinear buckling pressures corresponding to wave numbers for BMP4

636

2

3

!
Circumferential wave no. (n) i Minimum buckling pressure (psi)

-------+! ------ ...-.-. -----t:

--L--------- --.-
I
I 608--_._.._--~--+---_._ _.._--------.
I

~ 420

-_.__ ._._ _-------

:
------~.-+--- .. ..... --. -. ------=----1

4

5 !
i

299

262
_._._-_ .... __ ..._'-'.. ------

6 243

7 258

8 324
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Circumferential wave no. (n)
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-------~------,-

0.5 1
Radial deflection (inches)

~·N-online~~··~·Lini;~~··!

Fig. 5.5 Nonlinear buckling pressures corresponding to wave numbers for BM:P4

For S4S-S.S boundary condition the minimum buckling pressure obtained

243 psi (n=6). The nonlinear buckling pressure predicted using four nodded shell

element in ABAQUS is 241 psi (Moradi and Parsons, 1993). The obtained result is

0.8% upper bound.

Equilibrium path with maximum radial deflection Vs hydrostatic pressure for

S.S-S4S boundary condition is given fig. 5.6. Linear load-deflection curve is also plotted

along with the equilibrium path. In the equilibrium path an almost linear regime is

followed by a softening regime and there is no substantial redistribution of stresses' due

to changes in geometry and the structure eventually collapses at the limit point. From the

nonlinear path it is observed that the collapse occurs at a pressure of243 psi.

~-s. 400 -.-------...---..-.-.-..... --... ~--
~ 300
V}

~ 200 ---~.....---=--------------~._-.-.-..-...
'c,
~ 100

.E
:¥ 0u

~ 0

Fig. 5.6 Linear and nonlinear load deflection curve of BMP4

for s.s-s.s boundary condition (n = 6)
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5.6.2 Interstiffener Analysis of BMP2

The buckling pressure evaluated from geometric nonlinear analysis of

Kendrick's model (BMP2) for f-f, c-c and s.s-s.s boundary conditions are given in table

5.2. Theminimum buckling pressures and corresponding n values are giveninbold.

Table 5.2 Nonlinear interstiffener buckling pressures corresponding to wave

numbers for BMP2 for various boundary conditions

c-c

Nonlinear bucklingpressure (psi)

f-f

1

3

2

Circumferential waves no. (n) 1
I
I s.s-s.s

---------------+-------J-------.-.....
2800 2680 I 1225

t----------------.------i-l------~---------·-······· .-. t -.--.--.--.---

: 2757 : 2440 ! 1200
~~~~~~~~~-~-~----~-~~--~---~---~

; 2670 i 1860 i 890
I i I

61081413907

4 ! 2526 I 1295 I 745
-.--~-----------+-!---~--.- ! t---------~--

5 I 2315 i 1057 i 685
------.---..----~-.--- .. _- .._---~~-~----+-----.-.-- _.._.- .. _.~. -_..1.- _. - ~.- .. -".,.-,.",,-., ··t··· . - - ,

6 i 2095 882! 630
I

i
-+-------

I
I
I

890

820

978

970

1094

1027

8

9

15

16

17

14

I

: 1080 782: 594
.----------~----~-----+-~-------__t_-..--..-.--.~ -~ ..---- - ~.-----.- -----.- ---.-.---

1

1

930 i 760 i 580
.~----------~--____+_-------+-I--- I --

: I I

10 I 860 i 775 i 600
......-. -··· ..·······---··--·---------~----·-------l-------------+---~------·i---------- -... -- ...-....

11 I 840 L~80-----J-----~~~----.
12 I 855 i 805 ! 665

13 t 882 : 820 I 710 .
-------.---~----.~----.--+---- ..---- _. - ..···1·- ._._-- --- -- ---.- ----~-- .. -.-.. -- --.. --.- -- ---.----.---

920 1 850 ! 776
1------------------+--------.-.--... - --'--...-- ~--------.----_l_~-..-----I

[

I 920 :
-._--.... ..-".--.--------------;---------1 --~_._.. .__.l.._- .. -~-----'--__I

I 980 .:
1--------- ------------+--------+----..- -- ,..-..--~.----------I

I 1020 ,

The variation of nonlinear buckling pressure Per against circumferential

wave number n for the three boundary conditions are shown in fig. 5.7.
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Fig.5.7 Nonllnear interstiffener buckling pressures corresponding to wan

numbers for B:\l P2 for various boundary co nditions

For f-f c-c and s.s-s.s boundary conditions , minimum buckling pressures

are 840 psi (0 ~ 11),760 psi (n = 9) and 580 psi (n = 9) respectively. Comparative

study between linear and nonlinear buckling pressures for f-f c-c and s.s-s.s

boundary conditionsare given in table 5.3 and fig. 5.8.

Table 5.3 Comparison of linear and nonl inear bucklin g pressures of

RMP2 for variou s boundary conditions

Buckling pressure (psi) & (n)
Boundary condition % reduction

Linear Nonlinear

f-f 1202( 14) 840(1 1) 30.1

c-c 1163(14) 760(9) 34.6

sos 765(12) 580(9) 24.8
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Fig. 5.8 Minimum linear and non linear buckling pressures
for various boundary conditions for 81\11)2

Nonlincarity induces a reduc tion in buckling pressure by 30. 1% for f- f

34.6% for c-c and 24.8% for s.s-s.s boundary cond itions. In the geometric nonlinear

analysis change in geometry as the structure deforms is taken into account and hence

depicts the actual situation of shell buckling at a lower pressure.

Equilibrium path or nonlinear load deflection curv e with maximum radial

deflection Vs hydrostatic pressure for s.s-s.s boundary condition is fig. 5.9. Linear

load deflect ion curve is also plotted along with the equilibrium path. From the

nonlinear path it is observed that the collapse occurs at a pressure of 580 psi.

.',
.l,

/~•
~t7

7"
!i

700

1 2 3

Fig. 5.9 Eq uilib rium path and linear load deflection curve of BMP2 for f-f

boundary condition (n = 11)
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5.6.3 Analysis of Stiffened Cylindrical Shell of BMP3

Table 5.4 gives the buckling pressure of stiffened cylindrical shell BMP3 for

various circumferential wave numbers for f-f, c-c and s..s-s.s boundary conditions. The

variations of nonlinear buckling pressure against n for three boundary conditions are

given in fig. 5.10. The minimum buckling pressures of linear buckling analysis and

present study and corresponding n values are given in table 5.5 and fig. 5.11.

Table 5.4 Nonlinear buckling pressures corresponding to wave

numbers for BMP3 for various boundary conditions

2254

2234

s.s-s.s

._....--------I

c-c

Circumferential wave no. j Nonlinear buckling pressure (psi)
ll--j-------..---.--r--------~----

(n) i
t-----------.--.--...-~----------4-----.- .. ,." .. -----.,-------------1

I
I
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f-----------------
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9
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Fig. 5.10 Nunli nea r buckling pressures correspondin g 10 wan numbers of

stiffened cylindrical shell of B~[P3 for various boundary' condUions

Table 5.5 Comparison of linear and oonlinear buckling pressures of 8~1I)3

for f-f. c-c and S.S-S.s boundary condl tlons

Boundary condi tion
Buckling pressure (psi) & (n) %

Linear Nonlincar reduction

f·f 1233(13) 920(12) 25.4

e-e 123 1(13) 920( 12) 26.1

s.s-s.s 1193(13) 910(12) 23.7

'300
_tJ
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• ,>00
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E.. 700:0
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f·f .......

Fig. 5.11 Minimum linear and nunllnear buckling pressures
for various boundary coodil ions for 8~IP3
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The critical buckling pressures are obtained as 920 psi. 920 psi and 910 psi for

circumferential wave no. 12 for all the three boundary condi tions studied. This

implies that for stiffened cylindrical shells. the buckling pressure is less sensitive to

boundary conditi ons. The type of boundary condition will not have much effect on

circumferen tial wave number on which the buckling occurs. Nonlincarity causes a

reduction in circumferential wave number by one and induces a reduction in

buckling pressure by 25.4% for f-f 26.1% for c--c and 23.7% for s.s-s.s boundary

conditions (table 5.5).

Equilibrium path for f-fboundary conditi on for n=12 is given in fig. 5.12.

Linear load--deflection curve is also plo tted along with the equilibrium path. The

figure displays the limit point pressure value as 920 psi.

1200 .--------------

1000 +-1'- - - - - - - - - - - - - -

- "" _.ff' _

I-Ifr- - - - - - -

.li 400

1===:::..1

200 1 - - - - - - - - - - - - - -

•2 • •

DeIedim (net-)

..----------~--~
•

Fi2. 5.12 linea r and nonlinear load deflection curv e of BMP3 for f- f

bo undary condition for circumferential wan number 12

5.6.4 Inlerstiffener Analysis of Submarine Models

Interstiffener nonlinear buckling values for M I for various n values are

shown in table 5.6. Variations of Pcr with n are shown in fig. 5.13, The minimum
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buckling pressures and the corresponding n values for linear buckling analysis and

geometrically nonlinear analysis are given in table 5.7 and fig. 5.14.

Table 5.6 Nonlinear interstiffener buckling pressures corresponding to wave

numbers for Ml for various boundary conditions

f-f

33.840 33.760

33.780

.~._----
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Fig. 5.13 Nonlinear interstiffener buckling pressures for Ml with and without

follower force effect for various boundary conditions

For MI the minimum buckling pressures are 30.840 Nzrnrrr' (n=18), 30.780

Nzmrrr' (n== 18) and 13.180 N/mm2 (n=lO) respectively for f-f, c-c and s.s-s.s

boundary conditions. Comparative study is made between linear and nonlinear

buckling pressures for f-f, c-c and s.s-s.s boundary conditions and is given in table

5.7. Nonlinearity induces a reduction in buckling pressure by 23.5% for f-f, 23.60/0

for c-c and 19.5% for s.s-s.s boundary conditions.

Table 5.7 Comparison of linear and nonlinear interstiffener

buckling pressures of Ml for f-f, c-c and s.s-s.s boundary conditions

f-f

c-c

s.s-s.s

Boundary condition
Buckling pressure (N/mm2

) & (n) :
1---1 % reduction

Linear i Nonlinear I __ __

__ -----l---,~O.330(30~-~O.840(1~) J---=~----

______~~ 40.2~!~- 30.780(18) __+-__ 2_~_
i 16.380(16)! 13.180(10) I 19.5
i
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Equilibrium path for M I for f-f boundary condition for circumfere ntial

wave number 18 is given in fig. 5.15. Linear load - deflect ion curve is also plotted

along with the equilibriu m path.

•
35

1
30 -II- - =- ......=-_.==~---~~<t -

~ 25 1~-''''---' - - ----- ----
.g
~ 20
]
~ 15
ii1
~

u
0: 10

5
I

800600400200

o .~--~--..----~-----,

o
Deflection (mm)

1-+-- ---- --"I
Fig. 5.15 Linear load deflection curve and equilibri um path with and without

follower force effect for shell between stifTeners of ,M I for f-f boundary condition

Interstiffener buckling values for M2 for various n values are shown in table

5.8. Variation of nonlinear buckling pressure with n is shown in fig. 5.16. For M2 for

f-f c-c and s.s-s.s boundary conditions, the minimum buckling pressures are 13.880

N/mm' (n ~ 1 6) . 13.770 N/mm' (n =16) and 10.060 N/mm' (n~14) respectively,
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Tabl e 5.8l'ionlinear Interstlffener buckling pressures corresponding to wave

numbers for 1\12 for various boundary conditions

Circumferential wave Nonlinearbuckling pressure (N/mm2
)

no. (n) f-f c-c s.s-s.s

I 14.280 14.200 12.030

2 14.200 14.120 11.740

3 14.140 14.060 11.720

4 14.120 14.020 11.720

5 14.100 14.010 11.520

6 14.100 14.000 11.320

7 14.040 13.960 11.100

8 14.020 13.940 10.840

9 14.000 13.920 10.640

10 13.960 13.880 10.290

I I 13.960 13.880 10.120

12 13.940 13.880 10.100

13 13.920 13.820 10.060

14 13.920 13.820 10.060

15 13.902 13.800 10.170

16 13.880 13.780 10.240

17 13.900 13.800 10.400

18 14.020 13.920 10.520

19 14.120 14.02 10.63

e 14.5
...l •••••liill.....·"~ 14 -...- f-f~

e 13.5Q.

""- 13 ......ox
.S ...
:;; E 12.5 .......
g E 12

~f·f with ffe
~ ~ 11.5 .... _ c-c withffe• 11s ....C 10.5 ..A . ~s_s-s..s with ffe
0

---z 10 ,
0 5 10 15 20

Circumferential waveno. (n)

Fig.5.16 Ncnlinear Interstlffener buckling pressures of l\12 with and
without follower force effect for various boundary conditions
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Linear and nonlinearminimumbuckling pressures for f- f c-c and s.s-s.s boundary

conditions are given in table 5.9 and fig. 5.17. Non linearity induces a reduction in buckling

pressure by 13.1% for f-f 13.3% forc-eand 13.7% for s.s-s.s boundary conditions.

Table 5.9 Comparison of linear and nonlinear Interstiffener buckli ng
press ures for 1\12 for f-f, c-c and s.s-s,s beundarv condit ions.

Boundary condition
Buckling pressure (N/mm' J & (0)

% reduction
Linear Nonlinear

f-f 15.980(21) 13.880(16) 13.1

c< 15.880(21) 13.770(16) 13.3

S.S-S.s 11.660(16) 10.060(1 4) 13.7
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- K-- Heldeepfr..,..~ lu:iIJrlI P".......
-.-~~~p"-."'.

Fig. 5.17 :\linimum linear and nonlinear buckling pressures for vartous

configurations and boundary' conditions with and without follower
force effect for M2
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The reduction in buckling pressure due to geometric nonlinearity is not

much influenced by the change in boundary condition. The reduction in buckling

pressure is 23% for Ml and 13% for M2, irrespective of the boundary condition.

5.6.5 Interdeepframe Analysis of Submarine Models

Geometric nonlinear analysis of stiffened cylindrical shell between

deepframes is conducted for M1 and M2. Interdeepframe nonlinear buckling

pressure values for Ml for various n values are given in table 5.10 and are shown in

fig 5.19.

Table 5.10 Nonlinear interdeepframe buckling pressures corresponding to

wave numbers for Ml for various boundary conditions

Circumferential wave no. Nonlinear buckling pressure (Nzmrrr')
(0) f-f i c-c s.s-s.s

I

1 22.080 i 22.040 20.690

2 21.880 21.840 20.390

3 21.900 21.860 19.230

4 22.000 21.960 20.890

5 22.120 22.080 21.570

6 22.100 ! 22.060 21.550
i

7 22.050 21.998 21.410

8 21.940 21.900 21.370

9 21.800 21.770 21.350

10 21.720 21.690 21.330

11 21.660 21.640 21.310

12 21.620 21.610 21.384
i

13 21.630 21.620 I 21.430j

14 21.700 21.678 I 21.550

15 21.820 21.794 21.690

16 22.020 21.988 21.890

17 22.520 22.450 22.110

18 23.090 22.980 i 22.390
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Fi2. 5.21 Nonllnear lnterdeepframe buckling pressures for M2 with and without

follower force effect for varjc us boun dary condit ions

The collapse pressure values are 9.460 N/mm2 (n=15). 9.400 N/mm 2

(n ~ 1 5 ) and 9.000 N/mm' (n~3) for f- f, c-c and s.s-s.s boundary conditions.

Comparative study is made between linear and nonlinear buckling pressures for f-f

c-c and s.s-s.s boundary conditions and is given in table 5.13 and fig. 5.17.

Nonlincarity induces a reduction in buckling pressure by 18.9% for f-f 19.0% for c

c and 18.1% for s.s-s.s boundary conditions.

Equilibrium path for f- f boundary condition for M2 is given in fig. 5.22.

Linear load deflecti on curve is also plotted along with the equilibrium path.

Table 5.13 Comparison of linear and nonlinear interdee pfra me buckling

pressures of 1\12 for f-I, c-c and s.s-s.s boundary conditions

Buckling pressure (N/mm2
) &

Boundary condition (n) % reduction
Linear Nonlinear

f·f 11.660( 17) 9.460( 16) 18.9

c·c 11.610( 17) 9.400(16) 19.0

S.S·S.s I 10.990(8) 9.000(13) 18.1
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reduction in buckling pressure by 18% for MI and 30% for M2 irrespective of

boundary conditions.

For geometric nonlinear analysis, the buckling pressure predicted is critical

while considering the interbulkhead configuration with s.s-s.s boundary conditions.

5.6.7 Follower Force Effect of Hydrostatic Pressure

Effect of follower force on nonlinear buckling pressure is analysed for

various configurations and boundary conditions. Results are tabulated. Buckling

pressure in general is reduced when follower force effect is taken into account.

Interstiffener buckling values for Ml for various n values are given in table 5.18.

The variation of Per with n is shown in fig. 5.13.

Table 5.18 Nonlinear interstiffener buckling pressures for Ml with follower

force effect for various boundary conditions

Circumferential wave no. Nonlinear buckling pressure (Nzmrrr')

(n) f-f c-c s.s-s.s

1 33.740 33.680 15.400

2 33.680 33.602 15.240

3 33.620 33.544 15.202

4 33.580 J 33.496 15.164

5 33.512 33.446 15.084

6 33.260 33.196 15.012

7 32.916 32.824 14.882

8 32.758 32.688 14.042

9 32.554 32.484 13.704

10 32.364 32.302 13.100

11 32.084 32.024 13.282

12 31.790 31.702 13.478

13 31.520 31.440 13.602

14 31.312 31.260 13.882

15 31.110 31.030 13.942

16 30.990 30.902

17 30.850 30.792

18 30.780 30.720 !
19 30.800 30.742

20 30.866 30.800

21 30.998 30.922

22 31.140 31.080

23 31.240
I

31.188i
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For MI for f-f c-c and s.s-s.s boundary conditions.. the minimum buckling

pressures are 30.780 N/mm2 (n=18), 30.720 N/mm2 (n==18) and 13.100 N/mm2 (n=lO). The

effect offollower force on nonlinear buckling pressure is given in table 5.19 and fig. 5.14.

Table 5.19 Effect of follower force on nonlinear interstiffener buckling

pressures for Ml for f-f, c-c and s-s boundary conditions

Nonlinear buckling pressure

Boundary condition (N/mm2
) & (n)

% reduction

I
Without follower With follower force

I force effect effect

f-f 30.840(18) 30.780(18) 0.2

c-c 30.780(18) 30.720(8) 0.2

S.s-s.s 13.180(10) 13.100(10) 0.6

The reductions in buckling pressures are 0.2%, 0.2% and 0.6% for f-f, c-c
and s.s-s.s boundary conditions respectively. Equilibrium path with and without

including follower force effects for f-fboundary condition for MI is given in fig. 5.15

Interstiffener buckling values for M2 for various n values are shown in table

5.20. The variation ofPcrwith n is shown in fig. 5.16.

Table 5.20 Nonlinear interstiffener buckling pressures with follower force

effect for M2 for various boundary conditions

t-----------,~----___+___-.

_.-._----+------ -----+------

..~-----+---

_._----------+------~

..._~-+-------

-----~-_..±
t------...-. -----·-·1

I
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For M1 for f-f, c-c and s.s-s~s boundary conditions, the minimum buckling

pressures are 13.830 Nrrnrrr' (n = 16), 13.730 Nrrnm' (n ==16) and 10.020 N/mrn2

(n=14) respectively.

Table 5.21 Effect of follower force on nonlinear interstiffener

buckling pressures corresponding to wave numbers for M2 for f-f, c-c

and S.S-S.s boundary conditions

Boundary
condition

I

: Nonlinear buckling pressure (Nzmm') & (0) !

r-W-ithout follower force I With follower force
I

effect i effect

% reduction

f-f 13.880(16) t 13.830(16) 0.4
f

1
i._·_._..
!

c-c 13.770(16) 13.730(16) j 0.3
.. - ......._....__.-

s.s-s.s i 10.060(14)
i

10.020(14) 0.4
i

The effect of follower force on nonlinear buckling pressure is shown in table

5.21 and fig. 5.17. The reduction in buckling pressures are 0.4%, 0.30/0 and 0.4% for

f-f, c-c and s.s-s.s boundary conditions respectively. In general for interstiffener

buckling the reduction in buckling pressure due to follower force effect is less than

1% for all types of boundary conditions. For interstiffener buckling, where the shell

buckles with large number of waves in circumferential direction, the pressure

rotation effect is very much limited. Short shells are not much susceptible to pressure

rotation effects (Rajagopalan, 1993) and this feature is reflected in the results.

Equilibrium path with and without follower force effects for f-f boundary

condition for M2 is given in fig. 5.18.

Interdeepframe buckling pressure values for M1 for various n values are

shown in table 5.22 and summarized in table 5.23 and fig. 5.14. Variation ofPcr with

n is shown in fig. 5.19.
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Table 5.22 Nonlinear interdeepframe buckling pressures with follower force

effect corresponding to wave numbers for Ml for various boundary conditions

Circumferential wave ~online~r b~ckling pr_~ssure (N/~m2) .._. __

no. (n) --E f-f i.- c-c -' i S.s-s.S ---
1---- 1 ----+---- 22.028 I 21.998 ~.o.604_._

2 l 21.808 l _.. 21.802__-1-__.._ 20.30~ .. _

~ l= ;~:~~: .1 ;~:~~~.~ ~~~~-~~ .~
5 ! 22.034 __.. ~ 22.012 .J 2!~_5_~~ _

_____ 6 i 22.012 _._~ 2t988 .. ' 21.:_50_8__
7 1

1 21.934 I 21.988 L1 21.360
-....----- 8 21.820'> I 21.802 21X~--
-.. '--- 9 ._~ 21.720 i 21.684 j 21.3-02---

10 .-.... t~ 21.644--'1 21.§lOr--2-i ..~---

11 21.582 i 21.560 I .. __ . 21.24~._ .._

-.~; -- i··· ;~:;~~ '--+=-;~:;~~"'1=}i:;~~n_ --

f----- ..__1_4__ . =i= 21.624 I 21.~88--i ._ 21.~~_§._-~·_. -
15 : 21.738 : 21.694 ~ 21.604

......---------- I l -- ..r------ oo - - - - ... - •• --

16 i 21.918 _±: 21.884. __ "'- i _~1.804 ._.._
..--..-____ 17.___ I 22.408 _ _. 22.360 1-- 22.020 __

18 I 22.978 : 22.898 i 22.280

Table 5.23 Effect of follower force on nonlinear interdeepframe buckling

pressures for Ml for f-f, c-c and s.s-s.s boundary conditions

c-c

f-f

s.s-s.s

Boundary condition
Nonlinear buckling pressure (N/mm 2

) & (n) i

Without follower I With follower forc~1 % reduction
force effect _J ..-effect ... -----l-, . ..

_.--;--- I :

i 21.620(12)' 21.540(12) i 0.4
......-...--- -----1----------+------- - i ... -....---

i 21.610(12) 21.539(12) i 0.3
i J." .'._'- ,u._·' !. --._--
i 19.230(3) 19.150(3) 0.4

The collapse pressure values for interdeepframe are 21.540 Nzmrrr' (n~12),

21.530 N/mm2 (n=12) and 19.150 N/mm2 (n=3) for f-f, c-c and s.s-s.s boundary

conditions. The effect follower force on nonlinear buckling pressure is given in table

5.23. The reductions in buckling pressures are by 0.4%, 0.3% and 0.4% for Ml for

the corresponding boundary conditions. Linear load deflection curve and

equilibrium path with and without follower force effects for f-f boundary condition

for Ml aregiven in fig. 5.20.
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For M2 the bucklingpressurevalues for various n values are shown in table 5.24

and sununarizedin table 5.25and fig.5.17. Variation of Per with n is shown in fig. 5.21.

Table 5.24 Nonlinear interdeepframe buckling pressures corresponding

to wave numbers with follower force effect for M2 for

various boundary conditions

Circumferential wave I Nonlinear buckling pressure (Nzrnrn")
~-_ ..._._--------~ :

no. (n) I I ~I---------------+-! f-_f ~__~-c_------.C___ ~~s~~.~_
1 ! 13.730 I 13.690 13.300

....--- 2 .-._~ ~-.-----13.520-+-- 13.480 13.080

3 13.320! 13.280 12.890
t------4 ----------< 12.640---I 12.580 11.360

i
5 1 11.680 I 11.644 : 10.740

------.-- 6 i 10.580 I 10.508 i 10.160

I 10.108 I 10.160 I 9.760
I I i

....--- ._8 L.. ...~~_80~. . +~--.-J.770 L. ... ~:~J.~

9 I 9.780 I 9.740 9.326

10 i 9.620 : 9.584 9.146
I I

11 ! 9.564 9.502 8.984_____.__.. _-_..... I i ._. M.

12 i 9.460 ; 9.400 8.902
----~- •.------.----~- I -----~I~~-----~-----~~---

______ 13 J- 9.400 I 9.370 8.900
i !

14 I 9.380 jl 9.340 8.924
>----·-~----15···----········-·--··--t------9370-- 9.320 m_; ._H_H ~_·2?5__

16 '9.420 i 9.340 8.966
I I .-+..--.---------.-- ... ----.---

17 9.550 I 9.440 9.024
I ! ..~._.~ ...-.----------.-...~. --.- ... -.. ~ ....

18 9.760 I 9.584 9.078
! +-_.__._--

19 : 9.894 I 9.712 : 9.168

Table 5.25 Effect of follower force on interdeepframe nonlinear buckling

pressures for M2 for f-f, c-c and s.s-s.s boundary conditions

Boundary i Nonlinear buckling pressure (Nzmrrr') & (~2.___ .~

condition I Without follower force I With follower force 0/0 reduction
I I :effect I effect
i

-..-!-._..~..._._-
!

f-f i 9.460(15) ~ 9.370(15) 1.0
I

--_......_.__ ..._..._~- -_. :
c-c I 9.400(15) i 9.320(15) ; 0.9i

r--- I

I

.._-_.~....•_.....•... _... ...... ~ ..-f.
s.s-s.s I 9.000(13) 8.900(13) i 1.1
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The effect of follower force on nonlinear buckling pressure is obtained by

comparing the values given in table 5.25. The collapse pressure values are 9.370

Nzmrrr' (n==15), 9.320 N/mm2 (n=15) and 8.900 N/mm2 (n::::13) for f-f, c-c and s.s-s.s

boundary conditions. There is a reduction in buckling pressure by 1.0%, 0.9% and

1.1% for M2 for the above-mentioned boundary conditions. The follower force effect

is negligible, since the shell is a short one and buckles with more number of waves in

the circumferential direction. Linear load deflection curve and equilibrium path with

and without including follower force effects for f-f boundary condition M2 is given

in fig. 5.22.

Interbulhead buckling pressure values for M 1 for various n values are

shown in table 5.26 and summarized in table 5.27 and fig. 5.14. Variation of Per with

n is shown in fig. 5.23.

Table 5.26 Nonlinear interbulkhead buckling pressures with follower force

effect for Ml for various boundary conditions

1
.....--....--------- _.~----+--

2

Circumferential wave
no. (n) -i Nonline?r buckling pressure (N/mm\ _

f-f I c-c S.S-S.s
1 I _.

3

4

5

6
-----+--

7

8

9

10

11

12

13

14

15

16
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Table 5.27 Effect of follower force on nonlinear interbulkhead buckling

pressures for Ml for f-f, c-c and s.s-s.s boundary conditions

25.4

25.3

24.8

% reduction

I

8.450(2) I 6.310(2)

i

c-c

s.s-s.s

Nonlinear buckling pressure (N/mm2
) & (n) !

Boundary j :

condition : Without follower force IWith follower force :
.,_ ... ~,., , ._.. ~__L . .effect __J- .-_effecL_--- __; 1

f-f I 12.400(2) I 9.320(2)

The effect of follower force on nonlinear buckling pressure is obtained by

comparing the values given in table 5.27 and fig. 5.14. The collapse pressure values

for general instability failure are 9.320 Nzmrrr' (n=2), 6.310 Nzmrrr' (n =2) and 6.300

N/mm2 (n=2) for M1. There is a reduction in buckling pressure by 24.8%,25.3% and

25.4% for Ml for f-f, c-c and s.s-s.s boundary conditions. Equilibrium path

including pressure rotation effects along with linear load - deflection curve for f-f

boundary condition for MI is given in fig. 5.24

For M2 the buckling pressure values for various n values are shown in table

5.28 and summarized in table 5.29 and fig. 5.17. Variation of Per with n is shown in

fig. 5.25.

Table 5.28 Nonlinear interbulkhead buckling pressures corresponding to wave

numbers with follower force effect for M2 for various boundary conditions

Circumferential wave no. ~-. -_-~on1i_~-;~!.-~~~~!~~g.Pte-~~!lr~,(~[~~~1 ..-.- _

~=~--=::~-.=~--~~-. .-------t---~6·~~~===t~~6:~~O-~=~-~:--j ·:::1j$~S:~_- ~.-:~
-.- -.-·------t------i·--~---=1=_=--~~---n-. ···-L-··-~·~}i~-.=.~~~_ .
~ 4 i 9.790 I 9.530 ~__~l~ _

5 i 12.580 ! 12.370 I 12.280
6 ! 13.620 I 13.460 L 13.280 __
7 ~ 13.670 ! 13.570 i 13.380

1--------------+-----------+-------------41---------·-·---·-·------··.-

8 ; 13.510 i 13.410 I 13.360
~-.---..----- --""-_ .._-'....._-_._._-_._-----+----------+----------+----------1

a---- 9 ~__L 13.320 ! 13.480 : 13.260
__, ,. .__1.9__._ I 13.240 I 13.190 i 13.160 . _

11 13.210! 13.160 13.140
----.--- .._..-.,._......_.. ~

12 13.250 13.210 13.170....--------------_._"....._.. __ ..--+-~._------------------------_._-----
_--__ .__ ._~_)3 ---l- 13.400 i 13.310 13.252

14 I 13.612 13.526 13.464
1-----~-1·-5·-·-------+ 13.854 i 13.742 . 13.686
~----~~~-~:~~.~~-~----~-4--~--~-~-----~--~---------

16 i 14.156 : 14.064 14.022
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Table 5.29 Effect of follower force on nonlinear buckling pressures for shell.

between bulkheads of M2 for f-f, c-c and s.s-s.s boundary conditions

8.2

8.5

8.4

0/0 reduction

f-f

c-c

s.s-s.S

Boundary
condition

! :

I ~~>nlinear buckling pressure (N/mm2
) & (n) ,

I Without follower I With follower force 1
I force effect I .__~fi_e_c__t.--------.....------~__tI
! 4.900(2) .__-t-_4_.5_00_C2_)__--__.__.__

I 4.700(2) i 4.300(2)
t------------+-------~-_.-~.+....--.----.--.-----'--------...-.--.. _.

4.500(2) I 4.120(2)

The collapse pressure values for general instability failure are 4.500 N/mm2

(n==2), 4.300 N'mrrr' (n=2) and 4.120 Nzmnr' for M2 for f-f., c-c and s.s-s.s boundary

conditions.

The effect of follower force on nonlinear buckling pressure effect is

obtained by comparing the values given in table 5.29. There is a reduction in

buckling pressure by 8.2%, 8.5% and 8.4% for M2 for f-f, c-c and s.s-s.s boundary

conditions. The follower force effect of hydrostatic pressure has very high

detrimental effect in the case of general instability failure, exhibited by long shells in

which shell buckles with 2 or 3 waves in the circumferential direction. The collapse

pressure reduction due to pressure rotation effect is about 25% for M 1.

Equilibrium path or nonlinear load deflection curve with and without including

pressure rotation effects for f-f boundary condition for M2 is given in fig. 5.26. Linear

load - deflection curve is also plotted along with the equilibrium path.

The buckling pressure predicted is minimum for interbulkhead

configuration and has to be dealt with prime importance. The critical value of

buckling pressure is obtained by considering both geometric nonlinearity and

follower force effect together for s.s-s.s boundary condition for M1 and M2.

5.6.8 Combined Effect of Geometric Nonlinearity and Follower Force on

Buckling Pressure

The reduction in buckling pressures on considering the geometric

nonlinearity and follower force effect in various configurations and boundary

conditions are summarized in table 5.30.
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Table 5.30 The overall % reduction in buckling pressures on considering the

geometric nonlinearity and follower force effect for Ml &M2

Interstiffener

Interstiffener

Interbulkhead

Interbulkhead

Interdeepframe

Interdeepframe

I

I

M2

Ml

Submarine
models

I

~. f-f ~... _}~__.7_

~_ ... c-c_+---_....~~ __ ..
~l s.s-s.s I 20.0

!--------~--+-.- ----- i .. ,.~--_...~-~

!
I f-f I 11._!.... _
I c-c i 11.2----'----, ...__.__.... !----
: s.s-s.s 11.3

t------ ---+1-···,.··· : .....--_...
I f-f; 38.8L c-c-==1=_ 38.1----··-

!I s.s-s.s! 37.9
--- --------+-----------+-1-- .~.--+--.... ,...

L_. f_-f____ 13.5
I

[c-c 13.5

I s.s-s.s i 14.1 _

L.__ ._f_-f J.. 19.6
! c-c I 19.7
. ,·-1 - --- _-

r------.-----J s.s-s.s i __1_~.2-_ _
: f-f i 37.1
I c-c-i'- 36.2----··
~-_•.- I -.----- --.-. _.-

r s.s-s.s ~ 36.7

For interstiffener analysis, the reduction in buckling pressures are 23.7°~~

23.7% and 20.0% for Ml and 13.5%, 13.5% and 14.1% for M2 for ff, c-c and s.s-s.s

boundary conditions respectively.

For between deepframes analysis, the reduction in buckling pressures are

11.2%" 11.20/0 and 11.3% for M1 and 19.6%, 19.7% and 19.0% for M2 for f-f, c-c

and s.s-s.s boundary conditions respectively.

For between bulkheads analysis, the reduction in buckling pressures are

38.8%,38.1% and 37.9% for Ml and 37.1%,36.2% and 36.7% for M2 for f-f c-c

and s.s-s.s boundary conditions respectively.
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5.6.9 Safety Factor

Safety factors (i.e., ratio of collapse pressures to the design pressures) for

stiffened cylindrical hull of attack submarines M 1 and M2 from numerical

investigations based on finite element method are calculated for vanous

configurations and boundary conditions. The values are given in table 5.31.

Table 5.31 Safety factor against buckling for various configurations and

boundary conditions for Ml &M2

Submarine
models

Ml

M2

I
I
I

Cylindrical
shell

configuration

Interstiffener

Interdeepfrarne

Interbulkhead

Interstiffener

Interbulkhead

S.s-s.s

s.s-s.s

f-f
f-------.- .'-'

c-c

s.s-s.s

s.s-s.s

c-c

Safety factor

I
I

..._-- I

i

;

1---------- --.

r--------...- ..........

Classical solutions for radial deflection, shell buckling, shell yielding and

general instability are available in literature and are reviewed in chapter 2. A

software is developed based on these equations and numerical investigations are

carried out for MI and M2. The details of the equations, software and numerical
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investigations are given in Appendix B. Table 5.32 gives the collapse pressure and

safety factor predicted for M 1 and M2.

Table 5.32 Collapse pressure predicted and safety factors

from classical solutions for Ml and M2

3.13

2.22

-+ .....-------1

6.72

I

! Collapse pressure I: Safety

~el t· 'Windenbu:~:S;~:::l:l;:~::l buckling) i --- (~~~~:) I ~~~~;-
I -----. . --,,,,..-t- .,. L.

l-- Bryant's formula ~ge.neral instability) .L ._~5.37 (n=2)L __..._~~~~_

MI I Yielding at mi~~:h~~~n Sanden and! ..__16.60 : 5~=~ _
lY'ielding at frame (Von Sanden and i 13.33 I 4.42

~. I Gunther) I _--+-' ----I

_~indenburg'sformula (shell buckling) L _1_9_eS_I i-_ 6:~~_

Bryant's formula (general instability) I 38.23(n=2) ! 12.68

M2 I Yielding at midbay (Von Sanden and I __

I

! Gunther) I~_._--_.--------- .. 1..----------t

! Yielding at frame (Von Sanden and i 1
I

I Gunther) I

On considering the shell buckling, the minimum value of safety factor will be

for simply supported boundary condition Le., 4.34 and 3.32 for MI and M2

respectively (table 5.31). On considering the Windenburg's formula the corresponding

values are 13.25 and 6.47 (table 5.32), which are closer to the values while considering

f-f boundary conditions i.e., 10.20 and 4.58 for Ml and M2 respectively. Collapse

pressure predicted by Windenburg's equation is much higher than the corresponding

value predicted by finite element method.

On considering the case of general instability, between bulkhead's analyses

gives the minimum buckling pressure. The safety factor on considering the simply

supported boundary condition is 2.088 and 1.366 for MI and M2 respectively.

According to Bryant's formula the safety factor values are 8.41 and 12.67 for Ml

and M2 respectively. The analysis of results pinpoints to the necessity of proper

finite element analysis.

The empirical relation i.e., von Sanden and Gunther's relation to find the

yield stress gives a safety factor against yielding at midbay as 5.50 and 2.22 for Ml

136



and M2. The inference is that the classical solution of von Sanden and Gunther is

less conservative compared to finite element solution.

The various rulebooks for the design of submarines, IS, LRS and DnV give

provisions for the prediction of design pressure of stiffened cylindrical shells for the

given scantlings. A software based on these provisions is available elsewhere

(Sreekala, 1997). The design pressure for M 1and M2 based on IS, LRS and DnV

code provisions are estimated using the above- mentioned software and is shown in

table 5.33.

Table 5.33 Design pressure predicted by Rulebooks for Ml and M2

Design pressure predicted

Rulebook (N/mnd.... _

MI M2
r

i
i IS 2825 3.389 1.864

f LRS 7.693 ; 6.812I
I i
I DnV 4.103 I 3.633
I

I

i

2

3

No.

~-_ ..._... ,..._-------t-

The design pressure predicted by IS 2825 are 3.389 N/mn12 and 1.864

N/mm2 for MI and M2 respectively. The corresponding values predicted by LRS are

7.693 N/mm2 and 6.812 N/mm2 and by DnV are 4.103 Nzmrrr' and 3.633 N/mm2 for

Ml and M2 respectively. On analysing the results, a comparative study of various

code provisions is made. The critical study of code provisions highlights the under

estimation or over estimation of strength, which may cause conservative or

inadequate design. On analyzing the results it may be concluded that IS code is more

conservative than LRS and DnV and may be advised for a revision.
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CHAPTER 6

CONCLUSIONS

6.1 GENERAL

Software has been developed based on the finite element formulations for

the elastic and buckling analysis of stiffened cylindrical shells. Numerical

investigations are conducted using the software and the results have been discussed.

Conclusions and major observations from this study are presented under the

subsequent headings, linear static analysis, linear buckling analysis and geometric

nonlinear analysis.

6.2 LINEAR STATIC ANALYSIS

Software has been developed for linear static analysis of stiffened

cylindrical submarine shells based on discrete stiffener cylindrical shell finite

element model in which shell is modeled using all-cubic axisymmetric cylindrical

shell finite element and stiffeners using discrete ring stiffener element. The software

has been validated using Flugge's problem.

A linear static analysis has been carried out for stiffened cylindrical

shells of attack submarine models MI and M2, having a design operational depth

of 300m. The submarine cylindrical hull has been analysed for three

configurations, viz., cylindrical shell between stiffeners (interstiffener), stiffened

cylindrical shell between deepframes (interdeepframe) and stiffened cylindrical

shell between bulkheads (interbulkhead). The analysis has been carried out for

fixed-fixed boundary condition and stress resultants, principal stresses and

displacements are plotted.

The maximum values of principal stresses occur at the outer layer of

midbay of stiffeners while considering the shell between bulkheads, which can be

considered critical.
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6.3 LINEAR BUCKLING ANALYSIS

Software has been developed for linear buckling analysis of stiffened

cylindrical shells using all-cubic axisymmetric cylindrical shell element and discrete

ring stiffener element using relevant geometric stiffness matrices of the above

mentioned elements and has been validated using Kendrick's problems. The element

has shown satisfactory convergence.

The influence of derivatives of displacements used as degrees of freedom on

buckling pressure has been studied. It has been concluded that arresting these

degrees of freedom has nominally (4.70/0) increased the buckling pressure. The

influence of support restraint on linear buckling pressure has been studied by

considering the end conditions as simply supported-simply supported, clamped 

clamped and fixed - fixed. Kendrick's problem has been analysed for interstiffener

buckling and descending order of buckling pressure is observed from fixed-fixed to

simply supported-simply supported boundary condition.

Stiffened cylindrical shell of Kendrick' example has been investigated

incorporating various boundary conditions. The influence of end restraint is nominal

and is in the descending order from fixed-fixed to clamped-clamped to simply

supported-simply supported as expected.

Linear buckling analysis has been carried out for stiffened cylindrical shells

of attack submarines. Linear buckling analysis has been carried out for interstiffener,

interdeepframe and interbulkhead configurations and may be considered as a

parametric study for various L/R ratios.

The scope of the numerical investigation includes the study to realize the

influence of various boundary conditions, which reflects the effect of end restraint.

From the interstiffener buckling analysis results, it can be observed that for

simply supported boundary condition the interstiffener buckling pressure is the

lowest and collapse occurs at less value of n compared to clamped and fixed

boundary conditions. The collapse pressure predicted for fixed boundary condition is
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the highest and is at a higher value of n, which shows the significance of the

selection of appropriate boundary condition in the investigation.

For simply supported boundary condition the ends will have more

flexibility and hence will have more effective length and buckling occurs with less

number of circumferential waves. Fixity reduces the effective length and the shell

in effect becomes shorter and buckles with more number of waves in the

circumferential direction.

On considering the influence of end restraints on interstiffener buckling

pressure the following conclusions have been arrived at For short shells buckling

pressure is susceptible to rotation restraints at the ends indicated by higher buckling

pressure for fixed-fixed and clamped-clamped boundary conditions. The effect of

rotation restraint is smoothened on increasing L/R ratio. The influence of axial

restraint 'u' is not significant indicated by the same value of buckling pressure for

fixed-fixed and clamped-clamped boundary conditions and becomes prominent on

increasing the L/R ratio.

In general, with same end restraint shorter shell buckles with higher

waveform. The effect of L/R ratio on buckling pressure and on circumferential wave

number is more pronounced in the case of fixed and clamped (rotation restraint)

boundary condition. But for simply supported boundary condition this effect is not

there because of greater flexibility at the boundary.

The shell between deepframes can be considered as a short shell in both

cases (MI is shorter and thicker than M2). The failure occurs by interframe buckling

rather than by general instability. Interframe buckling is less susceptible to boundary

conditions compared to interstiffener buckling cases. In the case of interframe

buckling the shell buckles with more lobes in longitudinal direction (rapidly varying

function) and hence less vulnerable to end restraints. There is not much difference in

circumferential wave numbers corresponding to the lowest buckling pressure for

various boundary conditions.
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The effect of end restraint becomes smoothened on transition from

interstiffener to interdeepframe configuration and change in buckling pressure due to

the release of axial restraint is negligibly smalL

In M2 the stiffeners are well arranged between deepframes such that there is

not much difference between interstiffener and interdeepframe buckling pressures.

Comparison of values with interstiffener collapse pressure gives an impression that

the spacing and size of stiffeners are adequate. Two types of failures occur

simultaneously, which can be considered as the optimum design criteria. But in the

case of M 1, the spacing between stiffeners and bulkheads can be slightly increased.

From a few trials optimum dimensions and spacing of stiffeners can be found out,

which satisfies the functional requirements.

On considering the shell between bulkheads, which is comparatively a long

shell (L/R ratio 3.42 for Ml and 4.59 for M2) the shell buckles with less number of

waves in the circumferential direction. The cylinders will collapse in an overall

manner. The general instability failure occurs at a circumferential wave number 2 or

3. Thereafter the buckling pressure increases and apparently reaches a maximum

value and decline again to give a second local minimum at a harmonic number of 11

or 12, depending on the boundary conditions. The lower value of n refers to general

instability i.e., one lobe in the longitudinal direction. The higher value of n refers to

interframe buckling mode with as many longitudinal lobes as the frame spaces.

For interbulkhead buckling, the effect of rotation restraint becomes

negligibly small indicated by the same buckling pressure for clamped-clamped and

simply supported-simply supported boundary conditions. The change in buckling

pressure due to the release of axial restraint becomes more significant as indicated by

a considerable reduction in buckling pressure from fixed-fixed to clamped-clamped

boundary condition.

The follower force effect of hydrostatic pressure on linear buckling pressure

has been investigated for Ml and M2 for the three configurations - viz.,

interstiffener, interdeepframe and interbulkhead for the above-mentioned boundary

conditions, the following conclusions are derived from the results.
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For interstiffener and interdeepframe buckling where shell buckles with

large number of waves in circumferential direction, follower force effect is less

significant (reduction in buckling pressure is less than 1%). The above-mentioned

observation may be due to the reason that in those cases the buckling displacement

functions are rapidly varying functions of circumferential coordinates.

Between bulkhead analysis follower force effect is much more significant.

There is a reduction in buckling pressure by 31%for M1 and 9% for M2 for various

boundary conditions. The follower force effect of hydrostatic pressure has very high

detrimental effect in the case of general instability failure, which is the case of long

shells in which shell buckles with 2 or 3 waves in the circumferential direction.

For MI, failure may be due to one lobe in longitudinal direction and two waves

in circumferential direction and follower force effect becomes prominent since there is

no abrupt change in direction. But in the case of M2, which is longer with two

intermediate deepframes, the shell buckles with three lobes in longitudinal direction and

hence the reduction in buckling pressure due to follower force effect is less.

6.4 GEOMETRIC NONLINEAR ANALYSIS

Software has been developed for geometric nonlinear analysis of stiffened

cylindrical submarine shells based on discrete stiffener cylindrical shell finite

element model in which shell is modeled using all-cubic axisymmetric cylindrical

shell finite element and stiffeners using discrete ring stiffener element. Methodology

adopted is load control incremental iterative procedure. Corotational kinematics is

used for the generation of tangent stiffness matrix. The software has been validated

using Moradi and Parsons' problem.

Equilibrium path is drawn and the limitpoint buckling pressure is

determined and almost in all cases the tangent stiffness matrix becomes singular in

the vicinity of the limit point

From the results of geometric nonlinear analysis for Kendrick's example

BMP2 for fixed-fixed, clamped-clamped and simply supported-simply supported

boundary conditions, it is observed that there is a considerable reduction in buckling
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pressure due to geometric nonlinearity, which demands to the necessity of geometric

nonlinear analysis in the prediction of collapse pressure.

Geometric nonlinear analysis has been extended to stiffened cylindrical

shell of Kendrick's model BMP3 and it is seen that there is about 25% reduction in

buckling pressure irrespective of boundary conditions. Analogous to the observations

in linear buckling analysis, the nonlinear buckling pressure is less susceptible to

boundary conditions. The type of boundary condition does not have much effect on

the circumferential wave number at which the buckling occurs.

Geometrically nonlinear analysis has been carried out for stiffened

cylindrical shells of Ml and M2. Analysis has been conducted for the three

configurations viz., interstiffener, interdeepframe and interbulkhead. The variations

of buckling pressures with circumferential wave numbers are predicted and

compared. The scope of the numerical investigations has been extended to realize

the influence of possible boundary conditions. The ends have been treated as fixed

fixed, clamped-clamped and simply supported - simply supported. A comparatiye

study has been made between linear and nonlinear buckling pressures for Ml and M2

for the above-mentioned configurations and boundary conditions.

For interstiffener configuration the buckling pressures are reduced by 23°~

for M 1 and 13% for M2 for f-f and c-e boundary conditions and also a reduction in

circumferential wave number as well.

The prebuckling deformations of the unstiffened shell cause softening of the

shell, resulting in lower buckling pressure as well as lower circumferential wave

number.. The nonlinear buckling pressure value is less vulnerable to higher

circumferential wave number indicated by the flattening of Per Vs n curve compared

to that of linear buckling analysis ..

The effect of L/R ratio on buckling pressure and on circumferential wave

number has been found similar to that of linear buckling analysis but is not as

pronounced as in the case of linear buckling analysis. The reduction in buckling
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pressure due to the incorporation of geometric nonlinearity is not much influenced by

the effect of boundary condition.

For the interdeepframe configuration geometric nonlinearity reduces

buckling pressure and the corresponding circumferential wave number.

Reduction in nonlinear buckling pressure for the release of rotation restraint

is analogous to that of linear buckling pressure. The effect of axial restraint (u) is

negligible. The interdeepframe nonlinear buckling pressures are less susceptible to

boundary conditions compared to interstiffener buckling pressures.

For interbulkhead configuration there is considerable reduction of buckling

pressure reported (32.0% for Ml) by virtue of release of axial restraint But there is

no such reduction in buckling pressure due to the release of rotation restraint.

In all the three configurations, the change in percentage reduction In

nonlinear buckling pressure by the change boundary has been meager.

The follower force effect of hydrostatic pressure has been studied for M 1

and M2 for various configurations and boundary conditions and following

conclusions are arrived at. The follower force effect is less pronounced in

geometrically nonlinear analysis compared to linear buckling analysis and its effect

is almost negligible in the case of interstiffener and interdeepframe analyses.

Whereas, the follower force effect of hydrostatic pressure has very high detrimental

effect for interbulkhead configuration in which the shell buckles with 2 or 3 waves in

the circumferential direction. The collapse pressure has been reduced by the pressure

rotation effect by about 25% for M 1 and 8% for M2.

6.5 OVERALL REDUCTION IN BUCKLING PRESSURE

From the observation of critical buckling pressure values for various

configurations and boundary conditions it has been concluded that the reduction in

buckling pressure is maximum for general instability failure between bulkheads and

is about 38% for Ml and 37% for M2. Based on the present study, the geometric
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nonlinear interbulkhead analysis IS found critical and hence recommended for

submarine pressure hull design.

6.6 SAFETY FACTOR FROM CLASSICAL SOLUTIONS AND DESIGN

PRESSURE FROM RULEBOOK PROVISIONS

The software for the estimation of safety factor for submarine 'cylindrical

shell, based on Windenburg's formula, Bryant's formula and von Sanden and

Gunther's formulae is operational in pc environment.

The safety factors for M 1 and M2 evaluated using this software shows wide

deviations (4.42 to 13~25 and 2.22 to 12.68 respectively)

The software for the calculation of the design pressure of stiffened

cylindrical shell based on provisions in IS 2825, LRS and DnV is operational and has

been used to estimate the design pressure ofMl and M2.

These values vary from 3.4 to 7.7 Nzmrrr' and 1.9 and 6.8 NJmm2

respectively against 3.016 N/mm2 (pressure considered for the design based on

operational depth).

The classical solutions and Rulebook provisions overestimate the safety

factor. These may be used for the preliminary design of scantlings where as

geometric nonlinear finite element analysis has to be adopted for the prediction of

collapse pressure.

6.7 SCOPE FOR FUTURE WORK

Instead of a shell-discrete ring stiffener model, a ring stiffened cylindrical

shell element itself may be developed.

The analysis can be extended by incorporating nonlinearity due to large

strains and material nonlinearity together with geometric nonlinearity.
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The inertia matrix can also be included along with elastic, geometric and

pressure stiffness matrices to predict the nonlinear buckling pressure to check

whether it is a dynamic criterion.

By incorporating classical solutions and finite element analysis a package

for optimum design of stiffened cylindrical hull based on reliability criteria can be

developed.
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APPENDIX A

ELEMENTS OF STIFFNESS MATRICES OF ALL-CUBIC
AXISYMMETRIC ELEMENTS AND DISCRETE STIFFENER ELEMENTS

A.I Upper Triangular Elements of Elastic Stiffness Matrix [k] of the Shell

Element (Rajagopalan, 1993)

k1l :::: ( nRLEt / l_v2
) [6/5L 2+13(1-v)n2/70R2

]

k l 2 = ( nRLEt / I_v2
) [ 1/10L+ll(l-v)n2 L/420R2

]

k13 ( nRLEt / I_v2
) [(1-3v)n/4RL]

k14 ::::. -( 1tRLEt / I-v2
) [ (l+v)n L/20R]

k15 ( 1tRLEt / I-v2
) [v/2RL]

k l 6 = ( nRLEt / I-v2
) [vI tOR]

k l 7 = ( 1tRLEt / I-v2
) [6/5L2+9(I-v)n2/140R2

]

k l8 ( 1tRLEt / l-v2
) [1/10L+13(1-v)n2 L/840R2

]

k l9 ( 1tRLEt / I-v2
) [(1+v)n/4R L]

kilO = -( 1tRLEt I I-v2
) [( 1+v)n L/20R]

kill ( 1tRLEt I I_v2
) [v/2R L]

k l 12 -( 1tRLEt I l_y2) [vi lOR ]

k22 ( 1tRLEt I I-v2
) [2/15+11(1-v)n2 L2/210R2

]

k23 ( 1tRLEt / I_v2
) [(1+v)n L/20R]

k25 -( 1tRLEt / I_v2
) [vI tOR]

k27 ( 1tRLEt / I_v2
) [ 1/IOL+13(1-v)n2 L/840R2

]

k28 ( 1tRLEt / I-v2
) [ 1/30 - (1-v)n2 L2/280R2

]

k29 -( 1tRLEt I I-v2
) [(I+v)n/20R]

k210 -( 1tRLEt I t-v2
) [(1+v)n L/I20R]

k211 ( 1tRLEt / I-v2
) [vI lOR]

k212 -( 1tRLEt / I-v2
) [v L /60R]

k33 ( nRLEt I I_v2
) {[13 n 2/35 R2+3(1-v)/5L2

] +r/12[13 n 4135

R4+12(I-v)/5R2L2
] }

k34 ( 1tRLEt I I_v2
) {[Il n 2 L 1210 R2

] +(I-v)/20L] + t2/ 12[11 n 2 L 1210

R4+ I-v)/5R2L2
] }

k35 -( 1tRLEt 1 1-y2) {[13n/35R2
] + t2/ 12[11 n 2 L 1210 R4+6

n (v-2)/5R2L2
] }

k36 =: (1tRLEt / I_v2
) {[Il n L 1210 R2

] + t2/12( J1 n3 L /210 R4+
n (9v+2)/IOR2L]}

k37 ::::: (1tRLEt I l-v2 ») [ (l+v)n/4R L]
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k38 ( nRLEt 1 I-v2
) [(l+v) nL /20R]

k39 = -( nRLEt 1 I_v2
) {[9 n 2/70 R2

- 3(I-v)/5L2]+ t2/12[9 n 2/70

R4- 12(I-v)/5R2 L2]

k3 l0 ( 1tRLEt 11-v2
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] + t2/12[9 n 3170 R4-6 n (2-v)/SR2 L2
]
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+ t2/12[13 n 3 L1420 R4+6 n (v-2ISR2 L2
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) {[13 n 2 L2/105 R2+(I-v)/15] t2/12(11 n2 L 2/ 10 5R4+

4 (1-v)/15R2
] }

~5 -( nRLEt 1 1_v2
) {[13nL/210R2

] + t2/12(-11 n3 L /210 R4+

n (v-2)/IOR2L]}

~6 -( 1tRLEt /1-v2
) {[nL2/105R2 ]+ t2/12(n3 L2/105R4+2n (v-2)/15R2

]}

~7 = -( nRLEt 1 I-v2
) [(I+v)n/20R]

k48 = -( 1tRLEt 1 I-v2
) [(1+v)n L/120R]

k49 -( 1tRLEt 1 I-v2
) { [13n2L/420R2

- (1-v)/20 L] + t2/12(13 n2 L /420

R4
_ (1-v)/5R2L]}

~10 -( 1tRLEt I I-v2
) { [n2L2/420R2

- (l-v)/60] + t2/12(n2 L2 1140 R4
_

(l -v)/15R2
] }

1411 -( 1tRLEt 11-v2
) { [13nL/420R2

] + t2/12(-13 n3 L 1420 R4
_

n (2-v)/IOR2L]}

1412 -( 1tRLEt /1 ..v2
) { [nL2/140R2

] + t2/12( n3 1420 R4 +(2-v)/30R2
] } L 2

kS5 = ( nRLEt I I_v2
) [13 /35 R2

] + t2/12(12/L4+13n4 135 R4+12n 2/5R2 L2
] }

kS6 = ( 1tRLEt 1 1-v2
) [I] L /210 R2

] + t2/12(6/L3+1In4 L 1210

R4+n 2(5v+1/5R2 L]}

kS7 -( 1tRLEt I I-v2
) [v/2R L]

k58 ( nRLEt 1 I_v2
) v/IOR

kS9 -( 1tRLEt 1 I_v2
) [9 n/70 R2

] +t2/12( 9n3 /70 R4 +6n(2-v)/5R2L
2]

kS10 = ( 1tRLEt / I-v2
) { [13nL/420R2 ]+ t2/12(13 n3 L /420 R4

_ n

(2-v)/IOR2L]}

k511 ( 1tRLEt /1_v 2
) [ 9/70R2]+ t2/12( 9n4 /70 R4

+ 121 L 4+12n2/5R2L
2]

k512 ( 1tRLEt / 1_v2
) [13nL/420R2 ]+ t2/12( 13n4 L /420 R4 +6/

L 3+n2/5R2L ]

k66 -( 1tRLEt 1 I-v2
) [L2/105R2

]] + r/12(41L2+11n4 L2 lID 5R4+4n 2/15R2
] }

k67 :::: -( 1tRLEt / I-v2
) v/lOR

k68 = -( 1tRLEt / I-v2
) vL 160R

k69 -( 1tRLEt / I-v2
) [13nL/420R2]+ t2/12( 13n3 L 1420 R4

+n (2-v)/10R2L ]
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k610 = -( 1tRLEt / 1..v2 ») { [nL2/140R2 ] + t2/12( n3 L2 1140 R4

+n(2-v)/30R2
] }

k611 = -( 1tRLEt 1 I-v 2
) ) [13nL/420R2 ]+ t2/ 12( 13n4 L /420 R4

+6/L3+n2/5R2L]

k612 := -( 1tRLEt / 1..v2») [L 2/140R2]+ t2/ 12( n4L 2 1140 R4 +2/L2+n2/15R2 ]

k77 := ( 1tRLEt I I_v2
) [6/5L2+ 13( I-v)n2/70R2

]

k78 := ( nRLEt / l_v2
) [ 1/10L+l1(1-v)n2 L/420R2

]

k79 ( 1tRLEt 1 I-v 2
) [(1-3v) n /4RL]

k710 = -( 1tRLEt / I_v2
) [ (1+v)nL/20R]

k711 ( nRLEt / l-v2
) [v/2R L]

k712 == ( n:RLEt I I_v2
) [vi lOR]

k88 = ( 1tRLEt / I-v2
) [2/15+11(1-v)n2 L2/210R2

]

k89 ( 1tRLEt 1 I-v2
) [(1+v)n L/20R]

kg)) -( nRLEt I I-v2
) [v/lOR]

k99 (nRLEt / I-v2
) {[l3 n 2/35 R2+3(I- v)/5L2

] +t2/12[13 n 4/35

R4+12(l-v)/SR2L2)}

k910 ( 1tRLEt II-v2
) { [I] n 2 L 1210 R2

] +(1-v)/20L] + t2/12[11 n 2 L /210

R4+ I-v)/5R2L2
] }

k9 11 -( nRLEt / I-v2) {[13n/35R2
] + t2/ 12[11 n 2 L 1210 R4+6

n (v-2)/SR2L2]}

k912 = ( 1tRLEt / 1·v2
) {[IIn L/210R2 ] + r /12( l l n3 L/210R4+

n (9v+2)/lOR2L]}

k 10 10 = ( 1tRLEt II-v2
) {[13 n 2 L2/I05 R2+(I-v)/15] t2/12(11 n2 L 2/10 5R4+

4 (l-v)/15R2
] }

kJ0 11 = -( 1tRLEt II-v2
) {[13nL/210R2] + t2/ l 2(-11 n3 L 1210 R4+

n (v-2)/IOR2L]}

klOl2 = -( 1tRLEt / l-v2
) {[nL2/105R2 ]+ t2/12(n3 L2/105R4+2n (v-2)/15R2

]}.

k l l l l = ( 1tRLEt I I_v2
) [13 /35 R2

] + t2/12(12/L4+ 13n4
/ 35 R4+ ] 2n 1/5R2 L2]}

k l l 12 = -( nRLEt / I-v2
) [11 L 1210 R2

] + t2/12(6/L3+11114 L / 210

R4+n 2(5v+l/5R2 L]}

kl 2 12 = (1tRLEt / I-v2
) [L2/105R2

] ] + t2/ 12(4/L2+n4 L2 110 5R4+4n 2/15R2 ] }
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A.2 Elements of Stress Resultant Matrix (S)

L := Ls/N;

b== l/(L*L);

N2 = (1-3*S*S+2*S*S*S)/R;

N3 = (S-2*S*S+S*S*S)/R;

N5 == (3*S*S-2*S*S*S)/R;

N6 == (-S*S+S*S*S)/R;

N7 = (6 - 12*S)/(L*L);

N8 = (6*S-6*S*S)/(R*L);

N9 = S/L;

NIO ==(1-4*S-3*S*S)/R;

NIl = (-2*S+3*S*S)/R;

H == (1-nw)/2;

J == t*t/12;

W =E*t!(l-nw*nw);

M[O][O] =-R*N8;

M[O][l] = R*NIO;

M[O][2] = nw*n*N2;

M[O][3] = nw*n*L*N3;
M[O][4] = -nw*N2;
M[O][5] ==-nw*L*N3;
M[O][6] ::= R*N8;

M[O][7] = R*Nll;

M[O][8] = nw*n*N5;

M[O][9] = nw*n*L*N6;

M[O][lO] =-nw*N5;

M[O][ll] =-nw*L*N6;

M[l][O] =-nw*R*N8;

M[l][l] = nw*R*NIO;

M[1][2] =n*N2;

M[l ][3] =n*L*N3;

M[1][4] ==-N2;
M[1][5] =-L*N3;
M[I][6] ===nw*R*N8;
M[1][7] =nw*R*Nll;

M[1][8] =n*N5;

M[1][9] ==n*L*N6;
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M[l][IO] =-N5;

M[l][ll] =-L*N6;

M[2][O] == -H*n*N2;

M[2][I] ==-H*n*L*N3;

M[2][2] =-H*R*N8;

M[2][3] =H*R*NIO;

M[2][4] =0.0;

M[2][5] =0.0;

M[2][6] =-H*n*N5;

M[2][7] =-H*n*L*N6;

M[2][8] =R*N8;

M[2][9] =R*Nll;

M[2][ 10] =0.0;

M[2][II] =0.0;

M[3][0] =0.0;

M[3][I] =0.0;

M[3][2] =J*nw*n*N2/R;

M[3][3] =-J*nw*n*L*N3/R;

M[3][4] = 1*(-N7+-nw*n*n*N2/R);

M[3][5] =1*(-4*b*L+6*N9-nw*(n*n*L*N3/R));

M[3][6] = 0.0;

M[3][7] =0.0;

M[3][8] =J*nw*n*N5/R;

M[3][9] =nw*n*L*N6/R;
M[3][10] =1*(-N7-nw*n*n*N5IR);

M[3][11] =J*(-2*b *L+6*N9-nw*n*n*L*N6/R);

M[4][O] ==0.0;

M[4][1] ==0.0;

M[4][2] ==J*n*N2/R;

M[4][3] ==-J*n*L*N3/R;
M[4][4] =1*-(nw*N7+n*n*L*N2/R);

M[4][5] =J*(nw*(-4*b *L+6*N9)-n*n*L*N3/R);

M[4][6] ~O.O;

M[4][7] =0.0;

M[4][8] ::::::J*n*N5/R;

M[4][9] =J*n*N6*L/R;
M[4][IO] =1*(nw*N7-n*n*N5/R);
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M[4][ 11] =J*(nw*(-2*b*L+6*N9)-n*n*L*N6/R);

M[5][0] =0.0;

M[5][I] ==0.0;

M[5][2] =-H*2*N8;

M[5][3] ==H*2*NIO;

M[5][4] ==H*2*n*N8;

M[5][5] ==-H*2*n*NIO;

M[5][6] ==0.0;
M[5][7] =0.0;

M[5][8] =H*2*N8;

M[5][9] =H*2*Nl1;

M[5][IO] =-H*2*n*N8;

M[5][11] =-H*2*n*NIl;

A.3 Upper Triangular Elements of Elastic Stiffness Matrix [k.] of the

Stiffener Element (Rajagopalan,1993)

kS11=1tGCRn2/RR3

ks 16=1tGCRen2/RR3-nGCRn
2
/RR

2

k 2 /2 2 R 2S33= 1t n EARRR R +1t n EIRJ RR
kS35 =1t nEAR/R[(n

2e/R)-I]+ 1t n3EI
R/RR2R[(e/R)-I]

kSS5 =n nEAR/RR[(n2e/R)- 1]2+ 1t n4EIRlRR3
[ ( e/R)-1]2

kSI6=1tGCRn2/RR[(e/RR)+ 1]2

A.4 Upper Triangular Elements of Geometric Stiffness Matrix [kg] of the

Shell Element (Rajagopalan, 1993)

kg33= =( p1tR2L / 2 )13u2/3R2

kg34= (p1tR2L / 2 )llu2L/210R2

kg3S= (p1tR2L / 2 )13a2nJ35R2

kg36= -( p1tR2L /2 )110.2 n L/210R2

2 2kg39= ( p1tR L / 2 )9a2/70R
2 ~kg3 l0::::: -( p1tR L / 2 ) 13a2/420R-
2 ,

kg3 11= -(p1tR L / 2 )9U2 n /70R-

kg3 12= ( p7tR2L / 2 )13a2 n L 1420R2

kg44= ( p1tR2L 12 )Cl2L2/105R2

kg4S= -( pnR2L / 2 )11u2 n L/210R2

kg46=- (p1tR2L / 2 )U2 n L2/105R2

kg49= -( p1tR2L /2 )13u2/420R2

2 2 ~kg4 10= -(p1tR L / 2 )a2L /140R-

kg4 11== -( p1tR2L / 2 )13a2 n 1420R2
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2 2 2kg4 12:::: ( p1tR L / 2 )0.2 n L 1140R

kg55= ( pnR2L / 2 )(60.1 /5L2+13a.2n/35R2 )

kg56=( p1tR2L /2 )(al 110L+ 110.202 L 12 1OR2
)

kg59::::: ... ( pnR2L 12 )9a2nJ70R
2

kg510= (p1tR2L / 2 )13a 2 n L /420R2

kg5 11= -( p1tR2L / 2 )(6u l /5L2 +9U2n170R2 )

kg5 12=( p1tR2L /2 )(0.1 /IOL+13u2 n2L /420R2
)

kg66=( p1tR2L /2 ) (2(11 /]5+U2 n2L2 /I05R2
)

2 2kg69==-( pnR L /2) 13u2 nl 1420R
222kg610= -( pnk L /2 ) (12 nL /140R

2 2 2kg512=( p1tR L /2 ) ( 0.1 /IOL-13u2 n L 1420R)
2 2kg99= -( prrk L / 2 )13a2/35R

kg910= -( p1tR2L / 2 )11a2 n L/210R2

2 2kg911:::: -( p1tR L 12 )13a2 n /35R

kg912::::( p1tR2L /2 )llu2 n L/210R2

kglOl0= (p1tR2L / 2 )u2L
2/ I05R2

kglOII= ( p1tR2L I 2 )lla2 n L/2t OR2

kglOl2= -( p1tR2L / 2 )a.2 n L2/105R2

2 2 2 2kg1111::::( p1tR L 12 )(6(11 /5L +13u2n /35R)

kgllI2=( p1tR2L / 2 )(Ul IIOL-Ilu2 n2L /210R2
)

2 2 2 ..,
kg1212=( pnR L /2 )(2ul 115+u2 n L /105R-)

A.S Upper Triangular Elements of Geometric Stiffness Matrix rkgsl of the
Stiffener Element (Rajagopalan, 1993)

kgS33 = 1tpARRRLs/[R(AR+tLs) ]

kgS35 =[nnpARLs!(AR+tLs) ] [(e/R)-1]

kg55 =[n27tpRARLsIRR(AR+tLs) ] [(elR)-I] 2

A.6 Upper Triangular Elements of Pressure Stiffness Matrix [k-] of the Shell
Element (Rajagopalan, 1993)

kp 16= - 1/10 (p1tRL)

kp I 11 = -1/2L (p1tRL)

kp 112 = 1/10 (P1tRL)

kp25 =-1/1 0 (p1tRL)

kp21) =-1/10 (pnRL)

kp212 = L/60 (p1tRL)

kp33 = 13/35R (pnRL)

kp34 = 11L/21OR (p1tRL)

kp35 = 13nJ35R(P1tRL)

kp36 = -11nL/21OR (p1tRL)
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kp39=9/70R (pnRL)

kp3 10 = -13L/420R (pnRL)

kp311 = 9n/70R (p1tRL)

kp312 = -I3nL/420R (pnRL)

kp44 = -L21/1 05R (pnRL)

kp45 = 11 L/21OR (p1tRL)

kp46 = nL2/105R (p1tRL)

kp49 = 13L/420R (p1tRL)

kp4 10 = -L2/140R (p1tRL)

kp4 11=13nL/420R(p1tRL)

kp4 12 = -nL2/40R (p1tRL)

kp55 = 13/35R (p1tRL)

kp56 = 11L/21OR (p1tRL)

kp57 = 1/2L (pn:RL)

kp58=-]/IO (p1tRL)

kp59 = 9n/70R (P1tRL)

kp510 = .. 13nL/420R (P1tRL)

kp511 = 9/70R (pnkl.)

kp5 12=-13nL/420R (p1tRL)

kp66 = L2/ 105R (P1tRL)

kp67 = -1/10 (p1tRL)

kp68 = -L/60 (p1tRL)

kp69 =13nL/420R (pnRL)

kp61o=nL2/140R (p1tRL)

kp6 11=13L/420R (p7tRL)

kp6 12 = -L2/140R (p1tRL)

k p712 = ..1/10 (P1tRL)

kp811 = -1/10 (pnRL)

kp99 = 13/35R (pnRL)

kp910 = 11 L/21OR (pnRL)

kp911= 13n/35R (pnRL)

kp9 12 =- I IL/210R (p1tRL)

kplOIO = L2/105R (P1tRL)

kpI011 = -11nL/21OR (pxkl.)

kpI012 = nL 2/105R (pnRL)

kpl111 = 13/35R (p1tRL)

kpll12 =-llL/2IOR (p1tRL)

kp1212 = L2/ I05R (pnRL)
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APPENDIXB

CLASSICAL SOLUTIONS AND RULEBOOK PROVISIONS

B.l General

Various classification societies and relevant rulebooks for the design of

submersibles give provisions for scantlings for various shell forms employed in the

sub sea environment subjected to external pressure. Generally these provisions are in

the form of equations using which the thickness for a given external pressure for

various shell geometries can be determined. In each of the rulebook, there are

another sets of equations, which give the collapse pressure for the known scantlings.

Classical solutions are available for linear static analysis of ring stiffened cylindrical

shells. Empirical relations are also available to predict the collapse pressure.

The rulebooks considered in the present study are Indian Standard Code for

Unfired Pressure Vessels (1977), Lloyd's Register of Shipping (1988) and Det

Norske Veritas (1996). The rulebook provisions for externally pressurized shells are

used to generate a computer program, so that the designed pressure for the given

scantlings can be calculated. The details of the software are available elsewhere

(Sreekala, 1997).

B.2 Classical Solutions for Short Stiffened Cylindrical Shell with External

Pressure

Classical solutions are available to determine the radial deflection of the

stiffened cylindrical shell as well as for the prediction of collapse pressure. Generally

the collapse pressure will be the minimum of pressure predicted for inter-stiffener

buckling. yielding and general instability.

B.2.1 Radial Deflection

The expression of the radius deflection of the ring-stiffened cylinder with

end cover is

b'=p'a2 /Eh ~ (cosh 2a + cos 2a. )/ (sinh 2a + sin 2a) _1/2V ((sinh 2a. -sin 20,)/ (sinh

2a + sin 2a ))2 / (cosh 2a - cos 2a)/ (sinh 2a + sin 2u)P [Timosheko, 1959] (B.l)
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where p' = p-Ph/A, 0' = 8 - 81~ 0 =pa2 /Eh, 01= Pfa2/AE.

P' denotes the magnitude of force per unit length of the ring for a uniform external

pressure p.

a= ~L I 2, P=4~3(1- v2
) I "ah, a = radius, h=thickness, v =Poisons ratio, Ls-length,

A = area of cross section of the ring stiffener.

An expression for radial deflection of ring stiffened cylinder is given by

Flugge (1962) 8=«(2-v)/2)pa2 /Eh {1-[ ( cosh; sin~+ sinhl; cos ~ lcoshipx/a cosvx/a

+ (cosht; sin~ .. sinhl; cos c) sinhipx/a simpx/a ] x [cosh~( sinhl; +11 coshc) + cos~

(sin~-+l1 cos~)]~]} (B.2)

B.2.2 Stress Resultants

Flugge has given closed form solution for stress resultants Mx and NQ

Mx = (2-v)pa~"3(1- v2
) -[ ( coshl; sin~+ sinhl; cos ~ )cosh'Vx/a cosurx/a - (cosh];

sin~- sinhl; cos E) sinhurx/a simpx/a ]x [cosh~( sinhl; +11 coshc) +cos~ (sin~-+l1

cOS~)]-l } (B.3)

NQ = pat 1-(2-v)/2) -[ ( cosh; sin~+ sinhl; cos ~ )coshwx/a cosqrx/a + (coshz;

sin~- sinhl; cos c) sinhvx/a simpx/a ] x [cosh~( sinhl; +11 coshc) +cos~ (sin~-+l1

cos~)]~1 } (B.~)

B.2.3 Shell Buckling

Windenburg (1934) has developed an equation, based on von Mises

equation to predict the collapse pressure in the following form

2.24E(t/D)5/2

(l-IJ2)3/2[L/D_4.5(t/D)1/2]
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8.2.4 Shell Yielding

Von Sanden and Gunther (Connstock, 1988) have developed two equations

to predict the pressure at which yielding of the shell will occur at frame and midbay.

For yielding at frame

0.5+1.815K((O.85-B)/(1+P))
p

2ayt/D
........................ (B.6)

p

Fore yielding at midbay

2cryt/D

1+H«O.85-B)/(1 +P)

B.2.5 General Instability

........................ (B.7)

The expression for critical pressure associated with general instability is

developed by Kendrick and modified by Bryant (1970).

Per := Et/R{m4/[n2-1+(m2/2)][n2+m2]2}+{[n2-1]EI/R3L} (B.8)

Where m = 1tR/Ls

B.3 Software Developement

Software has been modified to predict the collapse pressure integrating the

rulebook provisions and classical solutions. This program has been used to make a

critical study of code provisions as well as classical solutions to highlight the over

estimation or under estimation of strength which may cause conservative or

inadequate design.

B.4 Numerical Investigations

Design pressure has been predicted for stiffened cylindrical shells of M 1

and M2. Geometric features of stiffened cylindrical shells of submarine MI and M2

are given earlier in table 3.2 and in fig. 3.6 and fig. 3.7.
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Table B.I Design pressure predicted by Rulebooks for Ml and M2
.

Design pressure
No. Rulebook concerned

predicted N/mm2

MI M2

1 IS 2825 3.389 1.864

2 LRS 7.693 6.812

3 DnV 4.103 3.633

Table B.2 Collapse pressure predicted and safety factor from

classical solutions for Ml and M2

Model Classical solution
Collapse pressure

Safety factor
(N/mn1 2

)

Windenburg's formula (shell buckling) 39.978 13.06

Bryant's formula (general instability) 25.371 (n=2) 8.41

MI Yielding at midbay (Van Sanden and
Gunther)

16.603 5.51

Yielding at frame
13.331 4.42

(Von Sanden and Gunther)

Windenburg's formula (shell buckling) 19.512 6.34

Bryant's formula (general instability) 38.230(n=2) 12.68

M2 Yielding at midbay (Von Sanden and
Gunther)

6.724 2.22

Yielding at frame (Von Sanden and
9.459 3.14

Gunther)

B.5 Discussion on Results

The design pressures predicted by various Rulebooks are given in table B.I.

The design pressure predicted by IS 2825 are 3.389 N/mm2 and 1.864 N/mm2 for Ml

and M2 respectively. The corresponding values predicted by LRS are 7.693 N/mm2

and 6.812 Nzmm' and by DnV are 4.103 Nzmrrr' and 3.633 N/mm2 for MI and M2

respectively. On analysing the results a comparative study of various code provisions

is made. The critical study of code provisions highlights the over estimation or under

estimation of strength which may cause conservative or inadequate design. On

analysing the results it may be concluded that IS code is more conservative than LRS

and DnV and may be advised for a revision.
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The collapse pressure predicted by empirical formulae and the safety factors

(the ratio of collapse to design pressure) are given in table A.2. The collapse pressure

predicted by Windenburg's formula are 39.978 Nzrnrrr' and 19.512 N/mm2 for Ml

and M2 and by Bryant's formula are 25.371 Nzrnrrr' (n=2) and 38.230 Nzmm'

(n==2). For M1 and M2 yielding of the shell will occur at midbay at 13.331 N/mm2

and 9.459 N/mm2 and at frame at 16.603 Nzmrrr' and 6.724 Nzmnr' respectively.

The computed safety factors indicate that the classical solutions the submarine

scantling design are conservative.
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