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5.1 Identical Rössler system. (a)time series of y1(solid line) and x1(dashed
line)(b)the evolution of FPS errors . . . . . . . . . . . . . . . . . . . 56
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Preface

Chaotic systems are characterized by their extreme sensitivity to initial conditions,
deterministic randomness and long term unpredictability. Since its introduction by
Pecora and Carrol in 1990, chaos synchronization has received increasing attention
due to its theoretical challenge and its great potential applications in secure commu-
nication, nano oscillators, chemical reactions, biological systems and so on. The idea
of synchronization is to use the output of a master system to control a slave system
so that the output of the response system follows the output of the master system
asymptotically. Synchronization behaviour under bi-directional(mutual coupling) is
also observed.

The concept of synchronization has been extended in scope to include a wide-
ranging behaviour, such as complete synchronization, generalized synchronization,
phase synchronization, lag synchronization, anti-phase synchronization, projective
synchronization, modified projective synchronization etc.

Recently a few authors have studied a new type of synchronization called func-
tion projective synchronization(FPS). FPS is a more general definition of projective
synchronization. As compared with projective synchronization, FPS means that the
master and slave systems could be synchronized up to a scaling function α(t), but
not a constant. This feature could be used to get more security in application to
secure communications, because of the unpredictability of the scaling function in
FPS.

More recently, a new type of synchronization phenomenon called modified func-
tion projective synchronization(MFPS) has been proposed. Here the responses of
the synchronized dynamical states synchronize up to a desired scaling function ma-
trix Λ(t). The unpredictability involved in the scaling function matrix in MFPS can
additionally enhance the security of communications.

Since the work of Pecora and Caroll synchronizing two identical chaotic sys-
tems with different initial conditions, a number of approaches have been proposed
to achieve chaos synchronization. These include PC method, OGY method, scalar
driving method, coupling control, manifold-based method, fuzzy control, impulsive-



xii

control method , active control,adaptive control, time-delay feedback, open-plus-
closed-loop(OPCL) control method etc. Of all these methods, active nonlinear con-
trol, adaptive nonlinear control and OPCL control methods have been extensively
used recently for obtaining desired types of synchronization.

Recently, the study of synchronization in hyperchaotic systems has become a hot
topic. A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents, implying that its dynamics expand in several different direc-
tions simultaneously. This implies that hyperchaotic systems have more complex
dynamical behaviors and could possibly be used in many fields such as chaos-based
encryption, secure communication, biological systems, neural networks, etc.

This thesis is devoted to the study of FPS and MFPS of chaotic and hyperchaotic
systems. A variety of methods like active nonlinear control, adaptive nonlinear con-
trol, and OPCL method are used to obtain function and modified function projective
synchronization in chaotic systems like Lorenz system and Rössler systems. Hyper-
chaotic systems like Quantum-CNN oscillator, Chen system, Lü system, Lorenz
system, and Rössler systems are also studied for FPS and MFPS.

Chapter 1 gives an introduction to chaos theory and synchronization in chaotic
systems. Various synchronization phenomena and different methods of obtaining de-
sired types of synchronization are discussed. Numerical method of solving nonlinear
ODE’s is also given.

Chapter 2 is devoted to the study of FPS in two identical hyperchaotic systems.
Active nonlinear control method is employed to obtain the FPS of hyperchaotic
Lü system. The active nonlinear control functions are properly designed so that
the error system for FPS has all eigenvalues with negative real parts. Numerical
simulations are used to verify the effectiveness of the proposed control techniques.
We show that the active nonlinear control method produces robust FPS.

Chapter 3 deals with FPS of two-cell Quantum-CNN(Cellular Nonlinear Net-
work) oscillators. Recently, Q-CNN oscillators have attracted attention of scientists
and engineers as a nano scale chaos generator. Adaptive nonlinear controllers are
designed based on Lyapunove stability theorem to obtain FPS of two-cell Quantum-
CNN oscillators. The parameters of the slave system are assumed to be unknown.
Adaptive nonlinear controllers and parameter update rules are derived to obtain
FPS under parameter uncertainty. Numerical simulations are performed to verify
the effectiveness of the proposed controllers.

MFPS between hyperchaotic Lorenz system and Lü system is considered in chap-

ter 4. Parameters of both the systems are unknown. On the basis of Lyapunov
stability theory, we design adaptive synchronization controllers with corresponding
parameter update laws to synchronize the two systems. All the theoretical results are
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verified by numerical simulations to demonstrate the effectiveness of the proposed
synchronization schemes.

Chapter 5 studies FPS of some representative systems like Lorenz system,
Rössler system, hyperchaotic Lorenz system and hyperchaotic Chen through OPCL
coupling. This method gives precise driving for any continuous system in order to
reach any desired dynamics. Numerical simulations show that OPCL coupling can
provide stable FPS in identical and mismatched chaotic systems.

Chapter 6 presents MFPS of hyperchaotic systems through OPCL coupling.
MFPS of identical hyperchaotic Rössler and mismatched hyperchaotic Lü systems
are also studied through OPCL coupling. Possible application of MFPS in secure
communication is also presented.

In Chapter 7 the results are summarized.

Part of these investigations has been published in journals and presented in
conferences.
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uncertain parameters, Physics Letters A 373, 3743(2009).

4. K.S. Sudheer and M. Sabir, Switched modified function projective synchro-
nization of hyperchaotic Qi system with uncertain parameters, Communica-
tions in Nonlinear Science and Numerical Simulations 15, 4058(2010).

5. K.S. Sudheer and M. Sabir, Function projective synchronization in chaotic
and hyperchaotic systems through Open-Plus-Closed-Loop coupling, Chaos
20, 013115(2010).

6. K.S. Sudheer and M. Sabir, Modified function projective synchronization
of hyperchaotic systems through Open-Plus- Closed-Loop coupling, Physics
Letters A 374, 2017(2010).



xiv

School/Workshop/Conferences attended

1. DST-SERC School on Nonlinear Dynamics, June 26 - July 16, 2008, IISc
Mathematics Initiative (IMI), Indian Institute of Science, Bangalore - 560012,
INDIA

2. International Conference on Nonlinear Dynamical Systems and Turbulence
July 17 - 22, 2008, Indian Institute of Science, Bangalore - 560012, INDIA

3. NCNSD -2009,March 5-7, 2009, Saha Institute of Nuclear Physics 1/AF, Bid-
hannagar Kolkata - 700 064.

4. International Workshop on Delayed Complex Systems (October 5 9, 2009)
Max Planck Institute for physics of complex systems, Dresden, Germany.



Chapter 1

Introduction

”It may happen that small differences in the initial conditions produce
very great ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes impossi-
ble.” —— Henri Poincaré

Many dynamical systems in Physics, Chemistry and biology exhibit complex
behaviour. Lasers, nano oscillators, vibrating structures, electronic oscillators, mag-
netic devices, chemical oscillators, and population kinetics can behave in a com-
plicated manner. One can find irregular motion when long time prediction is not
possible. For all these systems we have good mathematical models in forms of deter-
ministic nonlinear differential or difference equations. ”Deterministic” means that
no stochastic forces enter the equations. The theoretical and experimental studies
of these systems show that for many nonlinear or piece-wise linear systems the time
history is sensitive to initial conditions and that a precise knowledge of the future
behaviour is not possible. Nearby trajectories diverge from each other exponentially
in time. This behaviour is called ” chaos” in literature.

1.1 Chaotic dynamics

1.1.1 History

Chaotic dynamics may have had its beginnings in the work of the French mathe-
matical physicist Henri Poincare in the late 1800’s [1]. Poincare attempted to solve
the celestial three-body problem(Sun, planet and moon) experiencing mutual grav-
itational pull. He was able to show that the three-body problem has complicated
orbital dynamics which we now call chaos.

In 1927, Van der Pol [2]reported ”irregular noise” in a radio circuit driven at
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certain frequencies, but considered it a subsidiary phenomenon. Cartwright and
Littlewood [3], alerted to a model of Van der Pol’s circuit by the British Radio
Research Board, identified ”random-like” dynamics in the equations. These papers
came to the attention of Smale[5], who developed the Smale horseshoe as a simplest
reduction of Levinson’s [4] observations. Smale’s important insight unified the ho-
moclinic behavior found by Poincare in celestial mechanics with Van der Pol’s noisy
oscillator.

At about the same time, in the early 1960’s, the meteorologist Lorenz[6] was
trying to understand the failures of linear prediction techniques for weather forecasts.
Using one of the world’s first mass-produced computers to simulate atmospheric
dynamics, he found that long time aperiodic trajectories could be produced quite
robustly. Then he found that the aperiodicity was paired with sensitive dependence
on initial conditions.

With the help of Saltzman, he reduced the atmosphere simulation to a differential
equation in three variables that produced the Lorenz attractor .Lorenz later gave
a lecture entitled ”Predictability: Does the Flap of a Butterfly’s Wings in Brazil
set off a Tornado in Texas?”, which caused the concept of sensitive dependence on
initial conditions to become popularly known as the ”butterfly effect”.

Also in the 1960’s , Ueda [7]posed a mathematical model on an analog com-
puter(i.e vacuum tubes) that displayed chaotic dynamics.

In 1975, Yorke and Li [8]showed that sustained aperiodic behavior could be found
in one-dimensional maps. They coined the term chaos for the various phenomena
that showed aperiodicity along with sensitive dependence on initial conditions. In
addition to showing that the existence of a period-three orbit in a one-dimensional
continuous map implies sensitive dependence, they showed another remarkable con-
sequence: the existence of infinitely many other periodic orbits. In 1976 May[9]
presented the logistic map as a plausible population model with a period-doubling
cascade of bifurcations and chaotic trajectories.

Around the same time, Gollub and Swinney[10] reported aperiodic dynamics
in a flow between rotating cylinders, in an attempt to explain the transition from
laminar flow to turbulence. Toward the same goal, Libchaber demonstrated a period-
doubling cascade in a convective Rayleigh-Benard experiment a few years later.
Since then, experiments in a wide array of scientific and engineering disciplines have
been designed that clearly display the effects of deterministic chaos.

The main catalyst for the development of chaos theory was the electronic com-
puter. Much of the mathematics of chaos theory involves the repeated iteration of
simple mathematical formulas, which would be impractical to do by hand. Elec-
tronic computers made these repeated calculations practical, while computer gener-
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ated figures and images made it possible to visualize these systems.The availability
of cheaper, more powerful computers broadens the applicability of chaos theory.
Currently, chaos theory continues to be a very active area of research, involving
many different disciplines such as mathematics, physics, chemical systems, popula-
tion studies, biology, meteorology, astrophysics, information theory, etc.

1.1.2 A definition of chaos

Although there is no universally accepted definition of chaos, a commonly-used
definition is[11]:

”Chaos is the phenomenon of occurrence of bounded nonperiodic evolution in
completely deterministic nonlinear dynamical systems with high sensitive depen-
dence on initial conditions”

Mathematically ,for a dynamical system to be classified as chaotic, it must have
the following properties[12]:

1. it must be sensitive to initial conditions

2. it must be topologically mixing, and

3. its periodic orbits must be dense.

Sensitivity to initial conditions

Sensitivity to initial conditions means that each point in such a system is arbitrarily
closely approximated by other points with significantly different future trajectories.
Thus, an arbitrarily small perturbation of the current trajectory may lead to signif-
icantly different future behaviour. The Lyapunov exponent characterises the extent
of the sensitivity to initial conditions. Quantitatively, two trajectories in phase space
with initial separation δZ0 diverge

|δZ(t)| ≈ eλt|δZ0| (1.1)

if λ the Lyapunov exponent is positive. The rate of separation can be different for
different orientations of the initial separation vector. Thus, a system has as many
Lyapunov exponents as the number of dimensions of the phase space. A system
which has one positive Lyapunov exponent is called a chaotic system. Hyperchaotic
systems have more than one positive Lyapunov exponent.

Topological mixing

Topological mixing (or topological transitivity) means that the system will evolve
over time so that any given region or open set of its phase space will eventually
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overlap with any other given region.

Density of periodic orbits

Density of periodic orbits means that every point in the space is approached arbi-
trarily closely by periodic orbits. Topologically mixing systems not satisfying this
condition may not display sensitivity to initial conditions, and hence may not be
chaotic.

1.2 Chaos Synchronization

Christiaan Huygens was to first observe anti-phase synchronization of two pendulum
clocks, with a common frame, in 1665. Huygens found that the pendulum clocks
swung at exactly the same frequency and 180◦ out of phase. When he disturbed
one pendulum the antiphase state was restored within half an hour and pendulum
clocks remained synchronized indefinitely, thereafter, if left undisturbed. He found
that synchronization did not occur when the clocks were separated beyond a certain
distance, or oscillated in mutually perpendicular planes. Huygens deduced that the
crucial interaction came from very small movements of the common frame supporting
the two clocks. He also provided a physical explanation for how the frame motion
set up the anti-phase motion [13].Synchronization in regular and periodic systems
is a well developed topic.

Chaotic systems are dynamical systems that, apparently, defy synchronization
due to their essential sensitivity to initial conditions. Consequently, two identical
chaotic systems starting at closely initial conditions becomes uncorrelated in the
course of time. Nevertheless it has been shown that it is possible to synchronize
these kind of systems. The synchronization of chaotic systems is a subject with
beginning in the early 80’s but has become a hot topic in the last decade due to
its potential use for secure communications[14], nano oscillators[15] and biological
systems[16].

Fujisaka and Yamada [17]-[20] did early work on synchronization of chaotic sys-
tems, but it was not until the work of Pecora and Carroll [21, 22] that the subject
received a significant amount of attention. The term ‘chaotic synchronization’ refers
to a variety of phenomena in which chaotic systems adjust a given property of their
motion to a common behaviour due to a coupling or to a driving force[23, 24].
The systems might be identical or different, the coupling might be unidirectional
(master–slave or drive–response coupling) or bi-directional (mutual coupling) and
the driving force might be deterministic or stochastic. Two systems are coupled
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unidirectionally if the dynamics of one system (called master or drive) affects the
dynamics of the other (called slave or response), while the dynamics of the slave does
not affect the dynamics of the master. The fact that two unidirectionally coupled
chaotic systems can be used in a secure communication scheme was first shown by
Cuomo and Oppenheim [25, 26], who built a circuit version of the Lorenz equations
and showed the possibility of using this system to transmit a small speech signal.
While some years ago the word ‘chaos’ had a negative connotation in applied re-
search, now a days researchers are developing techniques for taking advantage of
chaotic dynamics instead of trying to avoid it. The use of chaos synchronization in
secure communication systems is a good example of this more recent point of view.

1.3 Different types of synchronization

In the case of coupled dynamical systems, a number of different synchronization
states have been studied. These include complete synchronization(CS)[21, 27], gen-
eralized synchronization(GS)[28, 29],phase synchronization (PS)[30, 31],antiphase
synchronization (APS)[32, 33], lag synchronization (LS)[32, 33], projective
synchronization(PS)[36]-[42],and modified projective synchronization(MPS)[49]-[53]
etc. CS appears as the equality of the state variables while evolving in time. The
GS introduced for drive- response systems, means that there is some functional re-
lation between coupled chaotic oscillators, i.e., x2(t) = F [x1(t)]. In the case of LS
where the states of the two oscillators are nearly identical, one system lags in time
relative to the other, i.e., x2(t) = x1(t + τ). PS is an intermediate case character-
ized by the asymptotic boundness of the phase difference of the two outputs, the
two chaotic amplitudes remaining uncorrelated. Recently, it has been shown that
phase, generalized lag, and complete synchronization are closely connected with
each other and, as a matter of fact, they are different manifestations of one type
of synchronous oscillation behaviour of coupled chaotic oscillators called time-scale
synchronization[54]-[58].

1.3.1 Projective synchronization

Among all kinds of chaos synchronization, projective synchronization, where the
master and slave vectors synchronize up to a constant scaling factor α has been
extensively investigated in recent years. The projective synchronization in unidirec-
tionally coupled chaotic systems is described below.

Consider the following master and slave system

ẋ = f(x) (1.2)
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ẏ = g(y) + u(x,y) (1.3)

where x,y ∈ Rn are the state vectors, f ,g : Rn → Rn are continuous nonlinear
vector functions, u(x,y) is the vector controller. We define the error system as

e(t) = y(t)− αx(t)

where α is a constant.

The systems (1.2) and (1.3) are said to be in projective synchronization, if there
exists a constant α such that limt→∞ ‖e(t)‖ = 0.

Complete synchronization can be regarded as a special case of projective syn-
chronization characterized by α = 1, and anti-phase synchronization characterized
by α = −1. This proportionality feature can be used to extend binary digital com-
munication to M-nary digital communication for achieving fast communication[45]-
[48]. Projective synchronization was first reported by Mainieri and Rehacek [36] in
partially linear systems, where the responses of two identical systems synchronize
up to a constant scaling factor. Xu [37] showed that the scaling factor of projec-
tive synchronization in coupled partially linear systems is unpredictable and can
be arbitrarily maneuvered by introducing a feedback control to the master system.
Xu and co-authors further introduced several control schemes [38, 39] based on Lya-
punov stability theory to conduct the scaling factor onto a desired value, and derived
a general condition [40, 41] for projective synchronization. Generalized projective
synchronization was reported [42]-[44], in the study of a general class of chaotic
systems without the limitation of partial-linearity.

1.3.2 Modified Projective synchronization

Modified projective synchronization[49]-[53] was proposed by Li in [49, 50], where
the drive and response systems could be synchronized to a constant scaling matrix.
Modified projective synchronization in chaotic systems is defined below.

Consider the following master and slave system

ẋ = f(x) (1.4)

ẏ = g(y) + u(x,y) (1.5)

where x,y ∈ Rn are the state vectors, f ,g : Rn → Rn are continuous nonlinear
vector functions, u(x,y) is the vector controller. We define the error system as

e(t) = y(t)− Λx(t) (1.6)
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where Λ is a n × n diagonal matrix, i.e Λ(t) = diag(α1, α2, ....., αn), and αi are
constant scaling factors.

The system (1.4) and (1.5) are said to be in modified projective synchronization,
if there exists a constant scaling matrix Λ such that limt→∞ ‖e(t)‖ = 0.

By choosing the scaling factors in the scaling matrix, one can flex the scales of
the different states independently.

Hybrid synchronization

Hybrid synchronization is an interesting case where one part of the system is anti-
synchronized and the other completely synchronized so that complete synchroniza-
tion (CS) and anti-synchronization(AS) co-exist in the system. This is a special case
of modified projective synchronization and has been investigated in [59].

1.3.3 Function projective synchronization

Recently a few authors have proposed a new type of synchronization called function
projective synchronization(FPS)[60]-[61]. FPS generalizes projective synchroniza-
tion. In this scheme the master and slave systems are synchronized up to a scaling
function α(t), which is not a constant.

Consider the following master and slave system

ẋ = f(x) (1.7)

ẏ = g(y) + u(x,y) (1.8)

where x,y ∈ Rn are the state vectors, f ,g : Rn → Rn are continuous nonlinear
vector functions, u(x,y) is the vector controller. We define the error system as

e(t) = y(t)− α(t)x(t)

where α(t) is a continuously differentiable function with α(t) 6= 0 for all t.
The system (1.7) and (1.8) are said to be in FPS, if there exists a scaling function

α(t) such that limt→∞ ‖e(t)‖ = 0.
The freedom of choosing the scaling function in FPS is an advantage and can

additionally enhance the security of communication.

1.3.4 Modified Function projective synchronization

More recently, a new type of synchronization scheme, modified function projective
synchronization (MFPS)[62], has been developed. In this method the responses
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of the synchronized dynamical states synchronize up to a desired scaling function
matrix Λ(t). MFPS is more general than modified projective synchronization and
FPS.

Consider the following master and slave system

ẋ = f(x) (1.9)

ẏ = g(y) + u(x,y) (1.10)

where x,y ∈ Rn are the state vectors, f ,g : Rn → Rn are continuous nonlinear
vector functions, u(x,y) is the vector controller. We define the error system as

e(t) = x(t)− Λ(t)y(t) (1.11)

where Λ(t) is a n×n order diagonal matrix, i.e Λ(t) = diag(α1(t), α2(t), ....., αn(t)),
and αi(t) is a continuous differentiable function with αi(t) 6= 0 for all t.

The systems (1.9) and (1.10) are said to be in MFPS, if there exists a scaling
function matrix Λ(t) such that limt→∞ ‖e(t)‖ = 0.

It is obvious that compared with FPS, the MFPS can provide more security in
communication.

1.4 Different methods for obtaining synchronization

Since Pecora and Caroll synchronized two identical chaotic systems with different ini-
tial conditions [21, 22], a number of approaches have been proposed to achieve chaos
synchronization. These include Ott- Grebogi-Yorke(OGY) method[63, 64], scalar
driving method[65, 66], coupling control[67, 68], manifold-based method[69, 70],
fuzzy control[71, 72], impulsive-control method [73, 74], active control[75]-[85], adap-
tive control[86]-[100], time-delay feedback[102, 103] and Open-Plus-Closed-Loop
control method(OPCL) [104, 105] etc.

Of all these methods, active nonlinear control, adaptive nonlinear control and
OPCL control methods have been extensively used in recent literature for obtaining
various types of synchronization.

1.4.1 Active nonlinear control method

The active control scheme proposed by Bai and Lonngren [75]-[76] has received con-
siderable attention during the last decade. Applications to various systems abound,
some of which include Rössler and Chen system[77], the electronic circuits which
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model a third-order “jerk’ equation [78], Lorenz, Chen and Lü system [79], geophys-
ical model [80], nuclear magnetic resonance (NMR) modelled by the nonlinear Bloch
equations [81],RCL-shunted Josephson junction [82], inertial ratchets [83],[84] and
most recently in extended Bonhoffer-Van der Pol oscillator [85].

The method of synchronizing two identical chaotic systems through active non-
linear control method can be illustrated using chaotic Lorenz system. The Lorenz
system is described by following set of nonlinear differential equations.

ẋ = σ(y − x) (1.12)

ẏ = rx− y − xz

ż = xy − bz

The system is chaotic for the parameter values σ = 10, r = 28 and b = 8/3.

We assume that we have two Lorenz systems and that the system with the
subscript 1 (master) is to control the system with the subscript 2 (slave). The
systems are :

ẋ1 = σ(y1 − x1) (1.13)

ẏ1 = rx1 − y1 − x1z1

ż1 = x1y1 − bz1

and

ẋ2 = σ(y2 − x2) + u1 (1.14)

ẏ2 = rx2 − y2 − x2z2 + u2

ż2 = x2y2 − bz2 + u3

Here u1, u2 and u3 are control functions to be determined for obtaining desired
type of synchronization. For complete synchronization, the error states are defined
as

e1 = x2 − x1 (1.15)

e2 = y2 − y1

e3 = z2 − z1
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The error dynamical system obtained from (1.13) and (1.14) is

ė1 = σ(e2 − e1) + u1 (1.16)

ė2 = re1 − e2 − x2z2 + x1z1 + u2

ė3 = x2y2 − x1y1 − be3 + u3

We define the active control functions u1, u2 and u3 as

u1 = v1 (1.17)

u2 = x2z2 − x1z1 + v2

u3 = −x2z2 + x1y1 + v3

where vi(t), i = 1, 2, 3 are to be determined. Substitution of this leads to

ė1 = σ(e2 − e1) + v1 (1.18)

ė2 = re1 − e2 + v2

ė3 = −be3 + v3

Equation (1.18) describes the error dynamics and can be considered as a control
problem where the system to be controlled is a linear system with a control input
v1, v2 and v3 as functions of e1, e2 and e3. There are many possible choices for the
control v1, v2 and v3. We choose




v1

v2

v3


 = A




e1

e2

e3


 (1.19)

where A is a 3 × 3 constant matrix. For (1.18) to be asymptotically stable, the
elements of the matrix A are properly chosen so that the closed loop system(1.18)
will have all eigen values with negative real parts. Various choices of A are possible.
A good choice is

A =




σ − 1 −σ 0
−r 0 0
0 0 b− 1


 (1.20)

For this particular choice, the closed loop system (1.18)has eigenvalues that are found
to be−1,−1 and−1. This choice will lead to a stable system and the synchronization
of two Lorenz systems.

The active nonlinear control method realizes robust synchronization of two iden-
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tical chaotic systems. The method is simple and easy to implement in practical
applications. In chapter 2, we present our studies on hybrid synchronization and
FPS in hyperchaotic Lü system using active control method.

1.4.2 Adaptive nonlinear control method

In active control method, it is essential to know the parameters of the model for
the derivation of the controller. In practical situations, these parameters may be
unknown. Moreover, these parameters may change from time to time. Thus the
derivation of adaptive controller for the synchronization of chaotic systems in the
presence of system parameter uncertainty is an important problem[86]-[96]. Syn-
chronization of two different chaotic systems is also a challenging problem [97]-[100].

A general method of designing adaptive nonlinear controller and parameter up-
date rule for synchronization of two chaotic(hyperchaotic) systems is described be-
low.

Consider an n1-dimensional chaotic(hyperchaotic) system in the form of

ẋ = F (x, p), (1.21)

where x = (x1, x2, ....., xn1)
T ∈ Rn1 , and the unknown parameters p ∈ Rm1 . As-

sume that the structure of the chaotic(hyperchaotic) dynamical system, F (x, p) =
(F1(x, p), F2(x, p), ......., Fn1(x, p))T , is known, and time series for all variables are
available as output of (1.21). We refer to (1.21) as the drive system, and the response
system is given by

ẏ = G(y, q) + u(x, y, p̂, q̂)), (1.22)

where y = (y1, y2, .....yn2)
T ∈ Rn2(n2 ≤ n1), the unknown pa-

rameters q ∈ Rn2 , and the dynamical evolution equations, G(y, q) =
(G1(y, q), G2(y, q), ......., Gn2(y, q))T , are also known. Here u(x, y, p̂, q̂)) =
(u1(x, y, p̂, q̂)), u2(x, y, p̂, q̂)), ......, un2(x, y, p̂, q̂))T is the controller to be determined
for the purpose of synchronizing the two identical or different chaotic(hyperchaotic)
systems with fully unknown parameters p, q, and p̂, q̂ are the estimated values of
parameters p, q. In this method p̂, q̂ are adapted duly by an adaptive control loop.
n2 ≤ n1 implies that the drive and response systems may have different dimen-
sionality. Let the synchronization error of the two chaotic(hyperchaotic) systems
be e = (e1, e2, ....., en2)

T = (y1 − x1, y2 − x2, ...., yn2 − xn2) ∈ Rn2 . Then the error
dynamical system between the drive system (1.21) and the response system (1.22)
can be written as

ė = G(y, q)− F ∗(x, p) + u(x, y, p̂, q̂)), (1.23)
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where F ∗(x, p) = (F1(x, p), F2(x, p), ......., Fn2(x, p))T ∈ Rn2 .

There is a method to find suitable feedback controller u and parameter update
law of p̂ and q̂, such that the two chaotic(hyperchaotic) systems are identically
synchronized. Let p̃ = p̂− p, q̃ = q̂ − q be the estimation errors of the parameters p

and q. Construct a dynamical Lyapunov function consisting of the synchronization
errors and the estimation errors of parameters

V (e, p̂, q̂) =
1
2
eT Pe +

1
2
p̃T Qp̃ +

1
2
q̃T Rq, (1.24)

where P ∈ Rn2×n2, Q ∈ Rm1×m1 and R ∈ Rm2×m2 are positive definite constant
matrices. One may choose P, Q,and R as the corresponding identity matrices in
most cases.

The time derivative of V along the trajectories of (1.23) is

dV

dt
= eT P (G(y, q)− F ∗(x, p) + u(x, y, p̂, q̂))− (p̃T Q ˙̂p + q̃T R ˙̂q), (1.25)

Suppose we are able to select appropriate controller u(x, y, p̂, q̂) and parameters
update law ˙̂p and ˙̂q such that dV/dt is negative definite. Then the Lyapunov stabil-
ity theorem[101], ensures that the synchronization of chaotic(hyperchaotic) systems
(1.21) and (1.22) is achieved under the chosen feedback controller u and the param-
eters update law ˙̂p, ˙̂q.

In chapter 3, we study FPS in Quantum-CNN oscillators through adaptive non-
linear control. Chapter 4 presents MFPS between hyperchaotic Chen and hyper-
chaotic Lü system through adaptive nonlinear control.

1.4.3 Open-Plus-Closed-Loop control method

Jackson and Grosu [104],[105], Chen and Dong [106] developed a powerful method of
control: the open-plus-closed-loop (OPCL) method combining the advantages of the
open-loop control with the closed-loop control. This method gives precise driving for
any continuous system in order to reach any desired dynamics. The OPCL coupling
was used earlier for CS in identical oscillators [104]-[109] and synchronization of
identical complex networks [110]. The method has also been extended to mismatched
systems[111],[112] to produce amplification or attenuation of chaos.

We briefly discuss the OPCL method for the synchronization of two chaotic
systems. A chaotic or hyperchaotic driver is defined by

ẏ = f(y), yεRn, (1.26)
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It drives another chaotic or hyperchaotic oscillator ẋ = f(x), xεRn to achieve a
goal dynamics g(t) = y(t). After coupling, the response system is given by

ẋ = f(x) + D(x, g), (1.27)

where the coupling function is defined as

D(x, g) = ġ − f(g) + (H − ∂f(g)
∂g

)(x− g), (1.28)

∂f(g)
∂g is the Jacobian of the dynamical system and H is an arbitrary constant Hurwitz

matrix (n× n) whose eigen values all have negative real parts. Rewriting D(x, g) =
D1(x, g) + D2(x, g), where D1(x, g) = ġ − f(g) and D2(x, g) = (H − ∂f(g)

∂g )(x − g),
it may be noted that D1(x, g) is an open-loop driving and D2(x, g) is a closed-
loop(feedback) one. This is the reason for naming the method as OPCL method.

The error signal of the coupled system is defined by e = x− g and f(x) can be
written using Taylor series expansion, as

f(x) = f(g) +
∂f(g)

∂g
(x− g) + · · · . (1.29)

Keeping the first-order terms in (1.29) and substituting in (1.27), the error dy-
namics is obtained as

ė = He (1.30)

Since H is a Hurwitz matrix which has all its eigenvalues have negative real
parts, e −→ 0 as t −→∞ and we obtain asymptotic synchronization.

FPS and MFPS in a few chaotic and hyperchaotic systems are studied through
OPCL control method in chapters 5 and 6.

1.5 Solving nonlinear ODEs

Nonlinear systems are best described by a system of coupled nonlinear first order
differential equations(ODEs). In most cases nonlinear ODEs can not be solved
analytically and one has to resort to numerical methods. Several numerical schemes
are available in the literature to solve given differential equations. The most widely
used and simple algorithm is the Runge-Kutta fourth order method [113].
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1.5.1 Runge-Kutta Fourth order method

Consider a system of ODEs of the form

ẋ = F(x) (1.31)

Let the value of x at time ti is known and denote it as xi.Suppose we wish to
calculate the value of x at time ti+1 = ti + h, where h is the increment in time.The
formulae for the fourth-order Runge-Kutta algorithm for (1.31) are

k1 = hF (xi)

k2 = hF (xi + k1/2)

k3 = hF (xi + k2/2)

k4 = hF (xi + k3)

ti+1 = ti + h

xi+1 = xi +
1
6
(k1 + 2k2 + 2k3 + k4)

Using the above step-by-step procedure the solution to (1.31) at any value of t

can be approximated. The truncation error in the fourth-order algorithm is O(h5).



Chapter 2

Hybrid and Function projective

synchronization in hyperchaotic

Lü system through active

nonlinear control

2.1 Introduction

In this chapter we study hybrid synchronization and FPS behaviour in hyperchaotic
Lü system [119] by using active control method. It is believed that the chaotic sys-
tems with higher dimensional attractors like hyperchaotic systems have much wider
applications. In fact, the presence of more than one positive Lyapunov exponent,
clearly improves the security by generating more complex dyanmcis. Hyperchaos
synchronization has recently become a subject of active research. The nonlinear
active control method is simple, efficient and easy to implement in practical applica-
tions. We design active nonlinear controllers to obtain hybrid synchronization and
FPS in two unidirectionally coupled identical hyperchotic Lü sytems.

2.2 Hyperchaotic Lü system

Lü system[117],[118] developed by Lü and Chen, connects the Lorenz and Chen
attractors and represents the transition from one to the other. Recently, Chen
et.al.,[119] proposed hyperchaotic Lü systembased on Lü system by introducing a
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state feedback controller. The hyperchaotic Lü system is described by:

ẋ = a(y − x) + w

ẏ = −xz + cy

ż = xy − bz

ẇ = xz + rw

(2.1)

where x, y, z and z are state variables and a, b, c are the parameters of Lü system
and r is a control parameter. The analysis of the dynamics of the system, including
the bifurcation diagram, Lyapunov exponent spectrum and Poincare mapping and
electronic circuit simulation experiments confirm the hyperchaotic nature of the
system.

When a = 36, b = 3, c = 20,−0.35 ≤ r ≤ 1.3, system (2.1) is hyperchaotic. The
chaotic attractor for the Lü hyperchaotic system is shown in Fig.2.1.

2.3 Hybrid synchronization of hyperchaotic Lü system

Recently, Li[59] studied hybrid synchronization behaviour in chaotic systems. In
hybrid synchronization scheme, one part of the system is anti-synchronized and
the other completely synchronized so that complete synchronization (CS) and anti-
synchronization (AS) co-exist in the system. The co-existence of CS and AS en-
hances security in communication and chaotic encryption schemes. In this section
we study the hybrid synchronization behaviour in hyperchotic Lü system using ac-
tive nonlinear control method. We design active controllers so that two pairs of
states are synchronized and the other two pairs are anti-synchronized.

In order to observe the hybrid synchronizaton behaviour in the Lü hyperchaotic
system, we have two Lü hyperchaotic systems where the drive system with the four
state variables denoted by subscript 1 drives the response system having identical
equations denoted by the subscript 2. However, the initial condition on the drive
system is different from that of the response system. The two Lü systems are
described by the following equations.

ẋ1 = a(y1 − x1) + w1

ẏ1 = −x1z1 + cy1

ż1 = x1y1 − bz1

ẇ1 = x1z1 + rw1

(2.2)
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Figure 2.1: The chaotic attractor for Lü hyperchaotic system.
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and
ẋ2 = a(y2 − x2) + w2 + u1

ẏ2 = −x2z2 + cy2 + u2

ż2 = x2y2 − bz2 + u3

ẇ2 = x2z2 + rw2 + u4

(2.3)

We have introduced four active control functions u1(t), u2(t), u3(t) and u4(t). These
control functions are to be determined for the purpose of hybrid synchronization of
the two systems with the same parameters and different initial conditions.

For the hybrid synchronization, we define the state errors between the response
system that is to be controlled and the controlling drive system as

e1 = x2 − x1

e2 = y2 + y1

e3 = z2 − z1

e4 = w2 + w1

(2.4)

Then the error dynamical system is obtained as

ė1 = −ae1 + ae2 + e4 − 2ay1 − 2w1 + u1

ė2 = ce2 − x2z2 − x1z1 + u2

ė3 = −be3 + x2y2 − x1y1 + u3

ė4 = re4 + x2z2 + x1z1 + u4

(2.5)

We redefine the active control function u = [u1(t), u2(t), u3(t), u4(t)]T as

u1(t) = 2ay1 + 2w1 + v1(t)
u2(t) = x2z2 + x1z1 + v2(t)
u3(t) = −x2y2 + x1y1 + v3(t)
u4(t) = −x2z2 − x1z1 + v4(t)

(2.6)

Substituting (2.6) in (2.5) gives

ė1 = −ae1 + ae2 + e4 + v1(t)
ė2 = ce2 + v2(t)
ė3 = −be3 + v3(t)
ė4 = re4 + v4(t)

(2.7)

Thus, the system (2.7) to be controlled is a linear system with the control input
function v = [v1(t), v2(t), v3(t), v4(t)]T as functions of the error states e1, e2, e3 and
e4. When (2.7) is stabilized by the feedback v, the error will converge to zero as
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t → ∞ which implying that the system (2.2) and (2.3) get globally synchronized.
To achieve this goal, we choose v as

[v1(t), v2(t), v3(t), v4(t)]T = A[e1(t), e2(t), e3(t), e4(t)]T (2.8)

where A is a 4 × 4 matrix. For (2.7) to be asymptotically stable, the elements of
the matrix A are properly chosen so that the closed loop system(2.7) will have all
eigenvalues with negative real parts. Various choices of A are possible. A good
choice is

A =




(a− 1) −a 0 −1
0 −(c + 1) 0 0
0 0 b− 1 0
0 0 0 −(r + 1)




(2.9)

In this particular choice, the closed loop system (2.7) has eigenvalues λ1 =
−1, λ2 = −1, λ3 = −1and λ4 = −1.

Hence the error system becomes

ė1 = −e1

ė2 = −e2

ė3 = −e3

ė4 = −e4

(2.10)

Obviously the error states e1, e2, e3 and e4 converge to zero as time t tends to
infinity.

Alternatively we can show that hybrid synchronization is achieved through the
application of the designed active nonlinear controls using the Lyapunov stability
theorem.

Theorem.Systems (2.2) and (2.3) can be exponentially and globally hybrid syn-
chronized for any initial condition with the active nonlinear controllers (2.6).

Proof. We choose Lyapunov function as follows

V (t) =
1
2
(e2

1 + e2
2 + e2

3 + e2
4) (2.11)

By using the control law, the time derivative of V (t) along trajectories (2.5) can be
derived as V̇ (t) = e1ė1 + e2ė2 + e3ė3 + e4ė4

= e1(−e1) + e2(−e2) + e3(−e3) + e4(−e4)

= −e2
1 − e2

2 − e2
3 − e2

4

≤ 0 which by Lyapunov’s theorem implies that ei = 0(i = 1, 2, 3, 4) as t →∞
and guarantees the exponentially asymptotical stability of the error system (2.5).
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Therefore, system (2.2) and (2.3) can achieve exponentially asymptotical hybrid
synchronization for any initial condition with active nonlinear controllers (2.6).

2.4 Simulation results

Numerical simulations are performed using the fourth order Runge-Kutta integration
method to solve the two systems of differential equations (2.2) and (2.3) with time
step size equal to 0.001. We select the parameters of the Lü hyperchaotic system as
a = 36, b = 3, c = 20, r = 1.3 so that the Lü system exhibits hyperchaotic behaviour.
The initial values for the drive and response systems are x1(0) = 5, y1(0) = 8, z1(0) =
−1, w1(0) = −3 and x2(0) = 3, y2(0) = 4, z2(0) = 5, w2(0) = 5 respectively. Fig. 2.2
and 2.3 shows the time response of states x1, y1, z1 and w1 for the drive system (2.2)
and the states x2, y2, z2 and w2 for the response system (2.3) under the application
of active control where control is applied after 10 units of time. Fig. 2.4 displays
the time response of the error system (2.4).

2.5 Function projective synchronization of hyperchaotic

Lü system

Consider the following master and slave system

ẋ = f(x) (2.12)

ẏ = g(y) + u(x,y) (2.13)

where x,y ∈ Rn are the state vectors, f ,g : Rn → Rn are continuous nonlinear
vector functions, u(x,y) is the vector controller. We define the error system as

e(t) = y − α(t)x

where α(t) is a continuously differentiable function with α(t) 6= 0 for all t.

The system (2.12) and (2.13) are said to be in FPS, if there exists a scaling
function α(t) such that limt→∞ ‖e(t)‖ = 0.

For the FPS, we define the state errors between the response system (2.3) that
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Figure 2.2: Drive and response system states when control is activated after 10 units
of time (a)time series of x1(solid line) and x2(dotted line)(b)time series of y1(solid
line) and y2(dotted line)
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Figure 2.3: Drive and response system states when control is activated after 10 units
of time (a)time series of z1(solid line) and z2(dotted line)(b)time series of w1(solid
line) and w2(dotted line)
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Figure 2.4: Hybrid synchronization error signals between drive and response system
when control is applied after 10 units of time

is to be controlled and the controlling drive system (2.2) as

e1 = x2 − α(t)x1

e2 = y2 − α(t)y1

e3 = z2 − α(t)z1

e4 = w2 − α(t)w1

(2.14)

The error dynamics of the system is obtained as:

ė1 = −ae1 + ae2 + e4 − α̇(t)x1 + u1

ė2 = ce2 − x2z2 + α(t)x1z1 − α̇(t)y1 + u2

ė3 = −be3 + x2y2 − α(t)x1y1 − α̇(t)z1 + u3

ė4 = re4 + x2z2 − α(t)x1z1 − α̇(t)w1 + u4

(2.15)

Let us redefine the active control function u = [u1(t), u2(t), u3(t), u4(t)]T as

u1(t) = α̇(t)x1 + v1(t)
u2(t) = x2z2 − α(t)x1z1 + α̇(t)y1 + v2(t)
u3(t) = −x2y2 + α(t)x1y1 + α̇(t)z1 + v3(t)
u4(t) = −x2z2 + α(t)x1z1 + α̇(t)w1 + v4(t)

(2.16)
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where vi(t) are to be determined.

Substitution of (2.16) in (2.15) gives

ė1 = −ae1 + ae2 + e4 + v1(t)
ė2 = ce2 + v2(t)
ė3 = −be3 + v3(t)
ė4 = re4 + v4(t)

(2.17)

Thus, the system (2.17) to be controlled is a linear system with the control input
function v = [v1(t), v2(t), v3(t), v4(t)]T as functions of the error states e1, e2, e3 and
e4. When (2.17) is stabilized by the feedback v, the error will converge to zero as
t →∞ which implies that the system (2.2) and (2.3) are globally function projective
synchronized. To achieve this goal, we choose v such that

[v1(t), v2(t), v3(t), v4(t)]T = A[e1(t), e2(t), e3(t), e4(t)]T (2.18)

where A is a constant 4 × 4 matrix. For (2.17) to be asymptotically stable, the
elements of the matrix A are properly chosen so that the closed loop system(2.17)
will have all eigenvalues with negative real parts. Various choices of A are possible.
A good choice is

A =




(a− 1) −a 0 −1
0 −(c + 1) 0 0
0 0 b− 1 0
0 0 0 −(r + 1)




(2.19)

With this particular choice, the closed loop system (2.17) will have the eigenval-
ues λ1 = −1, λ2 = −1, λ3 = −1and λ4 = −1.

Hence the error system becomes

ė1 = −e1

ė2 = −e2

ė3 = −e3

ė4 = −e4

(2.20)

Thus the error states e1, e2, e3 and e4 converge to zero as time t tends to infinity.

An alternative proof of the attaintment of FPS through the application of de-
signed active nonlinear control can be given using the Lypunov stability theorem.

Theorem.Systems (2.2) and (2.3) can be exponentially and globally function
projective synchronized for any initial condition with the active nonlinear controllers
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(2.16).

Proof. We choose Lyapunov function as follows

V (t) =
1
2
(e2

1 + e2
2 + e2

3 + e2
4) (2.21)

By using the control law, the time derivative of along trajectories (2.15) can be
derived as

V̇ (t) = e1ė1 + e2ė2 + e3ė3 + e4ė4

= e1(−e1) + e2(−e2) + e3(−e3) + e4(−e4)

= −e2
1 − e2

2 − e2
3 − e2

4

≤ 0

which implies that ei = 0(i = 1, 2, 3, 4) as t → ∞ and guarantees the expo-
nentially asymptotical stability of the error system (2.15). Therefore, system (2.2)
and (2.3) can achieve exponentially asymptotical FPS for any initial condition with
active nonlinear controllers (2.16).

2.6 Simulation results

In simulations, the fourth order Runge-Kutta integration method is used to solve
the two systems of differential equations (2.2) and (2.3) with time step size equal to
0.001. We select the parameters of the Lü hyperchaotic system as a = 36, b = 3, c =
20, r = 1.3 so that the Lü system exhibits hyperchaotic behaviour. The initial values
for the drive and response systems are x1(0) = 5, y1(0) = 8, z1(0) = −1, w1(0) = −3
and x2(0) = 3, y2(0) = 4, z2(0) = 5, w2(0) = 5 respectively. The scaling function is
chosen as α(t) = 1 + 0.5sin(2πt/20). Fig. 2.5 and 2.6 shows the time response of
states x1, y1, z1 and w1 for the drive system (2.2) and the states x2, y2, z2 and w2 for
the response system (2.3) under the application of active control. Fig. 2.7 displays
the time response of the error system (2.14). In fig.2.8 is given the ratio rr/rd,
where rr =

√
x2

2 + y2
2 + z2

2 + w2
2 and rd =

√
x2

1 + y2
1 + z2

1 + w2
1 showing that it tends

to the scaling function.

Obviously, the synchronization errors coverage to zero with exponentially asymp-
totical speed and two systems with different initial values achieve FPS very quickly.

2.7 Conclusions

This work demonstrates that hybrid synchronization and FPS between two identical
Lü hyperchaotic systems can be achieved through active control method. Appro-
priate controls are designed through active nonlinear control theory for the desired
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Figure 2.5: (a)time series of x1(solid line) and x2(dotted line)(b)time series of
y1(solid line) and y2(dotted line
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Figure 2.6: (a)time series of z1(solid line) and z2(dotted line)(b)time series of
w1(solid line) and w2(dotted line)
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Figure 2.7: Function projective synchronization error signals between drive and
response system
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synchronization behaviour. Under the application of control the slave system dis-
plays hybrid synchronization and FPS behaviour with respect to the drive system.
Numerical simulations verify the effectiveness of the proposed control techniques.





Chapter 3

Function projective

synchronization of two-cell

Quantum-CNN oscillator

through adaptive nonlinear

control

3.1 Introduction

In this chapter we investigate FPS of recently developed two-cell Quantum-
CNN(Cellular Nonlinear Network) oscillators. Recently, Q-CNN oscillators have
attracted attention of scientists and engineers as a nano scale chaos generator[114].
We consider two hyperchaotic Quantum-CNN oscillators coupled in unidirectional
fashion. The parameters of the response system are assumed to be unknown. Based
on adaptive control theory we design adaptive nonlinear controls and parameter es-
timation rules to obtain FPS under parameter uncertainity of the response system.

3.2 Quantum-CNN oscillator

In the last decade much attention has been devoted to quantum dots and quantum
dots cellular automata (QCA) with particular orientation towards quantum comput-
ing . A quantum dot is an “artificial atom” obtained by including a small quantity of
material in a substrate. Four dots realized on the same layer constitute a QCA cell.
In each cell two extra electrons can assume different locations by tunneling between
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the dots and providing the cell with a certain polarization. The expectation values ρi

of the charge on each dot define the polarization P of the cells and due to superposed
states, P can vary continuously between −1 and +1. The polarization constitutes
the macroscopic degree of freedom of the cell and therefore it can be assumed as a
state variable. Considering quantum phase displacement φ as microscopic degree of
freedom, with the help of Schrödinger equation, we can obtain following equation
for a QCA cell.

i~
∂

∂t
Pk = −2γ

√
1− P 2

k sinφk (3.1)

i~
∂

∂t
φk = −P kEk + 2γ

Pk√
1− P 2

k

cosφk

where γ is the interdot tunneling energy, takes into account the neighboring po-
larizations and Ek is the electrostatic energy cost of two adjacent fully polarized
cells having opposite polarization. The effect of local interconnections is taken into
account in the term P k.

With appropriate transformations, for a two-cell Quantum-CNN, following dif-
ferential equations are obtained [114]

ẋ1 = −2a
√

1− x2
1 sinx2

ẋ2 = −c(x1 − x3) + 2a x1√
1−x2

1

cosx2

ẋ3 = −2b
√

1− x2
3 sinx4

ẋ4 = −d(x3 − x1) + 2b x3√
1−x2

3

cosx4

(3.2)

where x1 and x3 are polarizations, x2 and x4 are quantum phase displacements, a

and b are proportional to the inter-dot energy inside each cell and c and d are the
parameters that weigh the effects on the cell of the difference of polarizations of
the neighbouring cells. The system exhibits hyperchaotic behaviour for a range of
parameter values[115]. The hyperchaotic attractor of the system when a = 19.4, b =
13.1, c = 9.529 and d = 7.94, is shown in figure 3.1 and 3.2.

3.3 Adaptive Function projective synchronization

Consider a class of uncertain chaotic system described by

ẋ = f(x) + F (x)θ, (3.3)

where x ∈ Rn is the state vector of the system, f : Rn → Rn is a continuous
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vector function, F : Rn → Rn is a function matrix, θ ∈ Rp is an unknown parameter
vector.

Assuming the system (3.3) be the drive system, the controlled response system
can be taken as

ẏ = f(y) + F (y)θ̂ + u (3.4)

where y ∈ Rn is the state vector of the system, θ̂ ∈ Rp represents the estimate
parameter vector of unknown parameters of the slave system, u ∈ Rn is a controller
to be determined. The FPS error is defined as e = y − α(t)x. The goal of control is
to find out an appropriate u such that the response system is in FPS with the drive
system and the unknown parameters are identified simultaneously.

The error dynamical system between the drive system (3.3) and the response
system(3.4) is

ė = ẏ − α(t)ẋ− α̇(t)x (3.5)

= f(y) + F (y)θ̂ + u− α(t)f(x)− α(t)F (x)θ − α̇(t)x

Let us choose the controllers of the form

u = −f(y) + α(t)f(x)− (F (y)− α(t)F (x))θ̂ + α̇(t)x− ke (3.6)

and the parameter update rule

˙̂
θ = −F (x)T α(t)e− lθ̃ (3.7)

where θ̃ = θ̂−θ and k = diag(k1, k2, ......, kn) and l = diag(l1, l2, ....., lp) are constant
positive matrices.

Substituting for u in (3.5) from (3.6), the error dynamics is described by

ė = α(t)F (x)
∼
θ − ke (3.8)

Consequently, the FPS problem becomes the stability of error dynamics (3.8)
and (3.7). If it is globally stabilized at the origin, the FPS of the drive system (3.3)
and the response system(3.4) can be globally realized.

Theorem.For the given scaling function α(t), the function projective synchro-
nization between drive system(3.3) and response system(3.4) will occur by the control
law(3.6) and the parameter update rule(3.7)
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Proof: Choose the following Lyapunov function

V =
1
2
[eT e +

∼
θ

T∼
θ] (3.9)

With the controllers (3.6) and the parameter update rule (3.7), the time deriva-
tive of the Lyapunov function along the trajectory of error system (3.8) and (3.7)
is

V̇ = eT ė +
∼
θ

T
.∼
θ

= eT (α(t)F (x)
∼
θ − ke) +

∼
θ

T

(−F (x)T α(t)e− l
∼
θ)

= −eT ke−
∼
θ

T

l
∼
θ < 0

Therefore according to the Lyapunov stability theorem, the origin is stable and
adaptive FPS of (3.3) and (3.4) is obtained.

3.4 Adaptive FPS of two-cell Quantum-CNN oscillators

We assume that we have two Quantum-CNN oscillators where the master system
(3.2) drives the slave system (3.10)

ẏ1 = −2a1

√
1− y2

1 sin y2 + u1

ẏ2 = −c1(y1 − y3) + 2a1
y1√
1−y2

1

cos y2 + u2

ẏ3 = −2b1

√
1− y2

3 sin y4 + u3

ẏ4 = −d1(y3 − y1) + 2b1
y3√
1−y2

3

cos y4 + u4

(3.10)

where a1, b1, c1 and d1 are the estimate parameters of the slave
system and u1, u2, u3 and u4 are the nonlinear controllers such that
two chaotic systems can be in FPS. For (3.2), f(x) = 0 and

F (x)=




−2
√

1− x2
1 sinx2 0 0 0

2 x1√
1−x2

1

cosx2 0 −(x1 − x3) 0

0 −2
√

1− x2
3 sinx4 0 0

0 2 x3√
1−x2

3

cosx4 0 −(x3 − x1)




.
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Then, according to (3.6) and (3.7) we get the following controller

u1 = 2a1(
√

1− y2
1 sin y2 − α(t)

√
1− x2

1 sinx2) + α̇(t)x1 − k1e1

u2 = c1((y1 − y3)− α(t)(x1 − x2))
−2a1( y1√

1−y2
1

cos y2 − α(t) x1√
1−x2

1

cosx2) + α̇(t)x2 − k2e2

u3 = 2b1(
√

1− y2
3 sin y4 − α(t)

√
1− x2

3 sinx4) + α̇(t)x3 − k3e3

u4 = d1((y3 − y1)− α(t)(x3 − x1))
−2b1( y3√

1−y2
3

cos y4 − α(t) x3√
1−x2

3

cosx4) + α̇(t)x4 − k4e4

(3.11)

and the update rule for the four unknown parameters a1, b1, c1 and d1 are

ȧ1 = 2α(t)(
√

1− x2
1 sinx2e1 − x1√

1−x2
1

cosx2e2)− l1(a1 − a)

ḃ1 = 2α(t)(
√

1− x2
3 sinx4e3 − x3√

1−x2
3

cosx4e4)− l2(b1 − b)

ċ1 = α(t)(x1 − x3)e2 − l3(c1 − c)
ḋ1 = α(t)(x3 − x1)e4 − l4(d1 − d)

(3.12)

3.5 Numerical simulations

In this section, numerical simulations are presented to verify the effectiveness of
the proposed synchronization controller. Fourth-order Runge-Kutta method is used
to solve systems(3.2)and(3.10) with time step size 0.001. The parameters are cho-
sen to be a = 19.4, b = 13.1, c = 9.529 and d = 7.94, so that the Quantum-
CNN oscillator has chaotic attractor. The initial conditions of the drive system are
x1(0) = 0.55, x2(0) = −0.1, x3(0) = −0.4 and x4(0) = 0.5, and those of the response
system are y1(0) = −0.6, y2(0) = 0.25, y3(0) = 0.5 and y4(0) = 0.3. Moreover the ini-
tial values of the estimated parameters are chosen as a1(0) = 2, b1(0) = 15, c1(0) = 0
and d1(0) = 9 and the scaling function is chosen as α(t) = 0.5 + 0.1 sin(t). Fur-
thermore, the control gains are chosen as (k1, k2, k3, k4) = (0.5, 0.5, 0.5, 0.5) and
(l1, l2, l3, l4) = (0.5, 0.5, 0.5, 0.5). The simulation results are illustrated in Figs. 3.3
,3.4 and 3.5. Fig. 3.3 shows the error variables e1, e2, e3, e4 tend to zero for large
t. Fig.3.4 shows that the estimated values of the unknown parameters converge to
a = 19.4, b = 13.1, c = 9.529 and d = 7.94 as t −→ ∞, respectively. Fig.3.5
displays the ratio rr/rd, where rr = ‖y‖ and rd = ‖x‖ and shows that it tends to
the predefined scaling function α(t).
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3.6 Conclusion

This work investigated the FPS of two-cell Quantum-CNN oscillators. Based on
Lyapunov stability theory, we design adaptive synchronization controllers with cor-
responding parameter update laws to synchronize the two systems. All the theoret-
ical results are verified by numerical simulations to demonstrate the effectiveness of
the proposed synchronization scheme.
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Figure 3.1: Chaotic attractor of Quantum-CNN system (a) in (x1, x2, x3) space(b)in
(x2, x3, x4) space
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Chapter 4

Modified function projective

synchronization between

hyperchaotic Lorenz system and

Lü system through adaptive

nonlinear control

4.1 Introduction

In this chapter we propose a scheme for adaptive modified function projective syn-
chronization(AMFPS) of two hyperchaotic systems. As an application of the pro-
posed AMFPS scheme, synchronization between hyperchaotic Lorenz[120] and hy-
perchaotic Lü[119] system is studied. Parameters of both drive and response system
are assumed to be unknown. Adaptive nonlinear controllers and parameter update
rules are derived to obtain MFPS of the systems.

4.2 Modified function projective Synchronization

Consider the following master and slave system

ẋ = f(x) (4.1)

ẏ = g(y) + u(x,y) (4.2)
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where x,y ∈ Rn are the state vectors, f ,g : Rn → Rn are continuous nonlinear
vector functions, u(t,x,y) is the vector controller.

We define the error system as

e(t) = y − Λ(t)x (4.3)

where Λ(t) is a n × n− diagonal matrix, i.e Λ(t) = diag(m1(t),m2(t), ....., mn(t)),
and mi(t) is a continuous differentiable function with mi(t) 6= 0 for all t.

The system (4.1) and (4.2) are said to be in MFPS, if there exists a scaling
function matrix Λ(t) such that limt→∞ ‖e(t)‖ = 0.

4.3 Adaptive modified function projective synchroniza-

tion scheme

Consider a class of uncertain chaotic system described by

ẋ = f(x) + F (x)θ, (4.4)

where x ∈ Rn is the state vector of the system, f : Rn → Rn is a continuous vector
function, F : Rn → Rn×p is a function matrix, θ ∈ Rp is an unknown parameter
vector.

Let system (4.4) be the drive system, then the controlled response system is
given by

ẏ = g(y) + G(y)φ + u (4.5)

where y ∈ Rn is the state vector of the system, g : Rn → Rn is a continuous vector
function, G : Rn → Rn×k is a function matrix,φ ∈ Rk unknown parameter vector
of response system, u ∈ Rn is a controller to be determined. The goal of control
is to find out an appropriate u such that the response system is in MFPS with the
drive system and the unknown parameters are identified simultaneously.

The error dynamical system between the drive system (4.4) and the response
system(4.5) is

ė = ẏ − Λ(t)ẋ− Λ̇(t)x (4.6)

= g(y) + G(y)φ + u− Λ(t)f(x)− Λ(t)F (x)θ − Λ̇(t)x

Let us choose the controller

u = −g(y)−G(y)φ̂ + Λ(t)f(x) + Λ(t)F (x)θ̂ + Λ̇(t)x− ke (4.7)
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where θ̂ and φ̂ are the estimated values of parameters θ and φ and the parameter
update rules

˙̂
θ = −F (x)T Λ(t)e− lθ̃ (4.8)
˙̂
φ = G(y)T e− hφ̃

where θ̃ = θ̂ − θ , φ̃ = φ̂ − φ and ,k = diag(k1, k2, ......, kn) ,l = diag(l1, l2, ....., lp)
and h = diag(h1, h2, ......, hn) are positive constant matrices.

From (4.6) and (4.7), the error dynamics is described by

ė = Λ(t)F (x)θ̃ −G(y)φ̃− ke (4.9)

Hence the MFPS problem becomes the stability of error dynamics (4.9) and
update rule (4.8). If it is globally stabilized at the origin, the MFPS of the drive
system (4.4) and the response system(4.5) can be globally realized.

Theorem.For the given scaling function matrix Λ(t), the MFPS between drive
system(4.4) and response system(4.5) will occur by the control law(4.7) and the
parameter update rule(4.8)

Proof : Choose the following Lyapunov function

V =
1
2
[eT e + θ̃T θ̃ + φ̃T φ̃] (4.10)

With the controllers (4.7) and the parameter update rule (4.8), the time deriva-
tive of the Lyapunov function along the trajectory of error system (4.6) is

V̇ = eT ė + θ̃T ˙̃
θ + φ̃T ˙̃

φ

= eT (Λ(t)F (x)θ̃ −G(y)φ̃− ke) + θ̃T (−F (x)T Λ(t)e− lθ̃) + φ̃T (G(y)T e− hφ̃)

= −eT ke− θ̃T lθ̃ − φ̃T hφ̃ < 0

Therefore according to the Lyapunov stability theorem, the adaptive MFPS of
(4.4) and (4.5) is obtained.
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4.4 Adaptive MFPS between hyperchaotic Lorenz sys-

tem and hyperchaotic Lü system

The hyperchaotic Lorenz system is described as follows[120]:

ẋ = α(y − x)
ẏ = βx + y − xz − w

ż = xy − γz

ẇ = θyz

(4.11)

where x, y, z and w are state variables and α, β, γ, θ are parameters. When α =
10, β = 28, γ = 8/3 and θ = 0.1, the system (4.11) exhibits hyperchaotic behaviour
as shown in fig 4.1.

As described in chapter 2, using a feedback controller, a novel hyperchaotic Lü
system was constructed based on the original three dimensional Lü system and is
given by the following equations[119]:

ẋ = a(y − x) + w

ẏ = −xz + cy

ż = xy − bz

ẇ = xz + dw

(4.12)

where x, y, z and w are state variables and a, b, c, d are real constant parameters.
When a = 36, b = 3, c = 20 and −0.35 ≤ d ≤ 1.3, the system (4.12) exhibits
hyperchaotic behaviour as given in fig.4.2.

In order to achieve the behaviour of MFPS between hyperchaotic Lorenz system
and hyperchaotic Lü system, we assume that the hyperchaotic Lorenz system is the
drive system whose four variables are denoted by subscript 1 and the hyperchaotic
Lü system is the response system whose variables are denoted by subscript 2. The
drive and response systems are described, respectively, by the following equations:

ẋ1 = α(y1 − x1)
ẏ1 = βx1 + y1 − x1z1 − w1

ż1 = x1y1 − γz1

ẇ1 = θy1z1

(4.13)
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Figure 4.1: Hyperchaotic attractor of hyperchaotic Lorenz system.(a) in (x, y, z)
space (b) in (x, y, w) space.
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Figure 4.2: Hyperchaotic attractor of hyperchaotic Lü system (a) in (x, y, z) space
(b) in (x, y, w) space.
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ẋ2 = a(y2 − x2) + w2 + u1

ẏ2 = −x2z2 + cy2 + u2

ż2 = x2y2 − bz2 + u3

ẇ2 = x2y2 + dw2 + u4

(4.14)

where U = [u1, u2, u3, u4]T is the nonlinear controller to be so defined that two
chaotic systems can be in MFPS.

Then, according to (4.7) and (4.8) we get the following controller

u1 = −a1(y2 − x2)− w2 + m1(t)α1(y1 − x1) + ṁ1(t)x1 − k1e1

u2 = x2y2 − c1y2 + m2(t)β1x1 + m2(t)y1 −m2(t)x1z1

−m2(t)w1 + ṁ2(t)y1 − k2e2

u3 = −x2y2 + b1z2 + m3(t)x1y1 −m3(t)γ1z1 + ṁ3(t)z1 − k3e3

u4 = −x2z2 − d1w2 + m4(t)θ1y1z1 + ṁ4(t)w1 − k4e4

(4.15)

where α1, β1, γ1, θ1, a1, b1, c1 and d1 are the estimated parameters of the unknown
parameters α, β, γ, θ, a, b, c and d of the drive and slave systems.

The update rules for the estimated parameters are obtained as

α̇1 = −m1(t)(y1 − x1)e1 − h1(α1 − α)
β̇1 = −m2(t)x1e2 − h2(β1 − β)
γ̇1 = m3(t)z1e3 − h3(γ1 − γ)
θ̇1 = −m4(t)y1z1e4 − h4(θ1 − θ)
ȧ1 = (y2 − x2)e1 − l1(a1 − a)
ḃ1 = −z2e3 − l2(b1 − b)
ċ1 = y2e2 − l3(c1 − c)
ḋ1 = w2e4 − l4(d1 − d)

(4.16)

where ki, li, hi > 0(i = 1, 2, 3, 4).

4.5 Numerical simulations

Numerical simulations are presented to demonstrate the effectiveness of the pro-
posed synchronization controller. Fourth-order Runge-Kutta method is used to solve
systems(4.13)and(4.14) with time step size 0.001. The parameters are chosen to be
α = 10, β = 28, γ = 8/3, θ = 0.1, a = 36, b = 3, c = 20 and d = 1 in all simulations
so that the hyperchaotic Lorenz system and Lü system exhibit chaotic behaviours.
The initial conditions of the drive system are x1(0) = −1, y1(0) = −1, z1(0) = 1 and
w1(0) = −1, and those of the response system are x2(0) = 5, y2(0) = 2, z2(0) = −5
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Figure 4.3: The state trajectories of the drive system.

and w2(0) = −5. The initial values of the estimated parameters are chosen as
α1(0) = 10, β1(0) = 10, γ1(0) = 10, θ1(0) = 10, a1(0) = 10, b1(0) = 10, c1(0) = 10
and d1(0) = 10. The scaling function matrix elements are chosen as m1 =
−0.3(5 + 2 sin(2πt/10)),m2 = 1.1(5 + 2 sin(2πt/10)),m3 = −1.7(5 + 2 sin(2πt/10)),
and m4 = 0.6(5 + 2 sin(2πt/10)).Furthermore, the control gains are chosen as
(k1, k2, k3, k4) = (1, 1, 1, 1), (l1, l2, l3, l4) = (1, 1, 1, 1) and (h1, h2, h3, h4) = (1, 1, 1, 1).

The simulation results are shown from Fig.4.3 to Fig. 4.8.The state trajectories
of the drive system and the response system when control is not applied and when
control applied are depicted in Figs. 4.3, 4.4 and 4.5 respectively. Fig. 4.6 shows
the evolution of the MFPS errors, which display the time response of the MFPS
errors e → 0 with t → ∞. Figs.4.7 and 4.8 depicts the evolution of the estimated
parameters of hyperchaotic Lorenz system and hyperchaotic Lu system, which shows
the estimates of the unknown parameters adapt themselves to the true values. These
results show that the required synchronization has been achieved with our designed
the adaptive control law (4.15) and the parameter update law (4.16).

4.6 Conclusion

This work investigated the MFPS between the hyperchaotic Lorenz system and the
Lü system with fully uncertain parameters. On the basis of Lyapunov stability
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Figure 4.4: The state trajectories of the response system when no control is applied.
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Figure 4.6: The time evolution of MFPS errors between drive and response systems.
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Figure 4.8: The time evolution of the estimated parameters of the hyperchaotic Lü
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theory, we design adaptive synchronization controllers with corresponding param-
eter update laws to synchronize the two systems. All the theoretical results are
verified by numerical simulations to demonstrate the effectiveness of the proposed
synchronization scheme.





Chapter 5

Function projective

synchronization in chaotic and

hyperchaotic systems through

OPCL coupling

5.1 Introduction

Open-plus-closed-loop(OPCL) control method is a more general and physically re-
alizable coupling scheme that can provide stable CS(complete synchronization)
and AS(anti-synchronization) in identical and mismatched oscillators. Grosu et.
al,[111, 112] recently reported projective synchronization in chaotic systems through
open-plus-closed-loop(OPCL) coupling. Hyperchaotic systems possessing at least
two positive Lyapunov exponents have more complex behaviour and abundant dy-
namics than chaotic systems and are more suitable for some engineering applications
such as secure communication. Hence how to realize synchronization of hyperchaotic
systems through OPCL method is an interesting question.

In this chapter, we propose a physically realizable coupling function through
unidirectional OPCL coupling for the FPS of chaotic as well as more complex hy-
perchaotic systems.

5.2 Unidirectional OPCL coupling for FPS

In chapter 1 we considered the OPCL method for complete synchronization. Here,
we briefly discuss the OPCL method for the FPS of two mismatched chaotic or
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hyperchaotic oscillators. A chaotic or hyperchaotic driver is defined by

ẏ = f(y) + ∆f(y), yεRn, (5.1)

where ∆f(y) contains the mismatched terms. It drives another chaotic or hyper-
chaotic oscillator ẋ = f(x), xεRn to achieve a goal dynamics g(t) = α(t)y(t),where
α(t) is an arbitrary scaling function.

After coupling, the response system is given by

ẋ = f(x) + D(x, g), (5.2)

where the coupling function is defined as

D(x, g) = ġ − f(g) + (H − ∂f(g)
∂g

)(x− g), (5.3)

∂f(g)
∂g is the Jacobian of the dynamical system and H is an arbitrary constant Hurwitz

matrix (n× n) whose eigenvalues all have negative real parts.

The error signal of the coupled system is defined by e = x− g and f(x) can be
written using Taylor series expansion, as

f(x) = f(g) +
∂f(g)

∂g
(x− g) + · · · . (5.4)

Keeping the first-order terms in (5.4) and substituting in (5.2), the error dynam-
ics is obtained as

ė = He (5.5)

Since H is a Hurwitz matrix with all of its eigenvalues having negative real
parts, e −→ 0 as t −→∞ and we obtain asymptotic FPS.

5.3 FPS in chaotic oscillators

5.3.1 Numerical simulation :Identical oscillators

We consider FPS in two identical oscillators using Rössler oscillator systems[116].
The Rössler system arises from work in chemical kinetics and it is given by the
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following differential equations.

ẏ1 = −ωy2 − y3

ẏ2 = y1 + by2

ẏ3 = c + y3(y1 − d) (5.6)

which has a chaotic attractor when the system’s parameters are chosen as ω = 1, b =
0.15, c = 0.2 and d = 10

The Jacobian of the model is

∂f

∂y
=




0 −ω −1
1 b 0
y3 0 y1 − d


 (5.7)

System (5.6) is considered as the drive system. For simplicity, in all simulations
the arbitrary Hurwitz matrix is chosen as −I.

The response system after coupling is then given by

ẋ1 = −ωx2 − x3 + α̇y1 − e1 + ωe2 + e3

ẋ2 = x1 + bx2 + α̇y2 − e1 − (1 + b)e2

ẋ3 = c + x3(x1 − d) + α̇y3 + (α− 1)c + α(1− α)y3y1

−αy3e1 − (1 + (αy1 − d))e3 (5.8)

For numerical simulations,the arbitrary scaling function is chosen as α(t) =
3 + 1.5 sin(2πt/10). Results of the numerical simulations are shown in figures 5.1
and 5.2. Figure 5.1(a) shows the time series of x1 and y1 under OPCL coupling.
Figure 5.1(b) depicts the evolution of FPS errors ,which shows errors tending to
zero asymptotically. The ratio ‖x‖ / ‖y‖ plotted against time tends to the scaling
function as shown in figure 5.2, indicating FPS.

5.3.2 Numerical simulation :Mismatched oscillators

FPS in mismatched case can be illustrated with the example of Lorenz oscillators[6].
The nonlinear differential equations that describe the Lorenz system considered as
drive system is given by

ẏ1 = σ(y2 − y1) + ∆σ(y2 − y1)

ẏ2 = ry1 − y2 − y1y3 + ∆ry1

ẏ3 = −by3 + y1y2 −∆by3 (5.9)
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Figure 5.1: Identical Rössler system. (a)time series of y1(solid line) and x1(dashed
line)(b)the evolution of FPS errors
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Figure 5.2: Identical Rössler system. ‖x‖ / ‖y‖ plotted against time tends to the
scaling function

which has a chaotic attractor when the parameters are respectively chosen as σ =
10, b = 8

3 , r = 28.

The Jacobian of the system is

∂f

∂y
=



−σ σ 0
(r − y3) −1 −y1

y2 y1 −b


 (5.10)

The response system after the OPCL coupling is given by

ẋ1 = σ(x2 − x1) + α∆σ(y2 − y1)

+α̇y1 − (1− σ)e1 − σe2

ẋ2 = rx1 − x2 − x1x3 + α(α− 1)y1y3

+α∆ry1 + α̇y2 − (r − αy3)e1 + αy1e3

ẋ3 = −bx3 + x1x2 + α(1− α)y1y2 − α∆by3

+α̇y3 − αy2e1 − αy1e2 − (1− b)e3 (5.11)

For numerical simulations,the driver is chosen identical to the response except
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that ∆r = 5 and the arbitrary scaling function is chosen as α(t) = 5+2 cos(2πt/15).
Results of the numerical simulations are shown in figures 5.3-5.4.

5.4 FPS in Hyperchaotic oscillators

5.4.1 Numerical simulation :Identical oscillators

Hyperchaotic systems possessing more than one positive Lyapunov exponents exhibit
rich and complex dynamics than chaotic systems and are more suitable for some
applications like secure communications. In this section we apply OPCL control to
obtain FPS in two identical hyperchaotic Lorenz systems. The hyperchaotic Lorenz
system[120] is described by following nonlinear differential equations

ẏ1 = a(y2 − y1)

ẏ2 = βy1 + y2 − y1y3 − y4

ẏ3 = y1y2 − γy3

ẏ4 = θy2y3 (5.12)

The system exhibits hyperchaotic behaviour when a = 10, β = 28, γ = 8/3 and
θ = 0.1.

The Jacobian is given by

∂f

∂y
=




−a a 0 0
(β − y3) 1 −y1 −1
y2 y1 −γ 0
0 θy3 θy2 0




(5.13)

An identical response system after coupling is then given by

ẋ1 = a(x2 − x1) + α̇y1 − (1− a)e1 − ae2

ẋ2 = βx1 + x2 − x1x3 − x4 + α(α− 1)y1y3

+α̇y2 − (β − αy3)e1 − 2e2 + αy1e3 + e4

ẋ3 = x1x2 − γx3 + α(1− α)y1y2

+α̇y3 − αy2e1 − αy1e2 − (1− r)e3

ẋ4 = θx2x3 + α(1− α)θy2y3

+α̇y4 − θαy3e2 − θαy3e3 − e4 (5.14)

Simulation results when the arbitrary scaling function matrix is chosen as α(t) =
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Figure 5.3: Mismatched Lorenz system. Driver identical to response except∆r =
5(a)time series of y1(solid line) and x1(dashed line)(b)the evolution of FPS errors
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Figure 5.4: Mismatched Lorenz system. ‖x‖ / ‖y‖ plotted against time tends to the
scaling function

5 + 2 cos(2πt/15 + 10) is depicted in figures 5.5-5.6.

5.4.2 Numerical simulation :Mismatched oscillators

For the mismatched case we choose hyperchaotic Chen [121]oscillators. The hyper-
chaotic Chen system with mismatch which is chosen as driver is given by

ẏ1 = a(y2 − y1) + y4 + ∆a(y2 − y1)

ẏ2 = dy1 − y1y3 + cy2 + ∆dy1 + ∆cy2

ẏ3 = y1y2 − by3 −∆by3

ẏ4 = y2y3 + ry4 + ∆ry4 (5.15)

When a = 35, b = 3, c = 12, d = 7, 0.085 ≤ r ≥ 0.798, system is hyperchaotic.

The Jacobian is

∂f

∂y
=




−a a 0 1
(d− y3) c −y1 0
y2 y1 −b 0
0 y3 y2 r




(5.16)



5.4 FPS in Hyperchaotic oscillators 61

0 10 20 30 40 50
−150

−100

−50

0

50

100

150

Time

y 1,x
1

(a)

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

Time

e 1,e
2,e

3,e
4

(b)

Figure 5.5: Identical hyperchaotic Lorenz system. (a)time series of y1(solid line)
and x1(dashed line)(b)the evolution of FPS errors
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Figure 5.6: Identical hyperchaotic Lorenz system. ‖x‖ / ‖y‖ plotted against time
tends to the scaling function

The response system after coupling is obtained as

ẋ1 = a(x2 − x1) + x4 + α̇y1

−(1− a)e1 − ae2 − e4

ẋ2 = dx1 − x1x3 + cx2 + α(α− 1)y1y3 + α̇y2 + α∆dy1

+α∆cy2 − (d− αy3)e1 − (1 + c)e2 + αy1e3

ẋ3 = x1x2 − bx3 + α(1− α)y1y2 + α̇y3

−αy2e1 − αy1e2 − (1− b)e3

ẋ4 = x2x3 + rx4 + α(1− α)y2y3 + α∆ry4

+α̇y4 − αy3e2 − αy2e3 − (1 + r)e4 (5.17)

For numerical simulations,the parameters of the system are selected as a =
35, b = 3, c = 12, d = 7 and r = 0.2. The mismatch in parameters are chosen
as ∆a = 0, ∆b = 0, ∆c = 0, ∆d = 0 and ∆r = 0.5 so that both the drive and
response Chen systems exhibits hyperchaotic behaviour. The arbitrary scaling func-
tion is chosen as α(t) = 4 + 2 sin(2πt/10 + 20). The simulation results indicated in
Fig 5.7-5.8 show that the two mismatched systems are in FPS.
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5.5 Conclusions

FPS is a more general definition of synchronization. In FPS, the master and slave
system synchronize upto a scaling function which can be used get more secure com-
munication in application to secure communication because it is obvious that the
unpredictability of the scaling function can additionally enhance the security of com-
munication.The OPCL coupling method is a physically realizable method which is
suited for practical applications.We design controls through OPCL coupling for the
FPS of identical as well as mismatched chaotic and hyperchaotic systems.Numerical
simulations verify robust FPS.



64
Function projective synchronization in chaotic and hyperchaotic

systems through OPCL coupling

0 10 20 30 40 50
−150

−100

−50

0

50

100

150

Time

y 1,x
1

(a)

0 10 20 30 40 50
−15

−10

−5

0

5

10

15

20

25

Time

e 1,e
2,e

3,e
4

(b)

Figure 5.7: Mismatched hyperchaotic Chen system. Driver identical to response
except∆r = 0.5 (a)time series of y1(solid line) and x1(dashed line)(b)the evolution
of FPS errors
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Figure 5.8: Mismatched hyperchaotic Chen system. ‖x‖ / ‖y‖ plotted against time
tends to the scaling function





Chapter 6

Modified function projective

synchronization in hyperchaotic

systems through OPCL coupling

6.1 Introduction

In this chapter, we propose a scheme for realizing the MFPS of hyperchaotic systems
through OPCL coupling. We design controllers to obtain MFPS of two identical
hyperchaotic Rössler systems[122] and mismatched hyperchaotic Lü systems[119].
A secure communication scheme based on MFPS is also investigated.

6.2 MFPS through OPCL coupling

MFPS is an extension of FPS where drive and response systems are synchro-
nized upto a desired scaling function matrix m(t) = diag[m1(t),m2(t), ....., mn(t)]T .
The new goal dynamics g̃(t) is given by g̃(t) = [g1(t), g2(t), g3(t), g4(t)]T =
[m1(t)y1(t),m2(t)y2(t), m3(t)y3(t),m4(t)y4(t)]T for the four dimensional case.

The response system after coupling becomes

ẋ = f(x) + D(x, g̃), (6.1)
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where the coupling function is defined by

D(x, g̃) =




m1(t)ẏ1(t)
m2(t)ẏ2(t)
m3(t)ẏ3(t)
m4(t)ẏ4(t)




+




ṁ1(t)y1(t)
ṁ2(t)y2(t)
ṁ3(t)y3(t)
ṁ4(t)y4(t)



− f(g̃)

+(H − ∂f(g̃)
∂g̃

)




x1(t)−m1(t)y1(t)
x2(t)−m2(t)y2(t)
x3(t)−m3(t)y3(t)
x4(t)−m4(t)y4(t)




(6.2)

Now as in chapter 4, we define the errors e = (e1, e2, e3, e4)T = (x1(t) −
m1(t)y1(t), x2(t) − m2(t)y2(t), x3(t) − m3(t)y3(t), x4(t) − m4(t)y4(t))T . If e −→ 0
asymptotically we obtain MFPS.

6.3 MFPS of two identical Rössler hyperchaotic sys-

tems

Hyperchaotic Rössler system [122]is described by the following nonlinear differential
equations

ẏ1 = −y2 − y3 (6.3)

ẏ2 = y1 + ay2 + y4

ẏ3 = b + y1y3

ẏ4 = −cy3 + dy4

The system exhibits hyperchaotic behaviour when a = 0.25, b = 3, c = 0.5 and
d = 0.05.

The response system after coupling ,choosing the arbitrary Hurwitz matrix H =
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Figure 6.1: Time evolution of the drive system(6.3) states.

−I4 is given by

ẋ1 = −x2 − x3 + (m2 −m1)y2 + (m3 −m1)y3 + ṁ1y1 (6.4)

−e1 + e2 + e3

ẋ2 = x1 + ax2 + x4 + (m2 −m1)y1 + (m2 −m4)y4 + ṁ2y2

+e1 − (a + 1)e2 − e4

ẋ3 = b + x1x3 + (m3 − 1)b + (1−m1)m3y1y3 + ṁ3y3

−m3y3e1 − (1 + m1y1)e2

ẋ4 = −cx3 + dx4 + (m3 −m4)cy3 + ṁ4y4

+ce3 − (1 + d)e4 (6.5)

For numerical simulations, we choose the arbitrary scaling function matrix el-
ements as m1(t) = 0.05 + 0.03sin(t),m2(t) = 0.04 + 0.02cos(2πt),m3(t) = 0.03 +
0.015sin(2πt/20+50) and m4(t) = 0. The results of numerical simulations are shown
in figures (6.1)-(6.3). Figure 6.1 shows the time evolution of the state variables of
the drive and figure 6.2 that of the response system under coupling. Fig 6.3 displays
the evolution of errors tending to zero asymptotically indicating MFPS.
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Figure 6.2: Time evolution of the response system(6.4) states.
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Figure 6.3: The time evolution of MFPS errors between drive(6.3) and response
system(6.4).
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6.4 MFPS of two mismatched Lü hyperchaotic systems

To study MFPS in mismatched oscillators,we choose Lü hyperchaotic system[119].
The Lü hyperchaotic system with mismatch considered as the driver is given by

ẏ1 = a(y2 − y1) + y4 (6.6)

ẏ2 = −y1y3 + cy2

ẏ3 = y1y2 − by3

ẏ4 = y1y3 + dy4 + ∆dy4

where ∆d is the parameter mismatch. The system exhibits hyperchaotic behaviour
when a = 36, b = 3, c = 20 and −0.35 < d ≤ 1.30.

The response system after coupling is obtained as

ẋ1 = a(x2 − x1) + x4 + (m1 −m2)ay2 + (m1 −m4)y4 + ṁ1y1 (6.7)

−(1− a)e1 − ae2 − e4

ẋ2 = −x1x3 + cx2 + (m1m3 −m2)y1y3 + ṁ2y2

+m3y3e1 − (1 + c)e2 + m1y1e3

ẋ3 = x1x2 − bx3 + (m3 −m1m2)y1y2 + ṁ3y3

−m2y2e1 −m1y1e2 + (b− 1)e3

ẋ4 = x1x3 + dx4 + (m4 −m1m3)y1y3 + m4∆dy4 + ṁ4y4

−m3y3e1 −m1y1e3 − (1 + d)e4

Numerical simulations are performed by choosing the arbitrary scaling
function matrix elements as m1(t) = 0.03 + 0.02sin(2πt/10 + 20),m2(t) =
0.02 + 0.01cos(2πt/10), m3(t) = 0.05 + 0.025sin(2πt/20) and m4(t) = 0.03 +
0.015sin(2πt/10 + 15). The parameters of the drive and response systems are se-
lected as a = 36, b = 3, c = 20 and d = 1 and the parameter mismatch ∆d is chosen
as −0.5.Figure 6.4 and 6.5 display respectively, time response of the states of the
drive and response systems under OPCL coupling for MFPS. The synchronization
errors asymptotically tending to zero is depicted in figure 6.6.

6.5 Application of MFPS in secure communication

MFPS with the unpredictability of the scaling function matrix can provide enhanced
security in secure communication. In this section, a scheme for secure communica-
tion based on MFPS is investigated in theory. Fig. 6.7 shows a block diagram of the
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Figure 6.4: Time evolution of the drive system(6.6) states.
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Figure 6.6: The time evolution of MFPS errors between drive(6.6) and response
system(6.7).

communication scheme in which L1 and L2 are hyperchaotic Lü systems which are
used as the transmitter and receiver, respectively. ms(t) is the information signal
that has to be send through the communication channel securely. The information
signal is added to the dynamics of the chaotic system by changing y2 → y2 + ms(t).
Thus the chaotic driver is obtained as

ẏ1 = a((y2 + ms(t))− y1) + y4 (6.8)

ẏ2 = −y1y3 + c(y2 + ms(t))

ẏ3 = y1(y2 + ms(t))− by3

ẏ4 = y1y3 + dy4 + ∆dy4

Under the application of the control signal D to the receiver, MFPS of driver
and receiver is achieved and the information signal recovered at the receiving end
mr(t) is obtained as mr(t) = (x2 − m2(t)y2)/m2(t). The time evolution of the in-
formation signal ms(t) and the recovered signal mr(t) displayed in fig.6.8 show that
the information signal ms(t) is recovered after a short transient.
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6.6 Conclusion

This work investigated the MFPS of two identical and mismatched hyperchaotic
systems. Based on unidirectional OPCL coupling, we design controllers to realize
MFPS of two hyperchaotic systems. A scheme for secure communication based on
MFPS is also presented. All the theoretical results are verified by numerical simu-
lations to demonstrate the effectiveness of the proposed synchronization schemes.





Chapter 7

Summary

FPS is a more general form of synchronization. Hyperchaotic systems possessing
more than one positive Lypaunov exponent exhibit highly complex behaviour and
are more suitable for some applications like secure communications. In this thesis
we report studies of FPS and MFPS of a few chaotic and hyperchaotic systems.
When all the parameters of the system are known we show that active nonlinear
control method can be effectively used to obtain FPS. Adaptive nonlinear control
and OPCL control method are employed for obtaining FPS and MFPS when some or
all parameters of the system are uncertain. A secure communication scheme based
on MFPS is also proposed in theory. All our theoretical calculations are verified by
numerical simulations.
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