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Preface

Semiconductor lasers have come a long way from their introduction as small and reliable

source of coherent light energy to become the back bone of modern applications frorn com­

munication to household electronic devices. The study of their dynamics has gathered mo­

mentum as their applications grew in number as the years go by. Along with the application

front, the device fabrication technologies have also grown tremendously making the devices

much smaller, faster and more reliable. In these contexts, the nonlinear dynamics of such

lasers have become interesting to scientists and engineers owing to their typical application

in areas like optical communication. Further, the understanding of device dynamics gave

better feedback for improving the device performances.

Nonlinear dynamics of laser systems has become an interesting area of research in recent

times. Lasers are good examples of nonlinear dissipative systems showing many kinds of

nonlinear phenomena such as chaos, multistability and quasiperiodicity. The study of these

phenomena in lasers has fundamental scientific importance: since the investigations on these

effects reveal many interesting features of nonlinear effects in practical systems. Further,

the understanding of the instabilities in lasers is helpful in detecting and controlling such

effects.

Chaos is one of the most interesting phenomena shown by nonlinear determinist.ic systems.

It is found that, like many nonlinear dissipative systems, lasers also show chaos for certain

ranges of parameters. Many investigations on laser chaos have been done in the lest two

decades. The earlier studies in this field were concentrated on the dynamical aspects of

laser chaos. However, recent developments in this area mainly belong to the control and

synchronization of chaos. A number of attempts have been reported in controlliug or sup­

pressing chaos in lasers since lasers are the practical systems aimed to onerar.ed in stable or

periodic mode. On the other hand, laser chaos has been found to be applicable in high speed

secure communication based on synchronization of chaos. Thus. chaos ill laser f)yst.cms has

technological importance also.

Semiconductor lasers art' most applica blo ill the fields of optical r-ouununicat.ious Cl.lllOllg

various kinds of laser due to manv rca-ens snell as their COlllpi.1CIIIl'SS. ichabilitv modest

cost and the opportunity of direct modulnt.ion. TIH'.\" show chaos .md other iust.ahilitics

under various physical conditions such ns direct rnodulut.ion and opt.irul OJ' optoelectronic
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feedback. It is desirable for semiconductor lasers to have stable and regular operation. Thus,

the understanding of chaos and other instabilities in semiconductor lasers and their control

is highly important in photonics.

This thesis presents analytical and numerical results from studies based OIl the multiple

quantum well laser rate equation model. vVe address the problem of controlling chaos pro­

duced by direct modulation of laser diodes. We consider the delay feedback control methods

for this purpose and study their performance using numerical simulation. Besides the con­

trol of chaos, control of other nonlinear pffpcts such as quasipcriodicitv and bist.abilitv using

delay feedback methods are also investigated.

A number of secure communication schemes based on synchronization of chaos semiconduc­

tor lasers have been successfully demonstrated theoretically and experimentally. The current

investigations in these field include the study of practical issues on the implementations of

such encryption schemes. We theoretically study the issues such as channel delay, phase mis­

match and frequency detuning on the synchronization of chaos in directly modulated laser

diodes. It would be helpful for designing and implementing chaotic encryption schemes us­

ing synchronization of chaos in modulated semiconductor lasers. The thesis consists of six

chapters. The content of each chapter is described briefly as follows.

Chapter 1 is an introductory chapter, which describes the basic concepts of nonlinear

dynamics and chaos. A short description of the development of chaos theory is given. The

fundamental properties and necessary conditions for the existence of chaos are described and

chaotic behavior of discrete and continuous dynamical systems is illustrated for the logistic

map and the Lorenz system respcct.ivelv. The main routes to chaos arc also discussed. The

necessary computational tools used in numerical studies of chaotic system n.re presented. A

brief outline of laser chaos is also presented. The concepts of control and synchronization of

chaos are also given.

Chapter 2 is a review on the physics and engineering aspectf:' of multiple quantum well

lasers. This chapter brings out u. dcr.aik-cl plon on t.ltl' modeling of such systems and various

material properties and physical phenomena that conr.rols t heir working.

Chapter 3 describes the effect of direct ruodul.uiou 011 1 he dynamics of multiple quaut lim

well lasers. This chapter gives the I'C'S11lts of var-ious 111()(1\11ation schemes crnplovcd <1.1ll1

de.uonst.rn-os S011\(' new rcsuh-, ill thc dvu.unic-, of inuh.iplc quuntum well lasers. ~Iaill
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result of the chapter is results on the observation of chaos in the system when multi tone

modulation scheme is introduced.

Chapter 4 deals with the occurrence of multistability in directly modulated multiple quan­

tum well lasers. Hysteresis and List ability are numerically demonstrated using the bifur­

cation diagrams drawn by the method of continuous time simulation. Possible causes and

applications of these phenomena are discussed in this chapter. Also discussed here is the

observation of the crisis phenomenon in the working of such lasers.

Chapter 5 shows the significance of feedback delay time in the suppression instabilities

are discussed in this chapter along with the observation of chaos in the system when suitable

modulation and feedback conditions are met. The chapter explore the feasibility of using

built-in feedback methods to control the laser dynamics.

Chapter 6 summarises the results obtained. A brief discussion on the possible future

works in the area of nonlinear dynamics of multiple quantum well lasers are also discussed

in this chapter.
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Chapter 1

Introduction

"Wisdom begins in wonder."- Socrates

ABSTRACT

Nonlinear dynamics and chaos are major topics of s/,wly in the mainstream physics and mathemat­

ics today. New techniques and dimensions of study have brought [oruxird the necessity of analyzing

physical systems using nonlinear tools. Alany known physzcal systems exhibit nonlinear character

and it cannot be avoided without deeper study and analysis. Lasers in general and semiconductor

lasers in particular' ore known working models for sl1ldying nonlinear behaviour of systems m the

quantum. level. This chapter gives a brief introduction to nonlinear dynamics, chaos theory, and the

quantum electronics oj semiconductor lasers.

1.1 Nonlinear Dynamics and Chaos

Nonlinear dynamics and chaotic behaviour have been studied over the last few decades in

many systems belonging to different areas like biology, chemistry or physics [L, 2~ 3~ 4]. The

interesting aspect of these :::;1 udics is thc search for universality in the behaviour of nonlinear

systems and their transit.ions to chaos. A general approach in studying the complexity of

such systems involves invcsi.lg.u ing their dynamics as some S,V:-:;tCIll parameters arc varied.

This mer.hod v.elds an clT\il,l,vsis of qualitative changes. known as bifurcations, resulting in

a change of the 1l11111hel of at.t.ractors. their tvpc such <1S periodic, quasiperiodic, chaotic

and/or their st.tbilitv.



G Introduction to Nonlinear Dynamics

Nonlinear dynamics and chaos in laser systems have been studied since the late 1970::;. Semi­

conductor lasers, which usually show only coupled light-carrier density oscillations known

as relaxation oscillations, show chaotic instabilities when \ve add an additional degree of

freedom [5].

43.93.73.63.53.4

0.3

0.8

0.9~-c:::=:;;

0.4

0.5

c
X

0.7

0.6

Figure 1.1: A window from the bifurcation diagram of the logistic Hlap :l:n+l = rxn ( l - x n). Each
vertical section shows the attractor for a specific value of the par.unotcr r, The diagram displays period­
doubling as T increases, eventually producing chaos beyond r ~ 3.569, The periodic regions within the
region 3.569 < r < 4 are termed as windows, for example, the window around r ~ 3.84 is called it period-S
window.

A dynamica/system has a state determined by a collection of real numbers. or more generally

bv a set of points in an appropriate manifold AI. A mallifold is a geometrical space and

the set of points are coordinates of this space. The evolution rule of the dynamical systeml

is a fixed rule that describes what future states follow from the current state. This rule is

deterministic which means for a given time interval only one future state follows from the

current state. In the case of a continuous system. the phase space evolution is said to be ,1

phase fluw. If f is any continuous function, then r.he evolution of a variable :1' can be givell

by the formula

( 11 i

If. 011 the other hand. there is a discrete time (n) cvolut.ion ilS ill :rn ; 1 =- :2J'n (/llod 1). it

is referred to as a IIUlfJ rather I.han a jtou:. Alllollg -ar.ootl. dvnumical S\'St,(,l11::;, chnotir-
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dynamics is churactensed by the presence of expanding and contracting directions for the

derivative. This is a sitnation where the differential alone provides strong local: semi-local or

even global information about the dynamics. This stretching and folding typically give rise

to complicated long-term behavior in these systems. The dynamics appears in many ways

effectively random, even though these systems arc completely deterministic. The theory of

these dynamical systems provides a rigorous mathematical foundation for this remarkable

phenomenon known as deterministic chaos - the appearance of chaotic motions in purely

deterministic dynamical systems. Chaotic dynamics produces several characteristic features

of the orbit structure that reflect the coexistence of highly complicated long-term behavior

and sensitive dependence on initial conditions on one hand with overall stability of the

orbit structure on the other hand. A nonlinear dynamical system can follow different

routes to chaos. Three main universal transition routes from regular to chaotic motion have

been observed so far in different systems: the period-doubling or Feigenbaum routejfi, 7]

the intermittency or Pomcau-Manncvillo routcjg], and the quasiperiodic or Ruelle-Takens­

Newhouse route[9].

Period doubling bifurcation in a dynamical system is a bifurcation in which the system

switches to a new behaviour with twice the period of the original system. The period­

doubling route refers to a successive series of period-doubling bifurcations [10] that occur

while changing a, control parameter. A transition to chaos takes place after an infinite

number of doublings follow each other with a closer spacing. The intermittency route is

characterized by an increasing number of short, irregular bursts, interrupting the nearly

regular motion. The mean distance between the bursts changes when we vary a control

parameter. There arc three different types of intermittency that can be distinguished by the

statistics of the time interval between the bursts. Type-I intermittency is associated with

an inverse tangent bifurcation, type-If with a Hopf bifurcation, and type-III with a period­

doubling bifurcation. The quasiperiodic route corresponds to a series of Hopf bifurcations

generating it new eigenfrequency each time one changes d., control par.uueter. The first Hopf

bifurcation generates a 1imit. cycle in phase space emerging from an fixed point solution.

After the second Ilopf bifurcation the motion of the system in phase space takes place on a

two-dimensional torus a.lowing periodic as well as quasiperiodic behaviour. The third Ilopf

bifurcation finally gives rise to the occurrence of deterministic chaos.

Though chaos is all about comulexitv, some of the most powerful tools used for studying

cl.aos arc rather graphical in nature and, therefore, simple to appreciate [11]. Some of these

iur-thccls Y\TH' developed by the great French rnathcmaticiau. Henri POillUU{' at the end of

nineteenth ccnturv. III the following subsections. we will discuss SOllH·~ of those tools that a1'1.'

1Ise<1 to analv-,c t he dynamics of svsr.crus considered in this thesis:
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1.1.1 Phase Space and Phase Flow

The concept of phase space is a generalisation of the three dimensional coordinate system

used in the Eucluiiori space [11]. The dimension of the phase-space depends on the degrees

of freedom that the dynamical system has, and a single point in this hypothetical space

represents completely the state of motion of all the variables at any instant of time. As the

system evolves in time according to the laws governing it, the representative point describes

a trajectory or an orbit in the phase space. Since the laws of motion arc usn ally second

order deterministic differential equations, there must be a unique trajectory through at any

given phase point. It follows then that these trajectories cannot intersect or self intersect.

However, they can close on themselves. This non-intersection of trajectories is the essence

of the deterministic dynamics.

The phase space volume occupied by system also evolves with the evolution of the system.

If the phase-space volume contracts as time progresses, the system is said to be dissipative.

On the other hand, if the phase-space volume remains constant, the system is said to be

conservative: system. The phase-space flow can lead to various situations which, in turn,

help us understand the nature of the system better. If the evolution of the phase-space

volume settles down to a point and stays put there, we refer to it as being asymptotically

stable, since the system approaches the point asymptotically. This point will be a stable

equilibrium at which all motion stops. We call it then a stable ji.:rcd p()'int. This, for example,

in the case of a damped harmonic oscillator is the origin. The fixed point is stable because if

the particle is displaced slightly away from the point, it comes back. Thus the stable fixed

point is an attractor - it attracts trajectories in its neighbourhood, which is its domain of

attraction. An under biased semiconductor laser could arguably exhibit ::11..1ch a situation.

Next in the hierarchy of attractors is another geometrical object, a limit cycle. Here the

trajectory closes on itself, that is to say that the system settles down to a St~1 ble periodic

oscillation, which we will observe quite often in the coming chapters in the case of directly

modulated TvlQ\V laser system. It is asymptotically stable. In a two-dimensioned phase space.

the limit cycle is the only att.ractor other than the fixed point.

Next to the limit cycle representing a singly-periodic motion, once has (l lJipc'I"lOdic torus.

a doughnut-shaped attractor in a state space which is at least thrcc-dinicuslonal. Here the

trajectory winds round in the latitudinal as wcl' as in the longitudinal direction of the torus

with frequencies [, and h, say. Clcarlv. if the rnt.in h/h is rational. we have periodic

motion and the trajectory' eventually closes on itself. If.t"J /.12 is irrational. \\T 11/1\"(' n qllil.c.:i­

periodic motion - the trajectory comes »rbitrari!v do:-;(~ t.o closing on it.self but never quit.c

do so. In higher dimensions, one cun have higher duuousi.mnl t.oii. which n-prc-e-nt-, mult.iuk-
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Normalised carrier density NB

0.1 -

'l
0.9"1

0. 0.8

-E 0.7

"~ 0.6
.9s 0.5
c,

~ 0.4 ~
;;;
E 0.3
<;
z 0.2

o
~1Q995~-o~50~98-1-_·--------O:98 ---O~-- 0.94

Normalised carrier density N

Figure 1.2: The three dimensional phase space diagram of a i\fQ\V laser system plotted using the variables
/'''B, N, and P.

periodic motions.

All the above: at tractors correspond to regular periodic motions. A different sort of at.tract.or

that corresponds to deterministic chaos is called the stranqe ottnictor. It is a geometrical

object of fractional dimension l'1]. Thus, attructors nrc geometrical objects in the phase

space to which the trajectories are attracted and on which they eventually lie. They have

domains or basins of attraction. In general there may be several at tractors in the phase space

with their basins of attraction separated hy separatriccs. Together they form a landscape

called the phase portrait. Fig. 1.2 shows the phase diagram of a multiple quantum well

(1\'lQ\V) laser in its three dimensional phase space. The flow corresponds to a Hoc- III

which the modulation frequencies keep and irrational ratio. The set. of points that lie on

the boundaries of the basin of ottracuon form a fractal set. The nature of the attrnctor

set, whether strange at.tructor: a stable periodic at.truct.or, or an unstable periodic repeller,

is measured quantitatively by its J,Vapl11l0V cxponcnt.s. fractal dimensions and the power

spectra. We will discuss them below.

1.1.2 Poincare Soot.ion

In dvn.uu.cal systems. it first rccunvnco 111i1p 01 PUill(:itr('· iuup. named after l lcuri Poincare.

is t.hc intersecton ofn pc'tiodic orbit ill tbr- "tide SP;I("(, ufa coutiuuous dvn amir-al system
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with a certain lower dimensional subspace, called the Poincare: section. transversal to the How

of the systemj-l, 12]. 1\,101'e precisely, one considers a periodic orbit with initial conditions on

the Poincare section and observes the point at which t.his orbits first returns to the section.

thus the name first recurrence map. The transvcrsality of the Poincare section basically

means that periodic orbits starting on the subspace How through it and not parallel to it.

Fig. 1.3 illustrates the method of obt.aining a Poincare section. In this, a flow is strobed

every time it cuts through an imaginary plane in the phase space.

Figure 1.3: An illustration of the Poincare section..\ plane hisects the flow and strobed to reveal the
complexity of the dynamics.

A Point-arc map can be interpreted as discrot.e dyuainir-al systems with a state spar-e that is

011e dimension smaller than the original continuous dynamical system. Because it preserves

manv properties of periodic and quasiperiodic orbits of the original system and has a lower

dime-nsional state space it is often used for annlvzing the original system. In practice this is

Hot always possible as the-re is no gC11cr;11 mr-tbod to consr.rur-t a Point-arc map.

A PUillC,ll'l' llli.lJ> call lie interpreted as discrete dvuanuc..l svxtc-iu with the st.ahilitv of a

period orbit of the original system is closely related to the stubilitv of the fixed point of

11H' COtTcsjlo!Hlillg POillCill't" map. TIH~ periodic en-hit T of t lu: r-uut.iuuous dvu.unical system

is stubk- jf and oulv if the fixed point p of tlu- discrete dvu.uuic.il system is stable. It is
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asymptotically stable if and only if the fixed point p of the discrete dynamical system is

asymptotically stable.

1.1.3 Lyapunov Exponents

Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity

that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively.

two trajectories in phase space with initial separation r5Zo diverge

IbZ(t)1 '" e"lbZol (1.2)

where I . i represents the modulus of the considered vectors.

The rate of separation can be different for diflcrcut oricutatious of iuitiul separation vector.

Thus, there is a whole spectrum of Lvapunov exponents - the Humber of them is equal to

the number of dimensions of the phase space. It is common to just refer to the largest one,

i.e. to the Maximal Lyapunov Exponent (1'1LE), because it determines the predictability of

a dynamical system. A positive J\ILE is usually taken as an indication that the system is

chaotic. The maximal Lyapuuov exponent is defined as follows:

1 jbZ(t)1).. = lim lim - loa --­
r-vcc I'Zol~O t b IbZol

(1.3)

the order of the limits should be preserved to have a meaningful definition. Therefore the

}ILE is defined as the expouent.ial fate of separation of H. reference orbit with respect to all

infinitesimally perturbed orbit averaged over a an extremely long (mfinit.c) lag of time.

For a dynamical system with evolution equation P in an a-dimensional phase space, the

spectrum of Lvapunov exponents

in general. depends on the st.erting point :ru.The Lvapunov exponents describe the behavior

of vectors in the tangent Sp,lCC of t he phase space and arc defined from t.hc Jacobian matrix

(11)

The )1 mat rix desc-ribes how a ::;111i1l1 dWIlgC at the point :ro prolwgates to the final point

FCrll). The set, of Lvapunov exponents will be the same for almost all starting points of

an ergodic component of 1,]1(' dvneuuic'al svst.em. If tho svst cm is -ouscrvat-vc (i.c. there is
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no dissipation), a volume clement of the phase space will stay the same along a trajectory.

Thus the sum of all Lyapunov exponents must be zero. If the system is dissipative, the sum

of Lyapunov exponents is negative. If the system is a flow, one exponent is always zerothc

Lvapunov exponent corresponding to the eigenvalue of J with an eigenvector in the direction

of the fiow.

Generally the calculation of Lyapunov exponents [1.\ 16, 17, 18], as defined above, cannot

be carried ant analytically, and in most cases one must resort to numerical techniques. The

commonly used numerical procedure estimates the J matrix based on averaging several

finite t.imc approximations of the limit defining J. OIl(' of the most used and effective

numerical technique to calculate the Lyapunov spectrum for a smooth dynamical system

relies on periodic Gram-Schmidt orthonormahzation of the Lyapunov vectors to avoid a

misalignment of all the vectors along the direction of maximal expansion [19]. For the

calculation of Lyapunov exponents from limited experimental data, various methods have

been proposed. Throughout this thesis, ,MLE were calculated numerically from the time

series data [13, 14] using the software Dataplore.

Whereas the (global) Lvapunov exponent gives a measure for the total predictability of a

system, it is sometimes interesting to estimate the local predictability around a point Xo

in phase space. This may be done through the eigenvalues of the Jacobian matrix JU(.IO).

These eigenvalues are also called local Lyapunov exponents. The eigenvectors of the Jacobian

matrix point in the direction of the stable and unstable manifolds.

1.1.4 Power Spectrum

In the time domain we investigate the covariance or correlation function of a stationary

time series. Alternatively, we can study" the [power) spectral density function or simply

the (power) spectrum as a function of the frequency co. The spectrum of a stationary time

series f(w} is the counterpart. of a covariance Iuuct.ion in frequency domain. That is, it is

the Fourier transform of the covariance function ~f(k} and vice versa:

and

flU
'I(!') = I-

c
f(c;)ci!~dvJ

(15)

(16)

The power xpect.rtuu of the output of a laser svst cru call be useful in revealing the underlying ,

I
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dynamics and inherent periodicity of the system. For example, a chaotic state will have

infinite components in the frequency spectrum and will be revealed by a power spectrum.

It is quite useful in revealing the resonant frequency of the system and the sidebands.

1.1.5 Bifurcation Diagrams

As discussed before, number of continuous and discrete systems follow the period doubling

route to chaos. For plotting the bifurcation of continuous dynamical systems, a set of values

of a single variable representing the attractor must be obtained. This is usually done by

the return map obtained from the Poincare section [191 as shown in Fig. 1.3. There is

another method for obtaining discrete mappings from the flows. Lorenz has constructed

a one dimensional map from the three dimensional How (X, Y, Z) by taking consecutive

maxima of the variable Z. Such methods also can be used for plotting bifurcation diagrams.

A laser bifurcation diagram, as will be shown in coming chapters of this thesis, can reveal the

path to chaos in a laser system as we observe the system by varying its system parameters.

The most common case is that of the period-doubling bifurcation where the orbit in the space

bifurcates with a doubling of the period. Another feature of the bifurcating systems is the

intermittency that brings unexpected richness to the system in the so-called chaotic regime.

This can be understood with the help of a return map described above.

1.2 Control of Chaos

Controlling chaos, when it is unavoidable, exploits its hidden order-namely the many un­

stable periodic orbits embedded in the chaotic attractor. Chaotic dynamics then consists

in a motion where the system state moves in the neighborhood of one of these orbits for a

while, then falls close to a different unstable periodic orbit where it remains for a limited

time, and so forth. This results in a complicated and unpredictable wandering over longer

periods of time.

Control of chaos is the stabilization, by means of small system perturbations, of one of

these unstable periodic orbits. The result is to render an otherwise chaotic motion more

stable and predictable, which is often an advantage. The perturbation must be tiny, to avoid

significant modification of the system's natural dynamics.

Several techniques have been devised for chaos control, but most are developments of two

basic approaches: the OGY (Ott, Grcbogi and Yorke) [20] method, and I'vragas [21] con­

tinuous control. Doth methods require {1, previous determination of the unstable periodic

orbits of the chaotic system before the controlling algorithm can be designed. In the OGY
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method, small wisely chosen swift kicks are applied to the system once per cycle, to main­

tain it near the desired unstable periodic orbit. In the Pyragas method, an appropriate

continuous controlling signal is injected into the system, whose intensity is practically zero

as the system evolves close to the desired periodic orbit but increases when it drifts away

from the desired orbit.

Experimental control of chaos by one or both of these methods has been achieved in a variety

of systems, including turbulent fluids, oscillating chemical reactions, magneto-mechanical

oscillators, and cardiac tissues [22].

1.3 Synchronization of Chaotic Systems

Synchronization of chaos is an area of research in nonlinear dynamics ever since it has

emerged in 19801:i [23, 24, 25]. Chaotic systems are known to show extreme sensitivity to

the initial conditions. The phase space trajectories of two identical chaotic systems diverge

exponentially and they will become totally uncorrclatcd after a finite time. Hence it is

impossible to construct two independent chaotic systems with the same temporal evolution.

However, certain techniques have been developed for synchronizing chaotic systems. Yamada

et at. [26, 27] have shown that two identical chaotic systems arc synchronized when they

are coupled together by sending information between them [2]. In 1990, Pecora and Caroll

[28] introduced a new synchronization scheme based on the complete replacement a variable

of one of the two identical subsystems (response) by the corresponding variable of the other

subsystem (drive) for synchronizing chaotic systems [29]. This method has been shown to be

efficient in synchronizing many types of analogue electronic circuits [:30]. However, coupling

is commonly used for synchronizing other types of chaotic systems including the chaotic

lasers operating in very high frequency regime.

Pecora and Caroll have shown that a chaotic system (drive system) can be synchronized

with a separate chaotic system (response system) provided that the conditional Lyapunov

exponents of the drive and the response systems arc all negative [23: 28]. R.oy ct. at. [31,46]

have demonstrated the practical viability of synchronizing laser systems. The ability to

design synchronized chaotic systems has opened up opportunities for application of chaos

to private communications. Chaotic switching. chaotic masking, and chaotic modulation

arc commonly used to achieve chaotic transmission. Chaotic switching utilizes u parameter

change in the drive system. where two chnor.ic statt's are cre-ated to bear a, biuarv signal

[33]. The important. issue in such a case is t hat two chaotir: st.ntes rUP dis-inguishablc when

synchronised, and are indistinguishable if not svnclnonisc.l. For -lraot.ic masking. a large

noise-like chnot.ic carrier, which is indcpcu.lcutly gcnt-ro-cd. i-, mixed with t.hc signal at the
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drive end to ensure privacy [34]. At the response end, the masked signal is recovered by

removing the large chaotic carrier under synchronization.

Quantitatively, the extent of synchronization of lasers can be estimated by calculating the

similarity function [23, 35] of the times series of the coupled systems. In the case of two

coupled oscillators, the similarity function can be calculated as

(1.7)

where, Xd(t) is the time series signal of the drive system and xr(t) is the same of a response

system which is driven by the former. T accounts for any time that the drive signal takes to

reach the response system. In coupled chaotic systems this function can be used to represent

the nature of the dynamics in terms of the synchronization error. If T is set to zero, we obtain

5(0), the error in synchrony. We will discuss this further in the light of coupled multiple

quantum well lasers in chapter 3.

1.4 Conclusions

We have discussed the general features of nonlinear dynamical systems and the emergence of

chaos. Further, we have discussed different tools to measure and characterise chaos. These

tools will be used in the study of the dynamics of multiple quantum well lasers about which

we will describe in detail in the next chapter. This study, as we will show, is crucial in

designing many optoelectronic systems with these lasers as the generators of light. As per

the studies that we have discussed in the last paragraph, nonlinear behaviour in the such

laser systems, especially the chaotic state, can be exploited to stabilise the lasers as well as

use them for encryption. Laser chaos can therefore be useful in a tailor made circuit for

communication.
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Chapter 2

Nonlinear Dynamics of Multiple

Quantum Well Lasers

"We see only what we know." - Johann Wolfgang von Goethe

ABSTRACT

Low dimensional structures have come a long way from being mere examples of applied quantum

mechanics tv widespread applications in many modem devices and instruments. Quantum well,

quantum cascade and quantum dot lasers make use of the very fundamental idea of carrier confine­

ment within dimenswns that match their de Broglie wavelength. Quantum well lasers are used in

many modern optoelectronic applications because of their great fle,Tibilily within th.e quantum. limits

to be integratrd in vanous types oj applications. This chopt.er presents tlu: basic physics osui'bosic

features of multiple quantum well laser diodes jroni which the dsnuuruc model is being deoeloped.

2.1 Introduction

Semiconductors allow the manipulation of light, the manipulation of electrical current, and

their interaction within a single device. awl that is why they arc of great interest as opto­

electronic mater-ials of choice [lj. They can cnrrv electrical current ,}S well as light. waves.

In the next level. thev can be designed to allow for the transformation of light into current

and vice versa. Semiconductor lasers are the finest applications of the latter. "l'hcy allow

21
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highly efficient sources of coherent light emission and have opened a vast number of possible

application of lasers.

Interaction between light and matter is ensured when an emitter or detector is constructed.

Light is mostly treated using the Maxwell's equations whereas quantum theory is essential

in the study of matter. The laser dynamics is understood in its totality only by using the

quantum optical treatment of the various physical phenomena involved in the production

of light [2, 3, 4]. A single photon traveling through a semiconductor is able to generate

an identical photon by stimulating the recombination of an electron-hole pair. This pho­

ton multiplication is the key physical mechanism of lasing. Laser didoes with wavelength

constraints such as vertical cavity surface emitting lasers (VCSELs) [5] and distributed feed­

back (DFB) laser diodes are currently of considerable interest because of their ability to be

integrated in more than one dimension.

Semiconductor lasers exhibit many unique features in both functions and performances and

also offer economical advantages. Therefore, by the development of semiconductor lasers,

lasers, which had been a special instrument for scientific research and limited applications,

acquired a position as a device for general and practical instruments. As will be outlined

below, the applications of semiconductor lasers cover a wide area, including optical commu­

nications, optical data storage and processing, optical measurement and sensing, and optical

energy applications.

In semiconductor microstructures of nanometer size, the behavior of electrons is strongly

affected by the quantum nature of the electron and exhibits a remarkable dependence on

the parameters specifying the structure. Therefore, by appropriate design of the structure

parameters, one can implement artificial novel electronic properties unlike the intrinsic char­

acteristics of the bulk materials [;3: 6]. Recent advanced techniques for crystal growth have

enabled precise fabrication of such quantum structures: and these quantum structures have

offered very effective and attractive possibilities for improvement ill semiconductor laser

performances [7: 8]. This chapter presents the fundamental theory of the quantum well

(Q'W] as the most important quantum structure and the optical amplification hy stimulated

emission in it.

2.2 Physics of Low Dimensional Structures

It is the marvel of modern technological advances that, the principles of quantum mechanics

and quantum optics found applications in da.ilv life through the successful fabrication of

devices such as multiple quantum well lasers and qua ntum cascade lasers. The progress of

solid state physics awl materials xcicut:c in the last, thrcc dec-ades is characterized by the
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gradual displacement of bulk crystals by thin films, multi-layered structures and similar

low dimensional structures as the main objects of study. In these systems, most electronic

properties are considerably different and a number of new, so-called size effects occur. The

most dramatic change of properties takes place in quantum size structures where carriers

are confined in a region with characteristic size of the order of the de Broglie wavelength.

In this case the quantum mechanical laws come into action, changing the most fundamental

characteristic of an electron system - its energy spectrum.

Quantum dots , wires, and wells are semiconductor structures that have carrier confinement

- of both electrons and holes - in three, two and one dimensions, respectively. Although

each of these structures reveal a world of study itself, we will stick on to the quantum well

structures as they are the ones that find application in modern systems and devices that

works on the principles of optoelectronics.

2.2.1 Quantum Wells

The de Broglie wavelength of electrons in a very thin (less than a few tens of nanometers)

semiconductor film structure is comparable with the thickness of the film. In such a struc­

ture, electrons exhibit interesting electric and optical characteristics dissimilar to those in

bulk semiconductors and ordinary double heterostructures (DHs). The most fundamental

semiconductor quantum heterostructure is a single quantum well (SQ\V), which consists of

a very thin layer of a semiconductor sandwiched between two layers of a semiconductor hav­

ing a bandgap energy larger than that of the thin layer. The conduction- and valence-band

edges of this structure form potential wells, as shown in Fig. 2.l.

Once miniaturization reaches the quantum limits in one dimension, a "two-dimensional

electron gas" is created, which we shall call "quantum well" (Q\V). In such structures,

under the influence of external fields and sca.tterers. such as photons, impurities, etc .. only

two, rather than three, components of carrier momentum can change. As a result, the carrier

behaviour reminds one of that of a two-dimensional gas, even though the system has finite

extent along the confining coordinates.

A quantum well in our context refers to a well like potential formed from a semiconductor

hctcrostmcturcs such as epitaxially grown thin layers of GaAs and A1GaAs [1,9,10,11,12].

Such wells have two-dimensional density of electron states for low-cncrgv electrons, Such

wells often fonu the active region of a semiconductor laser diode. The small volume of

the qunut.um wt-]] reduces the currcut Hecded to achieve lasing and offers higher diffcrcnr.iul

optical gain compared to hulk laser diodes.
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Figure 2.1: Square well potential that is typical of A1GaAs -CaAs- ALGa/Is quantum-well heterostructure.
For well thickness Lz ;S AdR, size quantization occurs and results in a series of discrete energy levels marked
by the bound state energies of a finite square well. A potential well exists in both the conduction and valence
hands giving fisc to it series of bound states En for the electrons, Ehlm for heavy holes and E 1h n for light
holes.
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2.3 Quantum Well Lasers
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Quantum well lasers with reduced dimensionality offer lower threshold currents, large gain

and lower temperature stability than conventional double heterostructure lasers [4]. The

two-dimensional character of the charge carrier gas causes a change in the density of states

(DOS), the fundamental origin of improved operation characteristics like low threshold cur­

rents and lower temperature sensitivity. Use of quantum well(s) as an active layer allows

implementation of quantum well lasers offering pcrlonnanccs better than those of ordinary

DH lasers. However) mere reduction in the active layer thickness of a DR laser to form a

SQvV or ?vIQ'V structure does not lead to realization of high performances, since the resul­

tant quantum well (QvV) is too thin in comparison with the optical wavelength to ensure

strong optical confinement, and therefore a high effective gain for the guided wave cannot

be attained. Another problem is that it is not easy to attain a high efficiency of carrier

injection in MQ\V structures having many heterojunctions, and the carriers injected in the

thin Q\\l may leak, thereby reducing the effective carrier injection efficiency. To overcome

these problems and to implement high-performance quantum well lasers, various improved

structures have been developed. They are separate-confinement heterostructures (SCHs),

consisting of the QW active layer for carrier confinement and a refractive index structure

for optical confinement outside it., and their modifications.

The most important factor influencing the laser characteristics is the change in the density

of states due to size quantization. If in a bulk semiconductor the density of states near the

band edge is small, then in a quantum size structure it does not vanish near the edge, but

instead remains equal to rnl Jlh']. Because of this fact, the conditions for population inversion

in two-dimensional systems can be met more easily than in three-dimensional systems [12].

This hal) resulted in some particular applied results. The design of lasers with a size­

quantized active region has enabled stationary laser generation at room temperature as well

as decrease in the threshold current of the injection lasers reaching extremely low values of

less than 50 AIcm'2.

The different energy dependence of the density of states changes not. only the value but

also the temperature dependence of the threshold current. The temperature dependence

becomes weaker. which results in the possibility of C\V laser generation not only at room

temperature, but at temperatures several tens of centigrade higher.

Another important peruliaritv of quantum well lasers is the possibility of frequency tuning.

The minimal energy generated quanta is equal to

(2.1)



26 Dynamics of Multiple Quantum Well Lasers

g(E)

otransitions

,,
~"_. _.-

n'=2

i
n=2j

I
I
I
I
i

I
i
I

! n'=1
I
I

I
I
I
in=1
I
I

E .....•..............f--+'<=--l--r+--------.c .

Eg(GaAs)

E" ....f •.............tD":~~

i
i
i
i

. i
'..6...

heavy holes

light holes

Figure 2.2: Density of st.at.e for electrons En and Hh for a A1GaAs - GuA", quantum-well heterostructure.
The half parabola.." that originate from the conduction and valence hand edges represent the densities of
states for bulk structures. The step-like states arc characteristic of the two-dimensional electron (hole) gas
in the quantum-well structure. Inter-band recombination transitions (.0.n,--, 0) occur from a bound state in
the conduct.ion band En to it bound state ill the valence band E h h n or Ell,,,



Chapter 2 27

and can be changed by changing the film thickness L z ) which determines the energy sepa­

ration of the quantum states in the electronic and hole-like state. According to quantum

mechanics we have EQI ,::::,!l2/2m;L;.
The density of states in the k-plane is Pc,h(k)dk ~ kdk/27f' and can be converted into

an energy density with dE = !l2k/m;.hdk. In the transverse direction each quantum state

(energy EQ?, for quantum number i) contributes with the density n IL z ,

(2,2)

The theta junction has the values E-l(:r) = 1 for 1: > 0 and E-l(x) ~ 0 for x :::; 0, Also: the

effective masses m;~h may depend on the quantum number. The density of state grows step­

like, as shown in FIG. 2.2, in a quantum well every time the energy reaches a new transverse

quantum state. There it has exactly the value corresponding to the bulk material.

'Typical quantum wells are rather shallow, which causes the wave function to penetrate

into the barrier region [3, 1]. The distance of the energy levels shrinks with lower barriers;

however, the parabolic dependence on effective mass is maintained. The actual potential

widths !:J.Ec and !:J.E\! of semiconductor wells are critical parameters in the device simulations

but they often are not exactly known.

2.4 Multiple Quantum Well Lasers

Very often, many-layered heterostructurcs with large number of periodically repeated similar

wells are grown instead of a single well. Depending on the thickness of' the wide-gap layers,

these structures can be divided into two types. For energy barrier thickness L z 2: 100ft,

the tunnel transparency of barriers is low, neighbouring wells do not influence each other'

and the effect of each well arc simply added. Such structures, called multiple quantum well

structures (I'vIQ\V), arc used for amplification of the effects observed. At smaller barrier

energy thickness the energy spectrum of the system changes. The possibility of inter-well

tunnelling transition leads to the transformation of quantum size levels into bands, as takes

place for atomic levels in crvst.als. This results in the formation of completely new structures

called superlattices. Their properties differ from single quantum we-lls and thC'y nrc used t.o

make detectors and sources such as the quantum cascade laser.

Multiple quantum well (I\IQ\V) laser diodes arc widely used in many applications because

of their superior pi-rfonnancc characteristics over hulk laser didoes. The modified density

of states due 1.0 confinement in a quaut um well L\::iCT causes lower threshold currents since
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[ewer states per charge carrier are available, which can consequently be filled with lower

currents. Typically threshold current densities of 5 - IOn Acm- 2 are achieved. The Javier

threshold indirectly improves again the temperature sensitivity since there is less excess heat

generated in the heterostructures.

The differential gain of a.:vIQW laser is larger than that for the double heterostructure (DB)

lasers since the electrically dissipated powers growing with the current causes a lower reduc­

tion of the gain. Also, the threshold condition depends less strongly on the temperature.

For conventional DH lasers the transparency threshold grows with T 2 j:3, in quantum well

lasers only in proportion to T. The characteristic temperatures according to the empirical

relation [4]:

T-1"I t h ~ I o eJ;p(-~-)
11)

are about 200K.

2.5 Dynamics of Quantum Well Lasers

(2.3)

To understand the operation of a semiconductor laser diode, we need to develop a model.

A general model is obtained by setting up the Maxwell-Bloch equations[lO, 13]. an attempt

to model the laser dynamics using a semi-classical approach. Lang and Kobayashi [14]

formulated the theoretical framework to study semiconductor lasers with optical injection.

However, the simplest and one of the most effective approach is to use rate equations. The

standard multimodc rate equation for semiconductor lasers is ba...sed on the approximation

that modal field shapes depend on the instantaneous value of the time-dependent dielectric

function. This is known as the adiabatic approximation [15]. It will break down if the

inverse of the modulation frequency approaches the photon round-trip time in the cavi t.y.

(lf5]. Multlmodc rate equation model can be, further, simplified by assuming that the laser

operates in a single mode and that all photons are confined to the particular mode. This

model, which is much simpler, is very effective in predicting t.ho laser output behaviour and

connects physical concepts with engineering realities very well.

Depending upon the basic assumptions that we use before modeling. the rate equation

model can be single mode or multi-mode equations. If we assume that there can be lasing

into only one optical mode of frequency w s , we can utilize this fact to make our model more

compact. In this case our calculations will not incorporate any vuriat.ion in optical ~;}ill.

optical loss, or carrier density along the longitudinal {r ) axis. This lumped-element model.

further. assume that the conduction-band and valcr.cc-bnnd r-lccr rons II(lVE~ the "am!" density
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and that they are thermalised so that they may be characterized by a single temperature as

we have discussed in section 2.3. Further l we will adopt simple but effective approximations

for gain, spontaneous emission, and nonradiativc recombination. \Vhen considering the rate

equations one needs to be very careful to define the parameters used because it is easy to

become confused and make an error. The challenge is to find the exact role of each parameter

and variable used, and never to omit some quantity of importance.

2.5.1 Criteria for Modeling Quantum Well Lasers

One of the earliest models for the multiple quantum well structures were developed by

Rideout et at. [171 based on the well barrier (W-B) hole burning model. Nagarajan et al.

[18] have developed a two-level ambipolar rate equation extension of the \V-D hole burning

model. Successive works found that the two-level model is inadequate to model the system

very well and YlcDonald et ol. [191 developed t.be full t.bree-level ambipolar rate explicitly

considering the gateway states. The work was an extension of two-level models proposed

earlier.

The cavity photon density, photon lifetime, and the differential gain are considered to be

the critical factors in the design of high-speed semiconductor lasers. In addition, a gain com­

pression term, f, whose physical origins have been attributed to various phenomena such as

spectral hole burning [20], transient carrier heating [21], and cavity standing wave dielectric

grating [22], has been used together with rate equations for the carrier and photon density

in the cavity to model the modulation dynamics of semiconductor lasers. Following this pro­

cedure, high-speed laser design meant designing lasers with tight optical mode confinement

for higher photon densities, short cavity length for shorter photon lifetimes, and quantum

well active areas which could in addition to be strained or p doped for higher differential

gain.

In addition to the set of criteria listed above, it is also critically important to minimize the

threshold carrier density to maximize the differential gain, and reduce the carrier transport

times across the separate confinement heterostructure and the barrier layers. in order to

maximize the modulation bandwidth of a quantum well laser. It has been shown that

( of cornparable magnitude ,1S in lasers with bulk active areas is adequate to model the

dynamics of quantum well lasers [18]. Carrier transport factors, low confinement factor, and

low diftcrcntlal gC.lill all contribute ill reducing the ruodulur.iou haudwidt h of the quant.tun

well lasers. Thus, it is imperative that transport properties l-ave a significant effect on the

modulation dynamics of-quantum well lasers. The dynamics of the laser is dominated hy

the transport times of the slower carrier Lype when electrons and holes are injected from the



30 Dynamics of Multiple Quantum Well Lasers

opposite ends of the separate confinement heterostructure.

In the case of an LED, the carrier relaxation time T = l/{b + c) gives the average time

required for electrons in the excited state to decay to the ground state through processes

of spontaneous emission (the "b" term) and nonradiative collisions (the "c" term) [2]. The

population decays according to e- 1/ T
• The laser modulation rate is of the order of 'U = liT =

1 GHz. In a semiconductor laser the stimulated emission forces the carrier to recombine

in addition to the carrier relaxation. Stimulated emission process in a semiconductor laser

lowers the carrier lifetime and thereby effectively increase the modulation rate.
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Figure 2.3: Conservation chart for the \V-B hole burning: model indicating the dominant rate processes
for the \V-B model. Tpb and T p w stands for t~;c carrier leakage times from the barrier and well, respectively.

2.5.2 Carrier Transport in Quantum Well Structures

A great deal of experimental work has been done to study carrier transport in Q\V lasers.

This work consists mostly of time-resolved photoluminescence experiments. pump probe

experiments, and modulation response measurements [2:~J' These cxpcr.mcnts are designed

to study the high-speed dynamics of carriers in Q\V lasers. Of key interest ill this field nrc

transport times across the heterostructure and carrier capture rate into t hc Q\V's itS these

t\VO factors playa fundamental role in the high-speed characteristics of Q\r lase!" devices.

Electrical current How ill scm.ronductors is mainly donriuntcd liv drift dud dillusiou of

electrons and holes. Drift current is generated by un elect ric field whic-h is proport.iouul to
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the conductivity of electrons and holes. Diffusion current is driven by the concentration

gradient of electrons 'Vn and holes \lp. It is proportional to the diffusion coefficient D n and

o, respectively [1].

The phenomenological description of lasing in a semiconductor laser is complete once the

carrier density n is related to the pump parameter, the current density J. This is accom­

plished through a rate equation that incorporates all the mechanisms by which the carriers

are generated and drift inside the active region. In general, the continuity equations for

both electrons and holes should be considered. The two are interrelated because of charge

neutrality, and it. suffices to consider one rate equation for for electrons. In its general form,

the carrier-density rate equation is [1, 13, 24]

an 2 J
~=D(\l n)+--R(n).at qd

(2.4)

The first term accounts for carrier diffusion, and D is the diffusion coefficient. The second

term governs the rate at which the carriers, electrons or holes, are injected into the active

layer because of the external pumping. The electron and hole populations are assumed to be

the same to maintain charge neutrality. In the second term, q is the magnitude of the electron

charge and d is the active-layer thickness. Finally, the last term R(n) takes into account

the carrier loss due to various recombination processes, both radiative and nonradiative. A

rigorous derivation of Eqn. 2.4 has to be based on the density-matrix approach.

In order to apply the rate equation analysis to quantum well lasers, the photon lifetime T p ,

the photon density S, and output power P must be expressed by using the device parameters

of quantum well lasers. The threshold gain 9th of a DFB laser calculated is given in the form

of the net gain for the guided mode. The threshold gain Gt h for use in the rate equations

is expressed in the form of a temporal material gain G, and 9th and Gt h are correlated to

each other by [31

rG t h
9th = -- - (tint·

L'g
(25)

where r is the confinement factor and (tint the internal loss. Group velocity of the guided

mode is represented by L'9' The optical wave in the laser cavity (waveguide) ('(1Il be written

as

"( I) ,.( . )E'( ) -,", -"DX,y.Z:. =L'.J.:r,y jZC (: , (2.G)

where £(z) is the component in the direction of propagation. This equation indicates that.

the power ill the resonator decays with time in a form of (:rp( -'2",rl). If there is no optical
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power source, the optical wave can exist only in such a form that the power stored in the

resonator in the past is consumed and attenuates with time. "Ve define the photon lifetime

Tp as 2, = l/Tp , the time for which the power in the resonator decays to lie times the initial

value, and is an important parameter for the rate equation analysis of semiconductor lasers

[3].

2.5.3 Well-Barrier Hole Burning Model

It is also found that the conventional single mode rate equations fail to explain the resonance

characteristics profoundly, because of non inclusion of factors such as spatial and spectral in­

homogeneities. Hence well barrier hole burning model is introduced to incorporate the effects

contributing to non linear gain [25]. rvIQvV bistable lasers are normally analysed by numcri­

cally solving the single mode rate equations [26]. The modulation response of semiconductor

lasers is determined by an intrinsic dynamic resonance in the nonlinear photon-carrier in­

teraction, and the conventional single-mode (8-;"'1) rate-equation model predicts improved

resonance characteristics with enhanced differential gain. On that basis alone, lasers con­

taining single QWs, rnany uncoupled Q\Vs, and strained Q\Vs should show progressive levels

of improvement. However, so far such expectations have neither boon realized nor verified

satisfactorily, inasmuch as the resonance frequencies and damping rates inferred from recent

parasitic-free experiments vary widely [27]. Evidently, factors such as spatial and spectral

inhomogeneities not taken fully into account by the conventional model affect the resonance

characteristics profoundly.

Electrons

'-----~~----'
SCH (lG)

p-Otecd ing

:J,,-
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Figure 2.'1: Schematic diagr-am of perpendicular carrier transport in a prototype fnGIJ.·ls Gail,'; Q\V
la..sor illustrating tho capture HIH] release proccss('.,-; for electron- and hole", The potent i.i.l profilo shows Ihe
relative positions of the 11- and p ,-\lGiL'\s cladding; Ll)'(TCi, t]j(' Gu.L SCH lilycrCi of IlJi('kll{'~Ci !.(,:, and t.hc­
InGo:1s Q\V la....-cr of thickness ['II'.
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The well-barrier hole burning model, proposed to explain observed large damping in certain

QvV lasers, incorporates certain features of the spatial inhomogeneities in perpendicular

carrier transport (i.e., transport along the growth axis of the quantum wells). As Fig. 2.4

illustrates schematically, after injection, electrons and holes diffuse and drift through the

separate-confInement-heterostructure (SCH) region to within a few hundred Angstroms of

the QW where, among other possibilities, they may be captured quantum mechanically by

the Q'W's. At the high injection levels required for lasing, the densities of electrons and holes

in excess of equilibrium values arc approximately equal, and the diffusion-dominated regions

spread away from the contacts throughout the entire intrinsic region. Thus jointly, these

excess densities play the role of an effective mobile carrier density for ambipolar transport

(with ambipolar-averaged rate constants) across the p-i-n region of the device. \V-I3 hole

burning is argued to result from the buildup of this mobile carrier density in the SCH regions

during capture and release of carriers by the quantum wells.

The VV-I3 model treats the carriers in the barriers {i.e., in the continuum states of the SCH

regions) and wells (i.e., in the localized subband states of the wells) as separate species with

average densities, N ts, and N w , respectively, and focuses attention on the capture process.

The transport and trapping dynamics of carriers across semiconducting heterostructures are

not yet fully understood [281.

The \V-B model postulates that, the photon-carrier resonance results from the coupled

nonlinear interaction between a photon reservoir of density S and two carrier reservoirs: a

collector with density Nb, ancl a gain reservoir of density Nil, and a gain reservoir of density

Nw . As suggested by the conservation chart in Fig. 2.3, the collector receives carriers

remotely from the pump current source, loses carriers to the environment by spontaneous

recombination in the barrier region, and supplies carriers as needed to the gain reservoir.

The gain reservoir captures and releases carriers from and to the collector reservoir, and

loses carriers by spontaneous emission Into the lasing mode, as well as by spontaneous

recombination to the environment. The photon reservoir loses photons by internal and mirror

losses in the lasing cavity. The gain medium and photon reservoir interact via stimulated

absorption and emission. We emphasize two significant. features of the \\'-8 model: that

the well region is the only gain medium; and that the model supports three phase-space

dimensions (associated with two carrier densities and the photon dcnsi ty] cis-a-vis the two

dimensions of the 8-1'v1 model. Since the well region is the only gain medium, the carriers in

the barrier region interact only indirectly' with the lasing mode via, their coupling: to carriers

in the wells.

The conservation chart (Fig. 2.3) contains the essential rate processes for the uouliuc.u­

rate equations described below.
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2.5.4

Dynamics of Multiple Quantum Well Lasers

Nonradiative Recombination and Carrier Overflow

Decay mechanisms through which electrons in a given energy state can decay out of that

state arc broadly divided into two categories corresponding to the intmband and intcrtiund

decay mechanisms [13]. Intraband processes in a semiconductor laser constitute of electron­

electron scattering and the electron-phonon scattering, and occur at fast time scale of '"

0.1 ps. By contrast, inferband processes occur at a time scale of few nanoseconds; they

consist of radiative recombination leading to spontaneous and stimulated emissions as well

as nunradiative recombination. In long wavelength semiconducting lasers an important

source of nonradiative recombination is the A uqer process, as discussed in this section.

Some of the injected minority carriers are consumed in the active layer by the nonradia­

tive recombination without photon emission. This gives rise to a factor that causes the

internal quantum clIiciency for spontaneous emission to deteriorate. Although the ncnra­

diative recombination includes recombination due to lattice defects and recombination due

to impurities, and also recombination at the interfaces of the heterostructure, it is negligi­

bly small for ordinary lasers that use high-quality crystals. More important and essential

nonradiative recombination is that caused by the Auger processes [1, 13, 29]. Collision of

two electrons and one hole resulting in recombination of one electron and the hole, and

excitation of another electron with the energy released by the recombination up to a higher

level in the conduction band, and collision of two heavy holes with one electron resulting

in similar recombination and excitation. The excited carriers give energy to the crystal Iat­

tice in the form of heat and return to the unexcited level. Since both cncrgy conservation

and momentum conservation must hold also for the Auger process. recombination occurs

with carriers at energies apart from the band edge. Accordingly, thc recombination rate

R A exhibits a remarkable temperature dependence and bandgap energy dependence: R A is

larger for a narrow bandgap and a high temperature. Since the process is a collision of three

particles, the carrier dcnsitv dependence of R.il call be phenomenologically written as [:~]

(2.7)

where Cs., Cp , and C. are constants "with n> p. \Vhile the Auger recombination is usually

negligibly small for lasers for short-wavelength emission. it is an important factor that sig­

nifircntlv affort.s spont"IJ1COIlS emission in lasers for lOllg--w()vrl(~ngt.h emission. The Angf'r

recombiuauon can be reduced by llsing strained quauttuu well strur-urcs.

Another import.ant, factor that causes the «mission efficiency to deteriorate is the overflow

of minorit.v cunicrs injected in thc active laver int.o t,11C region opposite to the injection

s-ide. which gives rise to additional current wi t.hou t. -ouuibur.icu to the laser action. The
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magnitude of the overflow current can be evaluated by calculating the carrier density at

the boundary between the active and barrier regions under the assumption that the quasi­

Fermi level is continuous across the boundary, and solving the carrier diffusion equat-ion

in the barrier region with the use of the boundary value. The overflow is larger for lower

barrier heights and higher temperatures. The current consists of diffusion current and drift

current with the ratio dependent on the thickness and the resistivity of the barrier region.

In many lasers the overflow can be suppressed to a negligible value by appropriate design.

For short-wavelength lasers where it is difficult to assure sufficient barrier height, and for

laser operation at elevated temperatures, the overflow can be an important factor that limits

the performances.

2.5.5 Optical Cavity

We exploit the existence of optical gain in a semiconductor to make a laser diode. One

might imagine constructing a p - n diode out of a direct band-gap semiconductor such as

GaAs or InGaAsP. When forward-biased to pass a current, I, electrons are injected into

the conduction band and holes into the valence band. The optically active region of the

semiconductor is where the electrons and holes overlap in real space, so that vertical optical

transitions can take place in the momentum space (k-space) [11]. If the density of carriers

injected into the active region is great enough, then it satisfies the Bernard-Duraffourg

condition [30] that the separation in quasi-chemical potentials electronic states at upper

and lower energy states must be greater than the photon energy for net optical gain to exist.

This implies that optical gain exists for light at some wavelength in the semiconductor.

There is, however, more to designing a useful device. Among other things, we would like to

ensure that a high intensity of lasing light emission occurs at. a specific wavelength.

Typical value of gain for an optical mode in a semiconductor laser diode is not very large

(rv 500 em-I), and therefore, in order to precisely control emission wavelength. ouc typically

places the active semiconductor in a high-Q optical cavirv. This cavity has the effect of

storing light at a particular wavelength. allowing it to interact with the gain medium for

a longer time. In this way, relatively modest optical gain may be used to build up high

light intensity in a given optical moue. Electrons con-ributing to the injection current f arc

converted into lasing photons that have a single mode awl wil\"e]C'llgth. The -flicicuc-, or r.hc

conversion process is enhanced if only one high-q opt iral-cavitv rcxouance is in cite same

wavelength range as scinicondur.tor optical gain.
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2.5.6 Fabry-Perot Lasers

In our T'vlQW laser models, the most widely employed cavity structures are the Fabry-Perot

optical cavity, which is arguably the simplest, and the distributed feedback (DFI3) cavity

employing periodic stacks of dielectric mirrors. The former consists of an index-guided

active region placed within a Fabry-Perot optical resonator. Assuming that the photons

travel normal to the two mirror planes and in the a-direction, the expression for the spectral

range of corresponding longitudinal optical resonances will be

" effUW=--,
Len,.

where nr is the refractive index of the dielectric, Lc is the length of the cavity, and c

is the speed of light in vacuum. The mode confinement factor r is calculated from the

spatially varying dielectric constant in the cavity, E(X, y), which is obtained as a solution of

the time independent Maxwell's equations assuming no free charge and an electromagnetic

wave traveling in the z-direction:

\7' E + f(X, y)k5E = O. (2.9)

by assuming that E(X, y) varies slowly in the .r-dircction compared with the y-direction and

by adopting the effective index approximation. Finally, one can definitely say that it is the

cavity formation that makes a laser different, from a light emitting diode' (LED). Mult.ipln

round trips are necessary to approach steady-state laser characteristics that arc independent

of laser injection current [11].

2.5.7 Distributed Feedback Lasers

In many applications: such us optical communications and measuremcnta, semiconductor

lasers that maintain stable and pure single-mode oscillations even under high-speed mod­

ulation are required. Fabrvl''erot (FP) lasers cannot satisfy this requirement. Therefore,

various types of dynamic single mode semiconductor lasers have been developed. Such

lasers arc mainly' classified into disrributrrl feedback (DFI3) and distributed Bragg reflector

(DBR) lasers, which maintain stable single-mode oscillation even under high-speed modula­

tion [:~]. They arc suitable for monolithic integration and accomplishing advanced functions

and performances. \Ve huvc. therefore. mostly used the ::\lQvV lasers with DFB configuration

in our studies leading to this thesis.

\Ve can achieve dvnarnic single-mode o-aillut.iou hv giving the oscillation threshold gain a

sharp mode selcctivitv to prevent osc-illut.ion of modes except for a single mode. One of the
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simplest methods is to combine a FP laser with an external mirror, thereby constructing

of a composite resonator consisting of the two facet mirrors and the third external mirror.

One of the laser waveguide FP modes that coincides with one of the resonance frequencies

for the facet and the external mirror oscillates [31].

If we integrate a grating with sharp wavelength selectivity as a feedback clement in a

semiconductor laser waveguide, dynamic single-mode lasers can be implemented without

spoiling the compactness of semiconductor lasers [32, 33, 34]. This type of semiconductor

laser is classified as a distributed feedback (DFB) laser using a grating within the active

section (carrier injection section), and a distributed Bragg reflector (DRR) laser using a

grating outside the active section. Although the fabrication of these lasers requires advanced

techniques, they can offer excellent performances including dynamic single-mode oscillation.

The DFB and DBR configurations arc suitable for implementing advanced devices such

as wavelength-tunable lasers. They do not require facet mirrors, and this unique feature

facilitates monolithic integration of lasers and other optical elements, such as photodetectors

and passive elements, in a semiconductor waveguide. With these advantages, DFI3 and DBR

lasers are the most important components for implementation of various photonic integrated

circuits. All the above mentioned features make us to concentrate more on DFB lasers

available in modern laser systems vital to long distance optical communication.

We can sec that DFB lasers have specified device parameters more than those of FP lasers,

and the operating characteristics have complex dependencies 011 them. As presented above,

the oscillation condition for DFI3 lasers is significantly different from that of FP lasers. They

have unique longitudinal mode characteristics and oscillate in a single longitudinal mode.

However, many of the operating characteristics are common to those of FP lasers, as they

are described by rate equations similar to those of FP lasers.

Also, for ordinary single-quantum-well and multiple-quantum-well structures, the TE gain

is significantly larger than the TI'v'I gain. Strained quaut.um wells can he designed so as

to have a larger gain for a TE mode or a T1.I mode. Therefore. DFI3 lasers with a high

polarization extinction ratio can be implemented hy using u SCH structure with a quantum

well active region and an appropriately designed grating.

We can see that quantum well DFI3 lasers having a high relaxation oscillation frequency and

a small line width enhancement factor (\r" in particular, single-mode high-speed modulation

above 10 GHz is possible [20], and frcqucncv chirping is small. Because of these excellent

characteristics, quantum well DFI3 lasers ru-e most suit ablc as a light source for high-speed

optical fiber communications.
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2.6 A Rate Equation Model for Directly Modulated

MQW Laser Diodes

In a multiple quantum-well (1\:1QvV) laser the carrier density is not generally the same in each

quantum-well (QvV). The distribution of carriers in the Q\V's can profoundly affect device

operation and is crucial to the understanding of MQW devices [3,5, 36, :J7, 38, 39, '10], The

carrier distribution in NIQvV devices has been studied both experimentally and theoretically

in the past [38, 39, 40].

Based on all the details above) we choose the three level multiple quantum well laser model

proposed by Bennet et al. [41] which is a modified version of the model put forward by

Nagarajan et ol. [18]. Carrier densities in the core (barrier) region (1\/c) and the well

region (lVw ) influence the photon number density .Np in the active region as according to

the following set of equations:

dN,
dt

a»;
dt

dNp

dt

CJ n, rIJ1VW---+--
cV r; Te
N" . 1 11 .-- + Nw [- + - - vgG(N"" Np)1vp,

fqTe r« T e

[rv,/J(N",. Np) - ~ INp + r,ilEN,;"
Tp

(2.10)

(2.11)

(2.12)

where C, is the fraction of the .t\JQ\V region filled hy the quantum wells. I" is the mode

confinement factor of the laser, defined as

where L: (uswrlly < IOO it) is the height of the active region, and ~F,nodc is the width

of the EI\I mode ll n]. When the optical mode is effcct.ively confined to the active region.

thc gain scales ,IS L~ ]. which is due to the fact that as the optical density, fur a fixed total

power, in guided inodc. goes as L: 1, so the srinmlatcd emission emission rutc nnd hence

the gain SGdc simil.u'lv..\s long as r r-v L that Is most of the mode energy is in the active

region, the g.un G(,\"u'. "\J) is iuvcrsclv proportional to the active rr-gion thickness Le:.
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2.6.1 Gain Calculation

"We have observed that a precise theory for conventional double heterostructure lasers, which

explains many of the observed properties well, has been developed taking into account the

electronic intraband relaxations. Such a theory is necessary for quantum well lasers as well,

since the intraband relaxation is particularly important for quantum well lasers wit.h narrow

gain spectrum since the gain spectrum is broadened due to this intraband relaxation. The

gain G{Nw , Np ) is obtained by careful theoretical analysis as trial and error optimization

of the multi-quantum-wellfMr.Iw] laser structure is both costly and time consuming since

there are innumerable possible combinations of optical confinement structure, well width.

well number, and cavity length: only a few of which lead to useful devices [,12]. The linear

gain of quantum-well lasers, taking into account the effects of the intraband relaxation can

be written as [<12, 13]

(2.14)

where Zo = (pO/EO)I/2 is the free space impedance, T = h/8.E is the intra-band scattering

time, Eeh = E; - Ev is the transition energy, E en and Ev n ' are the nth and n lt h energy levels

of the electron and hole quantum wells, respectively, and Ie and j~ are the corresponding

Fermi factors. L: is the well width, R ch is the interband matrix element (set to zero for

n #- n'}, (x) denotes the average of .7: taken over the polar angle 0, 11 is the effective refractive

index, and ~'9' is the semiconductor band gap. The Fermi levels arc calculated assuming

bimolecular recombination and equal carrier concentrations (n = p), i.e., assuming current

density J = eLzBefrn2. Using the above equation, we can calculate the gain of a single well

as a function of frequency and current and apply to the 11Q\V laser model for optimization.

The most important design parameter of the ;"IQ\V laser is the number of wells. The

optimum number depends on the required gain at threshold. If the total active width

is small (less than - IOOO -,'1) and n scparatc confinement heterostructure (SCH) is used.

then numerical calculations show that. the optical confinement factor r is approximately

proportional to the total number of wells. We therefore use this as the starting point of

our model. and make the explicit assumption that J is directly proportional to the number

of wells for ,1 bruited range of conditions, which we shall later dofino. Bnv-d on these'

assumptions, the function G(iYu." ;Yp ) is deduced from Eqn. 2.1,'1 as pI, .'12]

" ,,_ ) __ G() ,JV
(,(c\J) -)In-. ,

(I+ff' ;vo
(215)

'where f is the nonliuc-n- gnu: courprnssiou factor ..\To is the trnusparcnt carrier densit.y, and
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Gu is the gain parameter dependent on the well structure. The carrier recombination rate

R(N) is expressed by the truncated power series fit to inverse differential carrier lifetime

(l/Tn = aRIUN) measurements by [3, 19]

R(N) = AN + BN' + cs», (2,16)

where A, B, and C arc the mono-molcculat-, hi-molecular and Auger recombination coeffi­

cients which we discussed in preceding sections.

In conclusion, we have discussed the basic physics and related device parameters that leads

to a successful model in studying the multiple quantum well structures. It is shown that

transport mechanisms in the structure play an important role in the carrier-photon coupling

within the cavity and their dynamics. The basic rate equation model for the QvV laser and

the need for the well-barrier hole burning model have been discussed in detail. A detailed

account of the parameters involved in the laser rate equation model with due emphasis on

their physical origin, and their role in determining the dynamic features of the laser, which

is the major topic of discussion of this thesis will be presented in the coming chapters. \Ve

have also presented the justification in choosing the DFB configured IvIQvV laser because of

its advantages over F-P lasers.

2.7 Scope of this Thesis

As we have discussed in this chapter, laser diodes represent a key element ill the field of

optoelectronics..For all applications, information is either transmitted, stored or read out.

The performance of these systems depends to a great deal on the performance of the laser

diode with regard to its modulation and noise characteristics. Since the modulation and

noise characteristics of laser diodes arc of vital importance to optoelectronic systems, the

work in the thesis mostly concentrate on the modulation characteristics of the modern day

laser system made up of multiple quantum well Structures. A second interest in these less

studied systems arises due to their potential application in one of the modern findings in

corumunlcation. that is chaotic encryption.

In a chaotic modulation scheme, the chaotic oscillator in the drive end is directly modulated

by the information signal. '\Fe have investigated the possibilities of using the directly modu­

lated :"IQ\V lasers for such communicatjon scheme. \Ve will urakc use of different modulation

schemes S11Ch as single-tone (ST:l\..J), two-t.ouc (TT\l), awl multi-Lone modular.ion (l\.-lT;"'l).

1))' i.rjcctiug one, two and ,0\' sinusoidal t.atticrx. resnccr.ivclv l.ll , .1-'1].

Ccuuu.uri-at.ion with light waves with chaot.ic fluctuations of intensity bas been considered
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in recent years by several researchers [451 L18, /16 1 47]. The natural masking of information by

chaotic fluctuations has served as a practical motivation for the research. Great interest also

exists in understanding the basic mechanisms by which information can be encoded and de­

coded through the usc of synchronized chaotic systems. We will discuss the synchronization

of coupled J\JQ\V laser in chapter 3 along with the discussion of' its nonlinear dynamics.

Bistable lasers have always been looked as means of optical computing clements and and

memory systems [15]. We explore the nature of multistability in directly modulated multiple

quantum well lasers in chapter 4.

Also interesting is the role of feedback in the dynamics of multiple quantum well lasers.

It is shown in chapter 5 that feedback can act as means of controlling instabilities as well

as generate chaos in the system. The possibility of integrating an optoelectronic feedback

circuit to the laser control circuit makes these possibilities more attractive.



Dynamics of Multiple Quantum Well Lasers



Bibliography

[11 J. Priprck, Scnuconductor Optoelectronic Devices: InLroducUon [0 Physics and Simulatiori, Academic

Press, San Diego, 2003.

[2] M. A. Parker, Physics of Optoelectronics, Taylor and Francis, I30ca Raton, 2005.

[3] T. Suhara, Semiconductor Laser Fundamentals, Marcel Dekker, New York, 2004.

[4] D. Meschede, Optics, Light and Lasers, Wiley-VCR Verlag GmbH and Co. KGaA, Weinheim, 2004.

[5] R. S. Geels, S. \V. Coraine, and L. A. Coldren, "lnGnils ()(Ttical-cavity surface-emitting lasers," IEEE

J. Quantum Electron. 27, pp. 1359 1367 (1991).

[6] C. Weisbuch and B. Vinter, Quantmn Semir:onductor Structures, Academic Press, New York, 1991.

[7] \V. Tsang, "Heterostructure semiconductor laser's prep(lTed by molecular beam epitaxy," IEEE J. Quan­

tum Electron. QE-20, 1119 1132 (19fH).

[8] P. S. Zorv, Jr (ed.), C)'uanl'urn Well Laser's, Academic Press, 0:cw York, 1993.

[91 N. Holonyak , .lr.. R. 11. Kolbas, H. D. Dupuis and P. D. Dapkus, "quant'llm-well heteTOstr'udure lasers,"

IEEE J. Quantum Electron. QE-16, PI'. 170 lR6 (1~l80).

[10J A. Yariv, q'llanlmn Electronics, John Wiley At Sons, New York , 1989.

[11] A. F . .1. Levi, Applied Q'Ilantnm Mechanics. Cambridge University Press. Cambridge, 2003.

["12] A. Shik. Quanf,um Wells: Physics and Etcctronice of Two-Dimensional Systems, World Scientific,

Singapore. 1998.

:1:->] C;. P. Agrawal and N. K. Duttu. [,ong-lVa'Udength Semiconductor Lasers, Van Nostrand Reinhold . New

l'urk. lWn.

[HI It. Lang and 1\. Kobayashi. "Suppncssion of the relcu.ation: o,~cillation in the m.odulnl.ed output of

semiconductor toscre, IEEE J. Quantum Electron. qE-12, pp. I!H Hl!l (ID76).

~1:)] H. l<mQgllchi. Uistability and Nonlincariiics in Laser Diodes. Attech House. Xorwood. 1!J!H.



Dynamics of Multiple Quantum Well Lasers

[IG] C. A. Baraff and R. K. Smith, "Nonadiabaiic semiconductor laser rate equations [or the large-signal,

Hlpid-modulation regime," Phys. Rev. A 48, pp. lH380S (2000).

[17J W. Rideout, 'vV. F, Shut-fin. E. S. Koteles. M. O. Vassel, and R. Elman, "Well-barrier hole burninq in

quantum-well lasers," IEEE Photon. Techno!' Lett. 3, pp. 7iB 786 (Hl91).

[18] R. Nagarajen, T. Fukushima, S. \V. Corzine, and J. E. Bowers, "Effects of carrier transport on h'igh­

speed quantum welllaseTs," Appl. Phys. Lett. 59, pp. 1835--1837 (1991).

[19] D. Mcljonald and R. F. O'Dowd, "Comparison of two- and three-level mte euations in the modeling

of quantmn-welilasers," IEEE J. Quantum Electron. 31, pp. 1927--1934 (1995).

[20] K. Uomi, T. Tuchiya., H. Nakano, 11. Aoki , T\.L Suzuki, and :-.J. Chlnone, "High-speed and uurolous­

chirp 11.5GJ1rn rnnltiquantnm well )./4 - shifted DFB lasers," IEEE J. Quantum Electron. QE-27, pp.

1705-1713 (1991).

[21] A. P. Del-ouzo. and B. Gomatam, "Gain nonlinearities in semiconductor lasers and amplifiers," Appl.

Phys. Lett. 56, pp. 61 613 (1990).

[22] J. Born, and C. B. Su, "Observation of positive and negative nonlinear gain in an optical injection

experiment: Proof of the cavity standing-'Wave-induced nonlinear gain the07'Y in L3!lm 'Wavelength semi­

conductor diode lasers," Appl. Phys. Lett. 54, pp. 17:H 1736 (1989).

[23] N. Tessler and G. Eisenstein, "On carrier injection and gain dynamics in quantum u.eti iaeers? IEEE

.1. Quantum Electron. 29, pp. 1586-1595 (1993).

[24] M. Yamada and Y. Suematsu , , IEEE J. Quantum Electron. QE-15, pp. 7-13 (1979);.1. Appl. Phys.

52, pp. 265" (1981).

[25] \'1. o. Vassel, \V F. Sharfiu , \V. C. Rideout. and J. Lee, "Competing effects of well-barrier hole /J1lrnin.9

and nonlinear gain on the resonance characteristics of quantum-well lasers," BEE.1. Quantum Electron.

29, pp. 1319 1329 (1993).

[20J H. Ucnohar-a. It. Takahashi, Y. Kawamura, and H. Iwanrura. "Static and dynam'ic response of Mnltiple

quantnm well 'Foltage coiurotted bistable laser diodes' . IEEE .1. Quantum Electron. 32, pp.87:3 8H] (1996).

127] Vv'. F. Sharfin . .1. Schlafer. W. Rideout, B. Elman, R 13. Lauer . .1. Le.Course. and l- D, Crawford,

"Anomalously hi.!Jh damping in strained JnGaAs-G(t/L~ single f]1J.(tntum wclilasers," IEEE Photon. Tech­

nol. Lett. 3, 1!:l:J l!FJ (1091).

[2K] S. Moriu , G. Cocorullc, F. C;. Della Corte, H. L. Harnagcl, and Schwccger. "Capture of phol.oeJ:cited

carriers in It single quantum wdl 'iL'UhdijJcrent confineJnent stnu'tures"· Eb'F.J. (Jnanhl,Jn Electron. 27.

1Gb!! Ib7S (H191): and referenccs therein.

[2D] .:\'. K. lhltta aucl R. ,J. Nelson. 'Flw case for i1uqer recombination in JrlJ_,cC;'u,cibv.f-'I_'!I,'· .J. AJiJiI.

J-'hy-" . vol. 53, pp. 7c1 i(j (1082).



Chapter 2 45

[30] M. G. A. Bernard and G. Duraffourg. "Laser conditions in semiconductors," Phys. Stat. Solidi 1, pp.

699-7m (19Gl).

[31] K-Y. Lieu, C. A. Burrus, R.. A. Linke, 1. P. Kaminow, S. \V. Granlund, C. R. Swan, and P. Besomi,

"Single-longitudinal-mode stabilized qraded-vndex-rod cxtcrnol c(J'uplrxl-r:avity laser," Appi. Phys. Lett.,

45, pp. 729-731 (1D8/1).

[32J H. Kogelnik and C. V. Shank, "Counted- Wave theory of distributed feedback lasers." J. Appl. Phys. 43,

pp.2327 (1972).

[33] 1v1. Nakamura, A. Yariv, H. \V. Yen, S. Someck, and H. L. Carvin, "Laser oscillation in epitaxial GaAs

waveguides with corrugation feedback," Appl. Phys. Lett. 23, pp. 224- 225 (1973).

[34] S. Wang. "Principles of distributed feedback and dietritnited BnLgg-n:flector laMrs," IEEE .1. Quantum

Electron. QE-10, pp. 413 427 (1974).

[35] H. Yamasaki, A. Tomita, and 1'v1. Yamaguchi, "Evidence ()fnonun~form carrier distribution in multiple

qitantmn well lasers," Appl. Phys. Lett. 71, pp. 767-769 (1997).

[36] J. F. Hazell, .1. G. Simmons, .T. D. Evans, and C. Blaauw, "'1'he eJIect of varying barrier height on the

operational cliaracteristice of 1.S-/un strained-layer AIQW lasers," IEEE J. Quantum Electron. 34, pp.

2358-2363 (1998).

[371 A. Champagne, R. Muciejko, and T. Makino, "Enhanced carrier injection efficiency from lateml current

injection in multiple-quantum-well DFR lasers," LEEE Photon. Techno!. Lett. 8, pp. 749-751 (1996).

[38] C. H. Morrison, D. M. Adams, and D. T. Cassidy, "Extraction of gain parameters for' truncated well

gain coupled DFB lasers," IEEE Photon. Techno!. LeU. (1999).

[39] ::\'1..T. Hemp, D, T. Cassidy, B..J. Robinson, Q. C. Zhao, D. A. Thompson, and 1'v1. Davies, "Effect of

barrier heiyht on the uneven cas-vier distribution in asymmetric rnultiple-quantum-well InGaAsP lasers,"

IEEE Photon. Technol. Lett. 10, pp. 1380-1:182 (lmJR).

[10] 11. .r. Hamp, o. T. Cassidy, B. .1. Robinson, Q. C. Zhao, and D. A. Thompson, "Noriuriijorm. carrier

distribution in asymmetric mulliplc-qulwtum-wdl InGa,AsP Laser structures with diJfeTent numbers of

quantum wells," Appl. Phys. Lett. 74, pp , 7iH-74G (1999).

(411 S. Bennett. C. M. Snowden and S. Iezekiel. "Nonlinear dynolnics in directly modulated mulUple­

quantum-well loser diodes," IEEE .J. Quant um Electron. 33, pp. 2076 2083 (1997).

[,12] 1'. M. A. 'vlc Ilroy, A. 1< urobe. Y. Uematsu. "A na{y-sis and applicotion of theo'l"dicill .!lain curves to the

design ofmuUi-qultn(-uln-'welllasers," ]]';EI'; .r. Quaut.um Eltx.t.ron. QE-21, pp. 1958 HJG3 (1985).

[43] \1. j\sarla, A Kamevumn. Y. Snematsu "CIJ,in ondi,nlr:r('(}.lcn(:I~ hand absorption in ouomtum-wcu

lasers." IEEE./ Quantum Elo-r mn. QE-20. pp. 715 I;")J (1~),s1).



46 Dynamics of Multiple Quantum Well Lasers

'"

[1-1] C . .Iuang, S. T. Huang, C. Y. Liu, W. C. Wang, T. 1·1. Hwang, .1 . Juang, and W. W. Lin. "Suocorrier

mnltipleE'ing by chaotic multilane modulation," IEEE J. Q1l11I1tUlll Electron. 41, pp. 1213 1223 (1998).

[,15] L. 1-1. Pecora, T. L. Carroll, G. A. Johnson, D. J. 1Jar, and J. F. Heagy, "Fundamentals of synchro­

nization in chaotic systems, concepts, and applications," Chaos 7, pp. 520 (1997).

[46] G. D. VanWiggcrcn, and R. Roy, Communication with chaotic laser"s," Science 279, pp. 1198-1200

(1998).

[47J R. Roy and K. S. Thornburg, Jr., "Experimental synchronization of chaotic lasers," Phys. Rev, Lett.

72, pp. 2009-20l2 (1994).

[·-181 K. 11. Cuomo, A. V. Oppenheim, and S. H. Strogutz., "Synchronization of Lorenz-based chaotic circuits

with flpplications to communication," IEEE Trans. Circuit Syst. II 40, pp. 626-633 (1993).



Chapter 3

Effect of Modulation on MQW

Laser Dynamics

"Every great advance in science has issued from a new audacity of imagination."

- John Dewey

ABSTRACT

Direct modulation of semiconductor lasers make them highly useful in optical communication. From

a dynamical perspectiue, the modulation adds another degree of freedom which make the laser vulner­

able to coherence collapse and chao he oscillations. Multiple quantum well lasers have high bandwidth

and allows high fn~quency small signal modulation with signals in the order of GHz. In th!s chapler

we present. the results of our rigoT01LS numerical analysis of the modulatwn response oj the directly

modulated multiple quantum well laser.

3.1 Introduction

It is TIO'V' well established that the modulation response of semiconductor lasers for opt.i­

cal cornrnuniruucns is determined bv an intrinsic dynamic resonance in the photon-carrier

interaction. The competition between various cominatiug frequencies of oscillation within

the laser cavity can lead to various situations such as periodic oscillation, quasipcriodicitv.

multis-abilitv awl hv-tcrcsis. and chaos. The semiconductor laser dvn.uuics, ill general. is

47
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well studied and depending on whether gives self pulsating, bistable or non self pulsating

output, the laser dynamics can follow various routes to chaos [1, 2~ 3].

3.2 Direct Modulation of MQW Lasers

It is well understood today that the direct modulation of the semiconductor laser adds the

necessary degree of freedom that makes the laser chaotic [1, 2]. This is <inc to the finding that

chaotic behaviour arises in a single mode laser when its losses arc periodically modulated with

a frequency comparable to the relaxation oscillation frequency. Kawaguchi [4] showed that a

self-pulsating laser with a sinusoidal current modulation shows period-doubling bifurcation

and chaos. Lee et al. showed that the directly modulated laser diode, which does not have

self-pulsation, with the modulation frequency of the injection current comparable to the

relaxation frequency, exhibits a period-doubling route to chaos as the modulation current

is increased [5]. This is observed in the absence of any other disturbance such as external

feedback and relies simply on the photon-electron resonances and their interaction with the

modulation frequency.

Our attempt in this chapter is to understand the response of a directly modulated multiple

quantum well laser diode to various modulation schemes. We choose a ,\/4 shifted DFB

InGaAsP - InGaAs MQW laser diode for our study based on the reasons cited in chapter

two. The laser has 16 quantum wells (Q\V's) with lengths of 350pm. The thicknesses of

the well and barrier regions were 70 Ii and 100 A , respectively, and the active regions had

widths of 1.3 urn, The laser has a threshold current of 19 mA and emission wavelength

1.53 urn, The emission wavelength of the laser has a detuning of approximately ;30 nm

from the material gain peak. The laser ha..a a 3 - dB modulation bandwidth of 11.3 GHz

at 1110 mA and D [61 and K [71 factors of 3.96 GHz/mW and 0.'12 ns. respectively. The

I( factor refers to the Petermann factor. which sums up the existence of excessive noise

in radiation modes, leading to enhancements in intrinsic laser line widths and spontaneous

emission rates [8]. P is a factor dependent on the waveguide dimensions when we write the

resonance frequency, i-, as a function of laser output power per facet, P, as:

(U)

The value of D determines the differential gain coefficient Go. and the laser out.put powers.

Spatially averaged carrier densities in the barrier region (Nn ) and the well region (jV)

influence the photon number dcusitv (P) ill rhc active region according to t.he following set

modified equations from the set of equations obt.aiucd in section :2.6 [!l ll)~:
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Table 3 I: Parameters Used in Rate Equation Analysis and Their Description,

Parameter Value Description

V 5.1 x 10- 17 m3 Active region volume

r 0,22 Mode confinement factor

r q 0,66 Fractional volume of Quantum Wells

Tp 1.3 ps Photon lifetime

T, 20 ps Carrier decay time (Barrier to Well)

T, 191 ps Carrier decay time (Well to Barrier)

(i 10-6 Spontaneous emission factor

Go 141107 m 1 Gain parameter

No 2.41 x 1024 m-:j Transparent carrier density

, 3,24 x 10-23 m3 Gain compression coefficient

A 108 S-l Mono-molecular Recombination Coefficient

B 10- 16 m 3 S-1 Bi-molecular Recombination Coefficient

C 3 x lO-41 rnG 8- 1 Anger Recombination Coofliricnt

vg 7.5 x 10' m8- 1 Group velocity

Ith 19 mA Threshold Current

dNB

dt
dN

dt
dP
dt

l'qI N B r'iN
---+--
eV r; Te
NB 1 1-r + N[~ + -I - vgG(N,P)P,
fjTc Tn r; "

[rvgG(N, P) - ~ IP + r(WN2
,

Tp

(3.2)

(3.3)

where I is the injected current, e is the electron charge, r q is the fraction of the i\IQ\V

region filled by the quantum wells and r is tho mode confinement factor as calculated using

the effective index method for the quantum well structure, "s is the group velocity and T p

is the photon lifetime in the well region.

vVe have used following expression for the nonlinear gain of the laser G tN, P) [11] is modelled

as the same given in equation 2.15. The carrier recombination rate ReV) is expressed

by the truncated power series fit to inverse differential carrier Jifct.imc (lITn - aRla]V~)

measurements [12] given bv equation 2.16 discussed ill chapter 2.
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3.3 Sinusoidal Modulation and Frequency Response

In principle, direct modulation at a gigabit rate is expected to be feasible. However, the

practical rate of pulse modulation has been limited to below several hundred megahertz.

owing to the serious distortion of the output waveform caused by the relaxation oscillation

of the light intensity. The typical repetition frequency io; of the intensity spikes is a few

gigahertz, with the spike height decreasing exponentially with the time constant of a few

nanoseconds. The optical gain varies with the carrier density causing the number of lasing

modes, and hence the width of the spectral envelope to increase. In order to attain practical

rates of direct modulation in the gigahertz range, it therefore appears essential to suppress

relaxation oscillations in the modulated output of semiconductor lasers.

Since the main application of semiconductor lasers is as a source for optical communication

systems, the problem of the high-speed modulation of their output by the high data rate

information is one of great technological importance [13]. A unique feature of semiconductor

lasers is that, unlike other lasers that are modulated externally, the semiconductor laser can

be modulated directly by modulating the excitation current. This is especially important

in the view of the possibility of the monolithic integration of the laser and the modulation

electronic circuit.

In Eqn. 3.2, the laser is modulated directly using a source of injection current

1= t, + Lh8in(21fht),
k

(35)

where h is the bias current and Ik is the modulation current amplitude for frequencies

fk [2]. In the present study, we have biased the laser above the threshold current value of

19 rnA. It is ensured that the laser never goes below the threshold even when the modulation

amplitude h is increased.

The QvV's have one conduction subband so that the relationship between the carrier density

and the junction voltage 10 can be approximated as [l il]

(30)

where Hlc is the electron effective mass, Lz is t hc Q\V width. and E I111 is the photon energy.

We have then numerically solved the dynamical equations {Eqns. :{.L--;~.4) using the fourrh

order Runge Krurc scheme. The parameters used for the st.udv i-, given ill Table ;{,1 which

are adapted from literature no, 12. 15] citing cxpcnmcnt.al values. The photon den~ity and

other variables after vanishing the r.runsicm.s are recorded. \Yc 11(\\'(' used t.he uonu.ilised
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values of variables to obtain the phase space diagrams. Power spectral density of the laser

output is plotted on a logarithmic scale using the Fast Fourier Transform (FFT) algorithm

for a better picture of the output frequency spectrum.

It is observed that the phase space trajectory of the system starting from a typical initial

condition converges to the attractor (it can be periodic or chaotic) within a finite time. For

small signal modulation the laser output depends on the ratio of modulation frequency to

the laser excitation frequency [3]. Our estimations show that large detuning corresponds

to trajectories in the phase space lying on a two-dimensional torus. It is observed that a

rational ratio of frequencies lead to closed trajectories lying on the torus, irrational ratio

to a never repeating, and a multitone modulation with a set of incommensurate frequencies

lead to chaotic trajectory.

We have seen before that the relaxation oscillation frequency WR and the damping factor

r R depend upon the laser structure and the choice of the operation point. Using the steady­

state photon density given by So = T p (.1 - .1o)/dq, we obtain an approximate expression for

WR:

fGNU" - J t h )

dq
(37)

The above expression shows that (;.,'R IS dominated by the effective differential gain feN

and the volume density of the injection current. The clamping factor r n , on the other

hand, is mainly determined by the carrier lifetime r«. When the output power increases, the

attenuation becomes faster owing to the enhanced stimulated emission.

vVe next consider a case where the injection current density is modulated by a small si­

nusoidal signal of frequency w. Kawaguchi showed that a self-pulsating laser diode with a

sinusoidal current modulation shows period-doubling bifurcation and chaos [4]. Soon after,

Lee et at. showed that the directly modulated laser diode, which does not have self-pulsation.

with the modulation frequency of the injection current comparable to the relaxation oscilla­

tion frequency, exhibits (1, period-doubling route to chaos as the modulation index of current

is increased [5].

3.4 Single-Tone Modulation

Laser diodes are known to be susceptible to nonlinear behaviour caused hy unint.ent.iou al

optical feedback. Therefore, so tIS to study the nonlinear cvnauucs resulting From direct

modulation of the laser alone, opt.ical feedback into the laser can be minimised 11)' the II.':1C

of an optical isolator.
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Figure 3.1: l\.'IQ\V laser output for a bias current 22 rnA just above threshold current of 19 rnA without
any input modulation. The time series is plotted by normalising the photon density. 130th diagrams show
the relaxation oscillation within the laser cavity.
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When the laser diode was biased just above the threshold, it exhibited a weak resonance

peak with a broad pedestal in the power spectrum. Such a laser without any sinusoidal

modulation is damped as seen in Fig. 3.1. We have modulated the laser with a single

frequency of 4.0 GH z by setting k = 1 in Eqn. 3.15, and as shown in Fig. 3.2, resonance

sets in and the laser output is regular and periodic. The power spectrum shows sub-harmonic

bifurcations exhibited by the laser in this state. The laser output, when modulated with

a frequency below the relaxation frequency (4 GHz in the present case), shows several

sub harmonics with single 'tone modulation as shown in Fig. :L1 for a modulation with

2.01 GHz. The calculations in the figure and similar fignres used r.hrounhout t.hr- thesis

illustrate phase diagrams and Poincare sections calculated for the same time scale but the

phase diagrams arc plotted on a normalised scale for the sake of -onvonu-ncc. Poinc-are

sections are plotted showing the relevant region in the picture where the phase trajectories

cross the plane: of inrcrsorr ion. Therefore, I'oinr.uo sec-tions in different il.nstr.it ious in this

chapter and subsequent chapters may show different scales. The out.put ill this case is a

pulsating one and we show that the \[Q\V laser can he 11S('<1 to gPlll:nlt.e ultrashort. pulses

by suitably selecting the modula-mg frequency [16]. Our IT:-il1Hs so fur intlitat c that. we cun

modulate the 1IQ\\..c laser with a suitable modulation frcqu.n.cv to achicve sinusoidal a.nd

pulsating outputs, in which the latter is highly useful in digit<d «or-uuunic.u.ion.
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We have then kept the modnlation frequency at ik = '1.0 GHz and varied the modulation

depth (m = h/h) and found that the laser output follows a period-doubling route to chaos.

This is shown in Fig. 3.4(a)-(u), where we have plotted the time series corresponding to

penod-l , period-S, period-d. and chaotic states, respectively. The periodic time series is

obtained for a small scale modulation of m = 0.02. Period-2 is obtained form = 0.5625,

period-4 is obtained for m = 0.6391, and the chaotic state is obtained for m = 0.7. Fig.

3.5 shows the laser output in a period-4 state where there arc four stable states repeating

regularly in time. There are peaks at every integer multiples of the fundamental frequency.

In addition to the main peak at fk in the spectra, the period-4 output in the figure shows

four peaks at the values 1k/4, /k/2, 3/k/4. Period-doubling route to chaos has been observed

by many researchers [21 for directly modulated bulk and QW self pulsating lasers. When

modulated with a frequency above the natural relaxation frequency, the output will exhibit a

shift in relaxation frequency towards the resonant frequency. For small signal modulation the

laser output depends on the ratio of modulation frequency to the laser excitation frequency

as shown in the following section.
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Figure 3.6: Laser bifurcation diagram for var-ious modulation dept Its showing t.h.: period-doubling route
to chaos. The biasing current is 22 mA..
A bifurcation diagram of the laser is shown in Fig ..':Uj~ whore the peak photon density

(normalised) is -ilottcc against various modulation depths (IIi = h/ h). It. can be seen from

the figure that the laSCI' follows a. poriod-doulilint; rout" tu chaos vcrv quirklv when the

modulation current is increased h.\" keeping thc modulation fn-qucncv ilt. i. -- 2.7DD GJlz.
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This is the first reported work on the occurrence of chaos in the !vIQ\V laser system for such

small values of modulation current [16, 17]. To verify this, \VC have simulated the system for

a modulation depth of 00"16 and a modulation frequency of 2.799 GH z and have found that

the system goes into a chaotic state 88 illustrated by figure 3.7. To verify the chaotic state of

the system quantitatively, we have calculated the maximal Lyapunov exponent (1..fLE) of the

system using the software Dataplore. Parameters of the rvILE are the embedding dimension

m, the number AI of neighbours taken into account in phase space, and the degree pel of the

fitting polynomial. \Vhile calculating the )'.fLE, we have made usc of the following values

for these parameters: m = 31 AI = 35 and pd = 2. The embedding dimension lH1H been

fixed after evaluating the number of false neighbours which we obtained as less than 2. The

program first digitises the time series and then gives I'vILE in terms of the amount of binary

information created per second when sampling the data. In the present case the ;"ILE found

to be equal to 2.6084 x lOll bits]«, which is quite large due to the large number of photons

created within the laser cavity per second. In the periodic and non-chaotic oscillations:

the :MLE has been calculated and found to be nearly zero. To understand more about the

nature of chaos in ~IQ\V system, we have studied the response of the system under various

modulation frequencies and modulation depths as will be discussed in following sections.
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3.5 Two-Tone Modulation

In the case of current modulation, t\VU cases can be distinguished:

1. The modulation frequency is of the same order or higher than the laser relaxation

oscillation frequency. A period-doubling route to chaos is predicted in bulk lasers in

such a situation [181.

2. The modulation frequency is either of the order of the found-trip frequency of the laser

photons within the resonator or amounts to a rational fraction p/q of the found-trip

frequency. In this case frequency locking following the hierarchy of a Farey tree [19, 20]

and quasiperiodicity is expected and has been observed [3].
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Figure 3.8: The period 1 loop with double pe-ak resulting from a two-tone modulation of 2.0 ()flz and
-1.0 GHz. The two frequencies are harmonics and lhcrefol'C the Poincare section shows only a single flow.

Large cetuning of one of the mod ulaung frequencies with another corresponds to trajectories

in the phase space lying 011 a hi-periodic tOfUS. On such a torus there arc two possibilities for

the combination of modulation frequencies. They can be held at a rational ratio fm/fTe,~ =

p/q which gives a closed curve on the torus. or the rut.io can be an irrational value resulting

in an open trajectory.

\Ve have chosen the combinar.ion of frequencies t u he 2.0 G H z and /1.0 G H::. For {1 biasing

current of 22mA and modulutou .uupl.r.nrlcs of :.2111.'1 t-ach. it, is observed from Fig;. 3.8 that...
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the phase space trajectories form a closed trajectory. This is in accordance with the same

results obtained bulk semiconductor laser cavity with a set of t\VO modulation frequencies

with a rational ratio p/q between them [3]. Next we have chosen two higher values 10.0 GHz

and 11.01 GHz retaining the biasing conditions and the results, as shown in Fig. 3.9, show

the chirped output due to the frequency detuning. The corresponding phase diagram is

shown as enlarged in Fig. 3.10 clearly shows that trajectories close in all the bi-penodic

torus. It is seen from this result that the :NIQ\V laser show a variation from the bulk

semiconductor laser in exhibiting the frequency locking effects on the dynamics.

Next, we have then chosen t\VO values 2.4721 GHz and 4.0 GHz which have a ratio equal

to the golden mean CJ g = 0.61803399.... The result is obtained in torus as seen in Fig. 3.11.

vVe have then increased the bias current to 25'mA and modulation current values to 3mA

each and the result as shown in Fig. 3.12 shows that the laser has a chaotic dynamics.

The maximal lyapunov exponent (!vILE) for the system is 1.8931 x lOll bits / s. This is a

significant result which shows that the laser takes a torus- breaking route to chaos. \Vhen

the ratio of frequencies is rational, the frequency locking happens and the laser output is

periodic. The light output is quasiperiodic when pjq lies between these locked states.
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Figure ;~.lJ: T'hc t.ornx rcsultiug from ,I two-tone ruodulat.iou wit.h two Frequencies having a golden mum
ratio (0'1 - O.6180:·nn!L.). Biasing current is 22 111/1 and modulanon current. is ;) 'iliA
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3.6 Effect of Multitone Modulation

We then look to see the possibility of introducing more than two frequencies in the mod­

ulation spectrum. This we term as multitone modulation and as a first step, we have

modulated the laser with a combination four frequencies, viz. 2.0 GHz; 4.0 GHz , 6.0 GHz,

and 8.0 GHz. Fig. 3.13 shows the resulting dynamics where the laser output contains all

the harmonics with a two-periodic loop in the phase diagram. When the frequencies are

2.4721 GHz~ 4.01 GHz, 8.79 GHz, and 11.17 GHz to have a non-integer ratio among them­

selves, it is observed that the laser system has a chaotic trajectory as given by (Fig. 3.14).

The ),lLE for this system is equal to 4.667;3 x lOll bits/so We have verified this result for

several combination of such frequencies under stable biasing conditions for the laser [21].

The importance of this result arises when we consider the fact that researchers have dernon­

sr ruted the viability of using directly modulated semiconductor lasers under multitone mod­

ulation for svuchronizcd chaotic communication [22, 2:~]. We. therefore, propose that a

}'lQ\V laser with ruultitonc modulation is a suitable choice for chaotic masking and encryp­

tion. The challenge is, however. to achieve chaotic synchronization among snell laser systems

which we have achieved and will he discussed in section :U-J.
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3.7 Routes to Chaos

Effect of Modulation on MQW Laser Dynamics

In the first chapter we have discussed the various routes for a transition to chaos. Semi­

conductor lasers can be modulated externally by either an optical injection or by a direct

current modulation. Depending upon the type of modulation, various groups working on

the semiconductor laser physics field have shown that there are at least three possible routes

to chaos in a semiconductor lasers [3, 24]. It has been shown that a optically injected laser

follows the torus breaking, hi-periodic torus breaking and intermittency routes to chaos [3].

In the case of a directly modulated system, an irrational detuning between modulating fre­

quencies can make the laser quasiperiodic and further, this can lead to chaos as shown in

the previous section.

In our studies there are features of the period doubling which were common to semicon­

ductor lasers. Our analysis show that the multiple quantum well laser also exhibits these

two situations depending on the working conditions of the laser diode. The upper and lower

modulation frequency limits of the period-doubling regions follow one and two times the

relaxation frequency of the laser, respectively. At frequencies dose to the relaxation fre­

quency of the laser, it was found that there was an optimum value of power under which

the subharmonic of the modulation frequency had the greatest magnitude. In addition, our

analysis of the frequency modulation response of the laser hat; shown that the dynamics

follow a torus-breaking route to chaos when subjected to multi tone modulation.

Comparing the behaviour of the MQW DFI3 laser with that of the bulk DFI3 laser, it

would seem that although period tripling was found in both lasers, the MQvV laser is less

susceptible to nonlinear behavior. This is because in contrast to the bulk laser neither period

quadrupling nor chaos wcro observed in the 1,.IQ\V laser. However, the range of modulation

frequencies over which period doubling occurs in the fiIQW laser is much greater than that

reported in the bulk laser. The range of modulation frequencies over which period doubling

occurred in the bulk laser was between 2 and 4 GHz in comparison to a range of between 4

and 18 GHz in the l\lQ\V laser. The greater range of frequencies over which period doubling

occurred in the 1.fQ\V laser is due to the greater D factors [25] found in this type of laser

resulting in greater relaxation frequencies. The DFB laser has higher relaxation damping

and such lasers are less susceptible to bifurcations [26]. This could be one of the main

reasons for the absence of experimental observation of chaos in ~IQvV DFD lasers, though

simulations show the possibilitv of chaos ill these systems.

The rate equations used ill this study include well-barrier hole burning effect [271. The

gain compression factor represents the addh.ional well-barrier transport which is another

mechanism for gain compression. This can affect. the OCClllTCllC(' of chaos by damping the
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relaxation oscillation) and is one of the difIcrcntiators betweer: chaos exhibited by :vlQ\V

and bulk lasers.

3.8 Synchronization of Coupled MQW Lasers

Two directly modulated semiconductor lasers can be coupled optoclectronically. In principle

this means addition of a fraction of the output of the drive laser to the injection current

of the remote laser. 'Ve consider the synchronization of two unidirectionally coupled semi­

conductor lasers separated by a considerable distance [28]. A current signal proportional

to the difference between the the photon dcnsttv of the drive laser corresponding to a past

state and the present photon density of the response laser can be obtained from the dif­

ferential amplifier by adjusting its gain. This signal can be represented by the expression

elPI (t - T) - P2 (t )], where T is the delay and e is the coupling strength. Our aim is to

synchronize the response system to the earlier state of the drive system and the feedback

is designed in such a manner that the feedback signal vanishes when the synchronization is

achieved. This is a common method of coupling that has been used in many synchronization

schemes. Such a method has been used for synchronization of chaos in lasers with delayed

optoelectronic feedback and in directly modulated semiconductor lasers [29].

The coupled system can be modelled by adding a fraction of the time delayed out of one laser

to the injection current of the second. We have made use of the same 11QvV rate equation

model described in equations 1.2 - 1.'1 to model two similar laser diodes. The lasers are

then simulated to run under similar and dissimilar operating conditions such as modulation

frequencies and other parameters such as modulation current strength. We model the drive

laser diode (LD 1) as follows:

dNlJ!

dt
dN I

dt
dPI

dt

r qh ]\lIJl, Cj.N1
--. ---T~-.

C V r, T e
Nn, . 1 I •- + Jlid- + -] - vyG(J'vI.P,)PI •
[qTr: Tn r,

1
[rv,;G(NI . PI) - -]PI I r3Blv"[,

. TJ!

(38)

(3.9)

(3.10)

where the suffix 1 to thc variables and parameters indicate LDI and the injection current.

I] for direct modulation with ;J set of frequencies .h,can be represented as

II ~ 1,1 +L hsin(27f,h l ) ,

!

(311)
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Functions and variables are taken as the same given under section 3.2. The response laser

diode (LD2), which, apart from the current and modulation with a set of frequencies II, is

driven by a fraction of the photocurrent fed from the output of LDI is modelled as:

dNm
dt
dN,

dt
dP,

dt

(3.12)

(313)

(:J.H)

where injection current 12 with the coupling term will be

1, = lsz + L I[sin(27rj,t) + C[P, (t - T) - P2(t )],
[

(3.15)

where, as explained before, the delay time factor T accounts for the channel delay between

the two laser systems.

Three important factors to be considered while studying the coupled laser system are the

initial phase difference of the modulating signals, the channel delay and the detnning hetween

the modulating frequencies of the systems. Our aim in this section is to show that multiple

quantum well lasers arc suitable choice for chaotic synchronization and subsequent secure

communication using chaotic encryption and decryption with the help of synchronization,

In this regard: we consider the laser systems to be identical, that is: they have the same

design parameters and physical features as given in Table 1.3. We have biased both lasers

with the same current amplitude of hl = Ib2 = 5 rnA. \Ne have then simulated the coupled

system with zero initial phase difference and zero channel delay.

The results arc shown in figure 3.15, where the two lasers achieve synchronizut.iou under ;'I.

three tone modulation at frequencies 2.01 GH7" 4.02 GHz and fUH GIIz. The biasing current

is Ide = 22 rnA and modulation amplitude is 2 rnA for each frequency. The coupling strength

has been set to 1.4e - 004 which is chosen to match with the mean photon number density

of the drive laser. The modulation frequencies were chosen so as to drive the laser diode into

a high periodic state as can be seen from the time series in figure 3.15. The synchronization

error is calculated by taking the absolute difference between the two laser output.s "uHI is

of thc order of 10-::1. It ran be seen that the error fluct.uutions decrease cxuonentiallv with

time and finally converge as seen in the figure. To verify the results quantitatively. we- have

calculated the similarity function S(T), discussed in section 1.:3 which is modified for the
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coupled MQW laser system as follows:

65

(3.16)

where the variables Pd and P; represent the output power of drive laser (LDl) and the

response laser (LD2). In the present case, we have calculated the similarity function 5(0) by

setting T = O. The value of 8(0) is very close to zero in the case of highly level synchronised

systems. In the present case of the couplcd system, 5(0) ~ 0.0031 which is very close to

zero and, therefore, indicate a very strong synchronization between the coupled lasers.
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Figure 3.15: State of coupled lasers: (a) Time series of the dr-ive laser diode LDI modulated with three
tones at 2.01GHz, 4.02GHz and G.O'lGHz. (b) Time series of Lhe driven system LD2 with the -same
modulation. (c) The synchronization error as a function of time, (d) The phase diagram showing perfect
synchronization indicated by the straight line. The coupling strength C = 1.4 X 10-4 and .5'(0) = 0.00,')1.

Next, we have studied the synchronization between the coupled systems when both of them

are in a chaotic state. For this, we have studied the system with various coupling strengths

under a two-tone modulation scheme in which both the lasers were modulated with the

snme set of frequencies 2.'1721 CIIz and 4.01 GHz with zero phase shift and the same

biasing and modulation currents as before. This modulation scheme was adopted because

of it.s suitability in driving the lasers to a chaotic state as observed in section :~.5. The

largest lvapunov exponent (.\'fLE) of the drive laser has been calculated and is equal to

2.9437 x lOID bit.s]s. When the coupling strength is set to C = 0.0066, we have found that
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Figure 3.16: State of two coupled chaotic lasers in out of synchrony: (a) Time series of the drive laser diode
LDI modulated with three tones at 2.4721GHz and 4.01GHz. (b) Time series of the driven system LD2
with the same modulation as the drive laser. (c) The synchronization error a..'; a function of time. (d) The
phase diagram indicating the lack of synchronization at a coupling strength of C = 0.0066 and 5(0) = 1.46.
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modulated at 2.4752 G H z and 4.01 G Hz with a modulation current of 6 mAo The syuchroniz.at.ion is robust
around C = 0.01

the two lasers are out of synchrony as illustrated in figure :3.16. The similarity function is

very higher compared to the previous case and we have a large mismatch from linearity in

the phase diagram shown in the figure. The synchronization error, 8(0) = 1.4600 in this case

and is very high compared to the previous value. To verify this, the coupling between the

two lasers is set to C = 0.0078 and a state of synchronization is achieved as shown in figure

3.17. The level of synchronization in this situation is very high and quantitatively, the low

value of 8(0) = 0.0338 shows that the two lasers have very good synchronization between

them. This conclusion is supported by the two time series and error p'ots in figure 3.17.

The error is very small and is closer to zero. Thus. 'we have shown that 1.\\'0 chaotic MQ\V

lasers can be synchronised by choosing the optimum value of coupling between them and

this can be easily tuned electronically in a practical system by employing a control circuit.

To analyse the nature of the synchronization with respect to various coupling strengths, we

liavc cak-ulatcd the simil.u-ity function for difforont coupling strengths and the results nrc

illustrated in figure 3.18. The figure shows that the system achieve good svnchronlzation for

coupling a coupling strength C = 1 x 10-:3 and then goes out. of svuchronization. Further,

when We' increase the coupling strength, the systems achieve robust svnch-onizar.ion ncar

C' = .0 I. The synchronization is most stable when C = 0.0078. Altogether. the diagram

shows the regions of robust synchronization achieved between the two coupled lasers under
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the particular modulation and biasing schemes.

In conclusion, we have achieved synchronization between coupled :"IQvV laser diodes and

verified the results graphically and quantitatively by calculating the similarity function. Our

results show that there is an optimum value for coupling strength which can achieve perfect

synchrony under a fixed modulation scheme. This can be suitably chosen to satisfy the

device engineering parameters and conditions. Our studies so far in this section has shown

that the 11QvV laser diode makes a very good choice for chaotic synchronization when two or

more lasers arc coupled with suitably chose coupling strengths and modulation parameters.

3.9 Conclusions

The nonlinear dynamical phenomena exhibited by a rvlQvV laser diode when studied using

the existing rate equation models. Chaos in the system has been studied and characterised

with the help of times series analysis, phase space diagrams, power spectra, Poincare section,

and quantitatively by calculating the maximal Lyapunov exponent. We have shown that

the 1IQ\V laser follows a period-doubling route to chaos which has been known to exist in

directly modulated semiconductor lasers. This result shows that the laser can be chaotic

for small values of modulation depths. In addition, we 5hO\\1 that the laser phase space

trajectory lies on a two-torus when subjected to multi-tone modulation. The periodicity

with which the trajectories close on the surface of the torus is determined by the number

of tones in the modulation spectrum and their ratios. Thus we show that the 1.IQvV laser

to follow a torus-breaking route to chaos. Further, we have shown that a suitable choice

of the frequencies and amplitudes in a multitone modulation scenario could make the laser

generate periodic, quasiperiodic, and chaotic outputs. This result has been exploited further

in achieving synchronization between coupled IvIQ\V laser systems modulated under various

frequency conditions. Thus we have shown that the }'IQ\V laser system can achieve optimum

synchronization when modulated under desired operating conditions such as pcriodic. quasi­

periodic and chaotic oscillations. vVe have thus established that the :"lQ\V laser diode that

we have modelled in this work is 1:1. suitable candidates for being used as a source of light for

chaotic synchronization which will ensure data masking and euc'rvpt.iou.
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Chapter 4

Multistability and Hysteresis

MQW Laser Dynamics

"Truth is what stands the test .oi experience."- Albert Einstein

ABSTRACT

•In

Optical bistability is a promising tool JOT all optical communication and computing systems. There

are various examples where lasers are tailor made to produce bistable outputs. In this chapter we

present some of the results showing the bistable beiunnour of directly modulated multiple quantum

well laser systems. The syst.ems under consuieraiuni aTC not. intnnsically bistohic, but we show that

they can exhibit bistabili(1J and hysterrsis under suitable modulation conditions.

4.1 Introduction

Optical bistability [1] in semiconductor lasers has received much attention because of its

potential application in optical switching and sigr:ul proce::isiJl~. It is well established that the

presence of an unpunipcd absorber ill rhc laser cavitv call lead to liixt.al.iilitv [2]. Introducing

quantum wells ill the active regions of gain awl absorber sections could significantly improve

the switching speed and cou-rollabilitv of hysteresis cluuart.crist ics [:3].

Manv processes in nature do not possess only OIH' lOllg torru asvmptor.ic state or a-tractor.

but arc rather characterized by a Luge number of coexist ing nt t rue-tors for a fixed set of

7:3
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parameters. This implies that which attractor is eventually reached by a trajectory of the

system depends on the initial condition [il, 5]. Several nonlinear systems such as chemical

oscillators [6, 7, 8], nonlinear electronic circuits [9, 10], passive optical resonators [i t, 12~

13, Ill] and lasers [0, 15, 16, 17, 18] show this phenomena, known as multiple bistability

or multistability. Multistablc dynamical systems have important applications as pattern

recognition and memory storage devices [II, 101 1/1]. A well studied case is the bistability

associated with a subcritical Ilopf bifurcation.

I3istability is a case where two distinct states corresponding to the same set of parame­

ters of a system arc stable. Multiple bistabilitv is defined as t\VO or stable output states

existing for one input power level. I3istability in driven nonlinear oscillators are usually

observed in association with the hysteresis effect. A well known example is the hysteresis

observed in the driven double well Duffing oscillator, A similar effect has been reported in

directly modulated semiconductor lasers [19]. In this chapter we numerically demonstrate

the rnultistability and hysteresis in the YlQW laser dynamics controlled by both current and

frequency modulations, and how to control and make use of the bistable conditions.

4.2 Bistability in Directly Modulated Lasers

An important dynamical behaviour exhibited by directly modulated laser systems is mul­

tistability [19], in which two or more stable states coexist, and histability is a usual phe­

nomenon [2, 20]. Multistability is usually accompanied by hysteresis effect in directly mod­

ulatcd laser systems. Mult istabilitv is an undesirable effect in a laser that is supposed to

operate in a regular dynamical state.

However, it is shown that rnajority of the attracrors arc periodic, the chaotic component

of the dynamics is in the chaotic saddles embedded in the basin boundary [21], As a result,

trajectories, starting with arbitrurv initial conditions in the state space, experience periods

of long chaotic transients before approaching one of the periodic attractors [22]. Therefore.

because of these chaotic saddles, the trajectory is highly' sensitive to the initial state. A

slight change in the initial condition results in a trajectory that is attracted to a totally

different periodic orbit.

4.3 Multistability in Directly Modulated MQW Laser

III this sect.ion. we cx.uuiuc the n.uurc of mult.isrubilitv ill the directly modulated I\IQ\V lase­

syst ern and we fiud rliar the laser shm\'s inult.is-abilitv nud hysteresis when modulated under
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different current values for certain values of the modulation frequencies. vVc have made use

of the same dynamical model (Eqns. 3.2-3.4) as used in the previous chapter [23]. The

simulation is started with arbitrarily chosen initial conditions and a minimum value of the

parameter (here it is the modulation depthm = Im / l{h). The maxima of the photon density

after vanishing the transients are recorded and they arc used for constructing the bifurcation

diagram. For obtaining the attractor points corresponding to another value of the concerned

parameter, the parameter is increased slightly and the maxima of photon densities belonging

to the stable state are recorded again. This process is repeated for the complete range of

values of the parameter. The spectrum of values for the parameters arc plotted along the

x - axis as shown in Figs. 4.1-4.3. This method is called brute force approach [24] and

it has an advantage. The bifurcation diagram plotted using this method (Figs. 4.1-4.3)

contains only the stable attracting sets of the phase points.The laser bifurcation diagrams

are plotted for various modulation frequency regimes and modulation current strengths. A

current modulation index or modulation depth, is defined as rn = 1m) I t h [25, 2G, 2] for a

clear indication of different stable orbits over the variation of modulation strength.
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Figure 4.1: The laser uifurcnt.ion di,llpam for modul.u.ion Frc-quencv iJ...'i a parameter under proper modu­
lation conditions.

We have under consideration the l\IQ\\' model used ill t.hc previous chapter and we have

simulated the laser for a single tone modul.u.iou with ,\ hiasing cur-rent. of 22rnA and modu­

lation amplitude of -SmA. Peak photon dcnsi tv for various modulation frequencies are stored

and plotted against the modularion frcq1H'!lt",Y (ill c; H:: I ttl obtain the bifurcation diagram
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shown in Fig. 4.1. The figure shows the main resonance at the relaxation frequency of the

laser 1 which is 4 GHz based on calculations. When we increase the modulation frequency,

the peak photon density follows a bifurcation route which is different when we reduce the

modulation frequency from a higher value towards main resonance frequency. This is il­

lustrated in the as forward and reverse paths in Fig. 4.1. The has a bistable output for

modulation frequency range from 8 GH z to 11.5 GH z and thereafter it has a penod-d state.

The output is chaotic for the windows 12.5Ghz - 13.90H z and 1,1.fiGhz - 15.3GHz. It then

follows a reverse period-doubling route.

Hysteresis is observed in the dynamics as seen in Fig. 4.1, where the output states are

different for the forward path (coloured blue) and the reverse path (coloured red) for the

modulation range above 8.0GHz. Below this value of modulation frequency, the laser has

is monostable and has no hysteresis as is the case for high frequency modulation beyond

19GHz.

4.4 Bistability and Hysteresis

Further, we have simulated the laser model for a chosen modulation frequency and studied

the variation in the output intensity by continuously varying the modulation depth m. Peak

photon densities (Pm) are stored first by increasing the modulation depth [rom zero to a

value well above the threshold current of 19mA and then by decreasing the modulation depth

to zero from the maximum. The bifurcation diagrams are then plotted using these values

and are shown in Fig. 1.2. The upper part of the loop in the diagram shows the forward

path and the lower part shows the reverse path. The bifurcation diagram corresponding

to the modulation frequency 1.2GHz shows the bistable nature of the system along with

hysteresis. where the laser output traces back to the initial point through a, different path

when the modulation current is lowered Irom (1, higher value.

Sudden jumps seen in the bifurcation diugraiu (Fig. 4.2) corresponding to t.ho values 0.06

and 0.12 ofmodulation depth are associated with the pulse position bistabilitv and hysteresis

::;llOWII by the ).lQ\,y laser and is the pitchfork bifurcation bis-abilitv [2]. In Fig. 4-.3, we

observe that the hysteresis nature grows OHt and become chaotic when the modulation

frcqucncv values iHC increased. In Fig. cL:3(il), the laser is xinmlv bistable. and at the same

tuuc :-ihow:-i hvstcrc-is.
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Figure 4.2: The laser bifurcation diagram for various modulation indices showing period doubling and
reverse period doubling: Maxima of normalized photon density versus modulation depth.

4.5 Coexisting Attractors and Crisis

It is observed in Fig. 4.3 that from the bistable state at a modulation of 1.20 GHz, the laser

becomes chaotic for a value f ~ 2.1:327 GHz (Fig. 4.3(b)). In this case, for modulation

indices between 0.2 and O.4~ it can be seen that the chaotic ut.tractor disappears and this is

the crisis [29] situation in which the chaotic attractor collides with coexisting unstable fixed

point and disappears. This is t IW first time that the crisis phenomenon has been reported

in the l\IQ\V laser dynamics [27, 28]. Further. as the frequencv reaches higher values the

attractor reappears for the same modulation indices as shown distiuct.ivelv in Fig. 4.:3(c) and

Fig. 4.3(d). Thus we have shown that the modulation current amplitude has a significant

role in controlling the dynamics of the multiple quantum well laser.

We thus lHl\CC shown thu; a variety of t.y}WS of mult.istabihtv exists in the ..\IQ\\- laser system

- a stationary st.at.e coexist.illg with auorho- st.at.iouarv state. a st at.ionarv state with a limit

cycle, a st.at.ionnrv stntc with a chaotic a-tractor. a limit cvch- with another limit cycle, and

a limit. cycle with c chaotic ot t ractor [27].



78 Multistability and Hysteresis in MQW Laser Dynamics

(a) 1.2 GHz (b) 2.1327 GHz

0.8

0,-==

0.2

0.6
E
0... 0.4

0.3

0.15&O~~:L<-..AJ·_"'_/_'·~'·__~_-,
0.1

0.05 0.1 0.15
m

(c) 2.5465 GHz
. ... ,

0.2 0.4 0.6 0.8
m

0.1 0.2 0.30.4 0.5
m

(d) 2.790 GHz

0.8

E 0.6
Q.

0.4

0.2 0.4 0.8 0.8
m

Figure 4.3: The laser bifurcation diagram against various modulation indices obtained for different mod­
ulation frequencies.

4.5.1 Bifurcation for Group Velocity Variation

Interestingly, we have obtained a bifurcation diagram for the optical output power when the

group velocity of photons is varied within a small range of values around the experimental

value of v.'7 = 7.5 x 107m/8, taken from literature [30]. The bifurcation diagram is shown in

Fig. 4.4, where the laser power output is plotted against a spectrum of possible values for

the group velocity "s Fig. 4.5 shows the dynamical features of the laser when the group

velocity value is fixed as 8.7 x 107m/s. This value is taken from the bifurcation diagram

in Fig. -l.d and it can be seen that the laser output follows a period-2 state when group

velocity is increased to such a large value.

We can explain this result as follows: the change in group velocity in this context is the same

as changing differential gain and this would affect the relaxation oscillation frequency (fr).

Changing the bias current is equivalent to changing the carrier ccnsity and we can see from

Eqn. 2.1G that". the differential gain is relate-d to the carrier density. This is due to the fact

i.hat carrier-induced refractive index change in the quantum-well laser cavity leads to gain

anr iguiciug [31]. Therefore: a change in bias current (modulation depth) would change f1'
and therefore the group velocity changes. This is why there is a similarity between changing

the bins current (modulation depth) and group vclocitv. Thus. we have shown that the

carrier truusport ill the ~\IQ\V laser cavity hus a significant role in dctcrmuuug the output
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state as well as relaxation frequency values. This justifies the selection of the differential gain

parameter model adopted in the J\..IQvV laser model. It should be noted that a considerable

change in the group velocity is not desirable for the smooth working of the laser as it may

induce undesirable output conditions.

4.6 Control of Bistability and Hysteresis

vVe have numerically demonstrated the early reported hysteresis and bistability in directly

modulated multiple quantum well lasers. In standard applications, a semiconductor laser

is expected to work in a monostable condition, where the laser phase space trajectory ap­

proaches, asymptotically, a stable periodic orbit and remains there for the entire operating

period. Such working conditions demand that the laser should be prevented from going into

multistable states [21.

In this situation, we consider the possible methods for controlling bistability in modulated

laser diodes. Several methods for controlling bistability in lasers have been reported ear­

lier [32, 33]. However, most of these schemes are not aimed at eliminating the bistability

completely but to allow the system to switch from one of the stable states to the other.

Pisarchik and Kuntsevich has proposed a control scheme based on periodic perturbation to

the selected state [34]. They have numerically shown that such a scheme would suppress

the bistability completely. It is important to mention that the perturbation is external in

nature. However, we consider the direct delay feedback for suppressing the bistability. This

method has been shown to be efficient in completely eliminating subharmonic generation

and chaos in directly modulated laser diodes. The main advantage of this scheme is that no

external signal is used as the perturbation. The numerical results regarding the suppression

of chaos using this method is given in the following chapter.

4.7 Applications of multistability

Mult.istablc dynamical systems have important applications as pattern recognition and mem­

ory storage devices [11~ Itl, 14]. Optical multistabilitv demonstrated in passive (,'nAIAs

wavoguidos and later in hybrid clc-t.ro-optic devices [2] find usc in digiti:t:ing incoming light

pulses. Apart from that fiat input-output curve mnke multist.ablc devices suitable for optical

luuiuug. III the held of digit ul conunuuicntlor.. a umltist.ahlc laser diode, when controlled

properly, can be used to represent multilevel optical logic. Optical multistablc devices are

compatible with muttipte-cotuul 10!2,ic. The potcutin l benefits of nmltipk-valucd logic arc

increased speed a.nd reliability, higher inform.u.ion storage density, decreased size. reduced
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cost and power requirements. The main advantage of using a rnultistable I\.fQ\V laser is that

only a few optical beams arc required for signal transmission.

4.8 Conclusions

In conclusion, our analysis of the laser parameter space reveals rnultistabilitv and hysteresis

in l\1Q\V laser dynamics. Instabilities in the laser output observed for different group ve­

locity values points to the role of transport in the laser dynamics. Also, chaotic oscillations

under multi-tone modulation would make the laser a prospective choice for multi-channel

secure communication if two such lasers can be synchronized. Suitable selection of modu­

lation frequency can drive the laser in the desirable working condition suitable of ultrafast

pulse generation and communication. The results give some direction to the study of syn­

chronized laser systems used for communication. The results in this direction could help

better maneuverability if one wishes to use multiple quantum well lasers in secure optical

communication. A more detailed analysis is Heeded to understand the role of noise and

other conditions that may lead to the absence of chaos in a laboratory observation.
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Chapter 5

Effect of Delay Feedback

MQW Lasers

"Happy is he who gets to know the reasons for things. -: Virgil

ABSTRACT

•In

it is known that chaotic dynamics can be controlled by stabilising unstable periodic orbits embedded

in the chaotic aiiroctors 'Using small perturbations. Optoelectronic delay [eedbcck is an effective

tool in controlling instobiliiies in semiconductor laser systems. In this chapter. We shOll! that the

optoelectronic delay can control instabilities as well as induce them in multiple quantum well lasers

when applied suitably.

5.1 Introduction

In usual electronic systems negative feedback is used to improve either the linearity or the

frequency characteristics of electronic amplifiers [1, 2]. Similarly. earlier works in the field

of semiconductor lasers show that electronic feedback rna}' also he applied to laser diode­

to improve their modulation characteristics [3, 4, 5~ G~ 7, 8] If the optical frequency of the

laser emission is detected, a negative electronic feedback may also he applied to st.abilizc

the emitted optical frequency. Research work has been directed with respect to both long

term stability (\,S well as to reducing the short term Iluctuutious for achieving U"I.1TOW luxcu

spcct.ra..

87
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In most of the applications, a. semiconductor laser is coupled to an environment where it

is a part of a rather complex network. The dynamical behaviour of a semiconductor laser,

i.e. the emitted light (phase, intensity and polarization), depends very much on the type

of feedback caused by this coupling. We hold systematic studies of these dynamics based

on delay-differential rate-equations. The goal is to understand the uat.ure and origin of the

various types of dynamics. Such knowledge is indispensable for successful control of the

laser dynamics in complex network applications.

5.2 Laser Diode with Optoelectronic Feedback

Among dynamical systems capable of displaying chaotic behaviour: systems with delayed

feedback are of interest since their time evolution is determined by a concurrence of a

discrete step which tends to induce chaos and a continuous step which tends to smear it

[9]. A laser cavity exhibiting bistability and chaos, under suitable operating conditions,

is a fine physical example of such a system. The delay increases the dimensionality, and

hence the complexity. It has also been shown that even small delay t.itucs ailed the global

dynamics of two-dimensional systems of limit cycle oscillators [10]. A delay differential

equation modeling the dynamics of the system incorporating the nonlinear delay coupling

can be used to analyze such a system.

The introduction of a delay in a dynamical system often leads to a change in the stability

properties of the system. It is observed that short delay times lead to the creation of limit

cycles via a sub critical Hopf bifurcation [11]. In our studies on the effects of nonlinear

delayed feedback on ~JQvV laser system, we are interested in two goals: (a) the introduction

of dynamical complexity into a the laser dynamics, and (b) the use of a delay feedback as

a means by which La' control the laser dynamics. Since differential d(~lay equations, which

are infinite-dimensional systems. can display great dynamical complexity in their behavior,

we use a delayed feedback in a laser system. which by introducing »dditioual dynamical

complexity into the system, gives information on the dynamics of the system without delay.

\Ve have used the same dynamical model described in previous chapters [12, 13, l il] to

accommodate the optoelectronic delay feedback. A current signal proportional to thc photon

density of the laser delayed by a tunc T is added to the injection current to provide the direct

delayed optoelectronic feedback [15]. A laser diode with optoelectronic Iccdbuck is shown

schematically in Fig. 5.1. The conversion of optical signal iut.o the electronic signal can he

done by a photodiode and the llPCPSS;Jr,V delay C(Ul l»- produced by the external transit 01"

t ho light signal. The current sigll,l! ohraiucd frow t h« phot.odiork- (';111 1)(' amplified ill the

required strength by using all cpcr.uionnl ampl.Iicr ;111d added to tln- input iujcction cur-ont
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Figure 5.1: Schematic representation for a laser diode with optoelectronic feedback.
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of the laser. The feedback signal would be proportional to the intensity of the optical signal

delayed by a time T and hence it can be represented by DP(t - T), where D is the feedback

strength that is determined by the gain of the amplifier.

»,
.f?~ o.7 0.7" "c c• •"0 "0

0.6c o.6 c;
2 a
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15.. 0;5 a 0,5
"0 "0• •" o.4 " 0.4~ 'ffi
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Figure 5.3: The cusp can be removed to give a highly regular output using it delay feedback of strength
D = 1 X 1O- 4 Pa.v .

Tlrus the expression for the injection current becomes

I ~ t, + L hsin(2JrhI) + DP(t - T), (b I)

A variation of the injection current I(t) through the laser diode yields a variation of the

emitted optical power and the optical emission frequency.

Instead of controlling the chaos and siuoor.heuing the waveform. the feedback is found to

make the waveform more chaotic even ill sit.u.u.ions where chaos is not present in the absence

of feedback. This has been verified I»)' .Juaui,', ct of. [IG] for qun nturn well laser model. Our

study shows that tho :\lQ\V laser chaos (',HI he controllo.l bv both mul t.itone modulation and

fccdhurk [171. This ill c-tlcct. could Illilkc the h:-iCL-; itic-a l choicc for se-cure couum.nicut ion

SOlUTes if one employs them in chuouc ccnnnunion.ion.
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5.3 Control of Chaos Using Delay Feedback
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When chosen properly, delay feedback can control instabilities in the laser system such

as the unwanted pulsation in the output. or certain quasiperiodic situations. We have set

the laser delay strength appropriately around the value D = 10-4 Pa v , where POl! is the

mean output photon density of the laser under stable operating conditions of modulation

frequency, biasing and modulation currents. The laser is modulated with a frequency of

2.0 GHz and with a modulation strength of h = 5mA when the laser is biased slightly

above threshold. The feedback time is chosen to be lOps and the results are shown in Figs.

5.2 and 5.3, where we have controlled the unwanted pulsation in the laser output.

When the time delay chosen is higher, of the order of T '"'J lOOps, along with a sufficiently

strong value for the feedback strength D '"'J 5 X 10-4 Pa v , chaos in the laser can he controlled.

We verify this result is for the a chaotic state of the laser when modulated hy a set of two

frequencies 2.4572 GHz and ,'1.0 GHz having golden mean ratio. The laser is modulated

well above the bias current and the chaotic state is shown as in Fig. 5..'1. This can be

brought to a high periodic orbit as shown in Fig. 5.5 when we apply the delay feedback with

D = 3 X 10-4 Pav and delay time of T = 110p"'. Thus, we show that it is possible stabilize

the unstable periodic orbits in the a J\..IQvV laser system to a high periodic state. Therefore,

proper delay strength and feedback time can control chaos in the laser system. In this way

we can control rnultistability by choosing proper delay strength and time delay.

5.4 Delay Induced Chaos III MQW Laser Systems

Ikeda [9, 18] has shown that mult.istable modes of oscillation can arise in delavcc feedback

systems when the delay is larger than the response time of the system. We have observed

chaos in the 1IQ\V laser system when the feedback strcngth is inr-reascxl for .':ilight variations

from the chosen value of 10--1 of the average photon dc-r.sirv. The trausir.ious arc shown in

Fig. 5.6, where the feedback strength is increased up to ,J x In l of the il\'erc1g<' photon

density while retaining the delay time at 100 p«. This c'nn applicd in the (',lSC of both single

tone am} inult.itouc modulations schemes. though the dJ,1()lIC tr.mxit iou OlTIlI>i ,It at cliftcrcnt

points in the parameter SI)(1(:('.
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5.5 Applications of Delayed Laser Systems

The most attractive part of the delay feedback ::-iChCHlC is its easy adaptation into any laser

driving circuit. This could make the laser driving circuit more powerful by making it possible

to control the dynamics of the laser output by using the same circuit that drives the laser.

This could be a big boost for the chaotic communication schemes where the easy control

over the drive laser could be an added advantage along with the chaotic encryption that the

source offers when it works in the chaotic regime.

5.6 Conclusions

We have shown that dclav feedback. "when introduccd opt.oclcct.ronir-allv in a directly modu.

lated multiple quantum well laser svst.cm , call lw quite decisive in «etenuiuing the resultant

dynamics of the laser. It is relevant. to usc tlic dclilY fcodluu-k ill ,I semiconductor laser ow-
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ing to various reasons, the best being its effectiveness in controlling; unwanted instabilities

in the laser output, <:13 \VC have shown in section 5.4. The delay feedback, therefore, serve

the cause of controlling chaos in the laser system. In addition to this feature, our study

has shown that the optoelectronic delay can push the laser output into chaotic regimes and

this if') a quite important result owing to the viability of integrating such a circuit to the

laser drive circuit. Thus the laser can be an ideal source for chaotic encryption and secure

communication when two or more systems are used in synchrony to achieve these results.
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Chapter 6

Conclusions and Future

Prospects

"Only the educated are free." - Epictetus

ABSTRACT

The chapter' summarises the work and presents some of the [uiure prosper-is of the work.

6.1 General Conclusions

The ability of semiconductor lasers to he modulated directly (It high speed is among the

unique features of those lasers which make them cspcciallv desirable sources for optical

communication systems. Multiple Quantum Well Lasers arc being widely used in many of

the modern optoelectronic applications because of their large scale integrability, high speed

and low threshold operation. We have modeled the l'vIQ\V region of the lasers incorporating

the light matter interaction phenomena involved in the generation of laser photons under

the J)FR and Fabry-Perot configurations.

Di-cr; modulation wit It n t.imc varying component adds an extra dimension to the laser

dvu.mucs (,he'l"chy hrillging ill the' occurrence of chaos in the light out.pu t.. Our study on

thc c-llcct of iuod.tl.u.iou II<IS ShO\\'1l that the laser cvuanucs run he taken to periodic, quasi­

periodic ,l]HI chaotic rcgilllCs by suil.ahlv choosing the modular.ion depth and frequency. We
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have shown that a moderate modulation depth can lead the ?-.IQvV laser dynamics through

a period-doubling route to chaos. We have shown qualitatively and quantitatively that a

multi-tone modulation can bring chaos into the system through a quasiperiodic route by

torus breaking. It is also shown that an incommensurate ratio of frequencies can result in a

phase space trajectory lying on a torus with never repeating loops.

The synchronization of coupled 1,.JQ\V lasers have been studied and we have shown that with

suitable coupling strength and modulation, we can achieve perfect synchronization between

two such lasers. The results are verified with the help of time series analysis, phase space

plots and quantitatively by calculating the synchronization error and similarity function.

The results have been verified for different conditions.

Multistability and hysteresis phenomena are studied in the :L\.lQ\V laser system and we have

shown that the laser output can be controlled for generating multistable outputs by suitably

choosing the modulation depth. vVe have shown the occurrence of pulse position pitchfork

bistability in the MQW laser system. The laser goes into multiple bistable states when the

modulation frequency is increased. Another interesting behaviour we have observed is the

phenomenon of crisis as explained in the thesis. This is the first ever reported work as far

as )'IQW laser diode simulation studies are concerned.

Feedback mechanisms are being employed in semiconductor lasers for various purposes,

from controlling chaos to stabilizing the laser output. We havc analysed the role of delayed

optoelectronic feedback in the ?dQ\V system and have shown that it can control unwanted

pulsation and cusps in the MQ\V laser output. This in fact shows that multistable orbits

can be controlled to be periodic with the help of a suitable feedback mechanism. We have

also shown that delay can take the system to chaotic regime if we vary the delay time and

feedback strength accordingly.

6.2 Future Prospects

Apart from their applied relevance, study of the dynamics of semiconductor lasers helps us

to understand at least some of the universal features of nonlinear systems. Such a study abo

presents nn opport.nnitv 10 have a bct.tcr understanding of tho specific material and device

level properties of the semiconductor laser. Thus. the semiconductor laser based study of

nonlinear dynamics combines the aspects of material science and fundamental semiconductor

physics with quantum opt.ics awl nonlinear dynamics. This is one of the rea...sons why we

feel this area of research so exciting and promising for the future.

xlultistabllitv is an area where lot of work cun be done to explore the possibility of making

better devices to be used ill al'C,IS ,,\1(:11 as cigit.ol communication. 1111ch work is to be
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done in controlling the multiple stable states in the I'vIQ\V laser to makc them generating

multilevel optical logic states. Further work in this area seems to be thrilling when we see

the opportunities in integrated optics and optical computing.

Noise and fluctuations always play- an import.ant roll' in the dynamics of any physical system,

and it has been shown to be important in the case of semiconductor lasers as well. Noise

causes partial destruction of period doubling sequences, and a as a result, chaos may occur

with less period doublings as theoretically predicted. There have been many attempts to

understand the crucial role of noise in the working of multiple quantum well lasers but a

clear answer is still elusive. There is ample scope for extending the work to understand the

role of noise, rapid fluctuations and random forcing the dynamics of quantum well lasers as

they encounter forces at the quantum level.

Synchronization of laser systems for communication has been an active area of research for

several years on the basis that it could provide a secure communication channel. Multiple

quantum well lasers are an ideal choice for such a channel as they can be fabricated with

mechanisms that are used for controlling dynamics.

Research in the field of semiconductor materials and devices have always been exciting.

Present research and development in the field brings fast changes to the society with the help

of better equipments and cheaper technologies. Therefore, today, we see rapid replacements

for optoelectronic devices by faster, smaller and cheaper counterparts. Since we cannot

neglect nonlinear dynamical effects from the working of semiconductor lasers, our work is

rewarded if the research could bring in a better understanding of the quantum mechanics,

material synthesis and fabrication tcchnologies needed fur creating better semiconductor

lasers.
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