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ESTIMATION FOR THE SEMIPARETO PROCESSES 
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Cochin-682 022 
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ABSTRACT 

This paper proposes different estimators for the parameters of SemiPareto 

and Pareto autoregressive minification processes The asymptotic properties 

of the estimators are established by showing that the SemiPareto process is 

a-mixing. Asymptotic variances of different moment and maximum likelihood 

estimators are compared. 

1. INTRODUCTION 

It is well-known that the autoregressive models of appropriate orders are 

extensively used for modelling time series data. Even though the classical 

analysis of time series rests heavily on the Gaussian assumption, in recent years 

there are many models introduced for explaining the time series data using non- 

Copyright 8 1998 by Marcel Dekker, Inc. 
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2308 BALAKRISHNA 

Gaussian distributions. In some cases these models are proved to be more suitable 

than their Gaussian counterparts (See eg. Lawrance and Lewis (1985)). 

In the study of non-Gaussian time series modelling, we assume the form 

of a stochastic model and suppose under certain conditions that it generates 

a stationary sequence of random variables (r.v.s) of specified marginal 

distributions. The main tools used for studying these models are generating 

functions such as Laplace transforms or characteristic functions. If these 

generating functions do not have closed form expressions then it is difficult to 

handle the model mathematically. In such cases alternative models having 

rninification (instead of addition) structures are introduced. These minification 

models possess most of the properties of autoregressive models. The 

existence of such models and their properties can be easily studied using the 

survival function of the underlying r.v. For a general discussion on minification 

processes see Lewis and Mckenzie (1991). 

It is needless to say that if one wants to verify the suitability of the model 

to explain real life situations, one has to have reasonably good estimators for the 

unknown parameters. However, not much work is available on inference for non- 

Gaussian time series models, when the marginals are not exponentials. The 

estimation problems related to autoregressive processes generating exponential 

r.v.s are studied by Adke and Balakrishna (1992), Billard and Moharned (1991), 

Karlsen and TjOstheim (1 988), Smith (1986) and Rafiery (1980,198 1) Jin-Guan 

and Yuan (1991) discuss estimation in some discrete time series models Adke 

and Balakrishna (1992) have considered the parameter estimation of the 

exponential minification process of Tavares (1980). Except this, no detailed 

study on estimating the minification processes is available in the Literature. 

This paper discusses the problem of estimating the parameters of the 

SemiPareto process of Pillai (1991) and Pareto process of Yeh et al. (1988). Let 

us describe these models. 
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ESTIMATION FOR SEMIPARETO PROCESSES 2309 

A r.v. Xis  said to have a SemiPareto distribution if its survival function is 

of the form 

( x )  = Pr(X>x) = 
1 

x z 0 
1 + v ( x >  ' 

where w = $ ~ ( p ' "  X )  , 0-1, a > 0. (1.2) 

The solution of the equation (1.2) can be shown to be p(x) = x a h ( x )  , where the 

2na 
function h(x) is periodic in In x with period - [cf. Pillai (1 99 I)]. 

- I ~ P  

For example, if d x )  = (xh)" , P O ,  then (1.1) becomes the survival function of a 

Pareto type III distribution. That is, 

1 
( x )  = Pr(Dx) = x 2 0, o>O,aX. 

I + ( x l ~ ) ~  ' 
(1.3) 

From (1.2) it follows that 

lim y / ( x )  = 0 and lim v ( x )  = a. 
x-to x+m 

A large variety of socio-economic variables have distributions which are 

heavy tailed and well fitted by Pareto type distributions. The SemiPareto 

distribution is a generalization of the Pareto type I11 distribution which is more 

flexible in the sense that a variety of survival functions can be defined by properly 

choosing the parameters a, p and the function p(.) satisfying (1.2). So whenever 

we have a data, with a tendency to follow heavy tailed distribution, it is more 

advantageous to use SemiPareto distribution where in we can change the hnction 

d.) until it fit in to the data properly. However, in many situations the 

observations at different time points are not independent. In such cases a Markov 

dependent sequence will be a better choice than a sequence of i.i.d.r.v.s. Even 

though linear autoregressive models are used to generate Markov dependent 

sequences in classical time series, due to the reasons explained earlier, it becomes 

difficult in the case of semiPareto distributions as its Laplace transform has no 

simple expression. Hence, the following rninification model is used for the 

purpose. 
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BALAKRISHNA 

A first order SemiPareto autoregressive minification (SPAM(1)) process 

{X,} is defined by the model 

where {Y,)  is a sequence of independent and identically distributed (iid) extended 

real-valued r.v.s called innovations, having common s u ~ v a l  fbnction 

and Xo has the survival function (1.1) which is independent of Y,, j2 1. Then {X, )  

defines a stationary Markov sequence with each X, having a survival fbnction 

(1.1). Using (1.4) we have 

lim q ( y )  = p  > 0. 
Y+=' 

Yeh et al. (1988) have studied the first order Pareto type III minification process 

(PAM(l)), where each X, defined by (1.5) has the survival function (1.3). For 

using the above model in emperical studies, one has to have some estimators for 

the unknown parameters. The work of this paper is an attempt towards that end. 

We may note that if X has the survival fknction (1.3), E(* will be finite only if 

-a<6<a. Therefore, any estimators based on sample moments require assumptions 

on existence of moments of appropriate orders. However, by the properties of 

the model (1.5) discussed in the next section, we are able to propose some 

consistent and asymptotically normal (CAN) estimators of the parameters without 

any additional assumptions. 

The Section 2 discusses some special properties of {X,}, such as ergodicity 

and mixing. In Section 3, we propose different estimators for a, p and (~l and 

prove their CAN properties. The properties of estimators in the case of PAM(1) 

process are studied in Section 4 
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ESTIMATION FOR SEMIPARETO PROCESSES 

2. SOME USEFUL PROPERTIES OF SPAM (1) PROCESS 

Let {X , )  be a SPAM(1) process defined by (1.5) .  For some r > 0, define 

Then it is proved that (see Pillai (1991)) {Z.(t), nrO) is a Markov chain on ( 0 , l )  

with transition probabilities: 

p1o = (1-p) ry(f)lf l+ry(t)j ,pi1 = 1-pto. 

Moreover, the autocorrelation bc t ion  of {Z,,(t)} is given by 

&(h) = Corr(Z,,Z,+h) = ph, h = 1,2,. . . . 
Note that, if {X,}  is defined by (1 .5)  then the minimal sigma field induced by 

{Xa XI ,... X.) remains same as the one induced by the set of independent r.v.s 

{Xa Y,, YA ..., Y,). As a consequence it follows that the sequence (X,) and hence 

{Z,,(t)) are stationary and ergodic. The Markov property of {Z,,(t)) distinguishes 

the semi-pareto (& Pareto) process fiom other rninification processes (see Arnold 

and Hallett (1988)). This helps us in estimating the parameters of these models. 

The following results are usefkl for establishing the properties of our estimators. 

A sequence { X , )  of r.v.s is said to be a-mixing in the sense of Billingsley 

(1986) if 

I P ( A  n ~ )  - P ( A ) P ( B ) I I  ah (2 .3)  

for dlA E ~ { X a x l  ,... X,) and B E a{X,+h,  Xn+h+l ,...), where u{&XI ,... X,) is the 

minimal sigma field induced by {XhXt ,... X,,} .  The sequence {ah) is called 

mixing parameters and ah +O as h-. Now we state the following Lemma from 

Billingsley (1986), p.376 for our reference. 

Lemma 2.1: Suppose that { X,,, n>O} is stationary and a-mixing sequence with 

E(XJ =p,  G= O ( d )  and E(x:') <a. (2.4) 
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BALAKRISHNA 

Let S. = X,+X2+ ...+X ., then 

where the series converges absolutely. If d XI then 

&(% - p) I a -& N (0,l) as n-, where --& denotes the convergence 

in distribution, N(0,l) is a standard normal variate and z,, = S i n .  That is, xn 
is asymptotically normal with mean p and asymptotic variance a 2/n. We denote it 

by z,,- ~ ~ @ , a ~ / n ) .  

The joint survival finction 6 ( x ,  y)  of X, and X,+h is given by 

-h 

Over the range y < p ; T x ,  the density function corresponding to Fh (x, y )  is 

given by 

Lemma 2.2: The SPAM(1) process is a-mixing with the mixing parameter 

Proof: 

Let A and E3 be two events such that AEO{XO,XI ,... X.) and 

B E  ~{X.+h,X,,+h+l,. . . ) .  Consider 
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ESTIMATION FOR SEMIPARETO PROCESSES 

where F (.,.) and h(.,.) are as defined by (2.6) and (2.7). By definition of 

the model, it is true that 

Now by conditioning on XO and using the equations (1.6) and (1.2) we get 

Using the Markov property of {X,), we can write 

whereflx) and&) are the density functions of X,, and Xn+*. On s i i l r f y l n g  the 

integrals and using (2.9) it is readily proved that the right side of the above 

wquahty reduces to ah defined by (2.8). Clearly ah + 0 as h -KO. Hence the 

lemma is proved. 

3. ESTIMATION OF SPAM(1) MODEL 

The structure of a minification model makes the likelihood based 

inference more complicated when we use observations from {X,}. The method 
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23 14 BALAKRISHNA 

of moments requires an explicit form for the function d . )  as weU as the existence 

of moments. In this section, we propose estimators for a, p and H.) using the 

properties discussed in Section 2. For the model (l.5), the statistic, 

may be taken as an estimator of k  = p-l'a. It can be proved that im is strongly 

consistent estimator ofp4/", but h ( k ,  - k )  always converges in distribution to a 

degenerate r.v and hence this estimator is not CAN. Throughout the 

discussion we take in as the estimator of k  =p-"" and then estimate a by 

where f in  is an estimator ofp. 

This relation suggests that, we need to estimate p and yl and deduce an 

estimator of a from (3 .2 ) .  In the rest of this section we concentrate in estimating 

d t )  andp by the methods of moments and maximum likelihood using appropriate 

functions of the sequence {X. } defined by (1 .5 ) .  A moment estimator of d t )  

based on (Zn( t ) )  defined by ( 2 . 1 )  becomes 

= { ' - Z n ( t ) ) l Z n ( t > ,  ( 3 . 3 )  

where Z, ( t )  = (Z,(t)+Z2(t)+. . .+Z&))/n. 

As we have already noted, p is the first order autocorrelation coefficient of 

{Zn( t ) )  . Hence p can be estimated by the sample auto-correlation. However, 

for studying the properties of the estimator, we need an explicit form of y(.) 

For estimating p in the general sehrp, we define another sequence {U.} of r.v.s, 

where 

LO otherwise. 
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ESTIMATION FOR SEMIPARETO PROCESSES 2315 

Clearly, {Un) is also a stationary and ergodic sequence, with Pr [U, =1] = (l+p)/2. 

Moreover (U,) is a-mixing with mixing coefficients &I, where a,, is given by 

(2.8). Now the moment estimator ofp based on U. is given by 

In order to study the asymptotic properties of (k, ,b,) we need to prove 

the following theorem. 

Thcorcm 3.1: As n -, the random vector (Zn(t),gn)- AN(,U, ,!z,), 

where pi = - - 
( l + ; ( t ) ~ 1 3 ~ x 1  = 

and 

Proof: 

lf we define 

A, =slZ,(t)+s2Un, n=0,1, ... (3.10) 

then the stationarity and ergodicity of (X,) implies that (A,) is also stationary and 

ergodic for any arbitrary constants sl and s2. Further it can be proved that the 
1 

sequence {A,) is a-mixing with mixing coefficients ah = ah.,, where a h  is given 

by (2.8) and it satisfies the condition (2.4). Hence by Lemma 2.1, 
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BALAKRISHNA 

where zn = (A1+A2+. . .+An)In and 

The expressions of these covariances can be obtained using the defhitions of Zn 

and U,. On simplifjmg the algebra and rearranging the terms we get 

= S:Q~ + sIs2 ( c l2  4- 62,) + S~~CT; ,  

where a, and oq are as in (3.6n3.9). An application of ratio test shows that all 

the summations above are linite. This shows that &(A - E(Al))wnverges in 

distribution to a r.v. with mean 0 and variance y2 for any choice of sl and s2. 

Now an argument using the continuity theorem on characteristic bct ion  and 

the Cramer-Wold device for reducing multivariate convergence to that of 

univariate, it follows that the result of the theorem is true. Hence the proof is 

complete. 

Corollary: The estimator (en, an) is strongly consistent and asymptotically 

normal for ( ty, p). That is, as n + a, 

(@n,bn)- A N ( P ~ , ~ z ~ ) ,  

0: (1 + Vw4 -(a12 + 021 ) { I +  v(W2 
where ~2 =( typ) ,  C2 = 

-(a,, +az,){l+ v(t)12 401 

and a,, ae are as before. 

Proof: 

I 
Define the fhnctions 

~ I ( X I , X Z )  = ( I -XI) /XZ and g2(rl,x2) = 2xl-1, O<T~<~,  i=l,2. 
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ESTIMATION FOR SEMIPARETO PROCESSES 2317 

Then (g, (zn ,un), g2 (zn ,u,,)) = (?,,,@,,) and the partial derivatives of g d ~ 1 . x ~ )  

do not vanish at (E(ZI ),E(U, )). Hence the corollary follows fiom Theorem 

3.1 using the well-known results on functions of asymptotic normal random 

vectors (see Serfling (1980), p. 122). 

In a similar way, it can be shown that as n +m 

(en,$")- A N ( ( V , ~ ) & ) ,  (3.13) 

where 

We will use these results to study the properties of estimators of PAM(1) 

process in the next section. 

In the following discussion, we obtain the maximum likelihood estimator 

(mle) of p and p using the Markov chain {Z.(t)) The transition probabilities 

(P, ij = 0,1} of { Z.(t)} are given by (2.2) In what follows we write 2, in the 

place of Z,,(t). It is well-known that the mle's jJ ,  of p, based on the realization 

(Zl,Zz,. ..,Z,,) are given by 

where n, is the frequency of one-step transitions from state i to stage j and 
n 

n,= n, , n, = n, . As we have a two-state Markov chain on {O,l} , nl = Z, 
j i ,=I  

and no = n-nl . It is also readdy verified that as n +a~, i3, -9ip, , i, j =0,1 

and 

J;;(WI-POI, Aa-PIO) 4 ~ 2 ( 0 , ~ ) *  (3.15) 
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2318 BALAKRISHNA 

where N ,  (0, A) denotes a bivariate normal vector with mean 0 and dispersion 

matrix 

Note that, since Pm = 1 - Pol, PI, = 1 - PI,, the asymptotic distribution of any 

function of &, i, j = 0,1, can be obtained using (3.15). 

The mle (p,, ,p,) of ( y ,p) can be expressed as a funtion of pq ,  i,J=O,l, 

using (2.2) and then we have the following theorem. 

Theorem 3.2: The estimator (F,, , p,, ) is strongly consistent and asymptotically 

normal for ( y ,p). 

Proof: 

By (2.2), we note that the mle's of yandp may be expressed as hnctions of 

Po, and F,o as 

@"W = PlolPo, m d  P" = 1 - Po, - P,o. ( 3  17) 

Obviously (pn,pn) is strongly consistent for ( y  q). Now using the results on 

fbnctions of CAN estimators, it is easy to show that 

where 

This completes the proof 
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ESTIMATION FOR SEMIPARETO PROCESSES 2319 

It can be noted that the asymptotic variances of G, and Fn remain same 

Having estimated p by bn or pn an estimate of a can be obtained from 

(3.2), Further it easily follows that as n - m ,  

and 

where AD is the (2,2)' element of A1 . It is also straight forward to show that 

(+,,,Efi)is asymptotically normal and the asymptotic dispersion matrix can be 

easily computed as in the case of ( e n  ,&,). In the next section we concentrate 

on estimating PAM(1) process. 

4. PARAMETRIC ESTIMATION OF PAM(1) PROCESS 

We have already noted in Section 1 that the Pareto process defined by Yeh 

et al.(1988) is a special case of the semi-pareto process (1.5), where 

ht) = (t/a>", o>O,@O. (4.1) 

It may be recalled that Yeh et al.(1988) have suggested an estimation method, 

where k = p-"a can be determined exactly in a long enough realization of {X,) 

and then a can be estimated by identifying the innovations. They also 

proposed moment estimators of the parameters, but their properties are not 

established. 

In this section we study the properties of estimators of ausing the results 

from previous sections. We continue to estimate k by in as it does not depend on 

a particular distribution of X, and hence the estimator of a also remains same as 
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2320 BALAKRISHNA 

before (see (3.2)). However, estimator of a depends on that ofp. An estimator 

&, of a based on the moment estimator @, ( t )  defined by (3.3) is 

6, = t {@,(t))"" . (4.2) 

Note that &, is a hc t ion  of (k, ( t ) ,& , )  and hence using (3.13) it is readily 

proved that 

&, -AN(D,~; ~ n ) ,  (4.3) 

where 

Similarly, we can get the mle 5, of a from q,(r) and its asymptotic variance 

can be obtained from A1 given by (3.18). 

As d.) has the form (4.1), we can write the likelihood fbnction based on 

(20 ,Z,,..., 2, ) and obtain the mles. By omitting the term corresponding Zo, the 

log-likelihood function may be expressed as 

where p,'s are defined by (2.2) with Ht) = 

The likelihood equations with respect to cr, a and p show that the 

parameters o and a are not identifiable. Hence we consider the mle of (a, p) and 

deduce an estimator of a fiom (3.2). Thus the rnle of (a, p) can be obtained by 

solving the following equations: 
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nm + " l l ( t / o t a  - s 1 + n , ,  =o,  
p + ( t  l + p ( t / o ) =  1 - p  

(4.5) 

The solution of these equations do not have closed form expressions and one 

has to go for numerical methods. Let (a: , p i )  be the resulting mle. On applying 

the well-known results on asymptotic properties of mle's under certain regularity 

conditions (cf Basawa and Prakasa Rao (1980), p.56-57), it is proved that 

where 

F-' = 

Remark: It is also readily verified that, if we deduce an estimator 5, from 

pn(t)=(t thenas n -, ( ~ , , j 7 , , ) - ~ ~ ( ( o , ~ ) , ~ ~ - ' ) .  

That is, (on, p,) and (5, , p n )  have the same asymptotic dispersion matrices. 

Thus for all practical purposes we may use ( Z , , p n )  in the place of 

when the sample size is large. These asymptotic results can be used to obtain 

asymptotic tests and confidence intervals for the parameters. 
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