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Preface

Semiconductor lasers have come a long way from their introduction as small and reliable
source of coherent light energy to become the backbone of modern applications from com-
munication to household electronic devices. The study of their dynamics has gathered mo-
mentum ag their applications grew in number as the years go by. Along with the application
front, the device fabrication technologies have also grown tremendously making the devices
much smaller, faster and more reliable. In these contexts, the nonlinear dynamics of such
lasers have become interesting to scientists and engineers owing to their typical application
in areas like optical communication. Further, the understanding of device dynamics gave
hetter feedback for improving the device performances.

Nonlinear dynamics of laser systems has become an interesting area of research in recent
times. Lasers are good examples of nonlinear dissipative systems showing many kinds of
nonlinear phenomena such as chaos, multistability and quasiperiodicity. The study of these
phenomena in lasers has fundamental sclentific importance since the investigations on these
effects reveal many interesting features of nonlinear effects in practical systems. Further,
the understanding of the instabilities in lasers is helpful in detecting and controlling such
effects.

Chaos is one of the most interesting phenomena shown by nonlinear deterministic systems.
It is found that, like many nonlinear dissipative systems, lasers also show chaos for certain
ranges of parameters. Many investigations on laser chaos have been donce in the last two
decades. The earlier studies in this field were concentrated on the dynamical aspects of
laser chaos. However, recent developments in this area mainly belong to the control and
synchronization of chaos. A number of attempts have heen reported in controlling or sup-
pressing chaos in lasers since lasers are the practical systerms aimed to operated in stable or
periodic mode, On the other hand, laser chaos has been found to he applicable in high speed
secure communication based on synchronization of chaos. Thus, chaos in laser systems has
technological importance also.

Sewiconductor lasers arc wmost applicable in the fields of oplical conununications among
various kinds of laser duc to many reasons such as their compaciness. reliability modest
cost and the opportunity of direct modulation. They show chaos and other mstabilities

under various physical conditions suech as direct modulation and optical or optoctecironic
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feedback, It is desirable for semiconductor lasers to have stable and regular operation. Thus,
the understanding of chaos and other instabilities in semiconductor lasers and their control
is highly important in photonics.

This thesis presents analytical and numerical results from studies based on the multiple
quantum well laser rate equation model. We address the problem of controlling chaos pro-
duced by direct modulation of laser dicdes. We consider the delay feedback control methods
for this purpose and study their performance using numerical simulation. Besides the con-
trol of chaos, control of other nonlinear effects auch as gquasiperiodicity and bistability nsing
delay feedback methods are also investigated.

A number of secure communication schemes based on synchronization of chaos semiconduc-
tor lasers have been successtully demonstrated theoretically and experimentally. The current
investigations in these field include the study of practical issues on the implementations of
such encryption schemes. We theoretically study the issues such as channel delay, phase mis-
match and frequency detuning on the synchronization of chaos in directly modulated laser
diodes. It would be helpful for designing and implementing chaotic encryption schemes us-
ing synchronization of chaos in modulated semiconductor lasers. The thesis consists of six
chapters. The content of each chapter is described briefly as follows.

Chapter 1 is an introductory chapter, which describes the basic concepts of nonlinear
dynamics and chaos. A short description of the development of chaos theory is given. The
fundamental properties and necessary conditions for the existence of chaos are described and
chaotic hehavior of discrete and continuous dynamical systems is iHlustrated for the logistic
map and the Lorenz system respectivelv. The main reutes to chaos are also discussed. The
necessary computational tools used in numerical studies of chaotic svstemn are presented. A
brief outline of laser chaos is also presented. The concepts of control and synchronization of
chaos are also given.

Chapter 2 is a review on the physics and engineering aspects of multiple quantum well
lasers. This chapter brings out a detailed plan on the modeling of such systems and various
material properties and physical phenomena that controls their working.

Chapter 3 describes the effect of direct modulation ou the dynamics of multiple quantum
well fasers. This chapter gives the results of varions modulation schemes cinployed and

demonstrates some new results in the dyuamics of nodeiple quantum well lasers. Aain
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result of the chapter is results on the observation of chaos in the system when multitone
madulation scheme is introduced.

Chapter 4 deals with the occurrence of multistability in directly modulated multiple quan-
tum well lasers. Hysteresis and bistability are numerically demonstrated using the bifur-
cation diagrams drawn by the method of continuous time simulation. Possible canses and
applications of these phenomena are discussed in this chapter. Also discussed here is the
observation of the crisis phenomenon in the working of such lasers.

Chapter § shows the significance of feedback delay time in the suppression instabilities
are discussed in this chapter along with the ohservation of chaos in the systemn when suitable
modulation and feedback conditions are met. The chapter explore the feasibility of using

built-in feedback methods to control the laser dynamics.
Chapter 6 summarises the results obtained. A brief discussion on the possible future

works in the area of nonlinear dynamics of multiple quantum well lasers are also discussed

in this chapter.
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Chapter 1

Introduction

"Wisdom begins in wonder.”- Socrates

ABSTRACT

Nonlinear dynamics and chaos are major topics of siudy in the mainstream physics and mathemat-
ics today. New techniques and dimensions of study have brought forward the necessity of analyzing
physical systems using nonlinear tools. Many known physical sysiems exhibit nonlinear character
and il cannot be aveided withoul deeper study and analysis. Lasers in general and semiconductor
lasers in particular are known working models for studying nonlinear behaviour of systems in the
quanium level. This chapter gives a brief inlroduction to nonlinecar dynamics, chavs theory, and the

quantum elecironics of semiconductor lasers.

1.1  Nonlinear Dynamics and Chaos

Nonlinear dynamics and chaotic behaviour have been studied over the last few decades in
many systeins belonging to different arcas like biology, chemistry or physies [1, 2, 3, 4]. The
interesting aspect of these studies is the scarch for universality in the behaviour of nonlincar
systems and their transitions to chacs. A gencral approach in studying the complexity of
such systemns involves investigating thelr dynamies as some system parameters are varied.
This method vields an analysis of qualitative changes, kuown as bifurcations, resulting in
a change of the number of attractors, their type such as periodic, quasiperiodic, chaotic

and/or their stahility.



6 Introduction to Nonltinear Dynamics

Nonlinear dynamics and chaos in laser systems have been studied since the late 1970s. Sermi-
conductor lasers, which usually show only coupled light-carrier density oscillations known
as relaxation oscillations, show chaotic instabilities when we add an additional degree of

freedom [5].

0.8

0.7r

051

04p

0.2F

3.4

Figure 1.1: A window from the bifurcation diagram of the logistic map @ntyy = ran(l — z,). Each
vertical section shows the attractor for a specific value of the parameter +. The diagram displays period-
doubling as r increases, eventually producing chaos beyond r 22 3.369. The periodic regions within the
region 3.569 < r < 4 are termed as windows, for example, the window aronnd r = 3.84 is called a period-3
window.

A dynamical systemn has a state determined by a collection of real numbers, or more generally
by a sct of points in an appropriate manifold M. A manifold is a geometrical space and
the set of points are coordinates of this space. The evolution rule of the dynamical system
is a fixed rule that describes what future states follow from the current state. This rule is
deterministic which means for a given time interval only one future state follows from the
current state. In the case of a continuous system, the phase space evolution is said to be a
phase flow. 1If fis any continuous funetion, then the evolution of a variable 2 can be given

by the formula

Topl ™ f(‘r.n)- (l-“

If, on the other hand, there is a discrete time {n) evolution as in o, = 20, (Gnod 1), 1t

is referred to as o maep rather than a Aow.  Among smooth dvaanieal svstems, chaotic
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dynamics is characterised by the presence of expanding and contracting directions for the
derivative. This is a situation where the differential alone provides strong local, semi-local or
even global information about the dynamics. This stretching and folding typically give rise
to complicated Ieng-term behavior in these systems. The dynamics appears in many ways
effectively random, cven though these systems are completely deterministic. The theory of
these dynamical systems provides a rigorous mathematical foundation for this remarkable
phenomenon known as deterministic chaos - the appearance of chaotic motions in purely
deterministic dynamical systems. Chaotic dynamics produces several characteristic features
of the orbit structure that reflect the coexistence of highly complicated long-term behavior
and sensiiive dependence on initial conditions on one hand with overall stability of the
orbit structure on the other hand. A nonlinear dynamical system can follow different
routes to chaos. Three main universal transition routes from regular to chaotic motion have
been observed so far in different systems: the period-doubling or Feigenbaum route[6, 7],
the intermittency or Pomeau-Manneville route[8], and the quasiperiodic or Ruelle-Takens-

Newhouse routefy)].

Period doubling bifurcation in a dynamical system is a bifurcation in which the system
switches to a new behaviour with twice the period of the original system, The period-
doubling route refers to a successive series of period-doubling bifurcations [10] that oceur
while changing a control paramcter. A transition to chaos takes place after an infinite
number of doublings follow each other with a closer spacing. The intermittency route is
characterized by an increasing number of short, irregular bursts, interrupting the nearly
regular motion. The mean distance between the bursts changes when we vary a control
parameter. There are three different. types of intermittency that can be distinguished by the
statistics of the time interval between the bursts. Type-I intermittency is associated with
an inverse tangent bifurcation, type-II with a Hopf bifurcation, and type-II1 with a period-
doubling bifurcation. The quasiperiodic route. corresponds to a serics of Hopt bifurcations
generating a lew eigenfrequency each time one changes a control parameter. The fivst Hopt
bifurcation generates a limit eycle in phase space emerging from an fixed point solution.
After the second Hopf bifurcation the motion of the system in phasc space takes place on a
two-dimensional torus allowing periodic as well as quasiperiodic behaviour. The third Hopf
bifurcation finally gives rise to the oceurrence of deterministic chiaos.

Though chaos is all about complexity, some of the most powerful tools used for studving
chaos are rather graphical in nature and, therefore, simple to appreciate [11]. Sone of thesc
wethods were developed by the 2reat French mathematician, Hemd Poincaré at the end of
nineteenth century. In the following subsections, we will discuss sone of those tools that are

used to analyvse the dynamics of svatems considered in this thesis:

v



3 Introduction to Nonlinear Dynamics

1.1.1 Phase Space and Phase Flow

The concept of phase space is a gencralisation of the three dimensional coordinate system
used in the Euelidion space [11]. The dimension of the phase-space depends on the degrees
of freedom that the dynamical system has, and a single point in this hypothetical space
represents completely the state of motion of all the variables at any instant of time. As the
gystem evolves in time according to the laws governing i1, the representative point describes
a trajectory or an orbit in the phase space. Since the laws of motion are usually second
order deterministic differential equations, there must be a unique trajectory through at any
given phase point. It follows then that these trajectories cannot intersect or self intersect.
However, they can close on themselves. This non-intersection of trajectories is the essence
of the deterministic dynamics.

The phase space velume occupied by system also evolves with the evolution of the system,
If the phase-space volumme coniracts as time progresses, the system is said to be dissipative.
On the other hand, if the phase-space volume remains constant, the system is said to be
conservative system.  The phasce-space flow can lead to various situations which, in turn,
help us understand the nature of the system better. If the evolution of the phase-space
volume settles down to a point and stays put there, we refer to it as being asympiotically
stable, since the system approaches the point asymptotically, This point will be a stable
equilibrium at which all rnotion stops. We call it then a stable fized point. This, for example,
in the case of a damped harmonic oscillator is the origin, The fixed point is stable because if
the particle is displaced slightly away from the point, it comes back . Thus the stable fixed
peint is an attrector - it attracts trajectories in its neighbourhood, which is its domain of
attraction. An under biased semiconductor laser could arguably exhibit such a situation.
Next in the hierarchy of attractors is another geometrical object, a limit cyele. Here the
trajectory closes on itsclf, that is to say that the system settles down to a stable periodic
oscillation, which we will observe quite often in the coming chapters in the case of directly
modulated MQW laser system. [t is asymptotically stable. In a two-dimensional phase space,
the limit cycle is the only attractor other than the fixed point.

Next to the limit eyele representing a singly-periodic motion., once has o bipertodic torus.
a doughnut-shaped attractor in a state space which is at least three-dimensional. Here the
trajectory winds round in the latitudinal as well as in the longitudinal direction of the torus
with frequencies f) and fo, sav. Clearly, if the ratin f1/f2 is rational. we have periodic
motion and the trajectory eventually closes on itselll If £/ f2 is irrational. we have a quasi-
periodic motion - the trajectory comes arbitravily close o closing on itseli but never quine

do so. In higher dimnensions, one can have higher dinmensional tori, which represents mnltiple
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Figure 1.2: The three dimensicnal phase space diagram of a MQW laser system plotted using the variables
Np. N, and P.

periodic motions.

All the abave attractors correspond to regular periodic motions. A different sort of attractor
that corresponds to deterministic chaos is called the strange ettractor. It is a geometrical
object of fractional dimension |1]. Thus, attractors arc geometrical objects in the phase
space to which the trajectories arve attracted and on which they eventually lie. They have
domains or basins of atiraction. In general there may be several attractors in the phase space
with their basins of attraction separated by separatrices. Together they formn a landscape
called the phase portrait. Fig. 1.2 shows the phase diagram of a multiple quantum well
(MQW) laser in its three dimensional phase space. The flow corresponds to a flow in
which the modulation frequencies keep and irrational ratio. The set of points that lie on
the boundaries of the basin of attraction forin a fractal set. The natwre of the attractor
set, whether strange attractor. a stable periedic attractor, or an unstable periodic repeller,
is measured cquantitatively by its Lyapinmov exponents, fractal dimensions and the power

spectra. We will discuss them below.

1.1.2 Poincaré Section

In dynanical svstenws. o divst recurrence map or Poincard nap. naed after Hewd Polucard.

i< the intersection of a periodic orbit in the state space of a continuons dyvnamical system
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with a certain lower dimensional subspace, called the Polncaré section, transversal to the flow
of the system[4, 12]. More precisely, one considers a periodic orbit with initial conditions on
the Poincaré section and observes the point at which this orbits first returns to Lhe section,
thus the name first recurrence map. The transversality of the Poincaré section basically
means that periodic orbits starting on the subspace flow through it and not parallel to it.
Fig. 1.3 illustrates the method of obtaining a Poincaré section. In this, a flow is strobed

every time it cuts through an imaginary plane in the phase space.

Fig‘lll‘c 1.3: An Qlustration of the Poincard section. A plane biscets the How and strobed to reveal the
complexity of the dynamics.

A Poincaré map can be interpreted as discrete dynamical systems with a state space that is
one dimension smaller than the original continuous dynamical system. Because it proserves
many properties of periodic and quasiperiodic orbits of the original svstem and has a lower
dinicnsional state space it is often used for analyzing the original system. In practice this is
nat alwavs possible as there is no general metheod to construct a Poincaréd map.

A Poincare map can be iaterpreted as diserete dvuamical systemn with the stability of a
period orbit of the original systern is closely refated to the stability of the fixed point of
the corresponding Poiveare map. The periodic orbit T ol the continuous dviamical system

15 stable if and only if the fixed point p of the discrete dyvnamical systemn s stable. It is
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asymptotically stable if and only if the fixed point p of the discrete dynamical system is

asyrnptotically stable.

1.1.3 Lyapunov Exponents

Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity
that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively,

two trajectorics in phase space with initial separation §Zg diverge

SZ(t}] =~ e |6 Zo)] (1.2}

where | - | represents the modulus of the considered vectors.
The rate of separation can be differcut for diflerent oricufations of initial separation vector.
Thus, there is a whole speetrum of Lyapunov exponents - the number of them is equal to
the number of dimensions of the phase space. It is common to just refer to the largest one,
i.e. to the Maximal Lyapunov Exponent {MLE)}, because it determines the predictability of
a dynamical system. A posttive MLE is usually tauken as an indication that the system is
chaotic. The maximal Lyapunov exponent is defined as follows:

A= lim lim llog M {1.3)

t— |§Zo|—0 & |6Z0]

the order of the limits should he preserved to have a meaningful definition. Therefore the
MLE is defined as the exponential rate of separation of a reference orbit with respect to an
infinitesimally perturbed orbit averaged over a an extremely long {infinite) lag of time.
For a dynamical system with cvolution equation f! in an n-dimensional phase space, the

spectrum of Lvapunov exponents
{Alc )\2 o :An}

in general. depends on the starting point 2y, The Lyapunov exponents describe the behavior

of vectors in the tangent space of the phase space and are defined from the Jacoblan matrix

df ' («

dr

e

JT(LIJQ) — (ll)

T
The J! matrix describes how a smal) change at the point g propagates to the final poiut
(] ] ] [ l L]
FfHe). The set of Lyapunov exponents will be the same for almost all starting points of

an croodic component of the dvnamical svstem. If the systemn is conservative (Le. there is
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no dissipation}, a volume element, of the phase space will stay the same along a trajectory.
Thus the sum of all Lyapunov exponents must be zero. H the system is dissipative, the sum
of Lvapunov exponents is negative. If the system is a flow, one exponent is always zerothe
Lyvapunov exponent corresponding to the eigenvaluc of JJ with an eigenvector in the direction
of the flow.

Generally the caleulation of Lyapnnov exponents [15, 16, 17, 18], as defined above, cannot,
be carried out analytically, and in most cases one must resort to numerical techniques. The
commonly used numerical procedure estimates the J matrix based on averaging scveral
finite time approximations of the limit defining J. One of the most used and cffective
nunierical technique to caleulate the Lyapunov spectrum for a smooth dynamical system
relies on periodic Gram-Schmidt orthonormalization of the Lyapunov vectors to avoid a
misalignment of all the vectors along the direction of maximal expansion [19]. For the
calculation of Lyapunov exponents from limited experimental data, various methods have
been proposed. Throughout this thesis, MLE were calculated numerically from the time
series data (13, 14] using the software Dataplore.

Whereas the {global} Lyapunov exponent gives a measure for the total predictability of a
system, it is sometimes interesting to estimate the local predictability around a point xg
in phase space. This may be done through the eigenvalues of the Jacobian matrix Jy(xg).
These cigenvalues are also called local Lvapunov exponents. The eigenvectors of the Jacobian

matrix point in the direction of the stable and unstable manifolds.

1.1.4 Power Spectrum

In the time domain we investigate the covariance or correlation function of a stationary
time series., Alternatively, we can study the {power) spectral density function or simply
the {power) spectrum as a function of the frequency w. The gpectrum of a stationary time
series f(w) 13 the counterpart of a covariance tunction in frequency domain. That is, it is

the Fourier transform of the covariance function (k) and vice versa:

)

o1 "
flo) = oo D wtk)e (15)
M k=—x
and
iz )
w(ﬂ.:).—/ Flae™dw (1.6)

The power spectrum of the output of a laser system can he useful in revealing the underlying
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dynamics and inherent periodicity of the system. For example, a chaotic state will have
infinite components in the frequency spectrum and will be revealed by a power spectrum.

It is quite useful in revealing the resonant frequency of the system and the sidebands.

1.1.5 Bifurcation Diagrams

As discussed before, number of continucus and discrete systems follow the period doubling
route to chaos. For plotting the bifurcation of continuous dynamical systems, a set of values
of a single variable representing the attractor must be obtained. This is usually done by
the return map obtained from the Poincaré section [19] as shown in Fig. 1.3. There is
another method for obtaining discrete mappings from the flows. Lorenz has constructed
a one dimensional map from the three dimensional flow (X,Y, Z) by taking consecutive
maxima of the variable Z. Such methods also can be used for plotting bifurcation diagrams.
A laser bifurcation diagram, as will be shown in coming chapters of this thesis, can reveal the
path to chaos in a laser system as we observe the system by varying its system parameters.
The most common case is that of the period-doubling bifurcation where the orbit in the space
bifurcates with a doubling of the period. Another feature of the bifurcating systems is the
intermittency that brings unexpected richness to the system in the so-called chaotic regime.

This can he understood with the help of a return map described ahove.

1.2 Control of Chaos

Controlling chaos, when it is unavoidable, exploits its hidden order-namely the many un-
stable periodic orbits embedded in the chaotic attractor. Chaotic dynamics then consists
in a motion where the system state moves in the neighborhood of one of these orbits for a
while, then falls close to a different unstable periodié orbit where it remains for a limited
time, and so forth. This results in a complicated and unpredictable wandering over longer
periods of time.

Control of chaos is the stabilization, by means of small system perturbations, of one of
these unstable periodic orbits. The result is to render an otherwise chaotic motion maore
stable and predictable, which is often an advantage. The perturbation must be tiny, Lo avoid
significant modification of the system'’s natural dynamies.

Several technigues have been devised for chaos control, but most are developments of two
basic approaches: the OGY (Ott, Grebogi and Yorke) [20] method, and Pyragas [21] con-
tinuous control. Both methods require a previous determination of the unstable periodic

orbits of the chaotic system before the controlling algorithm can be designed. In the OGY
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method, small wisely chosen swift kicks are applied to the system once per cycle, to main-
tain it near the desired unstable periodic orbit. In the Pyragas method, an appropriate
continuous controlling signal is injected into the system, whose intensity is practically zero
as the system cvolves close to the desired periodic orbit but increases when it drifts away
from the desired orbit.

Experimental control of chaos by one or both of these methods has been achieved in a varicty
of systems, including turbulent fluids, oscillating chemical reactions, magneto-mechanical

oscillators, and cardiac tissues [22].

1.3 Synchronization of Chaotic Systems

Synchronization of chaos is an area of research in nonlinear dynamics ever since it has
emerged in 1980s {23, 24, 25]. Chaotic systems are known to show extreme sensitivity to
the initial conditions. The phase space trajectories of two identical chaotic systems diverge
expounentially and they will become totally uncorrelated after a finite time. Hence it s
impossible to construct two independent chaotic systems with the same temporal evolution.
However, certain techniques have been developed for synchronizing chaotic systems. Yamada
et al. [26, 27] have shown that two identical chactic systems are synchronized when they
are coupled together by sending information between them [2]. In 1990, Pecora and Caroll
[28] introduced a new synchronization scheme hased on the complete replacement a variahle
of one of the two identical subsystems (response) by the corresponding variable of the other
subsystem (drive) for synchronizing chaotic systems [29]. This method has been shown to be
efficient in synchronizing many types of analogue electronic circuits [30]. However, coupling
is 'commonly used for synchronizing other types of chaotic systems including the chaotic
lasers operating in very high frequency regime.

Pecora and Caroll have shown that a chaotic system (drive system) can be synchronized
with a separate chaotic system (response system) provided that the conditional Lyapunov
expornents of the drive and the response systems are all negative [23, 28], Roy ef al. [31, 48]
have demonstrated the practical viability of synchronizing laser syvstems. The ability to
design synchronized chaotic systems has opencd up opportunities for application of chaos
to private communications. Chaotic switching, chaotic masking. and chaotic modulation
are commonly used to achieve chaotic transmission. Chaotic switching utilizes a parameter
change in the drive system, where two chaotic states are created to bear a binary signal
[33]. The important issuc in such a case is thal two chaotic states are distinguishable when
synchronised. and are indistinguishable if not synchronised. For chaotic masking, a large

neise-like chaotic carrier, whicl is independently generated. is mixed with the signal at the
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drive end to ensure privacy [34]. At the response end, the masked signal is recovered by
removing the large chaotic carrier under synchronization.

Quantitatively, the extent of synchronization of lasers can be estimated by calculating the
similarity function [23, 35] of the times series of the coupled systems. In the case of two

coupled oscillators, the similarity function can be calculated as

(zalt = 7) — = ()))
Viggt = N F?)

where, z4{t) is the time scries signal of the drive system and z,.(¢) is the same of a response

5%(r) = (1.7)

system which is driven by the former. 7 accounts for any time that the drive signal takes to
reach the response system. In coupled chaotic systems this function can he used to represent
the nature of the dynamics in teris of the synchronization error. If + is set to zero, we obtain
S5(0), the error in synchrony. We will discuss this further in the light of coupled multiple

quantum well lasers in chapter 3.

1.4 Conclusions

We have discussed the general features of nonlinear dynamical systems and the emergence of
chaos. Further, we have discussed different tools to measure and characterise chaos. These
tools will be used in the study of the dynamics of multiple quantum well lasers about which
we will describe in detall in the next chapter. This study, as we will show, is crucial in
designing many optoelectronic systems with these lasers as the generators of light. As per
the studies that we have discussed in the last paragraph, nonlincar behaviour in the such
laser systems, especially the chaotic state, can be exploited to stabilise the lasers as well as
use them for encryption. Laser chaos can therefore be useful in a tailor made circuit for

communication.
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Chapter 2

Nonlinear Dynamics of Multiple

Quantum Well Lasers

"We see only what we know.” - Johann Woifgang von Goethe

ABSTRACT

Low dimensional siructures have come a long way from being mere examples of applied quantum
mechanics to widespread applications in many modern devices and instruments. Quantum well,
quanium cascade and quantum dot lasers make use of the very fundamenial idea of carrier confine-
ment within dimensions that match their de Broglie wavelength. CQuoantum well lasers are used in
many modern oploelectronic applications because of their great flexibilily wilkin the quanfum limits
te be integrated in various types of applications. This chapier presents the basic physics and basic

features of multiple gquaniurm well laser dicdes from which the dynamic model s being developed.

2.1 Introduction

Semiconductors allow the manipulation of light, the manipulation of electrical current, and
their interaction within a single device. and that i1s why they are of great interest as opto-
electronic materals of choice [1]. They can carry electrical current as well as light waves.
In the next level, they can be desiened to allow for the transformation of light into current

and vice versa. Semiconductor lasers are the finest applications of the latter. They allow

21



22 Dynamics of Multiple Quantum Well Lasers

highly eflicient sources of coherent light emission and have opened a vast number of possible
application of lasers.

Interaction between light and matter is ensured when an emitter or detector is construeted.
Light is mostly treated using the Maxwell's equations whereas quantum theory is essential
in the study of matter. The laser dynamics is understood in its totality only by using the
quantum optical treatment of the various physical phenomena involved in the production
of light [2, 3, 4]. A single photon traveling through a semiconductor is able to generate
an identical photon by stimulating the recombination: of an electron-hole pair. This pho-
ton multiplication is the key physical mechanism of lasing. Laser dideoes with wavelength
constraints such as vertical cavity surface emitting lasers (VCSELs) [5] and distributed feed-
back (DFB) laser diodes are currently of considerable interest because of their ability to be

integrated in more than one dimension.

Semiconductor lasers exhibit many unigue features in both functions and performances and
also offer cconomical advantages. Thercfore, by the development of semiconductor lasers,
lasers, which had been a special instrument for seientific research and limited applications,
acquired a position as a device for general and practical instruments. As will be outlined
below, the applications of semiconductor lasers cover a wide area, including optical commu-
nications, optical data storage and processing, optical measurenent and sensing, and optical
cnergy applications.

In semiconductor microstructures of nanometer size, the behavior of electrons is strongly
aflected by the quantum nature of the electron and exhibils a remarkable dependence on
the parameters specifying the structure. Thercfore, by appropriate design of the structure
parameters, one can implement artificial novel electronic properties unlike the intrinsic char-
acteristics of the bulk materials [3. 6]. Recent advanced techniques for crystal growth have
enabled precise fabrication of such quantum structures, and these quantum structures have
offered very effective and attractive possibilities for improvement in semiconductor laser
performances [7, 8. This chapter presenss the fundamental theory of the quantum well
{QW) as the most important quantum structure and the optical amplification by stimulated

crmission in it.

2.2 Physics of Low Dimensional Structures

1t is the marvel of nodern technological advances thay the principles of quantum mechanics

and guantum optics found applications in daily life through the successful fabrication of

devices such as multiple quantum well lagsers and quantum cascade lasers. The progress of

solid state physics and waterials science in the last three decades s chiaracterized by the

e s e



Chapter 2 23

gradual displacement of bulk crystals by thin films, multi-layered structures and similar
low dimensional structures as the main objects of study. In these systems, most clectronic
properties are considerably different and a number of new, so-called size effects occur. The
most dramatic change of properties takes place in quantum size structures where carriers
are confined in a region with characteristic size of the order of the de Broglie wavelength.
In this case the quantum mechanical laws come into action, changing the most fundamental

characteristic of an electron system - its energy spectrum.

Quantum dots, wires, and wells are semiconductor structures that have carrier confinement
- of both electrons and holes - in three, two and one dimensions, respectively. Although
each of these structures reveal a world of study itself, we will stick on to the quantum well
structures as they are the ones that find application in modern systems and devices that

works on the principles of optoelectronics.

2.2.1 Quantum Wells

The de Broglie wavelength of clectrons in a very thin (less than a few tens of nanometers)
semiconductor film structure is comparable with the thickness of the film. In such a strue-
ture, electrons exhibit interesting electric and optical characteristics dissimilar to those in
bulk semiconductors and ordinary double hetcrostructures (DHs). The most fundamental
semiconductor quantum heterostructure is a single quantum well (SQW), which consists of
a very thin layer of a semiconductor sandwiched between two layers of a semiconductor hav-
ing a bandgap energy larger than that of the thin layer. The conduction- and valence-band
edges of this structure form potential wells, as shown in Fig. 2.1,

Once miniaturization reaches the quantum limits in one dimension, a “two-dimensional
electron gas” is created, which we shall call *quantum well” {QW). In such structures,
ander the influence of external fields and scatterers, such as photons, impurities, cte., only
two, rather than three. components of carrier momentum can change. As a result, the carrier
behaviour reminds once of that of a two-dimensioral gas, even though the system has finite
extent. along the confining coordinates.

A quantum well in our context refers te a well like potential formed from a semiconductor
heterostructures such as epitaxially grown thin layers of GaAs and AlGaAs [1, 6, 10, 11, 12].
Such wells have two-dimensional density of clectron states for low-energy electrons. Such
wells often form the active region of a semiconductor laser diode. The small volume of
the guantim well reduces the current needed o achiove lasing and offers Ligher ditferential

optical gain compared to bulk laser diodes.
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Figure 2.1: Square well potential that is typical of AlGads—Gads— AlGaAs quantum-well heterostructure.
For well thickness L; < Agg, size quantization occurs and results in a series of discrete energy levels marked
by the bound state energies of a finite square well. A potential well exists in both the conduction and valence
bands giving rise to a series of bound states E, for the electrons, £, for heavy holes and Fyp, for light
holes.
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2.3 Quantum Well Lasers

Quantum well lasers with reduced dimensionality offer lower threshold currents, large gain
and lower temperature stability than conventional double heterostructure lasers [4]. The
two-dimensional character of the charge carrier gas causes a change in the density of states
(DOS), the fundamental origin of improved operation characteristics like low threshold cur-
rents and lower temperature sensitivity. Use of quantum well{s) as an active layer allows
implementation of quantiun well lasers olfering performances better than those of ordinary
DH lasers. However, mere reduction in the active layer thickness of a DH laser to form a
SQW or MQW structure does not lead to realization of high performances, since the resul-
tant quantum well (QW) is too thin in comparison with the optical wavelength to ensure
strong optical confinement, and therefore a high effective gain for the guided wave cannot
be attained. Another problem is that it is not easy to attain a high efficiency of carrier
injection in MQW structures having many heterojunctions, and the carriers injected in the
thin QW may leak, thereby reducing the effective carrier injection efficiency. To overcome
these problems and to implement high-performance quantum well lasers, various improved
structures have been developed. They are separate-confinement heterostructures (SCHs),
consisting of the QW active layer for carricr confineinent and a refractive index structure
for optical confinement outside it, and their modifications.

The most, important factor influencing the taser characteristics is the change in the density
of states due to size quantization. If in a bulk semiconductor the density of states near the
band edge is small, then in a quantum size structure it does not vanish near the edge, but
instead remains equal to m/mh>. Because of this fact, the conditions for population inversion
in two-dirensional systems can be met wore casily than in three-dimensional systems [12].
This has resulted in some particular applied results. The design of lasers with a size-
quantized active region has cnabled stationary laser generation at room temperature as well
as decrease in the threshold current of the injection lasers reaching extremely low values of
less than 50 A/cm?.

The different energy dependence of the density of states changes not only the value bug
also the temperature dependence of the threshold current. The temperature dependence
beeomes weaker, which results in the possibility of OW laser generation not only at room
temperature, but at temperatures several tens of centigrade higher.

Another important peculiarity of quantum well lasers is the possibility of frequency tuning.

The mintmal energy generated quanta is equal to
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Figure 2.2: Density of state for electrons &y, and £, for a AlGads — GaAs guantum-well heterostructure,
The half parabolas that originate {rom the conduction and valence band edges represent the densities of
states for bulk structures. The step-like states are characteristic of the two-dimensional clectron (hole) gas
in the quantuin-well structure. Inter-band recombination transitions (An — 0) occur from a bound state in
the conduction band £, to a bound state in the valence band Eppy or Eppy, -
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and can be changed by changing the film thickness I., which determines the cnergy sepa-
ration of the quantum states in the electronic and hole-like state. According to quantum
mechanics we have Egy ~ k2 /2m2 L2

The density of states in the k-plane is p. p(k)dk = kdk/27?% and can be converted into
an energy density with dE = i’k/ m; pdk. In the transverse direction each quantum state

{cnergy ng, for quantum number 7} contributes with the density /L.,

*1
mc:h

EYdE =
Pen(E)d !‘_ R2I.

OE — EGH). (2.2)

The theta function has the values ©(x) = 1 for @ > 0 and &(x) = 0 for z £ 0. Also, the
effective masses m?% may depend on the quantum number. The density of state grows step-
like, as shown in FIG. 2.2, in a quantum well every time the energy reaches a new transverse

quanturn state. There it has exactly the value corresponding to the butk material.

Typical quantum wells are rather shallow, which causes the wave function to penetrate
into the barrier region (3, 1]. The distance of the energy levels shrinks with lower barriers;
however, the parabolic dependence on effective mass is maintained. The actual potential
widths AFE, and AF, of semiconductor wells are critical parameters in the device simulations

but they often are not exactly known.

2.4 Multiple Quantum Well Lasers

Very often, many-layered heterostructures with large number of periodically repeated similar
wells are grown instead of a single well. Depending on the thickness of the wide-gap layers,
these structures can be divided into two types. For energy barrier thickness L, > 100A,
the tunnel transparency of barriers is low, neighbouring wells do not influence each other
and the eflect of cach well are simply added. Such structures, called multiple quantum well
structures (MQW). are used for amplification of the effecis observed. At smaller barrier
energy thickness the energy spectrum of the system changes. The possibility of inter—well
tunnelling transition leads to the transformation of quantum size levels into bands, as takes
place for atomie levels in crystals. This results in the formation of completely new structures
called superlattices. Their properties differ from single quantum wells and they are used to
make detectors and sources such as the quantum cascade laser.

Multiple quantum well (MQW) laser diodes are widely used in many applications hecause
of thelr superior performance characteristies over bulk laser didoes. The modified density

of states due to conflinement in a quantum well laser causes lower threshold currents since
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fewer states per charge carrier are available, which can consequently be filled with lower
currents, Typically threshold current densities of 5 — 100 Acm ™2 are achicved. The lower
threshold indirectly improves again the temperature sensitivity since there is less excess heat
generated in the heterostructures.

The differential gain of a MQW laser is larger than that for the double heterostructure (DH)
lasers since the electrically dissipated powers growing with the current causes a lower reduc-
tion of the gain. Also, the threshold condition depends less strongly on the temperature,
For conventional DI lasers the transparency threshold grows with 723, in quantum well
lasers only in proportion to T'. The characteristic temperatures according to the cmpirical

relation [4]:

T T

T) (2.3)

Lin = Iy exp(

are about 200K.

2.5 Dynamics of Quantum Well Lasers

To understand the operation of a semiconductor laser diode, we need to develop a model,
A general model is obtained by setting up the Maxwell-Bloch equations(10, 13], an attempt
to model the laser dynamics using a semi-classical approach. Lang and Kobayashi {14]
formulated the theoretical framework to study semiconductor lasers with optical injection.
However, the simplest and one of the most effective approach is to use rate equations. The
standard multimode rate equation for semiconductor lasers is based on the approximation
that modal field shapes depend on the instantancous value of the time-dependent dielectric
function. This is known as the adiabatic approximation [15]. Tt will break down if the
inverse of the modulation frequency approaches the photon round-trip time in the cavity.
{16]. Multimode rate equation model can be, further, simplified by assuming that the laser
operates in a single mode and that all photons are confined to the particular mode. This
model, which is much simpler, is very effective in predicting the laser output behaviour and
connects physical concepts with engincering realities very well,

Depending upon the basic assumptions that we use before modeling, the rate cquation
model can be single mode or multi-mode equations. If we assume that there can be lasing
inte only one optical mode of frequency w,, we can utilize this fact to make our mode! more
compact. In this case our caleulations will not incorporate any variation in optical gain,
optical loss, or carrier density along the longitudinal {z) axis. This hinped-element model,

further, assume that the conduction-band and valence-bhand electrons have the same density
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and that they are thermalised so that they may be characterized by a single temperature as
we have discussed in section 2.3. Further, we will adopt simple but effective approximations
for gain, spontaneous emission, and nonradiative recombination. When considering the rate
equations one needs to be very careful to define the parameters used because it is easy to
become confused and make an error. The challenge is to find the exact role of cach parameter

and variable used, and never to omit some quantity of importance.

2.5.1 Criteria for Modeling Quantum Well Lasers

One of the earliest models for the multiple quantum well structures were developed by
Rideout et al. {17] based on the well barrier (W-B) hole burning model. Nagarajan et al.
[18] have developed a two-level ambipolar rate equation extension of the W-B hole burning
model. Successive works found that the two-level model is inadequate to model the system
very well and McDonald et al. [19] developed the full three-level ambipolar rate explicitly
considering the gateway states. The work was an extension of two-level models proposed
earlicr.

The cavity photon density, photon lifetime, and the differential gain are considered to be
the critical factors in the design of high-speed semiconductor lasers. In addition, a gain com-
pression term, e, whose physical origins have been attributed to various phenomena such as
spectral hole burning [20], transient carrier heating [21], and cavity standing wave dielectric
grating [22], has been used together with rate equations for the carrier and photon density
in the cavity to model the modulation dynamics of semiconductor lasers. Following this pro-
cedure, high-speed laser design meant designing lasers with tight optical mode confinement
for higher photon densities, short cavity length for shorter photon lifetimes, and quantum
well active areas which could in addition to be strained or p doped for higher diflerential
gain. T

In addition to the set of criteria listed above, it is also critically irnportant to minimize the
threshold carrier density to maximize the differential gain, and reduce the carrier transport
times across the scparate confincment heterostructure and the barrier layers, in order to
maximize the modulation handwidth of a quantumm well laser. It has been shown that
¢ of comparable magnitude as in lasers with bulk active areas is adequate to model the
dynamics of quantum well lasers [18]. Carrier transport factors, low confinement factor, and
low diffcrential gain all contribute i reducing the modulation bandwidth of the quantun
well lasers. Thus, it is imperative that transport properties have a significant effect on the
modulation dynamics of-quantum well lasers. The dynamics of the laser is dominated by

the transport times of the slower carrier type when clectrons and holes arve injected from the
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opposite ends of the separate confinement heterostructure.

In the case of an LED, the carrier relaxation time 7 = 1/(b + ¢) gives the average time
required for electrons in the excited state to decay to the ground state through processes
of spontancous cmission (the “b” term) and nonradiative collisions (the “c¢” term) [2]. The
population decays according to ¢~ /7. The laser modulation rate is of the order of v = 1/7 =
1 (GHz. In a semiconductor laser the stimulated emission forces the carrier to recombine
in addition to the carrier relaxation. Stimulated emission process in a semiconductor laser

lowers the carrier lifetime and thereby effectively increase the modulation rate.
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Figure 2.3: Conservation chart for the W-B hele burning model indicating the dominant rute processes
for the W-B model. Tpb and 7p, stands for tlzu carrier leakage times from the barrier and well, respectively.

2.5.2 Carrier Transport in Quantum Well Structures

A great deal of experimental work has been done to study carrier transport in QW lasers.
This work consists mostly of time-resolved photoluminescence experiinents. pump probe
experiments, and modulation response measurements [23;. These experiments are designed
to study the high-speed dynamics of carriers in QW lasers. Of key interest in this field arve
transport times across the heterostructure and carrier capture rate into the QW's as these
two factors play a fundamental role in the high-speed characteristics of QW laser devices.

Electrical current flow iu semicondnetors s mainly dominated by drifi aod dillusion of

clectrons and holes. Drift current is generated by an electrie field which is proporticnal to
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the conductivity of electrons and holes. Diffusion current is driven by the conecentration
gradient of electrons Vn and holes Vp. It is proportional to the diffusion coefficient D,, and
D, respectively [1].

The phenomenological description of lasing in a semiconductor laser is complete once the
carrier density n is rclated to the pump parameter, the current density J. This is accom-
plished through a rate equation that incorporates all the mechanisms by which the carriers
are generated and drift inside the active region. In general, the continuity equations for
both electrons and holes should be considered. The two are interrelated because of charge
neutrality, and it suffices to consider one rate equation for for electrons. In its general form,
the carrier—density rate equation is [1, 13, 24]

on

5= D(V*n) + qid — R(n). (2.4)

The first term accounts for carrier diffusion, and D is the diffusion coefficient. The second
term governs the rate at which the carriers, electrons or holes, are injected into the active
layer because of the external pumping. The electron and hole populations are assumed to be
the same to maintain charge neutrality. In the second term, g is the magnitude of the electron
charge and d is the active-layer thickness. Finally, the last term R(n) takes into account
the carrier loss due to various recombination processes, both radiative and nonradiative. A

rigorous derivation of Eqn. 2.4 has to be based on the density-matrix approach.

In order to apply the rate equation analysis to quantum well lasers, the photon lifetime 7,
the photon density S, and output power P must be expressed by using the device parameters
of quantum well lasers. The threshold gain g, of a DFB laser calculated is given in the form
of the net gain for the guided mode. The threshold gain Gy, for use in the rate equations
is expressed in the form of a temporal material gain G, and g, and Gy are correlated to

each other by [3]

LGip

g

gth = = (it (25)

where T is the confinement factor and «vy,; the internal loss. Group velocity of the guided
mode is represented by v,. The optical wave in the laser cavity (waveguide} can be written

a8

Elry 28 = BElo, ) Elz)e” e, (2.6)

where F(z) is the component in the direction of propagation. This equation indicates that

the power in the resonator decays with time in a form of caxp(—2+t}. If there s no eptical
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power source, the optical wave can exist only in such a form that the power stored in the
resonator in the past is consumed and attenuates with time. We define the photon lifetime
Tp a8 27 = 1/7,, the time for which the power in the resonator decays to 1/e times the initial

value, and is an important parameter for the rate equation analysis of semiconductor lasers

3.

2.5.3 Well-Barrier Hole Burning Model

It is also tound that the conventional single mode rate cquations fail to explain the resonance
characteristies profoundly, because of non inclusion of factors such as spatial and spectral in-
homogeneitics. Hence well barrier hole burning model is introduced 1o incorporate the effects
contributing to non linear gain [25]. MQW bistable lascrs are normally analysed by numeri-
cally solving the single mode rate equations [26]. The modulation response of semiconductor
lasers is determined by an intrinsic dynamic resonance in the nonlincar photon-carrier in-
teraction, and the conventional single-mode {S-M) rate-equation model predicts improved
resonance characteristics with enhanced differential gain. On that basis alone, lasers con-
taining single QWs, many uncoupled QWs, and strained @QWs should show progressive levels
of improvement. However, so far such expectations have neither been realized nor verified
satisfactorily, inasmuch as the resonance frequencies and damping rates inferred from recent
parasitic-free experiments vary widely [27]. Evidently, factors such as spatial and spectral
inhomogeneities not taken fully into account by the conventional model affect the resonance

characteristics profoundly.
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The well-barrier hole burning modcl, proposed to explain observed large damping in certain
QW lasers, incorporates certain features of the spatial inhomogeneities in perpendicular
carrier transport (i.e., transport along the growth axis of the quantum wells). As Fig. 2.4
illustrates schematically, after injection, electrons and holes diffuse and drift through the
separate-confinement-heterostructure (SCH) region to within a few hundred Angstroms of
the QW where, among other possibilities, they may be captured quantum mechanically by
the QW's. At the high injection levels required for lasing, the densities of electrons and holes
in excess of equilibrium values are approximately equal, and the diffusion-dominated regions
spread away from the contacts throughout the entire intrinsic region. Thus jointly, these
excess densities play the role of an effective mobile carrier density for ambipolar transport
(with ambipolar-averaged rate constants) across the p-i-n region of the device. W-B hale
burning is argued to result from the buildup of this mobile carrier density in the SCH regions

during capture and release of carriers by the quantum wells.

The W-B model treats the carriers in the barriers {i.e., in the continuum states of the SCH
regions) and wells (i.e., in the localized subband states of the wells) as separate species with
average densities, N, and Ny, respectively, and focuses attention on the capture process.
The transport and trapping dynamics of carriers across semiconducting heterostructures are

not yet fully understood [28].

The W-B model postulates that the photon-carrier resonance results from the coupled
nonlinear interaction between a photon reservoir of density S and two carrier reservoirs: a
collector with density Nb, and a gain reservoir of density Np, and a gain reservoir of density
Ny . As suggested by the conservation chart in Fig. 2.3, the collector receives carriers
remotely from the pump current source, loses carriers to the environment by spontaneous
recombination in the barrier region, and supplies carriers as needed to the gain reservoir.
The gain reservoir capturcs and releascs carriers from and to the collector reservoir, and
loscs carriers by spontaneous emission into the lasing mode, as well as by spontancous
recombination to the environment. The photon reservoir loses photons by internal and mirror
lesses in the lasing cavity. The gain medium and photon reservoir interact via stimulated
absorption and cmission. We emphasize two significant features of the W-B model: that
the well region is the only gain medium; and that the model supports three phase-space
dimensions (associated with two carrier densitics and the photon density) vis-a-vis the two
dimensions of the S-M model. Since the well region is the only gain medium, the carriers in
the barrier region interact only indirectly with the lasing mode via their coupling to carviers
in the wells.

The conservation chart {Fig. 2.3) contains the essential rate processes for the nonlinear

rate equations described below.
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2.5.4 Nonradiative Recombination and Carrier Overflow

Decay mechanisms through which electrons in a given energy state can decay out of that
state are broadly divided into two categories corresponding to the intraband and inferband
decay mechanisms [13]. Intraband processes in a semiconductor lascr constitute of electron-
electron scattering and the electron-phonon scattering, and occur at fast time scale of ~
0.1 ps. By contrast, interband processes occur at a time scale of few nanoscconds; they
consist of radiative recombination leading to spontaneous and stimulated emissions as well
as nounradiative recombination. In long wavelength semiconducting lasers an important
source of nonradiative recombination is the Auger process, as discussed in this section.

Some of the injected minority carriers are consumed in the active layer by the nonradia-
tive recombination without photon emission. This gives rise to a factor that causes the
internal quantum efliciency for spontancous emission to deteriorate. Although the nonra-
diative recombination includes recombination due to lattice defects and recombination due
to impurities, and also recombination at the interfaces of the heterostructure, it is negligi-
bly small for ordinary lasers that use high-quality crystals. More important and essential
nonradiative recombination is that caused by the Auger processes [1, 13, 28]. Collision of
two electrons and one hole resulting in recombination of one clectron and the hole, and
excitation of another electron with the energy released by the recombination up to a higher
fevel in the conduction band, and collision of two heavy holes with one electron resulting
in similar recombination and excitation. The excited carriers give energy to the crystal lat-
tice in the form of heat and return to the unexcited level. Since both energy conservation
and momentum conservation must hold also for the Auger process, recombination occurs
with carriers at energies apart from the band edge. Accordingly, the recombination rate
R4 exhibits a remarkable temperature dependence and handgap energy dependence; R4 is
larger for a narrow bandgap and a high temperature. Since the process is a collision of three

particles, the carrier density dependence of R, can be phenomenologically written as [3)

Ry = Conlp+ Cynp® = Cn, (2.7)

where (), (. and O, are constants with n = p. While the Auger recombination is usually
negligibly small for lasers for short-wavelength emission, it is an important factor that sig-
nificantly affects spontancous emission in lasers for long-wavelength emission. The Anger
recoinbination can be reduced by using strained quantuim well structures.

Another important factor that causes the ciission efficiency to deteriorate is the overflow
of minority carriers injected i the active laver into the region opposite to the injection

side, which gives rise to additional current without contribution to the laser action. The
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magnitude of the overflow current can be evaluated by calculating the carrier density at
the boundary between the active and barrier regions under the assumption that the quasi-
Fermi level is continuous across the boundary, and solving the carrter diffusion equation
in the barrier region with the use of the boundary value. The overflow is larger for lower
barrier heights and higher temperatures. The current consists of diffusion current and drify
current with the ratio dependent on the thickness and the resistivity of the barrier region.
In many lasers the overflow can be suppressed to a negligible value by appropriate design.
Tor short-wavelength lasers where it is difficult to assure sufficient barrier height, and for
laser operation at clevated temperatures, the overflow can be an important factor that limits

the performances.

2.5.5 Optical Cavity

We exploit the existence of optical gain in a semiconductor to make a laser diode. One
might imagine constructing a p — n diode out of a direct band-gap semiconductor such as
GaAs or InGaAsP. When forward-biased to pass a current, I, electrons are injé-cted into
the conduction band and holes into the valence band. The optically active region of the
semiconductor is where the electrons and holes overlap in real space, so that vertical optical
transitions can take place in the momentum space (k-space) [11]. If the density of carriers
injected into the active reglon is great enough, then it satisfies the Bernard-Duraffourg
condition [30] that the separation in quasi-chemical potentials electronic states at upper
and lower energy states must be greater than the photon energy for net optical gain to exist.
This implies that optical gain exists for light at some wavelength in the semiconductor,
There is, however, more tb designing a uscful device. Among other things, we would like to
ensurc that a high intensity of lasing light emission cccurs at a specific wavelength.

Typical value of gain for an optical mode in a semiconductor laser diode is not very large
(~ 500 em ™), and thercfore, in order to precisely control emission wavelength, one typically
places the active semiconductor in a high-Q optical cavity, This cavity has the effect of
storing light at a particular wavelength, allowing it to interact with the gain medinm for
a longer time. In this way, relatively modest optical gain may be used to build up high
light intensity in a glven optical mode. Electrons contributing to the injection current [ are
converted into lasing photons that have a single mode and wavelength, The efficiency of the
conversion process is enhanced if only one high-Q oprical-cavity resonance i3 in the same

wavelength range as seiiconductor optical gain.
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2.5.6 Fabry-Perot Lasers

In our MQW laser models, the most widely emploved cavity structures are the Fabry-Perot
optical cavity, which is arguably the simplest, and the distributed feedback (DFB} cavity
employing periodic stacks of dielectric mirrors. The former consists of an index-guided
active region placed within a Fabry-Perot optical resonator. Assuming that the photons
travel normal to the two mirror plancs and in the z-direction, the expression for the spectral

range of corresponding longitudinal optical resonances will be

letis
o Leniy

where n, is the refractive index of the dielectric, L. is the length of the cavity, and ¢

Aw

(2.8)

is the speed of light in vacuum. The mode confinement factor T" is calculated from the
spatially varying dielectric constant in the cavity, e(x, y), which is obtained as a solution of
the time independent Maxwell’s equations assuming no free charge and an electromagnetic

wave traveling in the z-direction:

V2E + ez, k2 E = 0. (2.9)

by assuming that e(x, y) varies slowly in the r-direction compared with the y-direction and
by adopting the effective index approximation. Finally, one can definitely say that it is the
cavity formation that makes a laser different from a light emitting diode (LED}. Multiple
round trips are necessary to approach steady-state laser characteristics that are independent

of laser injection current [11].

2.5.7 Distributed Feedback Lasers

In many applications, such as optical communications and measurements, semiconductor
lasers that maintain stable and pure single-mode oscillations even under high-speed mod-
ulation are required. Fahry[PPerot (FPF) lasers cannot satisfy this requirement. Therefore,
various sypes of dynamic single mode semiconductor lasers have been developed.  Such
lagers are mainly classified into distributed feedback (DFB) and distributed Bragg reflector
(DBR) lasers, which maintain stable single-mode oseillation even under high-speed modula-
tion [3]. They are suitable for monolithic integration and accomplishing advanced functions
and performances, We have, theretore, mostly nsed the MQW lasers with DB configuration
in our studics leading to this thoesis.

We can achieve dyvnamic single-mode oscillation by giving the oscillation threshold gain a

sharp inode selectivity to prevent oscillation of modes except for a single mode. One ol the
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simplest methods is to combine a P laser with an external mirror, therchy constructing
of a composite resonator consisting of the two facet mirrors and the third external mirror.
One of the laser wavegnide FP modes that coincides with one of the resonance frequencics

for the facet and the external mirror oscillates [31].

If we integrate a grating with sharp wavelength selectivity as a feedback clement in a
semiconductor laser waveguide, dynamic single-mode lasers can be implemented without
spoiling the compactness of semiconductor lasers [32, 33, 34]. This type of semiconductor
laser is classified as a distributed feedback {DFB) laser using a grating within the active
section (carrier injection scction), and a distribnted Bragg refleetor {DBR) laser using a
grating outside the active section. Although the fabrication of these lasers requires advanced
techniques, they can offer excellent performances including dynamie single-mode oscillation.
The DFB and DBR configurations arc suitable for implementing advanced devices such
as wavelength-tunable lasers. They do not require facet mirrors, and this unique feature
facilitates monolithic integration of lasers and other optical elements, such as photodetectors
and passive elements, in a semiconductor waveguide, With these advantages, DFD and DBR
lasers are the most important components for implementation of various photonic integrated
circuits. All the above mentioned features make us to concentrate more on DFB lasers

available in modern laser systems vital to long distance optical communication.

We can see that DFB lasers have specificd device parameters more than those of FP lasers,
and the operating characteristics have complex dependencies on them. As presented above,
the oscillation condition for DFB lasers is significantly different from that of FP lasers. They
have unique longitudinal mode characteristics and oscillate in a single longitudinal mode.
However, many of the operating characteristics are common to those of FP lasers, as they
are described by rate cquations similar to those of FP lasers.

Also, for ordinary single-quantum-well and multiple-quantum-well structures, the TE gain
is significantly larger than the TM gain. Strained quantumm wells can bhe designed so as
to have a larger gain for a TH mode or a TM mode. Therefore, DFB lasers with a high
polarization extinetion ratio can be implemented by using a SCH structure with a quantum
well active region and an appropriately designed grating.

We can see that quantum wel} DFDB lasers having a high relaxation oscillation frequency and
a small line width enhancement factor .. in particular, single-mode high-speed modulation
above 10 GHz is possible [20], and frequency chirping is small. Because of these excellent
characteristics, quantum well DFDB lasers are most. suitable as a light source for high-speed

optical fiber communications.
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2.6 A Rate Equation Model for Directly Modulated
MQW Laser Diodes

In a multiple quantum-well {MQW) laser the carrier density is not generally the same in each
quantwm-well (QW). The distribution of carriers in the QW’s can profoundly affect device
operation and is crucial to the understanding of MQW devices [35, 36, 37, 38, 39, 410]. The
carrier distribution in MQW devices has been studied both experimentally and theoretically
in the past [38, 39, 40].

Based on all the details above, we choose the three level multiple quantum well lagser model
proposed by Bennet et al. [41] which is a modified version of the model put forward by
Nagarajan et al. [18]. Carrier densities in the core {barrier) region {N.) and the well
region (V) influence the photon number density N, in the active region as according to

the following set of equations:

dN, r,J N. T,N, .
I A (2.10)
dN, N, 1 1

= : Nyl— 4+ — — v, G(N,, NN, 2.11
dt T © [T,ﬁ%l UGN, Np) Ny (2.11)
IN 1 ,
‘:i_tp = [Po,G(Ny Ny) = —|N, + TEBN, (2.12)

P

where Ty s the fraction of the MQW region filled by the quantum wells. 1" is the wode

confinement factor of the laser, defined as

Lz/'Q ]
_ 7L;/2‘E|)dzw L.

B = ) 2.13
f;m !E|2dz I'ym.ode. ( )

where L, (wswally < 100 ;"'l) is the height of the active region, and W, .4 s the width
of the EM mode [10]. When the optical mode is effectively confined to the active region,
the gain seales as L7 which is due to the fact that as the optical density, for a fixed total
power, in guided mode, goes as L', so the stimulated emission cmission rate and hence
the gain scale similalye As long as T' ~ 1, that s most of the mode energy is in the active

region, the gain GV, N, s luversely proportional to the active region thickness L.
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2.6.1 Gain Calculation

We have observed that a precise theory for conventional double heterostructure lasers, which
explains many of the observed properties well, has been developed taking into account the
electronic intraband relaxations. Such a theory is necessary for quantum well lasers as well,
since the intraband relaxation is particularly important for quantum well lasers with narrow
gain spectrum since the gain spectrum is broadened due to this intraband relaxation. The
gain G(N,,, N} is obtained by careful theoretical analysis as trial and error optimization
of the multi-quantum-well{MQW) laser structure is both costly and time consuming since
there are innumerable possible combinations of optical confinement structure, well width,
well number, and cavity length, only a few of which lead to useful devices [42]. The linear
gain of quantum-well lasers, taking into account the effects of the intraband relaxation can
be written as {42, 13]

Z{)I’TL,» / (R?h> (fc - fv)AJE‘dECh

2.14
Ecn+E, i +E, (Ecp, — hw)? + AE? (2.14)

hy= ——7
g(h) uwhil,
T

'

where Zg = {1g/¢p)'/? is the free space impedance, 7 = h/AE is the intra-band scattering
time, E.p, = E.— E, is the transition energy, E., and E,, are the nt® and n'th energy levels
of the electron and hole quantum wells, respectively, and f, and f, are the corresponding
Fermi factors. L, is the well width, R is the interband mairix element (set to zero for
n # n'}, {z) denotes the average of & taken aver the polar angle ¢, w is the effective refractive
index, and £y, is the semiconductor band gap. The Fermi levels are calculated assuming
bimolecular recombination and equal carrier concentrations {n = p), i.e., assuming current
density J = eL,B.frn?. Using the above cquation, we can calculate the gain of a single well
as a function of frequency and current and apply to the MQW laser model for optimization.
The most important design parameter of the MQW laser is the number of wells. The
optimum number depends on the required gain at threshold. If the total active width
is small (less than - 1000 A) and a separate confinement heterostricture (SCH) is used,
then numerical calculations show that the optical confinement factor I' is approximately
proportional to the total number of wells, We therefore use this as the starting point of
our model, and make the explicit assumption that J is directly proportional to the mimber
of wells for a limited range of conditions, which we shall later define. Based on these

assumptions, the function G(N,. N,) is deduced from Equ. 2.14 as [11, 12

(.:(] . N

(l{."\': Jr) = mlﬁ'mw

where € is the nonlinear galu compression factor. Ny is the transparent carrier densily, and
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Gy 1s the gain parameter dependent on the well structure. The carrier recombination rate
R{N) iz expressed by the truncated power scries fit to inverse differential carrier lifetime

(1/7, = OR/ON) measurements by [3, 19]

R(N) = AN + BN?* + CN¥, (2.16)

where A, B, and C are the mono-moleenlar, bi-moleenlar and Auger recombination coeffi-
cients which we discussed in preceding sections.

In conclusion, we have discussed the basic physics and related device parameters that leads
to a successful model in studying the multiple quantum well structures. It is shown that
transport mechanisms in the structure play an imporsant role in the carrier-photon coupling
within the cavity and their dynamics. The basic rate equation model for the QW laser and
the need for the well-barrier hole burning model have been discussed in detail. A detailed
account of the parameters involved in the laser rate equation model with due emphasis on
their physical origin, and their role in determining the dynamic features of the laser, which
is the major topic of discussion of this thesis will be presented in the coming chapters. We
have also presented the justification in choosing the DFB configured MQW laser because of

ES

its advantages over F-P lasers.

2.7 Scope of this Thesis

As we have discussed in this chapter, laser diodes represent a key element in the feld of
optoelectronics. For all applications, information is either transmitted, stored or rcad out.
The performance of these systems depends to a great deal on the performance of the laser
diode with regard to its modulation and noisc characteristics. Since the mocdulation and
noise characteristies of laser diodes are of vital importance to optoclectronic systems, the
work in the thesis mostly concentrate on the modulation characteristics of the modern day
laser system made up of multiple guantum well structures. A second interest in these less
studied systemns arises due to their potential application in one of the modern findings in
commnunication, that is chaotic encryption.

In a chaotic inodulation scherne, the chaotic oscillator in the drive end is directly modulated
iy the information signal. We have investigated the possibilities of using the directly modu-
lated MQW lasers for such communication scheme. We will inake use of different modulation
schemes such as single-tone (STM), two-toue (TTM), and multi-lone modulation (MTM),
by injecting one, two and N sinusoidal carviers, respectively [41. 44

Conununication with light waves with chaotic flnctuatious of intensity has been cousidered
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in recent years by several researchers [45, 48, 46, 47]. The natural masking of infornration by
chaotic fluctuations has served as a practical motivation for the research. Great interest also
exists in understanding the basic mechanisms by which information can be encoded and de-
coded through the use of synchronized chaotic systems. We will discuss the synchronization
of coupled MQW laser in chapter 3 along with the discussion of its nonlinear dynamics.
Bistable lasers have always been looked as means of optical computing clements and and
memory systems [15]. ' We explore the nature of multistability in directly modulated multiple
quantum well lasers in chapter 4.

Also interesting is the role of feedback in the dynamics of multiple quantum well lasers,
It is shown in chapter 5 that feedback can act as means of controlling instabilities as well
as generate chaos in the system. The possibility of integrating an optoelectronic feedback

circuit to the laser control circuit makes these possibilitics more attractive.
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Chapter 3

Effect of Modulation on MQW

Laser Dynamics

“Every great advance in science has issued from a new audacity of imagination.”

- John Dewey

ABSTRACT

Direct modulation of semiconductor lasers moke them highly useful in optical communication. From
a dynamical perspective, the modulation adds ancther degree of freedom which make the laser vulner-
able {o coherence collapse and chaotic oscillations. Multiple guantum well lasers have high bandwidth
and allows high frequency small signal modulation with signals in the order of GHz. In this chapler
we presend the resulls of our rigorous numerical analysis of the modulation response of the directly

modulated multiple quantum well laser.

3.1 Introduction

It is now well established that the modulation response of semiconductor lasers for opti-
cal communications is determined by an intrinsic dynainic resonance in the photon-carrier
interaction. The competition between various dominating frequencies of oscillation within
the laser cavity can lead to various situations such as periodic oscillation, quasiperiodicity,

multistability and hysteresis, and chaos. The semiconductor laser dynamies, in general, is

47
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well studied and depending on whether gives self pulsating, bistable or non self pulsating

output, the laser dynamics can follow various routes to chaos [1, 2, 3].

3.2 Direct Modulation of MQW Lasers

It is well understood today that the direct modulation of the semiconductor laser adds the
necessary degree of frecdom that makes the laser chaotic [1, 2]. This is duc to the finding that
chaotic behaviour arises in a single mode laser when its losses arc periodically modulated with
a frequency comparable to the relaxation oscillation frequency. Kawaguchi [4] showed that a
self-pulsating laser with a sinusoidal current modulation shows period-doubling bifurcation
and chaos. Lee et al. showed that the directly modulated laser diode, which does not have
sclf-pulsation, with the modulation frequency of the injection current comparable to the
relaxation frequency, exhibits a period-doubling route to chaos as the modulation current
is increased |5]. This ts observed in the absence of any other disturbance such as external
feedback and relies simply on the photon-electron resonances and their interaction with the
modulation frequency.

Our attempt in this chapter is to understand the response of a directly modulated multiple
quantum well laser diode to various modulation schemes. We choose a A/4 shifted DFI3
InGaAsP - InGaAs MQW laser diode for our study based on the reasons cited in chapter
two. The laser has 16 quantum wells {QW’s) with lengths of 350pm. The thicknesses of
the well and barrier regions were 70 A and 100 A | respectively, and the active regions had
widths of 1.3 um. The laser has a threshold current of 19 mA and emission wavelength
1.53 pm. The emission wavelength of the laser has a detuning of approximately 30 nm
from the material gain peak. The laser has a 3 — dB modulation bandwidth of 11.3 GHz
at 100 mA and D [6} and K [7] factors of 3.96 GHz/mW and 0.42 ns, respectively. The
K factor refers fo the Petermann factor, which sums up the cxistence of excessive noise
in radiation modes, leading to enhancements in intrinsic laser line widths and spontaneous
emission rates [8]. P is a factor dependent on the waveguide dimensions when we write the

resonance frequency, fr, as a function of laser output power per facet, P, as:

i = DPLY? (3.1)

The value of D determines the differential gain coefficient Gy, and the laser output powcers.
Spatially averaged carrier densities in the barrier region (Np) and the well region (V)
imfuence the photon number density (F) in the active region according to the following set

wodificd equations from the set of equations obtalned in section 2.6 (9, 105
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Table 3.1: Paramecters Used in Rate Equation Analysis and Their Description

dt

Parameter Value Description
v 5.1 % 1077 m? Active region volume
r (.22 Mode confinement factor
T, (.66 Fraciional volume of Quantum Wells
Tp 1.3 ps Photon lifetime
Te 20 ps Carrier decay time (Barrier to Well)
Te 191 ps Carrier decay time (Well to Barrier)
3 1076 Spontaneous emission factor
Go 141107 ™! Gain parameter
Ng 2.41 » 10%* gn~3 Transparent carrier density
€ 3.24 % 1077 m3 Gain compression coefficient
A 10% 571 Mono-molecular Recombination Coefficient
B 10718 ;351 Bi-molecular Recombination Coeflicient
C 3x 107 mb st Auger Recombination Cocflicient
Vg 7.5 x 107 ms™! Group velocity
Iip 19 A Threshold Current
dNp _ Pgl  Ng . Iy

dt eV Te Te

Ci; - r\jf B N[Tin - Ti} ~ GV, P)P.

dp

= [Co,GN.P) - T |P+ TGBN?,

O
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where ! is the injected current, e is the electron charge, I is the fraction of the MQW

region filled by the guantwn wells and T is the mode confinement factor as caleulated using

the effective index method for the quantum well structure, v, is the group velocity and 7,

is the photon lifetime in the well region.

We have used following expression for the noulinear gain of the laser G(N, P} [11] s maodelled

as the same given in equation 2.15. The carrier recombination rate R(N) Is expressed

by the truncated power series fit to inverse differential carvier lifetime (1/7, — GR/ON)

measurciments [12] given hy equation 2.16 discussed in chapter 2.
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3.3 Sinusoidal Modulation and Frequency Response

In principle, direct modulation at a gigabit rate is expected to be feasible. However, the
practical rate of pulse modulation has been limited to below several hundred megahertz,
owing to the serious distortion of the output waveform caused by the relaxation oscillation
of the light intensity. The typical repetition frequency w, of the intensity spikes is a few
gigahertz, with the spike height decreasing exponentially with the time constant of a few
nanoseconds. The optical gain varies with the carrier density causing the number of lasing
modes, and hence the width of the spectral envelope to inerease. In order to attain practical
rates of direct modulation in the gigahertz range, it thercfore appears cssential to suppress
relaxation oscillations in the modulated output of semiconductor lasers.

Since the main application of semiconductor lasers is as a source for optical communication
systems, the problem of the high-speed modulation of their output by the high data rate
information is one of great technolegical importance [13]. A unique feature of semiconductor
lasers is that, unlike other lasers that are modulated externally, the semiconductor laser can
be modulated directly by modulating the excitation current. This is especially important
in the view of the possibility of the monolithic integration of the laser and the modulasion

electronic circuit.

In Eqn. 3.2, the laser is modulated directly using a source of injection current

I=1Ty+> Lsin(2rfit), (3.5)
k
where Ij, is the bias current and [ is the modulation current amplitude for frequencies
fr [2]. In the prescnt study, we have biased the laser above the threshold current value of
19 mA. It is ensured that the laser never goes below the threshold even when the modulation
amplitude [ is increased.
The QW’s have one conduction subband so that the relationship between the carrier density
and the junction voltage 1 can be approximated as [14]
. eV — oy

N = kT —In[l + exp{ —
k 7 Infl + exp( T

). (3.6
where m,, is the clectron effective mass, L. is the QW width, and £, is the photon energy.
We have then numerically solved the dynamical equations { Fqus. 3.2-3.4) using the fourth
order Runge- Kutta scheme. The parameters used for the study is given in Tabie 3.1 which
are adapted from literature [10, 12, 15} citing experimental values. The photon density and

other variables atter vanishing the transients are recorded. We liave used the normalised
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values of variables to obtain the phase space diagrams. Power spectral density of the laser
output is plotted on a logarithmic scale using the Fast Fourier Transform (FFT) algorithmn

for a better picture of the output frequency spectrumi.

It is observed that the phase space trajectory of the system starting from a typical initial
condition converges to the attractor {it can be periodic or chaotic) within a finite time. For
small signal modulation the laser output depends on the ratio of modulation frequency to
the laser excitation frequency [3]. Our estimations show thas large detuning corresponds
to trajectories in the phase space lying on a two-dimensional torus. It is ohserved that a
rational ratio of frequencies lead to closed trajectories lying on the torus, irrational ratio
to a never repeating, and a multitone modulation with a set of incommensurate frequencies
lead to chaotic trajectory.

We have seen before that the relaxation osciltation frequency wg and the damping factor
I'r depend upon the laser structure and the choice of the operation point. Using the steady-
state photon density given by Sy = 7, (J - Jy)/dg, we obtain an approximate expression for

wp!

I'GnSo  TGn(Jy — Jin)
o ey )

w‘?z%

(3.7)

The above expression shows that wg is dominated by the effective differential gain I'Gx
and the volume densily of the injection current. The damping factor T'y, on the other
hand, is mainly determined by the carrier lifetime 7,. When the output power increases, the
attenuation becomes faster owing to the enhanced stimulated emission.

We next consider a case where the injection current density is modulated by a small si-
nusoidal signal of frequency w. Kawaguchi showed that a self-pulsating laser diode with a
sinusoidal current modulation shows period-doubling bifurcation and chaos [4]. Soen after,
Lee ef al. showed that the directly modulated laser diode, which does not have selt-pulsation.
with the modulation frequency of the injection current comparable to the relaxation oscilla-
tion frequency, exhibits a period-doubling route to chaos as the modulation index of current

is increased [5].

3.4 Single-Tone Modulation

Laser diodes are known to be susceptible to nonlinear behaviour caused by unintentional
aptical feedback. Therefore, so as to study the nonlivear dynamics resulting from divect
modulation of the laser alone, optical feedback into the laser can be minimised by the nse

of an aptical isolator.
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Figure 3.1: MQW laser output for a bias current 22 mA just above threshold current of 19 mA without
any input modulation. The time series is plotted by normalising the photon density. Both diagrams show
the relaxation oscillation within the laser cavity.
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the resonant oscillation at L01GH z and s harmonics.
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Figure 3.3: Laser dynamics with a single tone modulation of froquency 2.01GHz. Bias current is 23mA
and I, = 5mA. The laser output shows pulsating output and the power spectrum shows su-bharmonic
bifurcation.

When the laser diode was biased just above the threshold, it exhibited a weak resonance
peak with a broad pedestal in the power spectrum. Such a laser without any sinusoidal
modulation iz damped as seen in Fig. 3.1. We have modulated the laser with a single
frequency of 4.0 GHz by setting k = 1 in Eqn. 3.15, and as shown in Fig. 3.2, resonance
sets in and the laser cutput is regular and pertodic. The power spectrum shows sub-harmonic
bifurcations exhibited by the lager in this state. The laser output, when modulated with
a frequency below the relaxation frequency (4 GHz in the present case), shows scveral
sub harmonics with single tone modulation as shown in Fig. 3.3 for a modulation with
2.01 GH2. The caleulations in the fisure and similar figures used throughout the thesis
illustrate phase diagrams and Poincaré sections calculated for the same time scale but the
phase diagrams are plotted on a normalised seale for the sake of convenience. TPoincaré
sections are plotted showing the relevant region in the picture where the phase trajectories
cross the plane of intersection. Therefore, Poincard sections in different illnstrations in this
chapter and subsequent chapters may show different scales. The output in this case is a
pulsating one and we show that the MQW laser can be used to generate ultrashort pulses
by suitably selecting the modnlating frequency [16]. Our results so far idicate that we can
modulate the MQW laser with a suitable modulation frequency to achieve sinusoidal aned

pulsating outputs, in which the latter is highly usctul in digital connmumcation.



54

Time Series

{a} T'me (ns)
Time Serias

o
T =

o
s

Normalised photon density
e o o
o <2}

(=]

0.8
0.6

0.4 i
AN

Normalised photon density

(c) Tfme (ns)

Effect of Modulation on MQW Laser Dynamics

]
0.8
0.6
0.4f
0.2

0

0 12
ﬂ Time (ns)
Time Ser!es

i
0.8
0.6
0.4
0.2
o]

Time Series

Normalised photon density

J \A
1(} 12 14 16 18
Time (n3)

Normalised photan density

Figure 3.4: Waveforms of multiperiodic pulsing in MQW laser: {a) regular periodic pulsing obtained by
scale modulation (rm = 0.02), (b) period 2 state {¢) period 4 state, (d) chactic state.

Time Series

2
2 1
<
Z 08
e
2086
(=%
304 s
2
ol WAL
S 0 1 J (P
z 2
Time (ns}
= Phase Diagram
=y
o
f)
© 08
o
8
S 06
=
Q‘.
2 0.4
=
= (.2
£
2 0

0.96 0.98
Normalised carner density

Power Spectrum

58
56

24 J\/}ka_,ﬂ/ N }\

50

Power (Log scale}
[

i 2 3 4
Frequency (GHz)
x 10%° Poincare Section

3.4318 3.4319 3.432 3.432%
N x10%

l“igUI'C 3.5: Dynamie featwres of the faser in o pertod A state shown in Bgure 340 The thne series shows
four distinct pulses and the power spectrum show thelr frequencies at 1 Gz, 1.0 GHz, 2 GHz and 4 GH=.
The spike at 3 (ZHz s the havmonic of the 1.5/ H = osciliation. The Polnearé section is sealed to the portion
of the phase space where the plane bisects the How and it clearly shows the four distinet periodicitios.



Chapter 3 95

We have then kept the modulation frequency at fi = 4.0 GHz and varied the modulation
depth (m = I../I;) and found that the laser output follows a period-doubling route to chaos.
This is shown in Fig. 3.4(a)-(d), where we have plotted the time serics corresponding to
period-1, period-2, period-4, and chaotic states, respectively. The periodic time series is
obtained for a small scale modulation of rn = 0.02. Period-2 is obtained for yn = 0.5625,
period-4 is obtained for m = 0.6391, and the chaotic state is obtained for m = 0.7. Fig.
3.5 shows the laser output in a period-4 state where there arc four stable states repeating
regularly in time. There are peaks at every integer multiples of the fundamental frequency.
In addition to the main peak at fy in the spectra, the period-4 output in the figure shows
four peaks at the values fy/4, fi./2, 3fr/4. Period-doubling route to chaos has been observed
by many researchers [2] for directly modulated bulk and QW self pulsating lasers. When
modulated with a frequency above the natural relaxation frequency, the cutput will exhibit a
shift in relaxation frequency towards the resonant frequency. For small signal modulation the
laser output depends on the ratio of modulation frequency to the laser excitation frequency
as shown in the following section.

Bifurcation diagram

T T T
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Figure 3.6: Lascr bilurcation diagram for varions modulation depths showing the period-doubling route
ter chaos. The biasing current is 22 maA.
[ 2N

A bifurcation diagram of the laser is shown in Fig. 3.6. where the peak photon density
(normalised) s plotted against various modulation depths (m = /1), It can be seen from
the figure that the laser follows o period-doubling route to chaos very quickly when the

modulation current is inercased by keeping the modulation frequeney at f, — 2.799 GHz.
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-

This is the first reported work on the occurrence of chaos in the MQW laser system for such
small values of modulation current [16, 17]. To verify this, we have simulated the system for
a modulation depth of 0.416 and a modulation frequency of 2.799 GHz and have found that
the system goes into a chaotic state as illustrated by figure 3.7. To verify the chaotic state of
the system quantitatively, we have calculated the maximal Lyapunov exponent (MLE) of the
system using the software Dataplore. Paramcters of the MLE are the embedding dimension
m, the number M of neighbours taken into account in phase space, and the degrec pd of the
fitting polynomial. While caleulating the MLE, we have made use of the following values
for these parameters: m = 3, M = 35 and pd = 2. The embedding dimension has been
fixed after evaluating the number of false neighbours which we obtained as less than 2. The
program first digitises the time serics and then gives MLE in terms of the amonnt of binary
information created per second when sampling the data. In the present case the MLE found
to be equal to 2.6084 x 10! bits/s, which is quite large due to the large number of photons
created within the laser cavity per second. In the periodic and non-chaotic oscillations,
the MLE has been calculated and found to be nearly zero. To understand more about the
nature of chaos in MQW system, we have studied the response of the system under various

modulation frequencies and modulation depths as will be discussed in following sections.
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Figure 3.7: Laser chaos with a single tone modulation al frequency 2.79% (GHz for modulation depth
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3.5 Two-Tone Modulation

In the case of current modulation, two cases can be distinguished:

1. The modulation frequency is of the same order or higher than the laser relaxation
oscillagion frequency. A period-doubling route to chaos is predicted in bulk lasers in

such a situation [18].

2. The modulation frequency is either of the order of the round-trip frequency of the laser
photons within the resonator or amounts to a rational fraction p/q of the round-trip
frequency. In this case frequency locking following the hierarchy of a Farey tree [19, 20]

and guasiperiodicity is expected and has been observed [31.
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Figure 3.8: The period 1 loop with double peak resulting from a two-tone modnlation of 2.0 GHz and
1.0 GHz. The two frequencies are harmonics and therefore the Poincaré section shows only a single flow.

Large detuning of one of the modulating frequencies with another corresponds to trajectories
in the phase space lying on a bi-periodic torus. On such a torus there are two possibilities for
the combination of modulation frequencies. They can be held at a rational ratio f,,/ fres =
p/q which gives a closed curve on the torns, or the ratio can be an irrational value resulting
in an open trajectory.

We have chosen the combination of frequencies 1o be 2.0 GHz and 4.0 GH z. For a biasing

current of 22mA and modulation muplitudes of 2mid cach, it is observed from Fig. 3.8 that
s
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the phase space trajectories form a cloged trajectory. This is in accordance with the same
results obtained bulk semiconductor laser cavity with a set of two modulation frequencies
with a rational ratio p/g between them [3]. Next we have chosen two higher values 10.0 GHz
and 11.01 G H z retaining the blasing conditions and the results, as shown in Fig. 3.9, show
the chirped output due to the frequency detuning. The corresponding phase diagram is
shown as enlarged in Fig. 3.10 clearly shows that trajectories close in on the bi-periodic
torus. It is seen from this result that the MQW laser show a variation from the bulk
semiconductor laser in exhibiting the frequency locking effects on the dynamics.

Next, we have then chosen two values 2.4721 GH» and 4.0 GHz which have a ratio equal
to the golden mean o, = 0.61803399.... The result is obtained in torus as seen in Fig. 3.11.
‘We have then increased the bias current to 25mA and modulation current values to 3mA
each and the result as shown in Fig. 3.12 shows that the laser has a chaotic dynamies.
The maximal lyapunov exponent (MLE) for the system is 1.8931 x 101! bits/s. This is a
significant result which shows that the laser takes a torus-breaking route to chaos. When
the ratio of frequencies is rational, the frequency locking happens and the lascr output is

periodic. The light output is quasiperiodic when p/q lies between these locked states.
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Figure 3.11: The torus resulting from o two-tene modulation with two [requencies having a golden mean
ratio (g, — 0.61803309..). Blasing current is 22 mA and modulation current s 3 s
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golden mean ratio. The biasing current is increased to 25 m.A from the previous result shown in figure 3.11.
MELE =1.8931 x 101! bita/s.

3.6 Effect of Multitone Modulation

We then look to see the possibility of introducing more than two frequencies in the mod-
ulation spectrum. This we term as multitone modulation and as a first step, we have
modulated the laser with a combination four frequencics, viz. 20 GHz 4.0 GHz, 6.0 GHz,
and 8.0 GHz. Fig. 3.13 shows the resulting dynamics where the laser output contains all
the harmonics with a two-periodic loop in the phase diagram. When the frequencies are
24721 GHz 4.01 GHz, 879 GHz, and 11.17 GH z to have a non-integer ratio among them-
selves, it is observed that the laser system has a chaotic trajectory as given by (Fig. 3.14).
The MLE for this system is equal to 4.6673 x 10! bits/s. We have verified this result for
several combination of such [requencics under stable biasing conditions for the laser [21].

The iriportance of this result arises when we consider the fact that researchers have demon-
strated the viability of using direetly modulated semiconductor lasers under multitone mod-
ulation for synchronized chaotic communication [22, 23]. We. thercfore. propose that a
AMQW laser with mnltitone wodulation is a suitable choice for chaotic inasking and encryp-
tion. The challenge is. however, to achieve chaotic synchronization among sueh laser systems

which we have achieved and will he discussed in section 3.8,
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3.7 Routes to Chaos

In the first chapter we have discussed the various routes for a transition to chaos. Semni-
conductor lasers can be modulated externally by etther an optical injection or by a direct
current modulation. Depending upon the typc of moedulation, various groups working on
the semiconductor laser physics field have shown that there are at least three possible routes
to chaos in a semiconductor lasers [3, 24]. It has been shown that a optically injected laser
follows the torus breaking, bi-periadic torus breaking and intermistency routes to chaos [3].
In the case of a dircctly modulated system, an irrational detuning between modulating fre-
quencies can make the laser quasiperiodic and further, this can lead to chaos as shown in
the previous section.

In our studies there are features of the period doubling which were common to semicon-
ductor lasers. QOur analysis show that the multiple quantum well laser also exhibits these
two situations depending on the working conditions of the laser diode, The upper and lower
modulation frequency limits of the period-doubling regions follow one and two times the
relaxation frequency of the laser, respectively. At frequencies close to the relaxation fre-
quency of the laser, it was found that there was an optimum value of power under which
the subharmonic of the modulation frequency had the greatest magnitude. In addition, our
analysis of she frequency modulation response of the laser has shown that the dynamies
follow a torus-breaking route to chaos when subjected to multitone modulation.
Comparing the behaviour of the MQW DFDB laser with that of the bulk DFDB laser, it
would seem that although period tripling was found in both lasers, the MQW laser is less
susceptible to nonlincar behavior. This is because in contrast to the bulk laser neither period
quadrupling nor chaos were obhserved in the MQW laser. However, the range of modulation
frequencies over which period doubling oceurs in the MQW laser is much greater thah that
reported in the bulk laser. The range of modulation frequencies over which period doubling
occurred in the bulk laser was between 2 and 4 Hz in comparison to a range of between 4
and 18 GHz in the MOQW laser. The greater range of frequencies over which period doubling
oceurred in the MQW laser is due to the greater D factors [25] found in this type of laser
resulting in greater relaxation frequencies. The DFB laser has higher relaxation damping
and such lasers are less susceptible to bifurcations [26]. This could be one of the main
reasons for the absence of experimental observation of chaos in MQW DFDB lasers. though
simulations show the possibility of chaos in these systems.

The rate equations used in this study include well-barrier hole burning effect [27,. The
gain compression factor represents the additional well-barrier transport which is another

mechanism for gain compression. This can alfect the oceurrence of chaos by damping the
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relaxation oscillation, and is one of the diflerentiators between chaos exhibited by MQW

and bulk lasers.

3.8 Synchronization of Coupled MQW Lasers

Two directly modulated semiconductor lasers can be coupled optoclectronically. In principle
this means addition of a fraction of the output of the drive laser to the injection current
of the remote laser. We consider the synchronization of two unidirectionally coupled semi-
conductor lasers separated by a considerable distance {28]. A current signal proportional
to the difference between the the photon density of the drive laser corresponding to a past
state and the present photon density of the response laser can be obtained from the dif-
ferential amplifier by adjusting its gain. This signal can be represented by the expression
ClP(t — 7) — P(t)], where 7 is the delay and C is the coupling strength. Our aim is to
synchronize the response system to the earlier state of the drive system and the feedback
is designed in such a manner that the feedback signal vanishes when the synchronization is
achieved. This is a common method of coupling that has been used in many synchronization
schemes. Such a method has been used for synchronization of chaos in lasers with delayed

optoelectronic feedback and in directly modulated semiconductor lasers [29).

The coupled system can be modelled by adding a fraction of the time delayed out of one laser
to the injection current of the second. We have made use of the same MQW rate equation
model described in equations 1.2 - 1.4 to model two similar laser dicdes. The lasers are
then simulated to run under similar and dissimilar operating conditions such as modulation
frequencies and other parameters such as modulation current strength. We model the drive

lager diode (LD1) as follows:

dN g1 I'Ji  Npo TN

= — b 3.8
dt eV’ Te T Te (3.8)
dN N o1 1 }
Ti}l = ]-—-il +‘N][;-+T—€]7'U9G(4N]‘P])P1._ (39)
4 qTe n
P 1
dd_tl_ = [FU&,G(“V]_\P}) — ?]Pl I-T;,?BN? (310)
[ Th

where the suffix 1 to the variables and parameters indicate LD1 and the injection current,

I for direct modulation with a set of frequencies firean be represented as

I =1+ z Desin(2w fi1). (3.11)

I
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Functions and variables are taken as the same given under section 3.2, The response laser
diode (1.D2), which, apart from the current and modulation with a set of frequencies f, is

driven by a fraction of the photocurrent fed from the output of LD1 is modelled as:

dNBQ F,1I2 JVBQ + FqNQ

= - 3.12
dt eV Te Te ( )

dN> Npo 1 1
— = No|— + —| — v, G(Na, Po) s, 3.13
= e 2t ] G N2 PR) Py (3.13)

d P 1
—2 = [w,G(Na, Py) — —|Py + T3BN3, (3.11)

dt Tp

where injection current I» with the coupling term will be

ILy=1In+ Y Isin(2nfit) + C[Pi(t - 7) - Pa(t)], (3.15)

{

where, as explained before, the delay time factor 7 accounts for the channel delay between
the two laser systems.

Three important factors to be considered while studying the coupled laser system are the
initial phase difference of the modulating signals, the channel delay and the detuning hetween
the modulating frequencies of the systems. Our aim in this section is to show that multiple
quantum well lasers arc suitable choice for chaotic synchronization and subsequent secure
communication using chaotic encryption and decryption with the help of synchronization.
In this regard, we consider the laser systems to be identical, that is, they have the same
design parameters and physical features as given in Table 1.3. We have biased both lasers
with the same current amplitude of I, = fz = 5 mA. We have then simulated the coupled
svstem with zero initial phase difference and zero channel delay.

The results are shown in figure 3.15, where the two lasers achieve svunchronization under a
three tone modulation at frequencies 2.01 GHz, 4.02 GHz and 6.04 GHz. The biasing current
is Iy, = 22 mA and modulation amplitude is 2 m A for each frequency. ‘The coupling strength
has been set to L.de — 004 which is chosen to match with the mean photon number density
of the drive lagser. The modulation frequencics were chosen s0 as to drive the laser diode into
a high periodic state as can be seen from the time series in figure 3.15. The synchronization
error is calenlated by taking the absolute dilference between the two laser outputs and is
of the order of 1073, Tt can be seen that the error Huctuations decrease exponentially with
time and finally converge as scen in the figure. To verify the results quantitatively. we have

calenlated the similarity fanction S{7), discussed in section 1.3 which is modified for the



Chapter 3 65

coupled MQW laser system as follows:

‘92{1_) o ([Hl(f B T) - Pr(t)i2> . (31())

VP (PR

where the variables P; and P, represent the output power of drive laser (LD1) and the

responsc laser (LD2). In the present case, we have calculated the similarity function S(0) by
setting 7 = 0. The value of S(0) is very close to zero in the case of highly level synchronised
systems. In the present case of the coupled system, 5(0) = 0.0031 which is very close to

zero and, therefore, indicate a very strong synchronization between the coupled lasers.
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Figure 3.15: State of coupled lasers: (a) Time series of the drive laser diede LD1 modulated with three

tones at 2.01GHz, 4.02GHz and 6.04GHz. (b) Time series of the driven system LD2 with the same
modulation. (¢) The synchronization error as a function of time. (d) The phasc diagram showing perfect
synchronization indicated by the straight line. The coupling strengith ¢ = 1.4 x 1074 and S(0) = 0.0031.

Next, we have studied the synchronization between the coupled systems when both of them
are in a chaotie state. For this, we have studied the system with various coupling strengths
under a two-tone modulation scheme in which both the lasers were modulated with the
same sct of frequencies 2.4721 GHz and 4.01 GHz with zero phase shift and the same
biasing and modulation currents as hefore. This modulation scheme was adopted because
of its suitability in driving the lasers to a chaotic state as observed in section 3.5. The
largest Iyapunov exponent (MLE) of the drive laser has been calculated and is equal to

2.0437 % 10'" bits/s. When the coupling strength is set to €' = 0.0066, we have found that
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modulated at 2.4752 GHz and 4.01 GHz with a modulation current of 6 snA. The synchronization is robust
around ¢ = 0.01

the two lasers are out of synchrony as illustrated in figure 3.16. The similarity function is
very higher compared to the previous case and we have a large mismatch from linearity in
the phase diagram shown in the figure. The synchronization error, §{0) = 1.4600 in this case
and is very high compared to the previous value. To verify this, the coupling hetween the
two lasers is sct to ' = 0.0078 and a state of synchronization is achieved as shown in figure
3.17. The level of synchronization in this situation is very high and quantitatively, the low
value of S{0) = 0.0338 shows that the two lasers have very good synchronization between
them. This conclusion is supported by the two time series and errof plots in figure 3.17.
The error is very small and is closer to zero. Thus. we have shown that two chaotic MQW
lagers can be synchronised by choosing the optimum value of coupling between them and
thiz can be easily tuned electronically in a practical system by employing a control circuit.
To analyse the nature of the synchronization with respect to various coupling strengths, we
Lave caleulated the similarity function for different coupling strengths and the results are
illustrated in figure 3.18. The figure shows that the system achieve good synchronization for
coupling a coupling strength €' = 1 x 107% and then gocs out of synchronization. Further,
when we increase the coupling strength, the systems achiove robust synchronization near
¢’ = .01. The synchronization is most stable when €' = 0.0078. Altogether. the diagram

shows the regions of robust svnchronization achicved between the two coupled lasers under
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the particular modulation and biasing schemcs.

In conclusion, we have achieved synchronization between coupled MQW laser diodes and
verified the results graphically and quantitatively by calculating the similarity function. Qur
results show that there is an optimum value for coupling strength which can achieve perfect
synchrony under a fixed modulation scheme. This ean be suitably chosen to satisfy the
device engineering parameters and conditions. Our studies so far in this section has shown
that the MQW laser diode makes a very good choice for chaotic synchronization when two or

more lasers arc coupled with suitably chose coupling strengths and modulation parameters.

3.9 Conclusions

The nonlinear dynamical phenomena exhibited by a MQW laser dicde when studied using
the existing rate equation models. Chaos in the system has been studied and characterised
with the help of times series analysis, phase space diagrams, power spectra, Poincaré section,
and quantitatively by calculating the maximal Lyapunov exponent. We have shown that
the MQW laser follows a period-doubling route to chaos which has been known to exist in
directly modulated semiconductor lasers, This result shows that the laser can be chaotic
for small values of modulation depths. In addition, we show that the laser phase space
trajectory lies on a two-torus when subjected to multi-tone modulation. The periodicity
with which the trajectories close on the surface of the torus is determined by the number
of tones in the modulation spectrum and their ratios. Thus we show that the MQW laser
to follow a torus-breaking route to chaos. Further, we have shown that a suitable choice
of the frequencies and amplitudes in a multitone modulation scenario could make the laser
generate periodic, quasiperiodic, and chaotic outputs. This result has been exploited further
in achieving synchronization between coupled MQW laser systems modulated under various
frequency conditions. Thus we have shown that the MQW laser system can achieve optimum
synchronization when modulated under desired operating conditions such as periodic,; quasi-
periodic and chaotic oscillations. We have thus established that the MOQW laser diode that
we have modelled in this work is a suitable candidates for being used as a scurce of light for

chaotic synchronization which will ensure data masking and encryption.
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Chapter 4

Multistability and Hysteresis in
MQW Laser Dynamics

“Truth is what stands the test .of experience.”- Albert Einstein

ABSTRACT

Optical bistability is a promising tool for all optical communication and comnputing systems. There
are various examples where lasers are toilor made to produce bistable outpuis. In this chapter we
present some of the results showing the bistable behaviouwr of direclly modulated multiple quantum
well laser systems. The systerns under constderation are nol intrinsically bistable, but we show that

they can echibit bistabilily and hysterests under suitable modulation condilions.

4.1 Introduction

Optical bistability [1] in semiconductor lasers has received much attention because of its
potential application in optical switching and signal processing. It is well established that the
presence of an unpumped absorber in the laser cavity can lead to bistability [2]. Introducing
quantuin wells in the active regions of sain and absorber sections could significantly improve
the switching specd and controllability of hysteresis chavacteristies [3].

Many processes in nature do not possess only one long term asymptoiic state or attractor,

but are rather characterized by a large nmnber of coexisting attractors for a fixed set of
o = [=]
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parameters. This implies that which attractor is eventually reached by a trajectory of the
system depends on the initial condition [4, 5]. Several nonlincar systeins such as chemical
oscillators [6, 7, 8], nonlinear electronic circuits [9, 10], passive optical resonators [11, 12,
13, 14] and lasers {6, 15, 16, 17, 18| show this phenomena, known as multiple bistability
or maultistability. MMultistable dynarnical systems have important applications as pattern
recognition and memory storage devices [L1, 10, 14]. A well studied case is the histability
agsociated with a subcritical Hopf bifurcation.

Bistability is a case where two distinct states corresponding to the same sct of parame-
ters of a system are stable. Multiple bistability is defined as two or stable output states
existing for one input power level. Bistability in driven nonlinear oscillators are usunally
observed in association with the hysteresis offect. A well known example is the hysteresis
observed in the driven double well Duffing oscillator. A similar effect has been reported in
directly modulated semiconductor lasers [19). In this chapter we numerically demonstrate
the multistability and hysteresis in the MQW laser dynamics controlled by both current and

frequency modulations, and how to control and make usc of the bistable conditions.

4.2 Bistability in Directly Modulated Lasers

An important dynamical behaviour exhibited by directly modulated laser systems is mul-
tistability [19], in which two or more stable states coexist, and bistability is a usual phe-
nomenon [2, 20]. Multistability is usually accompanied by hystevesis effect in directly mod-
ulated laser systems. Multistability is an undesirable effect in a laser that is supposed to
operate in a regular dynamical state.

However, it is shown that majority of the attractors are periodic, the chaotic component
of the dynamics is in the chaatic saddles embedded in the hasin boundary [21]. As a result,
trajectorics, starting with arbitrary initial conditions in the state space, experience periods
of long chaotic transients before approaching one of the periodic attractors [22]. Therefore,
because of these chaotic saddles. the trajectory is highly sensitive to the initial state. A
slight change in the initial condition results in a trajectory that is attracted to a totally

different, periodic orbit.

4.3 Multistability in Directly Modulated MQW Laser

In this section. we examine the natnre of maltistability in the directly modulated MQW Iaser

system ad we find that the laser shows multistability and hysteresis when modulated under
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different current values for certain values of the modulation frequencies. We have made use
of the same dynamical model {Equs. 3.2-3.4) as used in the previous chapter [23]. The
simulation is started with arbitrarily chosen initial conditions and a minimum value of the
parameter (here it is the modulation depth m = 1,,, /I,h). The maxima of the photon density
after vanishing the transients are rccorded and they are used for constructing the hifurcation
diagram. For obtaining the attractor points corresponding to another value of the concerned
parameter, the parameter is increased slightly and the maxima of photon densities belonging
to the stable state are recorded again. This process is repeated for the complete range of
values of the parameter. The spectrum of values for the parameters are plotted along the
z — awris as shown in Figs. 4.1-4.3. This method is called brute force approach [24] and
it has an advantage. The bifurcation diagram plotted using this method (Figs. 4.1-4.3)
contains only the stable attracting sets of the phase points. The laser bifurcation diagrams
are plotted for various modulation frequency regimes and modulation current strengths. A
current modulation index or modulation depth, is defined as m = Ly /Ly [25, 26, 2] for a

clear indication of different stable orbits over the variation of modutation strength.

x 10 Bifurcation diagram
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Figure 4.1: The laser bifurcation dingram for modulation frequency as a parameter under proper modu-
latjion conditions.

We have under consideration the MQW inodel used o Ue previous chapter and we have
simulated the laser for a single tone modulation with a hiasing curvent of 22mA and modun-
lation amplitude of 5m.d. Peak photon density for various modulation frequencies are stored

and plotted against the modulation frequency (in GH 2 to obtain the bifurcation diagram
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shown in Fig. 4.1. The figure shows the main rescnance at the relaxation frequency of the
laser, which is 4 GHz based on calculations. When we increase the modulation frequency,
the peak photon density follows a bifurcation route which is diiferent when we reduce the
modulation frequency from a higher value towards main resonance frequency. This is il-
lustrated in the as forward and reverse paths in Fig. 4.1. The has a bistable output for
modulation frequency range from 8 GHz to 11.5 GH z and thereafter it has a period-4 state.
The output is chaotic for the windows 12.5Ghz — 13.9GHz and 14.6Ghz - 15.3GHz. It then
follows a reverse period-doubling route.

Hysteresis is observed in the dynamics as scen in Fig. 4.1, where the output states are
different for the forward path (coloured blue) and the reverse path (coloured red) for the
modulation range above 8.0GHz. Below this value of modulation frequency, the laser has

is monostable and has no hysteresis as is the case for high frequency modulation beyond
19GH =,

4.4 Bistability and Hysteresis

Further, we have simulated the laser model for a chosen modulation frequency and studied
the variation in the output intensity by continuously varying the modulation depth m. Peak
photon densitics (FP,) are stored first by increasing the modulation depth from zero to a
value well above the threshold current of 19m A and then by decreasing the modulation depth
to zero from the maximum. The bifurcation diagrams are then plotted using these values
and are shown in Fig. 1.2. The upper part of the loop in the diagram shows the forward
path and the lower part shows the reverse path. The bifurcation diagram corresponding
to the modulation frequency 1.2GHz shows the bistable nature of the system along with
hysteresis, where the laser output traces back to the initial point through a different path
when the modulation current is lowered from a higher value.

Sudden jumps seen in the bifurcation diagram (Fig. 4.2) corresponding to the values 0.06
and (.12 of madulation depth are assoeciated with the pulse position histability and hysteresis
In Fig. 4.3, we

observe that the hysteresis nature grows out and become chaotic when the modulation

shown by the MQW laser and is the pitchfork bifurcation bistability 12]

frequency values are increased. In Fig. 4.3(a), the laser is simply bistable. and at the same

tine shows hiysteresis.
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Biurcation diagram
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Normalised peak photon density P

0.1 02 0.3 0.4 0.5
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Figure 4.2: The laser bifurcation diagram for various modulation indices showing period doubling and
reverse period doubling: Maxima of normalized photon density versus modulation depth.

4.5 Coexisting Attractors and Crisis

It is observed in Fig. 4.3 that from the bistable state at a modulation of 1.20 GH z, the laser
becomes chaotic for a valie f = 2.1327 GHz (Fig. 4.3(b}). In this case, for modulation
indices hetween 0.2 and (.4, it can be seen that the chaotic attractor disappears and this is
the crisis [29] situation in which the chaotic attractor collides with coexisting unstable fixed
point and disappears. This is the first time that the crisis phenonenon has been reported
in the MQW laser dynamics [27. 28]. Further, as the frequency reaches higher values the
attractor reappears for the same modulation indices as shown distinctively in Fig. 4.3{¢) and
Fig. 4.3(d). Thus we have shown that the modulation current amplitude hiag a significant
role in controlling the dynamics of the multiple quantum well laser.

We thus have shown that a vaviety of types of multistability exists in the MOQW laser svstem
- a stationary state coexisting with another stationary state. a stationary state with a limit
cycle, a stationary state with a chaotic attractor, a limit evele with another limit cycle, and

a limit cvele with a chaotic attractor [27].
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Figure 4.3: The laser bifurcation diagram against various modulation indices obtained for different mod-
ulation frequencies.

4.5.1 Bifurcation for Group Velocity Variation

Interestingly, we have obtained a bifurcation diagram for the optical output power when the
group velocity of photons is varied within a small range of values around the experimental
value of v, = 7.5 x 107m/s, taken from literature [30]. The bifurcation diagram is shown in
Fig. 4.4, where the laser power output is plotted against a spectrum of possible values for
the group velocity v,. Fig. 4.5 shows the dynamical features of the laser when the group
velocity value is fixed as 8.7 x 107rn/s. This value is taken from the bifurcation diagram
in Fig. 4.4 and it can be seen that the laser output {ollows a period-2 state when group
velocity 1s increased to such a large value.

We can explain this result as follows: the change in group velocity in this context is the same
as changing differential gain and this would affect the relaxation oscillation frequency {(f ).
Changing the bias current is equivalent to changing the carrier density and we can gsee from
Eqn. 2.16 that the differential gain is related to the carrvier density. This is due to the fact
that carvier-induced refractive index change in the quantum-well laser cavity leads to gain
antiguiding [31]. Therefore, a change in bias current {modulation depth) would change f,.
and therefore the group velocity changes. This is why there is a similarity between changing
the bins current {modulation depth) and group velocity. Thus, we have shown that the

carrier fransport in the MOW laser cavity has a significans vole in determining the output
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state as well as relaxation frequency values. This justifies the selection of the differential gain
parameter model adopted in the MQW laser model. It should be noted that a considerable
change in the group velocity is not desirable for the smooth working of the laser as it may

induce undesirable output conditions.

4.6 Control of Bistability and Hysteresis

We have numerically demonstrated the early reported hysteresis and bistability in directly
modulated multiple quantum well lasers. In standard applications, a semiconductor laser
is expected to work in a monostable condition, where the laser phase space trajectory ap-
proaches, asymptotically, a stable periodic orbit and remains there for the entire operating
period. Such working conditions demand that the laser should be prevented from going into
multistable states [2].

In this situation, we consider the possible methods for controlling bistability in modulated
laser diodes. Several methods for controlling bistability in lasers have been reported ear-
lier [32, 33]. However, most of these schemes are not aimed at eliminating the bistability
completely but to allow the systemn to switch from onc of the stable states to the other.
Pisarchik and Kuntsevich has proposed a control scheme based on periodic perturbation to
the selected state [34|. They have numerically shown that such a scheme would suppress
the bistability completely. It is important to mention that the perturbation is external in
nature. However, we consider the direct delay feedback for suppressing the bistability. This
method has been shown to be efficient in completely eliminating subharmonic generation
and chaos in directly modulated laser diodes. The main advantage of this scheme is that no
external signal is used as the perturbation. The numerical results regarding the suppression

of chaos using this method is given in the following chapter.

4.7 Applications of multistability

Multistable dynamical systems have important applications as pattern: recognition and mem-
ory storage devices [11, 10, 141 Optical multistability demonstrated in passive GaAlAs
wavegniides and tater in vbrid electro-optic devices [2] find use in digitizing incoming light
pulses. Apart from that flat input-output curve make multistable devices suitable for optical
lmiting, In the field of digital commmnuication, a multistable laser diode, when controlled
properly, can be used to represent multilevel eptical logic. Optical multistable devices are
compatible with madtiple-valued logic. The potential benefits of nmltiple-valued logic are

increased speed and reliability, higher information storage density, decreased size, reduced
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cost and power requirements. The main advantage of using a multistable MQW laser is that

only a few optical beams are required for signal transmission.

4.8 Conclusions

In conclusion, our analysis of the laser parameter space reveals multistability and hysteresis
in MQW laser dynamics. Instabilities in the laser output observed for different group ve-
locity values points to the role of transport in the laser dynamics. Also, chaotic oscillations
under multi-tone modulation would make the laser a prospective choice for multi-channel
secure communication if two such lasers can be synchronized. Suitable sclection of modu-
lation frequency can drive the laser in the desirable working condition suitable of ultrafast
pulse genecration and communication. The results give some direction to the study of syn-
chronized laser systems used for communication. The results in this direction could help
better maneuverability if one wishes to use multiple quantum well lasers in secure optical
communication. A more detailed analysis is needed to understand the role of noise and

other conditions that may lead to the absence of chaos in a laboratory observation.
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Chapter 5

Effect of Delay Feedback in
MQW Lasers

“Happy is he who gets to know the reasons for things.”- Virgil

ABSTRACT

1t is knoun that chaotic dynamics can be controlled by stabilising unstable pertodic orbits embedded
in the chaotic atltractors using small perturbalions. Optoelectronic delay feedback is an effective
tool in controlling instabilities in semiconductor laser systems. In this chapier, We show that the
optoelectronic delay can control instabilities as well as induce them in multiple quantum well lasers

when applied suitably.

5.1 Introduction

In usual electronic systems negative feedback is used to improve cither the linearity or the
frequency characteristics of electronic amplifiers [1, 2]. Similarly. earlier works in the field
of semiconductor lasers show that electronic feedback may also be applied to laser diodes
to improve their modulation characteristics [3, 4, 5. 6, 7, 8 . If the optical frequency of the
lager emission is detected, a negative electronic feedback may also be applied to stabilize
the emitted optical frequency. Research work has been directed with respect to botl: long
term stability as well as to reducing the short term Quetuations tor achieving narvow laser

spectra.



83 Effect of Delay Feedback in MQW Lasers

In most of the applications, a semiconductor laser is coupled to an environment where it
is a part of a rather complex network. The dynamical behaviour of a semiconductor laser,
ie. the emitted light {phase, intensity and polarization), depends very much on the type
of feedback caused by this coupling. We hold systematic studies of these dynamics based
on delay-differential rate-equations. The goal is o understand the nature and origin of the
various types of dynamies. Such knowledge is indispensable for successful control of the

laser dynamics in complex network applications.

5.2 Laser Diode with Optoelectronic Feedback

Among dynamical systems capable of displaying chaotic behaviour, systems with delayed
feedback are of interest since their time evolution is determined by a concurrence of a
discrete step which tends to induce chaos and a continuous step which tends to smear it
[9]. A laser cavity exhibiting bistability and chaos, under suitable operating conditions,
is a fine physical example of such a system. The delay increases the dimensionality, and
hence the complexity. It has also been shown that cven small delay thines affect the global
dynamics of two-dimensional systems of limit cycle oscillators [10]. A delay differential
equation modeling the dynamics of the system incorporating the nonlinear delay coupling
can be used to analyze such a system.

The introduction of a delay in a dynamical system often leads to a change in the stability
properties of the system. It is observed that short delay times lead to the creation of limit
cycles via a suberitical Hopf bifurcation [11]. Tn our studies on the effeets of nonlinear
delayed feedback on MQW laser system, we are interested in two goals: {a) the introduction
of dynamical complexity into a the laser dynamics, and (b) the use of a delay feedback as
a means by which 1o control the laser dynamies. Since differential delay cquations, which
are infinite-dimensional systems, can display great dynamical complexity in their behavior,
we use a delayed feedback in a Iascr system. which by introducing additional dynamical
complexity into the system, gives information on the dynamies of the system without delay.
We have used the same dynamical model described in previous chapters [12. 13, 14] to
accommodate the optoelectronic delay feedback. A current signal proportional to the photon
density of the laser delayed by a tinie 7 is added to the injection current to provide the direct
delayed optoclectronic feedback [15]. A laser diode with aptoclestronic leedback is shown
schematically in Fig. 5.1. The conversion of optical signal into the electronic signal can be
done by a photodiode and the necessary delay can he produced by the external transit of
the light signal. The current signal obtained from the photodiode can be anplified to the

required strength by using an operational amplilicr aud added to the input injection current
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Figure 5.1: Schematic representation for a laser diode with uptoelectronic feedback.
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of the laser. The feedback signal would be proportional to the intensity of the optical signal
delayed by a time 7 and hence it can be represented by DP{t — ), where D is the feedback

strength that is determined by the gain of the amplifier.
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Figure 5.3: The cusp can be removed to give a highly regular output using a delay feedback of strength
D =1x107%F,,.

Thus the expression for the injection current hecotnes
I=1,+) Lsin(2r fif) + DP(t - 7). (5.1)
A.

A variation of the injection current J{f) through the laser diode viclds a variation of the
cmitted optical power and the optical emission frequency.

Instead of controlling the chaos and smoothening the waveform, the feedback is found to
make the waveform more chaotic even in situations where chaos is not present in the absence
of teedback. This has been verificd by Juang ef af. [16] for quantum well laser model. Our
study shows that the MQW laser chaos can be controlled by both multitone modutation and
feedback [17]. This i eflect could make the lasers ideal ehoice for seenre communieation

sonrces if one employs them in chaotic commmnication.
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5.3 Control of Chaos Using Delay Feedback

When chosen properly, delay feedback can control instabilities in the laser system such
as the unwanted pulsation in the output or certain quasiperiodic situations. We have set
the laser delay strength appropriately around the value D = 1074P,,, where P,, is the
mean output photon density of the laser under stable operating conditions of modulation
frequency, biasing and modulation currents. The laser is modulated with a frequency of
2.0 GHz and with a modulation strength of I, = 5mA when the laser is biased slightly
above threshold. The feedback time is chosen to be 10ps and the results are shown in Figs.

5.2 and 5.3, where we have controlled the unwanted pulsation in the laser output.

When the time delay chosen is higher, of the order of 7 ~ 100ps, along with a sufficiently
strong value for the feedback strength D ~ 5 x 10_4F,,, chaos in the laser can be controlled,
We verify this result is for the a chaotic state of the laser when modulated by a set of two
frequencies 2.4572 (GHz and 4.0 GHz having golden mean ratio. The laser is modulated
well above the bias current and the chaotic state is shown as in Fig. 5.4. This can be
brought to a high periodic orbit as shown in Fig. 5.5 when we apply the delay feedback with
D =3 x 107*F,, and delay time of 7 = 110ps. Thus, we show that it is possible stabilize
the unstable periodic orbits in the a MQW laser system to a high periodic state. Therefore,
proper delay strength and feedback time can control chaos in the laser system. In this way

we can control multistability by choosing proper delay strength and time delay.

5.4 Delay Induced Chaos in MQW Laser Systems

lkeda [9, 18] has shown that multistable modes of oscillation can arise in delaved feedback
systems when the delay is larger than the response time of the system. We have observed
chaos in the MQW laser system when the feedback strength is increasced for slight variations

from the chosen value of 1071 of the average photon density. The Lransitions are shown in
i

5.6, where the feedback strength is increased up o 3 x 10

Fig. of the average photon
density while retaining the delay thine at 100 ps. This can applicd in the case of both single
tone and multitone modulations schemes, thoush the chaotic transition ocours at at different

points in the parameter space.
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Figure 5.6: With a feedback strength of D =3 x 10 15, the laser goes into chaotic state with ML =
2.091 x 101! bits/s.

5.5 Applications of Delayed Laser Systems

The most attractive part of the delay feedback scheme is its easy adaptation into any laser
drivipg circuit. This could make the laser driving circuit more powerful by making it possible
to control the dynamics of the laser ontput by using the same circuit that drives the laser.
This could be a big boost for the chaotic communication schemes where the easy control
over the drive laser could be an added advantage along with the chaotic encryption that the

source oflers when it works in the chaotic regine.

5.6 Conclusions

We have shown that delay feedback. when introdneed optoelectronically in a directly modu-
lated multiple quantum well laser system, can be quite decisive in determining the resultant

dynamics of the lascer. It is relevant to use the delay feedback in o semiconductor laser ow-
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ing to various reasouns, the best being its effectiveness in controlling unwanted instabilitics
in the laser output, as we have shown in section 5.4. The delay feedback, therelore, serve
the cause of controlling chaos in the laser system. In addition to this feature, our study
has shown that the optoelectronic delay can push the laser output into chaotic regimes and
this is a quite important result owing to the viability of integrating such a circuit to the
laser drive circuit. Thus the laser can be an ideal source for chaotic encryption and secure

communication when two or more systems are used in synchrony to achieve these results.
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Chapter 6

Conclusions and Future

Prospects

“Only the educated are free.” - Epictetus

ABSTRACT

The chapter summarises the work and presents some of the future prospects of the work.

6.1 General Conclusions

The ability of semiconductor lasers to he modulated directly at high speed is among the
unique features of those lasers which make them especially desirable sources for optical
communication systems. Multiple Quantum Well Lasers are being widely used in many of
the modern optoclectronic applications because of their large scale integrability, high speed
and low threshold operation. We have modeled the MQW region of the lasers incorporating
the light matter interaction phenomena involved in the gencration of laser photons under
the DIFB and Fabry-DPerot configurations.

Direet modulation with a time varying component. adds an extra dimension to the laser
dynaniics thereby bringing in the occurrence of chaos in the light output. Our study on
the clfect of modulation has shown that the laser dynanies can be taken to pertodie, guasi-

periodic and chaotic regimes by snitably choosing the modulation depth and frequeney. We

a7
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have shown that a moderate modulation depth can lead the MQW laser dynamics through
a period-doubling route to chaos. We have shown qualitatively and quantitatively that a
multi-tone modulation can bring chaos into the system through a quasiperiodic route by
torus breaking. It is also shown that an incommensurate ratio of frequencies can result in a
phase space trajectory lying on a torus with never repeating loops.

The synchronization of coupled MQW lasers have been studied and we have shown that with
suitable coupling strength and modulation, we can achieve perfect synchronization hetween
two such lasers. The results are verified with the help of time serics analysis, phase space
plots and quantitatively by calculating the synchronization crror and similarity function.
The results have been verified for different conditions.

Multistability and hysteresis phenomena are studied in the MQW laser system and we have
showﬁ that the laser output can be controlled for generating multistable outputs by suitably
choosing the modulation depth. We have shown the occurrence of pulse position pitchfork
bistability in the MQW laser system. The laser goes into multiple bistable states when the
modulation frequency is increased. Another interesting behaviour we have observed is the
phenomenon of crisis as explained in the thesis. This is the first ever reported work as far
as MQW laser diode simulation studies are concerned.

Feedback mechanising are being emploved in semiconductor lasers for various purposes,
from controlling chaos to stabilizing the laser output. We have analysed the role of delayed
optoelectronic feedback in the MQW system and have shown that it can control unwanted
pulsation and cusps in the MQW laser output. This in fact shows that multistable orbits
can be controlled to be periodic with the help of a suitable feedback mechanism. We have
also shown that delay can take the system to chaotic regime if we vary the delay time and

feedback strength accordingly.

6.2 Future Prospects

Apart from their applied relevance, study of the dynamics of semiconductor lasers helps us
to understand at least some of the universal features of nonlinear systems. Such a study also
presents an opportunity 1o have a better understanding of the specific material and deviee
level properties of the semiconductor laser. Thus, the semiconductor laser based study of
nonlinear dyananiics combines the aspeets of material science and fundamental semiconductor
physics with quantum optics and nonlinear dynamics. This is one of the reasons why we
feel this area of resenrch so exciting and promising for the future.

Multistability is an arca where lot of work can he done to explore the possibility of making

better devices to be used in areas such as digital commmnication. Much work is to bo
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done in controlling the multiple stable states in the MQW laser to make them generating
multilevel optical logic states. Further work in this area scems to be thrilling when we see
the opportunities in integrated optics and optical computing,.

Noise and fluctuations always play an important role in the dynamics of any physical system,
and it has been shown to be important in the case of semiconductor lasers as well. Noise
causes partial destruction of period doubling sequences, and a as a result, chaos may occur
with less period doublings as theoretically predicted. There have been many attempts to
understand the crucial rele of noise in the working of multiple quantum well lasers but a
clear answer is still elusive. There is ample scope for extending the work to understand the
role of noise, rapid fluctuations and random forcing the dynamics of quantum well lasers as

they encounter forces at the quantum level.

Synchronization of laser systems for communication has been an active area of research for
several years on the basis that it could provide a secure communication channel. Multiple
quantum well lasers are an ideal choice for such a channel as they can be fabricated with

mechanisms that are used for controlling dyvnamics.

Research in the field of semiconductor materials and devices have always been exciting.
Present rescarch and development in the field brings fast changes to the society with the help
of better equipments and cheaper technologies. Therefore, today, we see rapid replacements
for optoelectronic devices by faster, smaller and cheaper counterparts. Since we cannot
neglect nonlinear dynamical effects from the working of semiconductor lasers, our work is
rewarded if the research could bring in a better understanding of the quantum mechanics,
material synthesis and fabrication technologies needed for creating better semiconductor

lasers.
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