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A bivariate semi-Pareto distribution is introduced
and characterized using geometric minimization.
Autoregressive minification models for bivariate random
vectors with bivariate semi-Pareto and bivariate Pareto
distributions are also discussed. Multivariate
generalizations of the distributions and the processes are
briefly indicated.
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i. Introduction

It is well known that one of the popular
distributions used to fit heavy tailed data is the Pareto
distribution. For details see Arnold (1983). Some
characterizations of the Pareto type III distribution based
on geometric minimization and maximizations are studied by
Arnold , Robertson and Yeh (1986). Recently Yeh, Arnold and

Robertson (1988) have defined an auto-regressive
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minification process with Pareto type III marginals. Pillai
(1991) generalized this process in terms of semi-Pareto
random variables (r.v.s). These processes possess all the
properties of a linear first order autoregressive (AR(1))
process. In fact these models are used to model
non-Gaussian time series. The non-Gaussian time series
models with various marginals are studied extensively in the
literature (See Adke and Balakrishna (1992), Jayakumar and
Pillai (1993) and Pillai and Jayakumar (1994)).

Suppose that we have a set of data on a bivariate
random vector whose marginals show a tendency to follow
heavy tailed distributions. Hutchinson (1979) explains the
applications of such distributions in biological study. For
applications of the bivariate Pareto distributions in
reliability see Sankaran and Nair (1993). Note that the
observations made on these systems at different time points
are not independent. As a remedy we may assume that the
observations are generated by a bivariate Markov model.
One way of defining bivariate Markov sequences 1is by
linear models as in the case of bivariate exponential
autoregressive processes of Block, et al. (1988) and Dewald
et al. (1989). Yeh et al.(1988) defined Pareto processes
and discussed the applications of their model in income
analysis. Here we discuss a bivariate extension of this
model and try to generalize this model. This ended in
obtaining the bivariate semi-Pareto distribution as the
stationary solution of the bivariate minification sequence
that we define.

In this paper we discuss different aspects of the

bivariate semi-Pareto and a particular bivariate Pareto
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distributions. We characterize these distributions using
geometric minimization. Further, we also study the
properties of autoregressive minification processes with
bivariate semi-Pareto and bivariate Pareto random vectors.
In Section 2 we define a bivariate semi-Pareto and
a Pareto distribution and study their properties wusing
geometric minimization. The AR(1) minification models for
random vectors with the above distributions are discussed in
Section 3. The second order properties of the distributions
and the processes are described in Section 4. In section 5
we briefly indicate the multivariate extensions of the

distributions and the process defined in Section 2 and 3.
2 Characterizations of bivariate Semi-Pareto Distribution

A random vector (X,Y) is said to have the

bivariate semi-Pareto distribution with parameters ql. az, P
D

and we denote it by (X,Y) = BSP(al.az,p) if its survival

function is of the form
F(x,y) = P(X>x,Y>y) = 1/{1l+y(x,y))}, (2.1)

where y(x,y) satisfies the functional equation

1/02 l/az
y(x,y) = (1/p) y(p X,p y)., (2.2)

o<p<l;a ,a2>0; x,y20.

1

Lemma 2.1: The solution of the functional equation (2.2)
is given by

al. az
p(x,y) = x "h (x) +y hz(y), (2.3)
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where hl(x) and hz(y) are the periodic functions in 1log x

Znal Znaz
and log y with periods :TEE—E and ~Toz p respectively.

A proof of this lemma can be found in Kangan,
Linnik and Rao (1963), pp 163. o

As an example, if we take
hi(x) = exp{fi cos (ailog x) }, 1=1,2, then we can see that
it satisfies (2.2) with p=e 2".

In particular, if we choose hl(x)=h2(y)=1, the
BSP(al.az.p) reduces to a bivariate Pareto distribution with

survival function

a [}
F(x,y) =1/{1+x * + y 2}, x20,520,0,>0,0,50.  (2.4)

Now we study some of the characterization
properties of BSP(al.az.p) distributions via geometric
minimization. Let {(Xi,Yi),iZI} be a sequence of independent
identically distributed (i.i.d) random vector with common
survival function (2.1) and N be a geometric random variable

with parameter p and

P[N=n} = pg ', n=1,2,..., 0<p<l, q=1-p. (2.5)
Further assume that N is independent of xi'Yi'
Define
min min
Uy = 1gien X1 @09 Yy © 1caen Vi (2.6)

Theorem 2.1: Let {(Xi,Yi),iZI} be a sequence of i.i.d
bivariate non-negative random vectors with common survival
function ﬁ(x,y) and N be a geometric random variable as in

(2.5), which is independent of (Xi'Yi) for all i21. The
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-l/a‘ -l/otz
random vectors (p U P V..) and (xl'Yl) are

N N
identically distributed if and only if (xi'Yi) have the
BSP(al,az.p) distribution.

Proof: Consider

_ -l/a‘ -1/az
H(x.y) = Pr[p Uy >%.P VN>y]
® _ 1/0& l/az n n-1
= E F(xp ,¥YP )| pa .
n=1
That is,
) Fox 1/a‘ 1/a2)
H(x,y) = 2 4 YD (2.7)

= 1/ 1/a
1-qF(xp / 1 ,yp / 2)

Now if F(x.y) is as in (2.1) and (2.2), the equation (2.7)

becomes

- 1 -
H(x,y) = T:GT;T;T = F(x,y).

This proves the sufficiency part of the theorem.
Conversely, suppose that ﬁ(x,y)=ﬁ(x,y). Note that
any survival function ﬁ(x,y) can be represented as

1

F(x,y) = T7373757 ,

(2.8)

where ¢(x,y) is a monotonically increasing function in both
lim lim

> > =
x and y (x 2 0, y 2 0) and Xx—0  y—s0 ¢(x,y) 0 and
lim 1lim
, = . Usi the esentation 2.8 in
Xb00 Yl P(x,y) ® sing repr nta ( ) i

(2.7) with ﬁ(x,y)=ﬁ(x,y), we get the equation,

1/a l/a2

¢(x,y) = = ¢(xp t.yp ).

o -
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This is the functional equation (2.2) satisfied by
BSP(al,az.p) with ¢(.,.) in the place of ¥(...). Hence the
proof is complete.

Let {Nk, k21} be a sequence of geometric random

variables with parameters p ,OSpk<1. Define

k

Fk(x,y) = Pr[UN >x,VN >y)., k=2,3,...

k-4 k-1

p, F, _(x,y)
- k-l k-l . (2.9)
1-(1-pp _IF_1(x.¥)

Here we refer Fk as the survival function of the geometric

) minimum of iid random vectors with F as the common

(Py_y k-1

survival function.
Theorem_2.2: Let{(Xi,Yi), i>1} be a sequence of iid
non-negative random vectors with common survival function

?(x,y). Define ?1=ﬁ and F, as the survival function of the

k
geometric (pk_l) minimum of iid random vectors with common
survival function ﬁk—l' k=2,3,... . Then
_ -1 l/a1 -1 l/a2 _
A{(n o) e r;) y) = Fouy (2.10)
J:]_ J:l
if and only if (xl'Yl) has BSP(al,az,p) distribution.
Proof: By definition, the survival function ﬁk
satisfies the equation (2.9). As in (2.8) we can write
- 1
Fk(X-Y) = TT;;T;T§)' k=1,2,...

Substituting this in (2.9), we get

1
¢k(X-Y) = p—_ ¢k-1(x'y)' k—-2,3,...
k-1
Recursively using this relation, we have
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¢k(x,y) e ¢1(x.y). since F1=F implies ¢1=¢.

This implies

This gives us (2.10) if we replace ¢k by wk and if we assume
that wl satisfies (2.2).

Conversely, assume that (2.10) is true. By the
hypothesis of the theorem we have (2.11). Thus (2.10) and
(2.11) together lead to the equation,

[ . zli—pj ¢1[[JJ(|;11 pj]l/al .. [‘;lili pj]l/dzy]]-l

=F(x,y) =

-1

L
1+¢(x,y) ~

This implies that

-1 l/ot2

-1 1/a

1 1
@(x,y) = —— ¢ [k p X, [k p.
: : P, [ jD1 J] jgl J]

which is same as (2.2).

ni

Hence the proof is complete.
We have already noted that the bivariate Pareto

distribution (2.4) is a special case of BSP(al.a .P). Let

2
us denote the distribution having survival function (2.4) by

BP(al,az). Now we prove some characterization results for
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BP(al,az). Suppose that the survival function ?(x,y) is of

the form (2.8). Let fa o be a family of all distributions
1'72

F(x,y) with the property that

lim _ lim _ ¢(x,y)

x—0 y—0 =1 (2.12)

(x%1+y%)
where ¢(x,y) is as in (2.8)

Theorem 2.3: Let {(xi’Yi)' iz1} and N be as defined in
Theorem 2.1 with common distribution F of (xi'Yi) belong to
—l/ou -l/az
$al'a2 and O<p<l. Then [p UN ,P VN] and (xl'Yl)
are identically distributed if and only if F is BP(al.az).

Proofs As before we have (from(2.7))

1 1
- ~1/ey ~1/a, p F(xp /% yp /az)
H(x,y) =Pr[p Uy %, P \ >y]= — 1/a’ 7%l
1-qF(xp " "¢ .yp ' 2)

Now the sufficient part is straight forward.

In order to prove the necessary part assume that
(2.7) holds with F(x.y) in the place of ﬁ(x.y). In terms of
¢(x,y), (2.7) leads to the equation

1/a‘ 1/012
$(xp , ¥YP ). (2.13)

LT

P(x.y) =

Repeated use of this relation gives us

1 k /ot1 k /otz
¢(x,y) = < ¢(xp ,¥P ) for any k, integer.

o

Now rewriting the right hand side expression and taking

limit as k—®, we have
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1

% % lim ¢(x[1>/a" yp/az)

P(x,y) = (x  +y )k—m[ k/aa' 7a a]
(xp 1) 1+(yp " T2) 2
% %
= (x +y ), follows by (2.12).

Thus we have ﬁ(x.y) given by (2.4). This completes the
proof.

Corollary 2.1: Let{(Xi,Yi), i21} be a sequence of iid

non-negative random vectors with the common distribution
function F satisfying the condition (2.12) and Fk be the
distribution function of geometric (pk_l) minimum of i.i.d

random vectors with Fk—l as the common distribution

k-1
functions, k=2,3, . If n p —0 as k—wo, then

[[k,, o) [“,=1 ) %) 2 weia .

Proof of this corollary follows from the proofs of

Theorems 2.2, 2.3 and the condition (2.12).

3. Bivariate Semi-Pareto AR(1) model.

In this section we study the properties of first
order autoregressive (AR(1)) models with minification
structures in bivariate semi-Pareto and Pareto random
vectors. The univariate AR(1) models with Pareto and semi
Pareto marginals are studied by Yeh, et al (1988) and Pillai
(1991) respectively. We define a bivariate minification

process, { (Xn,Yn), nz0} as follows.

Let {(sn,nn). n2l} be a sequence of i.i.d
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bivariate non-negative extended real random vectors and

define
—1/al
Xn = min (p Xn_l,sn)
and (3.1)
—l/ct2
= mi > <
Yn min (p Yn-l'nn)' nzl, 0<p«<1, al.a2>0.
Assume that (XO,YO) is independent of (ci,ni). Then it

easily follows that {(Xn,Yn),_nZO} is a bivariate Markov
sequence.

As L and n, are extended real random variables we
assume that either both are infinity with probability p or
both are finite with probability 1-p and hence we can
represent them as

(+00, +®) with probability p
(sn.nn) = (3.2)
({n,kn) with probability (1-p),0<p<1,

where {n and kn are real-valued random variables.

D
Theorem_3.1: Assuming that (XO.YO) = ({l,kl), the process

{(Xn,Yn), n20} defined by (3.1) and (3.2) is stationary if
and only if ({n,kn) has a BSP(al,az.p) distribution.
Proof: Definition of the model implies that

Gn(X.y) = P[Xn>X.Yn>y]

1/a 1/a

=G (xp typ Her(1-p)F(x,y)), (3.3)

where F(x,y) is the survival function of ((l.kl).
> i i =
Assume that {(Xn,Yn)n_O} is stationary and (XO,YO) ((1,k1).

Then for n=1, (3.3) gives us
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_ 1/a 1/a =
Fxp ' .yp 2 = F(x.y) : (3.4)
p+(1-p)F(x,y)

As in (2.8) if we write

- 1 N )
F(x,y) = TTGTET;T' the equation (3.4) leads to the relation
1
1 /cl1 1/03
wix,y) = 3 w(xp ,¥P )-

That is, ﬁ(x.y) is of the form (2.1) and hence by (3.3),

(Xl,Yl) is a BSP(al.az,p) distributed random vector. Then
by induction argument we have {(Xn,Yn), nz0} is a
BSP(al,az.p) Markov sequence.

Conversely, suppose that (tn,kn) has BSP(al,az.p)

distribution for every n2l1 with (XO,YO)Q({l,Al). In this
case for n=1, from (3.3) and (2.2) we get

1

Gl(x,y) B L+p(x,y)

That is, (Xl'Yl) has BSP(al,az,p) distribution. Now by (3.3)
and an easy induction argument it follows that (Xn,Yn)
has BSP(al,az.p) distribution for every n20. That is,

{(Xn,Yn), nz0} is a stationary BSP(al.a ,P) sequence.

2
Corollary 3.1: Let (XO,YO) be an arbitrary random
lim lim

_ u—0 v—0
G(u,v) =1 and {(tn,kn). n21l} be a sequence of i.i.d

BSP(al,cl2
{(Xn,Yn), n>0} defined by (3.1) and (3.2) converges in

vector with survival function GO(u,v) such that
,p) random vectors. Then the bivariate sequence

distribution to BSP(al,a ,p) as n—o.

2
Proof: The definition of the model and the relations

(3.3), (2.1) and (2.2) together imply that
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n/o n/o n
= _ A 1 2 1+p  y(x,y)
Gn(x'Y) = GO(XP »¥yp ) {-UW(X—,)’)}

1

—————, as Dn-—,
1+p(x,y)

where y(x,y) is as in (2.2). Hence the corollary is proved.
Remark 3.1: Recall that the bivariate Pareto
distribution (2.4) is a special case of BSP(al.az,p). If we
assume that {(tn,kn), nz21l} is a sequence of i.i.d BP(al,az)
random vectors in Theorem 3.1, then {(Xn.Yn), n20} defined
by (3.1) and (3.2) becomes a stationary BP(al,az) sequence.

We refer such a sequence by ARBP(1) sequence.

4. Second order properties:

The implicite nature of BSP(al,az,p) distribution
does not allow us to obtain exact expressions of its
moments . However, we obtain the moments of BP(al.az)
distribution and the auto-correlation matrix of ARBP(1)
process when they exist.

Suppose that (X,Y) has the survival function

(2.4). Then its (r,s)th moment vector is given by
(Mpm ) = E(x'.x%) =(2(x").E(x5))
r r S S
- [r(1+a&)r(1-3i).r(1§az)r(1-52)]

provided r<a1 and s<a2. If ai>2, i=1,2 then the wvariance

covariance matrix of (X,Y) is

[«4
L- = ((aij)). i,j=1,2,
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1 1 1
where %55 ° rq - ai)r(l - aj)r(l-a -=)

1
. o,
1

_[r(1+§i)r(1 - éi)][F(1+§j)F(1 - éj)]. (4.1)

Now we discuss the covariance structure of ARBP(1)
process with stationary distribution (2.4) (See remark 3.1).
We define the autocovariance matrix of a bivariate process

{((X_,Y ). n20} by

cov(X ,X cov(X ,Y
n''n n’ n

«h) +h)
C(h) =

cov(X Y ) cov(Y ,Y )
n n n’ n

+h +h

In the rest of this section we assume that ai>2, i=1,2.

The definition of our model allows us to write,

h h-1
-— —— -1/a
X = min p 1 X p a1 £ p ‘s £
n+h n’ n+l’ """’ n+h-1, " n+h
and (4.2)
h h-1
-— ——_— -1/a
Y = min p qz Y p az p zn n
n+h n’ Mhe1” " n+h-1,"n+h| °

These relations will help us in evaluating the above

covariance functions. Observe that

al o -h/a
h 1 1 . 1

[(1-p )x "]/(l+x ) if xSyp

< = -

Pr[xmh_xlxn vl h/a
. 1

1 if x>yp

(4.3)

Now

E(Xn*hxn) = E[XnE(Xn+h|xn)]'
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where the conditional expectation can be evaluated using

(4.2) as

-h
h yp /at xa‘ —h/ai 1+y°‘1
E(X_, |X,=¥)=(1-p)a, I ———— dx +yp —
0 (1+x7%) l1+y 1p
Therefore,
o
-h 1
h P xn1 u /ai
Cov(X ,X . )=(1-p )E xng — du
(1+u)
-h/a
+p 23[1«»E .1-E ]F(l,1+E ;2;1-p h)
[} a ot
1 1 1
2
1 1
- 1+ Y(1-~
[re 3 K¢ °‘1)]

= yxx(h;al,al), say,
boaa -A-1 -
where F(a.fir.2) = (1/B(R.y-m1 & t0 1a-6)7 P 1 (1-tz) %ar.
0

Similar computations show that
Cov(Yn'Yn+h) = yyy(h:az,az).

In order to compute the other elements of I'(h), we consider,

h a
1+p y 2
a, ha o,

1 2 2
(l+x "+p y ) (1+y )

x20,y=0.

Pr[Xn>x,Yn+h>y]

Using this it can be shown that

h. h 1 1 1 .1 1
COV(Xn'Yn+h) = (1-p)p F(1+Eg)r(2-aa)3[l+az,2-;1—52]

F(Z—é ,1+§ ;3—& ;l—ph)
1 2 1
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-h/a
2 h 1 1 1 1
+p P r(1+52)r(1*al)r(1‘al‘a )

1 1 1 1
- r(1+al)r(1-al) r(1+az)r(1-az)

= rxy(h;a ’“2)' say

1

Proceeding as above we also have
Cov(Xn+h,Yn) = yxy(h;az,al).

Thus the autocovariance matrix of the stationary ARBP(1)

process is given by

rxx(h:al,al) yxy(h;al,az)
r(h) =
rxy(h:az,al) ryy(h;az,az)

The expressions of yxx(l;a ,az) can also be

1 2
obtained from Yeh et al. (1988) for a proper choice of

, 0 and 1;a
1) ryy(

the parametrs in equation (2.4)
5. Multivariate generalization

In this section we provide a brief discussion of
the multivariate extension of the models studied in Sections

2 and 3. The random vector (xl,x ..,Xk) is said to have a

2"
k-variate semi-Pareto distribution with parameters a . az,
s e ey f
a3 ak and p i
1
Pr[X1>x1,x2>x2,...,Xk>xk] 1+w(xl’x2'.--'xk) (5.1)
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such that
l/a‘ l/az 1/a

1 k
w(xl,x .,xk) = Bw(p xl,p xz.....p xk). (5.2)

PR

The solution of equation (5.2) is given by

k o,
WX Xy X)) =i§1xi h (x.),
where hi(xi)' i=1,2,...,k are periodic functions in log xi
2nai
with period ~Tn p (cf. Kagan, Linnik and Rao (1963),p 163).
If hi(xi)El’ for i=1,2,...,k, then we get
1
P[X1>x1,X2>x2,...,Xk>xk] = ,

1+x°&+xaz+ +xak
1 g2t ¥y

which is the survival function of k-variate Pareto random
vector.

If we have n independent copies of (xl,xz....,xk).
we can define the componentwise geometric minima of random
variables and then it is straight forward to prove the
multivariate extension of the Theorems 2.1 and 2.3. It is
also possible to define a stationary k-variate Pareto
., X

process {(xln'x ). nz1} by extending the

2n’ "’ kn
definitions (3.1) and (3.2). However, we skip the details
as the computations are straight forward.

Acknowledgement: The authors wish to thank the Editor and
the referee for their suggestions which led to an improved
version of this article. The second author is grateful to

the National Board for Higher Mathematics, India for
financial support.

References

Adke,S.R. and Balakrishna,N. (1992) Markovian chi-square and

gamma processes, Statist. Prod. lLetters 15, 349-356.



165

Arnold,B.C. (1983) Porets  Dioribdutieno , International
Co-operative Publishing House, Finland, Maryland.
Arnold,B.C. Robertson,C.A. and Yeh,H.C. (1986) Some
properties of a Pareto-Type Distribution, Sankhya 4,

48, No. 3, 404-408.

Block,H.W, Lanberg,N.A and Stoffer,D.S. (1988) Bivariate
Exponential and Geometric Autoregressive and
Autoregressive moving Average models, Adv. Appl. Prob.
20, 798-821.

Dewald,L.S, Lewis, P.A.W. and Mckenzie,E.D. (1989) A
Bivariate First Order Autoregressive Time series model
in Exponential variables (BEAR(1)). Management Sciences
35, 1236-1246.

Hutchinson, T.P. (1979). Four applications of a bivariate
Pareto distribution. Biom. J. Vol. &2f, no.6, 553-563.

Jayakumar,K and Pillai,R.N. (1993) The first order
autoregressive Mittag-Leffler process, J. Appl. Prob.
30, 462-466.

Pillai,R.N. (1991) Semi-Pareto Processes, J. Appl. Prob.,28,
461-465.

Pillai,R.N. and Jayakumar,K (1994) Specialized class L
property and stationary process, Statist. Prob. lLetters
19, 51-56.

Sankaran, P.G. and Unnikrishnan Nair, N (1993). A bivariate
Pareto model and its applications to reliability.
Navel. Res. Logist. 40, 1013-1020.

Yeh,H.C, Arnold,B.C and Robertson, C.A. (1988) Pareto
Processes, J. Adppl. Prob. 25, 291-301.

N.Balakrishna

K.Jayakumar,

Department of Statistics,

Cochin University of Science and Technology,
Cochin 682 022, India



