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OPTIMAL UTILIZATION OF SERVICE FACILITY FOR A
k-OUT-OF-n SYSTEM WITH REPAIR BY EXTENDING
SERVICE TO EXTERNAL CUSTOMERS IN A RETRIAL

QUEUE

A. KRISHNAMOORTHY∗, VISHWANATH C. NARAYANAN AND T.G. DEEPAK

Abstract. In this paper, we study a k-out-of-n system with single server
who provides service to external customers also. The system consists of
two parts:(i) a main queue consisting of customers (failed components of
the k-out-of-n system) and (ii) a pool (of finite capacity M) of external
customers together with an orbit for external customers who find the pool
full. An external customer who finds the pool full on arrival, joins the orbit
with probability γ and with probability 1−γ leaves the system forever. An
orbital customer, who finds the pool full, at an epoch of repeated attempt,
returns to orbit with probability δ (< 1) and with probability 1 −δ leaves
the system forever. We compute the steady state system size probability.
Several performance measures are computed, numerical illustrations are
provided.
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1. Introduction

We study a k-out-of-n system with single server who provides service to ex-
ternal customers also as described in the following paragraphs.

The system consists of two parts:(i) a main queue consisting of customers
(failed components of the k-out-of-n system) and (ii) a pool (of finite capacity
M) of external customers together with an orbit for external customers who
find the pool full. An external customer who finds the pool full on arrival,
joins the orbit with probability γ and with probability 1 − γ leaves the system
forever. Customers in orbit, independently of each other, retry to access the
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server. Inter retrial times are assumed to have exponential distribution with
parameter nθ when there are n customers in the orbit.

The arrival process. Arrival of main customers have inter occurrence time
exponentially distributed with parameter λi, when the number of operational

components of the k-out-of-n system is i. By taking λi =
λ

i
we notice that the

cumulative failure rate is a constant λ. We assume that the k-out-of-n system is
COLD (components fail only when system is operational). The case of WARM
and HOT system can be studied on the same lines (see Krishnamoorthy and
Ushakumari [6]). External customers arrive according to a Markovian Arrival
Process (MAP) with representation (D0, D1) where D0 and D1 are assumed to
be matrices of order m. The fundamental arrival rate λg = −πD0e

Markovian arrival process (MAP) and its generalization Batch Markovian ar-
rival process (BMAP) are special cases of semi-Markov processes with numerical
tractability. A MAP is represented by a pair (D0, D1) of matrices which are
square matrices of the same order, say, m. It can be described as follows :
consider a Markov chain with m states. A particle moves from one state i to
another state j with its sojourn time in state i having exponential distribution
with parameter γij (i 6= j; i, j = 1, . . . , m). This transition may trigger the
occurrence of an event (say, an arrival) with probability p1 and no event with
probability p0 (p0+p1 = 1). D0 has its entries that are transition rates triggering
no arrival, whereas D1 has entries with transition rates combined with arrival.
The diagonal entries of D0 are all negative.

The service process. Service to the failed components of the main system
is governed by the N -policy. That is at each epoch the system starts with all
components operational (ie., all n components are in operation), the server starts
attending one by one the customers from the pool (if there is any). At the time
when the number of failed components of the main system reaches N , no more
customer from the pool is taken for service until there is no components of the
main system waiting for repair. However service of the external customer, if
there is any, will not be disrupted even when N components accumulate in the
main queue (that is the external customer in service will not get pre-empted on
realization of the event that N components of the main system failed and got
accumulated; instead the moment the service of the present external customer
is completed, the server is switched to the service of main customers).

Service time of main customers follow PH distribution of the order n1 and
representation (α, S1) and that of external customers have PH distribution of
order n2 with representation (β, S2); S0

1 and S0
2 are such that Sie + s0

i = 0,
i = 1, 2 where e is a column vector of ones of appropriate order. The two
service times are independent of each other and also independent of the failure
of components of the main system as well as the arrival of external customers.

Objective. To utilize server idle time without affecting the system reliability.
Krishnamoorthy and Ushakumari [6] deals with the study of the reliability of

a k-out-of-n system with repairs by server in a retrial queue. They do not give
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any priority to the failed components of the main system nor do they investigate
any control policy. Krishnamoorthy, Ushakumari and Lakshmi [7] introduced
the repair of failed components of a k-out-of-n system under the N -policy. For
further details one may refer the paper Ushakumari and Krishnamoorthy [9].
Bocharov et al [2] examine an M/G/1/r retrial queue with priority of primary
customers. They obtain the stationary distribution of the primary queue size, an
algorithm for the factorial moments of the number of retrial customers and an
expression for the expected number of customers in the system. Nevertheless, we
wish to emphasise that their paper does not distinguish between the priority and
ordinary customers. This is distinctly done in this paper (our priority customers
are the failed components of the k-out-of-n system):

We also consider an intermediate pool of finite capacity to which external
customers join on encountering a busy server on arrival or after a successful
retrial from the orbit. We expect that this intermediate pool from which an
external customer can be selected for service, whenever the server becomes idle,
will help us to decrease the server idle time.

The steady state distribution is derived. Note that the non-persistence of
orbital customers together with the fact that an external customer, finding the
pool full, may not join the pool ensures that even under very heavy traffic the
system can attain stability. Several performance measures are obtained.
One can refer Deepak, Joshua, and Krishnamoorthy [4] for a detailed analysis
of queues with pooled customers (postponed work).

2. Modelling and analysis

The following notations are used in the sequel:
N1(t) = # of orbital customers at time t
N2(t) = # of customers in the pool (including the one getting service, if any,)

at time t.
N3(t) = # of failed components (including the one under repair, if any) at

time t

N4(t) =





0 if the server is idle
1 if the server is busy with repair

of a failed component of the main system
2 if the server is attending an external customer at time t.

N5(t) = Phase of the arrival process,

N6(t) =

{
Phase of service of the customer, if any, in service at t

0, if no service is going on at time t.
It follows that {X(t) : t ≥ 0} where

X(t) = (N1(t), N2(t), N3(t), N4(t), N5(t), N6(t))

is a continuous time Markov chain on the state space
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S =
{

(j1, 0, j3, 0, j5, 0)|j1 ≥ 0; 0 ≤ j3 ≤ N − 1; 1 ≤ j5 ≤ m
}

∪
{
(j1, j2, j3, 1, j5, j6)|j1 ≥ 0, 0 ≤ j2 ≤ M ; 1 ≤ j3 ≤ n − k + 1;

1 ≤ j5 ≤ m; 1 ≤ j6 ≤ n1

}

∪
{
(j1, j2, j3, 2, j5, j6)|j1 ≥ 0; 1 ≤ j2 ≤ M ;

0 ≤ j3 ≤ n − k + 1; 1 ≤ j5 ≤ m; 1 ≤ j6 ≤ n2

}

Arranging the states lexicographically, and then partitioning the state space into
levels i, where each level i corresponds to the collection of states with i customers
in the orbit, we get the infinitesimal generator of the above chain as

Q =




A10 A0 0 0 . . .
A21 A11 A0 0 . . .
0 A22 A12 A0 . . .
...

...
...

...




where

A10 =




W0 W5

W3 W1 W6

W4 W1 W6

. . .
W4 W1 W6

W4 W2




.

In the above

W0 =




B0 B8
B4 B1 B9

B5 B1 B9
. . . . . . . . .

B5 B1 B9
B5 B1 B10

B6 B2 B11
B7 B2 B11

. . .
B2 B11
B7 B3




,

B0 = D0 − λIm, B1 =
[
D0 − λIm 0

0 D0 ⊕ S1 − λImn1

]
,

B2 = D0 ⊕ S1 − λImn1 , B3 = D0 ⊕ S1,

B4 =
[

0
Im ⊗ S0

1

]
, B5 =

[
0 0
0 Im ⊗ (S0

1α)

]
, B6 =

[
0 Im ⊗ (S0

1α)
]

B7 = Im ⊗ (S0
1α), B8 =

[
λIm 0

]
, B9 = λIm+mn1 ,
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B10 =
[
Im ⊗ (λα)

λImn1

]
, B11 = λImn1 ;

W1 =




C0 C5
C3 C1 C6

C4 C1
. . .

C1 C6
C4 C2




where C0 = D0 ⊕ S2 − λImn2 , C1 = C2 − λIm(n1+n2)

C2 =
[
D0 ⊕ S1 0

0 D0 ⊕ S2

]
, C3 =

[
Im ⊗ (S0

1β)
0

]

C4 =
[
Im ⊗ (S0

1α) 0
0 0

]
, C5 =

[
0 λImn2

]
, C6 = λIm(n1+n2).

We write W2 = W1 + W̄1. In the above

W̄1 =
[
(1 − γ)(D1 ⊗ In2) 0

0 In−k+1 ⊗ ¯̄W1

]

with ¯̄W1 =
[
(1 − γ)(D1 ⊗ In1) 0

0 (1 − γ)(D1 ⊗ In2)

]
.

Next we have

W3 =




W30 0 0
0 IN−1 ⊗ W31 0
0 0 In−k−N+2 ⊗ W32




with

W30 = Im ⊗ S0
2 , W31 =

[
0 0

Im ⊗ S0
2 0

]

m(n1+n2)×m(n1+n2)

,

W32 =
[

0
Im ⊗ (So

2α)

]

m(n1+n2)×mn1

,

W4 =



E0 0 0
0 IN−1 ⊗ E1 0
0 0 In−k−N+2 ⊗ E2


 ,

E0 = Im ⊗ (S0
2β), E1 =

[
0 0
0 Im ⊗ (S0

2β)

]

m(n1+n2)×m(n1+n2)

,

E2 =
[

0 0
Im ⊗ (So

2α) 0

]
.
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Next we have

W5 =



F0 0 0
0 F1 0
0 0 F2




where

F0 = D1 ⊗ β, F1 = IN−1 ⊗ F ′
1, F ′

1 =
[

0 D1 ⊗ β
D1 ⊗ In1 0

]
,

F2 = In−k+2−N ⊗ F ′
2 where F ′

2 =
[
D1 ⊗ In1 0

]
.

Further we have

W6 =
[
H0 0
0 In−k+1 ⊗ H1

]

where

H0 = D1 ⊗ In2 , H1 =
[
D1 ⊗ In1 0

0 D1 ⊗ In2

]

and

A1i = A10 − Ã1i for i ≥ 1.

In the above

Ã1i =
[
iθIL2 0

0 iθ(1 − δ)IL1

]
,

where
L1 = (n−k +2)mn2 +(n−k+1)mn1, L2 = Nm+(n−k+1)mn1 +(M −1)L1;

A2i =



0 Zi 0
0 0 iθI(M−1)L1

0 0 iθ(1 − δ)IL1


 , i ≥ 1;

Zi =



Z1i 0 0
0 IN−1 ⊗ Z2i 0
0 0 I(n−k−N+2) ⊗ Z3i


 , Z1i = Im ⊗ (iθβ),

Z2i =
[

0 Im ⊗ (iθβ)
iθImn1 0

]
, Z3i =

[
iθImn1 0

]
.

Finally

A0 =
[
0 0
0 Ā0

]

where

Ā0 =
[
(γD1) ⊗ In2 0

0 In−k+1 ⊗ Ā
(1)
0

]
, Ā

(1)
0 =

[
(γD1) ⊗ In1 0

0 (γD1) ⊗ In2

]
.
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3. System stability

Theorem 1. The assumption that after each retrial a customer may leave the
system with probability 1−δ makes the system stable irrespective of the parameter
values.

Proof. To prove the theorem we use a result due to Tweedie [8]. For the model
under consideration we consider the following Lyapunov function:

φ(s) = i if s is a state belonging to level i

The mean drift ys for an s belonging to level i ≥ 1 is given by

ys =
∑

p6=s

qsp(φ(p) − φ(s))

=
∑

s′

qss′(φ(s′) − φ(s)) +
∑

s′′

qss′′

(
φ(s′′) − φ(s)

)

+
∑

s′′′

qss′′′

(
φ(s′′′) − φ(s)

)

where s′, s′′, s′′′ vary over the states belonging to levels i−1, i, i+1 respectively.
Then by definition of φ, φ(s) = i, φ(s′) = i − 1, φ(s′′) = i, φ(s′′′) = i + 1
so that

ys = −
∑

s′

qss′ +
∑

s′′′

qss′′′

ys =





−iθ +
∑

s′′′

qss′′′ , if s ∈ Ii

−iθ(1 − δ) +
∑

s′′′

qss′′′ , if s ∈ Īi

where Ii denotes the collection of states in level i which corresponds to N2(t) <
M , and Īi denotes the collection of states in level i which correspond to N2(t) =
M .

We note that
∑

s′′′

qss′′′ is bounded by some fixed constant for any s in any

level i ≥ 1. So, let
∑

s′′′

qss′′′ < κ, for some real number κ > 0, for all states s

belonging to level i ≥ 1. Also since 1− δ > 0 for any ε > 0, we can find N ′ large
enough that ys < −ε for any s belonging to level i ≥ N ′.

Hence by Tweedie’s result, the theorem follows. �

4. Steady state distribution

Since the process under consideration is an LDQBD, to calculate the steady
state distribution, we use the methods described in Bright and Taylor [3].

By partitioning the steady state vector x as x = (x0, x1, x2, . . .) we can write
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xk = x0

k−1∏

l=0

Rl for k ≥ 1

where the family of matrices {Rk, k ≥ 0} is minimal non-negative solutions to
the system of equations:

A0 + RkA1 k+1 + Rk[Rk+1A2 k+2] = 0, k ≥ 0 (1)

x0 is calculated by solving

x0[A10 + R0A21] = 0 (2)

such that

x0e + x0

∞∑

k=1

[
k−1∏

l=0

Rl

]
e < ∞. (3)

The calculation of the above infinite sums does not seem to be practical. So we
approximate xks by xk(K∗)s where

(
xk(K∗)

)
j
, 0 ≤ k ≤ K∗, is defined as the

stationary probability that X(t) is in the jth state of level k, conditional on X(t)
being in level i, 0 ≤ i ≤ K∗.

Then xk(K∗), 0 ≤ k ≤ K∗ is given by

xk(K∗) = x0(K∗)
k−1∏

l=0

Rl (4)

where x0(K∗) satisfies (2) and

x0(K∗)e + x0(K∗)

[
K∗∑

k=1

[
k−1∏

l=0

Rl

]]
e = 1 (5)

Here we have for all i ≥ 1, and for all k, there exists j such that [A2i]k,j > 0.
So we can construct a dominating process X̄(t) of X(t) and can use it to find
the truncation level K∗ in the same way as in [3], as follows. By dominating
process we mean a process that has tail probability at least as large as the one
under consideration. For a strictly dominating process the tail probability will
be higher. The dominating process X̄(t) has generator

Q̄ =




A10 A0 0 0 0 . . .
0 Ā11 Ā0 0 0 . . .
0 Ā22 Ā12 Ā0 0 . . .
0 0 Ā23 Ā13 Ā0 . . .
...

...
...

...
. . . . . .




where
(Ā0)i,j = 1

C [(A0e)max], (Ā2k)i,j = 1
C

(
(A2,k−1)e

)
min

for k ≥ 2; (Ā1k)ij =

(A1k)ij , j 6= i, k ≥ 1; and C = Nm+(M +1)(n−k +1)mn1 +M(n−k +2)mn2

is the dimension of level i ≥ 1. We choose the truncation level K∗ in such a
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way that the probability of the process being in level higher than K∗ is suffi-
ciently small (any prescribed positive number, however small). This guarantees
that by our truncation procedure no useful information is lost. Note that by
this truncation procedure we are not chopping the system beyond level K∗. In-
stead it is assumed that the retrial rate, while in levels K∗ or higher, remain
the same. This means that we have the infinitesimal generator looking like a
quasi-Toeplitz matrix since from level K∗ onward we have “repetitive pattern”
in the infinitesimal generator. The readers may also refer to Anisimov and Ar-
talejo [1] and Falin and Templeton [5] on truncation procedures. The study
of level-dependent quasi-birth and death process (LDQBD) is carried out using
matrix analytic method by first choosing a truncation level. Since for large trun-
cation levels it can be assumed that the system behaviour (for example retrial
rate in the present set up) at any level above the truncation level can be as-
sumed the same as when the system is at the truncated level, the entries in the
infinitesimal generator starting from that level, will have a repetitive pattern.

5. Performance measures

We partition the steady state vector x as x = (x0, x1, x2, . . . ) where the sub-
vectors xjs are again partitioned as xj = x(j1, j2, j3, j4) which correspond to
Ni(t) = ji, 1 ≤ i ≤ 4.

(1) Fraction of time the system is down is given by

Pdown =
K∗∑

j1=0

M∑

j2=0

2∑

j4=1

x(j1, j2, n − k + 1, j4)e.

(2) System reliability, defined as the probability that at least k components
are operational, Prel is given by

Prel = 1 −Pdown.

(3) Average number of external units waiting in the pool is given by

Npool =
M∑

j2=1

j2(
K∗∑

j1=0

n−k+1∑

j3=1

x(j1, j2, j3, 1)e

+
M∑

j2=2

(j2 − 1)
K∗∑

j1=0

n−k+1∑

j3=0

x(j1, j2, j3, 2)e.

(4) Average number of external units in the orbit is given by

Norbit =
K∗∑

j1=1

j1[x(j1)e].

(5) Average number of failed components is given by
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Nfaic =
n−k+1∑

j3=1

j3




K∗∑

j1=0

M∑

j2=1

x(j1, j2, j3, 2)e

+
K∗∑

j1=0

M∑

j2=0

x(j1, j2, j3, 1)e


 +

N−1∑

j3=1

j3

K∗∑

j1=0

x(j1, 0, j3, 0)e.

(6) The probability that an external unit on its arrival joins the queue in
the pool, is given by

Pqueue =
1
λg





K∗∑

j1=0

M−1∑

j2=1

n−k+1∑

j3=1

2∑

j4=1

x(j1, j2, j3, j4)[D1 ⊗ Inj4
]e

+
K∗∑

j1=0

n−k+1∑

j3=1

x(j1, 0, j3, 1)(D1 ⊗ In1)e



 .

(7) The probability that an external unit on its arrival gets service directly,
is given by

Pds =
1
λg





K∗∑

j1=0

N−1∑

j3=0

x(j1, 0, j3, 0)D1e



 .

(8) The probability that an external unit on its arrival enters orbit, is given
by

Porbit =
1
λg

{
K∗∑

i=0

x(i)A0e

}
.

(9) Fraction of time the server is busy with external customers is given by

Pexbusy =
K∗∑

j1=0

M∑

j2=1

n−k+1∑

j3=0

x(j1, j2, j3, 2)e.

(10) Probability that the server is found idle is given by

Pidle =
K∗∑

j1=0

N−1∑

j2=0

x(j1, 0, j2, 0).

(11) Probability that the server is found busy is given by

Pbusy = 1 −Pidle.
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(12) Expected loss rate of external customers is given by

λloss =
K∗∑

j1=0

n−k+1∑

j2=1

x(j1, M, j2, 1)(1 − γ)(D1 ⊗ In1)e

+
K∗∑

j1=0

n−k+1∑

j2=0

x(j1, M, j2, 2)(1 − γ)(D1 ⊗ In2)e

+
K∗∑

j1=1

n−k+1∑

j2=1

(1 − δ)j1θx(j1, M, j2, 1)e

+
K∗∑

j1=1

n−k+1∑

j2=0

(1 − δ)j1θx(j1, M, j2, 2)e

(13) We construct a cost function with the following costs: C1 is the holding
cost per unit time per customer waiting in the pool, C2 is the loss per
unit time due to the system becoming down, C3 is the loss per unit time
due to a customer leaves the system without taking service, C4 is the
holding cost per unit time per failed component in the system, C5 is the
loss per unit time due to the server becoming idle and C6 is the profit per
unit time due to the server becoming busy with an external customer.

6. Numerical illustration

Set θ = 15.0, λ = 1.0, γ = 0.7, δ = 0.7, n = 11, k = 4, M = 5, N = 4,

S1 =
[
−6.5 4.0
1.5 −4.5

]
, S2 =

[
−5.06 2.06
4.0 −6.5

]
, S0

1 =
[
2.5
3.0

]
, S0

2 =
[
3.0
2.5

]
, α =

(0.5, 0.5), β = (0.5, 0.5),
C1 = 10.0, C2 = 1500.0, C3 = 100.0, C4 = 20.0, C5 = 50.0, C6 = 200.0.

Effect of correlation : The additional parameters for table 1 are the following

D0 =
[
−5.5 3.5
1.0 −3.5

]
, D1 =

[
1.0 1.0
1.0 1.5

]
. (A1)

For this pair average arrival rate = 2.34615, correlation =-0.00029

D0 =
[
−4.05 1.55
3.5 −5.5

]
, D1 =

[
2.05 0.45
1.0 1.0

]
. (A2)

For this pair average arrival rate = 2.34615, correlation =0.00029

D0 =
[
−6.5 4.0
1.5 −4.5

]
, D1 =

[
1.5 1.0
1.0 2.0

]
. (B1)

For this pair average arrival rate = 2.83333, correlation =-0.00042
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D0 =
[
−5.06 2.06
4.0 −6.5

]
, D1 =

[
2.56 0.44
1.0 1.5

]
. (B2)

For this pair average arrival rate = 2.83333, correlation =0.00042

D0 =
[
−6.6 4.05
1.55 −4.6

]
, D1 =

[
1.55 1.0
1.0 2.05

]
. (C1)

For this pair average arrival rate = 2.88224, correlation =-0.00041

D0 =
[
−5.15 2.1
4.05 −6.6

]
, D1 =

[
2.6 0.45
1.0 1.55

]
. (C2)

For this pair average arrival rate = 2.88224, correlation =0.00041
In the above correlation is between two inter-arrival times.

Table 1

Pdown Npool Norbit Nfaic Pexbusy Pidle Cost
A1 .2805× 10−2 3.262 0.1204 2.2281 0.5620 0.0842 37.8228
A2 .2803× 10−2 3.2572 0.1207 2.2278 0.5612 0.0850 38.1696
B1 .2923× 10−2 3.6689 0.1822 2.2431 0.5940 0.0522 68.2556
B2 .2922× 10−2 3.6647 0.1824 2.2429 0.5935 0.0526 68.4537
C1 .2932× 10−2 3.7031 0.1888 2.2442 0.5964 0.0497 71.6377
C2 .2931× 10−2 3.6992 0.1890 2.2440 0.5960 0.0502 71.8214

The table 1 shows that as the external arrival rate increases the system down
probability increases; but this increase is narrow as compared to the decrease in
server idle probability. Also as expected, the expected number in the pool, in the
orbit and the expected number of failed components and the fraction of time the
server is found busy with an external customer, increases as the external arrival
rate increases. The table also shows that as the correlation changes from negative
to positive, there is a slight increase in cost and in the server idle probability.
Also when correlation changes from negative to positive, the expected number of
pooled customers and failed components decrease while the expected number in
the orbit increases. The increase in probability Pexbusy being small compared to
the increase in other parameters can be thought of as the reason behind increase
in cost. But all these changes are narrow as the difference between negative and
positive correlation is small.

Effect of component failure rate: Take θ = 20.0, γ = 0.7, δ = 0.7, n = 11,
k = 4, M = 5, N = 4.

Arrival process is as in (A1).
Table 2 shows that when the component failure rate λ increases, the system

down probability as well as expected number of failed components increase and
the idle time probability of the server decreases as expected. But note that as λ
increases, the fraction of time the server is found busy with an external customer
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Table 2. Effect of component failure rate

λ Pdown Npool Norbit Nfaic Pexbusy Pidle Cost
0.05 .196× 10−8 2.1163 0.0285 1.5266 0.7513 0.2310 -67.3177
0.1 .5933× 10−7 2.1765 0.0311 1.5538 0.7432 0.2213 -63.3658
1.0 .2801× 10−2 3.2399 0.0907 2.2276 0.5607 0.0855 38.4979
2.0 0.04702 4.2095 0.1748 3.5505 0.3029 0.0208 261.502
3.0 0.17207 4.7390 0.2362 5.1091 0.1149 0.0038 580.397

decreases and as a result the expected pool size increases. Also note that the
expected orbit size is small, which shows that the orbital customers are either
transfered to the pool (when λ is small) or leaves the system forever (when
λ is large). Since the probability Pdown increases and the probability Pexbusy

decreases, as λ increases, the cost also increases.

Effect of N policy level: θ = 20.0, λ = 2.0, n = 13, k = 4, M = 5
The other parameters are same as for table 2.

Table 3 shows that the system performance measure which is most affected

Table 3. Effect of N -policy level

N Pdown Npool Norbit Nfaic Pexbusy Pidle Cost
4 0.02245 4.2521 0.1802 3.8666 0.2866 0.01969 203.559
5 0.02795 4.2249 0.1801 4.2456 0.2869 0.02325 219.258
6 0.03528 4.1968 0.1796 4.6087 0.2882 0.02717 237.002
7 0.04509 4.1658 0.1787 4.9473 0.2910 0.03135 257.358
8 0.05830 4.1300 0.1771 5.2518 0.2959 0.03577 281.200

by the N -policy level is the expected number of failed components. This is
expected because as N increases, time for the service of failed components to be
started, once the system started with all components operational, increases so
that during this time more components may fail. For the same reason a pooled
customer has a better chance of getting service and as a result Pexbusy increases,
Npool and Norbit decrease. Also note that the server idle probability is small.
The increase in Nfaic might be the reason behind the increase in cost.

Effect of retrial rate θ: Take λ = 1.0, n = 11, k = 4, M = 5, N = 4
The other parameters are the same as in table 2.
Table 4 shows that as θ increases, expected number of customers in the orbit

decreases; but the expected pool size also decreases which tells that retrying
customers may be leaving the system. Note that the idle probability of the
server is very small and the expected pool size is also close to the maximum
pool capacity so that retrying customers may choose to leave the system after a
failed retrial. Also this can be thought of as the reason behind the decrease in
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the fraction of time the server is found busy with an external customer and the
increase in cost as θ increases.

Effect of pool size M : θ = 10.0, λ = 1.0
The other parameters are same as for table 2.
Table 5 shows that as M , the pool size, increases, expected number of pooled

customers increases and as a result the expected number of failed components,
the system down probability and the fraction of time the server is found busy
with and external customer increase. But the expected number in the orbit
decreases, which is expected because as M increases more customers can join
the pool. As expected, the idle probability of the server decreases as M increases.

Comparison with the case where no external customers are allowed:
Below we compare the k-out-of-n-system with a k-out-of-n system where no
external customers are allowed.

Case 1. k-out-of-n system where no external customers are allowed (see tables
6 and 7)

Case 2. k-out-of-n system
θ = 10.0, λ = 1.0, γ = 0.7, δ = 0.7, n = 11, k = 4, N = 4

D0 =
[
−5.5 3.5
1.0 −3.5

]
D1 =

[
1.0 1.0
1.0 1.5

]
,

S1 =
[
−7.5 2.0
2.1 −7.7

]
S2 =

[
−5.06 2.06
4.0 −6.5

]
,

S0
1 =

[
5.5
5.6

]
S0

2 =
[
3.0
2.5

]
,

α =
[
0.5 0.5

]
β =

[
0.5 0.5

]
.

Table 6(a) shows that compared to the increase in the fraction of time the
server is found busy, the increase in the system down probability is not high, if
we provide service to external customers in a k-out-of-n system To make these
statements more clear we consider the cost function

IDcost = C11 · Pdown − C12 · Pbusy

Table 4. Effect of retrial rate

θ Pdown Npool Norbit Nfaic Pexbusy Pidle cost
5.0 .2832× 10−2 3.3908 0.3501 2.2315 0.5704 0.07579 33.688
10.0 .2813× 10−2 3.3008 0.1790 2.2290 0.5644 0.08176 36.612
15.0 .2805× 10−2 3.2620 0.1204 2.2281 0.5620 0.08415 37.823
20.0 .2801× 10−2 3.2399 0.0907 2.2276 0.5607 0.08546 38.498
25.0 .2798× 10−2 3.2255 0.0728 2.2272 0.5598 0.08630 38.932
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Table 5. Effect of pool size

M Pdown Npool Norbit Nfaic Pexbusy Pidle cost
3 .2655× 10−2 1.9658 0.2155 2.2090 0.5084 0.1377 65.402
4 .2743× 10−2 2.6238 0.1942 2.2201 0.5410 0.1051 55.047
5 .2813× 10−2 3.3008 0.1790 2.2290 0.5644 0.0818 36.612

where C11 is the loss per unit time the system being down and C12 is the profit
per unit time due to the server being busy.

Table 6(b) shows that when M = 1 and λ ≤ 1.5, IDcost is smaller in case 2
than in case 1 even when C11 is 1000 times bigger than C12. But when λ = 2.0
and 2.5, IDcost is larger in case 2 than case 1 when C11 is 100 times larger than
C12. When M = 4 and λ ≤ 1.0, the table shows that IDcost is smaller in case 2
than in case 1 even when C11 is 1000 times bigger than C12. But when λ = 2.0
and 2.5, IDcost is larger in case 2 than case 1, when C11 is 100 times larger than
C12.

Table 6(b) indicates that we are able to utilize server idle time without much
effecting the system reliability.
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