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ABSTRACT

Neural Network has emerged as the topic of the day.

The spectrum of its application is as wide as from ECG noise

filtering to seismic data analysis and from elementary

particle detection to electronic music composition. The

focal point of the proposed work is an application of a

massively parallel connectionist model network for detection

of a sonar target. This task is segmented into:

(i) generation of training patterns from sea noise that

contains radiated noise of a target, for teaching the

network;

(ii) selection of suitable network topology and learning

algorithm and

(iii) training of the network and its subsequent testing

where the network detects, in unknown patterns applied

to it, the presence of the features it has already

learned in.

A three-layer percept ron using backpropagation

learning is initially subjected to a recursive training

with example patterns (derived from sea ambient noise with

and without the radiated noise of a target). On every

presentation, the error in the output of the network is

propagated back and the weights and the bias associated with

each neuron in the network are modified in proportion to

this error measure. During this iterative process, the

vi'!



network converges and extracts the target features which get

encoded into its generalized weights and biases.

In every unknown pattern that the converged

network subsequently confronts with, it searches for the

features already learned and outputs an indication for their

presence or absence. This capability for target detection is

exhibited by the response of the network to various test

patterns presented to it.

Three network topologies are tried with two

variants of backpropagation learning and a grading of the

performance of each combination is subsequently made.
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CHAPTER 1

INTRODUCTION

The history of mankind is a never-ending chain of human

endeavours for survival in the struggle for existance and for

achieving mastery over the physical nature. Science and technology

which are the outcome of human intelligence. have helped mankind

fight a long way through in this war for supremacy. Innumerable

are the wonders of nature and inspiring are their ways of

manifestations. In man's inquisitive efforts to unravel the

mysteries around him, nothing in nature have been spared from

his dissection table - not even himself ! Many of our scientific

achievements are the results of such observations and the

successful efforts to mimic nature. The shape of ships and

submarines are strikingly similar to that of the big fishes.

Birds floating in the infinite blue sky were the inspiring

source behind the development of aircrafts. Had it not been for

our knowledge of the optical system in animals, the colourful

world of photography would never have become a reality. It is

rather astounding to understand that a primitive form of radar

has already been used by bats since time immemorial as their

navigational aid! Recent investigations into the structure and

functioning of the human brain and the associated phenomena of

cognition and perception have added yet another marvel to the

above. And that is the marvel of Artificial Neural Networks

(ANN).

• - 1



1.1 Coaputers Versus Huaan Brain

In the world of popular science, the modern computer is

often referred to as the "electronic brain". Computers, as they

are known today, work in an entirely different manner as compared

to the human brain. A numerical calculation performed within a

split-second by a supercomputer might take centuries for a human

to complete. But the computer cannot do some simple tasks which

even an infant baby can, like identifying its mother's face among

a few unfamiliar faces. Due to these inherent limitations, it

will be a long time before the brain can be substantially

mimicked.

Computers and human brain differ basically in their

mode of approach to problems and in the way they perform.

Conventional computers employ the von Neumann architecture, are

logical in execution and can only do logical operations well.

Though it is rather impossible for a human brain to surpass the

phenomenal speed, accuracy and efficiency of a computer, the

computers are left far behind by the brain in solving problems

relating to machine-vision and speech recognition.

In essence, it is the difference in design that

can account for the difference between the two systems. Computers

are designed to carry out instructions sequentially and extremely

fast, whereas brain works with many more slower units working in

a highly parallel fashion. Such a parallel style is most suited

for problems of vision or speech recognition which are also

2



highly parallel in nature.

1.2 Neural Networks - A Historical Perspective

As early as 1940, neurobiologists and

neuroanatomists had come to understand about the brain's

" wiring " - which they called "neural networks" - involving

hundreds of billions of neurons, each connecting to hundreds or

thousands of others, but little of its operation was known. It

was W.S.McCulloch and W.Pitts (1943) who showed how these

networks could compute; but however, the question as to how they

could learn remained unanswered until Donald Hebb proposed the

hypothesis [32] called "Hebbian learning" in 1949. Hebb's

proposal, which became the starting point for the development of

learning algorithms for artificial neural networks, had to wait

till 1951 when Dean Edmonds and Marwin Minsky succeeded in

building their learning machine. Although Minsky was perhaps the

first to come up with a learning machine, the real onset of

meaningful learning in neuron-like networks can be traced to the

work of Frank Rosenblatt [33] who invented a class of simple

neuron-like learning networks called "perceptrons". The

techniques of digital computer simulation and formal mathematical

analysis which are of fundamental importance to neural network

analysis were pioneered by him.

Early successes produced a burst of activity

and optimism and it seemed that the secret of intelligence had

been found and that the human brain was as simple as a large

.. 3



enough network This illusion was soon dispelled when the

networks failed to solve some of the problems (which the brain

could very well solve ). This led to intense diagnostic

analysis by Minsky, S.Papert and others who developed rigorous

theorems regarding network operation (1969).

Though the discouraged researchers left the

field for more promising areas, dedicated scientists like Teuvo

Kohonen, Stephen Grossberg and James Anderson continued their

efforts facing many hardships. The research papers published

during the period from 1970 to 1980 set a strong theoritical

foundation, upon which the more powerful multilayer networks of

today are being constructed.

In the past few years, there has been an

explosive increase in the amount of research activity in the

field of neural networks resulting in regular international

conventions, dedicated journals and special issues of journals on

neural networks and a flood of research papers in other

publications. The substantial amount of innovative investigations

parallelly going on in the field of hardware have already

resulted in the introduction of a few neural network chips also

in the market [11-23].

1.3 Neural Network for Sonar Signal Processing

Sonar signal processing is intented to achieve

(a) detection of targets like submarines, surface ships,

•



torpedoes etc. and (b) accurate estimation of their range,

bearing and speed (Doppler). A sonar system has to fulfil these

missions under extremely adverse environments like:

(1) propagation peculiarities due to sound velocity variation

with ocean depth

(2) spreading and absorption losses

(3) contaminating noise

(4) spatial coherence of signals

(5) instability of sonar platform at high sea-states

(6) low data rates due to low velocity of acoustic propagation

(7) extremely stringent dynamic range requirements

The sonar signal processors have to take the above important

factors into account. The special features of the sonar

environment have to be made use of to the best to realise the

most efficient processor that gives maximum probability of

detection with minimum false alarm. The ocean environment being

nonstationary, the processor has to be adaptive so as to adjust

itself to the changing scenario •

•
Traditional pattern recognition techniques are

often used to interpret complex sonar signals. To reduce the

amount of computation and to achieve accurate classification,

often simplifying assumptions are made about the structure of

these signals. For applications where such assumptions are valid,

these techniques do perform well. However. if the signals are not

simply distributed or are highly correlated, these methods may be

inadequate and other more general techniques available are often

impractical [25].
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In this context, the multi-layered neural

networks, which are massively parallel in nature, provide

potential alternatives to traditional pattern recognition

methods. The learning algorithms they use make far restrictive

assumptions about the input pattern structure. Their inherent

parallelism allows very rapid parallel search and best-match

computations. Capabilities for failure tolerance, error

correction and self-organization along with optimised system

complexity render neural networks excellent tools for sonar and

other applications.

The sophisticated nature of sonar signal

processing, coupled with the difficulty to use conventional

pattern recognition techniques has been the motivation behind the

work under discussion , which explores the possibility of using

neural networks for sonar target detection and classification.

The chapters to follow, therefore, summarizes the efforts to

evolve a neural network for this purpose. Chapter 2 introduces

the concept of neural networks and evolves the idea of neural

computing using Artificial Neural.Networks. The technique of

backpropagation to enhance the capability and coverage of neural

computing is surveyed in Chapter 3. Chapter 4 outlines the

problem of Sonar Target Detection, elaborating on the diverse and

complex nature of the problem. The architecture and

implementation of a neural network for target recognition,

proposed by the author, are discussed in Chapter 5. The results

of the simulated runs of the neural network are summarized in

Chapter 6. A brief survey of the hardware aspects of neural



networks is made in Chapter 7. Various prospective applications

of neural networks in 'sonar technology which are worth further

investigation are also discussed in this chapter •

•
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CHAPTER 2

NEURAL NETWORKS AND NEURAL COMPUTING

2.1 The Structure of the Brain

The human brain is one of the most complicated

system that has been studied in detail, but still vaguely

understood. It contains over one hundred billion basic computing

elements called "neurons". Each of these neurons is connected to

about ten thousand others by information channels (Fig 2.1)

and may have many input signals but is limited to one and only

one output signal. Those inputs that are not outputs from other

neurons are then inputs from the outside world. Though the

neuron shares many characteristics with the other cells in the

body, it has unique capabilities to receive, process and transmit

electrochemical signals over the neural pathways that comprise

the brain's communication system. This network of neurons, called

Biological Neural Network(BNN), is responsible for such phenomena

as thought, emotion and cognition.

2.2 The Biological Neuron

The neuron is the fundamental building block of

the brain and is a stand-alone analogue logical processing unit

whose inputs and output are related usually by first-order

ordinary differential equations.

8
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Fig. 2.1 The Biological Neural Network

9



As shown in Fig 2.2, the neuron consists of three

sections: "soma", de~drites and the axon. The soma is the cell

body of the neuron. Its outer membrane has the unique capability

of generating nerve impulses which is a vital function of the

nervous system and central to its computational abilities. Input

signals from other neurons enter the soma through the long,

irregularly shaped and complexly branched filaments called

dendrites. On the dendrites are synaptic connections where

signals are received from other neurons (Fig 2.3). The axon

serves as the output channel of the neuron. Near its end, the

axon has multiple branches, each terminating in a synapse. The

axon is a nonlinear threshold device producing a voltage pulse

called the "action potential" when the potential within the soma

rises above a critical threshold.

The axon of a neuron is coupled with the dendrite

of another through a specialised contact called a "synapse".

Under the influence of the action potential, the synaptic

vesicles release chemicals called "neuro-transmitters" which

diffuse across the synaptic cleft and chemically activate gates

on the dendrites. These gates, when open, allow the flow of

charged ions thereby inducing a voltage pulse on the dendrite and

it is conducted along into the next neuron body (Fig 2.4).

Since the strength of the induced signal depends on the number of

neuro-transmitters emitted, the synapse provides a weighted

electrical connection.

Some neuro-transmitters are excitatory and others

10
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are inhibitory. The soma combines the signals received over its

dendrites and if the resultant signal is above a threshold, it

fires and a pulse voltage thereby produced, propagates down the

axon to other neurons. Thus, a single neuron can generate a pulse

that will activate or inhibit hundreds or thousands of other

neurons each of wh~ch can, in turn, act upon hundreds or

thousands of other neurons. It is this high degree of

connectivity rather than its functional complexity that gives the

neuron its computational power.

2.3 Learning in Brain

As explained above, the huge computation rate is

easily achieved in the brain by employing a massively parallel

distributed processing procedure that employs a huge number of

simple processing elements viz. the neurons. Learning is thought

to occur in brain when modifications are made to the synaptic

weights that couple the neurons. It is a process of

self-organization and adaptation based on the environmental

inputs to the brain from the outside world.

Since many neurons are involved in the brain's

computations, the contribution from a single one is not too

significant. Thus, the failure of a neuron doesnot affect the

performance of others. As the brain learns, it adjusts to this

permanent loss of one of its neurons and brings in new ones. This

is called "fault tolerance" which is a vital feature of brain's

operation. In case of continuing damage, parallel distributed

12



processing systems exhibit a "graceful degradation" where the

system performance slowly falls from a high to a reduced level

instead of dropping abruptly to zero.

2.4 The Artificial Neuron

Artificial neural net models attempt to achieve

real-time response and brain-like performance using many simple

processing elements viz. artificial neurons operating in parallel

as in BNNs. Since the idea behind neural computing is to produce

computing systems having many useful properties of the brain by

modelling the major features of the brain and its operation, it

is essential that the model functionally resembles the original

to the utmost possibility.

The basic features of the simple biological

neuron, which were discussed in the previous sections, are

depctited in Fig 2.5 • The artificial neuron was designed to

mimic the first-order characteristics of the biological neuron

viz. (a) control of the electrochemical signals through the

dendrites by the synaptic strengths (b) combination of the

controlled signals and (c) thresholding of the combined signal.

Replacement of the above three features respectively with similar

ones as (a) signal multiplication with weights (b) summation of

the weighted signals and (c) application of a threshold function

to the summed up signal results in a basic model of artificial

neuron, shown in Fig 2.6 A comparison between the BNN and ANN

on various features is made in Table 2.1

13



Fig 2.6 depicts the functions associated with an

artificial neuron, say 'the j th one, which is part of an ANN.

Inputs XI ,X2., ••.•••• , X N to this neuron are the outputs from

other neurons 1, 2, .....••.. , N preceding it and its output

( which is also referred to as the activation of unit j )fans out

to serve as the inputs to the neurons following it. A network

with this type of signal flow is called a feed-forward network.

Since the model neuron thresholds the weighted sum of its inputs,

NETJ = WljXI+W~jX2-+ •••.••••••• + W Nj X N
N

= L (J'J' X'Let L L

In vector form it can be written as

NET = JeW

If f denotes the activation function, then

(2.1)

( 2 • 2)

= ( 2 • 3)

The activation function is generally nonlinear and the type of

nonlinearity characterises the behaviour of the neuron. The

common types of nonlinearities viz. hard limiters, threshold

logic elements, sigmoidal nonlinearities and hyperbolic tangent

function which are used to calculate the output state of the

neuron are shown in Fig 2.7 [9.26]. The nonlinear activation

functions are vital to the expansion of the network's

computational capability beyond that of the single - layer

network [9]. (In all the implementations, the author has used

the sigmoidal nonlinearity for the activation function)
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2.6 Artificial Neural Networks (ANN)

A single neuron can perform certain simple pattern

detection functions. But the power of neuro-computing comes from

connecting neurons into networks. The simplest in this is a

single-layer network containing an array, of interconnected

neurons as shown in Fig. 2.8 •

Cascading a group of single-layer

networks constitutes a multi-layered feed-forward ANN (Fig 2.9).

Computational capabilities better than that of single layer are

offered by the multilayered ones. The performance of the network

is found to improve as the number of hidden units is increased

[25]. Recurrent type of networks employing feedback connections

are also existent. They exhibit properties of a short-term memory

since their output state depends partially on their previous

inputs.

ANNs, like their biological counterparts, exhibit

the ability to learn and recognize input patterns by adjusting

the values of the synaptic weights that interconnect the various

nodes. This requires training of the network with example

patterns which are sequentially applied as inputs while adjusting

the weights according to a predetermined procedure called

"learning algorithm". During training, which is an iterative

process, the network weights gradually converge to values such

that each input vector produces the desired output vector .

.18
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The neural network trainings are basically of two

types: supervised training and graded (unsupervised) training. In

both, it runs through a series of trials. In supervised training,

the network is provided with both input vector and the

corresponding target vector. After each trial, the network

compares its computed output with the target, .utilises the

difference (error) to modify the weights according to an

algorithm that tends to minimise the error; and tries again,

iterating until the output error reaches an acceptably low level.

In graded training, the network is given input data but no

desired output data. Instead, after each trial or series of

trials, it is given a grade or performance score that tells it

how well it is doing [7,9]. In either case, after training, the

network is ready to process and classify genuine inputs.

Neural networks are characterised by (a) the

number and modes of synaptic interconnections (b) the node

characteristics that are classified by the type of nonlinear

elements used and (c) the kind of learning rules implemented. A

variety of neural network models which differ in the above

features have been evolved for different applications. The most

popular among them are listed in Table 2.2 [7].

2.6 Conclusion

The capabilities of earlier feedforward networks

were limited and

network. It was

many problems couldnot be

then suggested [28] that a

20
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TABLE 2.2

Most Popular Neural Networks

Ym. ,

Hlme ofnetwork Inventors end developers Introduced Prlmery eppllcetlon. Umllellon. Comments
AdaptlVil resonance Galt Carpenter, North- 1978-86 Pallern recognition, asps- Sensitive 10 translation, V,ry sophlstlcal'd; nol yo1 ap-
theory eastern U.: Stephen clally when pattern Is dlstortion. changes In plltd to many problems

Grossberg, Boston U. complicated or unfamiliar scale
to humans (radar or sonar
readouts, voiceprints)

Avalanche Stephen Grossberg, 1967 Continuous-speech r8eog- literal playback ofmotor Cla~s of networks-no single
Boston U. nltion; teaching motor - sequences-no simple network can doall these tasxs

commands to robotic arms way to alter speed or
Interpolate movements

Back propagation Paul werbos. Harvard 1974-85 Speech synthesis from Supervised training The most popular network
• U.; David Parker. Stan- text: adaptlve control of only-correct Input- loday-works...11, slmplt 10

lord U.; David Rumel· robotic arms; scoring of output examples must learn
hart. Sianiord U. bank loan applications beabundant

Bidirectional as- Bart Kosko, U. of South' 1985 Content-addressable as- Low storage density: Easiest network to learn good
soclative memory ern California sccianve raemory . data must be properly ,ducalional tool; associates 'rag-

.. coded mented pairs ofobjects with
complete pairs

Boltzmann and Jellrey Hinton, U, of 1985-6 Pattern recognition lor im- Boltzmann machine: long Simple networks In which noise
Cauchy machines Toronto; Terry Sej- ages, sonar, radar training time. Cauchy function is used to lind a global

nowsky, Johns Hopkins machine: generating minimum
U.; Harold Szu. Naval noise in proper statist I-
Research lab cal distribution

Brain stale in a James Anderson, 1977 Extraction of knOWledge One-shot decision Similar to bid:recUonal assccia-
box Brown U, from data bases making-;-no iterative live memory j,'l completing frag-

reasorunq mented inputs
Cerebcltatron David Mar, MIT: Jamos 1969 82 Controlling motor action 01 aequtrcs complicated Similar toavauncne network: can

Albus. NBS; Andres ronouc arms centro: input blend several command sequences
Pelllcnez. NYU with different weights to Interpo-

late motions smoothly as needed

Counterpropagation Robert Hecht-Nielsen. 1986 Image compression: Large number 01 pro- Functions as a self-programming
Hscnt-Nlelsen Neuro- stausucat analysis; loan cesslng elements and look-Up table; similarto back
computer Corp. appucauon scoring connec:ions required propagation only simpler, at-

lor high accuracy lor though also less powerful
any size 01 problem

Hopfield John Hopfield, Calilornla 1982 Retrieval 01 complete data Does not learn- Can beImplemented ona large
tnst. 01 Technology and or images Irom fragments weights must be set In scale
AT&T Boll Labs advance

Madaline Bernard Wldrow, 1960-62 Adaptlve nulling 01 radar Assumes a linear rata- Acronym stands lor multiple
Stanlord U. Jammers; adaptive modems; tionship between Input adaptive linear elements; power-

adaptive equalizers (echo a~d output lui learning IJ.w; In commercial
cancellers) intelephone lines use for more man 20 years

Neocognltron Kunlhlko Fukushima. 1978-8" Handprintod-charactc r Requires unusually Most compucateo network ever
NHK Labs recognition large number 01 developed; lnsensltlve to differ-

processing elements ences In sca:e. translation, rota-
and connections non: able to identify complex

characters (such as Chinese)

Perceptron Frank Rosenblatt, Cor- 1957 Typed-character recognition CannoI recognize com- The oldest neural network
nell U orex characters (such known; was tiujlt In hardware:

as Chi:lese); sensitive rarely used today
to difference in scale,
translation, distortion

Self-organizing Ieuvo Kohonen, Helsinki 1980 Maps one geometrical ro- Requires extensive More effective than many al·
map U, 01 Technology gion (such asa rectangu- traininG gorithmic tecnntcues for nurnerl-

targrid) onto another cal aerodynamic new calculations
(such as analrcralt]

Courtesy, IEEE Spectrum, March 1988
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with backpropagation to adjust the weights can solve a

class of problems. Tne chapter to follow discusses

backpropagation algorithm used in multilayer ANNs.
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CHAPTER 3

THE BACKPROPAGATION ALGORITHM

The classification capability of the neural network

. improves with more number of hidden layers and with all layers

adaptive. It is a simple matter to adapt the neurons in the output

layer, since the desired responses for the entire network are the

desired responses for the corresponding output neurons. Given the

desired responses, adaptation of the output layer can be a straight

forward exercise of the LMS algorithm. But, fundamental difficulty

lies in obtaining the desired responses for the neurons in the

hidden layers. The backpropagation algorithm is a method for

establishing desired responses for such neurons. This algorithm was

reported earliest by P. Werbos [38], then discovered by D.B.

Parker [39] and rediscovered by D.E. Rumelhart, J. L. McClelland and

others [2].

3.1 The Perceptron

Network paradigms for pattern recognition were

explored by McCulloch and Pitts in their studies on ANNs during

the 1940s [34]. The neuron model they proposed is shown in

Fig 3.1 . The ~ unit multiplies each input x by a weight wand sums

up the weighted inputs. If this sum is greater than a threshold,

the output is "one" ; otherwise it is "zero". These systems and

their variants are collectively called "perceptrons".
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In general, they consist of a single layer of neurons connected by

weights to a set of inputs as depicted in Fig 3.2 .

3.1.1 The Perceptron Training

The perceptron learning is a variant of the HebhLan

learning proposed in 1949 by Donald Hebb [32]. According to the

perceptron learning model, the synaptic strength interconnecting

two neurons in a network is increased if both the source and

destination neuron are activated. In this way, the often-used paths

in the network are strengthened.

A perceptron is trained by presenting a set of

patterns to its input, one at a time, and adjusting the weights

until the desired output occurs for each of them. A pattern vector

X is applied to the network input and the output vector Y is

calculated for the present weight vector W from the relation

Y = X W . If Y is different from the target value, the weights

connecting to inputs enhancing this erroneous result are modified

in value to minimise the error. If Y is correct, nothing is

chansed. This process is repeated for all other pattern vectors so

that the network generalises to classify them correctly.

The single-layer perceptron, which employs a

hard-limiting threshold function, suffers from the "credit

assignment" problem and hence is seriously limited in its

representational ability. Further, the limitations imposed by
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Fig. 3.1 Perceptron Neuron
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Fig. 3.2 Single-Layer Multioutput Percept ron
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linear separability restricts the applicability of single-layer

networks only to classification problems in which the components of

the input vectors can be separated geometrically with a straight

line. A large class of linearly inseparable problems (ex: the

Exclusive-Or problem) do set definite bounds on the network

capabilities.

Thus, it is important to know beforehand if a given

function is linearly separable. But there is no simple way to

ensure the linear separability when the number of variables is

large. The probability of any randomly selected function being

linearly separable become vanishingly small with even a modest

number of variables [9]. Also, in many real-world situations, the

inputs are often time-varying and may be separable at one time and

not at another. Hence single-layer perceptrons are limited to

simple problems.

3.2 The LKS Algorithm

One problem with the perceptron convergence

procedure is that decision boundaries may ocsillate continuously

when inputs are not separable and distributions overlap. A

modification to the perceptron convergence procedure can form the

least mean square (LMS) solution in this case. This solution

minimises the mean square error between the desired output and the

actual output of the net. The algorithm that forms the LMS solution

is called the Widrow-Hoff or LMS algorithm [35,36].



The LHS algorithm is identical to the perceptron

convergence procedure except that the hard-limiting nonlinearity is

made linear. Weights are corrected on every trial by an amount that

depends on the difference between the desired and the actual

outputs. The error function for a given Bet of weights is computed

as the squared error summed over all input patterns and output

neurons.

To find a set of weights which minimises the error

function, the LHS procedure finds the values of all the weights

that minimise this function using the "gradient descent" method.

Here, after the presentation of each pattern, the error on that

pattern is computed and each weight is moved down the error surface

gradient towards its minimum value for that pattern. The system

thus moves downhill in the weight-space until it reaches the

minimum error value. With all the weights having thus reached their

minimum, the system has reached equilibrium.

3.3 The Hulti-layer Perceptron

When pattern classes cannot be separated by a

hyperplane, a network with a more complex structure than the

single-layer perceptron is required. Such a feed-forward network,

called the multi-layer perceptron, has one or more additional

hidden layers between the input and the output layer. The neurons

in all the layers are similar to that in a perceptron, except that

instead of the hard-limiting function, the sigmoid function is used



for thresholding. The capabilities of the mUlti-layer perceptrons

to overcome many limitations of their single-layer counterpart stem

from this sigmoidal nonlinearity.

The training algorithm for multi-layer perceptron

is called the "generalised del ta rule" or the "backpropaga tion

rule" proposed by Rumelhart, McClelland and Williams in 1986 [2].

This algorithm, which is a generalisation of the LM3 algorithm,

uses a gradient search to minimise a cost function equal to the

mean square difference between the desired and the actual net

outputs.

Here, the net is trained with supervision. Weights

and node biases are initialised to small random values and all

training patterns are then presented repeatedly. Weights are

adjusted after every trial until the cost function is reduced to an

acceptable value or remains unchanged. An essential component of

the algorithm is the iterative procedure that propagates error

terms back from nodes in the output layer to those in lower layers.

3. 4 The Backpropagation (BP) AlgorithIII

Let

Ep the output error function corresponding to pattern p.

E the total of the error function for all the patterns.

tpj the target (desired) output at node j when the p th

pattern is presented at the input.

0pj the actual output at node j corresponding to p th p,attern



presented at the input.

Wij the weight of. the connection from node i at the input

layer to node j at the output layer.

Since the network is of multi-layered nonrecurrent

feed-forward configuration, a node (neuron) in any layer sends its

output only to nodes in heigher layers and receives inputs only

from nodes in lower layers.

The net output of each unit j, for the pattern p, can be written as

(3.1)

The output Opj from each unit j is the result of a threshold

activation function f acting on the above weighted sum.

ie. = (3.2)

Although any continuously differentiable monotonic function can be

used for the thresholding, for the multi-layer perceptron it is the

sigmoid function that is used. Its continuity and nonlinearity

provide the neurons with the required differentiability along the

signal paths of the network and computational power in multi-layer

mode [24]. The sigmoid function is defined as :

f(net) =
1

1 + e -a net
( 3.3 )

and has the range 0 < f(net) < 1 . Here 'a' is a +ve constant that

controls the "spread" of the function. It also acts as an

automatic gain control since fQr small input signals, its slope is



steeper, resulting in rapid changes in the function and hence a

large gain. For large. inputs, the slope and hence the gain is much

less. The sigmoid function thus renders the network capable of

accepting large inputs without loosing sensitivity to small changes

in the signal.

Another advantage of the sigmoidal nonlinearity is that it has a

simple derivative which simplifies the implementation of the BP

system.

From (3.2) and (3.3),

0pj

so that

=
1

1 + e -a netpj
(3.4)

=

aOpj

anetpj

a 0pj (1 - 0pj) ( 3 . 5 )

Thus, the derivative is a simple function of the outputs. Now, let

the error function be proportional to the square of the difference

between the actual and desired output for all patterns to be

learned. Thus,

=
1

2
(3.6)

where j ranges over all the output nodes. The factor 1/2 makes

the analysis simpler and brings the error function in line with

other similar measures.

Considering the error function for all the patterns,
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E = !:: Epr
1
L~ _ ° ,)2= (tpj

2 P a PI (3.7)

with p ranging over the entire set of input patterns. The objective

is to find a set of weights so as to minimise E. The setup being

deterministic, the LHS procedure employing the "gradient descent"

algorithm in the weight-space can be used to arrive at the values

of these weights. Thus it is required to compute

= (3.8)

and move Wjj by an amount proportional to the gradient. Since the

training patterns are presented to the network in succession during

the learning phase, the task is to compute derivatives of Ep with

respect to different weights.

Using the chain rule,

=
anetpj

aW"II
(3.9)

But, using (3.1), the second term in the right hand side of (3.9)

can be written as

anetpj a

~
= W1j °pl

aWjj aWjj

L
aWlj

°pl=
L aWjj

= 0pj (3.10)
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since =
[

10 ' for I = i

otherwise.

If the change in error can be defined as a function of the change

in the net input to a unit as,

Then

aEp

anetpj

(3.9) can

aEp

aWij

=

be written as

=

(3.11)

(3.12)

Decreasing the value of Ep thus means making the weight changes

proportional to Bpi 0pi·

ie. (3.13)

Where Ap Wij is the change made in Wii corresponding to pattern p

and ~ is a step size parameter for the gradient descent (called

"learning rate coefficient"). A knowledge of the Bpj value for each

of the units will help in reducing E.

Applying the chain rule to (3.11),

= = (3.14)

But, from (3.5)

aOpj

anetpj
=



The value of the derivative of Ep for the outputunits can be

obtained from (3.6) as

Hence for all output units, from (3.14)

(3.15)

For the output neurons, the values of the target tpj are readily

available and the corresponding output Opj is computable using the

present weight values. Hence using (3.15) and (3.13), all weights

connecting to output units can be updated. But, this is not

possible for the hidden neurons since their targets are not known.

Thus, if unit j is not an output neuron, using the chain rule of

differentiation again,

a Ep L
aEp anetpk

=
aOpj k anetpk aOpj

L
a Ep a

L= Wik 0pi
k anetpk aOpj i.

Using (3.1) and (3.11) and noting that the sum drops out since

the partial differential is nonzero for only one value as in

(3.10),

=L
k
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= (3.16)

Using (3.16) and (3.5) in (3.14), the error function for a unit j

which is not an output unit is given by

= (3.17)

If neuron j is in a layer directly below the output layer, then Wjt

is nonzero only if k is an output unit. If k is an output unit,

then its 6pt is known from (3.15) and the modified weights

pertaining to neurons in the output layer is computed from (3.13).

The units in layer below can now use (3.17) and (3.13) to modify

the weights pertaining to them. This process can be carried out

till the input layer.

A close observation of the above relations reveals

a forward sweep in which outputs of neurons in each layer undergoes

a weighted combination to produce inputs to neurons in the next

higher layer. But in the learning phase, there is a reverse sweep

where errors are propagated backward using the same weights.

Networks employing the passing back of the error function during

their learning phase are referred to as "backpropagation networks".

For any pattern, using (3.5), (3.13), (3.15) and (3.17), modified

weights for the output layer and the hidden layers are respectively

given by

Wjj(n+l) = Wjj(n) + a 1) OJ OJ (1 - 0j)(tj - OJ)

and

(3.18)

(3.19)

34



Using the above, weights are progressively modified from the output

layer to the input layer side.

3.4.1 Effect of Bias

More rapid convergence of the training process can

be achieved by providing each neuron with a trainable bias that

offsets the origin of the threshold function. This feature is

incorporated into the learning algorithm by adding to each

neuron, a weight connected to +1. This weight is trainable in the

same way as all the other weights except that the source is always

+1 instead of being the output of a neuron in a previous layer.

3.4.2 Shape of the Error Surface

The surface formed by the contour of the error

measure in a multi-dimensional "weight space" is called the "error

surface". In networks with hidden neurons, the error surface can be

complex and may contain many local minima. Hence it is possible

that the steepest descent in weight space may get stuck at anyone

of the local minima thereby failing to reach the global minimum

(corresponding to minimum-mos terror). I f the number of neurons and

connections in the network are more than those reuired for the

task, poor local minima are rarely encountered [3].
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3.4.3 Number of Layers and Neurons

Though more number of hidden layers leads to more

complex decision regions in the pattern space and hence to improved

power of classification, it is not limitless. In general, a network

with three layers of perceptron units can form arbitrarily complex

decision regions capable of separating any meshed class of input

patterns. The "Kolmogorov representation theorem" [37], which

demonstrates that a three-layer perceptron can form any continuous

nonlinear function of the inputs, states that more than three

layers are never needed in a network. Hence, a three-layer

perceptron with two hidden layers has surprising computational

power and can emulate any traditional deterministic classifier

[6,26,28].

The number of neurons in a network must be large

enough to have a compatible depth of complexity for the decision

region as demanded by a given problem. It must, however, be small

enough to enable reliable estimation of the many weights from the

available training data. Lippmann [28] states that in a three-layer

network, the number of neurons in the second layer should typically

be more than three times that in the first layer.

3.4.4 The Momentum Term

Network learning is accomplished by following the

energy function down in the steepest direction until it reaches the
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bottom of a well in the energy landscape. Hence, once entrapped in

a local minimum, there is no direction to move in order to reduce

the energy further. This renders climbing up the nergy wall and

settling at the global minimum rather difficult.

One way of circumventing this is by giving the

weight changes some "momentum" which introduces into the weight

adaptation equation in the BP algorithm an extra term that is

proportional to the amount of the previous weight change

(Rumelhart, Hinton and Williams - 1986). It produces a large change

in the weight if the changes are currently large and will decrease

as the changes become less. This means that the network is less

likely to get stuck in local minima early on, since the momentum

term will push the changes over local increases in the energy

function, thus following an overall downward trend. Once a weight

adjustment is made, it is 'remembered' and serves to modify all

subsequent weight adjustments. The modified equations for weight

adjustment are:

Wi j(n+1 )

D.W·· (n)
1J

=
=

W.. (n) + ·W.. (n) where1) .. 1)

.. 8· O· + a 'W.. (n-1)
'f ) 1 .. 1J (3.20)

The momentum coefficient a is usually set to around 0.9 For

faster learning, both 'I and a should be high.

3.4.5 Exponential Smoothing

A method of weight modification based on exponential
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smoothing was proposed by Sejnowski and Rosenberg (1987). It

modifies the weight as.

=

Wi j(n+1) =

AWij(n)

Wij(n) + 'I

6 AWij(n -

AW .. (n)
I]

1) + (1

where

-6)6·0·. J I (3.21)

The smoothing coefficient 6 is in the range 0 to 1 . If 6 = 0,

smoothing is minimum and the entire weight adjustment comes from

the newly calculated change. If 6 = 1, the new adjustment is

ignored and the previous one is repeated. There is a region between

o and 1 where the weight adjustment is smoothed by an amount

proportional to 6. The training rate coefficient 'I serves to adjust

the size of the average weight change.

3.4.6 The BP Training Procedure

The BP training is an iterative process which aims

at minimising the mean square error between the actual and the

desired output of the network being trained. The various steps

involved in the training are:

Step 1 '" Initialise all neuron weights and biases to small

random values.

step 2 '" Present the training pattern (inputs and desired

outputs) to the network.

Step 3

Step 4

Step 5

Calculate the actual outputs of the network.

Compute the error (ie. difference between the actual

and the desired output).

Adapt weights using the recursive algorithm. Start
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from the output layer and work backwards through the

hidden layers upto the input layer.

Step 6 ... Repeat steps 2 through 5 till the error falls to an

acceptably low value.

3.5 Conclusion

Some aspects of the conventional BP algorithm as

well as two of its improved versions viz. the momentum method and

the exponential smoothing method were considered. Having

established the requirement to use multilayer neural networks with

backpropagation to solve complex problems, the next chapter

analyses Sonar Detection problems, thereby evolving the requirement

of a multilayer network with backpropagation for sonar target

detection.
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CHAPTER 4

SONAR TARGET DETECTION

4.1 Introduction

Underwater warfare today constitutes one of the

greatest threats to the freedom of the seas. Modern warships are

reasonably well protected against aerial threats by the cover of

sophisticated radar systems and long-range lethal weapons. But

they are quite vulnerable to underwater threats from submarines

because detection of underwater targets is a relatively difficult

task. In such a context, the sonar offers a powerful tool for

submarine detection. In the present state of the art, a sonar is

defined as the method or equipment that employs underwater sound

for detecting, locating and identifying objects in the sea. This

includes all applications of underwater sound.

4.2 The Sonar Enviro~ent

Sonar systems can operate either in "active" mode

or in "passive" mode. In the former, a well-defined signal called

a "ping" is transmitted into the water medium and the portion of

it reflected back from the target, called the "echo", is detected

and processed. In passive mode, no intentional transmission is

involved. The target is detected by the noise it inadvertently

radiates. The process of detection consists of distinguishing the

target-radiated noise signature from the ambient noise signature



which is already known.

The active and passive modes have their

operational advanteges and disadvanteges and the choice among

the two is determined purely by the factor of best suitability in

a given scenario. But, unless the' situation demands otherwise, it

is the passive operation that is widely preferred due to zero

risk of self-disclosure.

The performance of a sonar is highly influenced

by the characteristics of the water medium, sonar equipment and

the target and the constraints they impose on the dynamics of

sonar operation. They can be listed as :

(a) low data-rate due to low velocity of sound

propagation

(b) relative motion between the target and the scatterers

(c) target being extended rather than a point source

(d) spatial distribution of scatterers

(e) coherent relation of the scattered returns to the

transmitted signal

(f) strong back-scattering due to medium heterogeneity

(reverberation)

andspreading(g) acoustic energy losses due to

absorption in the medium

(h) complicated ray-paths and shadow-zones due to sound

velocity variations at different water layers

(i) characteristics of the expected target

(j) pollution of target signal by noise
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called

noise).

equality

(k) sonar platform instabilities at high sea-states

(1) stringent dynamic-range requirements

(m) tactical aspects

(n) engineering considerations

All these factors render sonar detection a considerably difficult

task. The design of aq optimum sonar for a given platform should

take into account the effects of the above constraints on the

sonar parameters which have to be manipulated to achieve the best

results.

4.3 Sonar Signal and Noiee

The acoustic field that confronts the sonar

comprises the desired portion called the "signal" (an echo or

radiated noise from a target) and the undesired portion

the "background" (reverberation , self-noise or ambient

The sonar equations are no more than a statement of

between these two portions.

4.3.1 The Echo

The echo pertains to an active sonar

transmission. It refers to the useful portion of the transmitted

energy that is reflected back to the source by the target. The

echo intensity depends on the "target strength" which is an

aggregate of the size, geometry, aspect and surface reflectivity

of the target, the transmission pulse-width etc. As the

reflecting object imparts its own characteristics to the echo, it



is used for target detection and classification.

Radiated Noise

Ships, submarines and torpedoes are excellent

sources of underwater sound. They require numerous rotational and

reciprocating machinery components for their propulsion, control

and habitability. This machinery generates vibration which,

after transmission through the hull and the sea, appears as

underwater sound at a distant hydrophone. The various sources of

sonar noise and their interrelationships are illustrated in

Fig 4.1 • They are categorised as self-noise and radiated noise.

While the former adversely interferes with own-sonar operation,

the latter can serve as a lethal weapon by being picked up by an

enemy's sonar.

submarines and torpedoes can be grouped into three major

The sources of radiated noise on ships,

classes

as listed in Table 4.1 • A diagramatic view of the sources of

machinery noise aboard a diesel-electric vessel is shown in

Fig 4.2 Machinery noise originates inside the vessel as

mechanical vibration from the diverse running machines and

reaches the water by various processes of transmission and

conduction through the hull. Propeller noise originates outside

the hull due to the propeller action and by virtue of the

vessel's movement through the water. The main source of propeller

noise is cavitation induced by the rotating propellers.

Hydrodynamic noise is caused by the irregular and fluctuating
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flow of fluid past the moving vessel. The pressure fluctuations

associated with the irregular flow may directly radiate out as

sound or may excite portions of the hull into vibration.

Over much of the frequency range, the radiated

noise consists of a combination of broadband noise having a

continuous spectrum and tonal noise having a discontinuous

spectrum containing line components (tonals) occuring at discrete

frequencies. The composite spectrum is shown in Fig 4.3 • Of the

three major classes of noise, machinery and propeller noise

dominate the spectra of radiated noise under most conditions. The

machinery noise possesses a low-level continuous spectrum with

strong line components originating at the fundamental frequency

and harmonics of the vibration-producing processes. The propeller

noise, arising mainly from cavitation, has a continuous spectrum

with a peak occuring within the frequency decade 100 Hz to

1000 Hz and 6 dB per octave roll-off on either side of the peak.

The spectral characteristics of the radiated noise is a very

vital parameter for target detection and feature extraction.

4.3.3 Reverberation

The ocean medium contains an innumerable variety of

heterogeneities of widely varying sizes and features. They form

discontinuities in the physical properties of the medium thereby

acting as scatterers of the incident acoustic energy. The

contributions from all the scatterers, taken in totality, is

called reverberation. In active sonar, reverberation has a
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masking effect on the target echo and it imposes a primary

limitation on the system performance. Marine life, suspended

particles, sea-structure heterogeneities etc. cause volume

reverberation while surface and bottom reverberation are produced

by scatterers distributed over the sea surface and bottom

respectively.

Self - Noise

Self-noise differs from radiated noise in that it

is the noise picked up by the receiver hydrophone of the own

sonar in the noise-making vessel. Since the path through which

the noise reaches the hydrophone are many and varied, the

relative importance of the various noise sources is different in

this case. Self-noise depends greatly upon the directivity of the

hydrophone, its mounting and location on the vessel. The three

major sources of radiated noise discussed earlier, contribute

liberally to self-noise as well. The other causes are flow-noise

from the hydrophone and its support, slapping of waves against

the ship's hull, impact of air bubbles, splashing, bow waves,

circuit noise (hum, microphonics, transients) etc.

4.3.6 Aabient Noise

Ambient noise is the noise of the sea itself

which provides a permanent background signal in sonar reception.

It influences the range capability of the sonar and often is a

limiting parameter. The ambient noise level, as a sonar



..
parameter, is the intensity of the ambient background measured

with a non-directional' hydrophone. The ambient noise has a

continuous spectrum which slopes down from the low frequency side

to the high frequency side with a typical roll-off of 6 dB per

octave of frequency. Hence, the noise level influences the choice

of the operating !requency for optimum sonar performance. Ambient

noise can be either man-made or natural. The former includes ship

traffic noise, explosions, underwater communication signals etc.

while the latter is caused by wind, marine life, sea-state, rain,

impact of masses of water, escape of entrapped air bubbles,

thermal effects, tides and hydrostatic effects of waves, seismic

disturbances, oceanic turbulances, surface waves etc.

4.4 Detection of Signals in Noise Detection Threshold

The prime task of a sonar system, whether active

or passive, is to detect within a specified duration of time, the

presence of the target signal in a noisy background. This is a

decision-making process and some criteria have to be fixed to

base this judgement with some preassigned level of accuracy of

the decision as to "target present" or "target absent". The

criterion selected is the signal to noise ratio (SNR) at the

input of the receiver-display-observer combination. its value at

the preassigned level is called the "detection threshold" (DT).

If S is the signal power in the receiver

bandwidth and N the noise power in a 1 Hz band, both referred to

the receiver input, then DT = 10 log (SiN) when the decision is

au



made under the probability criteria of detection probability

p(D) and false-alarm probability p(FA) which are mutually

independent. At a high threshold setting, both p(D) and p(FA)

are low and only strong targets will be detected. At a low

threshold, both probabilities become high and too many false

alarms will be sounded.

For a fixed SNR, a given threshold setting

corresponds to a particular pair of values for p(D) and p(FA)

and it corresponds to a point in a graph with p(FA) and p(D) as

the two axes. For a continuum of threshold settings, this point

traces a curve called the "receiver operating characteristic

(ROC) curve". A family of such curves for different values of

detection index d (which is equal to the signal-pIus-noise to

noise ratio of the envelope of the receiver output at the

terminals where the threshold setting is established) is given in

Fig 4.4 ROC curves are strictly determined by the probability

density functions of signal and noise at the receiver output

where the threshold setting is made. The conventional ROC curves

apply for only certain idealized and limiting conditions of

signal and noise. These conditions include a steady signal in

stationary Gaussian noise, large time - bandwidth products and

the requirement that only a single signal at a time be detected.

When these conditions do not hold, modifications to the ROCs are

necessary.

For estimating the optimum detection threshold

for a particular sonar, acceptable values for p(D) and p(FA)
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have necessarily to be decided upon first, on a realistic basis.

In a practical sonar design problem, this estimation is a rather

difficult task. Most often, selection of p(D) and p(FA) are based

on experience, intuition and a clear understanding of the use to

be made of the system being designed. Also, when a human observer

is involved in the decision process, the threshold criteria are

often ill-defined and the detection threshold is consequently

uncertain.

4.5 Sonar Signal Processing

This refers to the operations performed in the

time - frequency domain for extracting a desired signal from a

masking random noise background whose spectrum overlaps that of

the signal. In such a case, the statistical properties of the

signal playa key role in deciding the features of the processor.

Also, it is necessary to determine how much noise may be accepted

and how much signal energy may be rejected to achieve the desired

result.

A sufficient statistics for detection is the

"likelihood ratio" defined as the ratio of the conditional

probability density of the received data vector when the signal

is present to that when the signal is absent. In other words, it

is the ratio of the probability that a given input amplitude

represents signal plus noise (signal present) to the probability

that the input represents noise alone (signal absent). The

optium processor structure is one which maximizes the likelihood



ratio.

In active sonar, the signal processors are

broadly classified as incoherent and coherent. For a given time -

bandwidth product, the processing gain of an incoherent processor

is generally inferior to that of a coherent processor. For a

stationary white Gaussian noise background, the optimum processor

is a "matched filter" which is equivalent to a cross - correlator

[30].

In passive sonar, a noise - like signal is to be

detected in a noise masking background and the signal contains

both coherent and incoherent components. If the signal and noise

are Gaussian random processes with known spectra, the optimum

processor is some form of energy detector.

4.6 Neural Networks for Target Recognition

Target recognition is a problem which involves

extraction of critical information from complex and uncertain

data. Recognition of targets with fixed signatures in stationary

backgrounds is a straightforward task for which numerous

effective techniques have been developed [40]. If the target

signatures and the backgrounds are variable in a limited or known

manner, more complex techniques such as rule - based methods can

be employed. But when the target signatures or the backgrounds

vary in an unlimited or unknown manner, the above approaches are

insufficient [31].

. ,
:lit



variations in signature

targets

robust

and

to

Target recognition

backgrounds that are

needs methods to represent

adequately descriptive and

and environment. Neural

networks offer potentially powerful collective - computation

techniques for designing special - purpose hardware which,

through powerful learning ~lgorithms, are capable of implementing

robust methods for target recognition. Neural network technology

provides expert - system capabilities for automatic integration

of a priori knowledge about target signatures and backgrounds so

as to enhance the effective target recognition performance.

4.7 Conclusion

The survey of the Sonar Detection problem clearly

brings out the complexity and diversity of the parameters

involved. As such, it is felt that a multilayer neural network

with backpropagation learning is necessary to handle the complex

problem of Sonar Detection. The chapter to follow, therefore,

demonstrates the implementation of a multilayer neural network

that uses the spectral components of sonar noise in various

frequency bands as its input parameters.



CHAPTER 6

NEURAL NETWORK DESIGN AND IMPLEMENTATION

The application of a massively parallel learning

network to the passive detection of,a sonar target (viz.a surface

ship) is discussed in this chapter. The task comprises the

following activities.

(a) Recording of the sea noise with and without the target

ship in the vicinity of the recording platform.

(b) Preprocessing of the recorded data to generate the

network training patterns.

(c) Design of the neural network.

(d) Selection of a learning algorithm.

(e) Generation of the simulation software for the neural

network.

(f) Teaching the network using the training patterns and the

selected algorithm.

(g) Generation of test patterns using steps (a) and (b) for

different targets in different geographical locations.

(h) Testing the target detection capability of the network

by presenting the test patterns to it.

These processes are pictured as a block diagram in Fig 5.1

5.1 Recording of Sea Noise

For recording of the sea noise, the "SUBER"

Remote-Controlled Acoustic Data Acquisition Module was used. The
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electrical signal from the hydrophones corresponding to the

underwater sound they'picked up is fed to the instrumentation

tape recorder after amplification by the precision conditioning

amplifier (peA).

Recordings with and witho~t target ships sailing

in the vicinity were taken at different geographical locations

using the data acquisition modules deployed at these locations.

The set-up for recording of the sea noise is shown in Fig. 5.2 .

6.2 Preprocessing of the Data

The front-end processing is an essential

element to any neural network technique. If given non­

representative or inadequate training data, any neural network

paradigm will perform poorly. Neural networks do provide a novel

method of abstracting feature information into a distributed

encoding. They do not, however, by-pass the critical stage in any

pattern recognition task of adequately defining the salient and

characteristic features of the data.

The preprocessing employed in the present

work relies on the extraction of the spectral data using a Fast

Fourier Transform (FFT) computation on the AID converted signal

obtained from the sea noise recordings. This technique shows the

clustering properties of the spectral components better than more

conventional coding methods and thus provides a more useful

representation on which the classifier can train. It is also a
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fast, reliable and well-supported technique [6].

The analog output signal from the tape recorder

corresponding to the recorded data was low-pass filtered upto a

cutoff frequency of 750 Hz and subsequently amplified by 20 dB.

The analog to digital converter (A/DC) resolution

was 12 bit and a sampling frequency of 2 kHz was selected since

the prominent frequency components in the radiated noise of the

target are expected only upto 1000 Hz.

A lK - point FFT was computed on the digitized

time-domain data samples from the A/DC to convert them into

frequency domain samples which correspond to the spectral

components in the signal. A twenty-point vector was formed from

these spectral components in the selected bandwidth of the signal

by segregating them into twenty consecutive frequency bins with

twenty Fourier coefficients in each bin. Since each point in the

vector was formed by adding up the squared coefficients in each

bin, its value gives a measure of the energy contained in the

respective bin. The above vector, after normalization, was

presented as the input to the neural network.

Input vectors were generated from time-strips of

sea noise recordings with and without targets, made at different

geographical locations. Recordings made at one of these locations

were used to generate the training vector patterns while those

made at other locations were used to generate the testing ones.
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6.3 Neural Network Design

A multi-layer perceptron was used for the

experimentation. In the light of the discussion in section 3.4.3,

a three-layer network configuration with the number of neurons in

the' middle layer being more (viz. exceeding by two) than three

times that in the input layer was selected. The type of

preprocessing proposed in section 6.2 needs 20 neurons in the

input layer. Since separate neurons were assigned for "target

present" and "target absent" outputs, a network with 20, 62 and 2

neurons respectively for the input, middle and the output layer

resulted. This is designated as a 20 - 62 - 2 network.

The performance of two more network topologies

viz. 20 - 62 - 1 and 20 - 11 - 2 also was studied for comparison

purposes.

The above three networks are shown in Fig 5.3,

5.4 and 5.5 respectively.

6.4 The Learning Algoritha

The backpropagation algorithm was used since it

is most suited for multi-layered networks. Using the momentum

method and the exponential smoothing method, networks were

separately trained and their performance was compared.

For every pattern vector presented, each neuron
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Fig. 5.5 The 20-11-2 Neural network
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computes the net value obtained from equn. (3.1) modified by a

bias as mentioned in section 3.4.1 • The output from the neuron

. was obtained by thresholding the above with the sigmoidal

nonlinearity (ref. equn. (3.3) with a=l).

Depending upon the learning algorithm chosen,

either equn. (3.20) or (3.21) was used to modify the weights

associated with the neurons in various layers. The weight error

derivative in these expressions was calculated using equn.

(3.15) and (3.17) respectively for neurons in the output layer

and those in all the other layers.

6.6 Siaulation Software Structure

Though neural computing is basically a parallel

distributed processing procedure, the mathematical operations

involved in it can easily be carried out on conventional

computers. This facility for computer simulation of neural

networks offers phenomenal possibilities for experimentation.

The software that was designed for the simulation

work under discussion suits multi-layered feed-forward networks

with any topology (limited by the memory available in the

computer), any learning algorithm and any number of

training/testing patterns.

The network topology is characterised by

the following quantities which are to be specified in the

b5



network specification file.

(a) Total number of neurons in the network (including the fan-

out neurons at the network input).

(b) Number of input neurons.

(c) Number of output neurons.

(d) First weight to last weight associated with each of the

neurons.

In the network learning phase, all the input

training patterns were specified into the software as files with

details as to the number of files, file size and the total number

of patterns. Output patterns (ie. target vectors) were specified

as an array. While passing through this phase, the network

gradually converges and its weights and biases attain their

generalised values at the end of this phase.

In the network testing phase, patterns with

features (to the extent of the information as to whether target

is present or absent) unknown to the network were applied to it

one after the other and the corresponding output response was

compared with the correct feature.

5.5.1 The Learning Phase

This comprised the following steps:

(a) Specify the network topology, training pattern details and

the values of the appropriate coefficients used in the

learning algorithm.

bb



(b) Initialize all weights, biases and their derivatives to zero.

(c) Specify the number of iterations to be carried out and a

starting value & the desired minimum value for the sum of

square error.

(d) Either read the weights and biases already available in a

~ile ("IPFILE") or generate them with random values. Also,

store them in a file ("STARTWTS") in the latter case.

(e) Read all the training patterns viz. the input and the

corresponding target patterns from the relevant files and the

target array respectively.

(f) Set the control appropriately so that the training patterns

are presented to the network one after the other in the same

order in which they were read or in a random order.

(g) Carry out one epoch of training. This includes the following

steps:

(i) Apply one training pattern to the network.

(ii) Compute the output of the network corresponding to the

applied input pattern and the weights & biases already

set in.

(iii) Compute the error between the applied target value in

step(i) and the value obtained in step (ii).

(iv) Using the above error, calculate the error derivatives

for all the weights and biases of the network.

(v) Using the above derivatives in the learning algorithm,

modify all weights and biases. Replace the earlier

weights and biases by their respective modified values.

(vi) Repeat steps (i) through (v) for the remaining patterns

to complete one epoch of training and this is taken as

b7



one iteration. The weights and biases obtained at the end

of every epoch 'serve as the starting weight and bias

values for the subsequent epoch.

(h) Square the error values obtained in step (g) (iii) for one

iteration and add them up to get the sum of square error.

Store this value and the corresponding order of iteration in,

a file ("TSSFILE").

(i) If the sum of square error newly obtained in step (h) is less

than its earlier value, update the latter to the new value

and store the corresponding weights and biases obtained as

per step (g)(vi) at the end of the relevant iteration in

a file ("FINALWTS").

(j) Repeat steps (g) through (i) until the sum of square error

becomes equal to or less than the minimum value specified in

step (c) or the execution of the number of iterations

specified therein, whichever happens earlier.

(k) Store the weights and biases obtained at the end of the last

iteration in a file ("LASTWTS").

The software archicture for network learning is

depicted in Fig. 5.6 through Fig. 5.10 .

6.5.2 The Testing Phase

During the learning phase, the network traverses

through a gradient descent path in the error surface and at the

end of this phase involving sufficient number of iterations,

it converges and settles at the global minimum. With its

generalized weights and biases, which correspond to the features

b8
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only

the

latent in the training patterns, the network can now detect the

presence of these features in the unknown patterns presented to

it. This process is carried out in the testing phase which is a

non-iterative, one-shot, forward-pass computation.

This phase involved the follow~ng steps:

(a) Specify the network configuration in the manner mentioned at

the beginning of section 5.5 .

(b) Specify all the input patterns for testing (comprising

input vectors and no target vectors) as done earlier for

training patterns.

(c) Read all the test patterns.

(d) Load in to the network, the generalized weights and biases

from a file ("USEDWTS") which points to the contents of the

file "FINALWTS" which was created during the learning phase.

(e) Set one test pattern at the network input.

(f) Compute the network output.

(g) Classify the network output with "target present" or "target

absent" labels by applying appropriate thresholds to these

outputs.

(h) Repeat steps (e) through (g) for all test patterns.

The software structure for network testing is

given in Fig. 5.11 .

The source programme for the neural network

simulation was developed in C language and it was run on CYBER

180/830 mainframe computer.
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5.6 Classification Labeling

Since ambient noise as well as target-radiated

noise was used for both training and testing the network and as

the problem is of two-class nature, four combinations are

possible for the above. These were segregate~ under three

classification labels as shown in Table 5.1 below. OUt of the

TABLE 5.1 Classification Label

Test Input Classification Result Classification Label

Ambient noise Target Present False Alarm

Radiated noise Target Absent Miss

Ambient noise Target Absent Correct Classification

Radiated noise Target Present Correct Classification

total testing patterns, the percentage of correct classification

obtained under these labels for each network-algorithm

combination was used to make a co.parative study of their

classification efficiency.

5.7 Conclusion

The preparation of data for presentation to the

neural network, the design details of the network and the

simulation software structure were discussed here. The test

results are summarized and discussed in the chapter to follow.
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CHAPTER 6

RESULTS ~D DISCUSSION

Simulation details like network topologies tried,

learning algorithms used and the convergence behaviour and

classification capabilities of various combinations of the

learning algorithm and network topology are discussed in this

chapter.

6.1 Input Patterns

Sea noise recordings with and without target,

taken exclusively at one geographical location (viz. Cochin) were

used to generate the training patterns. In this connection, 40

vectors corresponding to ambient noise alone and 32 vectors

corresponding to target noise were used. During every iteration,

these two sets of patterns were presented to the network in an

interlaced manner.

For checking the target detection capability of

the network, 248 test vectors were used. Out of these, 196

vectors were generated from ambient noise and 52 vectors from

target noise which were recorded at other geographical locations

(viz. Andaman and Goa).



6.2 Network Topology

Three network configurations were tried viz.

20-62-2, 20-62-1 and 20-11-2. In the first two networks, the

number of neurons in the second layer is more than thrice that in

the first layer whereas in the third one, the number of neuron~

in the middle layer is the mean of the number of neurons in the

other two layers. They also differ in regard to the number of

neurons in the output layer. The aim of simulating these network

variants was to investigate how the above factors influence the

network learning behaviour and their classification performance •

•
6.3 Learning Algorithms

Each of the network was separately trained using

two variants of the BP algorithm viz. momentum method and

exponential smoothing. In the former, for all the network

configurations, the learning rate and momentum coefficient were

given the values 0.75 and 0.9 respectively. In the latter case,

the exponential smoothing coefficient was given the value 0.9,

keeping the learning rate coefficient unaltered. These set of

values were found to provide the fastest learning rate without

causing oscillation.

6.4 Neural Network Training

Before the commencement of the network training,

all the weights and biases were initialized to random values in



the range from -0.1 to +0.1 . The training patterns were then

presented to the network one after the other and the weights and

biases were changed after every presentation according to the

learning algorithm used. This process was continued till all the

training patterns were exhausted lie. completion of one epoch or

iteration). After every iteration, the sum of the square of the

errors obtained while presenting all the 72 patterns during that

epoch was computed. If it was more than the lower limit set viz.

0.01 in the present case, the iteration was continued further

until this limit is reached or the prescribed number of

iterations are carried out, whichever is earlier. The algorithms

were run for a minimum of 1000 iterations in each trial.

6.6 Learning Curve

Sufficient number of iterations will inevitably

have to be carried out before the network reaches its converged

state where the error is the minimum-most. The quality and

ingenuity of a learning algorithm is judged based on its

capability to achieve network convergence with minimum number of

iterations. The trend of the error during progressive iterations

is a reliable index of the learning behaviour of the network. As

the sum of square error is an aggregate of the errors during an

epoch of training, a plot between this quantity and the

corresponding order of iteration is called the "learning curve"

for the relevant network - algorithm combination.

The learning curves for the three networks



corresponding to the two algorithms are given in Fig. 6.1 through

Fig. 6.6 .

Various results obtained in the simulation

studies are summarily presented in table 6.1

6.6 Observations

Since the simulation studies carried out in the

present work cannot be claimed as rigorously exhaustive, a

generalization of the results obtained therefrom doesnot bear

much relevance in the strictest sense. However, the observations

made within the limited scope of the experiments are as listed

below:

(a) As can be seen in all the learning curves, the maximum value

attained by the sum of square error is relatively moderate.

This is attributed to the type of preprocessing employed.

(b) Convergence of the learning algorithm is deeply influenced

by the initial weights and biases (which, in turn, are

determined by the seed value given to the random number

generation routine).

(c) The rate of convergence is dependent on the learning rate

coefficient 1 ,momentum coefficient L , and exponential

smoothing coefficient f3 For faster convergence, both "l

and L should be high and for maximum smoothing, f3 should

be high. But, with high 11 ' the algorithm either oscillates

or diverges. A high fi ensures smoother learning which

consequently takes more time to converge and this is evident

8u
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to its

which

of thecorresponds to the generalized weights and biases

converged network, need not necessarily be a pointer

classification accuracy.

from the learning curves.

(d) Regardless of the n~twork topology, the learning is totally

jitter-free in exponential smoothing compared to that in

the momentum method.

(e) As is evident from the learning curves, for a given network

topology, exponential smoothing takes more time to converge

than the momentum method.

(f) Momentum method gives better classification result than

exponential smoothing.

(g) For a given number of neurons in the input layer, the

classification accuracy improves with the number of neurons

in the hidden and the output layer. But this is at the cost

of computation and network convergence time.

(h) The minimum value of the sum of square error,

6.7 Conclusion

detection

which was

The efficacy of using a neural network for target

is well inferable from the results of the simulation

presented in this chapter. Some hardware aspects of

neural networks and a few proposals for exploiting them for sonar

applications are discussed in the next chapter.
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CHAPTER 7

THE NEURAL-BASED APPROACH - A RETROSPECT

A pattern recognition application (viz. detection

of an underwater target) of a multi-layered feed-forward neural

network was discussed in the previous chapters. It was mainly

aimed as a feasibility study where the network was simulated by

software on a computer. This being an off-line process, a very

limited set of data recordings that were available had to be

relied upon for generating both the training and the testing

patterns. The compression of data due to the preprocessing method

adopted here led to further reduction in the number of these

generated patterns.

The efficacy of these types of applications can

be conclusively established only through extensive evaluation of

the actual neural network hardware with large amounts of

practical real-time data. Since a neural network is as

intelligent as the way it is trained, elaborate studies involving

large varieties of underwater targets against different

conditions of the sea background are highly scopeful and all the

more relevant.

7.1 Neural Networks Perspectives and Potentials

present-day

The ever-increasing technological demands of the

world require innovative approaches to highly



challenging problems. Artificial neural networks with their

outstanding features like massive parallelism, ability to learn,

association, generalization, flexibility (plasticity), error

tolerance etc. offer the promise of better solutions at least to

some of these problems. The unusual and stimulating

inter~isciplinary nature of neurocomputing spans over neuro­

sciences, cognitive sciences, psychology, computer science,

electronics, physics and mathematics. It has already made its

impact in the commercial, industrial, medical and scientific

fields. The potential defence applications of neural networks

include automatic target recognition (ATR) , sonar and radar

signal processing, vision and image processing, photonics,

artificial intelligence, robotics, expert systems etc.

7.2 Sonar Applications of Neural Networks - Some Proposals

Nowadays, the science of anti-submarine warfare

(ASW) is emerging as a highly competitive field. With the

present-day technology, such integrated and sophisticated

defensive measures like sonar systems (hull-mounted, towed array,

variable depth and helicopter-mounted types), weapon controls and

a variety of electronic and acoustic countermeasures corne to the

rescue of surface ships. Even then, highly manoeuvrable

submarines, which are made more silent with nuclear propulsion

and ingenious design technology and which are equipped with

computer-controlled wire-guided torpedoes and long-range nuclear

missiles, do reign the sea with terror. In the wide open ocean,

ultimate success inevitably goes to the one who detects the enemy
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first. Hence, the earliest detection and quickest localization of

the foe are premier factors and in this endeavour, neural

networks are capable of playing their vital role.

7.2.1 Sensor Failure Detection

A sonar system inevitably includes a hydrophone

array at its wet end. It is used to transform the hydroacoustic

signals into electrical signals which are further processed for

detecting the target. The spatially distributed elements

(sensors) of this array, by virtue of their arbitrary geometry

and dimensionality, spatially discriminates the desired signal

against noise and reverberation thereby enhancing the SNR. This

process is called beamforming, the effectiveness of which is

directly influenced by the width of the beam.

The pattern of spatial distribution of the

elements in the array has a direct bearing on the beam width of

the array. The failure of an element in the array adversely

affects the beam pattern; more the number of failed

deeper the extent of this degradation. A neural network

used for the detection of sensor failure. Signals from

elements,

may be

all the

elements, after appropriate combination and preprocessing, can be

fed to a neural network that is already trained with a supervised

learning algorithm. The diagnostic output from the network can

then be used for either manual or automatic initiation of

appropriate remedial measures.
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7.2.2 BeaBfo~ing

The spatial filtering is accomplished in the

beamformer through a series of operations involving the

weighting, delay, and summation of the signals received by the

spatial elements. The summed-up output is further processed for

frequency and temporal discrimination. A time-delay neural

network (TDNN), therefore, can directly implement a beamformer. A

TDNN has the ability to relate and compare current input to the

past history of events. This enables the network to discover

acoustic features and the temporal relationships between them

independent of position in time so that they are not blurred by

temporal shifts in the input [41].

7.2.3 Signal Enhance.ent

Another area where neural networks may be

prospectively employed is in sonar signal enhancement for

detection of signals submerged in background noise. The

underlying principle upon which neural networks operate being one

of pattern recognition, they may be effectively employed for SNR

enhancement. Implementation of some of the existing algorithms

for signal enhancement through neural network hardware might be

practically feasible and worth attempting. Statistical methods,

which are more accurate than backpropagation, can be used here

for the unsupervised training of the network.
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7.2.4

widely

topical

Non-Acoustic Methods of Subaarine Detection

Acoustic methods of submarine detection, though

used and are effective, can be adversely affected by

conditions. Due to complexities of underwater sound

pro~agation, the acoustic signals are highly susceptible to

masking effects.

detect a

in the

Non-acoustic methods attempt to

submarine by sensing the perturbations it creats

surrounding physical environment. These disturbances,

must be measurable and separable from the background of

naturally occuring disturbances. Phenomena such as

internal waves & disturbances and magnetic & thermal

which are generated by a moving submarine are the

useful parameters in this regard. The perturbations

being very feeble, devices like superconducting

interfacing device (SQUID) are used for measuring them.

however,

similar

wakes,

anomalies

important

in these

quantum

Since the characteristics of the submarine and

the pattern of perturbations it creats in the vicinity can be

mutually correlated, any detection algorithm has to search for

these expected signature patterns. A complex neural network

stored with all such signatures pertaining to different classes

of submarines can carry out a nearest-neighbour search in the

sensor data presented to it. These patterns have to be

essentially made invariant to the ambient pattern of the sensed

parameter and the speed of the searching platform. Optical neural



networks, with their inherently high speed and the potential for

massive interconnectivity, stand as the best bet for this

application.

7.3 Neural Network Hardware

Neural network models in software generally

consist of many very densely interconnected processing elements,

each of which performs a simple computation in parallel with its

neighbours. These models and the learning algorithms are

computationally intensive on general-purpose computers. However,

because of the computational simplicity of the basic processing

element, neural networks are implemented on special-purpose

massively parallel hardware which can vastly outperform

implementations on even the most powerful serial computer. The

neurocomputer

development

technology.

hardware has been an essential ingredient

of practical applications of neural

for the

network

Only VLSI processor arrays can realize the true

computing potential of massively parallel neural networks. This

realization follows one of the two approaches (1) general

purpose neurocomputers that consist of programmable processor

arrays for emulating a range of neural network models (2) special

purpose neurocomputers that are dedicated hardware

implementations of a specific neural network model. Any

programmable neurocomputer is order-of-magnitude slower than its

directly fabricated hardware version which has got very poor



generality. In fact, far more dedicated special-purpose neural

network hardware is being developed than programmable neural

processors [19]. The fabrication technology is broadly classi­

fiable as electronic, optical and electro-optical implementations

where the second and third are rapidly outgrowing the first one.

Researchers now consider molecular devices, still very much in

their infancy, as a new basis of neurocomputers.

Silicon implementation can be considered the

first step toward large neurocomputers. While considering the

possible architectures for the basis of a neurocomputer, the

important design issues are parallelism, performance, flexibility

- and their relationship to the silicon area. These issues, which

are directly influenced by the node complexity, lead to radically

different systems which range from simple traditional RAMs

to programmable processors and special-purpose dedicated

hardwares [18]. For example, .. 80170 ETANN .. which is a VLSI

electrically trainable artificial neural network developed by

Intel Corporation, USA, is the fastest device commercially

available as on date [43]. It has 64 neurons with a total of

10,240 programmable analog weights. They perform calculations,

known as "connections" simultaneously, resulting in a performance

of more than two billion connections per second (A connection is

a multiplication-and-sum operation). Newer and more powerful

neural network chips are also being developed by this company.

The increased circuit density possible in VLSI

makes it most suited for neurocomputer implementation on silicon.



But, the main design problems encountered here are: massive

interconnectivity of the processing elements, complex adaptivity

for the synaptic weights, realization of learning algorithms,

network size & geometry, processing and communication speeds and

data representation. The number of cells (je~ neurons and

synapses) in a fully interconnected neural network grows

phenomenally with the number of neurons. Also, the area required

to route connections and to contain the average length of

interconnections increases at unacceptable rates as more

processing elements are added. Reduction of size of the basic

cells even despite a loss of precision, wafer-scale integration

and three-dimensional integration are only some of the answers to

these problems. For better solutions, the architectural

properties of VLSI have to be further explored and exploited

thoroughly.

Analog optoelectronic hardware implementation of

neural nets, which was first introduced in 1985, has many

advanteges over the electronic implementation. Primary among

these is that the optoelectronic (photonic) approach combines

the best of the two worlds: viz.(i) the massive interconnectivity

and parallelism of optics and (ii) the flexibility, high gain and

decision-making capability offered by electronics. It seems more

attractive to form analog neural hardware by completely optical

means where switching of signals from optical to electronic

carriers and vice versa is avoided. However, in the absence of

suitable fully optical decision-making devices, the capabilities

of the optoelectronic approach remain quite attractive and stand



competitive with other approaches when considering the

flexibility of architectures possible with it [42].

Molecular electronics is a vision that promises

to solve all the technological problems of neural networks. Its

self-building and self-organizing capabilities in ,three

dimensions offer prospects of huge neural networks occupying

compact space and rendering highly superior performance. In

reality, however, the development of biological molecular

electronics will be very slow and the field of physical molecular

electronics is just starting with the first test structures [19].

7.4 Conclusion

Biological neural nets were evolved in nature for

one ultimate purpose that of maintaining and enhancing

survivability of the organism they reside in. Embedding

artificial neural nets in man-made systems, and in particular

autonomous systems, can serve to improve their survivability and

hence reliability. Neurocomputers can be expected to play an

important role in the modeling and study of highly complex

systems and problems with enhanced flexibility and speed offered

by integrated optoelectronic techniques.
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