Energies of some non-regular graphs

G. Indulal* and A. Vijayakumar

Department of Mathematics, Cochin University of Science and Technology, Cochin 682 022, India E-mail: indulalgopal@cusat.ac.in

Received 6 December 2005; revised 13 December 2005

The energy of a graph G is the sum of the absolute values of its eigenvalues. In this paper, we study the energies of some classes of non-regular graphs. Also the spectrum of some non-regular graphs and their complements are discussed.

KEY WORDS: eigenvalues, energy, equienergetic graphs

1. Introduction

Let G be a graph on p vertices with adjacency matrix A. Then A is a real symmetric matrix and so the eigenvalues of A are real and hence can be ordered. The eigenvalues of $A,\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p$ are called the eigenvalues of G and form the spectrum of G. The energy E(G) of a graph G is then defined as the sum of absolute values of its eigenvalues. That is $E(G) = \sum_{i=1}^{n} |\lambda_i|$. The study of properties of E was initiated by Gutman [5]. In chemistry, the energy of a graph is well studied [3], since it can be used to approximate the total π -electron energy of a molecule. In chemical graph theory an important line of research has been the search for approximate expressions or bounds for the total π -electron energy. There are a lot of results on the bound for E which pertain to special class of graphs most of which are regular [7].

In [4] the eigenvalue distribution of regular graphs, the spectra of some well known family of graphs, their energies and the relation between eigenvalues of a regular graph and its complement are studied. In [10], the energy of iterated line graphs of regular graphs are obtained and a family of regular equienergetic graphs are presented. In [2,12] the existence of a pair of equienergetic graphs on p vertices is proved for every $p \equiv 0 \mod(4)$ and $p \equiv 0 \mod(5)$ and in [9] we have extended the same for $p = 6, 14, 18, \text{ and } p \ge 20$ and some other recent works are [6, 7, 10]. Some aspects of chemical applications of graph theory is discussed in [8].

*Corresponding author.

378

In this paper, the emphasis is on the energy of non-regular graphs. In the first part, we discuss energies of some classes of graphs arising from graph cross products. Using this we obtain some non-regular equienergetic graphs.

In the second part, we study some operations on a given graph G and the energy of the resultant graph in terms of the energy of G is obtained. Using these operations on regular graphs whose energy is known, we obtain energies of some non-regular family of graphs.

In the third part, we obtain the eigenvalues of complements of some nonregular graphs. All graph theoretic terminologies are from Ref. [1]. We use the following lemmas in this paper.

Lemma 1 [4]. Let M, N, P, and Q be matrices with M invertible. Let $S = \begin{bmatrix} M & N \\ P & Q \end{bmatrix}$. Then det $S = |M| |Q - PM^{-1}N|$.

Lemma 2 [4]. Let M, N, P, and Q be matrices. Let $S = \begin{bmatrix} M & N \\ P & Q \end{bmatrix}$. If M and P commutes then detS = |MQ - PN|.

Lemma 3 [4]. Let G be graph with $\operatorname{spec}(G) = \{\lambda_i\}$, i = 1 to n and H a graph with $\operatorname{spec}(H) = \{\mu_j\}$, j = 1 to n'. Then the spectrum of cartesian product of G and H is given by $\operatorname{spec}(G \times H) = \{\lambda_i + \mu_j\}$, i = 1 to n, j = 1 to n'.

Lemma 4 [10]. Let G be an r regular graph with $spec(G) = \{\lambda_i\}, i = 1$ to p. Then the spectrum of $L^2(G)$ is given by

$$\begin{pmatrix} 4r - 6 \lambda_2 + 3r - 6 \dots \lambda_p + 3r - 6 & 2r - 6 & -2 \\ 1 & 1 & \dots & 1 & \frac{p(r-2)}{2} & \frac{pr(r-2)}{2} \end{pmatrix}.$$

Lemma 5 [4]. The spectrum of K_m is $\binom{m-1 - 1}{1 m - 1}$.

Lemma 6 [4]. Let G be an r- regular graph on p vertices with $r = \lambda_1, \lambda_2, ..., \lambda_m$ as the distinct eiegenvalues. Then there exists a polynomial P(x) such that $P\{A(G)\} = J$ where J is the all one matrix of order p and P(x) is given by

$$P(x) = p \times \frac{(x - \lambda_2) (x - \lambda_3) \dots (x - \lambda_m)}{(r - \lambda_2) (r - \lambda_3) \dots (r - \lambda_m)},$$

so that P(r) = p and $P(\lambda_i) = 0$ for all $\lambda_i \neq r$.

Lemma 7 [4]. Let A be a matrix with λ as an eigenvalue. Then for any polynomial f(x), $f(\lambda)$ is an eigenvalue of f(A).

2. Energy of Cartesian product of some graphs

In this section, we first consider some graphs whose spectrum is contained in [-2k, 2k] for some k and then use it to construct non-regular equienergetic graphs.

Example

- 1. For any 2k regular graph G, the spectrum of all vertex deleted subgraphs G v lies in [-2k, 2k].
- 2. G and H are two graphs on five vertices whose spectrum is contained in [-4, 4]. See figure 1.

Notation:

Let G be a graph. Then G^k denote the cross product of G, k times.

Theorem 1. Let G be an r regular graph on p vertices with $r \ge 2(k + 1)$. Then for any graph F on n vertices whose spectrum is contained in [-2k, 2k],

$$E\left[\left\{L^2(G)\right\}^k \times F\right] = \frac{nk}{2^{k-2}}\left[pr(r-2)\right]^k.$$

Proof. By lemmas 3 and 4 the only negative eigenvalues of $\{L^2(G)\}^k$ is -2k with multiplicity $\left[\frac{pr(r-2)}{2}\right]^k$ for $r \ge k+2$.

Let *F* be a graph with spectrum contained in [-2k, 2k]. Then by lemma 3, for $r \ge 2(k + 1)$, the only negative eigenvalues of $\left[\left\{L^2(G)\right\}^k \times F\right]$ are $-2k + \mu_i$, where $\mu_i, i = 1$ to n are the eigenvalues of *F*, each with multiplicity $\left[\frac{pr(r-2)}{2}\right]^k$. Thus by definition of energy, we get

Figure 1. Two graphs whose spectrum is contained in [-4, 4].

G. Indulal and A. Vijayakumar / Energies of some non-regular graphs

$$E\left[\left\{L^2(G)\right\}^k \times F\right] = 2 \times \left[\frac{pr(r-2)}{2}\right]^k \sum_{i=1}^n |-2k + \mu_i|$$
$$= \frac{nk}{2^{k-2}} \left[pr(r-2)\right]^k.$$

Corollory 1. For any $r \ge 4$ regular p point graph G, $L^2(G) \times C_n$ and $L^2(G) \times P_n$ are equienergetic with energy 2pnr(r-2).

Proof. Proof follows from the fact that the spectra of C_n and P_n lies in [-2, 2].

Corollory 2. For any $r \ge 4$ regular graph G, $L^k(G) \times C_n$ and $L^k(G) \times P_n$ are equienergetic for $k \ge 3$.

Proof. Since $L^q(G) = L^2[L^{q-2}(G)]$, the claim follows from corollary 1.

Corollory 3. Let F_1 and F_2 be non-isomorphic, non-regular graphs on *n* vertices whose spectrum is contained in [-2k, 2k]. Then $L^k(G) \times F_1$ and $L^k(G) \times F_2$ are non-regular and equienergetic with energy $\frac{nk}{2k-2} [pr(r-2)]^k$.

Theorem 2. Let *m* and *k* be positive integers with $m \ge 2k$. Then for any graph *G* on *p* vertices whose spectrum is contained in $[-k, k], E[\{K_m\}^k \times G] = 2pk(m-1)^k$.

Proof. From lemma 3 it follows that the spectrum of $\{K_m\}^k$ is

$$\binom{km-k\ (k-1)m-k\ (k-2)m-k\ \dots\ m-k\ -k}{1\ kC_1(m-1)\ kC_2(m-1)^2\ \dots\ kC_1(m-1)^k\ (m-1)^k}.$$

Now, given that G is a graph on p vertices whose spectrum is contained in [-k, k]. Thus for every $\mu_i \in \operatorname{spec}(G)$, we have $\mu_i + k \ge 0$. Thus if $m \ge 2k$ then by lemma 3 the only negative eigenvalues of $\{K_m\}^k \times G$ is $-k + \mu_i, i = 1$ to p each with multiplicity $(m-1)^k$. Thus

$$E\left[\{K_m\}^k \times G\right] = 2 \times (m-1)^k \times \sum_{i=1}^p |-k + \mu_i|$$
$$= 2pk(m-1)^k.$$

Corollory 4. $(K_m \times K_m) \times C_n$ and $(K_m \times K_m) \times P_n$ are equienergetic with energy $4n(m-1)^2$.

Corollory 5. Let F_1 and F_2 be non-isomorphic, non-regular graphs on p vertices whose spectrum is contained in [-k, k]. Then for every $m \ge 2k, \{K_m\}^k \times F_1$ and $\{K_m\}^k \times F_2$ are non-regular equienergetic graphs on $m^k p$ vertices with energy $2pk(m-1)^k$.

3. Energy of some classes of non-regular graphs

Definition 1 [11]. Let G be a graph on p vertices labelled as $V = \{v_1, v_2, v_3, \ldots, v_p\}$. Then take another set $U = \{u_1, u_2, \ldots, u_p\}$ of p vertices. Now define a graph H with $V(H) = V \bigcup U$ and edge set of H consisting only of those edges joining u_i to neighbors of v_i in G for each i. The resultant graph H is called the identity duplication graph of G denoted by DG.

Let G be a connected r-regular graph with $V(G) = \{v_1, v_2, \ldots, v_p\}$. We shall now consider the following seven operations on G, denote the resultant non-regular graphs by $H_{i,i} = 1, 2 \dots 7$ and obtain expressions for the energies of these graphs in terms of the energy of G.

Operation 1. Let G_1 be the identity duplication graph of G. Then introduce k new vertices and join each of these k new vertices to all vertices of G only.

Operation 2. Introduce two sets $U = \{u_i\}$ and $W = \{w_i\}$ of p vertices and make u_i adjacent to vertices in $N(v_i)$ and w_i adjacent to vertices in $\overline{N(v_i)}$.

Operation 3. Introduce one copy of G on $U = \{u_i\}$. Make u_i adjacent to those vertices in $\overline{N(v_i)}$ for each *i*.

Operation 4. Introduce two sets $U = \{u_i\}, i = 1, 2, ..., p$ and $W = \{w_j\}, j = 1, 2, ..., k$. Now make u_i adjacent to all vertices in $\overline{N(v_i)}$ for each *i* and join every vertex of W to all vertices of G.

Operation 5. Introduce two sets $U = \{u_i\}$ and $W = \{w_i\}$ of p vertices each and make u_i adjacent to vertices in $\overline{N(v_i)}$ and w_i adjacent to vertices in $\overline{N(v_i)}$.

Operation 6. Introduce two sets $U = \{u_i\}$ and $W = \{w_i\}$ of p vertices each. Then join u_i to vertices in $N(v_i)$ and w_i to vertices in $\overline{N(v_i)}$ or each i and remove the edges of G.

Operation 7. Introduce a set $U = \{u_i\}$ of p vertices. Then join u_i to vertices in $\overline{N(v_i)}$ for each *i*. Then take a set W of k vertices and join each of them to all vertices of G and remove the edges of G.

Theorem 3. Let G be a connected r regular graph and H_i , i = 1, 2, ..., 7 be the graphs described as above. Then

$$E(H_1) = 2\left[E(G) - r + \sqrt{r^2 + pk}\right],$$

$$E(H_2) = 3(E(G) - r) + \sqrt{r^2 + 4\left\{(p - r)^2 + r^2\right\}},$$

$$E(H_3) = \begin{cases} 2[E(G) + p - 2r], & \text{if } p \ge 2r, \\ 2E(G), & \text{if } p < 2r, \end{cases}$$

$$E(H_4) = \sqrt{5}[E(G) - r] + \sqrt{r^2 + 4\left(pk + \{p - r\}^2\right)},$$

$$E(H_5) = 3[E(G) - r] + \sqrt{r^2 + 8(p - r)^2},$$

$$E(H_6) = 2\left\{\sqrt{2}(E(G) - r) + \sqrt{r^2 + (p - r)^2}\right\},$$

$$E(H_7) = 2\left[E(G) - r + \sqrt{(p - r)^2 + pk}\right].$$

Proof. In each of the operations, using lemmas 1, 6, and 7, the characteristic polynomial and the eigenvalues are given in table 1.

Now the expressions for the energies follows from column 4 of table 1. \Box

4. Eigenvalues of complements of some non-regular graphs

Let G be an r-regular graph on p vertices with spectrum $\{\lambda_i\}_{i=1}^p$. Then by Cvetkovic et al. [4] the eigenvalues of \overline{G} are p-r-1 and $-1-\lambda_i$ where λ_i is an eigenvalue of G different from r. However, no such relation exists between the eigenvalues of a non-regular graph and its complement.

In this section, we give the eigenvalues of some non-regular graphs and their complements obtained using the following operations on regular graphs.

Let G be a connected r-regular graph with $V(G) = \{v_1, v_2, \dots, v_p\}$. Consider the following operations on G and denote the resultant graphs by F_i , $i = 1, \dots, 8$.

Operation 8. Introduce a copy of \overline{G} on $U = \{u_1, u_2, \dots, u_p\}$. Make u_i adjacent to v_i .

Operation 9. Introduce a copy of G on $U = \{u_1, u_2, \dots, u_p\}$. Make u_i adjacent to vertices in $\overline{N[v_i]}$.

		Spectrum of $H_i s$.	
Op:	Adjacency matrix	Ch: Polynomial	Eigenvalues
1	$\begin{bmatrix} 0_p & A & J_{p \times k} \\ A & 0_p & 0_{p \times k} \\ J_{k \times p} & 0_{k \times p} & 0_k \end{bmatrix}$	$x^{k} \prod_{i=1}^{p} \left[x^{2} - kP(\lambda_{i}) - \lambda_{i}^{2} \right]$	x = 0 ;k times = $\pm \sqrt{r^2 + pk}$ = $\pm \lambda_i; \lambda_i \neq r$
2	$\begin{bmatrix} A & A & \overline{A} + I \\ A & 0_p & 0_p \\ \overline{A} + I & 0_p & 0_p \end{bmatrix}$	$x^{p}\prod_{i=1}^{p}\left[x(x-\lambda_{i})-(P(\lambda_{i})-\lambda_{i})^{2}-\lambda_{i}^{2}\right]$	x = 0 ; p times = $\frac{r \pm \sqrt{r^2 + 4[(p-r)^2 + r^2]}}{2}$ = $2\lambda_i, -\lambda_i; \lambda_i \neq r$
3	$\begin{bmatrix} A & \overline{A} + I \\ \overline{A} + I & A \end{bmatrix}$	$\prod_{i=1}^{p} \left[(x - \lambda_i)^2 - \{\lambda_i - P(\lambda_i)\}^2 \right]$	x = p, 2r - p = $2\lambda_i; \lambda_i \neq r$ = 0; $p - 1$ times
4	$\begin{bmatrix} A & \overline{A} + I & J_{p \times k} \\ \overline{A} + I & 0_p & 0_{p \times k} \\ J_{k \times p} & 0_{k \times p} & 0_k \end{bmatrix}$	$x^k \prod_{i=1}^p [x(x-\lambda_i) - kJ] - [J-A]^2$	$x = 0; k \text{ times}$ $= \frac{r \pm \sqrt{r^2 + 4[pk + (p-r)^2]}}{2}$ $= \frac{1 \pm \sqrt{5}}{2} \lambda_i; \lambda_i \neq r$
5	$\begin{bmatrix} A & \overline{A} + I & \overline{A} + I \\ \overline{A} + I & 0_p & 0_p \\ \overline{A} + I & 0_p & 0_p \end{bmatrix}$	$x^{k}\prod_{i=1}^{p}\left\{x(x-\lambda_{i})-2\left[J-A\right]^{2}\right\}$	$x \stackrel{=}{=} 0; p \text{ times}$ = $\frac{r \pm \sqrt{r^2 + 8(p-r)^2}}{2}$ = $2\lambda_i, -\lambda_i; \lambda_i \neq r$
6	$\begin{bmatrix} 0 & A \ \overline{A} + I \\ A & 0 & 0 \\ \overline{A} + I & 0 & 0 \end{bmatrix}$	$x^{p} \prod_{i=1}^{p} \left\{ x^{2} - [J - A]^{2} - A^{2} \right\}$	x = 0; p times = $\pm \sqrt{r^2 + (p - r)^2}$ = $\pm \sqrt{2\lambda_i}; \lambda_i \neq r$
7	$\begin{bmatrix} 0 & \overline{A} + I & J_{p \times k} \\ \overline{A} + I & 0 & 0 \\ J_{k \times p} & 0 & 0 \end{bmatrix}$	$x^{k} \prod_{i=1}^{p} \left\{ x^{2} - kJ - (J - A)^{2} \right\}$	x = 0; k times = $\pm \sqrt{pk + (p - r)^2}$ = $\pm \lambda_i; \lambda_i \neq r$

Table 1 Spectrum of H:s

where A, J are, respectively, the adjacency matrix of G and the all one matrix of order p and $J = P(\lambda_i)$ as given by lemma 6.

Operation 10. Introduce p isolated vertices on $U = \{u_1, u_2, \dots, u_p\}$. Make u_i adjacent to vertices in $\overline{N[v_i]}$.

Operation 11. Introduce p isolated vertices on $U = \{u_1, u_2, \dots, u_p\}$. Make u_i adjacent to vertices in $\overline{N(v_i)}$.

Operation 12. Introduce *p* isolated vertices on $U = \{u_1, u_2, ..., u_p\}$. Make u_i adjacent to v_i for each *i*.

Operation 13. Take one copy of G on $U = \{u_1, u_2, \dots, u_p\}$ and a set $W = \{w_1, w_2, \dots, w_p\}$ of p isolated vertices. Now join u_i to v_i and w_i to both u_i and v_i for each i.

Operation 14. Introduce *p* isolated vertices on $U = \{u_1, u_2, ..., u_p\}$. Now join u_i to all vertices of *G* except v_i for each *i*.

Operation 15. Take a copy of \overline{G} on $U = \{u_1, u_2, \dots, u_p\}$. Now join u_i to all vertices in $\overline{N[v_i]}$ for each *i*.

Theorem 4. Let G be an r regular graph on $V(G) = \{v_1, v_2, \dots, v_p\}$ with spectrum $\{\lambda_1 = r, \lambda_2, \dots, \lambda_p\}$ and F_{is} be the graphs as described above. Then the spectrum of F_i and its complement, $i = 1, 2, \dots, 8$ are as follows.

$$\begin{array}{ll} i & {\rm Spectrum of } F_i & {\rm Spectrum of } \overline{F_i} \\ 1 & \left\{ \frac{(p-1)\pm \sqrt{(p-2r-1)^2+4}}{2}; \\ \frac{-1\pm \sqrt{1+4(\lambda_i^2+\lambda_i+1)}}{2}; \lambda_i \neq r \end{array} \right\} & \left\{ \frac{(p-1)\pm \sqrt{(p-1)^2+4(p-r-1)r^2}}{2}; \lambda_i \neq r \\ \frac{-1\pm \sqrt{1+4(\lambda_i^2-\lambda_i+1)}}{2}; \lambda_i \neq r \end{array} \right\} & \left\{ \frac{p}{p-2r-2} \\ 0, (p-1) & {\rm times} \\ 2\lambda_i+1; \lambda_i \neq r \\ 3 & \left\{ \frac{r\pm \sqrt{r^2+4(p-r-1)^2}}{2} \\ \frac{\lambda_i\pm \sqrt{5\lambda_i^2+8\lambda_i+4}}{2}; \lambda_i \neq r \\ 1 \pm \sqrt{2} \\ \frac{1\pm \sqrt{2}}{2} \lambda_i; \lambda_i \neq r \end{array} \right\} & \left\{ \frac{2(p-1)-r\pm \sqrt{r^2+4(r+1)^2}}{2} \\ \frac{-(2+\lambda_i)\pm \sqrt{5\lambda_i^2+8\lambda_i+4}}{2} \\ 4 & \left\{ \frac{r\pm \sqrt{r^2+4(p-r)^2}}{2} \\ \frac{1\pm \sqrt{2}}{2} \lambda_i; \lambda_i \neq r \\ 1 \\ 5 & \frac{\lambda_i \pm \sqrt{\lambda_i^2+4}}{2} \\ 6 & \frac{\lambda_i - 1}{2} \\ \frac{\lambda_i \pm \sqrt{\lambda_i^2+4}}{2} \\ 7 & \frac{r\pm \sqrt{r^2+4(p-1)^2}}{2} \\ \frac{1\pm \sqrt{2}}{2}; \lambda_i \neq r \\ 1 \\ 8 & \frac{p-1\pm \sqrt{(p-1)^2+4(p-r-1)(p-2r-1)}}{2} \\ 8 & \frac{p-1\pm \sqrt{(p-1)^2+4(p-r-1)(p-2r-1)}}{2} \\ 1 \\ \frac{p-2r-1\pm \sqrt{(p-2r-1)^2-4r(p-r-1)+4(r+1)^2}}{2} \\ \frac{p-2r-1\pm \sqrt{(p-2r-1)^2-4r(p-r-1)+4(r+1)^2}}{2} \\ \frac{p-2r-1\pm \sqrt{(p-2r-1)^2-4r(p-r-1)+4(r+1)^2}}{2} \\ \frac{p-2r-1\pm \sqrt{(p-2r-1)^2-4r(p-r-1)+4(r+1)^2}}{2} \\ \end{array} \right\}.$$

Proof. Table 2 gives the adjacency matrices of the graphs F_i and its complement under each of the operation for i = 1, ..., 8.

		1
i	Adjacency matrix of F_i	Adjacency matrix of $\overline{F_i}$
1	$\begin{bmatrix} A & I \\ I & \overline{A} \end{bmatrix}$	$\left[\begin{array}{cc}\overline{A} & J-I\\J-I & A\end{array}\right]$
2	$\left[\begin{array}{c} A & \overline{A} \\ \overline{A} & A \end{array}\right]$	$\left[\begin{array}{cc}\overline{A} & A+I\\ A+I & \overline{A}\end{array}\right]$
3	$\left[\frac{A}{\overline{A}} \ \overline{A} \\ 0_p\right]$	$\begin{bmatrix} \overline{A} & A+I \\ A+I & J-I \end{bmatrix}$
4	$\begin{bmatrix} A & \overline{A} + I \\ \overline{A} + I & 0_p \end{bmatrix}$	$\left[\begin{array}{cc}\overline{A} & A\\ A & J - I\end{array}\right]$
5	$\begin{bmatrix} A & I \\ I & 0 \end{bmatrix}$	$\begin{bmatrix} \overline{A} & J - I \\ J - I & J - I \end{bmatrix}$
6	$\begin{bmatrix} A & I & I \\ I & A & I \\ I & I & 0 \end{bmatrix}$	$\begin{bmatrix} \overline{A} & J - I & J - I \\ J - I & \overline{A} & J - I \\ J - I & J - I & J - I \end{bmatrix}$
7	$\left[\begin{array}{cc}A & J-I\\J-I & 0\end{array}\right]$	$\left[\begin{array}{cc}\overline{A} & I\\ I & J-I\end{array}\right]$
8	$\left[\frac{A}{\overline{A}}\overline{\frac{A}{A}}\right]$	$\begin{bmatrix} \overline{A} & A+I \\ A+I & A \end{bmatrix}$

Table 2 Adjacency matrix of F_i and its complement

Now the theorem follows from table 3, which gives the characteristic polynomial of F_i and $\overline{F_i}$ for i = 1, 2, ..., 8.

	Characteristic polynomial of F_i and its complement.				
i	Ch polynomial of F_i	Ch polynomial of $\overline{F_i}$			
1	$\prod_{i=1}^{p} \left\{ [x+1+\lambda_i - J][x-\lambda_i] - 1 \right\}$	$\prod_{i=1}^{p} \left\{ [x - (J - 1 - \lambda_i)] [x - \lambda_i] - (J - I)^2 \right\}$			
2	$[x - (p - 1)](x + 1)^{p-1} \prod_{i=1}^{p} [x + J - 2\lambda_i - 1]$	$\prod_{i=1}^{p} \left\langle \{x - [J - I - \lambda_i]\}^2 - [\lambda_i + 1]^2 \right\rangle$			
3	$\prod_{i=1}^{p} \left[x^2 - \lambda_i x - (J - I - \lambda_i)^2 \right]$	$\prod_{i=1}^{p} \{ [x - (J - I - \lambda_i)] [x - (J - I)] \}$			
		$-(\lambda_i+1)^2$			
4	$\prod_{i=1}^{p} \left[x^2 - \lambda_i x - (J - \lambda_i)^2 \right]$	$\prod_{i=1}^{p} \left\{ [x - (J - I - \lambda_i)] [x - (J - I)] - \lambda_i^2 \right\}$			
5	$\prod_{i=1}^{p} \left[x^2 - \lambda_i x - 1 \right]$	$\prod_{i=1}^{p} \left[x^2 - \{ 2(J-I) - \lambda_i \} x - \lambda_i (J-I) \right]$			
6	$\prod_{i=1}^{p} \left[x - (\lambda_i - 1) \right] \left[x^2 - (\lambda_i + 1) x - 2 \right]$	$\prod_{i=1}^{p} (x + \lambda_i) \begin{bmatrix} x^2 - \{3 (J - I) - \lambda_i\} \\ -\lambda_i (J - I) \end{bmatrix}$			

Table 3

	Continued.				
i	Ch polynomial of F_i	Ch polynomial of $\overline{F_i}$			
7	$\prod_{i=1}^{p} x \left(x - \lambda_i \right) - (J - I)^2$	$\prod_{i=1}^{p} [\{x - (J - I - \lambda_i)\} \{x - J + I\} - 1]$			
8	$\prod_{i=1}^{p} \left\{ (x - \lambda_i) \left(x - J + I + \lambda_i \right) - \left(J - I - \lambda_i \right)^2 \right\}$	$\prod_{i=1}^{p} [(x - J + I + \lambda_i) (x - \lambda_i) - (1 + \lambda_i)^2]$			

Table	3
ontin	ied

Where $J = P(\lambda_i)$ as given by lemma 6.

Acknowledgment

The first author thanks the University Grants Commission of Government of India for providing fellowship under the FIP.

References

- [1] R. Balakrishnan, A Text Book of Graph Theory (Springer, New York, 1999).
- [2] R. Balakrishnan, The energy of a graph, Lin. Algeb. Appl. 387 (2004) 287-295.
- [3] C. A. Coulson, Proc. Cam. Phil. Soc. 36 (1940) 201-203.
- [4] D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications, (Academic Press, New York, 1980).
- [5] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz. 103 (1978) 1–22.
- [6] I. Gutman, The energy of a graph: old and new results, in: Algebraic Combinatorics and Applications, A. Betten, A. Kohnert, R. Laue, and A. Wassermann eds. Springer, Berlin, 2000, 196–211.
- [7] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441–456.
- [8] I. Gutman and O. E. Polansky, *Mathematical Concepts in Organic Chemistry*, (Springer, Berlin, 1986).
- [9] G. Indulal and A. Vijayakumar, On a Pair of Equienergetic Graphs, Comm. Math. Comput. Chem. (MATCH) 55 (2006) 83–90.
- [10] H.S. Ramane, H.B.Walikar, S.B.Rao, B.D. Acharya, I.Gutman, P.R. Hampiholi, and S.R. Jog, Equienergetic Graphs, Kragujevac. J. Math. 26 (2004) 5–13.
- [11] E. Sampathkumar, On duplicate graphs, J. Indian Math. Soc. 37 (1973) 285-293.
- [12] D. Stevanović, Energy and NEPS of graphs, Lin. Multilin. Algebra 53 (2005) 67-74.