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Chapter 1 

INTRODUCTION 
  

 
 

The Shannon’s entropy, introduced by Shannon (1948), has been 

extensively used as a quantitative measure of uncertainty associated with a 

random phenomena. If 1 2, ... nA A A  are mutually exclusive and exhaustive events in 

a sample space with respective probabilities 1 2, ... np p p , the Shannon’s entropy is 

defined as 

( )
1

log
n

n i i
i

H P p p
=

= −∑ . 

( )nH P  is being interpreted as a measure of uncertainty concerning the outcome 

of the experiment or a measure of information conveyed through the knowledge 

of the probabilities associated with the events. 

Observing that the Shannon’s entropy satisfies several properties, the earlier 

work on the Shannon’s entropy was centered around characterizing ( )nH P  based 

on several postulates. The works of Khinchin (1953), Tverberg (1958), Chaundy 

and Mcleod (1960), Lee (1964), Mathai and Rathie (1975), Ebanks et al. (1998), 

Yeung (2002), and Csiszar (2008) in this direction. Another aspect of interest that 

has received much attention among researchers is the identification of probability 

distributions that maximizes the Shannon’s entropy subject to some restrictions on 

the underlying random variable. The books by Kapur (1989, 1994) provide a more 

or less exhaustive review of various maximum entropy models.  

In the continuous setup if ( )f x  denotes the probability density function of 

a random variable X  with support [ ],a b , the continuous analogue of Shannon’s 

entropy takes the form 
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( ) ( ) ( )log
b

a

H F f x f x dx= −∫ . 

Ebrahimi and Pellerey (1995) have extended the definition of Shannon’s 

entropy to the left truncated situation and they used this measure to introduce a 

new partial ordering for life distributions. Ebrahimi (1996) has given an upper 

bound for this measure in terms of the mean residual life function, ( )m t , namely 

( ) ( ); 1 logH F t m t≤ + , 

where ( )m t < ∞ . Nair and Rajesh (1998), Sankaran and Gupta (1999), Asadi and 

Ebrahimi (2000) and Belzuence et al. (2004) have looked into the problem of  

characterizing probability distributions using the functional form of the residual 

entropy function. Rajesh and Nair (1998) have defined the residual entropy 

function in discrete time domain and have shown that it determines the 

distribution uniquely. Further, it is established that the constancy of the same is 

characteristic to the geometric distribution. Di Crescenzo and Longobardi (2002) 

have shown that in many realistic situations uncertainty is not necessarily related 

to the future but can also refer to the past. For considering such situations, they 

proposed the past entropy defined over ( )0, t . Recently, Nanda and Paul (2006,a) 

have proposed some ordering properties based on this measure. 

Kullback and Leibler (1951) have extensively studied the concept of 

directed divergence, which aims at discrimination between two populations. Aczel 

and Daroczy (1975) laid down an axiomatic foundation to this concept. Ebrahimi 

and Kirmani (1996, b) extended this concept and has given a measure of 

discrimination between two residual lifetime distributions. Further, they proved 

that the constancy of this measure is a characteristic property of the proportional 

hazards model. Along the similar lines of the measure proposed by Ebrahimi and 

Kirmani (1996, b), Di Crescenzo and Longobardi (2004) have examined the 

problem of discrimination between the past lives. 
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Another useful measure for discrimination among distributions is the notion 

of affinity studied by Matusita (1954). Affinity focuses attention on the likeness 

of distribution and has properties similar to that of Kullback- Leibler divergence 

measure. Kirmani (1968) has shown that the affinity between two distributions is 

related to the idea of distance between distributions. In testing hypothesis, it is 

desirable to know bounds of errors, because even if the most powerful test is 

adopted, it is often the case that we cannot obtain the exact value of the power of 

the test. However, we can easily get them in terms of affinity. The relative Renyi 

entropy, also known as Chernoff distance, finds application in several branches of 

learning as a potential measure of distance between two populations. Asadi et. al 

(2005) have studied the application of this measure in the context of reliability 

studies. 

The notion of inaccuracy was introduced by Kerridge (1961) and can be 

viewed as a generalization of the Shannon’s entropy. Suppose that the 

experimenter asserts that the probability of the thi  eventuality is iq  when the true 

probability is ip . Then the inaccuracy of the observer, as proposed by Kerridge 

(1961), can be measured by  

1
( , ) log

n

i i
i

I P Q p q
=

= −∑ ,       

where 1 2( , ,..., )nP p p p=  and 1 2( , ,..., )nQ q q q=  are two discrete probability 

distributions such that 0ip ≥ , 0iq ≥  and 
1 1

1
n n

i i
i i

p q
= =

= =∑ ∑ . In fact, the Kerridge’s 

inaccuracy measure can be expressed as the sum of a measure of uncertainty and a 

measure of discrimination between two populations. When an experimenter states the 

probabilities of various events in an experiment, the statement can lack precision in 

two ways: one is resulting from incorrect information and the other from vagueness in 

the statement. Kerridge (1961) proposed the “inaccuracy measure” that can take 

accounts for these two types of errors. Nath (1968) extended Kerridge’s inaccuracy to 

the case of continuous situation and discussed some properties. If  ( )F x  is the actual 
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distribution function corresponding to the observations and ( )G x  is the distribution 

function assigned by the experimenter and ( )f x  and ( )g x  are the corresponding 

density functions, the inaccuracy measure is defined as 

0

( , ) ( ) log ( )I F G f x g x dx
∞

= −∫ .  

He also extended this measure to inaccuracies of order ‘ r ’. Nair and Gupta 

(2007) extended the definition of measure of inaccuracy to the truncated situation. 

Recently, Taneja et. al (2009) proposed the uniqueness property of the dynamic 

inaccuracy measure defined by Nair and Gupta (2007) and some properties of this 

measure were also studied. In addition, the concept of inaccuracy has its 

application in statistical inference, estimation and coding theory.  

Even though concepts such as failure rate, mean residual life function, 

vitality function etc are extensively used in reliability studies for modeling 

lifetime data, recently a lot of interest has evoked in using entropy concepts to 

describe the stability of components. In life time studies, the data is generally 

truncated. Hence there is scope for extending information theoretic concepts to the 

truncated situation. Motivated by this, in the present study, we extend the 

definition of inaccuracy, affinity and Chernoff distance to the truncated situation. 

Further we also look into the problem of characterization of probability 

distributions using the functional form of these measures. 

After the present introductory chapter, in Chapter 2 we give a brief review 

of the existing literature in the area of study. In Chapter 3, we extend the 

definition of inaccuracy to the truncated situation and provide characterization 

results for certain probability distributions. The inaccuracy measure is generalized 

to inaccuracies of order ' 'r  in Chapter 4. Characterizations of distributions in the 

context of proportional hazards model and proportional reversed hazards model 

using the functional form of the generalized inaccuracy measure are also given in 

this chapter. In Chapter 5, we extend the notion of Chernoff distance to the 

truncated situation and obtain characterization results using functional form of the 
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truncated Chernoff distance. We also discuss affinity in the truncated situation, 

which is a special case of the Chernoff distance, in this chapter. Residual 

inaccuracy measure and affinity in discrete setup are the subject matter of Chapter 

6.Towards the end of this chapter we also give a plan for future study in this area.   
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Chapter 2 

REVIEW OF LITERATURE 
  

 

In the present chapter, we give a brief review of some of the existing work 

in reliability theory, entropy, inaccuracy and related areas, which are of use in 

subsequent chapters. 

2.1 Some basic concepts in Reliability 

The concepts of entropy, inaccuracy and affinity find a lot of application in 

fields of reliability. The basic concepts in reliability are the survival function, 

hazard rate, mean residual life function and their generalizations. In the sequel, we 

give the definitions and discuss some basic properties associated with these 

concepts.  

Survival function 

Let X  be a non-negative random variable, defined on a probability space 

( ), ,F PΩ , with distribution function ( )( )F x P X x= ≤ . In the reliability context, 

X  generally represents the length of life of a device measured in some units of 

time. The function 

( )( )F x P X x= >  

      1 ( )F x= − ,  (2.1) 

is called the survival (reliability) function. ( )F x  gives the probability that the 

device will operate with out failure for a time x . It is a non-increasing continuous 

function with (0) 1F =  and  lim ( ) 0
x

F x
→∞

= . One of the major problems of interest 

in reliability analysis is that of determination of the functional form of the survival 

function using data on failure times.  
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If X  is a discrete random variable with support { }0,1, 2,...N + = , the 

survival function corresponding to X  is defined as 

( ) ( )F x P X x= >  

                  
1

( )
j x

p j
∞

= +

= ∑ , 0,1, 2,...x =  (2.2) 

where ( )p x  is the probability mass function associated with X . Note that ( )F x  

is a non-increasing step function with ( ) 1F x =  for 0x < . 

Hazard rate 

Defining the right extremity L  of  ( )F x  by { }inf : ( ) 1L x F x= = ,  for 

x L< , the hazard rate ( )h x  of X  is defined as  

( )
0

|
( ) lim

x

P x X x x X x
h x

x+∆ →

< ≤ + ∆ >
=

∆
.  (2.3) 

( ).h x x∆  can be interpreted as the probability of failure in the interval [ , )x x x+ ∆ , 

given that the component has survived up to time x , as the length of the interval 

0x∆ → . The hazard rate is also referred to as the failure rate, instantaneous 

hazard rate in reliability, force of mortality in demographic studies and the age 

specific hazard rate in epidemiology. When X  admits an absolutely continuous 

distribution with probability density function ( )f x , equation (2.3) reduces to  

( )( )
( )

f xh x
F x

=  

                 ( )log ( )d F x
dx

= − .   (2.4) 

 

In the general set up, for a random variable X  with support X−∞ < < ∞ , Kotz 

and Shanbhag (1980) defines the hazard rate as the Radon-Nikodym derivative 

with respect to Lebesgue measure on { : ( ) 1}x F x < , of the hazard measure 
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( )
( )

( )
1B

dF x
H B

F x
=

−∫ , 

for every Borel set B of ( , )L−∞ . Further the distribution of X  is uniquely 

determined through the relationship 

( ) ( ) ( )1 ( ) exp ( , )C
x x

F x H x H x
∆ <

= − ∆ − −∞∏  ,  (2.5) 

where CH  is the continuous part of H . When X  is a non-negative random 

variable admitting an absolutely continuous distribution function ( )F x , then 

equation (2.5) reduces to 

0

( ) exp ( )
x

F x h t dt
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∫ .   (2.6) 

In the view of equation (2.6), ( )h x determines the distribution uniquely and 

the constancy of the same is characteristic to the exponential model [Galambos 

and Kotz (1978)]. For further characterizations of probability distributions based 

on the functional form of hazard rate, we refer to Mukherjee and Roy (1986) and 

Azlarov and Volodin (1986). 

In the discrete setup, Barlow et al. (1963) defines the hazard rate for a 

random variable X  in the support of non-negative integers as 

( )( )
( )

P X xh x
P X x

=
=

≥
 

                  ( )
( 1)
f x

F x
=

−
.   (2.7) 

Equation (2.7) gives the conditional probability of the failure of a device at time x , 

given that it has not failed up to time 1x − . Equation (2.7) can also be written as  

( 1) ( )( )
( 1)

F x F xh x
F x
− −

=
−

.   (2.8) 
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It is established that the hazard rate function  ( )h x  defined in equation (2.7) 

uniquely determines the distribution. Xekalaki (1983), Gupta and Gupta (1983) 

and Hitha and Nair (1989) have extensively studied the problem of 

characterization of probability distributions using the form of hazard rate.  

It may be observed that in the continuous situation, the hazard rate can be 

unbounded, where as in the discrete case it is always finite. Xie, Gaudoin and 

Bracquemond (2002) have observed that  ( )h x  defined in equation (2.7) cannot 

grow exponentially, which is common in the case for components during the 

wear-out lifetime period. Further, in the discrete case the cumulative hazard 

function 
1

( ) ( )
x

i
H x h i

=

= ∑  is not equivalent to log ( )F x−   as in the continuous case. 

In view of the above, several authors including Roy and Gupta (1998), and 

Xie, Gaudoin and Bracquemond (2002) have proposed an alternative definition of 

hazard rate function in discrete time.  

For a discrete distribution with survival function ( )F x , the alternative 

hazard rate function  *( )h x  is defined as 

* ( 1)( ) log
( )

F xh x
F x

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
; 1, 2,...x =   (2.9) 

with this definition one can have a simple relationship connecting equations (2.7) 

and (2.9) as 

* ( )( ) 1 h xh x e−= − .  (2.10) 

Reversed hazard rate 

The concept of reversed hazard rate has been introduced by Keilson and 

Sumita (1982) and extensively studied by Shaked and Shanthikumar (1994). For a 

non-negative random variable X , the reversed hazard rate is defined as  
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( ) ( )
0

|
lim
x

P x x X x X x
x

x
λ

∆ →

−∆ < ≤ ≤
=

∆
.   (2.11)  

( ).x xλ ∆   can be interpreted as the probability of failure in the interval ( , ]x x x−∆ ,  

given that the failure had occurred in [0, ]x  as 0x∆ → . When the probability 

density function of X  , ( )f x , exists equation (2.11) can be written as 

( ) ( )
( )

f xx
F x

λ =  

                   log ( )d F x
dx

= .   

The reversed hazard rate uniquely determines ( )F x  through the relation 

( )( ) exp
x

F x t dtλ
∞⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∫ .    (2.12) 

The problem of ordering of life distributions using the reversed hazard rate 

has been addressed by Shaked and Shanthikumar (1994). Block et al. (1998) 

established that there is no non-negative random variable having an increasing 

reversed hazard rate distribution. They also describe some useful properties for k  

out of n  systems in terms of the reversed hazard rate. Observing that the hazard 

rate ( )h x  and reversed hazard rate ( )xλ  are functionally related through the 

relationship  

( ). ( )( )
( )

h x F xx
F x

λ = . 

Finkelstein (2002) has shown that 

0

( )( )
exp ( ) 1

x

h xx
h t dt

λ =
⎛ ⎞

−⎜ ⎟
⎝ ⎠
∫

 . 
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Nair et al. (2005) characterized certain probability models using a possible 

relationship between reversed hazard rate and conditional expectation. 

Mean residual life function 

The mean residual life function (MRLF) or life expectancy at age x  

represents the average life time remaining for a component, which has survived up 

to time x . For a continuous random variable X , with ( )E X < ∞ , the mean 

residual life function is defined as the Borel- measurable function 

( ) ( | )m x E X x X x= − ≥ ,  (2.13) 

for all x  such that ( ) 0P X x≥ > . If X  is a random variable admitting an 

absolutely continuous distribution function ( )F x , ( )m x  can  be written as 

1( ) ( )
( ) x

m x F t dt
F x

∞

= ∫ .   (2.14) 

Further, the following relationship holds between ( )m x  and ( )h x  when both 

exist. 

' ( ) ( ). ( ) 1m x h x m x= − ,   (2.15) 

where ' ( )m x  denote the derivative of ( )m x . Also knowledge of the mean residual 

life function completely determines the survival function through the relationship 

0

(0)( ) .exp
( ) ( )

xm dtF x
m x m t

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ ,  (2.16) 

for  every x  in (0, )L . Thus ( )F x , ( )h x  and ( )m x  are all equivalent in the sense 

that given one of them, the other two can be determined. It is easy to see that the 

constancy of ( )h x  or ( )m x  characterizes the exponential distribution. For further 

characterizations using the functional form of mean residual life function, we refer to 

Mukharjee and Roy (1986) and Sullo and Rutherford (1977). Gupta and Kirmani 
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(2004) have observed that the ratio of the hazard rate and the mean residual life 

function determines the distribution uniquely. The mean residual life function finds 

application in actuarial science for setting rates and benefits for life insurance. In the 

biomedical setting, researchers analyze survivorship studies by the mean residual life 

function. 

Vitality function  

The concept of vitality function was introduced by Kupka and Loo (1989) 

as a Borel measurable function defined on the real line. It is closely related to 

mean residual life function and it is defined as  

 ( ) ( | )v x E X X x= ≥  

( ) 1 ( )
( ) x

v x t dF t
F x

∞

= ∫ .  (2.17) 

Obviously 

( ) ( )v x x m x= +    (2.18) 

and 
' ( ) ( ). ( )v x m x h x= , 

where ' ( )v x  denotes the derivative of ( )v x . For characterizations of probability 

distributions using vitality function, we refer to Nair and Sankaran (1991) and 

Ruiz and Navarro (1994). Nair and Rajesh (2000) defines the geometric vitality 

function ( )G t  for 0t >  as 

log ( ) (log | )G t E X X t= >  

                       1 log ( )
( ) t

x f x dx
F t

∞

= ∫  .  (2.19) 

They have discussed the properties of geometric vitality function and further 

characterized some probability distributions using the functional form of 

( )logG t . The doubly truncated situation was considered in Sunoj et al. (2009) 
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and exponential distribution, Pareto distribution, beta distribution and power 

distribution have been characterized using the functional form of the geometric 

vitality function.   

2.2 Proportional Hazards model (PH model) 

Cox (1972) has introduced and extensively studied a dependence structure 

among two distributions, which is referred as the proportional hazards model (PH 

model). Let ( )F x  and ( )G x  be two distribution functions. Denote the hazard 

rates associated with  ( )F x  and ( )G x  by ( )1h x  and ( )2h x  respectively. ( )F x  

is said to be proportional hazards model of ( )G x  if the relationship  

2 1( ) ( )h x h xθ= ,   (2.20) 

where θ  is some real constant, holds for all real 0x > . From the definitions of 

hazard rates, equation (2.20) is equivalent to  

 ( ) ( )G x F x
θ

⎡ ⎤= ⎣ ⎦ , for all 0θ >  .  

It may be noted that if ( )F x  is the proportional hazards model of ( )G x , 

then ( )G x  will be the proportional hazards model of ( )F x . The importance of 

proportional hazards models from the point of view of modeling statistical data 

has been studied by Gupta et al. (2001). The model finds application in variety of 

fields of study such as reliability, survival analysis, medicine, economics etc. 

Ebrahimi and Kirmani (1996) and Nair and Gupta (2007) looked into the problem 

of characterization of probability distributions under the proportional hazards 

model assumption. 

2.3 Proportional Reversed Hazards model (PRH model) 

Like the proportional hazards model, Gupta et al. (1998) proposed a dual model 

called proportional reversed hazards model (PRH model), defined by the relationship 
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2 1( ) ( )x xλ φλ= ,   (2.21) 

where 1( )xλ  and ( )2 xλ  are the  reversed hazard rates associated with distribution 

functions ( )F x  and ( )G x  and 0φ > . Equation (2.21) can be expressed in terms of 

distribution functions as 

[ ]( ) ( )G x F x φ= .   (2.22) 

  Proportional reversed hazards model is useful in the analysis of left 

censored or right truncated data. Sengupta et.al (1999) illustrated that proportional 

reversed hazards model leads to a better fit for some data sets than proportional 

hazards model. Di Crescenzo (2000) has obtained some results on the proportional 

reversed hazards model concerning ageing characteristics and stochastic orders.  

2.4 Weighted distributions 

Rao (1965) introduced the concept of weighted distributions in 

connection with modeling statistical data in situations where the usual practice 

of using standard distributions for the purpose was not found appropriate. Jain 

et al. (1989), Gupta and Kirmani (1990) and Nanda and Jain (1999) used the 

weighted distribution in many practical problems to model unequal sampling 

probabilities. Mathematically weighted distribution is defined as follows. Let  

( ), ,F PΩ  be a probability space and :X RΩ→  be a random variable, where 

( ),R a b=  is the subset of the real line with 0a >  and b a>  can be finite or 

infinite. Assume that the distribution function ( )F x  is absolutely continuous 

with probability density function ( )f x  and let ( )w x  is a non-negative function 

of X  such that ( )( )E w Xµ = < ∞ . The random variable  wX  with probability 

density function  

( ) ( )( )w
w x f xf x

µ
= , 0x >     (2.23) 
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is said to have the weighted distribution associated with the distribution of X . It 

arises when the observations generated from a stochastic process are recorded 

according to some weight function. 

The basic problem when one uses a weighted distribution, as a tool for 

modeling is the identification of the appropriated weight function that fits the data. 

When the weight function depends on the length of the unit of interest, the resulting 

distribution is called length-biased distribution. When ( )w x x= , the probability 

density function of the length-biased random variable LX  turns out to be 

( )( )L
x f xf x
µ

= , 0,x >  ( )( )E w Xµ = < ∞ .    (2.24) 

Length-biased sampling situations may occur in clinical trials, reliability, 

queuing models, survival analysis and population studies where a proper sampling 

frame is absent. In such situations, items are sampled at rate proportional to their 

length so that larger values of the quantity being measured are sampled with 

higher probabilities. Cox (1962) provided the statistical interpretation of the 

length- biased distribution in the context of renewal theory. Numerous works on 

various aspects of length-biased sampling are available in Patil and Rao (1977), 

Rao (1965), Sen and Khattree (1996), Oluyede (1999, 2000, 2002), Van Es et.al 

(2000), El Barmi and Nelson (2002) and Sankaran and Nair (1993). Gupta and 

Keating (1986) proposed some standard relationships between original and length-

biased random variable using reliability concepts. They are 

( )( ) ( )L

t m t
F t F t

µ
+⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,    (2.25) 

( )
( ) ( )L

th t h t
t m t

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

,   (2.26) 

where ( )LF t  and  ( )Lh t  denotes the survival function and hazard rate  

corresponding to the length-biased models and ( )F t  and ( )h t  denote the survival 

function and hazard rate  of the original distribution. 
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Another important particular case of weighted distribution is the equilibrium 

distribution, which arises when 1( )
( )

w x
h x

= , where ( )h x  is the hazard rate . Let 

X  be a continuous random variable with probability density function ( )f x  and 

distribution function ( )F x . Associated with X , a random variable EX  can be 

defined with probability density function 

( )( )E
F xf x
µ

= , 0,EX > ( )( )E w Xµ = < ∞    (2.27) 

   ( )Ef x  is called an equilibrium distribution. The reliability implication of this 

model, the relationship between various characteristics of   ( )EF x  with those of 

( )F x  and some characteristics are available in Gupta (1979) and Gupta and 

Kirmani (1990). The major relationships are  

1( )
( )Eh x

m x
=    (2.28) 

'

( )( )
1 ( )

E

E

m xm x
m x

=
+

   (2.29) 

and  

1( ) ( ) ( )EF x F x m xµ−= ,   (2.30) 

 

where ( )Eh x  and ( )Em x  are the hazard rate and mean residual life function 

corresponding to the equilibrium model. 

2.5 Shannon’s entropy 

The notion of entropy was originally developed by Shannon (1948), an 

electrical engineer in Bell Telephone Laboratory. At the same time, Wiener 

(1948) also considered the communication situation and came up independently 

with results similar to those of Shannon. 
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Consider a random experiment with n  possible outcomes having probabilities 

1 2, ,... np p p . The Shannon’s entropy is defined as 

( )
1

log
n

n i i
i

H P p p
=

= −∑ .   (2.31) 

Equation (2.31) measures the extent of uncertainty concerning the outcome of the 

experiment. When 1ip =  for some i , ( ) 0nH P = , which implies that there is no 

uncertainty about the predictability of the random variable. As a convention 

0 log 0  is taken as zero. On the other hand, if we consider equation (2.31) after the 

experiment has been carried out, then equation (2.31) can be viewed as a measure 

of the amount of information conveyed by the realization of the experiment. 

If X  is a continuous random variable having a cumulative distribution 

function ( )F x  and '( ) ( )f x F x=  denote its density function, then the continuous 

analogue of Shannon’s entropy takes the form 

0

( ) ( ) log ( )H F f x f x dx
∞

= −∫    (2.32) 

         ( )log ( )E f x= − . 

Equation (2.32) is commonly referred to in literature as the Shannon information 

measure. In life testing experiments, one has information about the current age of 

the component under consideration. In such cases a more realistic approach for 

measuring the uncertainty about remaining lifetime of the unit was developed by 

Ebrahimi and Pellerey (1995). If |tX X t X t= − >  represents the residual life of a 

component, then the probability density function of tX  is ( )
( )

f x t
F t

+
. The 

Shannon’s entropy associated with tX  takes the form 
 

( ) ( )( ; ) log
( ) ( )t

f x f xH F t dx
F t F t

∞ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ , ( ) 0F t > .   (2.33) 
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Equation (2.33) can be written as 

1( ; ) log ( ) ( ) log ( )
( ) t

H F t F t f x f x dx
F t

∞

= − ∫ .  

The residual entropy function can also be expressed in terms of the hazard 

rate through the relationship 

1( ; ) 1 ( ) log ( )
( ) t

H F t f x h x dx
F t

∞

= − ∫ .   (2.34) 

It may be noticed that ( ; )H F t−∞ ≤ ≤ ∞  and that ( ;0)H F  reduces to 

Shannon’s entropy given by equation (2.32) defined over ( )0,∞ . Belzunce et al. 

(2004) has shown that, under certain conditions, the residual entropy function 

determines the distribution uniquely. 

Units having less uncertainty in life times are more reliable and hence the 

residual entropy function has much relevance in the study of stability of units/ 

components. Ebrahimi (1996), Nair and Rajesh (1998), Sankaran and Gupta 

(1999), Asadi and Ebrahimi (2000) and Belzunce et al. (2004) have characterized 

several lifetime distributions using the functional form of residual entropy 

function. Ordering and classification of life distributions using this concept are 

discussed in Ebrahimi and Pellerey (1995) and Ebrahimi (1996). Rajesh and Nair 

(1998) have defined the properties of the residual entropy function in the discrete 

time domain. Further, characterization results associated with the geometric 

distribution using functional form of residual entropy function are also obtained. 

In many realistic situations uncertainty is not necessarily related to future 

but may also refer to past. In such a situation, Di Crescenzo and Longobardi 

(2002) considered the truncated distribution in (0, )t  and defined the measure 

0

( ) ( )( ; ) log
( ) ( )

t f x f xH F t dx
F t F t

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ ,    (2.35) 
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where ( )F x  is the distribution function. This measure is generally referred to as 

the past entropy. In terms of the reversed hazard rate ( )xλ , the past entropy can 

be written as 

0

1( ; ) 1 ( ) log ( )
( )

t

H F t f x x dx
F t

λ= − ∫ .    (2.36) 

Renyi (1961) defines entropies of order α  as 

( )
0

1 log ( )
1 x

H F f xα
α α

∞

=

⎛ ⎞= ⎜ ⎟− ⎝ ⎠
∑ ; 0, 1.α α> ≠   (2.37) 

For a continuous non-negative random variable X  admitting an absolutely 

continuous distribution, equation (2.37) takes the form 

( )
0

1 log ( )
1

H F f x dxα
α α

∞⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

∫ ; 0, 1.α α> ≠   (2.38) 

When 1α → , equation (2.38) reduces to the Shannon’s entropy given in equation 

(2.32). For the random variable ( )X t−  truncated at 0t > , Renyi’s entropy 

measure takes the form 
 

( ) ( )
( )

1; log
1 t

f x
H F t dx

F t

α

α α

∞⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∫ .     (2.39) 

Further, when 1α → , ( );H F tα  simplifies to the residual entropy function (2.33). 

For properties and characterization of (2.39) we refer to Rajesh (2001) and 

Abraham and Sankaran (2005). Khinchin (1957) generalized Shannon’s entropy 

given by equation (2.32), by choosing a convex function φ  with ( )1 0φ =  and 

defined the measure 

( ) ( ) ( )( )
0

H X f x f x dxφ φ
∞

= ∫ .     (2.40) 
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Nanda and Paul (2006) generalized Shannon’s entropy given in equation (2.32) 

for two particular choices of φ  and has defined entropies of order β  as 

( ) ( )1
0

1 1
1

H X f x dxβ β

β

∞⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∫  ,  1β ≠  and 0β >    (2.41) 

and 

 ( ) ( )2
0

1 ln
1

H X f x dxβ β

β

∞⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

∫  ,   1β ≠  and 0β >    (2.42) 

As 1β → , equations (2.41) and (2.42) will reduce to Shannon’s entropy given in 

equation (2.32). For a unit which has survived up to an age t , equations (2.41) 

and (2.42) takes the form 

( ) ( )
( )1

1; 1
1 t

f x
H X t dx

F t

β

β

β

∞⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∫   (2.43) 

and 

( ) ( )
( )2

1; ln
1 t

f x
H X t dx

F t

β

β

β

∞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

∫ .   (2.44) 

 

It may be noted that when 1β → , equations (2.43) and (2.44) become 

residual entropy function defined by equation (2.33). Nanda and Paul (2006) has 

also discussed some ordering and ageing properties in terms of the generalized 

entropy function. Further, they have obtained some characterization results for 

distributions based on the form of the generalized residual entropy function. 

2.6 Kullback- Leibler divergence measure 

Kullback and Leibler (1951) have studied a measure of information 

involving two probability distributions associated with the same experiment, 

which finds application in the field of information theory as well as in several 

other branches of learning. Aczel and Daroczy (1975) laid down an axiomatic 
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foundation to this concept. This measure is also referred to as cross entropy, 

relative information etc. 

Consider two discrete probability distributions  1 2( , ,... )nP p p p=  and 

1 2( , ,... )nQ q q q=  with , 0i ip q ≥  and 
1 1

1
n n

i i
i i

p q
= =

= =∑ ∑ . The Kullback-Leibler 

divergence measure between P  and Q  is defined as 

( )
1

, log
n

i
n i

i i

pD P Q p
q=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ .   (2.45) 

This measure is always non-negative and is zero if i ip q= . Further this 

measure cannot be viewed as a true distance measure, since it is neither symmetric 

nor it satisfies the triangle inequality. Kannappan and Rathie (1973) followed by 

Mathai and Rathie (1975) have obtained some characterization results based on 

certain postulates which naturally leads to equation (2.45). The concept of 

generalized directed divergence is discussed in Kapur (1968) and Rathie (1971). 

The continuous analogue of the measure given in equation (2.45) turns out to be  

( )( , ) ( ) log
( )

f xD P Q f x dx
g x

∞

−∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ,   (2.46)  

where ( )f x  and ( )g x  are the probability density functions corresponding to the 

probability measures P  and Q . 

If X  and Y  be two non-negative random variables admitting absolutely 

continuous distribution functions ( )F x  and ( )G x  respectively, then equation 

(2.46) takes the form 

0

( )( , ) ( , ) ( ) log
( )

f xD X Y D F G f x dx
g x

∞ ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∫ .   (2.47) 

Ebrahimi and Kirmani (1996 a) have modified the definition of  Kullback -

Leibler measure in order to accommodate the current age of the system. If X and 
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Y  represents the lifetime of components in a two component system and t  is a 

specified unit of time, equation (2.47) has been modified as 

( )
( )
( )

( ) /( )( , ; ) ( , ; ) log
( ) /t

f x F tf xD X Y t D F G t dx
F t g x G t

∞ ⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ .   (2.48) 

The above equation can also be written as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( , ; ) log log

t t

f x f x f x g xD F G t dx dx
F t F t F t G t

∞ ∞⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ . 

               ( , ; ) ( ; )I F G t H F t= − , 

where ( ; )H F t  is the residual entropy function considered by Ebrahimi and 

Pellerey (1995) and ( , ; )I F G t  is the truncated inaccuracy measure explained in 

Section 2.8. Ebrahimi and Kirmani (1996 a) claims that for each fixed 0t > , 

equation (2.48) will have all the same properties of the measure defined in 

equation (2.47). In particular, ( , ; ) 0D F G t ≥  with equality if and only if the 

probability density functions of residual life functions are equal almost 

everywhere. They have also studied properties of ( , ; )D F G t . Ebrahimi and 

Kirmani (1996 b) have further proved that the constancy of (2.48) with respect to 

t  is a characteristic property for distributions coming under the proportional 

hazards model, described in Section 2.2. 

2.7 Affinity between distributions 

The concept of affinity between distributions was introduced and 

extensively studied in a series of work by Matusita (1954, 1955, 1957, 1961, 

1967). Some results on affinity are also given in Kirmani (1968). This measure 

has been widely used in literature as a useful tool for discrimination among 

distributions. Affinity is symmetric in distributions and has direct relationships 

with error probability when classification or discrimination is concerned. 
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Consider two discrete distributions 1 2( , ,..., )nP p p p=  and 

1 2( , ,..., )nQ q q q= ; 0ip ≥ , 0iq ≥ , 1, 2,...i n= . Then affinity [Mathai and Rathie 

(1975)] between P  and Q  is defined as 

1
2

1
( , ) [ ]

n

i i
i

P Q p qρ
=

=∑ .    (2.49) 

If X  and Y  are two non-negative random variables and if ( )f x  and ( )g x  

are the corresponding probability density functions, then the affinity between F  

and G  is defined as 

0

( , ) ( ) ( )F G f x g x dxρ
∞

= ∫ .     (2.50) 

This measure is also called Bhattacharyya coefficient [Bhattacharyya 

(1946)]. ( , )F Gρ  lies between zero and one. It may be noted that, the smaller the 

affinity the larger the discrepancy among distributions. Ikeda (1963) has 

established that 

2( , ) 1 ( , )D F G F Gρ≥ − , 

where ( , )D F G  is the Kullback-Leibler divergence measure considered in 

equation (2.47). Recently Majernik (2004) has shown that 

( )( , ) 2 1 ( , )EH F G F Gρ= − , 

where ( , )EH F G  is the Hellinger’s distance defined by  

( )
2

0

( , ) ( ) ( )EH F G f x g x dx
∞

= −∫ . 

Matusita (1967) has extended the notion of affinity concerning two 

distributions to the case of several distributions, as 

( ) ( ) ( ) ( )( )
1

1 2 1 2, ,..., , ,..., n
n n nF F F f x f x f x dxρ = ∫ , 
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where 1 2, ,..., nF F F  are distributions defined in the same sample space and 

( ) ( ) ( )1 2, ,..., nf x f x f x  are their respective density functions. Also nρ  satisfies the 

following properties 

(i) ( )1 2, ,..., 0n nF F Fρ ≥ . 

(ii) ( )1 2, ,..., 1n nF F Fρ = , when and only when 1 2 ... nF F F= = = . 

Affinity is used to study difference between populations or to classify 

populations. George and Mathai (1974) used this concept in population studies. 

Ramkumar (1975) used this to study the distribution of populations by religious 

affiliations. Matusita (1967) discussed the application of affinity in cluster analysis. 

2.8 The concept of inaccuracy 

The concept of inaccuracy was introduced by Kerridge (1961). This can be 

viewed as a generalization of the idea of entropy. It has been extensively used as a 

useful tool for measurement of error in experimental results. In expressing 

statement about probabilities of various events in an experiment, two kinds of errors 

are possible, namely, one resulting from the lack of enough information or 

vagueness in experimental results (eg: missing observation or insufficient data) and 

the other from incorrect information (eg: mis-specifying the model). All estimation 

and inference problems are concerned with making statements, which may be 

inaccurate in either or both of these ways. The error due to vagueness can be 

explained by using Shannon’s measure of uncertainty. Kerridge (1961) discusses 

the theory and application of the concept of inaccuracy to statistical inference. 

Suppose that the experimenter asserts that the probability of the thi  

eventuality is iq  when the true probability is ip . Then the inaccuracy of the 

observer, as proposed by Kerridge (1961), can be measured by  

1
( , ) log

n

i i
i

I P Q p q
=

= −∑ ,    (2.51) 
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where 1 2( , ,..., )nP p p p=  and 1 2( , ,..., )nQ q q q=  are two discrete probability 

distributions such that 0ip ≥ , 0iq ≥  and 
1 1

1
n n

i i
i i

p q
= =

= =∑ ∑ . 

Properties of inaccuracy measure 

In the discrete set up, Kerridge (1961) has discussed the properties of 

( ),I P Q  which are listed below. 

(i) ( , ) 0I P Q =  if and only if 1i ip q= =  for one value, and 0i ip q= = , for all 

other i . This means that zero inaccuracy implies a correct statement made 

with complete certainty. 

(ii) There is an infinite value of ( , )I P Q  if 0iq = , 0ip ≠  for any i . 

(iii) The value of ( , )I P Q  is minimum for fixed ip , when i ip q=  for all i . 

(iv) If variations both of ip ’s and iq ’s are considered, the point 1
i ip q n−= =  

for all  i ,  is a minimax point. 

(v) If two sets of alternatives are asserted to have probabilities, which are 

independent, the inaccuracy of the joint assertion is the sum of the separate 

inaccuracies. 

Nath (1968) extended Kerridge’s inaccuracy to the case of continuous 

situation and discussed some properties. Let ( )F x  be the actual distribution 

function corresponding to the observations and ( )G x  be the distribution function 

assigned by the experimenter and ( )f x  and ( )g x  be the corresponding density 

functions. The inaccuracy measure is defined as 

0

( , ) ( ) log ( )I F G f x g x dx
∞

= −∫ .   (2.52)  

 Nath (1968) has also discussed the following properties for the inaccuracy 

measure expressed in equation (2.52). 
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(i) The inaccuracy measure can be written as  

0 0

( )( , ) ( ) log ( ) ( ) log
( )

f xI F G f x f x dx f x dx
g x

∞ ∞ ⎛ ⎞
= − + ⎜ ⎟

⎝ ⎠
∫ ∫ .   (2.53) 

The first term on the right side of equation (2.53) represents the error due 

to uncertainty, which is the Shannon’s entropy [Shannon (1948)], while 

the second term is the Kullback-Leibler measure  considered in equation 

(2.47) representing the error due to wrongly specifying the distribution as 

( )G x . Note that this becomes zero when ( ) ( )F x G x≡ . In this situation 

( , )I F G  can be thought of as the generalization of the Shannon’s entropy. 

( , )I F G  achieves its minimum value only when ( ) ( )f x g x= . Further, 

( , )I F G  is not necessarily invariant under the transformation of            

co-ordinates.  

(ii)  A necessary and sufficient condition for ( , )I F G  to be finite is that F  and 

G  should be absolutely continuous with respect to each other. The condition 

is however not sufficient. Further, the finiteness of ( , )I F G  and ( )H F  may 

depend upon a parameter whereas the value of ( , )D F G  so derived may be 

independent of that parameter. 

(iii)  ( , )I F G < ∞ , does not imply  ( , )I G F < ∞ . 

(iv)  ( , )I F G < ∞ , ( , )I G K < ∞  does not imply ( , )I F K < ∞ . 

(v)  Since we are considering finite measures, ( , )I F G  always exists though its 

value may be +∞  or even −∞ . 

(vi)  ( , ) ( , ) ( , ) ( , )I F K I F G D F K D F G− = − . 

Recently, Nair and Gupta (2007) extended the definition of measure of 

inaccuracy to the truncated situation. The inaccuracy measure for random 

variables truncated below for some 0t >  is defined as  
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( ) ( )( , ; ) log
( ) ( )t

f x g xI F G t dx
F t G t

∞ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ ,   (2.54)  

and the measure truncated above some 0t >  is defined as 

*

0

( ) ( )( , ; ) log
( ) ( )

t f x g xI F G t dx
F t G t

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ .   (2.55) 

A physical meaning of equation (2.54) is that ( , ; )I F G t  represents the 

expected inaccuracy in the conditional distribution of |X t X t− >  when its actual 

density is specified as ( )
( )

g x
G t

. For the convenience in the sequel we denote 

( , ; )I F G t  and *( , ; )I F G t  by ( )I t  and *( )I t  respectively. We can easily obtain 

the functional relationship between hazard rates and ( )I t  as 

'
2

1
2

( ) ( )( )
( ) log ( )
I t h th t

I t h t
+

=
+

,   (2.56) 

where ' ( ) ( )dI t I t
dt

= , 1( )h t  and 2 ( )h t  are the hazard rates of F  and G  respectively. 

A similar result exists between reversed hazard rates and *( )I t , namely 

( ) ( ) ( )
( ) ( )

*'
2

1 *
2

.
log

t I t
t

I t t
λ

λ
λ

−
=

+  
  (2.57) 

Nair and Gupta (2007) also established that if F and G  are absolutely continuous 

distribution functions such that G  is the proportional hazards model of F , then 

( )I t  has the log linear form 

( 1)( ) log
( 1) 1
at b a aI t
a a

θ
θ
⎛ ⎞+ + +

= +⎜ ⎟+ +⎝ ⎠
,   (2.58) 

for all 0, 1t a> > −  and 0b >  if and only if F  has generalized Pareto distribution 

specified by  
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11

( ) 1
aaxF x

b

⎛ ⎞− +⎜ ⎟
⎝ ⎠⎛ ⎞= +⎜ ⎟

⎝ ⎠
 .   (2.59) 

Recently Taneja et al. (2009) proposed the uniqueness property of the 

dynamic inaccuracy measure defined in equation (2.54) and some properties of 

this measure are also studied. 
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Chapter 3 

MEASURE OF INACCURACY 
  

 

3.1 Introduction 

The identification of an appropriate probability distribution for lifetimes is 

one of the basic problems encountered in reliability theory. Although several 

methods such as probability plots, goodness of fit procedures etc are available in 

literature to find an appropriate model followed by the observations, they fail to 

provide an exact model. A method to attain this goal is to utilize a suitable 

characteristic property of the model. A property P  is said to be characteristic to a 

distribution if P  holds under the distributional assumption and the only 

distribution for which P  holds is the underlying distribution. Thus a 

characterization theorem enables one to uniquely determine the distribution. Most 

of the work on characterization of distributions in the reliability context centers 

around the hazard rate or the mean residual life function. In a variant approach, 

Ebrahimi (1996) proposed the residual entropy function as a useful tool to analyze 

the stability of a component/system. Following this several papers appeared 

employing information measures like time dependent Kullback-Leibler directed 

distance and their generalizations in characterizing life distributions. As pointed 

out in the chapter two, the inaccuracy measure can be thought of as a 

generalization of Shannon’s entropy. Therefore, there is a scope for extending the 

results based on Shannon’s entropy and its modifications as applicable for the 

inaccuracy measure to suit the context of reliability. Motivated by this, in the 

present chapter we look into the problem of characterization of probability 

distributions using truncated versions of the inaccuracy measure. 

Recently, Nair and Gupta (2007) have extended the inaccuracy measure 

defined by equation (2.52) to the truncated situation as given in equation (2.54). For 

the random variable, |X t X t− >  the truncated inaccuracy measure has the form 
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( ) ( )
( )

( )
( )

, ; log
t

f x g x
I F G t dx

F t G t

∞ ⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ . 

 

It may be observed that ( ), ;I F G t  considered above can be decomposed as  

( , ; ) ( ; ) ( , ; )I F G t H F t D F G t= + ,   (3.1) 

where ( ; )H F t  is the residual entropy  function defined in equation (2.33) and 

( , ; )D F G t  is the modified  Kullback- Leibler  divergence measure considered in 

equation (2.48). If ( )F x  is the actual distribution corresponding to the 

observations and ( )G x  is the distribution function assigned by the experimenter, 

equation (3.1) asserts that the residual inaccuracy measure ( ), ;I F G t  is the sum 

of the residual entropy function of ( )F x , which measures uncertainty, and a 

measure of discrimination between ( )F x  and ( )G x . For convenience in the 

sequel, we denote ( ), ;I F G t  by ( )I t . 
 

3.2 Characterization of probability distributions using the 
functional form of inaccuracy measure 

  

In this section we consider the problem of characterizing distribution functions  

( )F x  and  ( )G x  based on given functional forms for the inaccuracy measure ( )I t .  

Theorem: 3.1 

Let X  and Y  be two non-negative continuous random variables with 

distribution functions ( )F x  and ( )G x  respectively and ( )I t  be as defined in 

equation (2.54). Further assume that ( )I t  is independent of t  for all 0t > . Then 

( )F x  is exponential if and only if ( )G x  is exponential. 

Proof 

Let ( )I t c= , where  c  is  a positive constant. 
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Further assume that ( )F x  is exponential with survival function 

( ) ; 0, 0.xF x e xα α−= > ≥  (3.2) 

Using the relation (2.56) namely 

'
2

1
2

( ) ( )( )
( ) log ( )
I t h th t

I t h t
+

=
+

  (3.3) 

we get 

( )2 2log ( ) ( )c h t h tα + = . 

Differentiating the above equation with respect to t , we get 

( )( )1'
2 2( ) ( ) 1 0h t h tα − − = . 

This gives either ( )'
2 0h t =  or ( )2h t α= . In either case 2 ( )h t = a constant. 

Since the constancy of hazard rate is characteristic to the exponential distribution, 

one can conclude that ( )G x  is  also exponential. 

Conversely assume  ( ) , 0.xG x e β β−= >  

From equation (3.3) 

1( )
log

h x
c

β
β

=
+

. 

Using equation (2.6) we get 

( ) exp
log

xF x
c

β
β

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

. 

This shows that ( )F x  is exponential. 
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Remark: 3.1 

If ( )F x  and ( )G x  are the survival functions of two random variables 

following the exponential distribution, it is immediate that ( ) ( )G x F x
θ

⎡ ⎤= ⎣ ⎦   for 

some θ . In other words ( )G x  is the proportional hazards model of ( )F x  and in 

this situation ( )I t  is constant. However, it is not necessary that ( )G x  is the 

proportional hazards model of ( )F x  or ( )F x  is exponential for ( )I t   to be a 

constant, as the next result shows. 

Theorem: 3.2 

For the random variables X  and Y  considered in Theorem 3.1, assume that 

( )I t , defined in equation (2.54), is independent of  t  for all 0t > . Then F  has the  

finite range distribution specified by the survival function 

log log( )
log log

c xF x
c k

α
α
α

⎛ ⎞+ −
= ⎜ ⎟+ −⎝ ⎠

, c ce X e
k
α α< < , 

if and only if G  has the Pareto distribution with survival function 

( ) kG x
x

α

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 0, 0x k α> > > . 

The proof of the theorem is analogous to that of Theorem 3.1 and hence 

omitted. 

Remark: 3.2 

The difference between the models used in Theorem 3.1 and Theorem 3.2 , 

both giving constant inaccuracy, is that where as in  Theorem: 3.1  the 

decomposition (3.1) yields constant values for ( ; )H F t  and ( , ; )D F G t  while 

these measures are functions of x  in Theorem:3.2. 
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A random variable X  has  the Generalized Pareto Distribution (GPD) if its 

survival function has the form [Lai and Xie ( 2006)] 

1(1 )

( ) 1
aaxF x

b

− +
⎛ ⎞= +⎜ ⎟
⎝ ⎠

, 0, 1, 0.x a b> > − >   (3.4) 

The importance of this distribution in reliability modeling lies in the fact 

that it has a linear mean residual life in the form  ( )m x b ax= + . Further the family 

is rich in the sense that it contains the Lomax distribution ( 0)a > , rescaled beta 

( 1 0)a− < < , the exponential ( 0)a →  and the uniform distribution. Hall and 

Wellner (1981) have established that the Generalized Pareto Distribution is the 

only family of distributions that has linear mean residual life function. 

The next theorem provides a characterization result for the family of 

distributions specified in equation (3.4) based on a functional form for the 

inaccuracy measure. 

Theorem: 3.3 

Let X  and Y  be two non-negative continuous random variables with 

distribution functions ( )F x  and ( )G x  respectively and ( )I t  denote the truncated 

inaccuracy measure. Assume that ( )I t  is a linear function of t . Then X  follow 

the generalized Pareto distribution if and only if Y  follow the exponential 

distribution. 

Proof 

Assume that ( )I t a bt= + , 0b ≠  and that Y  follow the exponential 

distribution with parameter α . 

Using equation (3.3), we get 

1( )
log

bh t
a bt

α
α

+
=

+ +
. 

Using equation (2.6) namely 
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1
0

( ) exp ( )
x

F x h t dt
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∫ , 

we get 

( )
(1 )

1
log

bbxF x
a

α

α

− +
⎛ ⎞

= +⎜ ⎟+⎝ ⎠
 

(1 )

1
bbx

A

α
− +

⎛ ⎞= +⎜ ⎟
⎝ ⎠

, where logA a α= + .   (3.5) 

Hence X  follows the generalized Pareto distribution. 

Conversely let X  follow the generalized Pareto distribution with survival 

function (3.4). Then by direct computations we get 

1( ) bh x
A bx

α+
=

+
. 

Equation (3.3) now becomes 

2

2

( )
log ( )

b h tb
A bt a bt h t

α ++
=

+ + +
 

or 

2

2

log ( )log
( )

a bt h ta bt
b b h t

α
α

+ ++ +
=

+ +
.  (3.6) 

Since the last equation holds for all 0t >   and the left side is linear in t , the right 

side also must be linear. Thich is possible only when ( )2h t =  a constant. Thus G  

is exponential.  

Note: 

When  G  follows the exponential distribution with parameter α  and F  

follows the exponential distribution with parameter 1
log
α

α
−  then  

log( ) ( )
1

I t m t α
α

= =
−

, where ( )m t  is the mean residual life function of F . 
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Regarding the inaccuracy measures for past life, defined in (2.55), one can 

obtain similar results. In the next theorem we look into the form of ( )F x  and 

( )G x  when the truncated inaccuracy measure for past life, ( )*I t  is independent 

of t . 

Theorem: 3.4 

For the random variables X  and Y  considered in Theorem 3.3, assume that 

( )*I t , defined in equation (2.55)  is independent of  t  for all 0t > . Then Y  

follows the power distribution specified by 

( ) cG x x= , 0 1x< < , 0c > ,  (3.7) 

if and only if X  has a finite range distribution  given by 

log( ) 1
log

c
xF x

c k

−
⎛ ⎞

= −⎜ ⎟+⎝ ⎠
, 0 1x< < .  (3.8) 

Proof 

Let *( )I t k= , where k  is a constant and that Y  be distributed as in equation 

(3.7). From equation (2.57), we get  

( ) 1
1( ) log logx c x c x kλ

−
= − +⎡ ⎤⎣ ⎦ . 

This gives 

1

1( ) exp ( )
x

F x t dtλ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∫  

1

exp
logx

c dt
ct k
t

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟⎛ ⎞⎛ ⎞ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∫  .    (3.9) 

Take log c u
t

⎛ ⎞ =⎜ ⎟
⎝ ⎠

, then equation  (3.9) becomes 
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( )
log

log

exp

c
x

c

cF x du
u k

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟

= −⎜ ⎟+⎜ ⎟
⎝ ⎠

∫  . (3.10) 

Solving equation (3.10), we get equation (3.8). The proof of the converse is 

analogous to that of Theorem 3.3 and hence omitted. 

3.3 Characterization of probability distributions under the 
proportional hazards model assumption 

In this section we look into the problem of characterization of probability 

distributions by the form of the inaccuracy measure under the assumption that 

( )F x  and ( )G x  satisfy the condition for being a proportional hazards model. 

Assume that  
 

( ) ( )( )G x F x
θ

= , 0θ > . 

Then equation (2.56) becomes 

( ) '
1 1 1( ) log( ( )) ( ) ( ) ( )I t h t h t I t h tθ θ+ = +  

or 

( )'
1 1( ) ( ) ( ) log( ( )) .I t h t I t h tθ θ= + −  (3.11) 

Multiplying both sides by ( )F t , the above equation can be written as 

( ) ( )1( ) ( ) ( ) log( ( ))d F t I t f t h t
dt

θ θ= −  .  (3.12) 

Integrating equation (3.12) over the range ( ),t ∞ , we get 

( ) ( )
( )

( )( )( )1log
t

f x
I t h x dx

F t
θ θ

∞

= − −∫ . 

Hence, if ( , )Y G  is the proportional hazards model of ( , )X F , we have the 

relationship 
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( ) ( )( )( )( )1log |I t E h x X tθ θ= − > .    (3.13) 

Remark: 3.3 

By direct calculation, the modified Kullback-Leibler divergence measure 

( , ; )D F G t , discussed in Chapter 2, is a constant under the proportional hazards 

model assumption. Hence, from the decomposition of ( )I t  in equation (3.1), the 

inaccuracy in the proportional hazards model at different time points varies with 

( )( ) 1 log ( ) |H t E h x X t= − > ,     (3.14) 

only. Consequent to this and the characterization of proportional hazard models 

by the constancy of ( , ; )D F G t  given  in Ebrahimi and Kirmani (1996,b), we can 

write 

( ) ( ) ( )I t H t K θ= + ,   (3.15) 

where ( )K θ  is a constant, independent of t . From equation (3.15), we have 

' '( ) ( )I t H t= . 

Hence  ( )H t  is an increasing function of  t  if and only if  ( )I t  is increasing 

in t . Belzunce et al. (2004) proved that an increasing ( )H t  determines ( )F t  

uniquely. Thus, we have the following result. 

Theorem: 3.5  

If X  has an absolutely continuous distribution function ( )F x  and an 

increasing inaccuracy measure ( )I t , then ( )F x  is uniquely determined by ( )I t . 

Remark: 3.4 

Functional form of ( )I t  characterizing various continuous distributions is 

given in Table 3.1 given below. 
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Table 3.1  

Distribution ( )F x  ( )I t  

Generalized 
Pareto 

(exponential, 
Lomax, re-scaled 
beta) 

11ax1+
b

a
⎛ ⎞− +⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

; 0x >  ( ) ( ) ( ) ( )1log b+at + a+1 log 1a A θ− − + +  

Power (Uniform 
c=1) 

 
1 cx− , 0 1x< < . 

( ) ( )11 1log log
1

cc

c

c tc t t A
c c t

θ
−⎛ ⎞− −

+ + +⎜ ⎟ −⎝ ⎠
 

Burr XII 
( )1

kcx
−

+ , 0x > . ( ) ( ) ( )
( )

( )
11

1 1

1

11log log 1
1

rk
c

kcr

ck kc c t A
c t

θ
−−

− −

=

⎡ ⎤−−⎢ ⎥− + + +
⎢ ⎥+⎣ ⎦

∑

Exponential 
geometric(Adamil
is&Loukas 
(1998)) 

( ) ( ) 1
1 1x xp e peλ λ −− −− −

 

( )12 log log 1t tp e p eλ λλ − −⎡ ⎤− + −⎣ ⎦ . 

 

In Table 3.1, ( ) 1 logA θ θ θ= − − . 

 

Di Cresenzo and Longobardi (2004) has characterized proportional reversed 

hazards model (See Section 2.4) using Kullback-Leibler measure of 

discrimination between past lifetime distributions. In this context, the Kullback-

Leibler divergence for past life simplifies to   

*( , ; ) 1 logD F G t φ φ= − − ,  

which is independent of  t . Thus the inaccuracy measure of past life is 

*( ) 1 log ( ; )I t H F tφ φ= − − +  ,   (3.16)   

  where ( ; )H F t  is the past entropy as defined in (2.35). Equation (3.16) can also 

be written as 
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( )( )( )( )*
1( ) log |I t E x X tφ φλ= − ≤ .   (3.17) 

Equation (3.17) can now be written as 

( ) ( )
( ) ( )( )( )*

1
0

log
t f x

I t x dx
F t

φ φλ= −∫ . 

Differentiating the above expression and rearranging the terms, we have the 

relationship 

( ) ( )( )( ) '* *
1 1( ) log ( )t I t t I tλ φλ φ+ − = − .    (3.18) 

Arguing as in the Theorem 3.5 and using equation (3.18), we have the 

following theorem. 

Theorem: 3.6  

If X  has an absolutely continuous distribution function ( )F x  and an 

increasing inaccuracy measure *( )I t , then *( )I t  uniquely determines ( )F x . 

Remark: 3.5 

For the power distribution specified by 

( ) ,0 1, 0cF x x x c= < < > ,                                                                                  

by direct computation using equation (3.16), we get  

* 1( ) log log( ) .I t t c cφ φ−= − − +   (3.19)  

Observing that the above equation is increasing in t , the functional form of  

( )*I t  given in equation (3.19) holds if and only if X  follow the power distribution.  

We now characterize some common failure time distributions using a 

possible relationship between ( )I t  and the mean residual life function ( )m t , 

reviewed in Chapter 2. 
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Theorem: 3.7 

If X  is a non-negative random variable admitting an absolutely continuous 

distribution function F  and ( , )Y G  is the proportional hazards model of ( , )X F , 

then the relationship 

( ) ( ) log ( )I t A m tθ= + ,   (3.20) 

where ( )A θ  is a real valued function of θ , independent of t , and ( )m t  is the 

mean residual life function of X   holds for every 0t >  if and only if X  has the 

generalized Pareto distribution. 

Proof 

Under the conditions of the theorem, when X  has generalized Pareto 

distribution, using equation (3.11), we get 

( ) ( )1( ) 1 log 1 1 log log( )I t a a b atθ θ−= + − + + − − + + , 

which is of the form (3.20). 

Conversely let ( )I t  be as in equation (3.20). 

Differentiating equation (3.20) with respect to t , we get 

'
' ( )( )

( )
m tI t
m t

= .   (3.21) 

Further using equations (3.11), (3.20) and (3.21), we have 

( ) ( ) ( )( )
'

1 1
( ) log( ( ))
( )

m t h t C h t m t
m t

θ= + ,   (3.22) 

where ( ) ( ) logC Aθ θ θ θ= + − . 

Using the relation, ( ) ( ) ( )'1h t m t m t= + , equation (3.22) becomes 

( ) ( )( ) ( ) ( )( )( )' ' '1 log 1m t m t C m tθ= + + + . 
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Differentiating with respect to t  and rearranging the terms we get 

( ) ( ) ( )( )( )'' 'log 1 0m t C m tθ + + = ,  (3.23) 

where ( ) ( )'
'' dm t

m t
dt

= . Equation (3.23) implies if either ( )'' 0m t =  or 

( ) ( )' 1Cm t e θ−= − . In both the cases ( )'m t  is a constant. This shows that ( )m t  is 

linear in  t . The rest of the proof follows from Hall and Wellner (1981). 

Theorem: 3.8 

Under the conditions of the Theorem 3.7, the relationship 

1( ) ( ) log ( )I t K h tθ= − ,   (3.24) 

where ( )K θ  is a real valued function of θ  and 1( )h t  is the hazard rate of  F   holds 

if and only if F  is generalized Pareto distribution with survival function (3.4). 

Proof 

The ‘if’ part of the theorem follows from the expression for ( )I t  given in 

equation (3.11). To prove the only if part, assume that equation (3.24) holds. 

Differentiating equation (3.24) with respect to t , we get 

'
' 1

1

( )( )
( )

h tI t
h t

= − .    (3.25) 

Using equations (3.24) and (3.25), in equation (3.11), we get 

( )
( )

'
1

2
1

( )
( )

h t A
h t

θ− = ,   (3.26) 

where ( )A θ  is a function of θ , independent of t  . Equation (3.26) can be written as 

( )
1

1
( )

d A
dt h t

θ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

. 
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The solution of the above differential equation is 

1
1( )h t

Bt C
=

+
, 

where ( )B A θ=  and 1
1(0)C h− = . This is the hazard rate of the generalized Pareto 

distribution. Since the distribution function is uniquely determined by the hazard 

rate, the theorem follows. 

A parallel result exists for  *( )I t  which we state as follows. 

Theorem: 3.9 

Let X  be a non-negative random variable admitting an absolutely 

continuous distribution function F  and let ( , )Y G  is the proportional reversed 

hazards model of ( , )X F .  Then the relationship 

*
1( ) ( ) log ( )I t K tφ λ= − ,   (3.27) 

where ( )K φ  is a  real function of φ  and ( )1 tλ  is the reversed hazard rate of X  

holds for all real 0t ≥  if and only if X  has power distribution with distribution 

function  specified by equation (3.7). 

Proof 

 For the power distribution 

 * 1( ) log log( )I t t c cφ φ−= − − + , 

which is of the form equation (3.27) with  ( ) 1 logK cφ φ φ−= − −  and 1
1( )t ctλ −= . 

This proves the ‘if’ part.  

Conversely assume that the relation (3.27) holds. Differentiating the 

equation (3.27) with respect to t , we get 

( )'
'

* 1

1

( )
( )
tI t
t

λ
λ

= − .   (3.28) 



Measure of inaccuracy   

 43

From equations (3.28) and (3.18), we get 

( )
( )( )

( )
'

1
2

1

log
t

K
t

λ
φ φ φ

λ
= − + .   (3.29) 

Equation (3.29) can be written as 

( ) ( )
1

1 logd K
dt t

φ φ φ
λ

⎛ ⎞−
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
.   (3.30) 

Solving the differential equation (3.30), we obtain 

( )1

1 At B
tλ
= + , 

where ( )logA Kφ φ φ= − − . This gives ( )1
1t

At B
λ =

+
, using equation (2.12), we 

conclude that X  follows power distribution. 

The next theorem focus attention on a characterization result for the 

Gompertz distribution by the form of ( )I t  in terms of the vitality function, 

reviewed in Section 2.1. 

Theorem: 3.10 

Let X  be a non-negative random variable admitting an absolutely 

continuous distribution function F  and with hazard rate 1( )h t  and let G  be the 

proportional hazard model of F . Then X  has the Gompertz distribution with 

survival function  

( )( ) exp 1 ; 0, 0, 0,
log

xBF x C x B C
C

⎛ ⎞−
= − > > >⎜ ⎟

⎝ ⎠
   (3.31) 

if and only if  

( )( ) ( )I t K v tθ β= + ,   (3.32) 

for some real  function ( )K θ  and a real constant 0β < . 
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Proof 

By direct calculation using equation (3.31) we get 1( ) th t BC=  and 

( ) 1

1( ) 1 ( ) log ( ) ( )
t

H t F t h x f x dx
∞−

= − ∫  

       ( ) ( )
1

1 ( ) log log ( )
t

F t B x C f x dx
∞−

= − +∫ . 

Using the equation (3.15) and the last equation, we get the form of ( )I t  as stated 

in the theorem.  

Conversely, we assume that equation (3.32) holds. Differentiating equation 

(3.32) with respect to t , we get 

( )'
1( ) ( ) ( ) ( )I t h t I t K tθ β= − − .   (3.33) 

Using equation (3.33) in equation (3.11), we have 

1log ( )h t tα β= − ,   (3.34) 

 

where, log ( )Kα θ θ θ= − − . Equation (3.34) can be written as 1( ) t th t e BCα β−= = , 

where B eα=  and C e β−= .This is the hazard rate of  the  Gompertz distribution. 

Since the hazard rate uniquely determines the distribution, X  follows Gompertz 

distribution.  

Roy and Mukharjee (1989) examined the concept of averaging of hazard rate and 

looked into the problem of  the characterization of life distributions using this concept . 

When one is interested in the pattern of failure of a device in a finite interval, instead of 

examining the nature of failure at each point in the interval this concept become a 

handy tool to describe the failure pattern. Rajesh (2001) has obtained characterization 

results for some lifetime distributions using the residual entropy function and the 

averages of hazard rate. The arithmetic, geometric and harmonic mean of hazard rates 

for a non-negative random variable Y  with hazard rate  2 ( )h t  are defined as  
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( ) ( )*
2

0

1 x

A x h t dt
x

= ∫ , 

( ) ( )*
2

0

1exp log
x

G x h t dt
x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ,    (3.35) 

and 

( ) ( )
*

20

1 1x

H x dt
x h t

= ∫ . 

We now look into the problem of characterization of distributions based on the 

functional form of ( )*A x , ( )*G x  and ( )*H x  in terms of the residual inaccuracy 

measure. 

Theorem: 3.11 

Let  X  and Y  be two non-negative random variables admitting absolutely 

continuous distribution functions such that  ( , )Y G  is the proportional hazards 

model of ( , )X F . Denote by ( )*A x , ( )*G x  and ( )*H x  are arithmetic, 

geometric and harmonic mean of hazard rates of  Y and let ( )I t  the residual 

inaccuracy function. The relationship 

( ) ( ) ( ) ( )* * * exp ( )A t G t H t I tθ= = = − ,    (3.36) 

holds for all real 0t >  if and only if X  follows the exponential distribution. 

Proof 

Assume equation (3.36) holds. This gives 

( )*( ) logI t G t θ+ = .   (3.37) 

Using equation (3.35), equation (3.37) can be written as 

2
0

( ) log ( )
t

t I t h x dx tθ+ =∫ .    (3.38) 
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Differentiating with respect to t  and using equations (3.11), (3.38) simplifies to 

( )1( ) log ( )I t h tθ θ+ = .   (3.39) 

 

The equation (3.39) can be written as 
 

'
' 1

1

( )( ) 0
( )

h tI t
h t

+ = .   (3.40) 

Using equation (3.11), equation (3.40) becomes 

'
1( ) 0h t = . 

This gives 

1( )h t λ= , a constant. 

Since the constancy of hazard rate is characteristic to the exponential model, 

the distribution of X  is exponential. From Roy and Mukharjee (1989), the 

properties  ( ) ( ) ( )* * *A t G t H t= =  is characteristic to the exponential model. 

Hence the sufficiency part holds. Conversely when X  follows exponential 

distribution with parameter λ , by direct calculations we get 

( ) ( ) ( )* * *A t G t H t λθ= = =   

and 

( ) logI t θ λθ= − . 

The validity of equation (3.36) can be verified from the above expressions. 

Theorem: 3.12  

Assume that the conditions of the Theorem 3.11  holds. The  relationship 

( ) ( )*( )
1

aI t t A t k
a θ

⎛ ⎞
− =⎜ ⎟⎜ ⎟+⎝ ⎠

 , (3.41) 

where k  is a constant, holds for all 0t > , if and only if F  has generalized Pareto 

distribution with survival function (3.4). 
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Proof 

By direct calculation using equation (3.4), we get, 

( )
( )1

( ) log log
1

ab at aI t
b a b

θ
θ

⎛ ⎞+⎛ ⎞+⎛ ⎞= + + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠
.    

That is, 

( ) log b atI t k
b
+⎛ ⎞= +⎜ ⎟

⎝ ⎠
,   (3.42) 

where ( )1
log

1
aak

a b
θ

θ
+⎛ ⎞

= + − ⎜ ⎟+ ⎝ ⎠
, is independent of t . From the definitions of 

arithmetic mean of hazard rates and the proportional hazards model assumption, 

we have 

( ) ( )*
1

0

t

t A t h x dxθ= ∫ .   (3.43) 

Since X  follows generalized Pareto distribution, we get ( )1h t  as 

( )1
1ah t

b at
+

=
+

 .  (3.44) 

Using equation (3.44) in equation (3.43), we have 

( )* 1 loga b att A t
a b

θ+ +⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 .  (3.45) 

Using equations (3.42) in (3.45) we get (3.41).  
 

Conversely assume equation (3.41) holds. Differentiating this equation with 

respect to t , we get 

( ) ( ) ( )( )' *' *( )
1

aI t tA t A t
a θ

⎛ ⎞
= +⎜ ⎟⎜ ⎟+⎝ ⎠

.    (3.46) 
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But from the definition of  ( )*A x   given in equation (3.35) and using the 

assumption of the theorem, we have the relationship 

( ) ( )*' *
1( )t A t A t h tθ+ = .   (3.47) 

Using the equation (3.47), equation (3.46) becomes 

'
1( ) ( ).

1
aI t h t

a
⎛ ⎞= ⎜ ⎟+⎝ ⎠

  (3.48) 

From equations (3.11) and  (3.48) ,we have 

( ) ( )1( ) log ( )
1

aI t h t
a

θ θ+ − =
+

.   (3.49) 

Using equation (3.41) in equation (3.49), we get 

( ) ( )*
1 1log ( )

1
at A t h t k

a θ
⎛ ⎞

+ =⎜ ⎟⎜ ⎟+⎝ ⎠
, 

which is equivalent to  

1 1 1
0

( ) log ( )
1

ta h x dx h t k
a

+ =
+ ∫  ,  (3.50) 

where 1 log
1

ak k
a

θ θ= + − −
+

. 

Differentiating equation (3.50) with respect to t  we get 
 

( )

'
1

2
1

( )
1( )

h t a
ah t

= −
+

. 

The solution of the above equation is  
1

1( )
1

ath t c
a

−
⎛ ⎞= +⎜ ⎟+⎝ ⎠

, where 0c >  is 

the constant of integration. This gives ( ) ( )

11

1
1

aatF t
c a

⎛ ⎞− +⎜ ⎟
⎝ ⎠⎛ ⎞

= +⎜ ⎟⎜ ⎟+⎝ ⎠
, which is the 
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survival function of generalized Pareto distribution. This completes the proof of 

the sufficiency part.  

3.4 Inaccuracy measure for weighted distributions 

As mentioned in Section 2.4, the weighted distributions, defined by Rao 

(1965), finds a lot of applications in theoretical statistics. The simplest form of the 

weighted distribution is the length-biased distribution defined in equation (2.24) 

namely 

( )( )L
x f xf x
µ

= , 0,x >  ( )( )E w Xµ = < ∞ .   (3.51) 

The inaccuracy for the length-biased random variable LX  associated to a 

non- negative random variable X  is, 

0

( ) log ( )L LI f x f x dx
∞

= −∫ . 

Using equation (3.51), the above equation can be written as 
 

0

( )( ) logL
x f xI f x dx
µ

∞ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ ; 0, ( )x E Xµ> = < ∞  

               
0 0

( ) log( ( )) ( ) log logf x f x dx f x x dx µ
∞ ∞

= − − +∫ ∫  

 ( ) ( )( )( ) log logLI H F E X E X= − + .   (3.52) 

The equation (3.52) shows that the inaccuracy of the length-biased variable 

can be expressed in the form 

LI = Entropy - Geometric mean of X - logarithm of arithmetic mean of X .  

The above equation expresses the inaccuracy for the length-biased random 

variable, LX  as the difference between entropy and the sum of the geometric 

mean and the logarithm of the arithmetic mean of X . 
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The measure of residual inaccuracy, when we assume length-biased model 

instead of  actual density can be expressed in terms of  residual inaccuracy, 

geometric vitality function and mean residual life function of original distribution 

as follows. By definition 

( ) ( )( ) log
( ) ( )

L
L

t L

f xf xI t dx
F t F t

∞ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫  

( ) ( )log
( ) ( )t L

f x xf x dx
F t F tµ

∞ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫  

( ) ( )( ) log ( ) log ( )LM t G t F tµ= − + ,   (3.53) 

where  ( ) 1log ( ) ( ) log
( ) t

G t f x x dx
F t

∞

= ∫  is the geometric vitality function (See 

equation (2.19)) and 1( ) ( ) log ( )
( ) t

M t f x f x dx
F t

∞

= − ∫ , is the conditional measure 

of uncertainty proposed by Sankaran and Gupta (1999),which measures the 

uncertainty contained in  ( )f t  about the predictability of the total lifetime of a 

unit which has survived to age t . ( )M t  can be represented as the sum of residual 

entropy and total hazard rate  as 

( ) ( ) log ( )M t H t F t= − . 

Using the above representation for ( )M t , equation (3.53) becomes, 

( ) ( )( ) log[ ( )] log
( )

L
L

F tI t H t G t
F t

µ
⎛ ⎞⎛ ⎞

= − + ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 .  (3.54) 

Using equation (2.25), the above equation can be written as, 

( ) ( ) ( )( ) log ( ) log ( )LI t H t G t t m t= − + + .   (3.55) 

But using the relationship between the mean residual life function and the vitality 

function, given in equation (2.18), the above expression can be rewritten as 
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( ) ( ) ( ) ( )log logLI t H t G t v t= − + , 

where ( )v t  is the vitality function given  in equation (2.17). 

Another model of interest in lifetime analysis is the equilibrium distribution 

discussed in Section 2.4. For the equilibrium distribution, the inaccuracy measure 

takes the form  

( )( )1( ) ( ) log ( ) log ( ) ( )
( )E

t

I t f x F x F t m t dx
F t

∞

= − −∫ . 

          ( )1 log ( ) ( ) log ( )m t F t F t= + −  

          1 log ( )m t= + , 
 

where  ( )m t  is the mean residual life function. Since ( )m t  determines the 

distribution uniquely, ( )EI t  determines the distribution F . 

In fact 

( ) '

0

( ) exp exp(1 ( )) exp 1 ( ) ( )
x

E E EF x I t dt I x I x
⎛ ⎞

= − − − −⎜ ⎟
⎝ ⎠
∫ .   (3.56) 

Equation (3.56) enables one to characterize distributions by the functional 

form of ( )EI t . The form of ( )EI t  which characterizes some distributions is given 

in the following table. 

Table 3.2 
 

Distribution ( )F x  ( )EI t  

Generalized 
Pareto 

11

1
aax

b

⎛ ⎞− +⎜ ⎟
⎝ ⎠⎛ ⎞+⎜ ⎟

⎝ ⎠
, 0x > . ( )1 log b at+ +  

Power 1 cx− , 0 1x< < . ( ) ( ) ( )1 1 11 log 1 1 1 1c ct t c t
− − +⎡ ⎤+ − − − + −⎣ ⎦  

Gamma 1te tα λ αλ
α

− −

Γ
, 0x > . ( )

1

1 log
te tt

F t

α λ αα λ
λ α

− −⎡ ⎤
+ − −⎢ ⎥

Γ⎢ ⎥⎣ ⎦
 

Exponential 
geometric ( ) ( ) 1

1 1x xp e peλ λ −− −− − , 0x > ( ) ( ) ( )11 log 1 log 1t t tp e pe peλ λ λλ − − −⎡ ⎤+ − − −⎣ ⎦  
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The characterizations considered in this chapter provide tools for identifying 

life distributions in terms of different forms of measure of inaccuracy, besides 

forging relationships between inaccuracy function and basic reliability 

characteristics. A major difference between the characterizations in this chapter 

and those in terms of reliability functions currently in use is that, in former, we get 

a feel of the extent to which  the  assumed model is inaccurate both in terms of 

lack of information and mis-specification.  
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Chapter 4 

THE GENERALIZED 
INACCURACY MEASURE 

  
 

4.1 Introduction 

In this chapter, we discuss a generalization for the concept of inaccuracy, 

discussed in Chapter three, analogous to the generalization of Shannon's entropy 

given in Rao (1965), Belzuance et al. (2004) and Nanda and Paul (2006).  

Recently Nair and Gupta (2007) has extended the inaccuracy measure 

defined in equation (2.52) to the truncated situation in the form 

( ) ( )( , ; ) log
( ) ( )t

f x g xI F G t dx
F t G t

∞ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ , 

and has provided characterization results for some well known life time 

distributions. Motivated by this, we also look into the problem of characterization 

of probability distributions, using the functional form of the truncated version of 

the generalized inaccuracy measure. 

4.2 Definition and properties 

For a non negative random variable X , admitting an absolutely continuous 

distribution function, Khinchin (1957) has generalized the Shannon's entropy 

defined by equation (2.32) in the form, 

( ) ( )
0

( ) ( )H F f x f x dxφ φ
∞

= ∫ ,   (4.1) 

where ( ).φ  is a convex function satisfying the condition ( )1 0φ = . Analogously 

inaccuracy measure defined in equation (2.52) can be modified as   
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( ) ( ) ( )( )( )
0

, .I F G f x g x dxφ
∞

= ∫    (4.2) 

Taking ( )( ) ( )1 rg x
g x

r
φ

−
= , equation (4.2) reduces to  

( )( )
0

1( , ) ( ) 1 r
rI F G f x g x dx

r

∞

= −∫ ; 1,r > − 0r ≠ .   (4.3) 

Our generalization of inaccuracy measure defined in equation (4.3), 

conforms to the spirit of the extension given in equation (4.1), provided that r is 

so chosen such that ( )1 rg x
r

−
 is a convex function. In equation (2.52), all the 

experimental events contributing to the evaluation of inaccuracy are assigned 

equal probabilities. This means that events with high and low probabilities have 

equal weight. It would be more reasonable to have higher probability for events, 

which impart more sensitivity to ( ),I F G  than those with lesser probabilities. 

This is achieved through our generalization given in equation (4.3). Note that as 

0r → , equation (4.3) reduces to equation (2.52). 

In Section 4.2, we present some properties of ( , )rI F G . Characterization 

results for probability distributions in the context of Cox’s proportional hazards 

model and proportional reversed hazards model are discussed in Section 4.3. In 

Section 4.4., we consider the generalized inaccuracy measure proposed by Nath 

(1968) and discuss characterization results for probability distributions using the 

functional form of this inaccuracy measure.  

Properties 

(i)  The expression for ( , )rI F G  given in equation (4.3) can be decomposed as 

the sum of two terms in the form  

( ) ( ) ( )( )
0

1( , ) ( ) r r
r rI F G H F f x f x g x dx

r

∞

= + −∫ .   (4.4) 
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In the above equation, the first term is the generalization of ( )H F , the 

Shannon’s entropy, given in equation (2.32) and the second term reduces 

to the Kullback-Leibler divergence measure defined by equation (2.47), 

as 0r → . Hence equation (4.4) enables one to express the inaccuracy 

measure as the sum of a measure of uncertainty about F  and a measure 

of discrimination between the distributions. 

(ii)  ( , )rI F G  is minimum, when ( )( )f x g x= . This is immediate since when 

( )( )f x g x=  , ( , )rI F G  simplifies to ( )rH F  , which is the minimum value. 

Further the error term in equation (4.4) is zero and ( ),rI F G  reduces to the 

generalization of Shannon's entropy measure given in Belzuance et al. 

(2004), namely 

( )( )
0

1( ) ( ) 1 r
rI F f x f x dx

r

∞

= −∫  

          ( )rH F= . 

(iii)  ( , ) 0rI F G =  implies  ( )( ) 1r
fE g x = . 

This result follows directly from the definition (4.3). 

In many practical situations, complete data may not be observable to the 

experimenter due to various reasons. For instance in lifetime studies, the interest 

may center around the life time of a unit after a specified period of time, say t . 

Observing that the probability density function of the random variable 

|X t X t− >  and  |Y t Y t− >  respectively 
( )

( )f t x
F t
+  and 

( )
( )g t x
G t
+ , the generalized 

inaccuracy measure in the truncated situation takes the form  

( ) ( )
( ) ( )

1 ( ), ; 1
r

r
t

f x g xI F G t dx
r F t G t

∞ ⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ .    (4.5) 
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For convenience in notation, we denote ( ), ;rI F G t  by ( )rI t  in the sequel. 

Differentiating equation (4.5) with respect to t , and using the definition of hazard 

rate  given in chapter two, one can have the representation  

( ) ( ) ( ) ( )
( ) ( )

'
1 2

2 1

1
r

r
r

h t h t rI t
rI t

rh t h t
−

− =
+

,   (4.6) 

where ( )1h t  and ( )2h t  are the hazard rates associated with ( )F x  and ( )G x  

respectively. Equation (4.6) reveals that the functional form of ( )rI t  can mutually 

characterize ( )F x  and ( )G x .  

In reliability studies it may happen that the life time may not be observable 

beyond a specified time point t . Hence the distributions of X  and Y  may be 

truncated to the right and one can look at the past life by taking X  and Y  in the 

interval ( ]0, t . Here the random variables under consideration are  

* |tX t X X t= − <  and * |tY t Y Y t= − < . In this situation the generalized 

inaccuracy measure simplifies to  

( ) ( )
( ) ( )

*

0

1 ( )1
rt

r

f x g xI t dx
r F t G t

⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ;  0 x t< < .   (4.7) 

Further, equation (4.7) can also be written as 

( ) ( ) ( ) ( )
( ) ( )

*'
1 2*

2 1

1
r

r
r

t t rI t
rI t

r t t
λ λ

λ λ
+

− =
+

,      (4.8) 

where ( )1 tλ  and ( )2 tλ  are the reversed hazard rates of ( )F x  and ( )G x  

respectively, reviewed in  Section 2.1. 

When ( , )Y G  is the proportional hazards model of ( , )X F , equation (4.6) 

takes the form 
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( ) ( ) ( )
( ) ( )

1 '
1

1

1
1

r r
r

r

h t rI t
rI t

r h t
θ

θ

+ −
− =

+
.   (4.9) 

In the context of proportional reversed hazards model considered in Section 2.3, 

equation (4.8) becomes  

( ) ( ) ( )
( ) ( )

1 *'
1*

1

1
1

r r
r

r

t rI t
rI t

r t
θ λ

θ λ

+ +
− =

+
.   (4.10) 

( )rI t  defined in equation (4.5) provides a measure of discrimination between ( )F x  

and ( )G x , where the observation made beyond time t . In general, ( )F x  and ( )G x  

need not be depend on each other. However when there is some dependence structure 

between two distributions one can arrive at certain characterization results for 

probability distributions. An extensively studied dependence structure is the 

proportional hazards model, reviewed in Section 2.2. In this situation we have  

( )( ) ( )G x F x
θ

= , 0.θ >    (4.11) 

When ( ),Y G  is the proportional hazards model of ( ),X F , the expression for 

( ), ;rI F G t , given in equation (4.5), takes the form 

( )
( )( )

( )( ) ( )( ) ( )
1

1

11 ; .
rr r

r r
t

rI F t f x F x dx
F t

θ

θ

θ
+∞ −

+− = ∫   (4.12) 

We first examine whether  ( );rI F t  uniquely determine the distribution. The 

answer to the question is in the affirmative, which we given as Theorem 4.1. 

Theorem: 4.1 

Let ( )F x  and ( )G x  be absolutely continuous distribution functions such 

that ( , )Y G  is the proportional hazards model of ( , )X F . Assume that ( ; )rI F t   is 

increasing in t . Then ( ; )rI F t  uniquely determines ( )F t . 

 



The generalized inaccuracy measure  

 58

Proof 

Using equation (4.11) in equation (4.5), we get 
 

( )
( )( )

( )( ) ( )
( )

1 1
11 ;

r r r
r r

t

rI F t F x f x dx
F t

θ

θ

θ ∞
− +

+− = ∫ .   (4.13) 

Suppose that ( )F x  and ( )G x  are distribution functions such that 

( ) ( ); ;r rI F t I G t=  , for all 0t ≥ .   (4.14) 

From equations (4.13) and (4.14) 

( )( ) ( )
( )( ) ( )

( ) ( )( ) ( )
( )( ) ( )

( )
1 11 11 1

r rr rr r

t t

F t F x f x dx G t G x g x dx
θ θθ θ+ +∞ ∞

− − − −+ +=∫ ∫ , 

where ( )f x  and ( )g x  are the probability density functions corresponding to 

( )F x  and ( )G x . Differentiating the above equation with respect to t  and using 

the definition of hazard rate, we get  

( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )
1 1

1 1 2 21 ; 1 1 ; 1
r rr r

r rh t rI f t r h t h t rI g t r h tθ θ θ θ
+ +
− − + = − − +  .  (4.15) 

where ( )1h t  and ( )2h t  are the hazard rates corresponding to ( )f x  and ( )g x  

respectively. To prove ( ) ( )F t G t= , it is enough to show that ( ) ( )1 2h t h t= , for all 

( )0t ≥ . 

Suppose  

( ) ( )1 2h t h t>   with ( ) 0ih t ≠ ; 1, 2.i =  

From equation (4.15) we have  

( )
( )

( )( ) ( )( )( )

( )( ) ( )( )( )
21

2 1

1 ; 1
1

1 ; 1

rr
r

rr
r

h t rI G t rh t
h t h t rI F t r

θ θ

θ θ

− − +
= >

− − +
, 
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or 

( )( ) ( )( )( ) ( )( ) ( )( )( )2 11 ; 1 1 ; 1
r rr r

r rh t rI G t r h t rI F t rθ θ θ θ− − + > − − + . 

Using equation (4.14), we get 

( ) ( )1 2h t h t< , 

which is a contradiction. Similarly, we can show that the inequality ( ) ( )1 2h t h t<  

also leads to a contradiction. This gives  

( ) ( )1 2h t h t= . 

4.3 Characterization results 

In this section, we look into the problem of characterization of probability 

distributions using the functional form of ( )rI t . First we examine the situation 

where ( )rI t  is independent of t .  

Theorem: 4.2 

Let ( )F x  and ( )G x  be absolutely continuous distribution functions and 

( )rI t  be as defined in equation (4.5). If ( )rI t  is a positive constant 1
r

⎛ ⎞<⎜ ⎟
⎝ ⎠

 , then 

( )F x  is exponential if and only if  ( )G x  is exponential. 

Proof 

Let ( )rI t c= , where c  is a positive constant with 1c
r

<   and that F  is the 

exponential distribution with survival function 

( ) ; 0 , x 0xF x e λ λ−= > > . 

From equation (4.6) we get 
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2

2

( )1
( )

rh trc
r h t
λ

λ
− =

+
 

or 

( )( )2 21 ( ) ( )rrc r h t h tλ λ− + = . 

Differentiating the above equation with respect to t  we get, 

( ) ( ) ( )( )' 1
2 2 1 0rh t r h t r rcλ − − − = . 

The solution to the above equation is    ( )2h t = β , whereβ  is a constant. 

Hence ( )G x  is exponential. 

        Conversely assume 

       ( ) ( )expG x xβ= − , with ( )
1

1 0rrcβ > − > . 

From equation (4.6) we get 

( ) ( )
1

1
1r

r rc
h t

rc
β

β
−

=
+ −

. 

Using the relationship 

( ) ( )1
0

exp
x

F x h t dt
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∫ , 

we get 
 

( ) ( )1
exp

1r

r rc
F x x

rc
β

β
−⎛ ⎞

= −⎜ ⎟+ −⎝ ⎠
. 

From the above expression, ( )F x  is exponential. 

The following theorem provides a characterization result for the generalized 

Pareto model in the context of proportional hazards model. 
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Theorem: 4.3 

Let  ( )F x  and ( )G x  be two absolutely continuous distribution functions, 

( )f x  and ( )g x  be the corresponding probability density functions and ( )1h t  be 

the hazard rate of X . Assume ( ),Y G  is the proportional hazards model of ( ),X F  

then the relationship 

( ) ( )( )11
r

rrI t h tβ− = ,   (4.16) 

where β  is a  constant holds if and only if ( )F x  is the  generalized  Pareto 

distribution with survival function specified by equation (3.4). 

Proof 

Under the assumptions of the theorem, when X  has generalized Pareto 

distribution, straight forward computations using equation (4.9), gives 

( )1 rrI t− =
( )

( )( )( )
1

1
1 1

r
r b ata

a
a r ar

θ

θ

−+⎛ ⎞+ ⎜ ⎟+⎝ ⎠
+ + +

 

  .
1

rb at
a

β
−+⎛ ⎞= ⎜ ⎟+⎝ ⎠

, where ( )
( )( )( )

1
1 1

r a
a r ar

θ
β

θ
+

=
+ + +

 is a constant. 

Observing that for the generalized Pareto model, the hazard rate is ( )1
1ah t

b at
+

=
+

, 

the if part follows. 

To prove the converse, differentiating equation (4.16) with respect to t  we get 

( ) ( )( ) ( )1' '
1 1. .

r
rrI t r h t h tβ

−
− = .   (4.17) 

Using equations (4.9) and (4.16), equation (4.17) can be reads as 

( ) ( )( ) ( )( ) ( )11 '
1 1 11

rr rh t r r h t h tθ β θ β
−+ + − =  

or 
( )
( )( )

( )'
1

2
1

1 rh t r
rh t

θ β θ
β

+ −
= . 
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That is, 

( )
( )

1

11 rrd
dt h t r

θ β θ
β

⎛ ⎞ + −
− =⎜ ⎟⎜ ⎟

⎝ ⎠
. 

The above equation gives 

( )
( )

2
1

11 r r
t c

h t r
θ θ β

β
⎛ ⎞− +

= +⎜ ⎟
⎝ ⎠

 

or 

( )1
1 2

1h t
c t c

=
+

,  (4.18) 

where, ( )
1

1r r
c

r
θ θ β

β
− +

=   and  ( )1
2 1 0c h− = . 

Hall and Wellner (1981) have shown that (4.18) is a characteristic property of the 

generalized Pareto distribution, specified by equation (3.4). The necessary part 

follows from this result.  

Remarks 

(i) As 0r → , the result reduces to the Theorem 3.1 in Nair and Gupta 

(2007), reviewed in Section 2.8. 

(ii) The theorem provides a characterization result for the re-scaled beta 

distribution specified by  

 ( ) 1
cxF x

R
⎛ ⎞= −⎜ ⎟
⎝ ⎠

; 0 x R< < , , 0c R >  ,  

       when 11c
a

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 and bR
a

= −  in equation (3.4). 

 Further it may be noted that the uniform distribution arises as a special 

case when 1c = . 

(iii) A characterization result for the Lomax distribution specified by 

 ( ) ( ) ccF x xβ β −= + ; 0x > , 0β >  , 0c > , 
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 can be obtained when 1a
a

β +
= and bc

a
=  in equation (3.4). 

A parallel result exists for ( )*
rI t  which we state as follows. 

Theorem: 4.4 

Let X  and Y  be non-negative non-degenerate random variables admitting 

absolutely continuous distribution functions ( )F x and ( )G x  respectively. Further 

assume that ( ),Y G  is the proportional reversed hazards model of ( ),X F . Then 

the relationship 

( ) ( )( )*
11

r
rrI t k tλ− = , (4.19) 

where ( )1 tλ  is the reversed  hazard rate holds for all 0t ≥  if and only if X  

follow the power distribution with distribution function, 

( )
cxF x

b
⎛ ⎞= ⎜ ⎟
⎝ ⎠

; 0b ≠ .   (4.20) 

Proof 

By direct calculation using equation (4.10), we get 

( ) ( )
( )( )

* /
1

1

rr

r

c c t
rI t

c c r
θ

θ
− =

+ −
, which is of the form given in equation (4.19) 

with ( )1
ct
t

λ =  and 
( )( )1

rck
c c r

θ
θ

=
+ −

, and the if part follows. 

To prove the converse, differentiating equation (4.19) with respect to t , we get 

( ) ( )( ) ( )1*' '
1 1. .

r
rrI t k r t tλ λ

−
− =  .   (4.21) 

Using equations (4.19) and (4.21) in equation (4.10), we have 

( )( ) ( ){ } ( ) ( )( )1 2 '
1 1 11 0

r rt r k t kr tλ θ θ λ λ
−

− + − = . 



The generalized inaccuracy measure  

 64

This gives either ( )1 0tλ =   

or 

( )
( )( )

( )'
1

2
1

1rt r
krt

λ θ θ β

λ

− +
= .   (4.22) 

The former solution is inadmissible, in this situation the distribution function F  

becomes degenerate. 

From equation (4.22) we get 

( )1
1t

pt q
λ =

+
,   (4.23) 

where     ( )1 rr k
p

kr
θ θ+ −

=  and q  is the constant of integration. 

As 0t → , 0q = . Using the result (2.12), we obtain the random variable X  

follows power function distribution.  

In the context of equilibrium distribution, reviewed in Section 2.4, ( ),rI F G  

becomes 

1 1
1

r
E
rI

r r
µ−⎛ ⎞

= −⎜ ⎟+⎝ ⎠
,  (4.24) 

where ( )E Xµ = .The following relationship exists between the generalized 

inaccuracy measure defined in equation  (4.3) and the mean residual life function 

( )( ) |m t E X t X t= − > .  

That is, 

( ) ( )( )1 1
1

r
E
r

m t
I t

r r

−⎛ ⎞
= −⎜ ⎟

⎜ ⎟+⎝ ⎠
.   (4.25) 

It may be observed that in the context of equilibrium distributions, the 

knowledge of the mean residual life function of the original distribution 
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determines the inaccuracy measure uniquely. Hence, the characterization results 

using the form of the mean residual life function can be suitably translated to the 

inaccuracy measure.  

4.4 An alternative measure of inaccuracy  

Nath (1968) defines inaccuracy of order r as 

( ) 1

0

1, log ( ) ( )
1

r
r

x
H P Q p x q x

r

∞
−

=

⎛ ⎞= ⎜ ⎟− ⎝ ⎠
∑ ; 1, 0r r≠ > .   (4.26) 

For the applications of the measure defined in equation (4.26), we refer to Nath 

(1968). 

If X  and Y  are two non-negative random variables admitting absolutely 

continuous distribution functions ( )F x  and ( )G x  respectively, then the 

continuous analogue of equation   (4.26) can be taken as 

( ) 1

0

1, log ( ) ( )
1

r
rH F G f x g x dx

r

∞
−⎛ ⎞

= ⎜ ⎟− ⎝ ⎠
∫ ; 1, 0r r≠ >  .  (4.27) 

Note that as  1r → , equation (4.27) reduces to the  inaccuracy measure defined by 

equation (2.52). In this sense ( ),rH F G  provides a generalization for the inaccuracy 

measure given in Nath (1968). In the left truncated context, equation (4.27) becomes 

( )
1

1 ( ) ( ), ; log
1 ( ) ( )

r

r
t

f x g xH F G t dx
r F t G t

−∞⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∫ ; 1, 0, 0r r t≠ > >  . (4.28) 

Further in the right truncated situation, equation (4.27) can be written as 

( )
1

0

1 ( ) ( ), ; log
1 ( ) ( )

rt

r
f x g xH F G t dx

r F t G t

−⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∫ ; 1, 0r r≠ > , 0t > . (4.29) 

For the convenience in the sequel, we denote ( ), ;rH F G t  and ( ), ;rH F G t  

by ( )rH t  and   ( )rH t  respectively. Differentiating equation (4.28) with respect 
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to t , and rearranging the terms we get a relationship between ( )rH t  and hazard 

rates namely 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1'
1 2 1 21 1 exp 1

r
r rr H t h t r h t h t h t r H t

−
− = + − − − − ,  (4.30) 

where ( )1h t  and ( )2h t  are the hazard rates associated with the distribution 

functions ( )F x  and ( )G x  respectively and ( )'
rH t  denotes the derivative of 

( )rH t . Similarly, from equation (4.29) one can have the representation  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )' 1
1 2 1 21 exp 1 1

r
r rr H t t t r H t t r tλ λ λ λ

−
− = − − − + − ,   (4.31) 

where ( )1 tλ  and ( )2 tλ  are the reversed hazard rates.  

When ( ),Y G  is the proportional hazards model of ( ),X F , equation (4.30) 

takes the form 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )' 1
1 11 1 1 exp 1

rr
r rr H t r h t h t r H tθ θ −− = + − − − − .  (4.32) 

Proceeding as similar lines, when G  is the proportional reversed hazards model 

of F , equation (4.31) can be written as  

( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )' 1
1 11 exp 1 1 1

rr
r rr H t t r H t r tφ λ φ λ−− = − − − − − .   (4.33) 

Theorem: 4.5 

For the random variables X  and Y  considered in Theorem 4.4, assume that 

( ),Y G  is the proportional hazards model of ( ),X F  and ( )rH t  is increasing in t . 

Then ( )rH t uniquely determines ( )F t . 

Proof 

The proof of the theorem is similar to that of Theorem 4.1 and hence omitted. 
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Characterization results 

The following theorem focuses attention on the situation when ( )rH t  is 

independent of t . 

Theorem: 4.6 

Let X  and Y  be non-negative non-degenerate and absolutely continuous 

random variables with survival functions ( )F x  and ( )G x  respectively. Assume 

( ),Y G  is the proportional hazards model of ( ),X F . Then the distribution of X  is 

exponential if and only if ( )rH t k= , where k  is a constant, for every 0t > . 

Proof 

Under the assumptions of the theorem, when X  follows exponential 

distribution with survival function 

( )( ) expF x xλ= − ; 0, 0x λ> > , 

by direct calculation, we get 

( ) ( )( ) ( )1 log 1 1 log
1rH t r

r
θ λθ= + − −

−
 

        k= , independent of t . 

Conversely assume that  

( )rH t k=  

From equation (4.32), we have 

( ) ( ) ( )( ) ( ){ }1 1
1 11 1 exp 1 0r rh t r r K h tθ θ − −+ − − − − = . 

This gives either ( )1 0h t =  or ( )1h t c= , where c  is a constant. But the 

former solution is inadmissible since in this situation X  becomes degenerate. 

From the later solution we conclude that X  follows exponential distribution. 
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In the following theorem, we give a characterization result for a family of 

distributions using a relationship between ( )rH t  and the hazard rate. 

Theorem: 4.7 

Let X  be a non-negative random variable with absolutely continuous 

distribution function ( )F x  and let ( ),Y G  is the proportional hazards model of 

( ),X F . The relationship 

( ) ( ) ( )1logrH t k h tθ= − ,                           (4.34)                              

where ( )k θ  is a real valued function  independent of t  and ( )1h t  is the hazard 

rate of X  holds  for every 0t >  if and only if X  follows any one of the following 

three distributions. 

(i)  the exponential distribution with survival function 

( ) ( )expF x xλ= − ; 0, 0x λ≥ >    (4.35) 

 (ii)  the Pareto distribution with survival function 

( )
baF x

a x
⎛ ⎞= ⎜ ⎟+⎝ ⎠

;  0,x ≥ 1,0b a> < < ∞    (4.36) 

(iii)  the Beta distribution with survival function   

( ) 1
cxF x

R
⎛ ⎞= −⎜ ⎟
⎝ ⎠

; 0 , 1x R c< < > .  (4.37) 

Proof 

Assume that equation (4.34) holds and differentiating with respect to t , we get 

( ) ( )
( )

'
1'

1
r

h t
H t

h t
= −  .   (4.38) 
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Substituting equation (4.38) in (4.32) we get 

( ) ( )
( )( )

( )( ) ( )( )
'

1 1
2

1

1 1 1 exp 1rh t
r r r k

h t
θ θ −− − = + − − − −  

or 

( ) ( ) ( )( )( )1

1

1 1 1 1 exp 1
1

rd r r k
dt h t r

θ θ −⎛ ⎞
= + − − − −⎜ ⎟⎜ ⎟ −⎝ ⎠

. 

This gives 

  
( )

( ) ( )( )1

1

1 1 exp 11
1

rr r k
t c

h t r
θ θ −⎛ ⎞+ − − − −

= +⎜ ⎟⎜ ⎟−⎝ ⎠
,   (4.39) 

where c  is the constant of integration. Equation (4.39) takes the form 

( ) ( ) 1
1h t pt c −= + ,    (4.40) 

where     
( ) ( )( )11 1 exp 1

1

rr r k
p

r
θ θ −+ − − − −

=
−

.                                                         

From Mukharjee and Roy (1986), equation (4.40) characterizes the exponential 

distribution for 0p = , the Pareto distribution for 0p >  and the beta distribution 

for 0p < . 

The if part of the theorem follows by direct calculations using the 

expression for ( )rH t  and  ( )1h t  given in the table given below. 

Distribution ( )rH t  ( )1h t  

Exponential ( )( ) ( )1 log 1 1 log
1

r
r

θ λθ+ − −
−

 λ  

Pareto 
( )

( )

111 log
1 1 1

rr rb t a
r r b r

θ
θ θ

−−⎛ ⎞+
⎜ ⎟
⎜ ⎟− + − + −⎝ ⎠

 b
t α+

 

Beta 
( )

( )

111 log
1 1 1

rr rc R t
r c r r

θ
θ θ

−−⎛ ⎞−
⎜ ⎟
⎜ ⎟− − + − +⎝ ⎠

 c
R t−
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In the following theorem, we give a characterization for generalized Pareto 

distribution based on relationship between ( )rH t  and mean residual life function. 

Theorem: 4.8 

For the random variables considered in Theorem 4.7, let ( )1m t  be the mean 

residual life function of X . Then the relation 

( ) ( )1logrH t m t k− = ,   (4.41) 

where k  is a constant holds for all 0t ≥  if and only if X  follows generalized 

Pareto distribution. 

Proof 

Assume that equation (4.41) holds. Differentiating equation (4.41) with 

respect to t , we get 

( ) ( )
( )

'
1'

1
r

m t
H t

m t
= .   (4.42) 

Using equation (4.42), equation (4.32) can be written as 

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )' 1
1 1 1 1 11 1 1 exp 1

rrr m t r m t h t r k m t h tθ θ −− = + − − − − .  (4.43) 

Take ( )( )exp 1 r k c− − =  and using the relation ( ) ( ) ( )'
1 1 11m t h t m t= + , we 

can see that ( )m t  is a linear function. That is, F  is generalized Pareto 

distribution. 

The if part of the theorem follows by direct calculation using ( )rH t  and  ( )1m t .   
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Chapter  5 

CHERNOFF DISTANCE AND AFFINITY FOR 
TRUNCATED DISTRIBUTIONS* 

  
 

5.1 Introduction 

In the case of distributions that satisfy the regularity conditions, the Cramer- 

Rao inequality holds and the maximum likelihood estimator converges to normal 

distribution, whose variance is the inverse of the Fisher information. Therefore, 

the Fisher information consolidates the amount of accessible information for a 

regular family of distributions. However, in a non-regular location shift family 

that is generated by a distribution in R , whose support is not R , the Fisher 

information diverges and some times cannot be defined. Therefore, in order to 

characterize the bound of asymptotic performance in estimation, we need an 

information quantity generalizing Fisher information. Akahira (1996) proposed 

the limit of the Chernoff distance (relative Renyi entropy) as a substitute 

information quantity for a non-regular location shift family. Hayashi (2007) has 

examined the relationship of this measure with Kullback-Leibler divergence 

measure. In the present chapter, we extend the definition of Chernoff distance, for 

truncated distributions and examine its properties. 

Let X  and  Y  be two non-negative random variables with absolutely 

continuous distribution functions ( )F x  and ( )G x  and with same support.  Denote 

by ( )f x  and ( )g x  the corresponding probability density functions. Then the 

Chernoff distance between ( )F x  and ( )G x  is defined as 

1

0

( , ) log ( ) ( )C F G f x g x dxα α
∞

−⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ ;    0 1α< < .   (5.1) 

                                                 
*  Some of the results in this chapter have been published in (a) Smitha S, Nair KRM and 

Sankaran PG (2007) (b)  Nair KRM, Sankaran PG and Smitha S.  
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This measure is an example of the Ali-Silvey class of information theoretic 

distance measures. The Chernoff distance is always non-negative with zero 

distance occurring either when 0α = ,1 or when the probability distributions are 

same. In equation (5.1), the parameter α  can be interpreted as the weight 

assigned to the distributions while computing the distance between them. 

Statistical utility of Chernoff distance is that if one uses a Baye’s procedure for 

testing ( )f x  against ( )g x  , then ( , )C F G  is asymptotically 1
n

 times the negative 

logarithm of the Bayes risk for distinguishing the two. Asadi et al. (2005) have 

extensively studied the application of this measure in the context of reliability 

studies.   

5.2  Definition and properties 

Let X  and Y  be two non-negative random variables with absolutely 

continuous distribution functions  ( )F x  and ( )G x  respectively and with density 

functions ( )f x  and ( )g x . Consider the random variables 

|tX X t X t= − >     and    |tY Y t Y t= − > , 0t > .   (5.2) 

Then the Chernoff distance between tX  and tY  takes the form 

( , ; ) ( , ; ) tC F G t C X Y t C= =  

                          
1

( ) ( )log
( ) ( )t

f x g x dx
F t G t

α α−∞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ,   (5.3) 

where ( )F t  and ( )G t  are the survival functions of  X  and Y . In the right 

truncated situation, the random variables under consideration are  

* |tX t X X t= − <  

and  

* |tY t Y Y t= − < , 0t > , 
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and equation  (5.1) becomes 

* * *( , ; ) ( , ; ) tC F G t C X Y t C= =
1

0

( ) ( )log
( ) ( )

t f x g x dx
F t G t

α α−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ .    (5.4) 

Notice that when 0t → , ( ),tC C F G→  and when t →∞  ( )* ,tC C F G→ , where 

( ),C F G  is defined by equation (5.1). 

In terms of the hazard rates, equations (5.3) and (5.4) can be written as  

( ) ( ) ( ) ( )' 1
2 1 1 2( 1) tC

tC h t h t h t h t eα αα α −= − − +    (5.5) 

and 

( ) ( ) ( ) ( ) *'* 1
1 2 1 2(1 ) tC

tC t t t t eα ααλ α λ λ λ −= + − − ,   (5.6) 

 

where ( )1h t  and ( )2h t are the hazard rates , ( )1 tλ  and ( )2 tλ  are the reversed 

hazard rates of ( )F t  and ( )G t  respectively and '
tC  and 

'*
tC represents the 

derivatives of  tC  and *
tC with respect to t .   

We now discuss some properties of the truncated versions of the Chernoff 

distance defined in equations (5.3) and (5.4).  

Theorem: 5.1 

If (.)φ  is an increasing function in the argument and  0t > , then 

( ) ( )1, ; ( ) ( ), ( );C X Y t C X Y tφ φ φ− =  

and 

( ) ( )* 1 *, ; ( ) ( ), ( );C X Y t C X Y tφ φ φ− = . 

Proof 

The proof follows directly from the definitions (5.3) and (5.4). 
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In the next theorem, we obtain an inequality concerning the measures 

defined in equations (5.1) and (5.3) under some mild conditions. 

Theorem: 5.2 

Let X  and Y  are two non-negative random variables with distribution 

functions ( )F x  and ( )G x  and with probability density functions ( )f x  and 

( )g x  respectively. Denote by ( )1h x  and ( )2h x  the failure rates of  F  and G . 

Suppose that  

(i)  ( )
( )

1

2

h x
h x

 is increasing in x  

          and 

(ii)  both F  and G  are NBU. 

Then 

( , )tC C F G≥ . 

Proof 

Let tX  and tY  denote the truncated random variables. Denote the 

distribution functions of  tX  and tY  by ( )tF x  and ( )tG x  and the corresponding   

probability density functions ( )tf x  and ( )tg x .  Denote by ( , )C F G , the Chernoff 

distance between ( )F x  and ( )G x  defined by  equation (5.1) and  tC  the left 

truncated Chernoff distance, defined in equation (5.3) . 

By taking, ( )1
tx F y−= , ( )0,1y∈ ,equation  (5.3) becomes 

11 1

1
0

( ( ))log
( ( ))

t t
t

t t

g F yC dy
f F y

α−−

−

⎛ ⎞⎧ ⎫
⎜ ⎟= − ⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∫ ; 0 1α< < .   (5.7) 

 

Using the definition of hazard rate, we have 
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( )( ) ( )( ) ( )( )1 1 1
t

tt t F t tf F y h F y F F y− − −= .   (5.8) 

Further since ( )1
tx F y−=  we have 

( )( ) ( )1
t t tF F y F x− =  

                             
( )( )

( )

1
tF t F y

F t

−+
= .   (5.9) 

In view of the fact that 

( )( ) ( )( )
( )

1
1 t

t t

f t F y
f F y

F t

−
−

+
= ,   (5.10) 

using equations (5.9) and (5.10) in (5.8) we get  

( )( ) ( )( )
( )( )

1
1

1t

t
F t

t

f t F y
h F y

F t F y

−
−

−

+
=

+
 = ( )( )1

1 th t F y−+ .  (5.11)  

Equation (5.8) now becomes 

( )( ) ( )( ) ( )( )1 1 1
1t t t t tf F y h t F y F F y− − −= + .   (5.12) 

From equation (5.9), we have  

( ) ( ) ( )( )1 1 1 1tt F y F y F t− −+ = − −    (5.13)  

and   

( )( )1 1t tF F y y− = − . 

Then, equation (5.12) can be written as  

( )( ) ( ) ( )( )( )( )1 1
1 1 1 1t tf F y h F y F t y− −= − − − ..  (5.14) 

Similarly, we get 
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( )( ) ( )( ) ( )( )1 1 1
tt t G t t tg F y h F y G F y− − −= .   (5.15) 

Since  ( )( ) ( )( )1 1
2tG t th F y h t F y− −= +  , using equation (5.13), equation (5.15) can 

be written as 

( )( ) ( ) ( )( )( ) ( )( )1 1 1
2 1 1t t t tg F y h F y F t G F y− − −= − − .   (5.16) 

Dividing equation (5.14) by equation (5.16), we obtain 

( )( )
( )( )

( ) ( )( )( )
( ) ( )( )( )

( )
( )( )

11
11

1 11
1 2

1 1 1

1 1
t

t t t

h F y F tf G y y
g G y G F yh F y F t

−−

− −−

− − −
=

− −
.   (5.17) 

Since  ( ) ( )( ) ( )1 11 1F y F t F y− −− − ≥ , from the condition (i), we get 

( ) ( )( )( )
( ) ( )( )( )

( )( )
( )( )

1 1
1 1

11
22

1 1

1 1

h F y F t h F y

h F yh F y F t

− −

−−

− −
≥

− −
.   (5.18) 

Since F  and G  are NBU, we have  

( )( ) ( )( )1 1
t tG F y G F y− −≤ .    (5.19) 

Substituting equations (5.18) and (5.19) in equation (5.17), we get  

( )( )
( )( )

( )( )
( )( )

( )
( )( )

1 1
1

1 1 1
2

1t t

t t

f F y h F y y
g F y h F y G F y

− −

− − −

−
≥ . 

That is, 

( )( )
( )( )

( )( )
( )( )

1 1

1 1

t t

t t

f F y f F y

g F y g F y

− −

− −
≥ .    (5.20) 

Using equation (5.20), equation (5.7) becomes 
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11 1

1
0

( ( ))log
( ( ))t

g F yC dy
f F y

α−−

−

⎛ ⎞⎛ ⎞
⎜ ⎟≥ − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  

( , )C F G= . 
  

The implication of this property is that the distance between two systems of 

age t  is never smaller than the distance when the systems were new. The 

following theorem provides a sufficient condition for the monotonicity of tC . 

Theorem: 5.3 

For the random variables X  and Y  considered in Theorem 5.2, assume that 

(i)  ( )
( )

1

2

h x
h x

 is increasing in x , 

           and 

(ii)  both F  and G  are IFR. 

Then 

( , ; )C F G t  is increasing in t . 

Proof 

When (ii) holds, we have 

( ) ( )1 1 2 2

1 1

1 1
( ) ( )t t t tG F y G F y− −

≥ , for all 2 10 t t≤ ≤ , 0 1y< < . 

Assumption (i) implies 

( )
( )

1

1

{1 (1 ). ( )}

{1 (1 ). ( )}
F

G

h F y F t

h F y F t

−

−

− −

− −
 is increasing in 0t ≥ , 0 1y< < . 

which implies 

( )
( )

1

1

( )

( )
t t

t t

f F y

g F y

−

−
 is increasing. 
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That is, 

( )
( )

1

1

( )

( )
t t

t t

g F y

f F y

−

−
  is decreasing. 

Hence 
11 1

1
0

[ ( )]( , ; ) log
[ ( )]

t t

t t

g F yC F G t dy
f F y

α−−

−

⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  is increasing in 0t ≥ . 

In the next theorem, we provide a bound for the truncated Chernoff distance 

in terms of the hazard rates. 

 

Theorem: 5.4 

      For the random variables X  and Y  considered in Theorem 5.2, if  X  is 

larger (smaller) than Y  in the likelihood ratio order ( )( )lr lrX Y≥ ≤   then 

2

1

( )( ) log
( )t

h tC
h t

α
⎛ ⎞

≥ ≤ ⎜ ⎟
⎝ ⎠

, 0t > , 0 1α< < . (5.21) 

Proof 

If  ( )( )lr lrX Y≥ ≤  , we have  ( )
( )

f t
g t

 is increasing (decreasing) in t . This gives 

( )
( )

( )
( )

( )
f x f t
g x g t

≤ ≥ ; x t≤ , 0t > . 

There fore 

( ) ( ) ( ) ( )
( )

1
1

2( ) ( )t

f x g x h t
dx

h tF t G t

αα α−∞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
≤ ≥ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ . 

This implies 

( ) ( ) ( ) ( )
( )

1
1

2

log log
( ) ( )t

f x g x h t
dx

h tF t G t

α α

α
−∞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟ ≤ ≥ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ .  (5.22) 
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Since 

( ) ( ) 1

log
( ) ( )t

t

f x g x
C dx

F t G t

α α−∞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− = ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ , 

using equation (5.22), we get 

( ) ( )
( )

2

1

logt

h t
C

h t
α

⎛ ⎞
≥ ≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
. 

This completes the proof. 

An analogous bound can be obtained in the right truncated situation. This is 

given as Theorem 5.5 below. 

Theorem: 5.5 

If the random variables X  and Y  as defined as in Theorem 5.2, and if  X  

is larger (smaller) than Y  in the likelihood ratio order ( )( )lr lrX Y≥ ≤ ,  then 

* 2

1

( )( ) log
( )t
tC
t

λα
λ

⎛ ⎞
≥ ≤ ⎜ ⎟

⎝ ⎠
, 0t > , 0 1α< < . 

The proof of the result is similar to that of Theorem 5.4 and hence omitted. 

Remark: 5.1 

X  is smaller than Y  in the likelihood ratio order ( )lrX Y≤  implies that 

( ) ( )1 2h t h t≤  for all 0t > . Thus the right side of the expression (5.21) is non- 

negative for all  0t > . If tC  is increasing, 

' 0tC ≥ , where '
tC  is the derivative of tC .  

From equation (5.5), it follows that 

( )
( ) ( ) ( )

( )

1

1 2

2 1

log 1t

h t h t
C

h t h t

α α

α α
−⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟≥ + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
, 0t > . 
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Remark: 5.2 

Denote by ( , ; )D F G t  is the modified Kullback-Leibler divergence measure 

defined in equation (2.48). It is immediate that there exist the following 

relationship between tC  and Kullback-Leibler divergence measures, namely 

0

lim ( , ; )tC D G F t
α α→

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

and 

1
lim ( , ; )

1
tC D F G t

α α→

⎛ ⎞ =⎜ ⎟−⎝ ⎠
. 

It may be observed that the following functional relationship exists between 

( )EH t  and tC , namely 

( )( )log 1t EC H t= − − ,      

  where ( ) ( )
( )

( )
( )

2

E
t

f x g x
H t dx

F t G t

∞ ⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∫  is the Hellinger’s distance for truncated 

random variable. 

5.3 Characterization theorems 

In this Section, we look in to the situation where the truncated Chernoff 

distance is independent of t . 

Theorem: 5.6 

Let X  and Y  be two non negative random variables admitting absolutely 

continuous distribution functions and let tC  defined as in equation (5.3). tC  is 

independent of t  if and only if ( ),Y G  is the proportional hazards model of 

( ),X F .  
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Proof 

The truncated Chernoff distance tC  is related to the Renyi divergence of  

order α  defined by Renyi (1961) through the relationship  

( ). , ;tC p K f g tα= ,  

where,  1p α= −  . Asadi et al. (2005) has proved that ( ), ;K f g tα  is independent 

of t  if and only if F  and G  satisfy the condition for being a proportional hazards 

model. The proof of the theorem is immediate from the above observations.  

The following example describes an application of the above theorem in the 

context of series systems. 

Example: 5.1 

Let iX , 1, 2,...i n=  denote the life times of the components in series system. 

Assume that the probability density function of life times is  ( )f x  and that 

survival function is ( )F x .The lifetime of the system is then 

{ }1 2, ,... nY Min X X X= with probability density function ( ) ( ) ( )
1n

g x n F x f x
−

⎡ ⎤= ⎣ ⎦  

and with survival function ( ) ( )
n

G x F x⎡ ⎤= ⎣ ⎦ . Observe that iX , 1, 2,...i n=  and Y  

satisfies the condition for being a  proportional hazards model. Further in view of 

equation (5.3), we have 

( )
( )

( ) ( )

( )( )

11

t

n

C
n

t

n F x f xf x
e dx

F t F t

α
α

−−
∞

−
⎛ ⎞⎡ ⎤⎛ ⎞ ⎣ ⎦⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

∫  

                 
( )

( ) ( ) ( )( )( )( )1 1 1

1

n

n
t

n f x F x dx
F t

α α

α α

∞− − −

− +
=
⎡ ⎤⎣ ⎦

∫ .  (5.23) 

 

On simplifying equation (5.23), we get 
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( )
1

1t
nC

n

α

α α

−

=
− +

, which is independent of  t   as claimed in Theorem: 5.6. 

The implication of the above result is that when a system of components 

with life distribution ( )F x  are in series the Chernoff distance between the 

distribution of minimum and the original distribution ( )F x  depends only on the 

number of components and the parameter α . 

Theorem: 5.7 

Let X  and Y  be two non-negative random variables with distribution 

functions ( )F x  and ( )G x  and with  probability density functions ( )f x  and 

( )g x  respectively. Then *
tC   defined in equation (5.4) is independent of t  if and 

only if the relation  

( )( ) ( )F x G x θ= ; 0θ > , 

holds. 

Proof 

This result follows from Theorem: 2 of Asadi et al. (2005), who has 

considered the Renyi divergence of  order α  between two distributions for past 

life time namely 

( ) ( )
( )

( )
( )

1

*

0

1, ; log
1

t f x g x
K f g t dx

F t G t

α α

α α

−
⎛ ⎞ ⎛ ⎞

= − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
∫ . 

It is established that ( )* , ;K f g tα  is independent of t  if and only if F  and 

G  have proportional reversed hazards rates. In view of the fact that *
tC  and 

( )* , ;K f g tα  is functionally related through the relationship 

( )* * , ;tC pK f g tα= , 

where 1p α= − , the theorem follows.  
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The following example shows an instance involving application of the 

above theorem in the case of a parallel system. 

Example: 5.2 

Let { }1 2, ... nX X X  be independent and identically distributed random 

variables representing the lifetime of the components in a parallel system with 

probability density function ( )f x  and distribution function ( )F x . The lifetime 

of the system is then { }1 2, ,... nY Max X X X=  with probability density function 

( ) ( )( ) ( )1n
g x n F x f x

−
=  and distribution function ( ) ( )( )n

G x F x= . Here iX  and 

Y  satisfy the condition for the proportional reversed hazards model. By direct 

calculation using equation (5.4), one can conclude that the truncated Chernoff 

distance  *
tC  , is independent of t . 

In the next section, we investigate the behavior of the Chernoff distance 

between the original and weighted distributions. 

5.4 Chernoff distance between original and weighted distributions 

Chernoff distance between the original random variable X  and weighted 

random variable wX  , reviewed in Section 2.4, takes the form 

( ) ( ) ( )1

0

logw wC x f x f x dxα α
∞

−⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ ; 0 1α< < ,   (5.24) 

where ( ) ( ) ( )
( )( )w

w x f x
f x

E w X
= , ( )( )E w X < ∞ ,   (5.25) 

is the weighted distribution.  

In the left truncated situation, equation (5.24) becomes 

( ) ( ) ( ) 1

log
( ) ( )

w
w

t w

f x f x
C t dx

F t F t

αα −∞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ; 0 1α< <  .  (5.26) 
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When we consider the length-biased model, given in equation (2.24), the 

above equation   becomes 

( ) ( ) ( )1( )1 log log
( ) ( )
L

L
t

f xF tC t x dx
F t F t

αµα
∞

−⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ,  (5.27) 

where, ( )LF t  is the survival function of the length biased random variable LX . 

Further we have 

( )( )
( )
LF t v t

F t
µ

=    (5.28) 

                      ( )|E X X t= ≥  , is the vitality function 
and 

( ) ( )1 1 |
( )t

f x
x dx E X X t

F t
α α

∞
− −= >∫  

         1 ( )v tα−= .   (5.29) 

Using (5.28) and (5.29) in (5.27), we get 

( ) ( ) ( )11 log ( ) log ( )LC t v t v tαα −= − −    (5.30) 

The identity (5.30) enables one to find the non parametric estimator of  

( )LC t  from the non parametric estimate of ( )v t .  

In the case of equilibrium model namely 

( )( )E
F xf x
µ

= , 0,EX > ( )( )E w Xµ = < ∞ . 

Equation (5.26) becomes 

( )
( ) ( )( ) ( ) ( )( )

( )

'
'

1EC t

E

h t m t e m t
C t

m t

α
α− +

= , 
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where, ( )h t  and ( )m t  are the hazard rate and mean residual life function of 

original random variable and ( )EC t  is the left truncated Chernoff distance 

between original and equilibrium random variable. 

Theorem: 5.8 

Let X  and Y  are two non-negative random variables with distribution 

functions ( )F x  and ( )G x  . Then  ( )wC t  is independent of t  if and only if  the 

weight function ( )w t has the form  

( ) ( )( ) 1
w t F t

θ −
= , 0θ > , 1θ ≠ .   (5.31) 

Proof 

Suppose that  

( )wC t k= , a constant. 

Then equation (5.26) becomes  

( )
( )

( )
( )

1

log w

t w

f x f x
dx k

F t F t

α α−
∞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ .   (5.32) 

Differentiating (5.32) with respect to t  and assuming that  

( )( ) ( )( )( )1
lim 0wx

f x f x
α α−

→∞
= ,  

we get 

( )
( )

( )
( )

1k

w w

h t h t
e

h t h t

α

α α
⎛ ⎞

− = −⎜ ⎟⎜ ⎟
⎝ ⎠

.    (5.33) 

Substituting ( )
( ) ( )

w

h t
c t

h t
=  in (5.33) and differentiating with respect to t , we get 

( ) ( )( )( )1' 1 0kc t c t e
α

α α
−

− = . 
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The above equation gives ( )' 0c t =  or ( )
1

1kec t
α

α

− −⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 . In either case ( )c t  

is constant, say θ .  

This gives 

( ) ( )wh t h tθ= , 0θ > , 1θ ≠ .    (5.34) 

But we have the relation 

( ) ( )
( ) ( )w

w

w t
h t h t

m t
= ,    (5.35) 

where  

( ) ( )( )|wm t E w X X t= > .    (5.36) 

From (5.34) and (5.35), we have 

( ) ( )
w

w t
m t

θ
=  .   (5.37) 

Using (5.36) and (5.37), we get 

( )
( ) ( ) ( )1

t

w t
w x f x dx

F t θ

∞

=∫ .    (5.38) 

Differentiating (5.38) with respect to t  and assuming 

( ) ( )( )lim 0
x

w x f x
→∞

= ,  

we get (5.31). 

Conversely assume that 

( ) ( )( ) 1
w t F t

θ −
= . 
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We have the relation 

( ) ( ) ( )w
w

w

m t
F t F t

µ
= ,   (5.39) 

where ( )( ) 1
w E w tµ

θ
= = . 

Using equation (5.39) in equation (5.26), we get 

 ( ) 2
1wC t θ

θ
=

+
, which is independent of t . 

Theorem: 5.9 

For the random variables X  and Y  considered in Theorem 5.8, the weight 

function ( )w t   of model (5.25) is increasing (decreasing) in t , then 

( ) ( ) ( )
( )

log w
w

h t
C t

h t
α

⎛ ⎞
≤ ≥ ⎜ ⎟⎜ ⎟

⎝ ⎠
, 0 1α< < ,   (5.40) 

where ( )h t  and ( )wh t  are the hazard rates of X  and wX  respectively. 

Proof 

Suppose that ( )w t  is increasing (decreasing) in t . From (5.25), we get  

( )
( )w

f t
f t

 is increasing (decreasing) in t .This gives 

( )
( ) ( ) ( )

( )w w

f t f x
f t f x

≤ ≥ , x t≤ . 

Then 

( )
( )

( )
( )

( ) ( )
( )

1

w

wt w

f x f x h t
dx

h tF t F t

α −α α∞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≥ ≤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ . 

Using the above expression, (5.26) becomes 

( ) ( ) ( )
( )

log w
w

h t
C t

h t
α

⎛ ⎞
≤ ≥ ⎜ ⎟⎜ ⎟

⎝ ⎠
. 
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Corollary: 5.1 

When ( )w t t=  (length biased model), we have 

( ) ( )
logL

tC t
t m t

α
⎛ ⎞

≤ ⎜ ⎟⎜ ⎟+⎝ ⎠
, 0t > .    

The result follows from Theorem 5.9 and the relationship ( )
( )

( )

L

h t t m t
h t t

+
= ,     

where ( )m t  is the mean residual life function. 

Corollary: 5.2 

When ( ) ( )
1w t

h t
=  (equilibrium distribution) is increasing (decreasing), 

( ) ( ) ( )( )log ( )EC t h t m tα≤ ≥ − . 

5.5 Affinity for truncated distributions 

As pointed out in Chapter 2 the concept of affinity defined by equation (2.50), is 

extensively used as a useful tool for discrimination among distributions. The measure 

of affinity given in equation (2.50) is a special case of the Chernoff distance defined in 

equation (5.1). In fact, when 1
2

α =  equation (5.1) reduces to log ρ− , where ρ  is the 

measure of affinity given in equation (2.50). Affinity finds application in several 

practical situations. In the reliability context, the concept of affinity helps an 

experimenter to decide whether the distribution of life times for two components differ 

or are closer. Chitty Babu (1973) has used the concept for the extraction of effective 

features from imperfectly labeled patterns. Comaniciu et al. (2000) used this measure to 

examine the similarity in images or section of images in communication networking. 

There are several practical instances where complete data are not available to the 

experimenter. For instance, in life testing experiments the data on failure times are 

usually truncated. Motivated by this, in the present Section we extend the definition of 



Chernoff distance and affinity for truncated distributions    

 

 89

affinity to the truncated situation. It may be noted that the proposed measure is an 

extension of the Bhattacharyya measure given in Thacker et al. (1997).  

In reliability studies, if X  and Y  represents the lifetime of two systems, then 

tX  and tY  , defined in equation (5.2) represent the remaining life of the system. The 

affinity between tX  and tY  is a measure of similarity between the distribution of the 

residual lifetime of the systems. For instance, if X  and Y  represents the amount of 

profit of two firms and t  is the tax exempt level, then the affinity between tX  and tY  

represents the similarity between the taxable incomes of the two firms.  

Using the definition for affinity, given in equation (2.50), the affinity 

between tX  and tY  takes the form  

( ) ( ) ( )
0

, ;l t tA F G t f y g y dy
∞

= ∫ ,   (5.41) 

where  

( ) ( )
( )t

f t y
f y

F t
+

=  and ( ) ( )
( )t

g t y
g y

G t
+

=  are the probability density 

functions of  tX  and tY   and  ( ) ( )F t P X t= >   and ( ) ( )G t P Y t= >  are the 

survival functions of X  and Y . 

Equation (5.41) can also be written as  

( )
( ) ( )

( ) ( )1, ;l l
t

A F G t A f x g x dx
F t G t

∞

= = ∫  .   (5.42) 

 

In the case of right truncated random variables, the variables under 

consideration are * |tX t X X t= − <   and  * |tY t Y Y t= − <  are the measure of 

affinity turns out to be  

( )
( ) ( )

( ) ( )
0

1, ;
t

r rA F G t A f x g x dx
F t G t

= = ∫ .   (5.43) 
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In view of the fact that the measure of affinity, defined in equation (2.50) is 

a special case of general Chernoff distance, when 1
2

α = , we get logt lC A= − , the 

properties and characterizations based on the Chernoff distance can be suitably 

reformulated in the context of affinity. Since affinity is more often used in 

literature as a potential measure of discrimination, the formulation of 

characterization results in this frame work seems to be in order. In the sequel, we 

state some important characterization results using the concept of affinity. The 

proof of the results are similar to that of Chernoff distance discussed above.  

Theorem: 5.10 

Let X  and Y  be two non-negative random variables admitting absolutely 

continuous distribution functions  ( )F x  and ( )G x  and probability density functions 

( )f x  and ( )g x  respectively. lA  , defined by equation (5.42) is independent of ‘ t ’, if 

and only if ( ),Y G  is the proportional hazards model of ( ),X F . 

Proof 

When lA  is independent of t , we have from equation (5.42) 

( ) ( ) ( ) ( )
t

f x g x dx c F t G t
∞

=∫ , 

where 0 2c< <  is a constant , not depending on t . 

Differentiating the above equation with respect to  t  and using the condition 

( ) ( )( )lim 0
x

f x g x
→∞

= , 

we obtain  

( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )
2

cf t g t g t F t f t G t
F t G t

− = − −  

or 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 g t F t f t G t
c f t G t g t F t
= + . 



Chernoff distance and affinity for truncated distributions    

 

 91

The above equation can be written as 

( )
( )

( )
( )

2 1

1 2

2 h t h t
c h t h t
= + .   (5.44) 

where ( )1h t  and ( )2h t  are the hazard rates of F  and G  respectively. 

Denoting by 

( ) ( )
( )

2

1

h t
k t

h t
= ,  

equation (5.44) takes the form 

( )( ) ( )2

2

41 k t k t
c

+ = . 

This gives  ( )k t  is a constant (sayθ ), independent of t  

Thus 

( ) ( )2 1h t h tθ= , 

or equivalently 

( ) ( )( )G x F x
θ

= 0θ > ,     (5.45) 

as claimed in theorem. 

Conversely, when equation (5.45) holds, we have 

( ) ( ) ( )( ) 1
g t f t F t

θ
θ

−
= .   (5.46) 

Using equation (5.46) in equation (5.42), we get 

( ) ( )
( )( ) ( )

1

2
l

t

A F x f x dx
F t G t

θ

θ
−∞

= ∫ .   (5.47) 
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2
1lA θ

θ
=

+
,  

which is independent of t , and the sufficiency part follows. 
  

In the right truncated situation, the property that rA  is constant is 

characteristic to the proportional reversed hazards model. This result is stated as 

Theorem 5.11 below. 

Theorem: 5. 11 

Under the conditions of the above theorem, rA  defined in equation (5.43), is 

independent of ‘ t ’ if and only if the relationship 

( ) ( )( )G t F t
φ

=  ; 0φ > ,    (5.48) 

holds for all 0t > . That is when ( ),Y G  is the proportional reversed hazards 

model of ( ),X F . 

Proof 

When equation (5.48) holds, we have 

( ) ( ) ( )( ) 1
g t f t F t

φ
φ

−
= .  (5.49) 

Using equation (5.49) in equation (5.43), we get 

( ) ( ) ( )( ) ( ) ( )
1

2
1 1

2r rF t G t A F t F t G t A
φ φφ

φ

+⎧ ⎫−⎪ ⎪⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

The solution of the above equation is 

2
1rA
φ

φ
=

+
, a constant.  

The proof of the converse part is similar to that of Theorem: 5. 10 and hence 

omitted. 
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Note: 

Instead of assuming the condition that lA  is independent of  t , if we assume 

that lA  is linear in t , say lA at b= + , where a  and b  are constants, the following 

relationship between  the hazard rates of F  and G  is immediate.  

( ) ( ) ( ) ( ) ( )1 2
1 22

h t h t
at b h t h t a

+⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠
, 

where ( )1h t  and ( )2h t  are the hazard rates. Similarly, in the case of rA , we get  

( ) ( ) ( ) ( ) ( )1 2
1 22

t t
at b t t a

λ λ
λ λ

+⎛ ⎞
+ − = −⎜ ⎟

⎝ ⎠
, 

where ( )1 tλ  and ( )2 tλ  are the reversed hazard rates of F  and G  respectively. 

In certain cases, the dependence structure may be such that ( )G x  a  

weighted distribution obtained from ( )F x . Denote by ( )wF t  and ( )wf t , the 

survival and probability density functions of wX , the weighted random variable. 

The affinity between the original and weighted random variables, namely  X  and 

wX , takes the form  

( ) ( )
( )

( )
( )

w
w

t w

f x f x
A t dx

F t F t

∞

= ∫ ,    (5.50)   

 where ( ) ( ) ( )
( )( )w

w x f x
f x

E w X
= , ( )E w X < ∞⎡ ⎤⎣ ⎦ .   (5.51) 

The relationship connecting   ( )wA t  and hazard rates are immediate from 

equation (5.50), and is given by 
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( ) ( ) ( ) ( ) ( ) ( )'

2
w

w w w

h t h t
A t A t h t h t

+⎛ ⎞
= −⎜ ⎟
⎝ ⎠

,    (5.52)   

where ( ) ( )'
w w

dA t A t
dt

= ,   ( )h t  and    ( )wh t  are the hazard rates of the random 

variables   X  and wX  respectively.  
 

5.6 Relationship with other discrimination measures 
(i) Bhattacharyya distance 

First, we discuss the relationship between the Bhattacharyya distance 

[Kailath (1967)] and the affinity in the truncated situation. Equation (5.42) can be 

written as 

( ) ( ) ( ) ( )l
t

F t G t A f x g x dx
∞

= ∫ . 

This is equivalent to  

( ) ( ) ( ) ( ) ( ) ( )
0 0

t

lF t G t A f x g x dx f x g x dx
∞

= −∫ ∫ .    (5.53) 

Using the equations (2.50) and (5.43), equation (5.53) can be written as 

( ) ( ) ( ) ( )l rF t G t A F t G t Aρ= − .   (5.54) 

But we have the relationship 
Beρ −= , 

where B  is the Bhattacharyya distance [Kailath (1967)]. Then equation (5.54) 

now becomes 

( ) ( ) ( ) ( ){ }ln l rB F t G t A F t G t A= − + . 
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(ii)  Modified Kullback- Leibler divergence measure 

Here we consider the modified Kullback-Leibler divergence measure 

defined in equation (2.48) namely 

( ) ( )
( )

( ) ( )
( ) ( )

/
, , log

/t

f x f x F t
D F G t dx

F t g x G t

∞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ . 

( ), ,D F G t  can also be written as 

( ) ( )
( )

( ) ( )
( ) ( )

/
, , 2 log

/t

f x g x G t
D F G t dx

F t f x F t

∞ ⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∫  .  (5.55) 

Using Jensen’s inequality, equation (5.55) becomes 
 

( ) ( )
( )

( ) ( )
( ) ( )

, , 2 log
t

f x g x F t
D F G t dx

F t f x G t

∞

≥ − ∫ . 

That is, 

( ) ( ) ( )
( ) ( )

, , 2 log
t

f x g x
D F G t dx

F t G t

∞

≥ − ∫ .     

From equation (5.42), the above expression becomes 

( ), , 2 log lD F G t A≥ − .  (5.56) 

However, modified Kullback-Leibler divergence measure is the difference 

between the residual inaccuracy measure and residual entropy function, so from 

equation (2.53), the expression (5.56) can be read as 

( ) ( ), , , 2 log lI F G t H F t A− ≥ − , 

where  ( ), ,I F G t  is the inaccuracy measure in truncated setup and ( ),H F t  is the 

residual entropy. 
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(iii)  Hellinger’s distance 

Hellinger’s distance for truncated random variable is 

( ) ( )
( )

( )
( )

2

E
t

f x g x
H t dx

F t G t

∞ ⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∫ .    (5.57)  

On simplifying, we get equation (5.57) as  

( ) ( ) ( )
( ) ( )

2 1E
t

f x g x
H t dx

F t G t

∞⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∫  

          ( )2 1 lA= − . 
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Chapter  6 

RESIDUAL INACCURACY MEASURE 
AND RELATED CONCEPTS IN 

DISCRETE TIME DOMAIN 
  

 

6.1 Introduction 

 Compared to the volume of literature available in the continuous case, 

only little work seems to have been done in the analysis of lifetime data in discrete 

time. However, discrete model provides a good approximation for their 

continuous counterparts. Xekalaki (1983) provides examples of situations where 

discrete models are appropriate. Gupta and Gupta (1983), Hitha and Nair (1989) 

and Roy and Gupta (1999) have characterized probability distributions using 

reliability concepts in discrete time. Rajesh and Nair (1998) has defined the 

residual entropy function in the discrete set up and has obtained characterization 

results for the geometric distribution using the functional form of the residual 

entropy function. Nanda and Paul (2006) have extended the definition to residual 

entropies of order β   and has studied their properties. Recently, an alternate 

definition for the generalized residual entropy in discrete case has been proposed 

by Baig and Dar (2009). Motivated by this, in the present chapter we extend the 

concept of residual inaccuracy and affinity to the discrete time domain and 

examine its properties.    

6.2 Residual inaccuracy in discrete time  

Let X  and Y  be two random variables in the support of the set of non-

negative integers and with probability mass functions  ( )f x  and ( )g x . Denote 

the survival functions of X  and Y  by ( )F x  and ( )G x  respectively. The inter 
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relationships between the reliability concepts in discrete case is reviewed in 

Section 2.1. 

If  

|tX X t X t= − >   and  |tY Y t Y t= − > , 0t ≥ ,      (6.1) 

the discrete analogue of the inaccuracy measure, defined in equation (2.54), 

associated with tX  and  tY  can be defined as  

( ) ( )
( )

( )
( )1

, ; log
x t

f x g x
I F G t

F t G t

∞

= +

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  .   (6.2) 

For convenience in notation, we denote ( ), ;I F G t  by ( )I t . 

Equation (6.2) can also be written as 

( ) ( )
( )

( ) ( )
1

1log log .
x t

I t G t f x g x
F t

∞

= +

= − ∑   (6.3) 

Further, the residual inaccuracy function, defined in equation (6.2) can be 

expressed in terms of the hazard rate, ( ) ( )
( )1
f x

h x
F x

=
−

. 

Observing that equation (6.2) can be written as 

( ) ( ) ( )
( )

( )
( )2

1

log 1 log ,
1x t

f x g x
I t h t

g tF t

∞

= +

⎛ ⎞
= − + − ⎜ ⎟⎜ ⎟+⎝ ⎠

∑   (6.4)  

where  

( ) ( )
( )2

1
1

g t
h t

G t
+

+ = , 

we have 

( ) ( ) ( )
( )

( )
( ) ( )( )

( )
( )

2
2

1 2 2

1
log 1 log

11 1x t

f x h x g x
I t h t

g th x h xF t

∞

= +

⎛ ⎞+
= − + − ⎜ ⎟⎜ ⎟++ −⎝ ⎠

∑  .      (6.5) 



Residual inaccuracy measure and related concepts in discrete time domain   

 99

Using the relationship 

 ( ) ( ) ( )1f x F x F x= − − , 

equation (6.5) becomes 

( ) ( ) ( )
( )

( )
( ) ( )( )

2
2

1 2 2

log 1 log
1 1x t

F x h x
I t h t

h x h xF t

∞

= +

⎛ ⎞
= − + + ⎜ ⎟⎜ ⎟+ −⎝ ⎠

∑    

 

            ( )
( )

( )
( )

( )
( )

( )
( )1 1

1 1
log log .

1 1x t x t

F x g x F x g x
g t g tF t F t

∞ ∞

= + = +

⎛ ⎞ ⎛ ⎞− +
+⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠
∑ ∑  (6.6) 

 

In view of the fact that 

( )
( )

( )
( )

( )
( )

( )
( )1 1

1 1
log log 0,

1 1x t x t

F x g x F x g x
g t g tF t F t

∞ ∞

= + = +

⎛ ⎞ ⎛ ⎞+ −
− =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∑ ∑   (6.7) 

using equation (6.7) in equation (6.6), we get 

( ) ( ) ( )
( )

( )
( ) ( )( )

2
2

1 2 2

log 1 log .
1 1x t

F x h x
I t h t

h x h xF t

∞

= +

⎛ ⎞
= − + + ⎜ ⎟⎜ ⎟+ −⎝ ⎠

∑   (6.8) 

The above equation provides a useful relation connecting the residual 

inaccuracy measure and the hazard rate. 

We now establish a recurrence relation satisfied by ( )I t . 

Theorem: 6.1 

Let X  and  Y  be two discrete random variables in the support of non-

negative integers with probability mass functions ( )f x  and ( )g x , failure rates 

( )1h x  and ( )2h x  and residual inaccuracy function ( )I t . Then  ( )I t  satisfies the 

relationship 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ){ }1 2 1 2
1

1 1 log 1 log 1
1

I t I t h t h t h t h t
h t

= − + + − −
−

. 1, 2,...t =   (6.9)  

Proof 

Equation (6.3) can be written as 

( ) ( ) ( ) ( ) ( ) ( )
1

log log
x t

F t I t F t G t f x g x
∞

= +

= − ∑  . (6.10) 

Changing t  to 1t +  in equation (6.10), we get 

( ) ( ) ( ) ( ) ( ) ( )
2

1 1 1 log 1 log .
x t

F t I t F t G t f x g x
∞

= +

+ + = + + − ∑   (6.11) 

Subtracting equation (6.10) from equation (6.11), we get 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( )1
1 log 1 log 1 log .

1 1 1
F t f t F t

I t I t G t g t G t
F t F t F t

+
+ = + + + + −

+ + +
      (6.12) 

Using the relationship  

( ) ( ) ( )1 1f t F t F t+ = − + , 

equation (6.12) becomes  

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( )1 log 1 1 log 1 log .
1 1 1

F t F t F t
I t I t G t g t G t

F t F t F t

⎛ ⎞
+ = + + + − + −⎜ ⎟⎜ ⎟+ + +⎝ ⎠

    (6.13) 

Equation (6.13) can be written as  

( ) ( )
( )

( ) ( )( ) ( )
( )2

1
1 log 1 log .

1 1
F t g t

I t I t h t
F t G t

⎛ ⎞+
+ = + + − ⎜ ⎟⎜ ⎟+ +⎝ ⎠

   (6.14) 
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Since ( )
( )

( )
( )

2

2

1 1
1 11

g t h t
h tG t

⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟− ++ ⎝ ⎠

 and ( )
( ) ( )1

1
1 11

F t
h tF t

=
− ++

, equation (6.14) 

becomes 

( ) ( ) ( ) ( )( ) ( )
( )

2
2

1 2

111 log 1 log .
1 1 1 1

h t
I t I t h t

h t h t
⎛ ⎞+

+ = + + − ⎜ ⎟⎜ ⎟− + − +⎝ ⎠
            (6.15) 

Rearranging the terms in equation (6.15), we get 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ){ }1 2 1 2
1

11 1 log 1 1 1 log 1 1 .
1 1

I t I t h t h t h t h t
h t

+ = + + + + − + − +
− +  

(6.16) 

Taking t  in place of 1t +  in equation (6.16), we get the relationship given in 

equation (6.9), as claimed. 

Corollary: 6.1 

( )I t  can be expressed uniquely in terms of the inaccuracy measure 

( ),I F G  , defined in equation (2.51) and the hazard rates associated with F  

and G . 

Proof 

Substituting for ( )1I t −  in equation (6.9), we get 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( ){ }

( ) ( ) ( )( ) ( )( ){ }
( )

1 1

1 2 1 2
1 1

1 2 1 2

1

1 2
1 1 1

1 1 log 1 1 1 log 1 1
1 1 1

log 1 log 1
.

1

I t I t
h t h t

h t h t h t h t
h t h t

h t h t h t h t

h t

= −
− − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ − − + − − − −
− − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ − −
+

−⎡ ⎤⎣ ⎦
 

Proceeding like this, we get 
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( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( )

( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( )

( ) ( ) ( )( ) ( )( )
( )

1 1 1

1 2 1 2

1 1 1

1 2 1 2

1 1 1

1 2 1 2

1

1
1 1 1 ... 1 0

0 log 0 1 0 log 1 0

1 1 1 ... 1 0

1 log 1 1 1 log 1 1

1 1 1 ... 1 1

log 1 log 1
... .

1

I
I t

h t h t h

h h h h

h t h t h

h h h h

h t h t h

h t h t h t h t
h t

−
=

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ − −
+

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ − −
+

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ − −
+ +

−⎡ ⎤⎣ ⎦

 

 

          

( )

( )

( ) ( ) ( )( ) ( )( ){ }
( )

( ) ( ) ( )( ) ( )( ){ }
( )

( ) ( ) ( )( ) ( )( )
( )

1 2 1 2

1 1
0 0

1 2 1 2

1
0

1 2 1 2

1

0 log 0 1 0 log 1 0,

1 1

1 log 1 1 1 log 1 1

1

log 1 log 1
... .

1

t t

x x

t

x

h h h hI F G

h x h x

h h h h

h x

h t h t h t h t
h t

= =

=

+ − −
= +

− −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ − −
+

−⎡ ⎤⎣ ⎦

+ − −
+ +

−⎡ ⎤⎣ ⎦

∏ ∏

∏
  (6.17) 

 

 

where ( ),I F G  is the Kerridge’s inaccuracy measure associated with the 

random variables X  and Y . Equation (6.17) expresses the truncated 

inaccuracy measure in terms of the hazard rates and the inaccuracy measure, 

defined in equation (2.51).  

Now we look into the situation where the residual inaccuracy measure 

defined in equation (6.2) is a constant, independent of  t . 
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Theorem: 6.2 

Let X   and Y  be two discrete random variables in the support of non-

negative integers. Assume that the relationship  

( ) ( )( )G x F x
θ

=  ,        (6.18) 

holds for all 0x > . The residual inaccuracy measure is independent of t  if X  

follows geometric distribution. 

Proof 

Assume that equation (6.18) holds. 

This gives 

( ) ( ) ( )( ) ( )( )1 1G x G x F x F x
θ θ

− − = − − . 

Since ( ) ( ) ( )1G x G x g x− − = , the above expression becomes 

( ) ( )( ) ( )( )1g x F x F x
θ θ

= − − .   (6.19) 

Using equations (6.18) and (6.19) in equation (6.3), we get 

( ) ( )
( )

( ) ( )( ) ( )( ){ }
1

1log log 1 .
x t

I t F t f x F x F x
F t

θ θ
θ

∞

= +

= − − −∑    (6.20) 

When X  follows geometric distribution with survival function 

( ) 1, 0,1,2...xF x q x+= =    (6.21) 

using equation (6.21), equation (6.20) can be written as 

( ) ( ) ( ) ( )( )1 1

1

1 log logt xx x

x t

I t t q q pq q q θθθ
∞

− + +

= +

= + − −∑ . 
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That is, 

( ) ( ) ( ) ( )1

1 1

1 log log log 1t x x

x t x t

I t t q q p q xq p q qθθ θ
∞ ∞

− +

= + = +

⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

∑ ∑ .        (6.22)   

Equation (6.22) can be read rewritten as 

( ) ( ) ( ) ( )
1

1 1 11 log log log log 1 .
t

t t tqI t t q q tq q q q q
p

θθθ θ
+

− + + +⎡ ⎤
= + − + − −⎢ ⎥

⎣ ⎦       
(6.23) 

 

Simplifying equation (6.23), we get 

( ) ( )log log log 1I t q q q
p

θθθ= − − − , 

which is independent of t . 

In this sequel we consider the discrete analogue of the generalized 

inaccuracy measure considered in Nath (1968) in the truncated context. Let X  

and Y  be the random variables in the support of the set of non-negative integers 

with probability mass functions ( )f x  and ( )g x  respectively. Nath (1968) 

defines the generalized inaccuracy measure as 

( ) ( ) ( )1

1

1, log
1

r
r

x

H F G f x g x
r

∞
−

=

⎛ ⎞= ⎜ ⎟− ⎝ ⎠
∑ , 1, 0.r r≠ >                            (6.24) 

When ( ) ( )f x g x= , equation (6.24) reduces to generalized Renyi entropy 

considered in Renyi (1961). Further ( )
1

lim ,rr
H F G

→
 becomes the Kerridge’s 

inaccuracy measure. Notice that the measure defined in equation (6.24) is a 

monotonically decreasing function of r . 

For the random variables tX  and tY , defined in equation (6.1), with 

probability mass functions ( )tf x  and ( )tg x  and survival functions ( )tF x  and 

( )tG x , equation (6.24) turns out to be  
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( ) ( )
( )

( )
( )

1

1

1, ; log
1

r

r
x t

f x g x
H F G t

r F t G t

−
∞

= +

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠
∑  .  (6.25) 

The following relationship between the measure defined in the above 

equation and hazard rates is immediate. 
 

( ) ( ) ( ) ( ) ( ) ( )( ) 11 1 1
1 2

r r
rr H t r H te e h t h t
−− − −− = , 

where ( ) ( )
( )1

f t
h t

F t
=  and ( ) ( )

( )2

g t
h t

G t
= . 

6.3 Inaccuracy in the context of length biased distributions 

Gupta (1979) has defined the length-biased distribution of a non-negative 

discrete random variable X , analogous to the continuous case, as 

( ) ( )
L

x f x
f x

µ
= , 1, 2,...x =     (6.26)   

where ( )E Xµ = < ∞ . 

The survival function, ( )LF x  corresponding to equation (6.26) is 
 

( ) ( ) ( )
L

F x v x
F x

µ
= ,    (6.27)     

where ( ) ( )|v x E X X x= >  is the vitality function of X . 

Now for the random variables X  and LX , the measure (6.2) is defined as 

( ) ( )
( )

( )
( )1

log L
L

x t L

f x f x
I t

F t F t

∞

= +

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  .    (6.28) 
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The measure (6.28) gives the measure of inaccuracy when ( )Lf x  is 

assumed instead of ( )f x . In the context of length-biased distributions, the 

following relationship exists between ( )LI t ,  the residual entropy function, 

geometric vitality function and vitality function. 

Using equations (6.26) and (6.27), equation (6.28) can be written as 

( ) ( ) ( ) ( ), log logLI t H F t G t v t= − + ,   (6.29) 

where   

( ) ( )
( )

( )
( )1

; log
x t

f x f x
H F t

F t F t

∞

= +

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑   is the residual entropy measure defined 

in Rajesh and Nair (1998)  and 

( )
( )

( )
1

1log log
x t

G t f x x
F t

∞

= +

= ∑  is the geometric vitality function discussed 

in Nair and Rajesh (2000). 

6.4 Affinity between two residual life distributions in the discrete case 

Let X  and Y  be two discrete random variables in the support of the set of 

non-negative integers. Denote the probability mass function of  X  and Y  by 

( )f x  and ( )g x  and the survival functions by ( )F x  and ( )G x  respectively. We 

define the affinity between the residual life distributions   tX  and tY , defined in 

equation (6.1),as 

( ) ( )
( ) ( )1

t
x t

f x g x
F t G t

ρ
∞

= +

= ∑  .  (6.30) 

Equation (6.30) provides a measure of similarity between the distribution 

functions associated with the truncated random variables tX  and tY . 
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In the next theorem, we establish a recurrence relation satisfied by tρ . 

Theorem: 6.3 

Let tρ  be as defined in equation (6.30) and ( )1h x  and ( )2h x  be the hazard 

rates associated with F  and G  respectively. Then tρ  satisfies the recurrence 

relation 

( ) ( )
( )( ) ( )( )

1 1 2

1 21 1
t

t

h t h t

h t h t

ρ
ρ − −

=
− −

, 1, 2,3...t =                                   (6.31) 

Proof 

From equation (6.30), we have 

( ) ( ) ( ) ( )
1

.t
x t

F t G t f x g xρ
∞

= +

= ∑    (6.32) 

Replace t  by 1t −  in equation (6.32), we get  

( ) ( ) ( ) ( )11 1 .t
x t

F t G t f x g xρ
∞

−
=

− − =∑   (6.33) 

Subtracting equation (6.33) from equation (6.32), and simplifying, we get 

( ) ( )
( ) ( )

( ) ( )1 1 2 .
1 1t t

F t G t
h t h t

F t G t
ρ ρ− − =

− −
        (6.34) 

Since ( )
( )

( )11
1

F t
h t

F t
= −

−
, equation (6.34) can be written as 

( ) ( ) ( ) ( )1 1 2 1 21 1t th t h t h t h tρ ρ− − − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

Rearranging the terms, we get equation (6.31), as claimed. 
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Corollary: 6.2 

From the recurrence relation (6.31) by successive iteration, one can express 

tρ   in terms of ( ),F Gρ  and hazard rates, similar to that of inaccuracy, described 

in Corollary 6.1. 

Plan for future study 

The present study has unfolded several problems which needs further 

investigation. Compared to the volume of work done on inaccuracy measure in the 

continuous case, only very little work seems to have been done in discrete 

domain. Characterizations of distributions based on the functional form of the 

discrete residual inaccuracy measure as well as its generalization can be done 

analogous to the continuous case. The proposed affinity measure based on 

truncated observations would be useful to decide whether two populations differ 

or is consistent with respect to their distributions. To apply this measure in 

practical situations, one has to develop a reasonable estimator for this measure. 

Non parametric estimation procedures can be utilized by suitably extending the 

work by Ahamad (1980). These problems shall be taken up in a future work.                                       
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