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ABSTRACT

Submarine hull structure is a watertight envelope, under hydrostatic pressure
when in operation. Stiffened cylindrical shells constitute the major portion of these
submarine hulls and these thin shells under compression are susceptible to buckling
failure. Normally loss of stability occurs at the limit point rather than at the
bifurcation point and the stability analysis has to consider the change in geometry at
each load step. Hence geometric nonlinear analysis of the shell forms becomes. a
necessity. External hydrostatic pressure will follow the deformed configuration of the

shell and hence follower force effect has to be accounted for.

Computer codes have been developed based on all-cubic axisymmetric
cylindrical shell finite element and discrete ring stiffener element for linear elastic,
linear buckling and geometric nonlinear analysis of stiftened cylindrical shells. These
analysis programs have the capability to treat hydrostatic pressure as a radial load

and as a follower force.

Analytical investigations are carried out on two attack submarine cylindrical
hull models besides standard benchmark problems. In each case, the analysis has
been carried out for interstiffener, interdeepframe and interbulkhead configurations.
The shell stiffener attachment in each of this configuration has been represented by
the simply supported-simply supported, clamped-clamped and fixed-fixed boundary

conditions in this study.

The results of the analytical investigations have been discussed and the
observations and conclusions are described. Rotation restraint at the ends is
influential for interstiffener and interbulkhead configurations and the significance of
axial restraint becomes predominant in the interbulkhead configuration. The follower
force effect of hydrostatic pressure is not significant in interstiffener and
interdeepframe configurations where as it has very high detrimental effect on
buckling pressure on interbulkhead configuration. The geometric nonlinear
interbulkhead analysis incorporating follower force effect gives the critical vajue of
buckling pressure and this analysis is recommended for the determination of collapse

pressure of stiffened cylindrical submarine shells.

Vi



NOMENCLATURE
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CHAPTER 1
INTRODUCTION

1.1 GENERAL

More than two third of the earth’s surface is covered with water.
Submersibles are primarily employed to observe and explore the subsea
environment. Submarine is a submersible which operates in deep waters and can be
defined as hydrodynamically designed one atmos. pressure chamber, and which
maintains its structural integrity at the chosen diving depth and functions as a

floating vessel on surfacing.

Besides the submarines for warfare there are commercial submarines, which
are used in the offshore industry for underwater exploration, repair and maintainence.
For the functional environment for the crew, submarines are essentially designed as
atmospheric pressure chambers and consequently the hull has to withstand safely the

hydrostatic pressure prevailing at the operational depth.
1.2 HULL GEOMETRY

High hydrostatic pressure is best withstood by axisymmetric structural
forms (Jackson, 1983). The pressure hull of a submarine is often constructed from
various combinations of c¢ylinders, cones and domes. The pressure hull is mainly a
cylindrical pressure vessel and the changes in hull diameter are accomplished
through conical sections. The fore and aft ends of the hull consist of domed and/or
conical end closures. These hull forms are hydrodynamically efficient and possess
better overall strength. Usually the cylinders are stiffened with rings and/or stringers
(Burcher and Rydill, 1994).

1.3 STRUCTURAL BEHAVIOUR

Stiffened cylindrical shells are essential components in various hydrospace,

aerospace and terrestrial structures. Cylindrical shell structures by virtue of their



shell geometry carry the applied loads primarily by direct stresses lying in their plane
accompanied by a little or no bending. External hydrostatic pressure induces
compressive stress resultants in the cylindrical shells and may cause buckling at a
pressure, much lower than the axisymmetric yield. Subsequently analytical
investigation on buckling of such shell forms is the major problem to be addressed.
The introduction of stiffeners considerably increases the buckling strength of the

shell and is a satisfactory solution for increasing the strength of the shell.

The primary modes of failure of a stiffened cylindrical shell are considered
to be buckling of shell between ring stiffeners identified by dimples or lobes around
the periphery of shell plating; yielding of shell between ring stiffeners usually
appearing as axisymmetric accordion pleats and general instability characterized by
large dished-in portions of stiffened cylinder wherein the shell and the stiffeners
deflect bodily as a single unit (Cormstock, 1988). Third mode of collapse is
sensitive to spacing of bulkheads or deepframes and the scantlings of supporting ring

frames. The general instability is very much sensitive to initial imperfections.

The simultaneous occurrence of all modes of failures described earlier has
been argued by theoreticians as being the only criterion to be considered for the

optimum design.
1.4 STRUCTURAL ANALYSIS OF CYLINDRICAL SHELLS

Classical methods are available for deflections, stresses and buckling
pressures of ring stiffened cylindrical shells under hydrostatic pressure. But these
are not applicable to actual submarines with stiffeners of various shapes and
nonuniform spacing and shells with complex boundary conditions. Numerical
solution schemes like finite difference and finite element methods can effectively

be employed in these situations.
1.5 FINITE ELEMENT ANALYSIS OF STIFFENED CYLINDRICAL SHELLS

Finite element method is an efficient numerical technique for the study of
the behaviour of various structural forms. The finite element method requires the

actual submarine structure to be replaced by a finite element model, made up of



structural elements of known elastic and geometric properties. The objective
therefore, is to develop a model, which simulates the elastic behaviour of continuous
structure as closely as required. The finite element modeling of stiffened cylindrical
shells can be done either using a smeared model or stiffener shell model. Various
finite element models of stiffened cylindrical shells, viz., orthotropic shell model,

discrete stiffener model and superelement model are generally used in the analysis.

The hydrostatic pressure can be idealized as uniformly distributed external
load acting on the periphery of the shell, which can be converted into consistent load
vector. Since hydrostatic pressure is a displacement dependant load, nonlinear
analysis has become a necessity and hence finite element method is preferably

adopted.

1.6 FINITE ELEMENT MODELING OF UNSTIFFENED CYLINDRICAL
SHELLS

Unstiffened cylindrical shells subjected to external hydrostatic pressure can

be modeled using axisymmetric elements, facet elements or general shell elements.

Singly curved shell finite elements were first developed in axisymmetric
form for the analysis of shells of revolution. Since the hull of the submarine is
stiffened cylindrical shell under axisymmetric loading, axisymmetric shell finite
elements can be effectively used for analysis. Elements with axisymmetric geometry
and asymmetric displacement functions {designated as rotational finite elements) can
be effectively used for stability and geometric nonlinear analyses. In these types of
elements shell nodes are nodal circles. The shape functions are obtained by
combining polynomials along meridional direction and trigonometric functions in
circumferential direction. Axisymmetric structures subjected to nonaxisymmetric

loading can also be analysed using these elements.

Generally axisymmeiric elements are efficient in achieving a state of
constant strain and rigid body modes and in eliminating membrane locking and shear

locking problems compared to general shell elements (Cook et al, 1989). The major



drawback of these elements is that proper analysis is not possible in the presence of

irregularities or discontinuities within the shell.

In facet element modeling, the assembly of elements gives a geometry,
which approximates the actual shell surface. The shell behaviour is achieved by the
superposition of stretching behaviour (membrane element) and bending behaviour
(plate bending element). The concept of the use of such elements in shell analysis
was suggested by Greene et al (1961). The attractive features of this modeling are
simplicity in formulation, easiness to mix with other types of elements and the
capacity of modeling rigid body motion. Geometric nonlinear analysis based on
corotational kinematics can be done effectively using these elements (Ramm, 1982).
However, there are some drawbacks such as the lack of coupling between stretching
and bending within the element and the discontinuity of slope between adjacent plate
elements, which may produce bending moments in the regions where they do not
exist. These are available in rectangular, quadrilateral and triangular shape together

with coordinate transformations.

The curved elements have been developed with a view to overcome the
limitations of facet elements and are generally used for general shells or shells with
geometric discontinuity. Based on basic assumptions and theories, two types of
curved elements have been formulated, viz., elements based on classical shell

theories and degenerated shell elements.
1.7 FINITE ELEMENT MODELING OF STIFFENED CYLINDRICAL SHELLS

Various finite element models of stiffened cylindrical shells are orthotropic
shell model; discrete stiffener model and superelement model and are described

subsequently.

In the orthotropic approach, the ring stiffeners are blended with the shell
such that the ring-stiffened shell is represented as an unstiffened but orthotropic
cylindrical shell having different constitutive relationships in longitudinal and

circumferential directions.



In the orthotropic shell modeling, stiffeners are assumed to interact to such a
degree that these can be smeared into the shell. The compatibility of the plate and the
stiffener gives rise to internal stresses, which results in change in constitutive
relations in two mutually perpendicular directions. These constitutive relations can
be effectively derived from the compatibility of the shell and the stiffener. The
orthotropic approximation is applicable to geometries where there are a large number
of closely and equally spaced rings and\or stringers, in which the stiffened hull 1s

modeled using orthotropic shell elements.

In discrete stiffener model the stiffener is modeled as rings or an assembly
of curved beam finite elements defined by cross sectional area and eccentricity of the
cross section from the shell middle surface. In this model the stiffeners are assumed
to be concentrated along the nodes of the shell elements. This model introduces
certain inconsistencies such as the lumped stiffeners, indicating a coupling only
along the nodes to which it is connected. Secondly the stiffeners inside the shell

element are shifted to a new position in the lumped model.

The superelement modeling generally consists of merging a group of
subelements into an assembly followed by the reduction of internal degrees of
freedom that are local to a given superelement. The remaining degrees of freedom
are termed as retained or super degrees of freedom. It is the process of substructuring
technique followed by static condensation. The degrees of freedom normally retained
are those, which are required to connect the superelement. The superelements may
in turn be used as subelements for new assemblies on higher level. In this way a
multilevel hierarchy of superelement may be established. The highest level in such a
hierarchy will represent the complete structure. Hybrid beam elements (in which
axial and bending stiffnesses are based on different cross sections) or eccentric beam
elements (in which element nodes are not located along the stiffener centroidal axis)

can be effectively used as the special elements or superelements (Hughes, 1986).
1.8 TYPES OF ANALYSES PERFORMED

Finite element analyses performed for the stiffened cylindrical shells of
submarine are linear static analysis, linear buckling analysis and geometric nonlinear

analysis.



1.8.1 Linear Static Analysis

Linear static analysis is the strength analysis in which the principle of super
position is valid. It is based on the small deflection theory where stress strain
relations and strain displacement relations are linear. In this method of analysis the
change in geometry of the structure is not taken into account while deriving the
equilibrium equations. The linear static analysis of the stiffened cylindrical shell can
be performed by solving the general finite element equilibrium equations, consisting

of linear elastic stiffness matrix and load vector. Deformation pattern and stress

resultants can be calculated.

1.8.2 Linear Buckling Analysis

Buckling phenomenon is the major failure mode associated with thin walled
cylindrical structures subjected to external pressure. The structure can suffer
instability at a pressure, which may be only a small fraction to cause material failure.
The buckling phenomenon associated with thin walled circular cylindrical shell

subjected to uniform external pressure can be explained using the load deflection

curve shown in fig. 1.1 (Rajagopalan, 1993).
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Fig. 1.1 Bifurcation buckling

The first regime OR, called the prebuckling state, determines the

axisymmetric state of stress due to axisymmetric pressure load on the perfect



cylinder. The prebuckling path is linear. The second regime RS, called the buckling
stage and the load deflection curve for a perfectly circular cylinder subjected to
uniform external pressure splits into two at the point R. At this point the load
deﬂectionhcurve can be either RS or RS and the pressure Pb is called bifurcation-

buckling pressure.

In the linear prebuckling analysis, change in geometry prior to buckling is
neglected. The prebuckling deformations are neglected and hence stiffness matrices

are evaluated at the original undeformed configuration.

Bifurcation buckling pressure is determined from linear buckling analysis.
Linear buckling analysis is performed by constructing linear elastic stiffness matrix
signifying the internal strain energy and geometric stiffness matrix representing the
work done by the prebuckling stresses on the buckling displacement of the complete
structure. The elastic stiffness matrix, [K,] and the geometric stiffness matrix [Kg]
are evaluated at the original undeformed configuration. The geometric stiffness
matrix at any load level [Kg] is linearly related to the initial geometric stiffness
matrix [K,] by a parameter A, which is a nondimensional function of load applied

(Felippa, 1999).

Kol =ALKd e (1.1)

During buckling the total stiffness matrix becomes singular or the
determinant of the total stiffness matrix vanishes. The eigen value problem of

instability is therefore formulated as
(Kol +[Kg]) {8} =0 e (1.2)

K+ A IKD I8} =0 (1.3)

The buckling pressure is evaluated for the condition

[Kol+ AolKq]

where A is the nondimensional buckling pressure.

=0 (1.4)

In the solution, eigen values will be the buckling pressure and eigen vectors
will be the buckling mode. Linear prebuckling analysis has the advantage of avoiding

a full nonlinear analysis, which may be expensive and time consuming. This method



is effective in cases of cylinder subjected to hydrostatic loading, in which
prebuckling deformations are small. Linear prebuckling analysis is effective in
cylindrical shell structures made of steel in which buckling occurs in the elastic
range. Cylindrical shell under hydrostatic pressure is not much sensitive to initial

imperfections and hence linear buckling analysis can be adopted.

Linear buckling analysis predicts the collapse pressure at the bifurcation
point and the postbuckling regime is left untouched. Geometric nonlinear analysis

has been recommended to make the investigations of buckling behaviour complete.
1.8.3 Geometric Nonlinear Analysis

In structural mechanics a problem is nonlinear if the stiffness matrix or load
vector depend on displacements. The cause of nonlinearity may be material or
geometric. The material nonlinearity may be due to nonlinear stress-strain relations
and geometric nonlinearity may be due to nonlinear kinematic relations i.e. nonlinear

strain-displacement relations (large displacements) and large strains.

The prebuckling deformations of the cylindrical shell causes rotation of the
structural elements and primary equilibrium path will be nonlinear from the outset.
The ring stiffened shell with high degree of orthotropy may experience significant
nonlinear prebuckling deformations. The critical load could not be determined with
sufficient accuracy if prebuckling nonlinearity is neglected. Normally the loss of
stability occurs at the limit point rather than at the bifurcation point. In such cases the
critical load must be determined through the solutions of nonlinear system of

equations.

The geometric nonlinearity in which the nonlinear effect arising from
nonlinear strain displacement relations and nonlinearity due to follower force effect
of hydrostatic pressure are to be taken into consideration for stiffened cylindrical
shell subjected to hydrostatic pressure. These two are smooth nonlinearites and

incremental iterative procedure can effectively be used as solution strategy.

The key component of the finite element nonlinear analysis is the solution

of nonlinear algebraic equations that arise upon discretization. This difficuity is



overcome by the concept of continuation, which is also called incremental anaIyéis
(Crisfield, 1980). In this method the analysis is started from an easily computable
solution (for e.g. the linear solution) and try to follow the behaviour of the system, as
actions applied to it are changed by small steps called increments. In the incremental
iterative methods one or more iteration steps are included to eliminate or reduce the

drifting error, which are there in purely incremental methods (Felippa, 1999).

Out of three types of incremental iterative procedures, viz., load control,
displacement control and arc length control, load control method is the basic one, and

is generally adopted in the analyses mentioned earlier.

The essential feature of geometric nonlinear analysis is that the equilibrium
equations must be written with respect to the deformed geometry, which is not
known in advance (Bathe, 2001). Corotational kinematics is adopted for the
generation of equilibrium equation at the deformed configuration i.e., for the
generation of tangent stiffness matrix and the load vector at the deformed
configuration. The reference configuration is split. Strains and stresses are measured
from the corotated configuration where as the base configuration is maintained as a

reference for measuring rigid body motion.
1.9 FOLLOWER FORCE EFFECT OF HYDROSTATIC PRESSURE

Conventional structural analysis involves loads that do not change their
direction during deformation process and such loads are called conservative loads.
The direction of the external loads such as water pressure or wind forces in the real
situation may be changed during the deformation and the forces induced by such
loads are called follower forces or polygenetic forces. These forces remain normal to
the surface upon which they act throughout the load displacement history. Follower
force effects are to be considered in the analysis of practical structures such as

pressure vessels, cooling towers etc.

In the case of follower force the direction of the applied force is dependent

on displacement, and to account for this additional stiffness terms, pressure stiffness



matrix must be added to the conventional stiffness matrix to take care of the pressure

rotation effects.

Normally structures with follower force do not have proximate equilibrium
position. These structural systems change to instability directly from the prebuckled
equilibrium configuration and geometric nonlinear analysis becomes a necessity. The
linear prebuckling analysis is restricted to static criterion, which is restricted to
conservative loads. But for structures not having any loaded free edges or if a
constant pressure is acting on a fully enclosed volume (like submarine pressure hull),
polygenetic force effect will be weak and hence the structure is amenable to
bifurcation buckling analysis. So the pressure rotation effects can also be handled

within the realm of bifurcation buckling analysis.

Pressure rotation effects are important in cylindrical shells only when the
shell buckles with a smaller number of waves in the circumferential direction, a
phenomenon that occurs on long shells. Hence there is sufficient scope for including
follower force effect originating from hydrostatic pressure in the collapse pressure

prediction of submarine shells
1.10 DESIGN ASPECTS OF SUBMARINE HULLS

A landmark paper on submarine design is presented by Arentzen and
Mandel (1960). The design procedure forwarded by Kendrick (1970) has received
acceptance in European codes (BS 5500 and DnV). According to Kendrick the
advantage in submarine strength prediction is that the hydrostatic loading is well
defined. Under static conditions the ring-framed cylinder may fail by general
instability, inter frame buckling or yielding of the plate between frames. Overall
collapse between bulkheads or general instability is a low order-buckling
phenomenon due to insufficiently strong frames in relation to the compartment
length. Reducing the effective compartment length and/ or introducing stronger ring
frames can markedly increase the buckling pressure. Kendrick has published about
half a dozen design papers. His design method is based on the philosophy that it is
more practical to arrange the prime mode of collapse that determine the main weight

and cost of the vessel should have an adequate but not excessive strength margin. But

10



other forms of collapse mode that require considerable analytical effort for accurate
collapse prediction but little material to avoid premature buckling can be avoided by

using generous margins of elastic buckling pressure for the appropriate mode.

A rational submarine hull design proposes scantlings for an optimum
structural form, which has adequate safety at the operational diving depth. The
designer has to take into account many uncertainties and unavoidable situations like
slight variation in material characteristics, deviations from circularity and other
departures from ideal, which may occur in construction or service. Residual stresses
particularly in frames, stress concentrations, inaccuracies in computing statically
indeterminate systems and possibility of submarine exceeding its operational depth
due to control malfunctions or as a deliberate manoeuvre to avoid attack as reported
by Daniel (1983) etc., are also to be taken into account. There has to be reasonable

stress analysis or strength estimation done before arriving at the final scantlings.

The stiffeners are the principal structural members that support the shell
membrane and maintain its integrity. Actually externally welded frames are more
stable than internal frames (Gorman & Louie, 1994). It also allows better utilization
of internal spaces. However, these experience tensile stresses in a corrosive
environment and are more likely to have separation from shell plating under dynamic
loading and hence not adopted usually. From the hydrodynamic point of view

internal frames are preferred.
1.11 ORGANISATION OF THE THESIS

This thesis is presented in six chapters. In the first chapter an introduction
for submarines, structural action of underwater shells and method of structural
analysis employed are given. Brief description of type of finite element analyses of

stiffened cylindrical shells is presented.

In the second chapter a review of literature on finite element analysis of

cylindrical shell is presented and the objectives of the present study are given here.

Third chapter describes the linear static analysis of stiffened cylindrical

shells. The description of the all-cubic element and discrete stiffener element used in

1]



the analysis are given. The validation of computer code developed and numerical

investigations of stiffened cylindrical shell models of submarines are included.

Fourth chapter describes the linear buckling analysis of stiffened cylindrical
shells, which predicts the collapse pressure of submarine hull. Validation and
analytical investigation of submarine cylindrical shell models are included

subsequently.

The description of the nonlinear analysis of stiffened cylindrical shell is
given in the fifth chapter. Development of software and results of numerical
investigations are described. Conclusions and scope for future work are given in

chapter 6.

The details of elements of stiffness matrices are given in Appendix A and
classical solutions and Rulebook provisions for the analysis of stiffened cylindrical

shells are depicted in Appendix B.

12



CHAPTER 2
REVIEW OF LITERATURE

2.1 INTRODUCTION

Stiffened cylindrical shell forms are extensively used as structural
components in naval and offshore industry. Buckling analysis of these shell forms
are very relevant in subsea applications since the hydrostatic pressure induces
compressive stress resultants in shell membrane. An attempt has been made here to
realize the state of art in the analysis and design of cylindrical shells. Literature
describing early classical closed form solutions as well as finite element analysis of
stiffened cylindrical shells are reviewed and presented under subheadings classical
methods, axisymmetric cylindrical shell finite elements, follower force effect and

design aspects.
2.2 CLASSICAL SOLUTIONS

Classical solutions for linear and buckling analysis of unstiffened cylindrical
shells are available through Timoshenko (1961), Flugge (1962), Donnell (1976),
Novozhilov (1959), Kraus (1967) and Brush and Almroth (1975).

2.2.1 Shell Buckling

The buckling pressure of an unstiffened shell with uniform thickness with
simply supported boundary condition is given by von Mises as eqn. 2.1.
[2E(t/D)] (/DY [(n*+m?)’ - 2n°+1] m*

P.= T T | e, (2.1)
(n2+m2/2_1) 3(1-“2) (n2+m2)2 .

Where m = nR/L,

von Mises’ expression is still widely used because it has been presented in a
relatively simple form and gives slightly conservative values (Faulkner, 1983).

Windenburg and Trilling (1934) have developed another simplified equation based

13



on von Mises’ to predict the collapse pressure under hydrostatic pressure loading and

this is given as eqn.2.2.

2.24E(Y/D)Y**
Pc = (1 _“2) 3/2[L/D'4.5 (t/D) ‘/z] ........................ (22)

Analytical solutions for buckling analysis of unstiffened cylindrical shells
are given by Batdorf (1947) and Nash (1954).

Reis and Walker (1984) have analysed the local buckling strength of ring
stiffened cylindrical shells under extemal pressure. The collapse pressure is
calculated by assuming failure to occur when the material reaches a plastic stress
state. Ross (2000) has observed that many vessels buckle at a pressure that are
considerably less than those predicted by elastic theory and introduced a plastic
knockdown factor PKD by which the theoretical elastic instability buckling pressure
is to be divided, to get the predicted buckling pressure. The value of PKD can be

taken from the semi empirical chart developed by Ross.
2.2.2 Shell Yielding

Von Sanden and Gunther (Cormstock, 1988) have developed two equations

to predict the pressure at which yielding of the shell occurs at frame and midbay.

For yielding at frame

20y (/D)
T T T T e (2.3)
0.5+1.815K((0.85-B)/(1+B))
For yielding at midbay
20v(t/D)
P = ———— (2.4)

1+H ((0.85-BY/(1+8B))
More exact analysis has been made by Salerno and Pulos to include the

effect of axial loading (Jackson, 1992).
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2.2,3 General Instability

Classical solutions for general instability of ring-stiffened shells under
hydrostatic pressure are given by Kendrick (1953), Bijlaard (1957) and Galletly
(1957). Kendrick has presented a classical variational formulation of the differential
equation of buckling analysis of ring stiffened cylindrical shells. By assuming a half
sine wave between supports as the buckling deformation and proper allowance for
shell distortions between frames, collapse pressure has been predicted by Kendrick
(1965) using Ritz’s procedure for simply supported — simply supported boundary
conditions and has been extended for clamped boundary condition by Kaminsky
(1954). Displacement field used by Kendrick has been modified by Ross (1965) and
general instability analysis of ring stiffened cylindrical shells has been performed

incorporating various degrees of rotational restraint at the boundary.

Bresse has developed an expression for elastic collapse of infinitely long
ring-framed compartments (Timoshenko, 1961). Bryant has modified the formula
developed by Kendrick by combining von Mises’ and Bresse’s relations for the
determination of the overall buckling pressure of ring stiffened cylindrical shell with

simply supported boundary conditions and is available in the form as,

Buckling pressure of stiffened cylindrical shell P =Per+ Pog  ovvervenincieicnns (2.5)
P.r = buckling pressure of ring stiffeners = {[n’-1] EV/R’L}

P.s= buckling pressure of shell= Et/R {m*/([n%-1+(m*2)][n*+m?] "} cvvvvvrevrenann. (2.6)
andm =nR/L,

Bryant’s two-term approximation to the overall buckling pressure has
gained wide acceptance because of its simplicity (Faulkner, 1983). The effect of
imperfections on buckling pressure has been investigated and an expression has been

developed by Bijlaard (1957).

The critical pressure for general instability of ring stiffened, stringer
stiffened and ring and stringer stiffened cylindrical shells are computed by Bodner
(1957). Baruch and Singer (1963) have carried out general instability analysis of
stiffened cylindrical shell by considering the distributed eccentric ring stiffeners and

stringers separately. The well-known superiority of rings over stringers for
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cylindrical shells under external pressure is very clearly brought out. The effect of
eccentricity of stiffeners is more pronounced for rings than for stringers. Voce (1969)
has developed a solution procedure based on energy method for general instability of
orthotropic ring stiffened cylinders under external hydrostatic pressure for simply
supported boundary condition. Kempner et al (1970) have developed a procedure to
determine the stresses and deflections incorporating the effects of large rotations,
initial deflections and thick shell effects. Singer (1982) has extended buckling
analysis for imperfect stiffened shells. Wu and Zhang (1991) have developed a
nonlinear theoretical analysis for predicting the buckling and post buckling loads of

discretely stiffened cylindrical shells.

Karabalis (1992) has made a simplified analytical procedure, which can be
used as an effective method in checking the design of stiffening frames of cylindrical
fuselages with or without cutouts for failure by general instability. The general
instability mode of failure of cylindrical shell is independent of geometric
discontinuity like cutouts. Any loss in moment of inertia due to the cutouts must be
proportionately compensated by gain in bending stiffness, which can be realized by
the addition of reinforcement possibly at the edges of the cutouts. However large
reinforced cutouts would fail due to local instability at the edges of the cutouts. It is
recommended that the proposed criteria can be used for design and calculation in the
absence rigorous finite element analysis. Huang and Wierzbicki (1993) have
developed a simple analytical model that describes the plastic behaviour of a curved
cylindrical panel with ring stiffeners. Energy methods are used to analyse the plastic
tripping response of the structure. In order to derive a closed form solution to the
problem, a number of simplifications are made such as the material is treated as fully

plastic and the energy corresponding to lateral bending of stiffeners are neglected.

Tian et al (1999) have carried out elastic buckling analysis of ring stiffened
cylindrical shells using Ritz’s procedure, which can be used as a reference source for
checking the validity of other numerical methods and software for buckling of

cylindrical shells.

Barlag and Rothert (2002) have developed an idealization concept for

stability analysis of ring reinforced cylindrical shells under external pressure. A
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monograph is introduced based on the stability equation to determine the local and
global buckling pressures of ring stiffened cylindrical shells under external pressure

based on Flugge’s strain displacement relations.

The scope of the classical methods is limited to simple boundary

conditions, uniform shell thickness, regular stiffeners and uniform spacing.
2.3 AXISYMMETRIC CYLINDRICAL SHELL FINITE ELEMENTS

Axisymmetric cylindrical shell elements are singly curved, straight meridian
elements. A few relevant papers on axisymmetric shell elements have been reviewed
and presented. Review of literature on finite element modeling of unstiffened and

stiffened cylindrical shells is described subsequently.
2.3.1 Unstiffened Shells

Grafton and Strome (1963) have presented the conical segment elements for
the analysis of shells of revolution. Improvements in the derivation of element
stiffness matrix are presented by Popov et al (1964). Percy et al (1965) have

extended these formulations for orthotropic and laminated materials.

Navaratna et al (1968) have made a linear bifurcation buckling analysis of
unstiffened shells using an axisymmetric rotational finite element in which the
membrane displacements are approximated by linear polynomials and the radial
displacement by cubic polynomial. Trigonometric functions are used to characterize
the buckling waves in circumferential direction. Later this element has been used to
study the influence of out of roundness on buckling theory of unstiffened shells. A
systematic procedure to obtain the geometric stiffness matrix and subsequently the
buckling load through variational approach is presented. Mc Donald and White
(1973) have studied the effect of out of roundness in buckling strength of unstiffened
shells. Ross (1974) has carried out lobar bifurcation buckling analysis of thin walled
cylindrical shells under external pressure using axisymmetric finite element based
linear-linear-cubic shape functions. Venkiteswara Rao et al (1974) have reported a
rigorous linear buckling analysis using axisymmetric finite element based all-cubic

shape functions. Surana (1982) has developed a nonlinear formulation for
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axisymmetric shell elements. Cook has (1982) developed a finite element model for
nonlinear analysis of shell of revolution. Rajagopalan and Ganapathy Chettiar (1983)
have developed an all-cubic axisymmetric rotational shell element for modeling the
cylindrical shell in the interstiffener buckling analysis. Ross and Mackeny (1983)
have carried out deformation and stability studies of axisymmetric shells under
external hydrostatic pressure using linear-linear—cubic axisymmetric finite elements.
Gould (1985) has formulated and used axisymmetric shell elements for linear and

nonlinear analysis.

Rajagopalan (1993) has developed a reduced cubic element based on
condensation concept for stability problems. Internal nodes are introduced in the
axisymmetric cylindrical shell element so as to permit cubic polynomial to be taken for
modeling the membrane displacement in the meridional direction. The internal nodes
are eliminated by geometric condensation procedure so that the condensed element

will have only fewer degrees of freedom and hence computationally efficient.

Ross et al (1994) have carried out vibration analysis of axisymmetric shells
under external hydrostatic pressure. Both shell and surrounding fluid are discretized
as finite elements. It is reported that dynamic buckling can take place at a pressure

less than that of static buckling pressure.

Koiter et al (1994) have investigated the influence of axisymmetric
thickness variation on the buckling load of an axially compressed shell. Mutoh et al
(1996) have presented an alternate lower bound analysis to elastic buckling collépse
of thin shells of revolution. Axisymmetric rotational shell elements whose strain
displacement relations are described by Koiter’s small finite deflection theory have
been used for the analysis. In this element the displacements are expanded

circumferentially using a Fourier series.

Sridharan and Kasagi (1997) have presented a summary of the work carried
out in Washington University on buckling and associated non-linear responds and

collapse of moderately thick composite cylindrical shells.
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Ross et al (2000) have carried out the inelastic buckling analysis of circular
cylinders of varying thickness under external hydrostatic pressure. Analytical results
are verified by experimental investigations. Gusic et al (2000) have analysed the
influence of circumferential thickness variation on the buckling of cylindrical shells
under external pressure by means of finite element bifurcation analysis. Two
different finite element codes, one with quasi-axisymmetrical multimode Fourier
analysis and the other with 3D shell element are used. Numerical integration of
Fourier series permits the introduction of geometric and thickness imperfections at

the integration points.

Correia et al (2000) have used higher order displacement fields with
longitudinal and circumferential components of displacements as power series and
the condition of zero stress at top and bottom surfaces of the shell are imposed.
Combescure and Gusic {(2001) have carried out nonlinear buckling analysis of
cylinders under external pressure with nonaxisymmetric thickness imperfections
using axisymmetric shell elements. Gould and Hara (2002) have reported recent
advances in the finite element analysis of shell of revolution. Sze et al (2004) have

discussed about popular benchmark problems for geometric nonlinear shell analysis.
2.3.2 Stiffened Shells

Ross (1976) has carried out stability analysis of ring reinforced circular
cylindrical shells under external hydrostatic pressure. Subbiah and Natarajan (1981)
have carried out a finite element analysis for general instability of ring-stiffened
shells of revolution using axisymmetric shell elements. They have used linear-linear-
cubic element for the finite element modeling of the shells. This smeared model
analysis predicted a lower bound buckling pressure. Influence of various boundary
conditions on buckling pressure has been investigated and reported. A rigorous
derivation for potential due to hydrostatic loading as follower force and subsequent

reduction in buckling pressure has been reported.

Subbiah (1988) has made a nonlinear analysis of geometrically imperfect
stiffened shells of revolution. A nonlinear large deformation finite element analysis

has been carried out for the general instability of ring stiffened cylindrical shells
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subjected to end compression and circumferential pressure. Smeared model
technique is adopted. A combined nonlinear and eigen value analysis is presented to
determine the critical pressure for initially imperfect stiffened cylinders. The
buckling pressures of thin shell structures are very much sensitive to initial
imperfections. This is one of the major reasons for poor correlation between
theoretically predicted and experimentally obtained buckling loads. The only way to
overcome this discrepancy is to analyse the shell as a nonlinear large deformation

problem with initial imperfections.

Rajagopalan (1993) has used a discrete ring stiffener element and
axisymmetric cylindrical shell element to model the stiffened cylindrical shell.
General buckling analysis has been carried out by rigorous stiffener modeling using
annular plate bending elements and shell elements. The superelement modeling of
stiffeners introduces off shell nodes, which are eliminated by geometric condensation
procedure. Ross (1995) has carried out plastic buckling analysis of ring stiffened

cylindrical shells under external hydrostatic pressure.

Kasagi and Sridharan (1995) have investigated the imperfection sensitivity
of ring stiffened anisotropic composite cylindrical shells under hydrostatic pressure
using an asymptotic procedure. The displacement function takes the form of exact
trigonometric function along the circumferential direction and p-version in other two
directions. Sridharan (1995) has extended an analysis of stiffened cylindrical shells
under interactive buckling. Effects of interaction of local and overall buckling is
analysed using finite elements, in which the local buckling information is embedded.
Schokker et al (1996) have carried out dynamic instability analysis of ring stiffened

composite shells under hydrostatic pressure.

Stanley and Ganesan (1997) have investigated the natural frequencies of
stiffened cylindrical shell (both short and long) with clamped boundary condition.

Two nodded cylindrical shell element with four degrees of freedom per node is used.
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2.4 RING STIFFENED CYLINDRICAL SHELLS WITH OTHER TYPES OF
FINITE ELEMENTS

Kohnke et al (1972) have made a finite element analysis for eccentrically
stiffened cylindrical shells using 48 degree of freedom shell elements. Giacofci
(1981) has developed modeling techniques for the analysis of stiffened shell
structures, Tsang and Harding (1987) have made plastic and elastic analysis of ring
stiffened cylindrical shells by using finite element program FINAS. Zhen and Yeh
(1990) have developed a new method of analysis capable of predicting nonlinear
buckling load for stiffened cylindrical shells. Pegg (1992) has made a numerical
study of dynamic buckling of ring-stiffened cylinders using general shell elements.
Omurtag and Akoz (1993) have developed mixed finite element formulation for
eccentrically stiffened cylindrical shells. A rectangular four nodded shell element and
a two nodded circular bar element are used for the analysis. Chen et al (1994) have
carried out buckling analysis of ring stiffened cylindrical shells with cutouts by
mixed method of finite strip and finite elements. Finite strip and finite elements are
connected together by specially developed transition elements. Goswami and
Mukopadhyay (1995) have carried out geometrically nonlinear analysis of laminated
stiffened shells. Li et al (1997) have made an adaptive finite element analysis method

for shells with stiffeners.
2.5 FOLLOWER FORCE EFFECT

Bodner (1958) has described the buckling of infinitely long cylindrical shell
under various distributed load systems with and without considering the follower
force effect. The buckling load for hydrostatic pressure is found to be lower than that

for the uniformly distributed conservative load system.

Herrman and Bungay (1964) have studied the stability of elastic system
subjected to nonconservative forces. Oden (1970) has developed an approximate
method for computing nonconservative generalized forces on large deformation

problems.
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Hibbit (1979) has discussed about the importance of coupling of the
follower force effect with the tangent stiffness matrix of the structure for the accurate
solution of the problems. In presence of free loaded ends, the system become
nonconservative, hence leads to an unsymmetric matrix. Loganathan et al (1979)
have carried out a study of effect of pressure stiffness in shell stability analysis. The
analysis is carried out in deep and shallow shell situations with and without pressure
stiffness matrix. The analysis without follower force effect leads to bifurcation
buckling modes and with pressure stiffness matrix, the mode of instability changes to
a limit point phenomenon. In general, the inclusion of pressure rotation effect will
introduce unsymmetric stiffness matrices into the finite element equations. Under
such circumstances, the classical bifurcation concept is no longer valid. The solution
of unsymmetric simultaneous system of algebraic equations is very tedious. But in
some cases, such as uniform external pressure on cylindrical shells, the pressure
stiffness matrix is symmetric, Although the problem of follower forces is in general
a noncoservative-loading problem, the symmetric matrix is conservative in character.
Mang (1980) has derived techniques to impose symmetricability to pressure stiffness
matrix. According to him the buckling pressure derived for a cylindrical sheil with
unsymmetric pressure stiffness matrix differs very little from the buckling pressure,

resulting from an alternative symmetric pressure stiffness matrix.

Subbiah and Natarajan (1981) have analysed the follower force effect of
hydrostatic pressure in the finite element analysis for general instability of ring-
stiffened shells of revolution using axisymmetric shell elements. A rigorous
derivation for potential due to hydrostatic loading including follower force effect has
been presented. Substantial reduction in buckling pressure due to follower force
effect has been reported. Camoy et al (1984) have carried out static buckling analysis
of shells subjected to follower pressure by finite element method. Tomski and
Przybyski (1987) have studied the behaviour of a clamped, elastically supported

planar structure under follower force.

Hasegawa et al (1988) have investigated the elastic instability and nonlinear
finite displacement behaviour of special thin walled members under displacement
dependant loadings. When the load stiffness matrix is unsymmetric indicating the

nonconservativeness of the load, the dynamic stability becomes a matter of great
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concern and hence the mass matrices of the special thin walled members are derived
in the study to examine its possibility. The methods of analysis presented in the paper
have been of four types, static instability analysis called divergence, dynamic
instability analysis called flutter, static nonlinear finite displacement analysis and

static linearised finite displacement analysis.
2.6 DESIGN ASPECTS OF SUBMARINE HULLS

Faulkner (1983} has made a discussion about the design practices used in
BS 5500 (1976). According to him the interframe shell collapse determines the main
weight and cost and safety factors should be chosen by ensuring this as the prime
mode of failure. This paper is not meant to provide a comprehensive coverage of
structural design but concentrated on the philosophy and underlying essentials of

strength formulations and design.

Gorman and Louie (1991) have developed an optimization methodology,
which explicitly considers shell yielding, lobar buckling, general instability and local
frame instability failure modes. Quantitative results on the effects of hull circularity
is also presented. Some novel results for the buckling performance of
nonaxisymmetric rings are further presented to identify the design payoff of new
software tools. Empirical relations are used to get the principal characteristics desired
of pressure hull material from weight displacement ratio. The hull wall architecture

has also been commented.

Jackson (1992) describes the concepts of design that has been developed
over a number of years. The optimum length to diameter ratio is 4 to 6. Neto et al
(1996) have determined the collapse pressures of ring stiffened cylindrical shells
under hydrostatic pressure using code formulations and elastic plastic finite element

analysis.

Bushnell and Bushnell (1996) have developed an approximate method for
the optimum design of ring and stringer stiffened cylindrical shell panels and shells
with imperfections. The PANDA.2 computer program for minimum weight design
of stiffened composite panel is expanded to handle optimization of ring and stringer

stiffened cylindrical panels and shells with three types of initial imperfections in
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the form of buckling modes, any combination of which may be present; local, inter-

ring and general.

Das et al (1997) have made a reliability based design procedure of stiftened
cylinder using multiple criteria of optimization techniques. The various limit states of
orthogonaly stiffened cylindrical shells have been used and they include bay
nstability, frame bending and frame tripping. A rational comprehensive analysis is

required for a safe effective design.

2.7 SCOPE AND OBJECTIVES

For the linear analysis of ring stiffened cylindrical shell with simple
boundary conditions, closed form solutions are available. However, a definite
necessity is felt for the solution of the problem for various practical configurations
and boundary conditions. Finite element method can be adopted for the analysis of
stiffened cylindrical shells owing to its versatility. Finite element modeling of
stiffened cylindrical shell can be done either using a stiffener shell model or a
smeared model. The hydrostatic pressure acting at a considerable depth can be
treated as uniformly distributed pressure loading and consistent load vector can be
formulated. Efficient cylindrical shell elements and circular stiffener elements are
available in the literature, which can be employed for the analysis of subsea stiftened
cylindrical shells. The analytical investigations of cylindrical shells constituting the
submarine hull are classified documents and are rarely found in literature; hence it is
found apt to carryout such investigations to provide design recommendations. A
definite need is felt to have a software based on an efficient finite element to analyse
the stiffened cylindrical shell for various boundary conditions, incorporating the

follower force effect.

Scope of the work is to conduct linear elastic, linear buckling and geometric
nonlinear analysis of stiffened cylindrical submarine shells incorporating the

follower force effect of hydrostatic pressure.
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The objectives of the thesis are listed below.

To develop a software based on all-cubic axisymmetric cylindrical shell finite
element and discrete ring stiffener element for linear elastic, linear buckling

and geometric nonlinear analysis of stiffened cylindrical shells.

To implement the software in pc environment and use it to predict the stress
resultants, linear buckling pressures and collapse pressures for various

boundary conditions and configurations of the shell and stiffener.

To study the influence of follower force effect due to hydrostatic pressure on

the collapse pressure of stiffened cylindrical submarine shells.
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CHAPTER 3
LINEAR STATIC ANALYSIS

3.1 GENERAL

Axisymmetric shell finite elements can effectively be used for analysis of
stiffened cylindrical shell under axisymmetric loading. In the present study discrete
stiffener cylindrical sheli model of the submarine hull is proposed, in which the shell
is modeled using all-cubic axisymmetric shell finite element and the stiffeners, using

discrete ring stiffener finite element presented by Rajagopalan (1993).
3.2 FINITE ELEMENT MODELING OF CYLINDRICAL SHELL

An all-cubic axisymmetric cylindrical shell finite element has been used in

the finite element analyis of cylindrical shells.
3.2.1 Geometry, Displacement Field and Shape Functions

The all-cubic axisymmetric thin cylindrical shell finite element represents
meridian of a cylindrical shell it models. The geometric features of the cylindrical

shell segment are radius, thickness and length(R,t,L).

Displacement field of the all-cubic element used in the present study

consists of meridional, tangential and radial displacements (u, v, w).

The element is bound by two end nodal circles with six degrees of freedom
per each and the degrees of freedom at nodal circle 1 are meridional, tangential and

radial translations (u;, vy, w;), ux; vy and the meridional rotation @(wy ).

The corresponding values at nodal circle 2 are  uy, va, W, Us, Vx2 and ¢2.

Nodal degrees of freedom u, v, wand ¢ are shown in fig. 3.1
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Fig. 3. 1 All- cubic cylindrical shell finite element

Finite element representation of the displacement field and the meridional
rotation are given below, in which the polynomial and the trigonometric terms

represent the meridional field and the sinusoidal variation in the circumferential

direction.
u = [Nju;+Nzuxg +N3uz+Nsuy ] cosn 8
v = [NivitNavgtN3va+Ngvo ] sinn@® 7~ . 3.1
w = [Nyw;+Nyo; +N3wy +Ny2 ] cosn 6

The meridional rotation ¢ at the interior nodal circle is given by

0= 8w/8x=[N§‘ w; + Ngz O] +N§3 Wyt Ng';4 (Dz] cosn O

where

Ni = 1382 +28% Np= L (52 2+ %) Na=3 &% 2 % N4=L (-£7+ &) }(3.2)
No = V(65 + 687) s Nerm(1-4£+387 ); Nes= "1 (65-6 &) s Neun(2 £43 8

where & =x/L

3.2.2 Strain Matrix

Strain displacement relations are adopted from Sander’s theory [1963]. The
total strain € is composed of linear component €, and nonlinear component €.

Thus the strain vector can be written as

{e}t={el+{eta 3.3)

where {e€} is the vector of generalized strains containing the in-surface strains

€x, € g and €9 and curvatures vy, We and yyp.
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The strain field can be expressed as
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The linear elastic generalized strains are expressed as eqn. 3.5
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where [B] is the small strain displacement matrix
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where [C] is the diagonal matrix of size 6 x 6.

—
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and [B'] is a matrix of order 6 x 12 whose elements are

dimensional meridional co-ordinate &.

3.2.3 Constitutive Matrix

..............

Constitutive matrix [D] for elastic shell problems is shown in eqn. 3.8
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a ™

1 v 0 0 0 0
v 1 0 0 0 0
DI=Ev(? | ¢ 0 (w2 0 0 0 (38)
0 0 0 12 w12 0
0 0 0 vt/12 N2 0
\_0 0 0 0 0 (1-wn4

3.2.4 Linear Elastic Stiffness Matrix

The linear elastic stiffness matrix can be obtained using the eqn.3.9

(Zienkiewicz, 1979) given below.

2n L T
[k]=f0 fo [B] [DJ[BIRAOAXx o (3.9)

which can be expressed using the eqn.3.6 as

2 1 T
[k]=RL fo IO [B'] [CIID][C][B'] d6dE oo, (3.10)

Substituting for the integrants and performing the circumferential

integration, [k ] can be obtained as

1 v 0o o o 0 )
v 1. 0 0 0 0
2l 0 0 (w2 o0 0 0

_ 2 1 |
[k]= (rRL Et/ (1-v})) IO[B] o o o & v o |B1dE 31D

0 0 0 w12 ¢n2 0
2

L0 0 o 0 0 (1-v)f/24)

The present study is based on the linear elastic stiffness matrix given vide
eqn.3.11 and the complete coefficients of stiffness matrix is available elsewhere

(Rajagopalan, 1993) and is given in clause A.l of Appendix A.
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3.2.5 Load Vector

Hydrostatic pressure is treated as uniform pressure of intensity p acting
normal to the element face. The consistent load vector due to surface pressure is

given by

{Q} =”[N]T pdA =2 pnRL fol INI" d& e (3.12)

3.2.6 Evaluation of Displacement

Displacements are calculated from the equilibrium equation in the form

[K] {8} = {Q} using Gauss elimination procedure.
3.2.7 Recovery of Stress Resultants and Principal stresses

The membrane stress resultants, N,, Ngand N,g and the bending moments
M, Mg and M, are evaluated using the relation given in the eqn.3.13.
[N
Ne
Nxo
My
Mg
\ Mo~

P [DI[B] {81=[S] {8} oo (3.13)

Stress resultant = <

The elements of [S] matrix are developed and are given in clause A.2 of Appendix A.

Principal stresses o; and o, are evaluated at the middle layer from the
membrane stress resultants and at the outer layers from the combined effect of

membrane and bending stress resultants.
61 =1/2(0x + gg) + 1/2¥((0x-06)* + 4T xo°) ~
62 =1/2(0 + 60) —1/2N((0x-0o)* + 4T x0°)
where 6= Ny/t, 6p= No/t and 146=Nyg /t atthe middle layerand > (3.14)

6,= Nyt + 6 My/t? .06 = No/t + 6 Mg/t? and T = Nyg /t + 6 M,g/t?

at the outer layer _
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3.3 FINITE ELEMENT MODELING OF STIFFENED CYLINDRICAL SHELL

It is proposed to model the shell with all-cubic axisymmetric shell finite
elements and stiffeners using discrete finite elements. All-cubic axisymmertic shell
element has been described in section 3.2. The description of geometry and relevant

matrices of the discrete stiffener finite elements are described subsequently.
3.3.1 Discrete Ring Stiffener Element

The ring stiffener of the submarine cylindrical shell is modeled as a discrete
ring defined by cross sectional area and eccentricity of the cross section of the ring
from the shell middle surface. The stiffeners are attached to end nodal circles of all-
cubic axisymmetric shell finite elements and hence introduce no additional nodes.
The stiffness matrix of the ring stiffener element is calculated and is transformed to
shell node, at which the particular ring stiffener is attached. The stiffener element is
built on the assumption that its behaviour can be completely described by centroidal
degrees of freedom, which are u,, v,, w; and ¢,. Geometry and degrees of freedom of

the discrete ring stiffener element are shown in the fig. 3.2.
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Shell~-—-—- + ........... E;____>_._._'._._}_._._i.
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Fig. 3.2 Discrete ring stiffener element

The stiffener and the shell middle surface displacements are related by the
eqn.3.15. The stiffener is rigidly attached to the shell and hence the displacements

ur=u-e @; v=1/R(R;v—-e(ow/08)); w,=wand ¢=¢ .............. (3.15)
3.3.2 Elastic Stiffness Matrix of Ring Stiffener Element

Elastic stiffness matrix of the ring stiffener element corresponding to its
centroidal degrees of freedom is derived by considering the strain energy of the ring

stiffener. The axial, in-plane bending and St. Venant torsional energies are considered.
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The present study is based on the linear elastic stiffness matrix and the
complete coefficients of stiffness matrix are available elsewhere (Rajagopalan, 1993)

and are given in clause A.3 of Appendix A.
3.3.3 Transformation Matrix for Stiffener

The transformation between the stiffeners centroidal degrees of freedom and

the shell degrees of freedom can be expressed by the following matrix equation.

{83 =[T] {8} (3.16)
where [T} is the transformation matrix.

[y ) (1 0 0 0 0 - ) [ u )
0 6 o0 o0 0 o0 O Uy
Ve 10 0 R/AROG n/RO v

\ 0 > =190 0 0o 0o 0 0 < vy > e (3.17)
W; 0o 0 o0 O | 0 w

\ ¢r ) kO 0 0 0 0 1 P L)

3.3.4 Formulation of Stiffness Matrix of Stiffened Shell Element

In the discrete stiffener modeling, the properties of the stiffener are lumped
to the corresponding nodal circle of the shell element. So the process of formulation
of stiffness matrix for the stiffened shell element consists of the identification of the
nodal circle to which the stiffener is attached and the algebraic addition of

transformed stiffness matrix to the corresponding shell nodal degrees of freedom.
3.4 ASSEMBLY OF GLOBAL MATRIX
3.4.1 Stiffness Matrix

The global stiffness matrix of the stiffened cylindrical shell finite element
model is obtained by computing the element stiffness matrix of each shell element
and assembling them by posting them in appropriate global locations determined by
node numbering and connectivity. The transformed stiffness matrix of the stiffener

element are added to the relevant locations.
3.4.2 Load Vector

Consistent load vector is added algebraically at the junction of two stiffened
shell elements. Since the load is the uniform radial pressure, equivalent joint

moments gets cancelled at the joints and the equivalent joint loads get added up.
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3.5 SOFTWARE DEVELOPMENT

Software has been developed in C language for the linear static analysis of
stiffened cylindrical shelis, which can be effectively used for, unstiffened ones also.
The description of the program for the analysis of stiffened cylindrical shell is

explained in subsequent sections.
3.5.1 Flow Chart

The schematic diagram is given in fig. 3.3a and the hierarchal order of

operations is given in the flowchart (fig. 3.3b).

Shell stiff
MAIN PROGRAM 1etl stitness

INPUT DATA
Geometric and Elastic  stiffness  matrix Stiffener stiffness
. ) generation of shell element,
material properties elastic stiffness matrix

of shell, stiffeners,
deep frames etc.,,
spacing of
stiffeners, deep
frames and
bulkheads.
Boundary
conditions —simply
supported, clamped
or fixed, loading

details

generation of the stiffener
element, elastic stiffness
matrix generation of stiffened
shell element, evaluation of
consistent load vector,
assembly for global stiffness
matrix and load vector,
imparting boundary
conditions, computation of
nodal displacements and
stress resultants at salient
points and principal stress
recovery at middle and outer
layers

Stiffened shell
stiffness

Consistent load
vector

Boundary
conditions

Displacement
evaluation

Stress resultant

Jrl | [hIL

Principal stress
evaluation

OUTPUT PARAMETERS
Meridional, tangential and,radial displacements, meridional
rotations
Meridional, tangential and shear stress resultants
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Fig. 3.3a Schematic diagram for linear static analysis
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3.5.2 Program MAIN
The geometric data of the shell is obtained from the input file.

The execution of the program is as follows. The elastic stiffness matrix of
the shell element is calculated by the function shell and that of the stiffener by the
function stiff. These are assembled to form global stiffness matrix using the function
assemb. Then the boundary conditions are imparted with function bc. The consistent
load vector for the given pressure load is calculated and integrated by the function
load. The displacements are evaluated using the function gauss. The function stress

calculates the stress resultants and principal stresses.

3.5.3 Description of Functions
Function shell

This function is used to calculate the elastic stiffness matrix of the shell
element, which is a 12x12 symmetric matrix described in section 3.2.4. The variables
required for the evaluation of stiffness matrix are radius R, length L, thickness t, the

modulus of elasticity E of the shell material and the number of shell elements

required to model the hull.

Function stiff

Elastic stiffness matrix of the stiffener element is evaluated by the function
stifft The input details are the sectional properties of the stiffeners and the

eccentricity of the centre of gravity of the stiffener from the shell middle surface.

Function assemb

The function assembd is used to assemble the stiffness matrices of the

individual shell elements and the stiffeners to form the global stiffness matrix.

Function bc

This function incorporates the stipulated boundary condition for the
stiffened shell. Four types of boundary conditions have been incorporated which are

used in the stiffened cylindrical shell analysis. Fixed boundary condition is
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implemented by arresting all six degrees of freedom. For clamped boundary
condition, all degrees of freedom are arrested except the axial membrane
displacement u. For simply supported boundary condition the axial membrane
displacement u and the meridional rotation ¢ are kept unrestrained. Axisymmetric
boundary condition is incorporated by arresting all translations normal to the plane of

symmetry (u) and all rotations in the plane of symmetry (u, and vy ).
Function load

It calculates the consistent load vector for the individual element using the
eqn.3.12 and assembles to form the total load vector. The input data required for the

function is the pressure intensity p.
Function gauss

The function gauss is the standard subroutine for Gauss elimination
procedure and evaluates the nodal displacements. The results are delivered through

the output file.
Function stress

The function stress is used to evaluate the stress resultants described in
eqn.3.13. From the stress resultants stresses are evaluated. Principal stresses are

evaluated using the eqn.3.14.
3.6 NUMERICAL INVESTIGATIONS

Validation of the program and the analytical investigations of submarine

cylindrical shell models are explained in subsequent sections.
3.6.1 Validation

Validation of the program is done using the example from Flugge (1962)
designated as BMP1 in this study. The geometric features of ring stiffened

cylindrical shell are shown in fig. 3.4.
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Fig. 3.4 Geometric features of ring stiffened cylindrical shell BMP1
(Flugge, page 286,1962) (all dimensions are in inches)

Uniform external pressure is 420 psi, modulus of elasticity of the material of
the cylinder is 3x107 psi and Poisson’s ratio is 0.3. The finite element model of

stiffened shell is given in fig. 3.5.

@] (@] (@] O @] O @]
0 I1 I2 34 5 67 I8 9 1(1) 1[1 112 1£3 114—55 16«— node numbers
]

~  Eccentricity

P T T T T T T T 1T T T T T 1 <« Shell element
12345678 9i011 12 13 14 15 16 *+—element numbers
O @] O O O O @)

Discrete ring stiffener element

Fig. 3.5 Finite element model of ring stiffened cylindrical shell BMP1

The linear static analysis has been conducted using the software developed
to predict radial deflection, circumferential stress and the meridional moment for

fixed-fixed boundary conditions.
3.6.2 Linear Static Analysis of Submarine Models

Analytical investigations are carried out on submarine stiffened cylindrical
shells models designated as M1 and M2. The submarine cylindrical shell models are

taken from Pradeepkumar (1988) and Jacob (1989). These are hull models of attack
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submarine designed as per BS 5500. The design specifications of M1 and M2 are

given in table 3.1.

Table 3.1 Design specifications of submarine models M1 & M2

Description MI M2

Typ; of ship Attack Submarine i A’ttack Submarine
Submerged displacement (t) A 2400 i 3000 o
Diving depth (m) 300 300
Submerged speed (Kn) 25 | 22

Surface speed (Kn) 20 _“1 1 N
Material of construction Hy 100 USA Hy 110 USA
Yield strength (N/mm?®) 700 ) 780

Total pressure hull length (m) | 524 46.1

Hull diameter (m) - 7.7 8.7

Overall height (m) 14.0 | 14:6 -
Modulus of elasticity (N/mm?) 210000 210000
Poisson’s ratio 0.3 0.3

The cylindrical shell is properly stiffened with stiffeners, deepframes. and

bulkheads.

given in table 3.2 and shown in figs. 3.6a, 3.6b, 3.7a and 3.7b.

Geometric features of stiffened cylindrical sheils of M1 and M2 are

Table 3.2 Geometric features of submarine models M1 & M2

Description M1 (mm) M2 (mm)
Length of the shell between compartments 13200.00 20000.00
Radius of the shell 3850.00 4350.00
Thickness of the shell 34.00 34.00
Length of the shell between stiffeners 550.00 833.33
Length of the shell between deepframes 1650.00 2500.00
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Fig. 3.7b Stiffened cylindrical shell of M2 with deepframes (all dimensions are in mm)

The L/R values for three configurations, viz., (a) cylindrical shell between
stiffeners (interstiffener), (b) stiffened cylindrical shell between deepframes
and (c) stiffened shell between bulkheads
(interbulkhead) and R/t values for M1 and M2 are given in table 3.3.

(interdeepframe) cylindrical

Table 3.3 The L/R values for three configurations and R/t values for M1 and M2

Ratio Shell configuration Ml M2
Interbulkhead 3.429 4.598
L/R Interdeepframe E 0.428 0.57
Interstiffener 0.14 0.19
Interbulkhead,
R/t interdeepframe & 113.24 127.9
interstiffener

From the values given in the table 3.3, it is observed that M1 is shorter and
thinner than M2. The analysis has been carried out for uniform external pressure of
3.016 N/mm?, which is the hydrostatic pressure at the designed depth of 300m for
M1 and M2.

The submarine cylindrical hull has been analysed for three configurations,

viz., (a) cylindrical shell between stiffeners, (b) stiffened cylindrical shell between
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deepframes and (c) stiffened cylindrical shell between bulkheads. In each case the
ends of the shell are treated as fixed. Linear static analysis has been carried out to
predict deformations, stress resultants and principal stresses in the above-mentioned

configurations.

Analytical investigations are carried out for interbulkhead portions of M1
and M2 without attaching stiffeners. Finite element deflection and stresses of long

unstiffened shell is compared with classical solutions.
3.7 RESULTS AND DISCUSSION

Software based on all-cubic axisymmetric cylindrical shell element and
discrete ring stiffener element for linear static analysis is developed and operational
in pc environment. The program is validated with Flugge’s problem (BMP1). The
variation of radial deflection, circumferential stress resultant and the radial moments
are presented in figs.3.8, 3.9 and 3.10 respectively. Flugge’s classical solution and

authoress’ solution are given in table 3.4.

Radial deflection (inches)

0 5 10 15 20 25
Length of the shell between stiffeners (inches)

Fig. 3.8 Variation of radial deflection for BMP1

8 0 - -

8 -5000

£ £ -10000

235 -15000

E  -20000

s 0 5 10 15 20 25

Length of the shell between stiffeners (inches}

Fig. 3.9 Variation of circumferential stress for BMP1
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Fig. 3.10 Variation of meridional moment for BMP1

Table 3.4 Comparison with Flugge’s results

Description | Flugge’s closed Obtained | % variation
£ form solution values | (upper bound)
Radial deflection at | 0.0233 0.024 30
__centre (in) ) ' i ]

Meridional moment Mx ’

at centre (in-1b/in) 4223 4295 3 170
Circumferential stress
resultants at centre Ng 19200 19255 0.28

(Ib/in) i

From the table 3.4 it can be seen that the obtained results are having
upperbound values of 3.0% for radial deflection 1.7% for meridional moment and

0.28% for circumferential stress resultants.

Analysis has been carried out for interstiffener, interdeepframe and
interbulkhead configurations for M1 and M2. The variation of radial deflection,
major and minor principal stresses at middle and outer layers, meridional and
circumferential stress resultants (Nx, Ng), meridional and circumferential moments
(Mx, Mg) are graphically presented through figs. 3.11 to 3.18 for interstiffener
configurations. Respective values for interdeepframe configuration and
interbulkhead configuration are shown in figs. 3.19 to 3.26 and figs. 3.27 to 3.34

respectively.

42



)
-t
(0 +] —

0.6 -

Deflection (mm
o
o

o
(M)

o

0 100 200 300 400 500 600
Length of the shell between stiffeners (mm)
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Fig. 3.12 Variation of major and minor principal stresses in the outer and the
middle layers for M1 for interstiffener configuration
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Fig. 3.13 Variation of longitudinal and circamferential stress resuitants for M1
for interstiffener configuration

Moment (N-mm/mm)

Length of the shell between stiffeners (mm)

——Mx —=-MQ

Fig. 3.14 Variation of longitudinal and circamferential moments for M1 for
interstiffener configuration



E: T
B // \\ i
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Fig. 3.16 Variation of major and minor principal stresses in the outer and the
middle layers for M2 for interstiffener configuration
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Fig. 3.17 Variation of longitudinal and circumferential stress resultants for M2
for interstiffener configuration
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Fig. 3.21 Variation of longitudinal and circumferential stress resultants for M1
for interdeepframe configuration
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Fig. 3.24 Variation of major and minor principal stresses in the outer and the
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It is observed that for various configurations the maximum value of radial
deflection is at midbay of stiffeners for shell between bulkheads configuration. The
values are 4.57mm for M1 and 7.05mm for M2. The maximum values of principal
stresses occur at the outer most layer of midbay of stiffeners for shell between
bulkheads configuration. These stress values are 284.723 N/mm’® and 378.410
N/mm? for M1 and M2 respectively.

The meridional and circumferential stress resultants are also having their
peak values for shell between bulkheads. The maximum values for Nx and Ng for
M1 are 4445.62 N/mm and 9786.81 N/mm. The corresponding values for M2 are
6253.27 N/mm and 12685.95 N/mm respectively.

The meridional and circumferential moments have maximum values for
interstiffener analysis. Mx and Mg for M1 are 33162.72 N-mm/mm and 9948.81
N-mm/mm in the middle portion while the corresponding values at the fixed ends are
58315.69 N-mm/mm and 17494.0 N-mm/mm. The Mx and Mq for M2 are 6253.27
N-mm/mm and 12685.95 N-mm/mm at the middle and 86621.43 N-mm/mm and
25995.71 N-mnmvmm at the ends respectively.

The radial deflection with and without stiffeners is plotted in figs.3.35 and
3.36 for M1 and M2 respectively. The results of radial deflection without stiffeners

are compared with that of the classical solution for long shells and is given table 3.5.

£
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_:O-Racial deflection -with stiffeners --# - Radial deflection - without stiffeners

Fig. 3.35 Variation of radial deflection for interbulkhead configuration of M1
with and without stiffeners
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Fig. 3.36 Variation of radial deflection for interbulkhead configuration of M2

with and without stiffeners

Table 3.5 Comparison with classical solutions for radial deflection for long

shells
| Radial deflection (mm)
Model . % variation
Finite element Classical solution
B Ml 6.06 6.26 3.19

M2 % 7.83 7.99 2.00

For long unstiffened shells between bulkheads analysis using all-cubic
axisymmetric shell element gives lowerbound values of 3.19% and 2% for models
M1 and M2 for radial deflection.
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CHAPTER 4
LINEAR BUCKLING ANALYSIS

4.1 INTRODUCTION

The linear buckling analysis of the stiffened cylindrical shell has been
described in this chapter for two load cases, treating hydrostatic pressure as a radial

load as well as a follower force.
4.2 HYDROSTATIC PRESSURE AS RADIAL PRESSURE LOAD

Determination of bifurcation buckling pressure involves the formulation of
linear elastic stiffness matrix and the geometric stiffness matrix (eqn.1.4). Linear
elastic stiffness matrix has been described in the section 3.3 and 3.4. Formulation for

geometric stiffness matrix is explained subsequently.
4.2.1 Development of Geometric Stiffness Matrix

The basic expression for geometric stiffness matrix is given by Zienkiewicz

(1979) based on the principle of virtual work.

For large displacements problems the strain matrix [B] can be represented as

[B] = [B]1+[Bul .1

where [B] is the usual small displacement matrix encountered in the linear

infinitesimal strain analysis. In general [By] is linear function of nodal displacement

{d}. Using that [B], the total large displacement stiffness matrix [Ky] is derived

[Km] = {[B]'[D}Bu] + [Bw] "[DI[Bu] + [Bu] "[DIB]} dV..ccoorrrrere (4.2)

This expression contains the terms, which are linear and quadratic in {3}.

The total tangent stiffness matrix can be rewritten as

[Kr] = KI+[Kgl+ [Kal e (4.3)
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where [K] is the linear elastic stiffness matrix, [Kg] is the geometric stiffness matrix
and [Ky] is due to large displacement effect. In linear stability problems large
displacement effect is less important and hence [K,] has been neglected in the

present study.
At the buckling stage stiffness matrix becomes singular, hence
| K1+ Kel=0 4.4)

In linear buckling analysis, this relation can be rewritten in terms of prebuckling

stress resultant as
K+ AKdl=0 4.5)

where A is the nondimensional buckling load and {K,] is the geometric stiffness

matrix derived in the initial configuration.

Geometric stiffness matrix has been derived from the expression

(Zienkiewicz, 1979) given below.

KJd (8} = LudBul™o}dv “6)

According to Sander’s (1963) theory the nonlinear generalized strains for
stiffened cylindrical shell consist of linear and nonlinear membrane strains and linear
bending strains. This assumption will lead to the prebuckling stress resultants as

given in eqn.4.7.

The basic expression for geometric stiffness matrix is given as
_ rlox O
(K¢l = ,[ v [G] [0 GeJ [G] dv 4.7)

where ox and oy are the prebuckling stresses and [(G] is constructed from derivatives

of shape functions.
4.2.2 Geometric Stiffness Matrix of the Shell Element

Geometric stiffness matrix [k,] of the all-cubic cylindrical shell element

already derived in section 3.2 is obtained from eqn.4.7.
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The general expression is

keJ=TTRZL/2Z S oo . 4.8)

The geometric stiffness matrix proposed by Rajagopalan (1993) is used in

the present study and is given in clauseA.4 of Appendix A.
4.2.3 Geometric Stiffness Matrix of the Discrete Stiffener Element

The geometric stiffness of the discrete ring stiffener element already

described in section 3.3 is obtained from the following expression.

W= I sl€pla. AV . (4.9)

where ¢ is the prebuckling axial stress and {€g}n, is the nonlinear buckling strain.
The expression for 4x4 geometric stiffness matrix of the discrete ring stiffener

element is obtained as

kgSij = BZW/aquq, ..................... (4. 10)

where dqi,dgj be the displacement vectors. The matrix obtained is transformed into

6x6 in global coordinate using the transformation matrix given in eqn.3.17

The geometric stiffness matrix proposed by Rajagopalan (1993} is used in the

analysis and is given in clause A.5 of Appendix A.

The transformed geometric stiffness matrix of the stiffener element is added

to the relevant locations of the global geometric stiffness matrix of the shell.
4.2.4 Prediction of Linear Buckling Pressure

The finite element model of the stiffened cylindrical shell for linear
buckling analysis is same as that of linear static analysis. The elements of [k] and

[k,] are derived in terms of circumferential wave numbers.
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The solution procedure adopted for obtaining the linear buckling pressure is
the determinant search procedure. A value of A is assumed and the determinant of the
matrix is calculated. The process is repeated by changing the value of A until the
determinant changes its sign. The value of A for zero determinant is the buckling
pressure. This procedure is repeated for possible values of circumferential wave

number. The minimum of these buckling pressures defines the buckling pressure of

the shell.
4.3 FOLLOWER FORCE EFFECT DUE TO HYDROSTATIC PRESSURE

Hjydrostatic pressure is considered as follower force in the second phase of
analysis. The development of pressure stiffness matrix for the stiffened cylindrical

shell from the virtual work principle is explained in the subsequent sections.
4.3.1 Development of Pressure Stiffness Matrix

Expression for the work done by hydrostatic pressure during pressure-
rotation phase derived by Mc Donald and White [1973] has been used to derive the
basic expression for pressure stiffness. Deformation of infinitesimal area dx Rd@ of
shell surface is considered and the pressure vector will be acting in the direction of

the normal vector of that deformed surface.

In a cylirdrical shell, the displacement vector d& can be represented as

ds = wi+vi +wk 4.11)

where u,v and w are the axial circumferential and normal displacements respectively
and i,j and k are unit vectors in these directions. The infinitesimal area on the shell

surface R df dx deforms into (/+e8) RdO(1+ex) dx

where ex = dw/dx and €0 =I/R (w+h/d8) e, (4.12)

The unit vector in the direction normal to the deformed surface becomes &’.

1 ow
—(v- — )i+ ke, 4.1
> 1+R(v ae)ﬁ-k (4.13)

_—dw

K o=
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where ow/dx and (v-ow/d8 )/ R are the meridional and circumferential rotations

respectively.

The hydrostatic buckling pressure now acts on the new area in the direction of &’

pl = p(1+ex)(1+€0 )R db dx Yoo e - (4.14)
where pl is the modified pressure.

Substituting K from eqn.4.13 in eqn.4.14 and on neglecting the higher powers

pl = (-OWw/dx i+1/R(v-0w/d0) j+(du/dx +1/R (w+/36)) k) R dO dxteceeeee..... (4.15)

The dot product of the pressure force vector and the buckling displacement
vector will be the work done by the hydrostatic pressure on the pressure rotation

phase.

The work done is given by

Q = % f f pLd{8} (4.16)

Substituting the eqn.4.11 and 4.15 in eqn.4.16

Q = p/2] I[{(-0w/dx Ju+ L/R(v-OW/OO)v+ (/. +1/R (w+MAGYw ) RdOdx ........ 4.17)

The eqn.4.17 can be elaborated and can be written in a matricised form for a

particular finite element as

Q=I2(851(8) . (4.18)

where {8/ be the nodal degrees of freedom which is related to the displacement by

means of shape functions and [k,] the pressure stiffness matrix.
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Comparing the eqn.4.17 and 4.18, [kp] can be arrived at. The finite element
substitution of [k,] with all-cubic axisymmetric shell element will be a 12x12 matrix

in the form

Kol = 4 e e (4.19)

All the terms in the pressure stiffness matrix proposed by Rajagopalan (1993), which

are used in the present study, are given in clauseA.6, Appendix A.
4.3.2 Buckling Pressure Prediction

The linear buckling analysis with follower force effect is carried out using
pressure stiffness matrix along with linear elastic and geometric stiffness matrices.
[K.l and [Kp] are added algebraically so as to form the matrix [Kgp] and is used in

the general expression for linear buckling as

[Kl- AKgel{=0 (4.20)

The nondimensional buckling load A is evaluated using the procedure explained in

section 4.2.4.
4.4 DEVELOPMENT OF SOFTWARE

A computer code has been developed to determine the interstiffener
buckling pressure and overall buckling pressure of stiffened cylindrical shell. The
program implementation and various functions that constitute the core of the

program are explained in subsequent subsections.
4.4.1 Flow Chart
The schematic diagram for linear buckling analysis is given in fig. 4.1a and

the hierarchal order of operations is given in the fig. 4.1b.
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Fig. 4.1a Schematic diagram for linear buckling analysis
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Fig. 4.1b Flowchart for linear buckling analysis
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4.4.2 Program MAIN

The execution of the program is as follows. The elastic stiffness matrix of
the finite shell element and the stiffener element are calculated for a given value of
circuferntial wave number. These matrices are assembled to form global elastic
stiffness matrix. For different values of pressure (p) starting from pl to p2 with an
increment of Ap, the geometric stiffness matrix of the shell and the stiffener element
and the pressure stiffness matrix of the shell are calculated and the global stiffness
matrices are formed by calling an assembly program. For each value of p the
determinant of the sum of the global stiffness matrices of the shell and the stiffener is
finally calculated. A plot is made with p Vs the determinant. The value of p
corresponding to zero determinant is the linear buckling pressure corresponding to
that value of n. The procedure is repeated for various values of n. Minimum of all
these buckling pressures is the actual collapse pressure. The main program calls in
turn a number of functions at appropriate stages to perform the above-mentioned
operations. The functions shell, stiff and assemb are already explained in section

3.5.3. The remaining functions are described below.
4.4.3 Description of Functions
Function geoshell

The geometric stiffness matrix of the shell element is evaluated by the

geoshell function as described in section 4.2.2 for each load increment.
Function geostiff

This function calculates the geometric stiffness matrix for the stiffener

element as explained in section 4.2.3.
Function pressurest

This function calculates the pressure stiffness matrix of the shell element as

explained in section 4.3.1.
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Function matdet

This function is used to determine the value of the determinant of the sum of

the global stiffness matrices [K], [Kg] and [Kp], as explained in section 4.2.4.
4.5 NUMERICAL INVESTIGATIONS

To validate the program developed for interstiffener buckling analysis using
all-cubic element, a stiffened cylindrical shell suggested by Kendrick [1970]
designated here as BMP2 has been attempted. The geometric features are shown in

fig. 4.2a.

Fig. 4.2a Geometric features of BMP2 (all dimensions are in inches)

The finite element model is given in fig. 4.2b, in which the interstiffener

region of the shell is divided into sixteen elements.

012 3 435 ]6 7 8 ?lﬁ) 11 12 ]314115 6<— node numbers

shell element

12345 67 8 910 11 12131415 16 «— element numbers

Fig. 4.2b Finite element model of interstiffener portion of BMP2

Influence of simply supported - simply supported (s.s-s.s), clamped — clamped

(c-c) and fixed-fixed (f-f) boundary conditions on linear buckling pressure is
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investigated. Influence of derivatives of degrees of freedom is also studied by
arresting those degrees of freedom at end nodal circles for s.s-s.s boundary

conditions.

General instability studies are conducted on stiffened cylindrical shell
designated as BMP3 suggested by Kendrick (1970) is shown in figs. 4.3a and 4.3b.

v 1 1
T * ,
— — — * 4
30 = 30 > 30 30 30 7&" + e 030
I A e
100 Sl
l T 7 stiffener 4
Fig. 4.3a Geometric features of BMP3 Fig.4.3bCross sectional
(All dimensions are in inches) details of stiffener

{All dimensions are in inches)

The shell skin is modeled using all-cubic axisymmetric shell elements and
stiffeners using discrete ring stiffener elements. The finite element model is given in
fig. 4.3c in which the stiffened shell is divided into 30 elements with attachment of

stiffeners at interval of six elements.

, 12 3 4 5 67 8 910 111213 1415161718 192021 22 23 2425 26 27 28 29 30
N NN N T I e o= Pt I TP i T

Element * 11
numbers e
-
O o oY -
Eccentricity

Shell element
O o O O
Discrete ring stiffener l

N N N NN N N X N N A O
0 12345 678910111213141516171819202122232425262728 2930

Node numbers

Fig. 4.3c Finite element model of BMP3
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Linear buckling analysis has been carried out for stiffened cylindrical hull of
attack submarines designated as M1 and M2. Design specifications, geometry etc.,
are described in tables 3.1 and 3.2 and in figs. 3.6a, 3.6b, 3.7a and 3.7b. Analysis has
been carried out for the three configurations  viz., cylindrical shell between
stiffeners  (interstiffener), stiffened cylindrical shell between deepframes
(interdeepframe) and stiffened cylindrical shell between bulkheads (interbulkhead).
The shell is considered to be attached to the stiffeners, deepframes or bulkheads as
the case may be. The scope of the numerical investigation has been extended to
realize the influence of possible boundary conditions. The follower force effect of
hydrostatic pressure is also investigated for M1 and M2 for the three configurations

and the three boundary conditions already considered for radial load case.

4.6 RESULTS AND DISCUSSION

4.6.1 Interstiffener Buckling Analysis of BMP2

The buckling pressure is evaluated from the linear buckling analysis of BMP2
using determinant search procedure explained in subsection 4.2.4. The determinant
search procedure is carried out for various values of n for each case studied. A typical
determinant Vs buckling pressure for s.s-s.s boundary condition for BMP2 with
circumferential wave number 12 is shown in the fig. 4.4. The value of the pressure

corresponding to zero determinant gives the buckling pressure (765 psi).

-1000 =800, -600 -400 -200

Determinant /10 2%
A

Buckling pressure (psi)

Fig. 4.4 Determinant Vs buckling pressure of BMP2 for interstiffener linear
buckling analysis for s.s-s.s boundary condition for minimum buckling pressure
with circumferential wave no. 12
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The buckling pressure has been evaluated from the linear buckling analysis
of BMP2 for s.s-s.s, c-¢ and f-f boundary conditions. The convergence study has
been conducted by choosing finite element model with 6, 12,18 and 24 elements.
Linear buckling pressure for three above mentioned boundary conditions and for

finite element models are shown in table 4.1.

Table 4.1 Linear interstiffener buckling pressures of BMP2 for various

boundary conditions and finite element models

i Buckling pressure (psi)
Boundary conditions
Circumferential S.5-5.5 ‘ cc ‘ £f
wave ' No.of No. of
no. (n) ; No. of elements elements elements
6 12 18 | 24 | 18 | 24 . 18 | 24
9 1292 | 1104 | 1048 | 1028 | 1598 | 1572 | 1682 1667
10 1044 1 928 892 879 | 1412 13797 . 1468 .; .1456
11 900 | 833 808 799 ‘ 1296 : 1280 | 1372 I 1362_-
12 828 | 789 | 765 765 | 1211 | 1210 | 1262 1262
i 13 804 : 781 766 766 1174" 1174 ' 1219 1216—__
14 812 | 799 788 788 1163 | 1163 | 1202 | iéOZ
15 I 844 | 835 828 826 | 1175 | 1173 120:/-]. 1205
16 892 | 883 876 876 | 1200 ; 11-9.9 i 1227- 1225
ﬂ 17 952 | 942 932 | 932 [ 1339 % 1237 1262 1260

The minimum buckling pressures and corresponding n values are given in
bold. The minimum buckling pressures are 765 psi (n=12), 1163 psi (n=14) and
1202 psi (n=14) for s.s-s.s, ¢c-¢ and f-f boundary conditions. For s.s-s.s boundary
condition, the buckling pressure converges to 765 psi. The reference value for this
case is 749 psi (table 4.2) as reported by Kendrick (1970). On analyzing the
influence of end restraints it is observed that there is an increase in buckling pressure

by 57% for f-f boundary condition and 52% for c-¢ boundary condition.

The variation of critical buckling pressure Pcr against circumferential wave

number (n) for the three boundary conditions are shown in fig, 4.5.
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Fig. 4.5 Interstiffener linear buckling pressures of BMP2 for
various boundary conditions

The comparison of the buckling pressure predicted by the authoress with
those predicted by Kendrick and von Mises (1970) is shown in table 4.2.

Table 4.2 Comparison with Kendrick’s and von Mises’ results for BMP2

Circumferential Buckling pressure (psi)
wave no. (n) Kendrick’s results | von Mises’ results | Obtained results
10 841 843 879
11 799
12 749 751 765
13 753 755 766

For s.s-s.s.s boundary condition the buckling pressure is higher by 2.1%
than Kendrick’s and 1.9% than von Mises’ results. But in all cases the minimum
buckling pressure occurs at a circumferential wave no.12. The results prove the

adaptability of the program for linear buckling analysis.
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4.6.2 Influence of Nodal Degrees of Freedom, which are Derivatives of Displacements

The influence of derivatives of displacements viz., u and v« when used as

degree of freedom on buckling pressure is given in table 4.3.

Table 4.3 Influence of derivatives of displacements u, and v, in

interstiffener buckling analysis of BMP2

Buckling pressure (psi)
Circumferential wave $.5-5.S
no.(n) uxand vy not arf;sted uyand vy — arrested

9 1028 | 1097
B 10 879 939

11 , 799 _ 850

12 765 809

13 766 - 801 | o

14 788 818

15 : 826 856

16 876 | 898

= 932 946

On arresting the derivatives uy and vy at the supports, the linear buckling

pressure has increased from 765 psi (n=12) to 801 psi (n=13) showing 4.7% increase.
4.6.3 Analysis of Stiffened Cylindrical Shell of BMP3

Table 4.4 gives the variation of buckling pressure for general instability
analysis of BMP3 for various circumferential wave numbers for s.s-s.s, c—¢ and f~f
boundary conditions. The minimum buckling pressures and corresponding n values
are given in bold. The variations of buckling pressure against n for three boundary

conditions are given fig. 4.6.
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Table 4.4 Linear buckling pressures of BMP3 for various boundary conditions

Circumferential Buckling pressure (psi}
waves no. (n) $.5-S.8 c-¢ f-f
1 3731 3791 3791
2 3645 3709 * 3709
3 3443 3505 3527 a
4 3255 3285 3329
S 2949 2087 3003
6 2525 2529 2529
7 2069 2091 2091
8 1729 1765 1765
9 1493 1535 1535
10 1339 1383 1383
11 1247 1291 1291
12 1203 1243 1245
13 1193 1231 1233
14 1211 1247 1247
15 1251 1281 1283
16 1305 1333 ! 1335
! 4500
4000
g 3500 - T~
3000 ™~
% 2500 - \*_>
£ 2000 - s
§ 1500 - \'\
2 5 N~
% 1000 - e
500
0 - .
0 5 10 15 20

Circumferential waves no. (n)

~—9—ss bc ~'-~%§--clampéd be ‘_"ﬁxed be

Fig. 4.6 Linear buckling pressures (;f BMP3 for various boundary conditions

The critical buckling pressures are obtained as 1193 psi, 1231 psi and 1233

psi for circumferential wave no. 13 for all the three boundary conditions studied.
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The buckling pressure for {-f boundary condition is 3.2% and c-c boundary condition
is 3.1% more than s.s-s.s boundary condition. These results are compared with the
values published by Kendrick [1970] and with values obtained using Bryant’s
formula [Rajagopalan1993] in table 4.5.

Table 4.5 Comparison with Kendrick’s and Bryant’s results for BMP3

Circumfle()rf:?;i)al wave Buckling pressure (psi) _ .

n ?g{iﬁtli: | Kendrick’s results | Obtained results
2 16399 4596 3645

) 3 L 4748 3996 | 443
4 3785 3401 3255

B 5 5019 3518 2949
6 7043 3214 ; 2525
7 9568 2924 | 2069
8 12524 2676 1819 |
9 ) | 1493

B 10 1339

) 11 1247
12 1203
13 - 1193 |
14 | | 1211
15 _ 1251
16 1305

Kendrick’s and Bryant’s results are having a local minimum at n=4 referring
to the general instability mode i.e. one lobe in longitudinal direction. It implies that
for a given L/R ratio there exists a value of n, which gives the minimum buckling
pressure in the general instability mode. Kendrick’s results has a tendency to decline
after n=5. The results are available only up to n=8. The authoress’ results are
declining continuously and reaches the minimum value at n=13. The higher values of
n refer to the interframe buckling mode with as many longitudinal lobes as frame
spaces. There exists a value of n, for which the collapse pressure in the interframe

mode is minimum.
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4.6.4 Interstiffener Buckling Analysis of Submarine Models

Interstiffener buckling values for M1 for various n values are shown in table

4.6 and shown in fig. 4.7.

Table 4.6 Interstiffener linear buckling pressures for M1 for
various boundary conditions

Circumferential wave

i
{

Buckling pressure (N/mm?®)

no. (m) N = S e SSsSss
1 | 65.962 65.660 20.540
2 65.562 65.260 20.240
3 ; 64.881 64.640 19.980
4 ; 63.971 63.780 19.640
5 62.723 62.720 19.240
6 61.622 61.500 18.820
7 60.282 60.140 18.360
8 58.764 58.701 17.960
9 57.231 ] 57.181 17.540
10 55.682 55.642 17.100
1 54.162 54.121 16.880
12 52.622 52.602 16640 |
13 51.211 51.160 16.470
14 49.799 49.760 16400
15 48.499 48.460 16.380
16 47.261 47.220 16.380
17 46.142 46.100 16.460
18 45.122 45.081 16.620
19 44.201 44.165 16.840
20 43381 43.344 17.120
- 21 42.780 42.736 17.412
22 42.060 42,011 18288 |
23 41.661 41.601 18.764
24 41.261 41200
25 40.761 40.721
26 40.522 40.482 -
27 40.420 40380 |
28 40.366 40.300
29 40.332 40.286
30 40.330 40.283
31 40.380 B 40.341
32 40.622 40.460
33 40.930 40.650
34 ; 41.300 40.990 B
35 41.620 41.340
35 f 42.102 41.830
37 42.582 42.270
38 43.122 42.770
39 43.822 43.410
40 4438 43.970
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Fig. 4.7 Interstiffener linear buckling pressures for M1 for various

boundary conditions with and without follower force effect

The buckling pressures for f-f, c-c and s.s-s.s boundary conditions have
been obtained as 40.330 N/mm? (n = 30), 40.283 N/mm’ (n=30) and 16.380 N/mm’
(n=16) respectively. The interstiffener buckling pressure values for M2 for various n

values are shown in table 4.7. Variation of Pcr with n is shown in fig. 4.8.
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Table 4.7 Interstiffener linear buckling pressures of M2 for
various boundary conditions

Circumferential wave Buckling pressure (N/mm®)
no. (n) f-f c-C 5.5-5.8
1 31.762 31.262 17.042
2 30.960 30.514 16.710
3 30.150 29.820 16.352
4 29.262 28.922 15.940
5 28.034 27.862 15.420
6 26.780 26.716 14.920
7 25.552 25.489 14.360
8 24.262 24.240 13.840
9 23.062 23.026 13.369
10 21.922 21.877 12.940
11 20.928 20.880 12.580
12 19.960 19.920 12.280
13 19.140 19.109 12.042
14 18.420 18.360 11.860
15 17.820 17.745 11.740 |
16 17.300 17.225 11.660
17 16.884 16.783 11.660
18 16.580 16.458 11.680
19 16.160 16.103 11.740
20 16.020 15.980 11.860
21 15.980 15.880 12.042
22 16.000 15.940 12.182
23 16.244 16.183 12.422
24 16.480 16.280 12.72

Buckling pressure (N/mm*)
s

0 5 10 15 20 25 30

_Circumferential waveno. (n)
——ii L SRR $S.5-% 5

- with e —We—cc with e —&—s.s with ffe

Fig. 4.8 Interstiffener buckling pressures for M2 for various boundary
conditions with and without follower force effect
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The buckling pressures for f-f, c-c and s.s-s.s boundary conditions have
been obtained as 15.980 N/mm® (n=21), 15.880 N/mm’ (n=21) and 11.660 N/mm®
(n = 16) respectively.

Percentage reduction in linear buckling pressure value for change in end
condition from rotation restraint (f-f and c-c) to s.s-s.s is 60 for M1 and 30 for M2.
The influence of axial restraint (u) is negligible. The reduction in buckling pressure

is less than 1% from f-f to ¢c-¢ boundary condition for M1 and M2.

From the above observations it can be concluded that for s.s-s.s, the
interstiffener buckling pressure is the lowest and collapse occurs at lower value of n
compared to c-c and f-f boundary conditions. The collapse pressure predicted for
fixed boundary condition is the highest and is at a higher value of n. Fixity at the
ends reduces the effective length and the shell in effect becomes shorter and buckles

at a higher pressure and at higher circumferential wave number.

The effect of L/R ratio on buckling pressure and on circumferential wave
number is more pronounced with end restraints. Here L/R ratios for interstiffener
portions for M1 and M2 are 0.14 and 0.19 respectively. The observation that the
circumferential wave number is inversely proportional to L/R ratio (Windenburg and

Trilling, 1934) is reflected in the results of the present study.

From M1 to M2, as L/R ratio changes from 0. 14 to 0.19 and R/t ratio from
113 to 128, there is a reduction in collapse pressure by 60% for rotation restraint and

30% for s.s-s.s cases.

Both M1 and M2 are designed for diving depth of 300m. Among MI and
M2, M1, which is shorter and thicker, buckles at a higher pressure compared to M2.
These interstiffener buckling pressures indicate a factor of safety of 13.4 and 5.4 for

end restraint and simply supported conditions for M1. The corresponding values are
5.3 and 3.8 for M2.

4.6.5 Interdeepframe Buckling Analysis of Submarine Models

Linear buckling analysis of stiffened cylindrical shell portion between

deepframes is conducted for M1 and M2. The buckling pressure values for M1 for
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various n values are given in table 4.8. The critical values are shown in bold. The

variation of Pcr with n is shown in fig. 4.9.

Table 4.8 Interdeepframe linear buckling pressures for M1 for various

boundary conditions

Circumferential wave Buckling pressure (N/mm?)
no. (n) f-f c-¢ $,8-5,5
1 28.280 28.260 22.540
2 27.520 27.506 22.400
3 27.020 27.060 22.380
4 26.820 26.810 22.260
5 26.660 26.642 22.040
6 26.360 26.340 22.000
7 26.060 25.988 21.866
8 25.640 25.630 21.762
9 25.310 25.302 21.664
10 24.980 24.972 21.604
11 24.730 24.726 21.588
12 24.530 24.528 21.584
13 24.380 24.373 21.640
14 24.280 24.272 21.780
15 24.250 24.242 21.980
16 24.242 24.240 22.120
17 24.320 24.310 22.360
18 24.380 24.360 22.640
19 24.570 24.550 22.780
28

Buckling pressure (N/mm?)
ha
P

[}] h] 10 i3 20 25
Circumferential wave no. {n)

—._-:f--f-f RO SR

; 5.8 T ~-f “iﬁi-ﬁb —¥—cc with ffe —‘-—s.s-;s with ch '_

Fig. 4.9 Interdeepframe linear buckling pressures for M1~

for various boundary conditions
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The collapse pressure values are 24.242 N/mm? {n =16) for f-f, 24.240 N/mm?
(n=16) for c-c and 21.584 N/mm? (n=12) for s.s-s.s boundary conditions for M1.

For M2 the buckling pressure values for various n values are shown in table

4.9. Variation of Pcr with n is shown in fig. 4.10.

Table 4.9 Interdeepframe linear buckling pressures for

M2 for various boundary conditions.

Circumferential Buckling pressure (N/mm°)
wave no. (n) f-f c-C | $,$-§,8
1 18.280 18.260 16.330
B 2 17.930 17.920 15.980
3 17.368 17.360 15.030
4 16.882 16.860 15.580
5 16.242 16.220 14.020
6 15.542 15.520 13.380
7 14.860 14.840 13.080
8 14.240 14.220 12.680 B
9 13.640 13.620 12.320
10 13.140 13.120 § 11.960
11 12.710 12.680 I 11.680
12 13.364 12.340 11.380
13 12.090 12.060 11.210
14 11.868 11.840 11.090
15 11.780 11.752 11.040
16 11.730 11.710 10.990
17 11.660 11.610 11.020
18 11.690 11.660 11.120
19 11.810 11.780 11.320
20 11.950 11.900 11520 |
19 B
A 18-
£17-
Z 16 -
s -
"é 14 -
2L
2
2 11
10 - . . . - e
[} 3 1 is 2 )

Circimnferential waie no. {0y

—— o ssss Fof with fe —M—¢-¢ with e —@—s.5 with fe

Fig. 4.10 Interdeepframe linear buckling pressures for M2 for various
boundary conditions
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The collapse pressure values for M2 are 11.660 N/mm’® (n = 17), 11.610
N/mm? (n = 17) and 10.990 N/mm? (n= 16) respectively.

Percentage reduction in linear buckling pressure value for change in end
condition from rotation restraint (f-f and ¢-¢) to s.s-s.s is 11 for M1 and 6 for M2.
The buckling pressure is not much influenced by axial restraint (u) and the change in

buckling pressure by the release of axial restraint is negligibly small.

It is observed that the linear buckling pressures for interdeepframe
configuration are less susceptible to boundary conditions compared to interstiffener

buckling pressures.

The shell between deepframes can be considered as a short shell having L/R
ratio 0.43 and 0.57 for M1 and M2 respectively. The various factors influencing the
interdeepframe linear buckling pressure are L/R and R/t ratios of the shell as well as the
strength and spacing of stiffeners between deepframes. The observation is that there is a

reduction in buckling pressure by 50% irrespective of the type of boundary condition.
4, 6.6 Interbulkhead Buckling Analysis of Submarine Models

The buckling pressure values for M1 for various n values are shown in table

4.10. The critical values are shown in bold. Variation of Pcr with n is shown in fig. 4.11.

Table 4.10 Interbulkhead buckling pressures of stiffened cylindrical

shell for M1 for various boundary conditions

Circumferential waves Buckling pressure (N/mm?) ]
no. (n) f-f c-C N $.8-8.8
1 ; 19.724 19.720 _10.696
2 1 15.226 10.194 10.146
_ 3 16.090 , 16.084 16.080
| 4 17.694 17.688 17.682 ]
5 20.492 20488 20.482
6 22.992 22.986 - 22.980
7 23.872 23.868 23.860
8 24.320 24312 ! 24.306
9 24.636 24.628 . 24.622
10 5 24.818 i 24.838 24804 |
11 ‘ 24.816 , 24.581 24.802
12 25.436 25.430 25.424
13 25.690 25.684 25.680 |
14 25.990 25986 é, 25.982
15 ) 26.310 26.306 26.304 ]
16 26.650 26.646 26.642
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" Fig. 4.11 TInterbulkhead linear buckling pressures for M1
for various boundary conditions

The buckling pressure values for M2 for various n values are given in table

4.12. The variation of Pcr with n is shown in fig. 4.12.

Table 4.11 Interbulkhead buckling pressures of stiffened cylindrical

shell for M2 for various boundary conditions

Circumferential Buckling pressure (N/mm?)

wave no. (n) f-f c-C S.5-5.8
1 10.062 10.058 10.044
2 7.150 6.740 6.510
3 7.740 7.150 7.120
4 10.068 10.064 10.062
5 13.984 13.982 13.980
6 14.906 14.902 14.900
7 14.902 13.998 13.994
8 14.726 14.722 14.720
9 14.548 14.544 14.542
10 14.446 14.444 14.442
11 14.422 14.418 14.416
12 14.486 14.482 14.478
13 14.602 14.598 14.596
14 14.806 14.802 14.798
15 15.006 15.002 15.000 a
16 15.340 15.336 15.334
17 15.706 15.702 15.698
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Fig. 4.12 Interbulkhead linear buckling pressures for
M2 for various boundary conditions

The buckling pressure values are 15.226 N/mm?, 10.194 N/mm” and 10.146
N/mm’ (all for n=2) for M1 and 7.150 N/mm’, 6.740 N/mm” and 6.510 N/mm” (all
for n=2) for M2 for f-f, c-c and s.s-s.s boundary conditions. On considering the shell
between bulkheads, which is comparatively a long shell (L/R ratio is 3.42 for M1 and
4.59 for M2) the shell buckles in bending mode with n=2. The cylinders collapse in
an overall manner. The general instability failure occurs at a circumferential wave
number 2. Thereafter the buckling pressure increases and apparently reaches a
maximum value and decline again to give a second local minimum at a harmonic

number of 12 or 13 depending upon the boundary conditions.

Percentage reduction in linear buckling pressure value for change in end
condition from rotation restraint (c-c) to s.s-s.s is less than 1 and 3 for M1 and M2.
But there is a considerable reduction in buckling pressure due to the release of axial
restraint (u). The reduction of buckling pressure is 33% for M1 and 6% for M2. The
observation, made by Brush and Almroth (1975) that for general instability failure
the rotational restraint (wy = 0) is less influential than axial restraint (u=0) is reflected
in this work. Collapse pressure values for M1 & M2 are 10.146 N/mm’ and 6.510

N/mm? respectively and occur at n=2.

For linear buckling analysis, the buckling pressure is critical on considering
the interbulkhead configuration for simply supported boundary condition.

4.6.7 Follower Force Effect of Hydrostatic Pressure

Interstiffener buckling pressure values for M1, for various n values, with

follower force effect incorporated, are shown in table 4.12. The minimum buckling
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pressures and corresponding n values are given in bold. Variation of Pcr with n is

shown in fig. 4.7. The corresponding values for M2 are given in table 4.13 and is

shown in fig. 4.8.

Table 4.12 Interstiffener linear buckling pressures for M1 for various

boundary conditions with follower force effect

Circumferential wave

Buckling pressure (N/mmz)

no. {n) f : c-C ; $.5-8.8
1 65.760 | 65.426 20.280
B 2 65.362 65.026 20.120
3 64.681 64.360 ; ~19.860
4 63.781 63.520 i 19.520
5 62.683 62.460 i 19.120
6 61.422 61.250 ' 18.700
7 60.020 59.902 18.260
8 58.540 58.471 17.842
9 57.021 56.971 ‘! 17.441
B 10 55.462 55.422 : 17.082
11 53.920 53.881 16.780
12 52.422 52.382 16.562
13 50.981 50.940 . 16.380
14 49.601 49.560 16.280
15 48.300 k 48.260 16.260
16 47.100 47.060 16.260
17 45.982 45.940 16.402
18 44982 44.941 16.580
19 44.061 44.025 16.802
20 43.260 43.220 17.063
21 42.560 42.520 17.404
22 41,940 41.901 17.780
23 41.421 41.381 18.220
24 41.001 40.961 18.700
25 40.681 ~ 40.641 i
26 40.442 40.402 i
27 40.339 40.298 '
28 40.280 40.240
29 40.252 40.202
30 40.248 40.202
31 40.380 40.311 |
32 40.582 40.360 ; B
33 40.840 . 40.550 L
34 41.160 40.900 ~
35 41.540 41.240
] 35 41.982 41.730 .
37 42.482 42.140
38 43.042 42.670
39 43.642 43.410
40 44.080 43.810
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Table 4.13 Interstiffener linear buckling pressures for M2 for various
boundary conditions with follower force effect

Circumferential Buckling pressure (N/mm®)
wave no. (n) f-f c-¢ $.5-5.8
1 31.260 31.220 16.640
2 30.560 30.490 16.392
3 29.850 29.770 16.281
4 29.062 29.000 15.869
5 27.879 27.800 15.351
6 26.600 26.523 14.870
7 25.402 25.342 13.305
8 24,132 24.069 13.780
9 22.900 22.831 13.302
10 21.780 21.702 12.872
11 20.798 20.720 12.520
12 19.820 19.762 12.220
13 19.002 18.971 11.982
14 18.304 18.259 11.800
15 17.687 17.619 11.681
16 17.167 17.107 11.600
17 16.735 16.685 11.620
18 16.440 16.391 11.640
19 16.027 15.97 11.680
20 15.90 15.859 11.800
21 15.92 15.830 11.940
22 1591 15.860 12.102
23 16.068 15.990 12.342
24 16.1612 16.1002 12.640

Buckling pressures for {-f, c-c¢ and s.s-s.s boundary conditions for M1 has
been obtained as 40.428 N/mm’ (n=30), 40.202 N/mm® (n=30) and 16.260 N/mm’
(n=16) respectively.
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And the corresponding values for M2 have been obtained as 15.920 N/mrm’
(n=21), 15.830 N/mm® (n =21) and 11.600 N/mm> (n = 16) respectively.

The effect of follower force on linear buckling of M1 and M2 are given in

table 4.14 and 4.15 respectively.

Table 4.14 Effect of follower force on interstiffener minimum

linear buckling pressures of M1

) 2
Boundary Buckling pressulre (N/mm”) & (n) : o reduction
condition Without follower | With follower force
force effect I effect
f=f 40.330(30) 40.248(30) 0.2
c-¢ 40.283(30) 40.202(30) 0.2
$.8—S.8 16.380(16) 16.260(16) ‘ 0.7

Table 4.15 Effect of follower force on minimum linear buckling pressures of M2

. 2 I
Boundary Buckling pressure (N/mm®)& (n) o reduction
condition Without follower With follower force | 0
force effect effect o
—f 15.980(21) 15.920(21) 0.4
c-¢ 15.880(21) 15.830(21) 0.3
S.8—S.8 11.660(16) | 11.600(16) ! 0.5

The reduction in buckling pressures are 0.2%, 0.2% and 0.7% for M1 and
0.4%, 0.3% and 0.5% for M2 for f-f, c-¢ and s.s-s.s boundary conditions respectively.
It is obvious from the results that for interstiffener buckling, where the shell buckles
with large number of waves in circumferential direction, the influence of follower

force effect is very much limited.

Interdeepframe buckling pressure values for M1 for various n values are
given in table 4.16. The minimum buckling pressures and corresponding n values

are given in bold. Variation of Pcr with n is shown in fig. 4.9.
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Table 4.16 Interdeepframe linear buckling pressures for M1

for various boundary conditions

Buckling pressure (N/mm®)

Circumferential )
wave no. (n) f-f c-C $.5-5.8
1 27.980 27.952 22.460
2 27224 27.194 22.298
3 26.804 26.782 22.288
4 26.502 26.498 22.158
5 26.352 26334 21.924
6 26.042 26.024 22,898
7 25.710 25.696 21.768
8 25332 25310 21664 |
9 25.220 25210 21566
10 24.902 24.894 21.506
11 24.640 24.636 21484 |
12 24.420 24416 21.482
13 24.280 24278 21.542
14 24.182 24.180 21.680
15 24.162 24,160 21878 |
16 24144 | 24144 22.024
17 24.160 24.152 2258
18 24.270 24.263 22532
19 24.390 24381 22676
20 24610 24600 2788 |

Buckling pressures for f-f, c-c and s.s-s.s boundary conditions for M1 has
been obtained as 24.144 N/mm’ (n=16), 24.144 N/mm’ (n=16) and 21.482 N/mm?

{n=12) respectively.

Interdeepframe buckling pressure values for M2 for various n values are

givenn in table 4.17. The minimum buckling pressures and corresponding n values

are given in bold. Variation of Pcr with n is shown in fig. 4.10.
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Table 4.17 Interdeepframe linear buckling pressures for M2

for various boundary conditions

i
!

Buckling pressure (N/mm?)

Circumferential ¢+
wave no. (n) f-f c-c S.8-S.S
1 18.150 18.132 16.014
2 17.750 17.734 15.850
3 17.230 17.212 14.908
4 16730 16.708 14.434
5 16.150 16.114 13902 |
7 6 15.410 15.380 13250
- 7 14.720 14.692 12.950
- 8 14.150 14.118 12.530
_ 9 13.520 13.480 12202
10 13.032 13.000 11.840
11 12.618 1258 11.530
12 12.250 12.216 11250 |
13 11.980 11.940 11.089
14 11.780 11742 10.974
15 11.700 11.670 10930
16 11.670 11.624 10.860
B 17 11.538 11.500 10.980
18 11.550 11,520 11.120
19 11.660 11.620 11250
20 11.786 742 11408 . |

Buckling pressures for f-f, c-c and s.s-s.s boundary conditions for M2 has
been obtained as 11.538 N/mm’ (n=17), 11.500 N/mm? (n=17) and 10.860 N/mm?

(n= 16) respectively.

The effect of follower force on interdeepframe linear buckling pressures of

M1 and M2 is given in table 4.18 and table 4.19 respectively.
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Table 4.18 Effect of follower force on interdeepframe minimum

linear buckling pressures of M1

Buckling pressure (N/mm?) & (n)

Boundary % reducti
condition Without follower force | With follower force = *° cduction
B effect __effect | _
= 24.242(16) 24.144(16) 4 0.4
c- ¢ 24.240(16) 24.144(16) : 0.4
$5—85 | 21.584(12) 21.482(12) 0.5

!

Table 4.19 Effect of follower force on interdeepframe minimum linear

buckling pressures of M2

Buckling pressure (N/mm?) & (n)

Boundary ; % reduction
condition Without follower With follower force
force effect effect
f-f 11.660(17) 11.538(17) 1.0
c-¢ 11.610(17) 11.500(17) 1.0
$.5—8.8 10.990(16) 10.860(16) 1.1

There is a reduction in buckling pressure by 0.4%, 0.4% and 0.5% for M1
and 1.0% 1.0% and 1.1% for M2 for f-f, c-c and s.s-s.s boundary conditions. The

follower force effect is negligible since the shell is a short one and buckles with more

number of circumferential waves.

Interbulkhead buckling pressure values for M1 for various n values are

given in table 4.20. The minimum buckling pressures and corresponding n values are

given in bold. Variation of buckling pressure with n is shown in fig. 4.11.

For M2 the buckling pressure values for various n values are given in table

4.21. The critical values are shown in bold. Variation of Pcr with n is shown in fig. 4.12.




Table 4.20 Interbulkhead linear buckling pressures for M1
for various boundary conditions

Circumferential

Buckling pressure (N/mm?)

wave no.(n) f-f c-C $.5-S.5
1 19.570 s 19.566 19.562
2 10.582 : 6.986 6.944
3 15.996 15.992 15.986
4 17.556 17.552 17.548
5 20.352 20.348 20342
6 22.858 22.854 22.848
i 7 23.732 23.728 2372
B 8 24.176 24.170 24.164
B 9 24516 24510 24.506
10 ; 24.676 J- 24.672 24.664
11 24.638 ‘ 24.632 24.626
12 25312 25.308 25304
13 25.576 25568 25.562
14 25.876 25.872 25.864
15 26218 26212 26.204
16 ; 26.554 | 26.550 26.546

Table 4.21 Interbulkhead linear buckling pressures for M2 for various
boundary conditions

Circumferential Buckling pressure (N/mmz)‘___ _ |
wave no. (n) f-f ; c-C S.8-8.8
1 9.620 ’ 9.618 9.616 |
2 6.540 6.160 5950
3 6.950 6.948 6942 |
4 9.960 9.956 9952
5 13.846 13.844 13.840
6 14.766 14762 | 14.760
7 14.766 14.764 14.762
8 14.588 14.584 14582
9 14.428 14.426 14.424
B 10 14.326 14.324 14.322
11 14.308 14.304 14.302
12 14.368 14.364 , 14.360
5 13 14.510 14.508 L 14506
14 14.710 14.706 | 14.704 |
15 14.968 14.964 f 14.962
16 15.270 15.266 | 15.264
17 15.588 15.584 % 15.578
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The collapse pressure values for general instability failure are 10.582 N/mm’,
6.986 N/mm? and 6.944 N/mm’ (all for n=2) for M1 and 6.540 N/mm?, 6.160 N/mm?’

and 5.950 N/mm? (all for n=2) for M2 for f-f, c-¢ and s.s-s.s boundary conditions.

The effect of follower force on interbulkhead buckling of M1 and M2 are

given in table 4.22 and table 4.23 respectively.

Table 4.22 Effect of follower force on interbulkhead minimum

linear buckling pressures of M1

Boundary ‘ Buckling pressure (N{mmz)& () s roduct
condition Without follower With follower force o reauction
force effect effect
—f 15.226(2) 10.582(2) 305
- c-¢ 10.194(2) 6.986(2) _ 315 -
S.8—8.8 10.146(2) 6.944(2) 31.6

Table 4.23 Effect of follower force on interbulkhead minimum
linear buckling pressures of M2

Buckling pressure (N/mm?)& (1)
Boundary ithout foll L With foll % reduction
condition Without follower | ith follower
g force effect force effect
f—f 7.150(2) 6.540(2) 8.5
c-¢ 6.740(2) 6.160(2) 8.6
$.S—S.§ | 6.510(2) 5.950(2) 8.6

There are reductions in buckling pressures by 30.5%, 31.5% and 31.5% for
M1 and 8.5%, 8.6% and 8.6% for M2 for f-f, c-c and s.s-s.s boundary conditions.

The follower force effect of hydrostatic pressure has very high detrimental
effect in the case of general instability failure, which is the case of long shells in which
shell buckles with 2 or 3 waves in the circumferential direction. The collapse pressure

reduction due to pressure rotation effect is about 31% for M1 and 9% for M2.

For linear buckling analysis with follower force effect, interbulkhead
buckling pressure for s.s-s.s boundary condition becomes critical. Design pressure
for two submarines has been 3.016 N/mm’ corresponding to diving depth of 300m.

Subsequent safety factor is 3.364 and 2.158 for M1 and M2 respectively.

85




CHAPTER §
GEOMETRIC NONLINEAR ANALYSIS

5.1 INTRODUCTION

The geometric nonlinearity arising from nonlinear strain displacement
relations is considered in the present study. The follower force effect together with

geometric nonlinearity is considered further.

The concept of equilibrium path plays a central role in explaining nonlinear
structural analysis. An attempt is made to plot the equilibrium path for stiffened
cylindrical shell under external pressure loading. Determination of equilibrium path
involves elastic and geometric stiffness matrix in the deformed configuration.
Deformations are computed at intermediate load levels by iterative procedure. The
pressure at which the stiffness of the structure vanishes is taken as nonlinear buckling

pressure
5.2 HYDROSTATIC PRESSURE AS RADIAL PRESSURE LOAD
5.2.1 Methodology

Hydrostatic pressure is considered to be radial to the undeformed cylinder and
can be treated as dead load in the analysis. For this conservative loading, the

equilibrium equations can be derived from the principle of stationary potential energy.

In the finite element geometric nonlinear analysis the basic problem is to
develop equilibrium equations corresponding to applied loads in the deformed
geometry, taking into account all nonlinearities and to seek the solution of these
algebraic equations through out the complete history of load application (Bathe,
2001). Tangent stiffness matrix and the load vector are used to generate the

equilibrium equation at a particular load step.

A load-control incremental-iterative procedure (Cook et al, 1989) is adopted

for the geometric nonlinear analysis in the present study. In this method several
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monotonically increasing load levels are required to predict the state-control

response (fig. 5.1).

Y
?A
-
=
£
load control linc C
Pc
Po(P+API _ _______
\CAQ . _ [ i
AP({ ="~ L
AF]{ Py
O
.y
L
AU A, |
i : N
y
L
j S S
Ua U (U+AU) U displacement > X

Fig. 5.1 Load control incremental - iterative procedure

The analysis starts from a linear solution and then tries to follow the
behaviour of the system as actions applied to it are changed by small steps called
increments. To eliminate or reduce the drifting error, the incremental step is followed

by one or more iteration steps (Felippa, 1999).

Load control incremental - iterative procedure can be summarized as
follows. The solution for the discrete load step P (Pa) is known and that the solution
for the next load step P+AP (Pg) is required, where AP is the suitably chosen load
increment. Hence for the load step PA+AP the equilibrium equation relating the

external nodal load and the internal forces can be written as
PRAPRY PP URY =00, (5.1)

Where "**"{R} is the equivalent nodal loads and ""*F{F} is the resistive forces
developed due to internal stresses ( the left superscript denotes the load step level
P+AP).
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Since the solution is known at the level P only and P*AP{EY cannot be computed

directly, the equation is written as

PHPURY - PURI={AR} = {AF} . (5.2)

Where {AR} is the increase in equivalent nodal loads due to increase in load level

{AP}and {AF} is the increment in internal nodal forces

{AR} = '[PKq] {AU},.

where [PK7] is the initial tangent stiffness matrix at the load level P and {AU}, the

displacements at the first iteration. From the Eqn. 5.3

(AU} = 'PKi7MARY (5.4)

These displacements are transferred to the elements to get the deformed

configuration,

Assuming each element to be in the new coordinate axes, which is the
rotated one, the tangent stiffness matrix ' [*° %P Kq] | is calculated. The new

incremental equivalent force vector, {AF} | is calculated using the relation

‘UUYTKe] AU = {AFY (5.5)
The difference load vector {AQ}, is calculated at the first iterative level

{AQ}, = {AF}- {AF}; = {AR} - {AF}; i (5.6)
and {AQ}, is used for the recovery of the displacements {AU},

(AU PP AQ (5.7)

These displacements are further added to nodal coordinates to get the current

deformed configuration and hence the new tangent stiffness matrix ' [** 4" K+]
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At the end of iteration, the solution obtained should be checked for

convergence using the condition

wik oo (5.8)

{auy

Where €D is the displacement convergence tolerance limit.

(Since the vector {AU} is not known, it can be taken as equal to Z{AU}; ). This

process is continued to the next incremental step (Pg to P).

Finite element formulation for geometric nonlinear analysis in the present
study is based on corotational kinematics, which accommodates the large
displacement matrix (eqn.4.3) by adjusting the element coordinates in the
computation of stiffness (Zienkiewicz, 1979). It is effective in problems involving
finite rotations and small strains. Besides existing small strain (linear) finite element

libraries can effectively be adopted to such formulation (Crisfield, 1981).
5.2.2 Corotational Kinematics and Generation of Total Tangent Stiffness Matrix

Corotational kinematics is used to generate relevant stiffness matrices
(Felippa, 1999) and is described subsequently. In corotational description the
reference configuration is split up or decomposed into initial or base configuration
and corotated configuration. The corotated configuration follows the element like a
shadow. The total displacement of the structure is considered to be composed of
rigid body and deformational displacement. Purely geometric approach is
implemented for the separation of deformational displacement, which is measured
with respect to corotated configuration, from the rigid body motion. Strain energy
expression is based on the strains and the stresses from purely deformational
displacements, expressed in terms of total displacements. Tangent stiffness is derived

from this strain energy expression.

Fig. 5.2 gives the corotational motion description of the element.

(Deformations are grossly exaggerated for better visibility.)
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Co - Base or initial configuration
C - Current configuration

Uyl Y.y Cg - Corotated configuration
A uyo
Co\\ Po(X,Y,Z)
'\Jn A : I X_.X
Lo Uxo Ux2

Fig. 5.2 Corotational kinematics (Felippa, 1999)

Assume that the element is in the global X-axis in the reference
configuration C, with the origin located at the mid point. The motion in the (X, Y,
Z) space carries it to the current configuration C. The corotated configuration Cg
follows C and occupies a symmetric position. An element coordinate system, also
called the local system is denoted by ( X.°, yo",Zo" ) in the initial stage and ( x°,y°,z%)

in the corotated stage.

This system follows the element motion so that x° is aligned to the element
longitudinal axis. In the reference configuration C,, the element axes (X', Yo 5 Zo )
coincide with (X, Y, Z). In the corotated configuration the element axes (xg°, y&°,
zg°) coincide with (x%, ¥°, 2°). The figure depicts the motion of a typical particle, P,
(X,Y,Z)to Pr(xg, yr, zr}) in Crand P (x,y, z) in C.

The total particle displacement in the global coordinate is
x-X
ful={x-X} = yv-YL (5.9)
z-Z

The total displacement is spilt into a rigid body displacement ur and purely

deformational displacement u
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U= wir+u =(xXg XD+ (X - X} e, (5.10)

where
XR 1] m;i n T X Uxo

Xri=<yrpy = | D my n; Y b+ § upe = [T X+u, . (5.11)
ZR 15 ms; n3 Z Uzo

where [ T, ] is called the coordinate rotation matrix and 1, m and n are the direction

cosines
X X +ux

{x} = 1y = Y +uy =X+u=[I] X+u (5.12)
z Z+y,

where [I] is the unit matrix

On extracting the deformational displacement

Uy X - Xp - - -1 X Uy-Uyg
fu} =4y, =Ny - yRfF=|"m l-my -m; Y [+ YuyUp ¢ (5.13)
U, z ZR -n| -n; 1-n3 Z uz-uzoJ

In the matrix form

T[T X +u-v (5.14)
This can be transformed into element coordinates
W= [T ={T- X +Te(u=1) e (5.15)

The extraction of deformational displacements is nonlinear since direction

cosines are nonlinear functions of global displacements.

The strain energy can be derived from only purely deformational motion
(not including the rigid body motion) using the eqn.5.15. The second variation of the
energy expression of the circular cylindrical shell subjected to dead surface pressure
can be utilized for the derivation of tangent stiffness matrices as suggested by Brush
and Almroth (1975). Matricisation of it gives rise to element total tangent stiffness

matrix in the current configuration.
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2
Tkr] = ai a[i ...................... (5.16)

iYM

The total element tangent stiffness matrix ‘[kt] in the current configuration

can be decomposed as below.

ko] =[Tel" [kd[Tel e (5.17)

where [kt] is the total element tangent stiffness matrix in the previous configuration,
which may be the undeformed configuration in the first iteration and is obtained by

adding elastic stiffness and geometric stiffness matrices [k] and [k¢].

kil= K1+ kel e (5.18)

[Tr] is the transformation matrix and is given below as eqn.5.19.

Tr0 0 0
0 Tr 0 0

Tg = O (5.19)
0 0 Tr O
0 0 O Tr

where [ T, ] is called the coordinate rotation matrix explained in eqn.5.11.

The pre and post multiplication of transformation matrix, which contains

trigonometric function, imparts nonlinearity to the total stiffness matrix.
5.2.3 Transformation Matrix

The transformation matrix is derived from coordinate rotation matrix,
which is implicitly defined by node displacements through trigonometric relations
derived from the orientation of the element with respect to global axis.
The coordinate rotation matrix for the finite element considered is given

as expression 5.20.
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4 Cx Cy Cz w
CxCy cosa-Czsina \/(Cx2+sz)cosa - CyCzcosa+ Cxsina
Tr= V(Cx*+CZ%) V(Cx*+C2D) (5.20)
CxCy sina-Czcosa -\((Cx2+sz)sina - CyCzsina+ Cxcosa
\_ V(CXHCH) V(CxP+C) Y,
where
Cx =XuL, Cy=YyL,Cz =ZL A
Where
>
L = VXHYLHZD), Lo=V(XoM+Y0HZ0Y) | e, (5.21)

XL =Xot uz-uy, Yy = Yot vo-vy, ZL = Zot+ Wa-wy )

Xo is the undeformed length of the element, Lo and Yo and Zo are zeroes in the

undeformed configuration and changes on each iteration step accordingly.

Sin & = zi/ NV 125, €08 00 = Vi V(Y 2hy) s (5.22)

where Xiy Yy and z, are the coordinates of the additional node chosen lying on the

element principal  plane with respect to the rotated system of axes

(Krishnamoorty,1987).
5.2.4 Tangent Stiffness Matrix

The tangent stiffness matrix is developed using the eqn.5.17 and eqn.5.18.
In the eqn.5.18 linear elastic stiffness matrix [k] is from the section 3.3 and section

3.4 and geometric stiffness matrix [kg] from section 4.2.
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5.3 FOLLOWER FORCE EFFECT OF HYDROSTATIC PRESSURE

In the geometric nonlinear analysis treating hydrostatic pressure as a
follower force, the pressure stiffness matrix is to be updated in every iteration. This
is implemented through modifying the conventional tangent stiffness matrix by the

addition of pressure stiffness matrix.

kil = [k]+[kal+kp] s (5.23)

In the expression 5.23 linear elastic stiffness matrix [k] is described in the
section 3.3 and section 3.4 and geometric stiffness matrix [kg] in section 4.2 and the

pressure stiffness matrix in subsection 4.3.1.

The tangent stiffness matrix in the current configuration is obtained by pre
and post multiplication of the initial tangent stiffness matrix by the transformation

matrix given in eqn.5.19.

ko] =[TR]" k1] [TR] e, (5.24)
The methodology adopted is same as that explained in subsection 5.2.1.
5.4 SOFTWARE DEVELOPMENT

Software is developed in C language for geometric nonlinear analysis of
stiffened cylindrical shell, treating hydrostatic pressure as radial and as follower

force.
5.4.1 Flow Chart

The schematic diagram is given fig. 5.3a and the hierarchal order of

operations is given in the flowchart (fig. 5.3b).
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INPUT DATA

Geometric and
material
properties of shell,
stiffeners, deep
frames etc.,
spacing of
stiffeners, deep
frames and
bulkheads.
Boundary
conditions —
simply-
supported,
clamped or fixed,
Circumferential
wave number and
probable range of
buckling pressure.

MAIN PROGRAM

INCREMENTAL PROCEDURE

Initial load increment

Linear static analysis to predict linear
nodal displacements

ITERATIVE PROCEDURE

Calculation of nodal coordinates
Development of element transformation
matrix

Development of element tangent
stiffness matrix in the deformed
configuration

Assemblage to global tangent stiffness
matrix

Calculation of equivalent nedal force
vector

Evaluation of net load vector

Net nodal displacement calculation

Total displacement ¢valuation

Tolerance limit checking

Stress resultants and principal stress
evaluation. Determinant evaluation
Equilibrium path plotting

Buckling pressure prediction.

Repetitive  procedure  for  next
circumferential wave number.

Prediction of absolute minimum collapse
pressure

OUTPUT
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load
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Nonlinear
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pressure
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resultants
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buckling
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Absolute
minimum
buckling
pressure

Fig. 5.3a Schematic diagram of geometric nonlinear analysis
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Fig. 5.3b Flowchart for geometric nonlinear analysis
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5.4.2 Description of the Program MAIN

The function MAIN initially calculates elastic geometric and pressure
stiffness matrices of the cylindrical shell. It also calculates elastic and geometric
matrices of the stiffener. It assembles total stiffness matrix and incorporates the
effects of stiffeners. The boundary conditions are accommodated and the equivalent
joint loads are calculated. The displacements are calculated as per linear static

analysis, and are used to predict the coordinates of the deformed configuration.

As the next step, based on these new coordinates, the transformation matrix
and subsequently tangent stiffness matrix of each element are developed. Tangent
stiffness matrix is then assembled to get the global tangent stiffness matrix. The net
nodal loads based on current displacements are calculated by subtracting the nodal
forces from the equivalent joint loads. Using these net nodal loads, the incremental
displacement is calculated by performing Gauss elimination. The displacement after
first iteration will be the sum of initial displacements and incremental displacements.
The iteration is continued till tolerance limit is attained. Determinant of total tangent
stiffness matrix is evaluated. Then the procedure is repeated to next load increment.
The stresses are calculated at each load levels. This software is developed
exclusively to calculate the buckling pressure of stiffened cylindrical shells.
However, using the functions, deflection and stress, the deflections, stress resultants

and principal stresses can also be determined.
5.4.3 Description of Functions

The functions skell, stiff, bc, load and gauss from the linear static analysis
(section 3.5.3) and functions geoshell, geostiff, pressurest and matdet from linear
buckling analysis (section 4.4.3) are used with some modifications. Functions
developed for geometric nonlinear analysis besides those mentioned above are

explained subsequently.
Function cok

This function is used to incorporate the effects of elastic stiffness matrix
ko], geometric stiffness matrix [kg] and pressure stiffness matrix [kp] of the shell

element to get {kr].
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Function coks C’\C\

It is used to incorporate the combined effects of elastic stiffness matrix [k;]

and geometric stiffness matrix [kgs] of the stiffener.
Function assemb

Function assemb is used to get the assembled global stiffness matrix [K] of

the unstiffened cylindrical shell.
Function stassemb

This function includes the stiffness matrices of the stiffeners to get the

global stiffness matrix [Ks] of the stiffened cylindrical shell.
Function coor

This function calculates the new displaced co-ordinates of nodal points of
each element after the displacement evaluation by Gauss elimination procedure (step

for generating tangent stiffness matrix).
Function transform

Function transform develops the transformation matrix for each element

based on the new displaced position.
Function ckc

ckc calculates the tangent stiffness matrix of each element based on the

corresponding transformation matrix.
Function ass

This function assembles the tangent stiffness matrices to get global tangent

stiffness matrix.
Function ssta
Function ssfa incorporates the effect of stiffeners.

Function nodf

It calculates the nodal loads based on first iteration.
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Function netload

Function netload calculates the net effective load by subtracting nodal

forces from equivalent joint load.
Function tolerance

Function tolerance determines whether the iteration is to be stopped or

continued.
5.5 NUMERICAL INVESTIGATIONS

Validation of the program is done using the benchmark problem (BMP4)
suggested by Moradi and Parsons (1993). The geometric features of ring stiffened

cylindrical shell are shown in fig. 5.4.

|« 2.38 > |

T T o
osa |« T

tope = 0.023 4
tire = 0.017 l

Fig. 5.4 Geometric features of ring stiffened cylindrical shell (BMP4) (All

dimensions are in inches)

Modulus of elasticity of the material of the cylinder is 1.04 x107 psi and

Poisson’s ratio is 0.3. s.s-s.s boundary condition has been adopted.

Linear buckling pressure and results from geometric nonlinear analysis have
been compared for BMP2 (Kendrick, 1970), the geometry of which is given in
fig. 4.2a. The variations of buckling pressures with circumferential wave numbers
are predicted and the critical values are compared. The influence of various boundary
conditions viz., fixed-fixed, clamped-clamped and simply supported-simply
supported on nonlinear buckling pressure is investigated. A comparative study is

made between linear and nonlinear buckling (limit point) pressures for above-

100



mentioned boundary conditions. Equilibrium path is drawn for simply supported—

simply supported boundary condition and the limit point pressure is observed.

Geometric nonlinear analysis has been conducted on stiffened cylindrical
shell of Kendrick’s example (BMP3), which has been shown in fig. 4.3a. The shell
skin is modeled using all-cubic axisymmetric shell element and stiffeners using
discrete ring stiffener clement. The variations of buckling pressures with
circumferential wave numbers are predicted. Influence of f-f, c¢-¢ and s.s-s.s
boundary conditions on nonlinear buckling pressure is investigated. A comparative
study is made between linear and nonlinear buckling pressures for the above-
mentioned boundary conditions. Equilibrium path is drawn for f~f boundary

conditions.

Geometric nonlinear analysis has been carried out for stiffened cylindrical
hull of attack submarine models M1 and M2 have been given in section 3.6.2.
Geometric features of stiffened cylindrical shells of submarine M1 and M2 are given
earlier in table 3.2 and in figs. 3.6a, 3.6b, 3.7a and 3.7b. Geometric nonlinear
analysis has been carried out for the three configurations dealt in the linear buckling
analysis viz., cylindrical shell between stiffeners (interstiffener), stiffened cylindriéal
shell between deepframes (interdeepframe) and stiffened cylindrical shell between
bulkheads (interbulkhead). The variations of buckling pressures with circumferential
wave numbers are predicted. The scope of the numerical investigations has been

extended to realize the influence of possible boundary conditions.

A comparative study is made between linear and nonlinear buckling
pressure for M1 and M2 for the above-mentioned configurations, for f-f, c—c and s.s-
s.s boundary conditions. The equilibrium paths or nonlinear load deflection curves
are plotted with maximum radial deflection Vs hydrostatic pressure for M1 and M2
for the three configurations for f-f boundary conditions for wave numbers
corresponding to minimum buckling pressures. The limit point buckling pressures
can be observed from that. For a comparative study the linear load deflection curves

are also plotted along with the equilibrium path diagrams.
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The follower force effect of hydrostatic pressure is also investigated for M1
and M2 for the three configurations. The influence of various boundary conditions
viz., fixed-fixed, clamped-clamped and simply supported-simply supported on
nonlinear buckling pressure with follower force effect is investigated. The
equilibrium paths are drawn including pressure rotation effects. The linear load
deflection curves are also plotted along with the equilibrium path diagrams. A
comparative study is made between linear and nonlinear buckling pressure for M1

and M2 for the above-mentioned configurations.
5.6 RESULTS AND DISCUSSION
5.6.1 Validation

The buckling pressure evaluated from geometric nonlinear analysis of
BMP4 for s.s-s.s boundary conditions are given in table 5.1. The minimum buckling
pressure and corresponding n value is given in bold. The nonlinear buckling
pressures Pcr against circumferential wave numbers {n) for s.s-s.s  boundary

conditions are shown in fig. 5.5.

Table 5.1 Nonlinear buckling pressures corresponding to wave numbers for BMP4

Circumferential wave no. (n) Minimum buckling pressure (psi)

: 636 o
2 608

| 3 | a0
4 | 299 ]
5 262”.
6 243
; 25;3. ]

B 8 3-24
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Nonlinear buckling pressure

Circumferential wave no. (n)

Fig. 5.5 Nonlinear buckling pressures corresponding to wave numbers for BMP4

For s.s-s.s boundary condition the minimum buckling pressure obtained
243 psi (n=6). The nonlinear buckling pressure predicted using four nodded shell
element in ABAQUS is 241 psi (Moradi and Parsons, 1993). The obtained result is
0.8% upper bound.

Equilibrium path with maximum radial deflection Vs hydrostatic pressure for
s.s-s.s boundary condition is given fig. 5.6. Linear load—deflection curve is also plotted
along with the equilibrium path. In the equilibrium path an almost linear regime is
followed by a softening regime and there is no substantial redistribution of stresses due
to changes in geometry and the structure eventually collapses at the limit point. From the

nonlinear path it is observed that the collapse occurs at a pressure of 243 psi.
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% 200 =2
= 100 S

£
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=

m

0 0.5 1 15
Radial deflection (inches) ;

—o—Nonlinear —&—Linear |

Fig. 5.6 Linear and nonlinear load deflection curve of BMP4

for s.s-s.s boundary condition (n = 6)
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5.6.2 Interstiffener Analysis of BMP2

The buckling pressure evaluated from geometric nonlinear analysis of
Kendrick’s model (BMP2) for f-f, ¢c-c and s.s-s.s boundary conditions are given in table
5.2. The minimum buckling pressures and corresponding n values are given in bold.

Table 5.2 Nonlinear interstiffener buckling pressures corresponding to wave
numbers for BMP2 for various boundary conditions

Nonlinear buckling pressure (psi)

Circumferential waves no. (n)

f-f c-C $.5-5.8
1 2800 2680 1225
2 2757 1 2440 - 1200 |
3 2670 | 1860 890
4 2526 1295 745
5 2315 1057 685
6 2095 882 | 630
7 1390 814 610
8 1080 782 | 594
9 930 | 760 580
10 860 775 600
_ 11 840 780 630
12 855 | 805 665
13 882 | 820 e
14 2 | 80 | 76
15 970 | 920 ; 820
- 16 1027 080 890
17 1094 1020 | 978

The variation of nonlinear buckling pressure Pcr against circumferential

wave number n for the three boundary conditions are shown in fig. 5.7.
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Fig. 5.7 Nonlinear interstiffener buckling pressures corresponding to wave

numbers for BMP2 for various boundary conditions

For f-f, c-c and s.s-s.s boundary conditions, minimum buckling pressures
are 840 psi (n = 11), 760 psi (n = 9) and 580 psi (n = 9) respectively. Comparative
study between linear and nonlinear buckling pressures for f-f, c—¢ and s.s-s.s

boundary conditions are given in table 5.3 and fig. 5.8.

Table 5.3 Comparison of linear and nonlinear buckling pressures of

BMP2 for various boundary conditions

Buckling pressure (psi) & (n)
Boundary condition % reduction
Linear Nonlinear
f-f 1202(14) 840(11) 30.1
c-¢ 1163(14) 760(9) 34.6
$-8 765(12) 580(9) 248
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Fig. 5.8 Minimum linear and nonlinear buckling pressures
for various boundary conditions for BMP2
Nonlinearity induces a reduction in buckling pressure by 30.1% for f-f.
34.6% for c-c and 24.8% for s.s-s.s boundary conditions. In the geometric nonlinear
analysis change in geometry as the structure deforms is taken into account and hence

depicts the actual situation of shell buckling at a lower pressure.

Equilibrium path or nonlinear load deflection curve with maximum radial
deflection Vs hydrostatic pressure for s.s-s.s boundary condition is fig. 5.9. Linear
load deflection curve is also plotted along with the equilibrium path. From the

nonlinear path it is observed that the collapse occurs at a pressure of 580 psi.
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Fig. 5.9 Equilibrium path and linear load deflection curve of BMP2 for f—f
boundary condition (n = 11)
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5.6.3 Analysis of Stiffened Cylindrical Shell of BMP3

Table 5.4 gives the buckling pressure of stiffened cylindrical shell BMP3 for
various circumferential wave numbers for f—f, c—c and s.s-s.s boundary conditions. The
variations of nonlinear buckling pressure against n for three boundary conditions are
given in fig. 5.10. The minimum buckling pressures of linear buckling analysts and

present study and corresponding n values are given in table 5.5 and fig. 5.11.

Table 5.4 Nonlinear buckling pressures corresponding to wave

numbers for BMP3 for various boundary conditions

Circumferential wave no. 1 Nonlinear buckling pressure (psi)
(n) f-f c-C $.5-5.8
I ) 2722 2488 2254
2 2470 2370 234 |
3 2178 1 2078 2042
4 | 2128 2018 1956
5 1436 1420 1402
6 1364 1360 1349
7 7. 14 | 178
8 128 2 . 1121
9 1040 1040 | 1038
) 10 968 968 964
11 1930 930 | 924
12 920 920 010
13 928 928 | 920
14 952 | 92 . 946
15 994 994 - osg
16 1054 1054 1007
17 . 1us 116 1091
8 1194 1194 1154
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Fig. 5.10 Nonlinear buckling pressures corresponding to wave numbers of
stiffened cylindrical shell of BMP3 for various boundary conditions

Table 5.5 Comparison of linear and nonlinear buckling pressures of BMP3

for f-f, c-¢ and s.s-s.s boundary conditions

- Buckling pressure (psi) & (n) . %
Bo condition . :
4 = Linear Nonlinear 1 reduction
f-f 1233(13) 920(12) | | 254
c-c 1231(13) 920(12) |  26.1
5.5-5.8 1193(13) 910(12) | 33
1300 i
| gm g
7 1200 I
£ 1100
H
£ 1000
n=12 12 12 '
Y :
3 5.
E 800 |
=
= |
- IR |
o : n——
- cc 5558 ;
Boundary conditions '

| |
'1—4—— Linear bucking pressure of BMP3 = Nonlinear bucking pressure of BMP3

Fig. 5.11 Minimum linear and nonlinear buckling pressures
for various boundary conditions for BMP3

108




The critical buckling pressures are obtained as 920 psi, 920 psi and 910 psi for
circumferential wave no. 12 for all the three boundary conditions studied. This
implies that for stiffened cylindrical shells, the buckling pressure is less sensitive to
boundary conditions. The type of boundary condition will not have much effect on
circumferential wave number on which the buckling occurs. Nonlinearity causes a
reduction in circumferential wave number by one and induces a reduction in
buckling pressure by 25.4% for f—f, 26.1% for c—c and 23.7% for s.s-s.s boundary
conditions (table 5.5).

Equilibrium path for f~f boundary condition for n=12 is given in fig. 5.12.
Linear load-deflection curve is also plotted along with the equilibrium path. The

figure displays the limit point pressure value as 920 psi.

External pressure ( psi)

E
|
— —_ — s ]

Fig. 5.12 Linear and nonlinear load deflection curve of BMP3 for f—f

boundary condition for circumferential wave number 12
5.6.4 Interstiffener Analysis of Submarine Models

Interstiffener nonlinear buckling values for M1 for various n values are

shown in table 5.6. Variations of Pcr with n are shown in fig. 5.13. The minimum
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buckling pressures and the corresponding n values for linear buckling analysis and

geometrically nonlinear analysis are given in table 5.7 and fig. 5.14.

Table 5.6 Nonlinear interstiffener buckling pressures corresponding to wave
numbers for M1 for various boundary conditions

1

Circumnferential wave no. Nonlinear buckling pressure (N/mmz)

(n) ! f-f c-C ; $.5-5.8
1 33.840 33.760 15.480
2 f 33.780 33680 15.320

B 3 33.720 33.620 ' 15270
4 | 33.680 | 33.560 15220
5 | 33.570 33.440 L 15140
6 33.330 33.220 | 15.070

i 7 | 32.980 ’ 32.900 14940 |
8 32.820 32.740 14.120
9 32.620 1540 | 13.780

B 10 32.420 32.350 . 180 |
11 32.140 32.080 | 13340
12 g 31.860 31.790 13540
13 31.590 31.500 13670
14 31370 31.300 | 13.940
15 31.170 a0 0 14030 |
16 31.050 31.000 ‘

B 17 30.910 30.840 N
18 30.840 30.780 _
19 ‘ 30.840 j 30.790
20 30.990 30.900 .-

B 21 | 31.150 ; 31.050 x ]
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Fig. 5.13 Nonlinear interstiffener buckling pressures for M1 with and without

follower force effect for various boundary conditions

For M1 the minimum buckling pressures are 30.840 N/mm’ (n=18), 30.780
N/mm? (n= 18) and 13.180 N/mm’ (n=10) respectively for f-f, c-c and s.s-s.s
boundary conditions. Comparative study is made between linear and nonlinear
buckling pressures for f—f, c—c and s.s-s.s boundary conditions and is given in table

5.7. Nonlinearity induces a reduction in buckling pressure by 23.5% for f-f, 23.6%

for c—c and 19.5% for s.s-s.s boundary conditions.

Table 5.7 Comparison of linear and nonlinear interstiffener

buckling pressures of M1 for f-f, c-c and s.s-s.s boundary conditions

Buckling pressure (N/mm®) & (n)
Boundary condition | - % reduction
Linear | Nonlinear
f-f 40.330(30) 30.840(18) l 235
c-C 40.283(30) 30.780(18) 23.6
5.5-5.8 | 16.380(16) 13.180(10) i 19.5
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Fig. 5.14 Minimum linear and nonlinear buckling pressures for various
configurations and boundary conditions with and without follower
force effect for M1
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Equilibrium path for M1 for f~f boundary condition for circumferential
wave number 18 is given in fig. 5.15. Linear load — deflection curve is also plotted

along with the equilibrium path.
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Fig. 5.15 Linear load deflection curve and equilibrium path with and without
follower force effect for shell between stiffeners of M1 for f-f boundary condition

Interstiffener buckling values for M2 for various n values are shown in table

5.8. Variation of nonlinear buckling pressure with n is shown in fig. 5.16. For M2 for

f-f, c-c and s.s-s.s boundary conditions, the minimum buckling pressures are 13.880

N/mm’ (n=16), 13.770 N/mm’ (n=16) and 10.060 N/mm’ (n=14) respectively.
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Table 5.8 Nonlinear interstiffener buckling pressures corresponding to wave

numbers for M2 for various boundary conditions

Circumferential wave Nonlinear buckling pressure (N/mm’)
no. (n) f-f c-¢ | 5.5-5.8
1 14.280 14.200 12.030
2 14.200 14.120 11.740
3 14.140 14.060 11720
4 14.120 14.020 11.720
5 14.100 14.010 11.520
6 14.100 14.000 11.320
7 14.040 13.960 11.100
8 14.020 13.940 10.840
9 14.000 13.920 10.640
10 13.960 13.880 10.290
11 13.960 13.880 10.120
12 13.940 13.880 10.100
13 13.920 13.820 10.060
14 1 13.920 13.820 10.060
15 T 13.902 13.800 10.170
16 13.880 13.780 10240
17 13.900 13.800 10.400
18 14.020 13.920 10.520
19 14.120 14.02 10.63
|
|
g 135 S '
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| 23 121 ol “
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Fig. 5.16 Nonlinear interstiffener buckling pressures of M2 with and
without follower force effect for various boundary conditions
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Linear and nonlinear minimum buckling pressures for f-f, c—¢ and s.s-s.s boundary
conditions are given in table 5.9 and fig. 5.17. Nonlinearity induces a reduction in buckling
pressure by 13.1% for £, 13.3% for c-c and 13.7% for s.s-s.s boundary conditions. -

Table 5.9 Comparison of linear and nonlinear interstiffener buckling

pressures for M2 for f-f, c-¢ and s.s-s.s boundary conditions

: _ s .
Boundary condition i Buc.klmg pmsu? o & @) ' % reduction
j Linear g Nonlinear
f-f |  159801) | 1388016) |  13.1
c-¢ | 15880(21) | 13.770(16) | 133
5.5-5.5 . 11.660(16) | 10.060(14) | 137
g =i |
18 1 1
| n=21 21 21 (
|

16 - > —— o _o___*{'

|
= I n=186 16
| E14{ = = ' - |
R |
= | n=t17 17 17 \
P~ 12 - 17 58 ¥
| 3 57
| 8 10 ki 1 |
| T8 1 5 1 1 14 L
- 2 % . M .
2 | ira—ssivalll
- gl 2 2
: R .
- i T
g 6 —%
=
E ® g
£ n=2 T T e -
s 4 - * 2 2 z
2
0 - WLl , : — —
f-f -f (ffe) cC cc (ffe) $5.-88 ss-ss(ffe) |
Boundary condition & follower force effect ‘
& Interstiffener inear buckiing pressure = Intersfiffener noninear buckling pressure | |

|

|-

| interdeepframe linear buckiing pressure —3— Interdeepframe noninear buckiing pressure|
-

L

! X% interbulkhead Inear buckiing presswre — & Iinterbukhead noniinear buckiing pressure |

Fig. 5.17 Minimum linear and nonlinear buckling pressﬁl_'es for various
configurations and boundary conditions with and without follower
force effect for M2
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Nonlinearity induces flexibility to the structure such that the shell buckles
with less number of waves in the circumferential direction. Equilibrium path for f-f

boundary condition for M2 is given in fig. 5.18.

|
}
|
|

m?)
®

Pressure load (N/m
oONAOBONB

100 150 200

Deflection ( mm)
‘——nonfinear —8—lneas nonlinear with fie |

Fig. 5.18 Linear load deflection curve and equilibrium path with and without
follower force effect for shell between stiffeners of M2 for f-f boundary
condition

The buckling pressure value diminishes due to release of rotation restraint
at ends. The reduction in buckling pressure for a change in end condition from f-f
and c-c to s.s-s.s is 57% for M1 and 27% for M2. For interstiffener buckling there is
no substantial reduction in buckling pressure value due to the release of axial

restraint (u) at ends.

Analogous to linear buckling analysis for s.s-s.s boundary condition the
interstiffener buckling pressure is the lowest and collapse occurs at lower value of n
compared to clamped and fixed boundary conditions. Fixity reduces the effective
length and the shell in effect become shorter and buckles with more number of waves

in the circumferential direction.

The effect of L/R ratio on buckling pressure and on circumferential wave
number is similar to that of linear buckling analysis but it is not as pronounced as in
the case of linear buckling analysis. The observation that the circumferential wave
number is inversely proportional to L/R ratio (Windenburg and Trilling, 1934) is

reflected in the results of geometric nonlinear analysis also.
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The reduction in buckling pressure due to geometric nonlinearity is not
much influenced by the change in boundary condition. The reduction in buckling

pressure is 23% for M1 and 13% for M2, irrespective of the boundary condition.
5.6.5 Interdeepframe Analysis of Submarine Models

Geometric nonlinear analysis of stiffened cylindrical shell between
deepframes is conducted for M1 and M2. Interdeepframe nonlinear buckling
pressure values for M1 for various n values are given in table 5.10 and are shown in
fig 5.19.

Table 5.10 Nonlinear interdeepframe buckling pressures corresponding to
wave numbers for M1 for various boundary conditions

Circumferential wave no. Nonlinear buckling pressure (N/mm’)

(n) f-f c-c $.5-5.5

o 1 22.080 22.040 20.690
2 21.880 21.840 20.390

3 21.900 21.860 19.230

4 22.000 21.960 20.890

5 22.120 22.080 21.570

6 22.100 22.060 21.550

7 22.050 21.998 21.410

8 21.940 21.900 21.370

9 21.800 21.770 21.350

10 21.720 21.690 21.330

11 21.660 21.640 21.310

12 21.620 21.610 21.384

13 21.630 21.620 i 21.430

14 21.700 21.678 21.550

15 21.820 21,794 21.690

16 22.020 21.988 21.890

17 22.520 22.450 22.110

18 23.090 22.980 ' 22.390
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Fig. 5.19 Nonlinear interdeepframe buckling pressures corresponding to wave
numbers with and without follower force effect of M1 for various boundary
conditions

For M1 for f-f, c-c and s.s-s.s boundary conditions, the minimum buckling
pressures are 21.620 N/mm? (n= 12), 21.610 N/mm’® (n= 12) and 19.230 N/mm’ (n
=3) respectively. Comparative study is made between linear and nonlinear buckling
pressures for the above mentioned boundary conditions and are given in table 5.11
and fig. 5.14. Nonlinearity induces a reduction in buckling pressure by 10.8% for f-f

and c—¢ and 10.9% for s.s-s.s boundary conditions.

Table 5.11 Comparison of linear and nonlinear interdeepframe buckling

pressures for M1 for f-f, c-c and s.s-s.s boundary conditions

Buckling pressure (N/mm?) & (n)
Boundary condition % reduction
Linear Nonlinear
f-f 24.242(16) 21.620(12) 10.8
c-C 24.240(16) 21.610(12) 10.8
$.8-S.S 21.584(12) 19.230(3) 10.9

Equilibrium path for f-f boundary condition for M1 (n=12) is given in fig. 5.20.

Linear load—deflection curve is also plotted along with the equilibrium path.
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" Fig.5.20 Linear load deflection curve and equilibrium path with and without
follower force effect of shell between deepframes of M1 for f-f boundary condition

For M2 the buckling pressure values for various n values are given in table

5.12 and are shown in fig. 5.21.

Table 5.12 Nonlinear interdeepframe buckling pressures corresponding to

wave numbers for M2 for various boundary conditions

Circumferential wave no. (n) Nonlinear buckling pressure (N/mm?)
f-f c-C $.8-5.8
1 13.800 13.760 13.330
2 13.600 13.580 13.130
3 13.400 13.30 12.940
4 12.890 12.850 11.400
5 11.780 11.750 10.820
6 10.800 10.760 10.220
7 10.250 10.210 9.820
8 9.890 9.830 9.510
9 9.880 9.820 9410
10 9.720 9.670 9.210
11 9.600 9.560 9.080
12 9.560 9.540 9.000
13 9.510 9.520 9.000
14 9.460 9.420 9.020
15 9.460 9.400 9.050
16 9.520 9.420 9.060
17 9.650 9.580 9.120
18 9.871 9.720 9.190
19 10.050 9.910 9.280
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Fig. 5.21 Nonlinear interdeepframe buckling pressures for M2 with and without

follower force effect for various boundary conditions

The collapse pressure values are 9.460 N/mm?® (n=15), 9.400 N/mm’
(n =15) and 9.000 N/mm’ (n=3) for £f, c—c and s.s-s.s boundary conditions.
Comparative study is made between linear and nonlinear buckling pressures for f-f,
c—c and s.s-s.s boundary conditions and is given in table 5.13 and fig. 5.17.
Nonlinearity induces a reduction in buckling pressure by 18.9% for f—f, 19.0% for c—
¢ and 18.1% for s.s-s.s boundary conditions.

Equilibrium path for f-f boundary condition for M2 is given in fig. 5.22.

Linear load deflection curve is also plotted along with the equilibrium path.

Table 5.13 Comparison of linear and nonlinear interdeepframe buckling
pressures of M2 for f-f, ¢-c and s.s-s.s boundary conditions

Buckling pressure (N/mm’) &
Boundary condition (n) % reduction
Linear Nonlinear |
f-f 11.660(17) 9.460(16) ‘ 18.9
c-C - 11.610(17) 9.400(16) : 19.0
$.5-8.8 10.990(8) 9.000(13) | 18.1
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Fig. 5.22 Linear load deflection curve and equilibrium path with and
without follower force effect for shell between deepframes of M2 for
f-f boundary condition (n=15)

Reduction in nonlinear buckling pressure for release of end condition from
rotation restraint (from f-f and c-c to s.s-s.s) is 11% for M1 and 4.6% for M2. Almost
same values are reported in linear buckling analysis. The effect of axial restraint (u)
reflected by the buckling pressure of f-f and c-c is negligible (less than 1%). The
interdeepframe nonlinear buckling pressures are less susceptible to boundary

conditions, compared to interstiffener buckling pressures.

The reduction in buckling pressure due to geometric nonlinearity is not
much influential to boundary condition. There is a reduction in buckling pressure by

11% for M1 and 19% for M2, irrespective of the boundary condition.
5.6.6 Interbulkhead Analysis of Submarine Models

Between bulkheads, the nonlinear buckling pressure values for M1 for
various n values are given in table 5.14 and summarized in table 5.15. The variation

of Pcr with n is shown in fig. 5.23.

121



Table 5.14 Nonlinear interbulkhead buckling pressures corresponding to wave

numbers for M1 for various boundary conditions

Circumferential Nonlinear buckling pressure (N/mm?)
wave no. (n) f-f c-c [ 5.5-5.

1 19.500 19.460 | 19.400
2 12.400 8.450 ! 8.450
3 | 15.380 15.320 | 15.080
4 | 17110 17.060 L 16.940
5 20.100 20.020 j 19.990
6 22.500 22.440 [ 22.390
7 23.700 23.620 ! 23.580
8 23.900 23.840 | 23.80 |
9 24.300 24.200 | 24.100
10 24.900 24.820 | 24.720
11 25.100 25.020 f 24.920
12 25.300 25.200 25.100
13 25.400 25.360 25.300
14 25.600 25.520 25.420
15 25.720 25.620 25.500

16 26.100 26.020 25.900
17 26.300 26.200 26.100
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Fig. 5.23 Nonlinear interbulkhead buckling pressures corresponding to
wave numbers of M1 with and without follower force effect for various
boundary conditions

The collapse pressure values are 12.400 N/mm? (n=2), 8.450 N/mm’ (n =2)

and 8.450 N/mm’ (n=2) for f-f, c— and s.s-s.s boundary conditions. Linear and
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nonlinear minimum buckling pressures for f~f, c—c and s.s-s.s boundary conditions

are given in table 5.15 and fig. 5.14.

Table 5.15 Comparison of linear and nonlinear interbulkhead buckling

pressures for M1 for f-f, c-c and s.s-s.s boundary conditions

Boundary condition

Buckling pressure (N/mm?) & (n)

% reduction

Linear Nonlinear
ff 15.226(2) 12.400(2) 18.6
c-C 10.194(2) 8.450(2) 17.1
$.5-8.8 10.146(2) 8.450(2) 16.7

Nonlinearity induces a reduction in buckling pressure by 18.6% in f-f,

17.1% for c— 16.7% for s.s-s.s boundary conditions. Equilibrium path for f-f

boundary condition for M1 is given in and fig. 5.24.
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Fig. 5.24 Linear load deflection curve and equilibrium path with
and without follower force effect for shell between bulkheads of M1

for f-f boundary condition (n=2)

For M2 the buckling pressure values for various n values are shown in table

5.16 and summarised in table 5.17. The variation of Pcr with n is shown in fig. 5.25.
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Table 5.16 Nonlinear interbulkhead buckling pressures corresponding to

wave numbers for M2 for various boundary conditions

Circumferential wave Nonlinear buckling pressure (N/mm?)
no. (n) f-f c-C $.5-5.8

1 6.620 6.480 6.340
2 4.900 4.700 4.500
3 6.560 6.460 6.360
4 9.840 9.600 9.200
5 13.630 13.430 13.310
6 13.690 13.510 13.310
7 13.710 13.610 13.410
8 13.550 13.450 13.400
9 13.370 13.320 13.300
10 13.270 13.220 13.210
11 13.250 13.200 13.180
12 13.310 13.260 13.210
13 13.440 13.340 13.290
14 13.650 13.560 13.500
15 13.890 13.790 13.710
16 14.190 14.100 14.080
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Fig. 5.25 Nonlinear interbulkhead buckling pressures corresponding to
wave numbers of M2 with and without follower force effect for various
boundary conditions

The collapse pressure values are 4.900 N/'mm?* (n=2), 4.700 N/mm’ (n =2)

and 4.500 N/mm’ (n=2) for f-f, c— and s.s-s.s boundary conditions. Comparative
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study between linear and nonlinear buckling pressures for f-f, c—¢ and s.s-s.s

boundary conditions are given in table 5.17 and fig. 5.17.

Table 5.17 Comparison of linear and nonlinear interbulkhead buckling
pressures of M2 for f-f, c-c and s.s-s.s boundary conditions

. Buckling pressure (N/mm?) & (n) %
Boundary condition ducti
Linear Nonlinear reduction
f-f 7.150(2) 4.900(2) 31.2
c-c 6.740(2) 4.700(2) 30.3
5.5-S.§ 6.510(2) 4.500(2) 30.9

Equilibrium path for f-f boundary condition for M2 is given in fig. 5.26.
Linear load—deflection curve is also plotted. Nonlinearity induces a reduction in

buckling pressure by 31.2% for f—f, 30.3% for c— and 30.9% for s.s-s.s boundary
conditions.
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Fig. 5.26 Linear load deflection curve and equilibrium path with
and without follower force effect of shell between bulkheads of
M2 for f-f boundary condition ( n=2)

In the case of interbulkhead geometric nonlinear analysis the reduction in
buckling pressure from f-f to c-c is 32% for M1. The implication is that there is a
considerable reduction in buckling pressure due to the release of axial restraint (u).
But there is no such reduction in buckling pressure due to the release of rotation
restraint. The observation that in general instability failure, the influence of rotation

restraint is nominal (Brush and Almroth) substantiates authoress’ results.

For interbulkhead analysis the reduction in buckling pressure due to

geometric nonlinearity is not much sensitive to boundary condition. There is a
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reduction in buckling pressure by 18% for M1 and 30% for M2 irrespective of

boundary conditions.

For geometric nonlinear analysis, the buckling pressure predicted is critical

while considering the interbulkhead configuration with s.s-s.s boundary conditions.
5.6.7 Follower Force Effect of Hydrostatic Pressure

Effect of follower force on nonlinear buckling pressure is analysed for
various configurations and boundary conditions. Results are tabulated. Buckling
pressure in general is reduced when follower force effect is taken into account.
Interstiffener buckling values for M1 for various n values are given in table 5.18.

The variation of Pcr with n is shown in fig. 5.13.

Table 5.18 Nonlinear interstiffener buckling pressures for M1 with follower
force effect for various boundary conditions

Circumferential wave no. Nonlinear buckling pressure (N/mm?)

(n) f-f c-c $.5-8.8
1 33.740 33.680 15.400
2 33.680 33.602 15.240
3 33.620 33.544 15.202
4 33.580 33.496 15.164
5 33.512 33.446 15.084
6 33.260 33.196 15.012
7 32916 32.824 14.882
8 32.758 32.688 14.042
9 32,554 32.484 13.704
10 32.364 32.302 13.100
11 32.084 32.024 13.282
12 31.790 31.702 13.478
13 31.520 31.440 13.602
14 31.312 31.260 13.882
15 31.110 31.030 13.942
16 30.990 30.902
17 30.850 30.792
18 30.780 30.720
19 30.800 30.742

20 30.866 30.800

21 30.998 30.922

22 31.140 31.080

23 31.240 31.188
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For M1 for f-f, c-c and s.s-s.s boundary conditions, the minimum buckling
pressures are 30.780 N/mm? (n=18), 30.720 N/mm’ (n=18) and 13.100 N/mm’ (n=10). The

effect of follower force on nonlinear buckling pressure is given in table 5.19 and fig. 5.14.

Table 5.19 Effect of follower force on nonlinear interstiffener buckling

pressures for M1 for f-f, c-c and s-s boundary conditiens

Boundary condition

Nonlinear buckling pressure
(N/mm?) & {(n)

Without follower

With follower force

% reduction

force effect effect
f-f 30.840(18) 30.780(18) 0.2
c-C 30.780(18) 30.720(8) 0.2
5.5-S.8 13.180(10) 13.100(10) 0.6

The reductions in buckling pressures are 0.2%, 0.2% and 0.6% for f-f, c-c

and s.s-s.s boundary conditions respectively. Equilibrium path with and without

including follower force effects for f~f boundary condition for M1 is given in fig. 5.15

Interstiffener buckling values for M2 for various n values are shown in table

5.20. The variation of Pcr with n is shown in fig. 5.16.

Table 5.20 Nonlinear interstiffener buckling pressures with follower force

effect for M2 for various boundary conditions

Circumferential wave no. (n)

Nonlinear buckling pressure (N/mm’)

f-f c-C $.8-8.8 N
1 14.270 14.160 12.000 *
2 14.160 14.080 11.700
3 14.100 14.020 11.680
4 14.080 13.980 11.680
5 14.060 13.970 11.480 i
6 14.060 13.960 11.280
7 14.000 13.920 ~11.060
8 13.980 13.500 10.800
9 13.960 13.880 10.600
10 13.920 13.840 10.250
11 13.920 13.840 10.080
12 13.900 13.790 10.060
13 13.880 13.780 10.020
14 13.880 13.770 10.020
15 13.860 13.760 10.100 |
16 13.830 13.730 10.180 ]
17 13.850 _ 13.750 10.340
18 13.960 13.870 10.470 )
19 14.080 0 13.960 10.580
20 14.180 13.970




For M1 for f-f, c-c and s.s-s.s boundary conditions, the minimum buckling
pressures are 13.830 N/mm’ (n = 16), 13.730 N/mm?® (n =16) and 10.020 N/mm’

(n=14) respectively.

Table 5.21 Effect of follower force on nonlinear interstiffener
buckling pressures corresponding to wave numbers for M2 for f-f, c-c
and s.s-s.s boundary conditions

. . 2 %
Boundary Nonlinear buckling pressure (N/'mm®) & (n) % reduction
condition Without follower force | With follower force
effect effect _
f-f 13.880(16) | 13.830(16) 04
c-c 13.770(16) 13.730(16) 0.3
$.5-5.8 | 10.060(14) 10.020(14) ' 0.4
| |

The effect of follower force on nonlinear buckling pressure is shown in table
5.21 and fig. 5.17. The reduction in buckling pressures are 0.4%, 0.3% and 0.4% for
ff, c-c and s.s—s.s boundary conditions respectively. In general for interstiffener
buckling the reduction in buckling pressure due to follower force effect is less than
1% for all types of boundary conditions. For interstiffener buckling, where the shell
buckles with large number of waves in circumferential direction, the pressure
rotation effect is very much limited. Short shells are not much susceptible to pressure

rotation effects (Rajagopalan, 1993) and this feature is reflected in the results.

Equilibrium path with and without follower force effects for ff boundary

condition for M2 is given in fig. 5.18.

Interdeepframe buckling pressure values for M1 for various n values are
shown in table 5.22 and summarized in table 5.23 and fig. 5.14. Variation of Pcr with

n is shown in fig. 5.19.
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Table 5.22 Nonlinear interdeepframe buckling pressures with follower force
effect corresponding to wave numbers for M1 for various boundary conditions

Circumferential wave Nonlinear buckling pressure (N/mm®) ]
no. {n) f-f ¢-¢ $.8-5.8
1 22.028 21.998 20.604 |
2 21.808 21.802 ~20.302
3 21.824 ’ 21.820 19.150
| 4 21.946 21.930 : 20.808
| S 22.034 22.012 21.524
6 22.012 ' 21.988 21.508
7 21.934 21.988 21.360
8 21.820 21.802 21.344
9 21720 21.684 , 21.302
10 21.644 21.610 21.280
11 21.582 21.560 - 21.246
12 21.540 j 21.530 | 21.308 N
B 13 21.552 21.540 21.366 )
14 21.624 21.588 21.486
15 21.738 , 21.694 21.604
16 ’ 21.918 ; 21.884 21.804 |
17 22.408 22.360 22.020
18 22.978 22.898 22.280

Table 5.23 Effect of follower force on nonlinear interdeepframe buckling
pressures for M1 for f-f, c-c and s.s-s.s boundary conditions

Nonlinear buckling pressure (N/mm?) & (n)
Boundary condition [~ Without follower With follower force % reduction
) ‘; force effect effect , ]
f-f 21.620(12) ; 21.540(12) : 0.4
o 21.610(12) .21.539(12) 0.3 a
5.55.8 O 19303) | 19.150(3) | 0.4

The collapse pressure values for interdeepframe are 21.540 N/mm® (n=12),
21.530 N/mm> (n=12) and 19.150 N/mm’ (n=3) for f-f, c—c and s.s-s.s boundary
conditions. The effect follower force on nonlinear buckling pressure is given in table
5.23. The reductions in buckling pressures are by 0.4%, 0.3% and 0.4% for M1 for
the corresponding boundary conditions. Linear load deflection curve and
equilibrium path with and without follower force effects for f—f boundary condition

for M1 are given in fig. 5.20.
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For M2 the buckling pressure values for various n values are shown in table 5.24

and summarized in table 5.25 and fig.5.17. Variation of Pcr with n is shown in fig. 5.21.

Table 5.24 Nonlinear interdeepframe buckling pressures corresponding

to wave numbers with follower force effect for M2 for

various boundary conditions

Circumferential wave Nonlinear buckling pressure (N/mm?)
no. (n) - f-f c-C S.5-8.8
1 13.730 13.690 13300
2 13.520 13.480 13.080
3 13.320 13.280 12.890
4 12.640 12580  11.360
5 11.680 11644 | 10740
- 6 10.580 10508 | 10.160
7 10.108 10.160 9.760
8 9.804 9.770 9.410
9 9780 9.740 9326
10 9620 9584 9.146
i1 9.564 9.502 8.984
12 9.460 9.400 8.902
13 9.400 9.370 8.900
7 4 1 938 9340 8924
15 | 9.370 9.320 8955
16 9420 9340 8966
17 9.550 9.440 9,024
8 9.760 9.584 9.078
19 9.894 9.712 9.168

Table 5.25 Effect of follower force on interdeepframe nonlinear buckling

pressures for M2 for f-f, c-c and s.s-s.s boundary conditions

Nonlinear buckling pressure (N/mm?) & (n)
Boundary i ' T % reduction
condition Without follower force With follower force o reductio
effect effect
f-f 9.460(15) 9.370(15) 1.0
c-C 9.400(15) 9.320(15) 0.9
§.5-S.§ 9.000(13) 8.900(13) 1.1
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The effect of follower force on nonlinear buckling pressure is obtained by
comparing the values given in table 5.25. The collapse pressure values are 9.370
N/mm? (n=15), 9.320 N/mm’ (n=15) and 8.900 N/mm’ (n=13) for f-f, c—c and s.s-s.
boundary conditions. There is a reduction in buckling pressure by 1.0%, 0.9% and
1.1% for M2 for the above-mentioned boundary conditions. The follower force effect
is negligible, since the shell is a short one and buckles with more number of waves in
the circumferential direction. Linear load deflection curve and equilibrium path with
and without including follower force effects for f—f boundary condition M2 is given

in fig. 5.22.

Interbulhead buckling pressure values for M1 for various n values are
shown in table 5.26 and summarized in table 5.27 and fig. 5.14. Variation of Pcr with

n is shown in fig. 5.23.

Table 5.26 Nonlinear interbulkhead buckling pressures with follower force

effect for M1 for various boundary conditions

Circumferential wave Nonlinear buckling pressure (N/mm“z_)

no. (n) f-f 1 c-c ' 5.5-5.5

1 19440 | 19400 19.360

2 9.100 6.310 6.300

3 15.320 15.280 15.020

4 17.060 17.020 | 16.890
] 5 20.020 19.980 19.370
’ 6 22.480 22.400 | 22320
7 23.640 23.580 ' 23.520

8 23.900 ? 23.900 23.700

9 ; 24.200 24.120 24.060

10 ‘ 24.820 24.700 24.600

- 11 25.020 24920 | 243880
12 25.200 ~ 25.100 25.020

13 25.360 % 25.300 25.200

14 25.500 ‘ 25.400 | 25.300

15 ‘ 25.820 25.560 f 25.420

16 26.020 25.940 | 25.880
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Table 5.27 Effect of follower force on nonlinear interbulkhead buckling

pressures for M1 for f-f, c-c and s.s-s.s boundary conditions

Nonlinear buckling pressure (N/mm?) & (n)
Boundary 9 reducti
condition | Without follower force | With follower force! o reduction
~ . effect effect
f-f ! 12.400(2) 9.320(2) 24.8
c-c | 8.450(2) 6.310(2) 25.3
S.5-5.8 | 8.450(2) 6.300(2) 25.4

The effect of follower force on nonlinear buckling pressure is obtained by

comparing the values given in table 5.27 and fig. 5.14. The collapse pressure values
for general instability failure are 9.320 N/mm? (n=2), 6.310 N/mm? (n =2) and 6.300
N/mm? (n=2) for M1. There is a reduction in buckling pressure by 24.8%, 25.3% and
25.4% for Ml for f-f, c—c and s.s-s.s boundary conditions. Equilibrium path

including pressure rotation effects along with linear load — deflection curve for f—f

boundary condition for M1 is given in fig. 5.24

For M2 the buckling pressure values for various n values are shown in table

5.28 and summarized in table 5.29 and fig. 5.17. Variation of Pcr with n is shown in

fig. 5.25.

Table 5.28 Nonlinear interbulkhead buckling pressures corresponding to wave

numbers with follower force effect for M2 for various boundary conditions

Circumferential wave no.

Nonlinear buckling pressure (N/mm?)

(n) f-f CC_ .| .o..8Sss
1 6.480 6.320 6280
2 4.500 4.300 4120
3 6.500 6.410 6.310
4 9.790 9.530 9.130
5 12.580 12.370 12.280
6 13.620 13.460 13.280
7 13.670 | 13.570 13.380
8 13.510 : 13.410 13.360
9 13.320 g 13.480 13.260
10 13.240 i 13.190 ; 13.160
11 13.210 f 13.160 13.140
12 13.250 | 13.210 13.170
B 13 13.400 5 13.310 13.252
14 13.612 ; 13.526 13.464
15 13.854 13.742 13.686
16 14.156 i 14.064 14.022
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Table 5.29 Effect of follower force on nonlinear buckling pressures for shell
between bulkheads of M2 for f-f, c-c and s.s-s.s boundary conditions

Nonlinear buckling pressure (N/mm?®) & (n)
Boundary o reducti
condition Without follower With follower force | 7o reduction
force effect effect ;
f-f 4.900(2) 4.500(2) 8.2
c-C 4.700(2) 4.300(2) 8.5
§.5-S.8 4.500(2) 4.120(2) 8.4

The collapse pressure values for general instability failure are 4.500 N/mm’
(n=2), 4.300 N/mm? (n=2) and 4.120 N/mm® for M2 for f—f, c—c and s.s-s.8 boundary

conditions.

The effect of follower force on nonlinear buckling pressure effect is
obtained by comparing the values given in table 5.29. There is a reduction in
buckling pressure by 8.2%, 8.5% and 8.4% for M2 for f-f, ¢—c and s.s-s.s boundary
conditions. The follower force effect of hydrostatic pressure has very high
detrimental effect in the case of general instability failure, exhibited by long shells in
which shell buckles with 2 or 3 waves in the circumferential direction. The collapse

pressure reduction due to pressure rotation effect is about 25% for M1.

Equilibrium path or nonlinear load deflection curve with and without including
pressure rotation effects for f~f boundary condition for M2 is given in fig. 5.26. Linear

load — deflection curve is also plotted along with the equilibrium path.

The buckling pressure predicted is minimum for interbulkhead
configuration and has to be dealt with prime importance. The critical value of
buckling pressure is obtained by considering both geometric nonlinearity and

follower force effect together for s.s-s.s boundary condition for M1 and M2.

5.6.8 Combined Effect of Geometric Nonlinearity and Follower Force on

Buckling Pressure

The reduction in buckling pressures on considering the geometric
nonlinearity and follower force effect in various configurations and boundary

conditions are summarized in table 5.30.
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Table 5.30 The overall % reduction in buckling pressures on considering the

geometric nonlinearity and follower force effect for M1 &M2

Submarine Cy Islﬁ(eilr]mal | Boundary Overall % reduction
models configuration | condition in buckling pressure‘ |
f-f 237 1
Interstiffener | c-c 23.7 )
Cssss 200
f-f 111
M1 Interdeepframe |  c-c 11.2 ]
| S8.5-8.8 11.3
f-f 38.8
Interbulkhead c-C 38.1
S.8-S.8 379
£f L 135
Interstiffener c-C 13.5
5.5-5.5 141 )
f-f 19.6 ]
M2 Interdeepframe c-C _ 19.7
| ssss : 19.0 .
£f 37.1
Interbulkhead c-c " 36.2 i ]
. S.8-S.8 } 36.7

For interstiffener analysis, the reduction in buckling pressures are 23.7%,
23.7% and 20.0% for M1 and 13.5%, 13.5% and 14.1% for M2 for f-f, c-c and s.s-s.s

boundary conditions respectively.

For between deepframes analysis, the reduction in buckling pressures are
11.2%, 11.2% and 11.3% for M1 and 19.6%, 19.7% and 19.0% for M2 for f~f, c—c

and s.s-s.s boundary conditions respectively.

For between bulkheads analysis, the reduction in buckling pressures are
38.8%, 38.1% and 37.9% for M1 and 37.1%, 36.2% and 36.7% for M2 for f-f, c—c

and s.s-s.s boundary conditions respectively.
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5.6.9 Safety Factor

Safety factors (i.e., ratio of collapse pressures to the design pressures) for

stiffened cylindrical hull of attack submarines M1 and M2 from numerical

investigations based on finite element method are calculated for wvarious

configurations and boundary conditions. The values are given in table 5.31.

Table 5.31 Safety factor against buckling for various configurations and

boundary conditions for M1 &M2

Submarine Cylsigglrlical Boun-dg Ty Safety factor
models configuration confi_l_tion .
f-f 10.20
Interstiffener c-C 10.18
S.8-8.8 4.34
£f 858
Ml Interdeepframe c-c 7.13
$.8-S.8 6.34 -
£.f 309
Interbulkhead c-¢ 209
5.8-S.8 208
f-f 4.58
Interstiffener c-C 4.55
$.8-8.8 3.32
fof 310
M2 Interdeepframe — c-C _ 3.09
$.5-S.8 2.95 o
£f 149
Interbulkhead c-c-.;' N 1.42
S.8-5.8 1.36

Classical solutions for radial deflection, shell buckling, shell yielding and

general instability are available in literature and are reviewed in chapter 2. A

software is developed based on these equations and numerical investigations are

carried out for M1 and M2. The details of the equations, software and numerical



investigations are given in Appendix B. Table 5.32 gives the collapse pressure and

safety factor predicted for M1 and M2.

Table 5.32 Collapse pressure predicted and safety factors
from classical solutions for M1 and M2

. . Collapse pressure |  Safety
Model L Classical solution (N/mm?) factor
. Windenburg’s formula (shell buckling) 39.978 13.25
Bryant’s formula (general instability) 25.37 (n=2) | 841
Ml | Yielding at midbay (Von Sanden and 16.60 550
: Gunther) N
Yielding at frame (Von Sanden and 13.33 442
Gunther)
Windenburg’s formula (shell buckling) 19.51 1 6.47
Bryant’s formula (general instability) 38.23(n=2) 12.68
M2 Yielding at midbay (Von Sanden and 6.72 ' 299
Gunther) :
Yielding at frame (Von Sanden and 9.45 313
Gunther)

On considering the shell buckling, the minimum value of safety factor will be
for simply supported boundary condition ie., 4.34 and 3.32 for M1 and M2
respectively (table 5.31). On considering the Windenburg’s formula the corresponding
values are 13.25 and 6.47 (table 5.32), which are closer to the values while considering
f-f boundary conditions i.e., 10.20 and 4.58 for M1 and M2 respectively. Collapse
pressure predicted by Windenburg’s equation is much higher than the corresponding

value predicted by finite element method.

On considering the case of general instability, between bulkhead’s analyses
gives the minimum buckling pressure. The safety factor on considering the simply
supported boundary condition is 2.088 and 1.366 for M1 and M2 respectively.
According to Bryant’s formula the safety factor values are 8.41 and 12.67 for M1
and M2 respectively. The analysis of results pinpoints to the necessity of proper

finite element analysis.

The empirical relation i.e., von Sanden and Gunther’s relation to find the

yield stress gives a safety factor against yielding at midbay as 5.50 and 2.22 for M1
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and M2. The inference is that the classical solution of von Sanden and Gunther is

less conservative compared to finite element solution.

The various rulebooks for the design of submarines, IS, LRS and DnV give
provisions for the prediction of design pressure of stiffened cylindrical shells for the
given scantlings. A software based on these provisions is available elsewhere
(Sreekala, 1997). The design pressure for Mland M2 based on IS, LRS and DnV
code provisions are estimated using the above- mentioned software and is shown in
table 5.33.

Table 5.33 Design pressure predicted by Rulebooks for M1 and M2

| Design pressure predicted

1 2

No. Rulebook S (N/mm’)
Ml M2
1 IS 2825 3.389 1.864
2 LRS 7.693 : 6.812
3 DnV ; 4.103 3.633

The design pressure predicted by IS 2825 are 3.389 N/mm’ and 1.864
N/mm” for M1 and M2 respectively. The corresponding values predicted by LRS are
7.693 N/mm” and 6.812 N/mm? and by DnV are 4.103 N/mm’ and 3.633 N/mm? for
M1 and M2 respectively. On analysing the results, a comparative study of various
code provisions is made. The critical study of code provisions highlights the under
estimation or over estimation of strength, which may cause conservative or
inadequate design. On analyzing the results it may be concluded that IS code is more

conservative than LRS and DnV and may be advised for a revision.
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CHAPTER 6
CONCLUSIONS

6.1 GENERAL

Software has been developed based on the finite element formulations for
the elastic and buckling analysis of stiffened cylindrical shells. Numerical
investigations are conducted using the software and the results have been discussed.
Conclusions and major observations from this study are presented under the
subsequent headings, linear static analysis, linear buckling analysis and geometric

nenlinear analysis.
6.2 LINEAR STATIC ANALYSIS

Software has been developed for linear static analysis of stiffened
cylindrical submarine shells based on discrete stiffener cylindrical shell finite
element model in which shell is modeled using all-cubic axisymmetric cylindrical
shell finite element and stiffeners using discrete ring stiffener element. The software

has been validated using Flugge’s problem.

A linear static analysis has been carried out for stiffened cylindrical
shells of attack submarine models M1 and M2, having a design operational depth
of 300m. The submarine cylindrical hull has been analysed for three
configurations, viz., cylindrical shell between stiffeners (interstiffener), stiffened
cylindrical shell between deepframes (interdeepframe) and stiffened cylindrical
shell between bulkheads (interbulkhead). The analysis has been carried out for
fixed-fixed boundary condition and stress resultants, principal stresses and

displacements are plotted.

The maximum values of principal stresses occur at the outer layer of
midbay of stiffeners while considering the shell between bulkheads, which can be

considered critical.
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6.3 LINEAR BUCKLING ANALYSIS

Software has been developed for linear buckling analysis of stiffened
cylindrical shells using all-cubic axisymmetric cylindrical shell element and discrete
ring stiffener element using relevant geometric stiffness matrices of the above-
mentioned elements and has been validated using Kendrick’s problems. The element

has shown satisfactory convergence.

The influence of derivatives of displacements used as degrees of freedom on
buckling pressure has been studied. It has been concluded that arresting these
degrees of freedom has nominally (4.7%) increased the buckling pressure. The
influence of support restraint on linear buckling pressure has been studied by
considering the end conditions as simply supported-simply supported, clamped —
clamped and fixed - fixed. Kendrick’s problem has been analysed for interstiffener
buckling and descending order of buckling pressure is observed from fixed-fixed to

simply supported-simply supported boundary condition.

Stiffened cylindrical shell of Kendrick® example has been investigated
incorporating various boundary conditions. The influence of end restraint is nominal
and is in the descending order from fixed-fixed to clamped-clamped to simply

supported-simply supported as expected.

Linear buckling analysis has been carried out for stiffened cylindrical shells
of attack submarines. Linear buckling analysis has been carried out for interstiffener,
interdeepframe and interbulkhead configurations and may be considered as a

parametric study for various L/R ratios.

The scope of the numerical investigation includes the study to realize the

influence of various boundary conditions, which reflects the effect of end restraint.

From the interstiffener buckling analysis results, it can be observed that for
simply supported boundary condition the interstiffener buckling pressure is the
lowest and collapse occurs at less value of n compared to clamped and fixed

boundary conditions. The collapse pressure predicted for fixed boundary condition is
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the highest and is at a higher value of n, which shows the significance of the

selection of appropriate boundary condition in the investigation.

For simply supported boundary condition the ends will have more
flexibility and hence will have more effective length and buckling occurs with less
number of circumferential waves. Fixity reduces the effective length and the shell
in effect becomes shorter and buckles with more number of waves in the

circumferential direction.

On considering the influence of end restraints on interstiffener buckling
pressure the following conclusions have been arrived at. For short shells buckling
pressure is susceptible to rotation restraints at the ends indicated by higher buckling
pressure for fixed-fixed and clamped-clamped boundary conditions. The effect of
rotation restraint is smoothened on increasing L/R ratio. The influence of axial
restraint ‘v’ is not significant indicated by the same value of buckling pressure for
fixed-fixed and clamped-clamped boundary conditions and becomes prominent on

increasing the L/R ratio.

In general, with same end restraint shorter shell buckles with higher
waveform. The effect of L/R ratio on buckling pressure and on circumferential wave
number is more pronounced in the case of fixed and clamped (rotation restraint)
boundary condition. But for simply supported boundary condition this effect is not

there because of greater flexibility at the boundary.

The shell between deepframes can be considered as a short shell in both
cases (M1 is shorter and thicker than M2). The failure occurs by interframe buckling
rather than by general instability. Interframe buckling is less susceptible to boundary
conditions compared to interstiffener buckling cases. In the case of interframe
buckling the shell buckles with more lobes in longitudinal direction (rapidly varying
function) and hence less vulnerable to end restraints. There is not much difference in
circumferential wave numbers corresponding to the lowest buckling pressure for

various boundary conditions.
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The effect of end restraint becomes smoothened on ftransition from
interstiffener to interdeepframe configuration and change in buckling pressure due to

the release of axial restraint is negligibly small.

In M2 the stiffeners are well arranged between deepframes such that there is
not much difference between interstiffener and interdeepframe buckling pressures.
Comparison of values with interstiffener collapse pressure gives an impression that
the spacing and size of stiffeners are adequate. Two types of failures occur
simultaneously, which can be considered as the optimum design criteria. But in the
case of M1, the spacing between stiffeners and bulkheads can be slightly increased.
From a few trials optimum dimensions and spacing of stiffeners can be found out,

which satisfies the functional requirements.

On considering the shell between bulkheads, which is comparatively a long
shell (L/R ratio 3.42 for M1 and 4.59 for M2) the shell buckles with less number of
waves in the circumferential direction. The cylinders will collapse in an overall
manner. The general instability failure occurs at a circumferential wave number 2 or
3. Thereafter the buckling pressure increases and apparently reaches a maximum
value and decline again to give a second local minimum at a harmonic number of 11
or 12, depending on the boundary conditions. The lower value of n refers to general
instability i.e., one lobe in the longitudinal direction. The higher value of n refers to

interframe buckling mode with as many longitudinal lobes as the frame spaces.

For interbulkhead buckling, the effect of rotation restraint becomes
negligibly small indicated by the same buckling pressure for clamped-clamped and
simply supported-simply supported boundary conditions. The change in buckling
pressure due to the release of axial restraint becomes more significant as indicated by
a considerable reduction in buckling pressure from fixed-fixed to clamped—clamped

boundary condition.

The follower force effect of hydrostatic pressure on linear buckling pressure
has been investigated for M1 and M2 for the three configurations — viz.,
interstiffener, interdeepframe and interbulkhead for the above-mentioned boundary

conditions, the following conclusions are derived from the results.
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For interstiffener and interdeepframe buckling where shell buckles with
large number of waves in circumferential direction, follower force effect is less
significant (reduction in buckling pressure is less than 1%). The above-mentioned
observation may be due to the reason that in those cases the buckling displacement

functions are rapidly varying functions of circumferential coordinates.

Between bulkhead analysis follower force effect is much more significant.
There is a reduction in buckling pressure by 31%for M1 and 9% for M2 for various
boundary conditions. The follower force effect of hydrostatic pressure has very high
detrimental effect in the case of general instability failure, which is the case of long

shells in which shell buckles with 2 or 3 waves in the circumferential direction.

For M1, failure may be due to one lobe in longitudinal direction and two waves
in circumferential direction and follower force effect becomes prominent since there is
no abrupt change in direction. But in the case of M2, which is longer with two
intermediate deepframes, the shell buckles with three lobes in longitudinal direction and

hence the reduction in buckling pressure due to follower force effect is less.
6.4 GEOMETRIC NONLINEAR ANALYSIS

Software has been developed for geometric nonlinear analysis of stiffened
cylindrical submarine shells based on discrete stiffener cylindrical shell finite
element model in which shell is modeled using all-cubic axisymmetric cylindrical
shell finite element and stiffeners using discrete ring stiffener element. Methodology
adopted is load control incremental iterative procedure. Corotational kinematics 1s
used for the generation of tangent stiffness matrix. The software has been validated

using Moradi and Parsons’ problem.

Equilibrium path is drawn and the limitpoint buckling pressure is
determined and almost in all cases the tangent stiffness matrix becomes singular in

the vicinity of the limit point.

From the results of geometric nonlinear analysis for Kendrick’s example
BMP2 for fixed-fixed, clamped-clamped and simply supported-simply supported

boundary conditions, it is observed that there is a considerable reduction in buckling
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pressure due to geometric nonlinearity, which demands to the necessity of geometric

nonlinear analysis in the prediction of collapse pressure.

Geometric nonlinear analysis has been extended to stiffened cylindrical
shell of Kendrick’s model BMP3 and it is seen that there is about 25% reduction in
buckling pressure irrespective of boundary conditions. Analogous to the observations
in linear buckling analysis, the nonlinear buckling pressure is less susceptible to
boundary conditions. The type of boundary condition does not have much effect on

the circumferential wave number at which the buckling occurs.

Geometrically nonlinear analysis has been carried out for stiffened
cylindrical shells of M1 and M2. Analysis has been conducted for the three
configurations viz., interstiffener, interdeepframe and interbulkhead. The variations
of buckling pressures with circumferential wave numbers are predicted and
compared.  The scope of the numerical investigations has been extended to realize
the influence of possible boundary conditions. The ends have been treated as fixed—
fixed, clamped—clamped and simply supported - simply supported. A comparative
study has been made between linear and nonlinear buckling pressures for M1 and M2

for the above-mentioned configurations and boundary conditions.

For interstiffener configuration the buckling pressures are reduced by 23%
for M1 and 13% for M2 for f-f and ¢c— boundary conditions and also a reduction in

circumferential wave number as well.

The prebuckling deformations of the unstiffened shell cause softening of the
shell, resulting in lower buckling pressure as well as lower circumferential wave
number. The nonlinear buckling pressure value is less vulnerable to higher
circumferential wave number indicated by the flattening of Pcr Vs n curve compared

to that of linear buckling analysis.

The effect of L/R ratio on buckling pressure and on circumferential wave
number has been found similar to that of linear buckling analysis but is not as

pronounced as in the case of linear buckling analysis. The reduction in buckling
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pressure due to the incorporation of geometric nonlinearity is not much influenced by

the effect of boundary condition.

For the interdeepframe configuration geometric nonlinearity reduces

buckling pressure and the corresponding circumferential wave number.

Reduction in nonlinear buckling pressure for the release of rotation restraint
is analogous to that of linear buckling pressure. The effect of axial restraint (u) is
negligible. The interdeepframe nonlinear buckling pressures are less susceptible to

boundary conditions compared to interstiffener buckling pressures.

For interbulkhead configuration there is considerable reduction of buckling
pressure reported (32.0% for M1) by virtue of release of axial restraint. But there is

no such reduction in buckling pressure due to the release of rotation restraint.

In all the three configurations, the change in percentage reduction in

nonlinear buckling pressure by the change boundary has been meager.

The follower force effect of hydrostatic pressure has been studied for M1
and M2 for various configurations and boundary conditions and following
conclusions are arrived at. The follower force effect is less pronounced in
geometrically nonlinear analysis compared to linear buckling analysis and its effect
is almost negligible in the case of interstiffener and interdeepframe analyses.
Whereas, the follower force effect of hydrostatic pressure has very high detrimental
effect for interbulkhead configuration in which the shell buckles with 2 or 3 waves in
the circumferential direction. The collapse pressure has been reduced by the pressure
rotation effect by about 25% for M1 and 8% for M2.

6.5 OVERALL REDUCTION IN BUCKLING PRESSURE

From the observation of critical buckling pressure values for various
configurations and boundary conditions it has been concluded that the reduction in
buckling pressure is maximum for general instability failure between bulkheads and

is about 38% for M1 and 37% for M2. Based on the present study, the geometric
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nonlinear interbulkhead analysis is found critical and hence recommended for

submarine pressure hull design.

6.6 SAFETY FACTOR FROM CLASSICAL SOLUTIONS AND DESIGN
PRESSURE FROM RULEBOOK PROVISIONS

The software for the estimation of safety factor for submarine cylindrical
shell, based on Windenburg’s formula, Bryant’s formula and von Sanden and

Gunther’s formulae is operational in pc environment.

The safety factors for M1 and M2 evaluated using this software shows wide
deviations (4.42 to 13.25 and 2.22 to 12.68 respectively)

The software for the calculation of the design pressure of stiffened
cylindrical shell based on provisions in IS 2825, LRS and DnV is operational and has

been used to estimate the design pressure of M1 and M2.

These values vary from 3.4 to 7.7 N/mm® and 1.9 and 6.8 N/mm’
respectively against 3.016 N/mm? (pressure considered for the design based on

operational depth).

The classical solutions and Rulebook provisions overestimate the safety
factor. These may be used for the preliminary design of scantlings where as
geometric nonlinear finite element analysis has to be adopted for the prediction of

collapse pressure.
6.7 SCOPE FOR FUTURE WORK

Instead of a shell-discrete ring stiffener model, a ring stiffened cylindrical

shell element itself may be developed.

The analysis can be extended by incorporating nonlinearity due to large

strains and material nonlinearity together with geometric nonlinearity.
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The inertia matrix can also be included along with elastic, geometric and
pressure stiffness matrices to predict the nonlinear buckling pressure to check

whether it is a dynamic criterion.

By incorporating classical solutions and finite element analysis a package
for optimum design of stiffened cylindrical hull based on reliability criteria can be

developed.

146



10.

11

12.

REFERRENCES

Arentzen, E.S., Mandel, P., Naval Architectural Aspects of Submarine Design,
Transaction of SNAME, Vol. 68, pp. 622-692, 1960.

Barlag, S., Robert, H., An Idealization Concept for the Stability Analysis of
Ring Reinforced Cylindrical Shells Under External Pressure, International
Journal of Nonlinear Mechanics, Vol.37, Issue 4-5, pp. 745-756, 2002.

Baruch, M., Singer, J., Effect of Eccentricity of Stiffeners on the General
Instability of Stiffened Cylindrical Shell Under Hydrostatic Pressure, Journal
Mechanical Engineering Sciences, Vol. 5, No. 1, pp. 23-27, 1963.

Batdorf, S.B., A simplified Method of Elastic Stability for Thin Cylindrical
Shells, NACA Report No.874, 1947.

Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentice Hall,
pp. 485-641, New Jersey, 2001.

Bijlaard, P.P., Buckling Under External Pressure of Cylindrical Shells Evenly
Stiffened by Rings Only, Journal of Aerospace Sciences, June1957.

Bodner, S.R., On the Conservativeness of Various Distributed Force Systems.

Journal of the Aeronautical Sciences, Vol. 25, pp. 132-133, 1958.

Bodner, S.R., Analysis of General Instability of Ring Reinforced Circular
Cylindrical Shells of Orthotropic Shell Theory, Journal of Applied Mechanics,
Vol. 24, No. 2, 1957.

Brush, D.O. and Almroth, Buckling of Bars, Plates and Shells, McGraw-Hill,
Kogakusha. Ltd., pp. 40-189, 1975.

BS 5500, British Standard Institution specification for Unfired Fusion Welded
Pressure Vessels, HMSQO, 1976.

Burcher, R., Rydill, L., Concepts in Submarine Design, Cambridge Ocean
Technology Series-2, Cambridge University Press, pp. 71-99, 1994.

Bushnell, D. and Bushnell, W.D., An Approximate Method for the Optimum
Design of Ring and Stringer Stiffened Cylindrical Panel and Shells with Local
Inter-ring and General Buckling Modal Imperfections. Computers and
structures, Vol. 59, No.3, pp. 489-527, 1996.

147



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Carnoy, E.G., Guennoun, N., Sander, G., Static Buckling Analysis of Shells
Submitted to Follower Pressure by the Finite Element Method, Computers &
Structures, Volume 19, Issues 1-2, pp. 41-49, 1984,

Chen, Wen, Ren,Wen-Min,Zhang Wei, Buckling Analysis of Ring Stiffened
Cylinderical Shells with Cutouts BY Mixed Method of Finite Strip and Finite
Element, Computer and Structures, Vol. 53, Issue 4, pp. 811-816, 1994,

Combescure, A., Gusic, G., Nonlinear Buckling of Cylinders Under External
Pressure with Nonaxisymmetric Thickness Imperfections Using the COMI
Axisymmetric Shell Element, International Journal of Solids and Structures,
Vol.38, Issues 34-35, pp. 6207-6226, August 2001.

Cook, R.D., Malkus, D.S., Plesha, M.E., Concepts and Applications of Finite
Element Analysis, John Wiley & Sons, pp. 529-533, 1989.

Cook, W.A., A Finite Element Model for Nonlinear Shells of Revolution,
International Journal for Numerical Methods in Engineering, Vol.15, pp. 135-
142, 1982.

Cormstock, P. M., Principles of Naval Architecture, 3rd Ed., Society of Naval
Architects and Marine Engineers, New York, pp. 206-219, 1988.

Correia, I.F.P., Barbosa, J.1., Critovao, M., Soares, M.,Carlos, A, Soares, M.A.,
Finite Element Semi analytical Model for Laminated Axisymmetric Shells,
Static, Dynamic and Buckling, Computers and Structures, Vol. 76, pp. 299-
317, 2000.

Crisfield, M.A., Incremental/Iterative Solution Procedures for Nonlinear
Structural Analysis in Numerical Methods for Nonlinear Problems, Pineridge
Press, Swansea, U.K., pp. 1-22, 1980.

Crisfield, M.A., Incremental/Iterative Algorithm that Handles Snapthrough,
Computers and Structures, Vol. 13, pp. 55-62, 1981.

Daniel, R.J., Considerations Influencing Submarine Design. Proceedings of the
Symposium of Naval Submarines, London, United Kingdom, May 1983.

Das, P.K., Zanic, Vendran, Faulkner, Douglas, Reliability based Design
Procedure for Stiffened Cylinder Using Multimedia Optimization Technique.

148



24.
25.
26.

27.

28.

29.

30.

31

32.

33,

34,

35.

36.

Proceedings of 25" Annual Offshore Technology Conference, Part 3, USA,
1997.

Det Norske Veritas, Design of Submarine Hulls, 1996.
Donnell, L.H, Beams, Plates and Shells, McGraw Hill, New York, 1976.

Faulkner, D., The Collapse Strength and Design of Submarines, Proceedings of
the Symposium on Naval Submarines, May 17, London, RINA, 1983.
Felipp.a, C.A., Lecture Notes in Nonlinear Finite Element Method, Center for

Aerospace Structures, Boulder, Colorado, 1999.
Flugge, W., Stresses in Shells, Springer-Verlag, Berlin, 1962.
Galletly, G.D., Slankard, R.C., Wenk, E., General Instability of Ring Stiffened

Cylindrical Shells Under External Pressure- A Comparison of Theory and
Experiment, ASME, 1957.

Giacofci, T.A., Modeling Techniques for ADINA Analysis of Stiffened Shell
Structures, Computers and Structures, Vol. 13, pp. 601-605,1981.

Gorman, J.J., Louie L. L., Submersible Pressure Hull Design Parametrics,

SNAME Transactions, Vol. 9, pp. 119-146, 1991.

Goswami, S., Mukopadhyay, M., Geometrically Nonlinear Analysis of
Laminated Stiffened Shells, Journal of Reinforced Plastics and Composites,
Vol.14, No. 12, Dec 1995.

Gould, P.L, Finite Element Analysis of Shells of Revolution, Pitman,
Marshfield, 1985.

Gould, P. L., Hara T., Recent Advances in Local-Global FE Analysis of Shells
of Revolution, Thin-Walled Structures, Vol. 40, Issues 7-8, pp. 641-649, 2002.
Grafton, P.E. and Strome, D.R. Analysis of Axisymmetric Shells by Direct
Stiffness Method, AIAA Journal 1, pp. 2342-2347,1963.

Greene, B.E., Strome, D.R., Weikel, R.C., Application of Stiffness Method to
the Analysis of Shell Structures, Proc. of Conference of ASME, Los Angeles,
1961.

149



37.

38.

39.

40,

41.

42.

43.

44,

45.

46.

47.

48.

49.

Gusic, G., Comberscure, A., Jullien, J.F., The Influence of Circumferential
Thickness Variations on the Buckling of Cylindrical Shells Under External
Pressure, Computers and Structures, Vol. 74, pp. 461-477, 2000.

Hasegawa, A., Matsuno, T., Nistino, F., Elastic Instability and Nonlinear
Analysis of Thin Walled Members Under Nonconservative Forces, Structural
Engineering/Earth Quake Engineering, Vol. 5, No.1, pp. 1055-1185, 1988.
Herrmann, G., Bungay, R.W., On Stability of Elastic Systems Subjected to
Nonconservative Forces, Transactions of ASME, pp. 435-440,1964.

Hibbit, H.D., Some Follower Forces and Load Stiffness, INME. Vol.14, pp.
937-41, 1979,

Huang, J., Wierzbicki, T., Plastic Tripping of Ring Stiffeners, Journal of
Structural Engineers, Vol. 119, No. S, pp. 1623-1642, 1993.

Hughes, T.J.R., Hinton, E., Finite Element Method for Plate and Shell
Structures, Vol. 1. Element Technology; Vol. 2 Formulation and Algorithms,
Pineridge, Swansea, 1986.

Indian Standard Code for Unfired Pressure Vessels, IS 2825,1977.

Jackson, H.A., Submarine Parametrics, Proceedings of the Symposium of

Naval Submarines, London, United Kingdom, RINA, 1983.

Jackson, H.A., Fundamentals of Submarine Concept Design, SNAME
Transactions. Vol.100, pp. 419-448, 1992.

Jacob, A.S., Design of 3000 Tonnes Attack Submarine Speed 22 Knots,
Undergraduate Project Report, Department of Ship Technology, CUSAT,
1989.

Kaminsky, E.L., General Instability of Ring Stiffened Cylinders with Clamped
Edges under External Pressure by Kendrick’s Method, D.T Report No.855,
1954.

Karabalis, D.L., Simplified Analysis of Stiffened Cylindrical Shells With
Cutouts, Computers and Structures, vol. 7, pp. 47-58, 1992.

Kasagi,A., Sridharan,S., Imperfection Sensitivity of Layered Composite

Cylinders, Journal of Engineering Mechanics, pp. 810-818, July,1995.

150



50.

51.

52.

53,

54.

55.

56.

57.

58.

59.

60.

61.

Kempner, Joseph, Misovec, A. D., and Herzner F. C., Ring Stiffened
Orthotropic Circular Cylindrical Shell Under Hydrostatic Pressure, Ocean
Engineering, Vol.1, Issue 5, pp. 575-595, February 1970.

Kendrick, S. B., Buckling Under External Pressure of Ring Stiffened Circular
Cylinders with Evenly Spaced Frames, NCRE Report R-244, 1953.

Kendrick, S.B., Buckling Under External Pressure of Ring Stiffened Circular
Cylinders, Trans. of RINA, Vol.107, No.1, pp. 139 —155, 1965.

Kendrick, S.B., Externally Pressurized Vessels. Stress Analysis of Pressure
Vessels and Pressure Vessel Components, Pergamon Press, London, 1970.
Kohnke, C.P, Schnobrich, W.C, Analysis of Eccentrically Stiffened Cylindrical
Shells, Journal of Structural Division, Proceedings of ASCE, Vol. 7, No.98, pp.
1493-1510,1972.

Koiter, W.T., Elishakoff, 1., Li, Y.W., Buckling of an Axially Compressed
Cylindrical Shell of Variable Thickness, International Journal of Solids and
Structures, Vol. 31, No.6, pp. 797-805, 1994.

Kraus, H., Thin Elastic Shells, Wiley, New York, 1967.

Krishnamoorthy, C.S., The Finite Element Analysis-Theory and Programming,
Tata McGraw Hill Book Company, 1987.

Li, Y.B,, Peter, BJ., Tim, W.B., Adaptive Finite Element Analysis of Stiffened
Sheils, Advances in Software, Vol. 28, No. 8, pp. 501-507, 1997.

Loganathan, R., Chang, S.C., Gallenger, R.H., Abel, J.F., Short
Communications- Finite Element Representation and Pressure Stiffness in
Shell Stability Analysis. International Journal for Numerical Methods in
Engineering, Vol.14, pp. 1413-1429, 1979.

Mang, H.A., Symmetricability of Pressure Stiffness Matrix for Shells with
Loaded Free Edges, International Journal for Numerical Methods in
Engineering, Vol.15, pp. 981-990, 1980.

McDonald, J.R. and White, K.R., Effect of out-of Roundness on Elastic
Instability of Thin Circular Cylindrical Shells, Proceedings Symposium on
Hydromechanically Loaded Shelis, University Press, Hawaii, Honolulu, pp.
442-456, 1973.

151



62.

63.

64.

65.

66.

67.
68.

69.

70.

71.

72.

73.

Moradi, B. and Parsons, 1.D., A Comparison of Techniques for Computing the
Buckling Loads of Stiffened Shells, Computers and Structures, Vol. 46, No. 3,
pp. 505-514, 1993.

Mutoh, Itaru, Kato,Shiro, Chiba Y., Alternate Lower Bound Analysis of Thin
Shells of Revolution. Engineering Computations, Vol.13, No.24, pp. 41-75,
1996.

Nash, W.A., General Instability of Ring Stiffened Cylindrical Shell Subject to
Hydrostatic Pressure, Proc. 2™ National Congress of Applied Mechanics, 1954.
Navaratna, D.R., Pian, T.H.H., Witmer, E.A., Stability of Shells of Revolution
by Finite Element Method, AIAA Journal, Vol. 6, No.2, pp. 355-361, 1968.
Neto, Miguel Mattar, Miranda Carlos A.J., Evaluation of Collapse Pressure of
a Ring Stiffened Cylindrical Shell Under External Hydrostatic Pressure using
Code Formulations and FER, Pressure Vessels and Piping Division, ASME,
Vol. 338, No. 1, 1996.

Novozhilov, V.V, Theory of Thin Elastic Shells, Groningen, 1959.

Oden, J.J, Note on Approximate Method for Computing Nonconservative
Generalized Forces on Finitely Deformed Finite Elements, AIAA Journal, Vol.
8, No. 11, pp. 2088-2090, 1970.

Omurtag, M.H., Akoz A.Y., A Compatible Cylindrical Shell Element for
Stiffened Cylindrical Shell in a Mixed Finite Element Formulation, Computers
and Structures, Vol. 42, No. §, pp. 751-768,1992.

Pegg, N.G., Numerical Study on Dynamic Pulse Buckling of Ring Stiffened
Cylinders, Computers and Structures, Vol. 44, No.6, pp. 1205-1214, 1992.
Percy, J.H., Pian,T.H.H., Klein,S., and Navaratna, D.R., Application of Matrix
Displacement Method for Linear Elastic Analysis of Shells of Revolution,
AIAA Joumnal, pp. 2138-2145,1965.

Popov, E.P, Penzien, J. and Lu, Z.A., Finite Element Solution of Axisymmetric
Shells, Journal of Engineering Mechanics Division, ASCE, pp. 119-145, 1964.
Pradeepkumar,C.T., Design of Attack Submarine, Undergraduate Project
Report, Department of Ship Technology, CUSAT, 1988.

152



74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Rajagopalan, K. and Ganapathy Chettiar, C., Application of Finite Element
Method to the Interstiftener Buckling in Submersible Cylindrical Hulls, Journal
of Ship Research, Vol. 27, pp. 281-285, 1983.

Rajagopalan, K., Finite Element Buckling Analysis of Stiffened Cylindrical
Shells, Oxford and IBH Publishing Company, New Delhi, India, 1993.

Ramm, E., Stegmuller, H., The Displacement Finite Element Method in
Nonlinear Buckling Analysis of Shells, Proceedings of State of The Art
Colloguium, 1982.

Reis, AJ., and Walker, A.C., Local Buckling Strength of Cylindrical Shells
Under External Pressure, Thin Walled Structures, Vol.2, Issue 4, pp. 325-
353,1984.

Ross, C.T.F., The Instability of Ring-stiffened Circular Cylindrical Shells,
Under Uniform External Pressure, Trans. of RINA. Vol.107, No.1, pp. 139 —
155, 1965.

Ross, C.T.F., Lobar Buckling of Thin—Walled Cylindrical Shells and Truncated
Conical Shells Under External Pressure, Journal of Ship Research, Vol.18,
No.4, pp. 272-277, 1974.

Ross C.T.F., Vibration and Instability of Ring Reinforced Circular Cylindrical and

Conical Shells, Journal of Ship Research, Vol. 20, pp. 22-31, 1976.

Ross, C.T.F. and Mackeny, M.D.A., Deformation and Stability Studies of Thin
Walled Domes, Under Uniform External Pressure, Journal of Strain Analysis,
Vol. 18, No.3, 1983.

Ross, C.T.F., Portsmouth, R., Vibrations of Axisymmetric Shells Under
External Water Pressure, Proceedings of Institution of Mechanical Engineers,
Journal of Mechanical Engineering Science, Vol. 208, No 3, pp. 177-185,
1994.

Ross, C.T.F., Plastic Buckling of Ring Stiffened Conical Shells Under Uniform
External Pressure, Journal of Ship Research, Vol.39, No.4, pp. 166-175, 1995.
Ross, C.T.F., Gill-Carson A, Little A.P.F., The Inelastic Buckling of
Varying Thickness Circular Cylinders Under External Hydrostatic Pressure,
Structural Engineering and Mechanics, Vol. 9, No.1, pp. 51-68, 2000.

153



85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Rules and Regulations for the Construction and Classification of Submersibles
and Diving Systems, Lloyd’s Register of Shipping, Part II, Chapter 1,1988.
Sanders, J.L., Nonlinear Theories for Thin Shells, Quart. App.. Math., Vol. 21,
No.1, pp. 21-36,1963.

Schokker, A.Sridharan, S., Kasagi, A., Dynamic Buckling of Composite
Shells, Computers and Structures, Vol.59, No.1,pp. 443-453,1996

Singer, J., Vibration and Buckling of Imperfect Stiffened Shells — Recent
Developments. IVTM Symposium on Collapse, Uni. College, London 1982.
Sreekala, K., Finite Element Buckling Analysis of Stiffened Cylindrical Shells,
Dept. of Ship Technology, CUSAT, Kochi, India, 1997.

Sridharan, S., Analysis of Cylindrical Shells Under Interactive Buckling,
Proceedings of Engineering Mechanics, ASCE, Vol. 1, pp. 509-512,1995.
Sridharan, S., and Kasagi, A., On Buckling and Collapse of Moderately Thick
Composite Cylinders under Hydrostatic Pressure, Vol.28, Issue 5-6, pp. 583-
596,1997.

Srinath, L.S., Advanced Mechanics of Solids, Tata McGraw-Hill Publishing
Company Ltd., New Delhi, 1995,

Stanley, A.J.,, Ganesan, N., Free Vibration Characteristics of Stiffened
Cylindrical Shells, Computers and Structures, Vol. 65, No. 1, pp. 33-45,1997.
Subbiah, J., Natarajan, R., Stability Analysis of Ring Stiffened Shells of
Revolution, Computers and Structures, Vol. 13, pp. 497-503,1981.

Subbiah, J., Nonlinear Analysis of Geometrically Imperfect Stiffened Shells of
Revolution, Journal of Ship Research, Vol. 32, No.1, 1988.

Surana, K.S., Geometrically nonlinear Formulation for the Axisymmetric Shell
Elements, International Journal for Numerical Methods in Engineering, Vol.18,
pp. 477-502,1982.

Sze K. Y., Liu X. H. Lo S. H. Popular Benchmark Problems for Geometric
Nonlinear Analysis of Shells, Finite Elements in Analysis and Design, Vol. 40,
Issue 11, pp. 1551-1569, July 2004,

Tian,J.,Wang,C.M., Swaddiwudhipong,S., Elastic Buckling Analysis of Ring
Stiffened Cylindrical Shells under General Pressure Loading Via Ritz Method,
Thin Walled Structures, Vol. 35, Issue 1, pp. 1-24,1999.

154



99.

100.
101.

102.

103.

104.

105.

106.

107.

108.

109.

Timoshenko, S.P., Krieger,S.W., Theory of Plates and Shells, McGraw-Hill,
1959.

Timoshenko, S.P., Gere, Theory of Elastic Stability, McGraw-Hill, 1961.
Tomski,L., and Przybyski, J., Post buckling Behaviour of a Clamped
Elastically Supported Planar Structures Under Follower Force, AIAA Journal,
Vol. 25,No. 4, 1987.

Tsang, S.K., Harding, J.E., Ring Stiffened Cylinder Under Interactive Loading,
Journal of Structural Division ASCE, Vol. 113, No.9, pp. 1977-1993, 1987.
Venkateswara Rao,G., Raju,l.S., Radhamohan, S.K., Buckling of Shells by
Finite Element Method, Journal of Engineering Mechanics Division, ASCE,
Vol.100, pp. 1092-1096, 1974.

Voce,S.J., Buckling Under External Hydrostatic Pressure of Orthotropic
Cylidrical Shell with Evenly Spaced Equal Strength Circular Ring Frames,
Ocean Engineering,Vol.1, Issue 5, pp. 521-534, July 1969.

Wilson, L.B., The Elastic Deformation of a Circular Cylindrical Shell
Supported by Equally Spaced Ring Frames Under Uniform External Pressure,
Trans. RINA, Vol.108, 1966.

Windenburg, D.F., Trilling, C., Collapse by Instability of Thin Cylindrical
Shells Under External Pressure, Trans.of ASME, Vol.56, No.11, pp. 819-824,
1934.

Wu,D.L.,Zhang,Z, Nonlinear Buckling Analysis of Discretely Stiffened
Composite Cylindrical Shells, Composite Structures, Vol.18, Issuel, pp. 31-
45,1991.

Zhen-yi Ji, Kei-yuan Yeh, General Solution for Nonlinear Buckling of
Nonhomogeneous Axial Symmetric Ring and Stringer Stiffened Cylindrical
Shells, Computers and Structures, Vol. 4, No. 4, pp. 585-591, 1990.
Zienkiewicz, O.C., The Finite Element Method, Mc Graw-Hill Book
Company, New York, 1979.

155



APPENDIX A

ELEMENTS OF STIFFNESS MATRICES OF ALL-CUBIC
AXISYMMETRIC ELEMENTS AND DISCRETE STIFFENER ELEMENTS

A.1 Upper Triangular Elements of Elastic Stiffness Matrix [k] of the Shell
Element (Rajagopalan, 1993)

kiy = (nRLEt/1-v*)  [6/5L*+13(1-v)n¥/70R?*]
ki, = (nRLEt/1-v*) [ 1/10L+11(1-v)n? L/420R?]
kis = (nRLEt/1-v®)  [(1-3v)n/4RL)
kis = -(nRLEt/1-v® [(1+v)nL/20R]
kis = (nRLEt/1-v®) [v/2RL]
kie = (nRLEt/1-v®)  [v/10R]
ki = (mRLEt/1-v?)  [6/5L*+9(1-v)n*/140R?]
kis = (mRLEt/1-v®  [1/10L+13(1-v)n* L/840R?
ki = (mRLEt/1-v¥) [(1+v)n/4R L]
kiio = -(nRLEt/1-v®) [(1+v)nL/20R]
kii = (nRLEt/1-v®)  [v/2RL]
kiz = -(nRLEt/1-v®) [v/10R]

ks = (mRLEt/1-v®)  [2/15+11(1=v)n® L¥210R?]
ks = (nRLEt/1-v®)  [(1+v)nL/20R]

ks = -(nRLEt/1-v?) [v/10R]

ks; = (mRLEt/1-v®) [ 1/10L+13(1-v)n® L/840R%)
ks = (@mRLEt/1-v}) [ 1/30 — (1-v)n? L¥280R?]
ko = -(mRLEt/1-v) [(1+v)n/20R]

koo = -(nRLEt/1-v}) [(1+v)nL/120R]

kot = (mRLEt/1-v})  [V/10R]

kaiz = -(aRLEt/1-v}) [vL /60R]

kiz = (nRLEt/1+v%)  {[13 035 RA3(1-v)/5L +712[13 n */35
R*+12(1-v)/SR’L]}
kss = (mRLEt/1-v})  {[11n?L/210 R} +(1-v)/20L] + t¥12[11 n>L /210
R* 1-v)/5R’L?]}
ks = -(nRLEt/1-v®) {[13n/35R*] +t¥12[11 n 2L /210 R*+6
n (v=2)/5R*L*]}
(nRLEt/1-v?)  {[iln L/210R*]+t¥12(11 n® L /210 R*+
n (9v+2)/10R*L]}
ks; = (nRLEt/1-v*)) [(1+v)n/4R L]

=~
[
(=)

i
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kag
ko

kaio

ks
ka2

kas
kas
k46
k47
kas
kao
ka0
kan
karz
kss
ks

Ks7

k59
Ks1o

ks
ksi2

ke
ke7
keg

( TRLEt/ 1-v?)
-(RLEt/ 1-V%)

( "RLEt / 1-v%)

-( "RLEt/ 1-v%)
(7RLEt/ 1-v*))
( tRLEt/ 1-v?)

-(nRLEt/ 1-v)

-(mRLEt/ 1-v*)
-( iRLEt/ 1-v*)
-(TRLEt/ 1-v?)
-( TRLEt/ 1-v*)

-( tRLEt/ l-vz)
-(nRLEt/ 1-V?)

(nRLEt/ 1-v*)
( TRLEt/ 1-v%)
( TRLEt/ 1-V?)

-( iRLEt/ 1-v%)
( tRLEt/ 1-v*)
-( mRLEt/ 1-v)
( "RLEt/ 1-v?)

( nRLEt/ 1-v9)
( TRLEt/ 1-v%)

-( nRLEt/ 1-v%)
-(nRLEt/ 1-v)
-( TRLEt/ 1-v%)
-( "RLEt/ 1-V%)

[(1+v) nL /20R]
{[9 n %70 R>-3(1-v)/SL*|+ t/12{9 n /70
R*-12(1-v)/5R* LY

{[13 n /420 R*+(1-v)/20L] + t*/12[13 n */420
R*-12(1-v)/5R* L]

{[9n%/70 R* | + t¥12[9 n */70 R*-6 n (2-v)/5R* L?]
{[13n L/420 R+ t¥12[13 n° L /420 R*+6 n (v=2/5R* L]
{[13 n 2 L¥105 R*+(1-v)/15] t/12(11 n* L %10 5R*+
4 (1-v)/15R?]}

{[13nL/210R?] +t¥12(-11n® L /210 R*+

n (v-2)/10R’L}}

{[nL¥105R? ]+ t/12(n® L¥105R*+2n (v=2)/15R* |}
[(1+v)n/20R]

[(1+v)n L/120R]}

{ [130°L/420R* — (1-v)/20 L] +t%/12(13 n* L /420
R*- (1-v)/SR’L]}

{ ["°LY420R? — (1-v)/60]  +t¥/12(n* L*/140 R*-
(1-v)/15R*}}

{[13nL/420R*] +t¥12(-13 n® L /420 R*-

n (2-v)/10R’L]}

{ [NLY140R? ] +t¥/12(n’® /420 R* +(2-v)/30R*]}L 2
[13 /35 R?] +t4/12(12/L*+13n*/ 35 R*+12n /5R* L]}
[11 L /210 R?] +t¥/12(6/L*+11n*L /210

R*+n *(5v+1/5R* L]}

[v/2RL]

v/ 10R

[9 /70 R? ] +%/12( 9n® /70 R* +6n(2—v)/5R’L ¥

{ [13nL/420R* }+ t412(13 n® L /420 R*-n
(2-v)/10R’L]}

[ 9/70R*]+ t9/12( 9n* /70 R* +12/ L *+12n%/5R*L %
[13nL/420R? ]+ t%/12( 13n* L /420 R* +6/

L >+n%/5R’L ]

[L¥105R? 1] + t/12(4/L*+11n* L? /10 5SR*+4n ¥/15R? |}
v/ 1OR

vL /60R

[13nL/420R? ]+ t%/12( 13n’ L /420 R*

+n (2-v)/10R’L ]
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ksio

kei1

kei2
k77
k7s
k79

k10
k711
k12
kss

kgo

Ks11
koo

koo
ko
ko2

kigio

kot

kioi2
ki

k1H2

kl212

-(mRLEt/ 1-v*)) {[nL¥140R*] +t¥12(n’L? /140 R*

-( TRLEt/ 1-v%)
-( "RLEt/ 1-v?))
( tRLEt/ 1-v*)
( nRLEt/ 1-v*)
( nRLEt/ 1-v?)
- ’RLEt/ 1-v)
( "RLEt/ 1-V?)
( rRLEt/ 1-V?)
( iRLEt/ 1-v%)

( "RLEt/ 1-v?)
-( aRLEt/ 1-v%)
( "RLEt/ 1-v?)
( "RLEt/ 1-v?)
-( TRLEt/ 1-v*)
(TRLEt/ 1-v%)

( iRLEt/ 1-v?)
-( "RLEt/ 1-V?)
-( TRLEt/ 1-v*)
( "RLEt/ 1-v?)

-( nRLEt/ 1-v)

( nRLEt/ 1-v%)

+n(2-v)/30R*]}

[130L/420R? |+ t¥/12( 13n* L /420 R*
+6/L*+n%/5R’L ]

[L¥140R? |+ t¥12(n*L? /140 R* +2/L%n%/15R? ]
[6/5L%+13(1-v)n%/70R?]

[ 1/10L+11(1-v)n® L/420R%]

[(1=3v) n /4RL]

[ (14+v)n L/20R]

[ V2R L]

fv/10R]

[ 2/15+11(1-v)n® L¥/210R%]
[(1+v)n L/20R]
[v/ 10R]

{[13 n %35 R*+3(1-v)/SL*] +t*/12[13 n /35
R*+12(1-v)/SR’L*}}

{[11n*L /210 R +(1-v)y/20L] + t/12[11 n > L /210
R*+ 1-v)/SRIL*}}

{[130/35R* 1+ t¥/12[11 n 2 L /210 R*+6

n (v=2)/5R’L*}

{[11n LR2IOR*1+12(11 0° L/210R*

n (9v+2)/10R’L]}

{[13 n 2 L¥105 R%4(1-v)/15] t¥/12(11 n* L %10 SR*+
4 (1-v)/15R*]}

{ [13nL/210RY] +t¥12(-11n® L /210 R*+

n (v—2)/10R’L}}

{[nL*105R? ]+ t412(n° L¥105R*+2n (v—2)/15R* ]}
[13 /35 R*] +t/12(12/L*+13n*/ 35 R*+12n ¥5R? L)}
[11 L /210 R*] +t¥12(6/L*+11n* L/ 210

R*+n %(5v+1/5R* L]}

[L¥105R* 1] + t¥12(4/L%n* L? /10 5R*+4n Y/15R* |}
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A.2 Elements of Stress Resultant Matrix [S]
L =Ls/N;
b= 1/(L*L);

N2 = (1-3*S*S+2*S*S*S)/R;
N3 = (S-2*S*S+S*S*S)R;

N5 = (3*S*S-2*S*S*S)/R;
N6 = (-S*S+S*S*S)/R;
N7 = (6 - 12*S)/(L*L),
N8 = (6*S-6*S*S)/(R*L),
N9 = S/L;

N10 =(1-4*S-3*S*S)/R;
NI11=(-2*S+3*S*S)/R;
H=(1-nw)/2;
J=t*t/12;

W =E*t/(1-nw*nw);
M[O0][0] =-R*NS8;
MJ0][1] =R*N10;
M[0}[2] = nw*n*N2;
M[0][3] = nw*n*L*N3;
M[0][4] = -nw*N2;
M[0][5] =-nw*L*N3;
M[0][6] = R*NS;
M[0][7] = R*NI11;
M[0][8] = nw*n*NS5;
M[0][9] = nw*n*L*N6;
MJ0]{10] =-nw*NS$5;
M[0][11] =-nw*L*NG6;

M[1][0] =-nw*R*NE;
M[1][1] = nw*R*N10;
MJ1][2] =n*N2;
M[1][3] =n*L*N3;
M[1][4] =-N2;
M[1][5] =-L*N3;
M[1][6] =nw*R*NS§;
M[1][7] =nw*R*N11,;
M[1][8] =n*NS;
M[1][9] =n*L*NG6;
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M[1][10] =-N5;
M[1][11] =-L*N6;

M[2][0] = -H*n*N2;
M[2][1] =-H*n*L*N3;
M[2][2] =-H*R*NS;
M[2][3] =H*R*N10;
M[2][4] =0.0;

M[2][5] =0.0;

M[2][6] =-H*n*NS5;
M[2][7] =-H*n*L*Né:
M[2][8] =R*N8;
M[2][9] =R*N11;
M[2][10] =0.0;
M[2][11] =0.0;

M[3][0] =0.0;

M[3][1] =0.0;

M[3][2] =T*nw*n*N2/R;

M[3][3] =-J*nw*n*L*N3/R;

M{3][4] = J*(-N7+-nw*n*n*N2/R);

M[3][5] =T*(-4*b¥L+6*N9-nw* (n*n*L*N3/R));
M[3][6]=0.0;

M[3][7] =0.0;

M[3][8] =J*nw*n*N5/R;

M[3][9] =nw*n*L*N6/R;

M[3][10] =J*(-N7-nw*n*n*N5/R);

M[3][11] =J*(-2*b *L+6*N9-nw*n*n*L*N6/R);

M[4][0] =0.0;
M[4][1] 0.0

M[4][2] =J*n*N2/R;

M[4]{3] =-J*n*L*N3/R;

M[4][4] =J*-(nw*N7+n*n*L*N2/R);

M[4][5] =J*(nw*(-4*b *L+6*N9)-n*n*L*N3/R);
M[4][6] =0.0;

M[4][7] =0.0;

M[4][8] =J*n*N5/R;

M[4][9] =/*n*N6*L/R;

M[4][10] =J*(aw*N7-n*n*N5/R);
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M[4][11] =T*(nw*(-2*b*L+6*N9)-n*n*L*N6/R);

MI5][0] =0.0;

M[5][1] =0.0;

M[5][2] =-H*2*NS;
MI[5][3] =H*2*N10;
M[5][4] =H*2*n*N8;
M[5][5] =-H*2*n*N10;
M([5][6] =0.0;

M[5][7] =0.0;

M[5][8] =H*2*N8;
M[5][9] =H*2*N11;
M[S][10] =-H*2*n*N8;
M[5][11] =-H*2*n*N11;

A3 Upper Triangular Elements of Elastic Stiffness Matrix [k of the
Stiffener Element (Rajagopalan,1993)

ks11 -tGCrn*/Rg’

ks t 6=7tGC Renz/ RRS-TEGC an/RR2

ks33 -t n°EARRg/R?+7 n’ElgRgR?

ks3s = nEAR/R[(ne/R)-1]+ 1 n’Elg Re?R[(e/R)-1]
ksss <n nEAR/RR [(n%e/R)-1]°+ 1 n*EIp Rp’[(e/R)-17?
ks15=7‘(GCRI’12/RR{(e/RR)+1]2

A.4 Upper Triangular Elements of Geometric Stiffness Matrix [kg| of the
Shell Element (Rajagopalan, 1993)

ky33= =( pnR’L/ 2 )1302/3R?
Kge= ( pnR’L /2 )11, L/210R?
kg3s= ( pTR’L / 2 )130n/35R?
kgae= -( pnR’L /2 )1 1oz n L/210R?
Kgio= ( pnRZL / 2 )92/ 70R?
Kg310= -( prR’L / 2 )130,2/420R>
ke311= -( pnR’L / 2 )9a, n /70R?
kg3i2= (pnR’L /2 )130; n L /420R*
kgaa= ( pnR’L / 2 YL/ 105R?
kgas= -( pnR’L / 2 )1 1oz n L/210R?
Kge6=- ( pnR’L / 2 Yoy n L¥105R?
Kgeo= -( prR’L / 2 )130,0/420R?
Kga10= -( prR’L / 2 Yo, L/140R?
kea11= -( prR’L / 2 Y1302 n /420R?
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Kga12= ( pnR’L / 2 Yoz n LY/140R*

Kgss= ( pnRZL / 2 }(6a; /SL*+13a,n/35R? )
kess=( pnR’L / 2 )(oy; /10L+110n® L /210R?)
kgso=-( piR’L / 2 Y90/ 70R?

Kgsio=( prR’L /2 1302 n L /420R?

Kgsi= -( prR®L / 2 )(60; /517 +90,on/70R? )
Kys12=( prR*L / 2 (v /10L+13a; n°L /420R%)
kgss=( pnR’L / 2 } (211 /15+0z n?L? /105R?)
Keso=-( pnR’L / 2') 13at» nL /420R*

Kes10= -( prRZL /2 ) s nL? /140R?

kgsiz=( pnR’L /2 ) ( &) /10L-1302 n’L /420R%)
kgo0= -( piR’L / 2 )130/35R?

Keo10=-( pnR*L / 2 )1 10z n L/210R?

Keo11= -( piR’L / 2 Y1302 n /35R?

keo12=( prR’L /2 )11 n L/210R?

Kg1010= ( pAR’L / 2 YaL*/105R?

Kgion=( pnR’L /2 )11az n L/210R?

Kgio12= -( prRL / 2 Yotz n L¥105R’

Kgi111=( piR’L / 2 Y(6a; /5L* +130n°/35R%)
Kgi112=( prR*L / 2 Yo /10L-110;3 n’L 7210R?)
Kg1212=( pnR’L / 2 )21, /15+0; n’L? /105R?)

A.S Upper Triangular Elements of Geometric Stiffness Matrix [kgs]| of the
Stiffener Element (Rajagopalan, 1993)

kys33 - PARRRLS/[R(Ag+tLs)]
kys3s <[nmpARLy/(Ar+tLs)] [(€/R)-1]
kess -["°TpRARLy/Rg (Ar+tLs)] [(e/R)-1]”

A.6 Upper Triangular Elements of Pressure Stiffness Matrix [kp] of the Shell
Element (Rajagopalan, 1993)
kp15:-1/10 (pTCRL)
kpi11=-1/2L (pnRL)
Kpi12-1/10 (prRL)
kpzs -=1/10 (thRL)
kp2y1 --1/10 (prRL)
kp212-L/60 (pnRL)
kp33-13/35R (pnRL)
kp34- 11L/210R (pnRL)
kp3s= 13n/35R (pnRL)
kp3s--11nL/210R (pnRL)
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kp39 -9/70R (pT[RL)
kp310--13L/420R (prRL)
kp}] 1= 9n/70R (thRL)
kp312--13nL/420R (prRL)
kpaa=-L*1/105R (pnRL)
kpss- 11L/210R (pnRL)
kpag = nLY/105R (pnRL)
kpag- 13L/420R (pnRL)
kpaio=-L%/140R (pnRL)
kpa11 -13nL/420R (pnRL)
Kpa12 = -nL%/40R (pnRL)
kpss - 13/35R (pnRL)

kpsg = 11L/210R (prRL)
kps7- 1721 (pnRL)

kpsg ~-1/10 (pﬂ'.RL)

kpso = 9n/70R (anL)
kpsig=-13nL/420R (pnRL)
kps]] _9/70R (pTIRL)

k}>5 12 = 13nL/420R (pTIRL)
Kpgs - L*/105R (pnRL)
kpg7--1/10 (pnRL)

kpgs - -L/60 (pnRL)

kp69 ~13nL/420R (anL)
kee10-nL*/140R (pnRL)
kps11-13L/420R (prRL)
Kpe12=-L%/140R (prRL)
kp712--1/10 (paRL)
Kpgii--1/10 (pnRL)

kpog - 13/35R (anL)

kpg}o -11L/210R (thRL)
kpony - 13n/35R (pKRL)
kpglz --11L/210R (pT[RL)
kpio10= L*/105R (pnRL)
kp10| 1= -11nL/210R (pTIRL)
kp1o12 = nL%105R (pnRL)
kp“]l -13/35R (thRL)

km 112= -11L/210R (pT[RL)
Kp1212 - L/105R (prRL)
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APPENDIX B
CLASSICAL SOLUTIONS AND RULEBOOK PROVISIONS

B.1 General

Various classification societies and relevant rulebooks for the design of
submersibles give provisions for scantlings for various shell forms employed in the
sub sea environment subjected to external pressure. Generally these provisions are in
the form of equations using which the thickness for a given external pressure for
various shell geometries can be determined. In each of the rulebook, there are
another sets of equations, which give the collapse pressure for the known scantlings.
Classical solutions are available for linear static analysis of ring stiffened cylindrical

shells. Empirical relations are also available to predict the collapse pressure.

The rulebooks considered in the present study are Indian Standard Code for
Unfired Pressure Vessels (1977), Lloyd’s Register of Shipping (1988) and Det
Norske Veritas (1996). The rulebook provisions for externally pressurized shells are
used to generate a computer program, so that the designed pressure for the given
scantlings can be calculated. The details of the software are available elsewhere

(Sreekala, 1997).

B.2 Classical Solutions for Short Stiffened Cylindrical Shell with External

Pressure

Classical solutions are available to determine the radial deflection of the
stiffened cylindrical shell as well as for the prediction of collapse pressure. Generally
the collapse pressure will be the minimum of pressure predicted for inter-stiffener

buckling. yielding and general instability.
B.2.1 Radial Deflection

The expression of the radius deflection of the ring-stiffened cylinder with

end cover is

E?s'=p'a2 /Eh B ( cosh 2a + cos 2a )/ (sinh 2a + sin 2a) —Y2v ((sinh 2a -sin 2a.)/ (sinh
20+ sin 20 ))* / (cosh 2a - cos 20 )/ (sinh 20 + sin 2a)p [Timosheko, 1959] (B.1)
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where p'=p-PWA,8=38-8, &=pa’/Eh, §1=Pa’/AE.

P' denotes the magnitude of force per unit length of the ring for a uniform external

pressure p.

a= BL/2, B ="3(1-v*)/ Vah, a=radius, h=thickness, v =Poisons ratio, L=length,

A = area of cross section of the ring stiffener.

An expression for radial deflection of ring stiffened cylinder is given by
Flugge (1962) 5=((2-v)/2)pa” /Eh {1-[ ( cosh& sin&+ sinh& cos & Jcoshyx/a cosyx/a
+ (coshg sinE- sinh& cos &) sinhyx/a sinyx/a | x [cosh&( sinhg +n coshE) + cosg
(sing-+ncosE)IY (B.2)

where & = *V3(1- V)1 /2 vah), 1 = (2h Vah)/A*V3(1- vY).
B.2.2 Stress Resultants

Flugge has given closed form solution for stress resultants Mx and Ng
Mx = (2-v)pah/*V3(1- v?) -[ ( cosh sin&+ sinh& cos & Jcoshyx/a cosyx/a - (cosh&
siné- sinh& cos &) sinhyx/a sinyx/a ]x [cosh&( sinhE +m coshf) +cos& (sin&-+n
cosET'Y e, (B.3)

Nq = pa{l-(2-v)/2) -[( cosh& sin&+ sinhg cos § )coshyx/a cosyx/a +  (cosh&
sing- sinhg cos &) sinhyx/a sinyx/a ] x [cosh&( sinhE +n cosh§) +cosE (sin&-+1
cos®'Y (B.4)

B.2.3 Shell Buckling

Windenburg (1934) has developed an equation, based on von Mises
equation to predict the collapse pressure in the following form
2.24E(/D)*"
(1-u®*?[L/D-4.5(/D)"?]
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B.2.4 Shell Yielding

Von Sanden and Gunther (Cormstock, 1988) have developed two equations

to predict the pressure at which yielding of the shell will occur at frame and midbay.

For yielding at frame

264t/D
p = bt (B.6)

0.5+1.815K((0.85-B)/(1+B))

Fore yielding at midbay

26vt/D
p = S (B.7)

1+H((0.85-B)/(1+p))

B.2.5 General Instability

The expression for critical pressure associated with general instability is
developed by Kendrick and modified by Bryant (1970).

P, = BUR{m*/[*-1+(m*/2)][n*+m?]2} +{[n*- 1JEVR’L} e, (B.8)
Where m = ntR/L,

B.3 Software Developement

Software has been modified to predict the collapse pressure integrating the
rulebook provisions and classical solutions. This program has been used to make a
critical study of code provisions as well as classical solutions to highlight the over
estimation or under estimation of strength which may cause conservative or

inadequate design.
B.4 Numerical Investigations

Design pressure has been predicted for stiffened cylindrical shells of M1
and M2. Geometric features of stiffened cylindrical shells of submarine M1 and M2

are given earlier in table 3.2 and in fig. 3.6 and fig. 3.7.
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Table B.1 Design pressure predicted by Rulebooks for M1 and M2

No. Rulebook concerned J[r):g;f?egr;izlsz
M1 M2
1 IS 2825 3.389 1.864
2 LRS 7.693 6.812
3 DnV 4.103 3.633

Table B.2 Collapse pressure predicted and safety factor from
classical solutions for M1 and M2

. . Collapse pressure
Model Classical solution (N/mn??) Safety factor
Windenburg’s formula (shell buckling) 39.978 13.06
Bryant’s formula (general instability) 25.371 (n=2) 8.41
Ml . . .
Yielding at midbay (Von Sanden and 16.603 551
Gunther)
Yielding at frame
(Von Sanden and Gunther) 13.331 4.42
Windenburg’s formula (shell buckling) 19.512 6.34
Bryant’s formula (general instability) 38.230(n=2) 12.68
M2 . . .
Yielding at midbay (Von Sanden and 6.724 292
Gunther)
Yielding at frame (Von Sanden and 9.459 314
Gunther)

B.5 Discussion on Results

The design pressures predicted by various Rulebooks are given in table B.1.
The design pressure predicted by IS 2825 are 3.389 N/mm? and 1.864 N/mm’ for M1
and M2 respectively. The corresponding values predicted by LRS are 7.693 N/mm’
and 6.812 N/mm’ and by DnV are 4.103 N/mm? and 3.633 N/mm? for M1 and M2
respectively. On analysing the results a comparative study of various code provisions
is made. The critical study of code provisions highlights the over estimation or under
estimation of strength which may cause conservative or inadequate design. On
analysing the results it may be concluded that IS code is more conservative than LRS

and DnV and may be advised for a revision.
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The collapse pressure predicted by empirical formulae and the safety factors
(the ratio of collapse to design pressure) are given in table A.2. The collapse pressure
predicted by Windenburg’s formula are 39.978 N/mm® and 19.512 N/mm’ for M1
and M2 and by Bryant’s formula are 25.371 N/mm® (n=2) and  38.230 N/mm’
(n=2). For M1 and M2 yielding of the shell will occur at midbay at 13.331 N/mm?
and 9.459 N/mm’ and at frame at 16.603 N/mm” and 6.724 N/mm’ respectively.
The computed safety factors indicate that the classical solutions the submarine

scantling design are conservative.

168



el

PUBLICATIONS BASED ON THE RESEARCH WORK

Alice Mathai, Sreekala.K and Nandakumar C.G., Prediction of Collapse
Pressure of Submarine Hull, Proc. of International Seminar on Safety and Fire

Engineering, Cochin, India, Nov. 24-26,1999.

Alice Mathai and Nandakumar C.G., Analytical Investigations on Collapse of
Cylindrical Submarine Shells, Proc. of National Conference on Materials
Processing and Failure Analysis, National Institute of Technology, Trichy-620
015, June 2003 19-20.

Alice Mathai and Nandakumar C.G., Finite Element Analysis of Submarine Hull,
Journal of Institution of Engineers (India) Marine Division, Vol.85, pp. 4-8, July
2004,

Alice Mathai and Nandakumar C.G., Geometrically Nonlinear Analysis of
Cylindrical Submarine Shells, Accepted for International Congress on

Computational Mechanics & Simulation, IIT Kanpur, 9-12 December 2004.

Alice Mathai and Nandakumar C.G., Collapse Pressure Prediction of
Cylindrical Submarine Shells, To be communicated to Journal of Ship

Research, The Society of Naval Architects and Marine Engineers, USA.

169



	TITLE
	CERTIFICATE
	DECLARATION
	ACKNOWLEDGEMENTS
	CONTENTS
	ABSTRACT
	NOMENCLATURE
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	REFERRENCES
	APPENDIX A
	APPENDIX B
	PUBLICATIONS



