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PREFACE

The whole history of physics is a story of deformations. In classical me-
chanics itself, the Lorentz transformation between two inertial frames is a deformation
of Galilean transformation with § = ? as the deformation parameter and in the limit
3 -+ 0, the original non-relativistic mechanics is regained. Thus special relativity is
a deformation of Galilean relativity. Similarly, Quantum Mechanics is a deformation
of Classical Mechanics with & as the deformation parameter. In the limit A — O,

the results of quantum mechanics merge with the classical results.

Quantum groups and quantum algebras are deformations of classical
Lic groups and their structurc is much more complex than that of Lic groups. They
are symmetry groups of non-commutative spaces. Though initially introduced in con-
nection with the juantum inverse scattering theory, they have found applications in
many problems of physical and mathematical interest such as conformal field theory,
integrable lattice models, knot theory, quantum optics and gauge field theory. How-
ever, direct applications of quantum symmetry to real physical systems are limited.
There had been a great deal of interest in the study of quantum groups during the

last decade.

The representation theory of the quantum algebras has led to the de-
velopment of g-deformed oscillator algebra. Since then, there k=s been an increasing
interest in the study of physical systems using g-oscillator algebra. It has found

applications in several branches of physics such as vibrational spectroscopy, nuclear



physics, many body theory and quantum optics. The work presented in this thesis
is also along similar lines. The concept of g-oscillator algebra is applied to some

problems in condensed matter physics.

This thesis is organised as follows: It contains five chapters. In the
introductory chapter, we present a brief history of the development of the con-
cept of quantum groups and quantum algebras. We review the concept of non-
commutative spaces and introduce quantum groups as symmetry groups of non-
commutative spaces. The g-deformation of numbers and basics of g-differential cai-

culus are presented. Some simple examples of quantum groups are also illustrated.

In chapter 2, a brief review of the g-harmonic oscillator and the salient
features of its energy spectrum are given. The statistical mechanics of slightly de-
formed oscillator is discussed. It develops the pre-requisites for the investigations
reported in the subsequent chapters. A few applications of g-oscillator algebra to

real physical systems are also cited.

Chapter 3 deals with the problem of an anharmonic oscillator with
quarfic interaction. The energy spectrum and the statistical mechanics of q-deformed

anharmonic oscillator are discussed.

In chapter 4, the Debye model of lattice heat capacity of crystals is
reformulated using q-oscillator algebra, treating the vibrational modes as q-bosons.

The theoretical resuits on lattice heat capacity are compared with experimental data.



Chapter 5 deals with application of g-oscillator algebra to the linear
st wave theory of ferromagnets. The magnons are treated as ¢-bosons. A compar-
ative study of the theoretical results on spontancous magnetisation and magnon heat

capacity with experimental data is also presented.

A part of these investigations has appeared in the form of the following

publications:

o (i). g-Anharmonic oscillator with quartic interaction: V C Kuriakose, K K

Leelamma and K Babu Joseph, Pramana J.Phys, 39, 521 (1992).

o (ii). Lattice heat capacity of crystals- a g-oscillator Debye model: K K Lee-
lamma, V C Kuriakose and K Babu Joseph, Int.J.Mod.Phys. B, T, 2697

(1993)

e (iii). Thermodynamic preperties of a -deformed Heisenberg ferromagnet (com-

muticated to Phys. Lett. A.)
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SYNOPSIS

The thesis deals with some applications of g-deformation and quantum
group ideas to problems in condensed matter physics. They are deformations of
classical groups and their structure is much more complex than that of Lie groups.
They generalise our familiar concepts of symmetries to the realm of non-commutative

geometry.

The g-deformation of numbers was introduced by Heine in 1878. The
g-differential calculus which is a generalisation of ordinary differential calculus was
also developed in the nineteenth century. Recently, there has been a great deal of
interest in the study of quantum groups and quantum algebras. The representation
theory of quantum algebras with a single deformation parameter g, has led to the
development of the now well-known g-deformed harmonic oscillator algebra. But we
know that in real physical systems one cannot dismiss the role of anharmonicity. The
fact that the energy levels of the g-oscillator are not equally spaced and the success of
the q-oscillator model in accounting for the measurements on the infra-red spectrum

of a umnber of molecules, indicate that g-deformation can take care of anharmonicity

effects to some ectent.

Motivated by these considerations, we have studied the problem o.
g-deformations of an anharmonic oscillator with quartic interaction and obtained
the energy spectrum. The erergy values are found to depend on the deformation
parameter ¢. We have also evaluated various thermodyramic quantities such as

iv



partition function, entropy and internal energy. Such studies are expected to be

relevant in the context of lattice dynamics.

The Debye model of lattice heat capacity of solids has been remarkably
successful in describing the experimental observations at low temperatures in many
purc crystalline solids. Alkali clements such as potassium, rubidium and cacsium
have a low temperature heat capacity proportional to T2 in accordance with Debye’s
theory. In the high temperature region (T" >> ©p), the Debye model leads to the
Dulong-Petit law. However, measurements in this region indicate deviations from

the predictions of Debye model.

Debye’s theory is based on the harmonic approximation. Real crystals
do exhibit anharmonic effects such as thermal expansion. We have reformulated the
Debye theory, taking each mode as a g-oscillator. In the low-temperature limit, the
g-deformed model yields a g-dependent correction for C, which is negligible and thus
when T' << Qp, the model effectively coincides with the Debye model. In the high
temperature limit, C, is found to be T-dependent, in very good agreement with the
experimental results obtained in the three cases studied. The investigations lend
suppott to the view that phonons in crystals may be g-quancised excitations. Such
phonons may be termed g-phonons. When T is very large (~ 300K or more), the
variation of C, with T'is found to be more rapid than predicted. The deviation may

perhaps be taken care of by g-anharmonic model incorporating interactions.

The concept of g-deformation is also applied to investigate the



magnetic properties of ferromagnets. The agreement between the linear spin wave
theory of ferromagnetism and experimental observations on ferromagnets is not sat-
isfactory. The g-deformed Holstein-Primakoff transformation is used to describe the
spin variables of a Heisenberg ferromagnet and the magnons are treated as g-bosons.
The exchange Hamiltonian in the nearest neighbour approximation is obtained for
small values of the deformation parameter when the excitation is low. The thermo-
dynamic quantities in the low temperature region are also evaluated. It is found that
the spontaneous magnetisation and magnetic contribution to the heat capacity have
gq-dependent T ? terms in addition to the well known Bloch T'? term. Calculations
are done for the cases of EuO and EuS, the simplest Heisenberg ferromagnets known.
A comparison of the theoretical results and experimental values indicates that our
model is an improvement over the linear spin wave theory. The general pattern of
temperature dependence of magnon heat capacity and spontaneous magnetisation is

predicted by the model.

vi



Chapter 1

INTRODUCTION

Symmetry plays an important role in physics. Progress in modern physics
has been intimately related to the study of symmetry. Applications of symmetry
principles and conservation laws have paved a novel way of understanding physical
systems. Gauge symmetry has led to the standard model in high energy physics.
Crystallographic space symmetry is fundamental to solid state physics and conformal
symmetry plays an important role in string theory and critical phenomena. The

mathematical tool for studying the symmetry of a system is group theory.

(Quantum groups and quantum algebras have attracted much attention
of physicists and mathematicians during the last eight years [1]. There had been a
great deal of interest in this field, especially after the introduction of the g-deformed
harmonic oscillator [2&3]. Quantum groups and quantum algebras have found unex-

pected applications in theoretical physics.

Historically quantum groups first appeared as a deformation of the



universal enveloping algebra of a Lie algebra in the study of integrable quantum sys-
tems. In the beginning of the 1980s, there was much progress made in the field of
quantum integrable field theories. One of the most important studies is the develop-
went of a quantum mechanical version of the well-known inverse scattering metiod
used in the theory of integrable nenlinear evolution equations like the Korteweg de
Vries (KdV) equation. This method was developed by Faddeev, Sklyanin and Takhta-
jan [4-5] in formulating a quantum theory of solitons. Kulish and Reshetikhin [7]
showed that the quantum linear problem of the quantum sine-Gordon equation was
not associatec with the Lie aigebra sl(2) as in the classical case, but with a defor-
mation ¢f this algebra. Sklyanin showed that [8&9] deformations of Lie algebraic
structures were not special to the quantwm sine-Gerdon equation and that it seemed
to be part of a4 general theory. It was Drinfel’d who showed that a suitable quantisa-
ticn of Poisson Lie groups reproduced exactly the same deformed algebraic structures
encouutered in the theory of quantum inverse scattering [10-12]. Alinost at the same
time, Jimbo arrived at the same result [13&14] from a slightly different angle. In

his work, the quantum algebras appeared in the context of the solution of the Yang-

Baxter Equation (YBE).

There is no universally accepted definition of a quantum group. There
are several approaches [15-17]. As we have seen, in Drinfeld’s approach, the quan-
tum group is deiined as a deformation of the Universal Euveloping Algebra (UEA)

of & Lie algebra. This approach is similar to the study of Lie groups via their Lie



algebras. Jimbo also gave almost the same definition. The new algebraic struc-
tures are called Quantised Universal Enveloping Algebras (QUEA). In Manin’s work
[18], quantum groups are defined as symmetries of non-commutative or quantum
spaces. We discuss this point in detail in Section 1.2. Woronowicz [19-21] gave an
entirely different approach to quantum groups, based on non-commutative C * al-
gebras. This is analogous to the classical theory of topological groups. He called
these groups, pseudo-groups. His approach is popular among mathematicians. The
theory of Faddeev and the Leningrad school [22] introduces quantum groups in terms
of R-matrices which are solutions of the Quantum Yang-Baxter Equation (QYBE).
This approach is directly connected to integrable quantum field theories and has no

classical analogue.

In all the four approaches, quantum groups have the structure of a
Hopf algebra [15]. The word ‘quantum’ in quantum groups is different from the
canonical quantisation. It comes from the Yang-Baxter Equation. Solutions of the
classical YBE are closely related to the notion of classical groups while solutions of
the QYBE are related to quantum groups. Thus the relation of quantum groups to
ordinary Lie groaps is snalogous to that between quantum mechanics and classical

raechanics. The structure of quantum group is much more complex than that of Lie

group.



1.1 Quantum groups and non-commutative spaces

The quantum algebras have been linked to geometries that have non-
commutative structures [23&24]. The concept of space-time continuum has been
fundamental to all successful physical theories. However there are arguments that
on a submicrescopic level, this concept has to be abandoned [25]. There is no ex-
perimnental proot for the assumption that space-time is smooth down to arbitrarily
small distances. Perhaps it may be because of this idealisation of space-time concept
that one comes across tremendous problems in the unification of various interactions
[26]. This motivates one to look for a new space-time concep:. Quantum mechanical
phase-space is only partially non-commuting, only co-ordinates and momenta non-
commnute, co-ordinates.themselves are commuting. If at a sufficiently small length
scale, co-ordinates become non-commuting operators, it will be impossible to mea-
sure the position of a particle exactly. In this way, one may hope to remove the
ultra-violet divergences cf conventional quantum field theory which are due to the
possibility of measuring field oscillations at one point. Thus non-commutativity is
introduced as a necessary conditic;n in the generalised space-time concept. 1t has

been argued that physics at the Planck scale may be understood only with the help

of non-commutative geometry [26&27).

In a non-commtative space with real co-oriinates (x,y,z), a unit of

-~



length along the x-direction is defined as
Az = (g—1) = (1.1)
or equivalently
Az = (g—gq¢ )= (1.2)

where ¢ is some parameter which is real. The width of the iuterval Aix is not a
constant. In the limit ¢ — 1, the interval Az -— 0 and we have space-time

continuunt.

Consider a system with two degrees of {freedom. The quantum mechan-
ical phase-space of the system is spanned by the co-ordinates = ,y and conjugate

momenta p, and p,. This phase-space is oniy partially non-commuting:
[:B,p,]='ih=[y,py] (1.3)

[z, y] =0 = [ps py] (1.4)

i.e, the z—y plane and p.—p, plane have continuum structure and only z—p, and y—p,

planes may have discrete structure. In a non-commutative space, non-commutativity

is prescribed for co-ordinates also:

LY = qyzx (1.5)

The q-commutator

[z,y)y = zy —gye =0 (1.6)



Eq.(1.5) should remain co-variant under a co-ordinate transformation (z, y) —
(«', ¥'). Let
T = (“ b) (1.7)
d

c

be the matrix effecting the transformation. a, b, ¢ and d are in general non-

commuting elements. Then

(7) = (¢ a) () = (Z18)

Y/ \c¢ d y/  \czx+dy/’
zIyl =qy/z/

implies

(ax +by) (cz +dy) = q(cz +dy) (az + by) (1.8)

If we assume that a, b, ¢, d commute with (z,y), we can write
, a b
(& ¥) = (2 9) (& ) = (sz+ey ba+ay)
Then invariance of (1.5) implies
(az +cy) (bz +dy) = q (bz + dy) (az + cy) (1.9)

Relations (1.8) and (1.9) give a complete set of conditions to be obeyed by the non-

commuting objects a, b, ¢, d to preserve the structure of the quantum plane:

ab = gba ;
cd = qdc;
ac = gea,

6



bd = qdb;
bc = cb;
ad — da = (g—~q') be (1.10)
These arec commutation relations obeyed by a,b,c,d. T is called a quantum matrix.

It is shown that [28] the matrices T satisfy all the axioms of a non-
commutative Hopf algebra and thus constitute a quantum group. It is denoted by
GL,(2), the quantum linear general group in two dimensions.' It is the group of
linear transformations in two-dimensional non-commutative space that preserves the

commutation relation (1.5). The additional relation
ad — ¢ghc = 1 (1.11)
yields the quantum unimodular group SL,(2). The object defined by
det,(T) = ad — gbc (1.12)
i5 called the quantum determinant or q-determinant.

1.2 qg-deformed numbers and qg-differential calculus

The g-deformation of numbers was introduced by Heine [29] in 1878. The

g-basic number [, is defined as

= (1.13)

~1



or alternatively,
¢ —-q"
[n], = = (1.14)

limg1 [n]q = n,the ordinary number. (1.15)

The g-functions are also defined [30]. For example, the g-exponential function

eq(z) = wo [:]q, (1.16)
where
! = [l (1= g 21, (1, (1.17)
It follows that
[, = 13
[0, = 0;
0] = 1 (1.18)

The g-sine and q-cosine functions are defined as

~ T . .
0”.’ ] —_ — woo_ (’—1.'17 1-19
""LQ(L') rz,__(‘) [27. + l]q! 27:(6‘1 € ) ( * )
o T 1, i —iz
COSq(IL‘) = E [—2-;]—7 = 3 (eq + €q ) (120)
r=0 q° ~

g-differential calculus is a generalisation of ordinary differential calculus. It was

developed in the nineteenth century by Jackson [31&:32).

Let f(z) be a function of the real variable z. Its q-derivative is defined

as

_ flaz) - f=)

Px fiz) z (¢—1)

(1.21)



where ¢ is in general some complex parameter. D, f is a differnce quotient %f_ where
Af = flgz) — f(z) and Az = x(q-— 1) under the scaling r — gz. q is called the

base. An alternative definition of q-derivative is

D, f(z) = f(qi)(q__gz; 7)

(1.22)

This defines a difference quotient %ﬁ under the scaling g 'z — ¢z or = — ¢=.

The g-derivative becomes the ordinary derivative as ¢ — 1.

limg..y D.(f) = g = O,f (1.23)

Thus ¢-differentiation defines a finite differential calculus where the intervals Az are
finite. As ¢ — 1, Ax — 0 and the variation of z is continuous. In this respect,

¢-differential calculus is convenient for the description of non-commutative space.

The g-derivative satisfies the following properties:

Dy(z) = 1 (1.24)
Dy(z") = [n] =" (1.25)

Dy(az") = aln) 2" (1.26)

D, (af+bg) = aD.(f) + bD.(9) (1.27)

D. (fg) = g(=) D. (f) + flgz) Da(g) (1.28)

D,z —qlzD, = ¢F* (1.29)



I

[z 0,. =] (1.30)

[:l" aza DT] _—D:c (131)

Here a and b are constants and f and g are functions of . In proving these properties,
we assume definitions (1.13) and (1.21).

The g-analogue of integration in the case of finite limits a,b is also defined as

A o0 20
/ flz) d(qz) = (1 —q) { b> g olgb)—ad ¢ o(da) } (1.32)
Ja 0 =0

1.3 Simple examples of quantum groups and quan-
tum algebras

Two weli-known examples of quantum group are SL,(2) and SU,(2).
SLo(2)

This group has already been introduced in Section 1.1. It is the system of 2x2

a

: b . . . .
matrices T = ( d) with non-commuting matrix elements, i.e, the algebra A,

generated by the four clements a, b, ¢, d satisfy the relations (1.10):
ab = gba ; bd = qdb

cd

qde ; ac = qca

bc = cb; ad—da = (q—q be
The matrix elements a, b, ¢, d cannot have a realisation in ordinary numbers.
However when g — 1, these elements commute and the matrix T turns to an ordinary

10



mairix that belongs to the group GL(2) or SL(2) if det (T) = 1. If T} and T3 are
two matrices with non-commuting matrix elements satisfying the above relations and
if eleinents of Ty commute with those of T, then the clements of the product matrix
VT, also satisfy the above relations. In this sense, the set of matrices T has one of
the properties of the groups—the closure properiy. It is to be noted that T1T5 is not

thie usnal matrix product bu¢ the coproduct:

TT, = (al bl) ® ((I.g bg) _ (G.IC?))(LQ-{-b;C__‘}Cz (L1®b2+b1®dg)
142 = Cy d! Ca dg - ‘Cl®(lg+d;®62 Cl®b2 + (i]@dg

However in order to form a group, for every matrix T, there should exist an inverse
T-! such that

TT!' =T'7T =1,
the unit matrix. The matrix T"! obtained from T by the standard methods does

not satisfy this property. However, for every matrix T satisfying relations (1.10), a

corresponding matrix

1 —q'
S(T = [ ¢ 1 ) 3
S(T) (‘qC ! (1.33)
can be defined such that
S(TYT = TS(T) = Idet,(D (1.34)
where deto(T) = ad ~ gbc. The quantum determinant det,(7) commutes with all

elements of the algebra A,. $(T) can be considercd as the analogue of the inverse

matrix except for det,(T) and is called antinode.

1i



Thus the set of matrices Tis not exactly a matrix group, but something
like a group. Woronowicz labelled it as ‘compact matrix pseudo group’. However, in
the limit ¢ — 1, it turns into the SL(2) group. For ¢ # 1, the set of matrices T can
be considered a g-deformation of the group GL(2) and is called the quantum group
GL,(2). Physically it represents the set of all linear transformations in the z — y
quantum plane satisfying the relation £ y = ¢ y . In particular, if det,(T) = 1,
it forms the quaﬂtum group SL,(2).

SUq(2):
The other well-studied quantum group is SU,(2) which is the g-deformation of the
classical group SU(2), the group of angular momentum. The Lie algebra su(2) con-

sists of three elements L,, L.  and L. which satisfy the commutation relations

[Lz, LL} = =+ L:t (135)
(Ly, L] = 2L, (1.36)

with
Lt =1L (1.37)

Kulish and Reshetikhin [7}, while studying the solution of YBE, introduced the al-

gebra of three elements J,., J_ and J, :
o Ji] == £ Jy

T J] = [27)), (1.38)



In the limit ¢ — 1, this algebra goes into the su(2) algebra. Thus it is called g¢-
deformation of su(2) algebra and is denoted by su,(2).

Both su,(2) and si,(2) are quantum algebras with a single deformation
parameter ¢. Going to higher dimensions with more than two non-commuting co-

ordinates, one has to use more than one deformation parameter. Several authors

have worked on two parameter deformations {33&34].

13



Chapter 2

q-DEFORMED HARMONIC
OSCILLATOR

2.1 Introduction

The Simple Harmonic Oscillator (SHO) problem has «n indispensable role
in physics. It is customary to use the SHO to illustrate the basic concepts and new
methods in ciassical as well as quantumn physics. The wave mechanical theory of
oscillators provides the basis for understanding the properties of a wide variety of
systems which are analysable in terms of harmonic oscillators. It is useful not only in
the study of vibrations of diatomic and polyatomic molecules, but also in the study
of vibrations of other more complicated systems expressed in terms of their normal
modes. Thus its applications are not limited to molecular spectroscopy, but extend to
& variety of branches of modern physics such as solid state physics, nuclear structure,

quantum field theory, quantum optics, quantum statistical mechanics and so forth.



Our study is essentially based on the g-deformed oscillator introduced
by Biedenharn [2] and Macfarlane [3]. They have investigated the connection between
(-oscillators and g-deformed algebras. Since then, there has been an increasing in-
terest in the study of physical systems using the concept of g-oscillators. We start

with a discussion of Heisenberg-Wey! algebra and its q-deformation.

2.2 Harmonic oscillator as a realisation of Heisenberg-
Weyl algebra

For simplicity, we consider the one-dimensional harmonic oscillator. In
classical mechanics, its Hamiltonian H is expressed in terms of the co-ordinate  and

the conjugate momentum p as
p 1 2 2
H=—+§mwx (2.1)

where m is the mass and w is the angular frequency of the oscillator. The transition
to the quantum mechanical scenario is carried out by replacing ¢ and p with their

operator analozues:

T — T
— P h 9
) = —ih —.
PP Jz
x and p satisfy the commutation relation
[z, p] = il (2.2)



or in the case of a system with many degrees of freedom,

[Q., B] = ik, I (2.3)

where ), and P, are co-ordinates and conjugate momenta and Iis the identity oper-

ator. The set of elements Q,,, 13“ and h I close an algebra known as the Heisenberg

algebra H (35].

The Hamiltonian can also be represented in terms of the abstract op-

erators a and al:

8

mw )
= + — D 2.4
“ 2h 2mwh P (24)

T = M. : 5
a o, T s P (2.5)

Then

[, af] = 1 (2.6)
The operator

N = a,T a (27)

also plays an important role. It is hermitian, i.e, N = NT. It satisfies the relations
N, af] = af (2.8)

[N, a] = —a (2.9)

The four elements a, a.f, N and I, satisfying the above commutation relations, con-

stitute what is known as Heisenberg- Weyl algebra, denoted by Hy.

16



The quantum mechanics of the system is based on the Heisenberg-Weyl algebra.

In terms of the new operators,

H = hw(la+s)

N =

-~ hw(N+ :,12-) (2.10)

Thus H commutes with N and hence H and N possess simultaneous eigen functions.

It is well-known that the spectrum of N consists of the set of non-negative integers
n =012 ... , 00 (2.11)

The normalised eigenvector of N belonging to the eigenvalue n is denoted by the ket
| n). ie,

N |n) = n |n) (2.12)
The set {]| n)} of vectors for n varying from 0 to co constitutes a complete orthonor-

ma!l set and defines a representation called occupation number representation. The

operators N and H are diagonal in this representation.
(m|N|n) = nébm, (2.13)

The Hilbert space spanned by {| n)} is called Fock space. The state | n) is obtained

by af. acting n times on the state | 0):

17



| )

al | n)

a|n)
a|0)

The matrices representing the operators a, aT, N and H are respectively

OO OO

O O O

(al)
il

vn+1l |n+1)

| 0)

vn [n-1)

e O N O O

18

2O O O O

OO OO

(2.14)

(2.15)

(2.16)

(2.17)



1'ooo0oo0 ..
03000
H="h g 0300

The cnergy vales %hw, %ﬁw, %hw... arc cqually spaced.

This abstract operator analysis permits the following interpretation:
The oscillator in the state | n) is an assembly of n non-interacting particles, each of
energy fw. The different states of the oscillator correspend to different numbers of
the particles. The operator al raises the particle number by 1 whereas the operator
a lowers the particle number by 1. Hence al and a are referred to as creation
operator and annthilation operator respectively. N is interpretted as the number
operator since its eigenvalue gives the number of particles in the given state. The
state | 0) corresponds to no particle and is called the vacuum state. a | 0) = 0
and of | 0) ~| 1) are consistant with this interpretation since a particle cannot be
aestroyed when no particle is initially present, whereas a particle can be created even

when no particle is initially present.

The operators a, al and N are usually referred to as boson operators

sizce there is no restriction to the number of particles occupying any state.

if one deforms the underlying algebra (2.6-2.9), the quantum mechan-

ics based on the deformed algebra will have a different form.
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2.3 qg-deformed Heisenberg-Weyl algebxra (q-oscillator
algebra)

The algebra of the three elements Ny, o4 and aqT is referred to as a g-

deformed Heisenberg-Weyl algebra H,, if they satisfy the commutation relations

[ Ng, aqT] = aqT;

(Ng, 2q] = —aq;
[2q: 8q' lg = ag aq' —q agl 3 = q™Ma (218)
This definition was given by Beidenharn [2]. The operators aqT, a, and N, are referred
to as g-beson creation operator, g-boson annihilaticn-operator and g- boson number
operator 1espectively. N, is hermitian but
N, # a,' a (2.19)

[ a,, (:,,T 1, is cailed the g-commutator. In general, for any two operators A and B,

(4, B, = AB — qB A (2.20)

where ¢ iv some parameter which may be real or complex. It satisfies the properties

A, B, = —q[B,. A]q-x (2.21)
and
i (4, B, = [4, B, (222)

the usual commutator in quantum mechanics,
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The g-commutators do not satisfy the Jacobi identity. Quesne [36] has

shown that g-commutators satisfy some q-deformed Jacobi identity.

The algebra (2.18) is also referred to as g-oscillator algebra or g-boson
algebra. In the limit g — 1, it tends to the standard oscillator algebra or Heisenberg-
Weyl algebra and the g-deformed quantum mechanics will tend to the standard quan-

tum mechanics. This is a manifestation of the correspondence principle.

There exist other equivalent definitions of ¢-deformed Heisenberg-Weyl
algebra in terms of other sets of operators {35] which differ from (2.18). In some cases,

they have some advantages from a practical point of view.

The q-oscillator algebra is proved to be a quantum group. Its Hopf

algebraic structure also has been set up [37].
2.4 qg-oscillator description of SU,(2) and SU,(1,1)

The harmonic oscillator is a convenient tool to obtain representations of
some Lie algebras. The concept of g-deformed harmonic oscillator was introduced
by Biedenharn [2] and independently by Macfarlane [3] in 1989. Biedenharn had
developed a new realisation of the quantumn group SU,(2) using a g-analogue of
the Jordan-Schwinger mapping. To achieve this, he postulated the g-oscillator alge-
bra (2.18) which is a generalisation of the Heisenberg-Weyl algebra. To realise the
Lic algebra of the gencrators of SUy(2), a pair of mutually commuting q-harmonic
oscillator systems with operators ajq and a;, with i = 1,2 is considered. Then the
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g-analogue of the Jordan-Schwinger map is defined:

Jy = Ayq A2q
J = (L:L a,, = J+T
1
L= N - M (223)

These gencrators satisfy the suy(2) algebra (1.38):
o Ji] = £ Jy
Iy, J) = (203,
The algebra generated by the three elements K, K_ and K, such that

[ Ko, Ky )] = + K.,

[Ky, K.] = =2K, (2.24)
is referred to as su(1,1) algebra. In the quantum case, the generators of su,(1,1)
satisfy the commutation relations [38&39)

[ Ko, Ky ] = £ Ky

(K., K] = —[2Ky), (2.25)

The generators K, K. and K of SU,(1,1) accept the following q-boson represen-

tation:
K, = (L}Lq alq ;
K = agay;
. 1
I\() = 5 (Nl_q + ]\rgq + ]) (226)
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2.5 Properties of g-boson operators

From the defining relatious (2.18), the following properties of g-boson

operators can be deduced.

(1)
el fIN) = f(N,—1)a, (2.27)
a  f(N) = f(N,+1)a, (2.28)
[N, ajfa,] = [N, aga,f] = 0 (2.29)
or in general,
laga,ts F(N)) = [agTag, f(N,)] = 0 (2:30)

where f(N;) is an arbitrary function of N,.

To prove relation (2.27), we consider the algebraic relation
[Ng, aqT] = aqT

i.e,

NyaJ —afN, = at
ofN, = (N,~1)aq,
el N2 = (N,-1)q,[N,
= (N,~1)%a,l
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and by induction,
Let

Then

>
= Y ¢ (N,—1) a,f
~1) aqT

q

Relation (2.28) can be proved in a similar way by considering the defining
relation

[Nes ag) = — a4
Relation (2.29) immediately follows from relations (2.27) and (2.28).

{2) The parameter ¢ is either real or is a pure phase.
] I q P P

To prove this, we take the defining relation
q a,qT —-q aqT ag = q"N"
Taking the hermitian conjugate,
Gq aqT -q aqT ay = (q*)—-N,,

In order that these two equations coincide, either ¢' = q or ¢ = ¢7'. i.e,
either ¢ is real or ¢ is a pure phase.
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If q is real, it can be expressed as

g = ¢ (2.31)
1) being real. Then the q-number
b, = L9
- q"
e — e
T e = e
. Is
_  sinh{nz) (2.32)
sinh{n)
If ¢ is a pure phase, of the form
q = e, (2.33)
. 61'7;:1: . c-ir).z:
ey = =
sin{nz )
- i) (2.34)
sin(1))
(8) The bilinear forms become
a ag = [N, (2.35)
o a0 = [N,+1], (2.36)

(4) The above properties remain invariant w.r.t. the symmetry ¢ — ¢~ !.

(5) In the limit ¢ — 1, the g-numbers (or operators) tend to the crdinary numbers
{or operators).

llm [{B],l == “!Ii f.{w_) ==
q--1 170 Sln-’\r))

25



i Ctart s
hm a.' a,) = %1_»141{ lWgle = Ny

q ’
mn (e, a 1') = linl!. (N, +1], = Ny+1
q—t q—

(8) Iu general, N, # u.,,Ta,,. However, Polychronakos [40] have shown that there
exists a classical realisation of the g-oscillator algebra in which N, = N = ala.

We call this as the boson realisation of q-oscillator algebra. In this,

o = \/ al (2.37)

a0 = --j]\(]:ll]" (2.38)
aguy — qaja, = ¢V (2.39)

aud
N, = N (2.40)

Then
“gT“q = [N] (2.41)
aa, = [N+1] (2.42)

In this realisation, the cigenstates of N, are the same as those of N.

It is worth noting that there is an isomorphism between the g-oscillator

algebra and the g-differential operator algebra. The q-oscillator algebraic relations

{ Nq, a, ] = —a,
[ Nq’ a"IT ] = aQT
Ay a,qT — aqi’ a, = q“"’va



possess a one-to-one correspondence to the commutation relations in g-differential

calculns:

[20;, D:] = -D,
[280;, z] = =
D, —q'laeD, = q’DI

Here D, is the g-derivative w.r.t. =.
Thus

T aqT, D, & a,, 0, < N, (2.43)

2.6 Eigenstates of N,

In the classical realisation of the q-oscillator algebra introduced by Poly-
chronakos [40], Ng= N= ala and the basis vectors | n), of N, are chosen to be the

same as those of the usual harmonic oscillator:
Ny In), = N |n), = n|n), (2.44)

i.e, the eigenvalues of N, are also the integers from 0 to oo, and hence N, is interpreted
as the number of g-deformed bosons. In order to obtain the representation of the
g-deformed boson algebra bounded below, it is postulated that there exists a vector

1 0) ‘ with the properties

e, 10), = a, |0) =0;

1q

N, 10), = N0, =0 (2.45)



| 0), is veferred to as the q-deformed vacuum state and is interpretted as a state
without bosons. The interpretation of aqT and a, as raising and lowering opcrators

or as creation and annihilation operators also holds.

The eigenstates | n), are orthonormal.

(2.46)

[t can be easily seen that

ag [n), = g In— 1), (2.47)

a,’ | n), = f/ln+ 1],, In+1), (2.48)
An+1letn), = Jn+1], (2.49)
on—1lag| n')q = \/ﬁ; (2.50)

i
{n general, the operators a,l ar : i i i
, p o' and a, can be represented as infinite dimensional

nagrices

o
o



(0 0 0

le O 0
o 2, o
l\ o o Bl

The Hilbert space spanned by {| n)_} is positive definite only if | ¢ |< 1. For larger val-

aq =

o O O C

-

ues of | ¢ |, states with negative squared norm arise and the probability interpretation

of quantum mechauics is lost.

VWhen one tries to apply the g-deformed algebras for the description
of real physical systems, it is seen that good agreement with experimental data is

obtained only if q is chosen as a pure phase, of the form e and 7 is chosen to be small.

2.7 Enmnergy spectrum of g-deformed harmonic os-
cillator

The Hamiltonian of the g-deformed harmonic oscillator is

2

g Pq 1 9

H, = X 4+ = .
a 2 5 ™MW

2 (2.51)

where the q-position z, and the g-momentum P, of the osciilator are related to the

g-creation and g-annihilation operators a,qf and g, as in egs.(2.4) and (2.5).

- ]I

%= g (ol +a) (25)
pq, == v ——5—-- ( aq’ - aq) (253)
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where a, and aqT satisfy the g-oscillator algebra (2.18). In terms of a, and aqT, the

Hamiltonian reads

hw (aqfaq + a.qaqlf)

hw ([N], + [IN+1];) (2.54)

Here we are using the boson realisation of the g-oscillator algebra in which N, = N.
The number and energy eigenstates of the g-oscillator are then the same as those
of the usual harmonic oscillator and are g-independent. Only eigenvalues are g-

dependent. The energy eigenvalues are given by the eigenvalue equation

Hy |n) = Eg |n)
S (N, +IN+ 1) [n) = B |n)
Thus
Bp = 50w (4 l+1)) | n) (2.55)

i.e, the energy levels of the g-oscillator are not uniformly spaced for ¢ # 1. The
behaviour of the cnergy spectra is completely different in the cases ¢ = e” and
q = ¢7. When gq is real (g = €"), the separation between the levels increases with
the value of n. i.e, the spectrum is extended. On the other hand, when ¢ is a pure
phase, the zeparation between the levels decreases with increasing n. i.e, the spec-
trum is squeezcd. The spectrum in this case exhibits many characteristic features
of the anharmonic oscillator. The energy levels of the anharmonic oscillator are not

equidistant but their separation decreases when the value of the oscillator quantum
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number v increases:
1 1, 1, 056
E, = hw(v+§) —fwwe(v+§) +hwye(v+§) — e (2.56)

where wye < wz, < w and v takes only a limited number of values (v < VUmaz)
because of the finite depth of the potential well. The energy values of the q-deformed

harmonic oscillator can be written as
1
Ep = ) huw ( [v]g + ["’.+1]q )

hw (%—)ﬁ) if g=e¢

hw (S220d)) if g =7

(2.57)

[T T

The second expression on expanding, we get

1 1. B, 1y
2 hw sir?(g)[ (v+ —2-) - E(v+§) +.nne. ] (2.58)

Comparing this with the expression (2.56), we see that there is a great similarity
between the spectrum of the g-deformed harmonic oscillator and that of the anhar-
monic oscillator describing the vibrational spectra of diatomic molecules. However,
the coincidence is only a qualitative one. Expression (2.58) contains only the odd
powers of (v + %) whereas expression (2.56) contains odd as well as even powers of
(v+3).

. 1
im ~Ep = hw(v+s) (2.59)

¢—1 or ﬁ»+0

i.e, in the limit ¢ — 1, the energy spectrum of the ¢-deformed harmonic oscillator

coincides with that of the standard harmonic oscillator.
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Besides the energy spectrum, other properties of q-oscillators are also
well studied. For example, coherent states and squeezed states of q-harmonic oscil-

lators have been investigated by many authors [41—43].

2.8 Statistical mechanics of g-harmonic oscillator

Neskovic and Urosevic [44] have studied the statistical mechanics of g-
deformed harmonic oscillators. Using the boson realisation of g-oscillator algebra and
taking ¢ to be real, they have calculated the partition function Z and thermodynamic
potentials such as Gibb’s free energy F, entropy S and internal energy U for a Sl.ghtly
Defermed Oscillator (SDO). Taking ¢ = €” and for small values of 7, they obtained

the following results for Hamiltonian and the themodynamic functions:

Hspo = Hp +1§ H, (2.60)

where
H, = % hw [N+ (N+1)° - (2N +1) ] (2.61)

and
2

Zso = Z{1+BL E}; (2.62)
Fspo = Fy- g E,; (2.63)
Uspo = Up- g—? { E; —Ta—£f } ; (2.64)
Sspo = S +% 6—81;;,1 (2.65)
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where Z, Fy, Us and Sp are the corresponding quantities for the usual harmonic

oscillator and

= —< H > (266)

2.9 Description of some physical systems in terms
of g-oscillator algebra

Numcrous applications of quantiscd algcbra to rcal physical systems have

been worked out by various authors. Here we cite a few of them.

The su,(1,1) quantum algebra has been used to describe the vibra-
tional spectra of diatomic molecules [45]. It is seen that when g is chosen as a phase,
the results show fair agreement with the experimental data in the case of vibrational
spectra of diatomic molecules such as Hj, for n o~ .06. The second order Casimir
operator of su,(1,1) corresponds to a special form of the Dunham expansion con-
taining all powers of (v + 1) while in the classical case of su(1, 1), only the first two

non-vanishing powers of (v + %) are obtained.

A g-rotator model with SU,(2) quantum symmetry has been set up to
describe the rotational spectra of diatomic molecules [46]. For deformation parameter
n =~ .01, the spectra of the g-rotator model coincide with the observed spectra to sat-
isfactory accuracy. A complete quantum group theoretic treatment of vibrating and
rotating diatomic molecules has also been given [47] by assuming the deformation pa-

rameter g of the q-oscillator algebra to depend on the rotational quantum number J.



The coincidence between the predictions of the model and conventional phenomeno-
logical formulae is remarkable. The dependence of ¢ on J seems to characterise the

interaction between vibration and rotation.

The su,(2) algebra has been used for the description of energy spectra
of the deformed even-even nuclei [48], and it is shown that there is good agreement

with experimental results when q is chosen as a phase (g = &) with n ~ .04

The many-body problem of g-oscillators has been investigated by sev-
cral authors [49-51]. The spectra of the system are found to be rich, exhibiting
interactions between the levels of the individual oscillators. The deformed algebra
has also been employed to the many-bedy problem of composite particles [52]. The
deformation parameter is interpreted as a measure of the effects of the statistics of

the internal degrees of freedom of the composite particles.

The g-oscillator models in two and higher dimensions is applied to the

spectra of triatomic molecules such as H,O and superdeformed nuclei [53].

The sc,(4) algebra has been used for the description of a g-analogue
of the hydrogen atom [54] and it is seen that the spectrum and degeneracy of the

g-analogue of the hydrogen atom is different from that of tie real systems.
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The nature of an electromagnetic field of high intensity , modelled by
g-oscillators has been discussed and it is shown that the non-linearity of such an
electromagnetic field may produce in the electrostatic regime, a deviation from the

Coulomb law and a form-factor of a charged particle [55].



Chapter 3

¢-ANHARMONIC OSCILLATOR
WITH QUARTIC
INTERACTION

3.1 Introduction

The q-harmonic oscillator algebra discussed in detail in the second chap-
ter, is a well studied topic. In real physical systems, one cannot dismiss the role of
anharmonicity. For example, the assumption of molecular and crystalline vibrations
to be of harmonic type is an idealisation and experimental observations indicate de-
viations from the predictions based on harmonic approximation. The discrepancy
between theoretical predictions and experimental results, to a certain extent, can
be removed by assuming that the vibrations are of anharmonic type. In this chap-
ter, we present the study of gq-deformations of an anharmonic oscillator with quartic
interaction in first order perturbation theory. The energy spectrum and statistical

mechanics of g-Anharmonic Oscillators (q-AQO) are discussed.



3.2 Anharmonic oscillator and its energy spectrum

We consider the anharmonic oscillator described by the Hamiltonian

_ p’ 1 2.2 4
H = 2 + g TW'e + YTk (3.1)

where A is positive and assumed to be very small.

In the Fock-space representation, H takes the form [56]

1 A, h
H = hw(N+ = = (=—)* (6N*+6N+3 3.2
W(N+3) + 3 (o) (6N +6N+3) (32)
where N is the number operator having eigenvalues 0, 1, 2, . . . oo. The second

expression on the RHS of eq.(3.2) makes sense only for low-lying levels

3.3 Energy spectrum of q-AO

The Hamiltonian of the gq-analogue of the anharmonic oscillator is taken

to be

2 + —z (3.3)

'The g-position cperator £ and the g-momentum operator p of the g-AQO are related
to the g-boson operators a, and aqT in the same way as in the case of g-deformed

harmonic oscillators (see eqs.(2.52) and (2.53)). We work in the boson realisation
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in which N, = N = ala and the eigenstates are those of the usual harmonic oscil-

lator. Hereafter we drop the suffix ¢ for g-deformed operators and g-numbers for

-
F o= \/2mw (a+al) (3.4)

convenience. Thus

5 o= i \/%Z'; (a-al) (3.5)
where
[N, al | = al ;
[N, a] = —a;
aal - q al a = q N (3.6)

In terms of these operators, the Hamiltonian takes the form
7 = L hw (@lataal) + 2 (<L) (a+al)
_ 1 A 7
H 2ﬁw(a a+aal) + 2 (me) (a+a') (3.7)

What we are interested in, is the expectation values of H in the eigenstates | n).
The terms in H containing different powers of al and a have zero contribution to the

expectation valuas:

(njaln) = o] (njr-1) = 0
inlain) = Jinllh—1] (nin-2) =0
(n|a,Ta,"’|n‘ = \/f_[ -1j -1) =
) n) In—1} (n|n—1) 0 and so on.

Thus in expanding (a + aT)“, we keep only those terms having same powers of a and

al. Using properties (2.27) and (2.28) of g-bosonic operators, we simplify these terms
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as follows:

. T'l

a‘ a = [N+1][N+2]

R

o e = [N]IN-1
aataal = [N+1[N+1

T2

aa' a = [N+1][N]
at a?al = [N]IN+1]
ataata = [N][N]

Using these, eq.(3.7) becomes

7 o= %hw([N+1]+[Nj)
+ % (5:‘5)2 {(N+1] [N+ 2]+ [N+1] [N+1]
+ 2N+1[N]+[N][N]+[N][N-1]} (3.8)

In the limit ¢ — 1, the g-number operators become ordinary operators and

7 — %fuu(2N+1)
AR

7 G { W+ D)W +2) + (N+ 1) +2(N+ )N+ N + NNV - 1) }
1 X R, _
= (V+3)hw + 5 (5—) (6N* + 6N + 3)

which is the same as (3.2), the Hamiltonian of the ordinary anharmonic oscillator.

To get an explicit expression for the Hamiltonian H of the ¢-AO, we

consider only slight deformations. Also ¢ is chosen to be real:

g = ¢



or

n = In(q) (3.9)

Then
_ sinh (Nn)
[N] = sinh (n)
and
= 1 sinh (Nn) + sinh (N + 1)y
" = 2 o { sinh (1) }
+ A ( h )2 . { sinh (N + 2)n sinh (N+ 1)y
4! “2mw’  sinh®(n)

+ sinh*(N + 1)n+ 2 sinh (N + 1)n sinh (Nn)
+ sinh®(Nn) + sinh (Nn) sink (N — 1)n} (3.10)
For a Slightly Deformed Anharmonic Oscillator (SDAO), the deformation parameter

q is very close to unity or 7 is very close to zero. Then the hyperbolic functions are

expanded in Taylor series in powers of 7 and we retain only terms upto O(n)? in H.

sinh(z) = 1'+3—::+§+T7—:+ ...... (8.11)
sinh (Nn) + sinh (N + 1)y
sinh (n)
_ () + S (N S
M+ 5% +.....)
N n{eN+1)+% (N + (N +1)%)}
- 1+ %) N
~ {(2N+1)+%(N”+(N+1))}(1—%27)
o (2N+1;+7'2 (N“+(N +1)> - (2N + 1)) (3.12)
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sinh (N +2)n sinh (N+ 1)y

sinh’n
{0 +om+ W 4} {(N+ )+ R 4
- (n+ %) |
[N+ 2+ (N2 n{(N+ 1) + § (N + 1))
- P(1+ )
~ (N+2)(N+1)+ g—j {(N+ 23(N+1)
+ (N+1P(N+2) - 2(N+2)(N+1)} (3.13)

Similarly

(sinh (N+ 1)7))2 ~

sinh n

sinh (N + 1)n sinh (Nn)
sinh®n

(vsinh (Nm) )2
sinh n
sinh (N7q) sinh (N - 1)n

sinh?n

R

Q

4

(N+1)2 + ?; {2(N+ 1) -2(N+ 1)2} (3.14)

Ui

N(N+1) + 5 (NN +1)
(N+1)°N—2N(N + 1)} (3.15)
N* + g {2N* - 2N} (3.16)
N(N-1)+ g {N(N=-1)
(N-1)°’N-2N(N-1)} (3.17)

Substituting eqs. (3.12)-(3.17) in eq.(3.10), the Hamiltonian of the SDAO is obtained

as

- 1 21
Hsppo = = hw (2N+1)+%§hw ((V+17+ N - (2N +1))
A, h o, _
toa (—2mw) (6N? + 6N + 3)
7 X,k |
+ a7 7 (55)" (12N + 24N° + 36N” + 24N + 6) (3.18)
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As ¢ — 1 or 7 — 0, this expression tends to (3.2), the Hamiltonian of the usual
boson anharmonie oscillator. The quartic anharmonic correctio 1s (to first order in
A) to the energy levels of the boson realisation of the qg-oscillator follow at once by

calculating (n | Hspao | n) where | n)’s are the unperturbed eigenstates.

3.4 Statistical Mechanics of g-AO

The quantity which is of prime interest in the study of thermodynamics

of systems is the partition function

Z = Tr(e ™) (3.19)

where g = ﬁ, kp being the Boltzmann’s constant, T, the absolute temperature of

the system and H, the Hamiltonian of the system. In the case of an assembly of

SDAOQs, H is given by eq.(3.18). For convenience, we write it in the form

Hspao = Hy + ;L, H + H + g H" (3.20)
where
H, = % hw (2N +1) (3.21)
H = % hw (N+1)° + N = (2N +1)) (3.22)
H = % (5 :@)2(6N2 + 6N + 3) (3.23)
H' = % (ijy (12N* + 24N° 4 36 N? + 24N + 6) (3.24)
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H, is the Hamiltonian of the unperturbed harmonic oscillator. 7 and A are assurned

.o . . ) .
tc be very small. Hence the last term in Hgpao which contains both 7° and A is very

very small and is neglected. We consider the boson realisation in which the | n) are

the eigenstates of Hy. The partition function for the SDAOQ is then given by

ZSDAO

where

Q

Tr.exp(—3 Hspao)

Z(n | exp(—8 (Ho + % H, + H)) |n)

Y (n| exp(—p Ho) exp(—5 (% H, +H)) |n)

> (n| exp(—fA Ho) {1 -p (;i' H, + H)} | n)
2
Sin| esp(~BHo) |n) =8 Lin| 3 i+ H |n)

Zo {1-5 (L (&) + () (3.25)
Zo = Y.(n| exp(~8 Hy) | n) (3.26)

n

is the partition function of the ordinary harmonic oscillator and (H;) and (H') are

the thernal averages of Hy; and H respectively:

(H) =

S0 (n | Hy exp(=5 Hy) | n)

T2, (n | exp(—B Ho) |n)

(3.27)

oo (n ] 3 w{(N+ 1) + N — (2N + 1)} exp(—B(N + tw) | n)
Tz (1| exp(~B(N + 5)hw) | n)
< [y 3 3_ ¢ ‘ _ 1
L Do [(n 1 4n = (20t 1)J1 exp(—(n + })z) 528)
2 %o exp(—(n+ 1)x)
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where we have put

Now

i (n+

n-0

Using the results

and

Ghw =«

1)* exp(—(n + 1)flc) =
2 n--0

w [o &}
= ea:p(i) Z nde ™
n=0

1 0 00
5 hw {ez/2 Z Tl-3 e " _+_e—:z/2 E n3 e ™

n=0 n=:0

26—1‘/2 io: ne ™ _e-—z/2 io: e—nz} / e-—:z:/2 i e "

n=0

n=0 n=0
5ﬁw {Z nte ™ (e +1)
n=s
o oo 00
22 n evrz _ Z (,»-nz } Z e nx
n=40 n=0 n=0
f: n3 e—-nz _ eSz "i’ 4821 + e*
n=0 (eI - ]')4
o0 -z
Z n e " — € —
n=0 (1 —e€ I)
— ~-nz 1
de = 1o
n=0 —e¢

(. (3.30) gets simplified as

<‘III> = —§hw—

1 hw

m + hw sinh(Bhw) g(Bhw)

44

e:rp(—;-) Z (n+ 1).‘5 ev—(n+l)z

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)



where
e.'S/Jhw + 4(32/3hw + edh.w

(ePhw — 1)

9(fhw) = (3.35)

v (n| H exp(~f Hy) |n)
H) = S5 T cap(—B Ho) [n) (3.36)
% (n| A (zA)H6N? + 6N + 3)eap(~H(N + Hhw) |n)

o (| eop(—BV+ D) | )

S, (Bn*+6n+3)e ~a(n+})

=)‘(

)2

2mw ero ~a(n+i 1
K2 Bhw
= 3.37
32m2w? coth’ (5 2 ) (3.37)

where we have used egs.(3.32),(3.33) and also the result

— —-nz 1 + e

Thus we find the partition function of the SDAO as

7 (1 hw
Zspao = ZO[ 1+ ﬂ3’ {_2— W exp{/hw) — 1
. AR i .
—  hw sinh(fhw) g(ﬂhw)} — 32ﬂml oth” (ﬁ w)] (3.39)

In the limit ¢ —+ 1, this expression reduces to that of the usual anharmonic oscillator

(56].

A knowledge of the partition function enables us to evaluate other
thermodynamical quantities such as free energy F, internal energy U and entropy S
which are defined by [57]

F = —kpTin (2) (3.40)
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S
U = /s:BTz -aa—Tl',’n(Z) = 'B'*‘F
22 or
5= F a3

The partition function given by £q.(3.39) can be written as

)

U A
Zspao = Zp (1+8 -é'— U, + i BU,)

where
1 hw
7= = S ] h h
U, 2hw + cap(hw) — 1 fuw sinh{Bhw) g(Bhw)
l.e,
U = Uy — hw sinh(fhw) g(Bhw)
with
1 hw
b = Ehw + exp(fhw) — 1
and
3h° o, Bhw
U2 = —W COth (T

The free energy F of the SDAO is then given by

Fspao = —kpgT'ln (Zspao)

n*
3!

Ha A
= —kgT (InZo + 8 % Uy +8 5 Us)

A
=  —kgTln Zy(1 + 3 Ui +p IF UZ)

where we have used the result

In{l+zyxx whenx<<1
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(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3 46)

(3.47)

(3.48)

(3.49)



Thus

'1)2 A
Fspao = Fy— m Uy — 7 U, (3.50)
where
Fy = —kgT in (Zy) (3.51)

is the free energy of the usual harmonic oscillator.

The entropy S of the SDAO is

Sspso = & % Fspao
s A -85
_ So_ﬁzg_j%_ﬂ%%_[g— (3.52)
Here
S, = & %ZB (3.53)

is the entropy of the ordinary harmonic oscillator and

8U1 . 3(hw)2
08 (expBhw —1)8

{ew"‘” 4 33 . 32 eﬁh“’} (3.54)

and

U, 3K Bhw o, Pluw
G~ e coth(—2—) cosech (T)

(3.55)
The internal energy U of the SDAO is given by

Sspa4o
Uspao = ——— + Fspao

A
7 8U, A 9,

So 7 oU A Ol

= B3 P33 e Pa o
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7 A

+ ‘o—ﬁUx-EUz
= Uy— %;, (U + 1’3%) — % (U + /3%%2) (3.56)
Here
Up = %-{-Fo (3.57)

is the internal energy of the usual harmonic oscillator.

Thus we find that the expressions of thermodynamic quantities of the
g-deformed anharmonic oscillator consist of g-dependent correction terms and in the

lirmt ¢ — 1, the results coincide with the classical results.

3.5 Conclusion

The effect of anharmonicity is well studied in classical and quantum physics.
The study of g-AO and its thermodynamics carried out here is expected to be of rel-

evance to investigations of anharmonic effects in molecular and condensed matter

systems.
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Chapter 4

LATTICE HEAT CAPACITY OF
CRYSTALS-A q-OSCILLATOR
DEBYE MODEL

4.1 Introduction

In ibis cliapter, we present a maodel for lattice heat capacity of solids
based on g-oscilacor algebra. The Debye mode! for iattice heat capacity is modified
retaining all the basic assumptions except that each mode is here treated as a -
deformed harmonic oscillator. The lattice heat capacity is evaluated in the high and
low temperature limits. A comparison of the theoretical results with experimental

data is also presented.

The two basic experimental facts about the hcat capacity of solids

which any theory must explain are:

(i) At room temperature, the heat capacity of most solids is close to 3kg per atom
so that for molecules consisting of n atoms, the molar heat capacity is close to
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3nR where R is the universal gas constant. Accurate measurements indicate

temperature dependence of heat capacity in this region.

(ii) At low temperatures, the heat capacities decrease and vanish at T'= 0. The

decrease goes as T3,

The Debye model for lattice heat capacity of solids has been remarkably
successiul in describing the experimental observations at low temperatures in many
pure crystalline solids. In the low temperature regime, the Debye’s theory predicts
(', x T3 in agreement with experimental results. In the high temperature region
(T >> Op), the Debye model leads to the Dulong-Petit law: C, = 3R/g.atom, a
constant for all monoatomic crystals and is independent of temperature. This is not

in exact agreement with experimental observations which show an increase of heat

capacity with temperature.

Debye’s theory involves three basic assumptions [58]: (i) isotropy of the
solid (ii) nondispersion of sound waves in the medium and (iii) degeneracy of different
branches of allowed modes. Above all| it is based on the harmonic approximation.
Real crystals do exhibit anharmonic effects such as thermal expansion; the adiabatic
and isothermal elastic constants are in general different and dependent on tempera-
ture and pressure. The influence of the anharmonicity on the various quantities for

specific cases cas been dealt with in a number of papers [59-62).

The concept of g-deformed harmonic oscillators has been discussed in
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the second chapter. It is found that the energy levels of the g-oscillator are not equally
spaced, but the energy spectrum is ‘squeezed’ when q is chosen as a pure phase. The
g-oscillator model has been found to be suitable in accounting for the measurements
on the infra-red spectrum of a number of molecules [45]. Thus there is already some
appreciation of the fact that g-deformation can take care of anharmonicity effects to
some extent. Motivated by this, we try to explain the temperature dependence of
lattice heat capacity in the temperature region T' >> ©p by suggesting a g-oscillator

Debye model.

Before presenting the g-oscillator Debye model, we recall the harmonic

oscillator Debye model [63].

4.2 Heat capacity of a Harmonic crystal-Debye
model

The solid is assumed to be a crystal lattice of atoms whose oscillations
generate elastic waves. There are as many normal modes as the number of degrees
of freedom. These normal modes behave as independent harmonic oscillators. The
propagation of elastic waves in crystalline solids retaining their atomic structure is
a difficult problem. However, for the propagation of sound waves which are elastic
waves of low frequency, the wavelength A is very large compared with the interatomic
spacing a of the crystal (A >> @) and one can ignore the discrete atomic structure of

the solid and describe it as a homogeneous elastic medium. Thus it is assumed that
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only waves of low frequencies lying within a certain range 0 < w < wp can propagate
through the crystal. The cut-off frequency wp is called the Debye frequency. For
simplicity, it is assumed that the medium is isotropic so that the velocity of propa-
gation of elastic waves is independent of direction. To find the normal modes for low
frequencies, we then need only find the different modes of standing waves possible in
the medium. For each wave vector I;:', there are two independent transverse directions
of polarisation and oue longitudinal polarisation. It is also assumed that for suffi-
ciently low frequency, the velocity v of sound waves does not depend on frequency,
i.e, there is no dispersion of sound waves in the crystal. Then the number of modes
of each polarisation type with frequency between (w) and (w + dw) is given by

Vi

D) do = om

(4.1)

~

where V is the volume of the crystal. It is further assumed that the phonon velocity

is the same for the three directions of polarisation.

The total number (Np) of atoms in the specimen is then related to the

L -
cut-off frequency wp through

/0“ " D(w) dw = 3N, (4.2)
i.e,
/0““ % dw = 3N,
This gives
wp = (6"2’51"0)% (4.3)



Here it is assumed that the number of modes is so large that summations can be

replaced by integrations.

The partition function of a harmonic oscillator with angular frequency

w, at temperature T is given by [57]

n = 3 (nleap(~B(N+ ) |n)

n=0

exp(—3Bhw;)
1 — exp(Bhw;)

(4.4)

The contribution to the internal energy of the crystal from the i** oscillator is

U,' = IcBT2%,(ln.z,-)

1 hwi
S 4.
2 hus + exp(Bhw;) — 1 (45)

The total internal energy of the crystal is

U=3YU = Z(%hwi-F ; )

ezp(Shw;) — 1

— 1 . D hw
- L > fws + 3 /0“ capBho) =1 D)

The summation in the second sum has been replaced by integration. The factor 3
takes care of the three independent directions of polarisation. Substituting for D(w)

from (4.1), we get

3RV jwp WA

U= Uy + — —_— dw
o+ 2r23 Jo  ezp(fBlw) -1

(4.6)

The zero point energy Up, being a constant, can be ignored in heat capacity calcula-

tions.



Putting

_ hw _®
T T grT T
_ hwp O
W = T T T
dw = @Idm, (4.7)
A
T \3 f=0 z3 dx
- T il 4.8
U= okt (o) [ ooy (48)

©p is called the Debye temperature of the solid.

The lattice heat capacity at constant volume (C,) is defined by the relation

ou
= 4.
C, (4.9)

Now we discuss the results in the high and low teraperature limits.

(1) The high temperature limit defined by T'>> @p or zp << 1:

In this case, we may expand the exponential function in the integrand of eq.(4.8)

and retain only the first order terms. This gives

C. = 3 Noks (4.10)

Thus lattice heat capacity becomes a constant = 3R/g.atom at high temper-

atures for monoatomic solids. However, measurements indicate a temperature

dependence of C, in this region.
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(ii) The low temperztare limit defined by T << Op or zp >> 1

Tn this limit, we may replace the upper limit of integration in eq.(4.8) to infinity.

One obtains

12 7t
C. = e Nokp (

r ) (4.11)

©p

This is the Debye T? law and it works well for most solids at low temperatures.

The discrepancy in the high temperature limit is usually explained on the
basis of anharmonic terms in the potential energy function. We explain it by treating

the modes as q-oscillator modes.

4.3 Heat capacity of a slightly gq-deformed har-
monic crystal (g-oscillator Debye model)

The properties of q-deformed harmonic oscillators have been discussed at.
length in chapter 2. The eigenstates and eigenvalues of its Hamiltonian H, are in
general ¢-dependent. However, in the boson realisation, the eigenstates of H, are

g- independent and are the usual harmonic oscillator eigenstates. The g-oscillator

Hamiltonian reads (See e(.2.54)
1 ( y
Hy = zhw ([N+1]+ [N )

where N is the number operator satisfying the commutation relations (2.18). Treating

( as a pure phase, i.e, writing

qg=2¢" newRr, (4.12)



sin(N+ 1)y

s sin n
and
H, = i fiw [sin(].\f-i- 1)y + S‘I"!-l N'r)]
2 st n sin m
_ 1 A (N‘*’l)"l—%i!(N-% 1)3+....+N'r)—gi!N~‘+m.]
- = 1{r, [ n_ f +
Tt

We treat the phonon modes as slightly deformed g-oscillators (SDO). i.e, n is taken
to be very small, close to zero. Then we may retain only terms upto O(7?). Doing

this, the Hamiltonian of the slightly deformed oscillator is obtained as

1 7?1 5 .
Hepo = 5hw(@N+1)- 3 3 w{(N+1)*+ N° - (2N +1)}
n?
= Ho— i My (4.13)
where
1
Hy = 5 hw (2N +1) (4.14)

is the Hamiltonian of the usua! harmonic oscillator and
1 )
H = 3 ro{(N+1)° + N* — (2N + 1)} (4.15)

The partition function for the SDO is then given by

(2)spo = Tr.exp(—S Hspo)
= Z (n| exp(~0 (Ho— %1'7 H)) | n)
x 2
= Z (n| exp(-8 Hp) e:cp(ﬁg—, Hy) |n)
n:=0 )
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= §S nj exp(—3 Hp) {1+[3le} | n)

o 3!

= i (n| exp(—f5 Ho) |n) ‘i'ﬂg i (n| Hezp(—0 Ho) |n)
n=0 *on=0

= 2 {1+8; 12- /Hl)} (4.16)

where z, is the partition function of the usual harmonic oscillator, of the form (4.4)

and

Yomrg (n| Hy exp(—=pB Ho) | n)
meo {n| exp(—=B Ho) |n)

which is the same as eq.(3.27) and has becn evaluated as

(H1> =

1 h
(Hy) = -3 hw— (-Wu_—l) + hw sinh (Bhw) g(Bhw)
(See ¢q.3.34). Thus
(z)spo = 2z (1 — 3 Dl) (4.17)
where
. 1 hw . ,
Ly = 5 hw + W——U — hw S‘l‘flh(ﬂhw) g(,@hw) (418)
Here
(w) _ e3z+4e2z+ez:
! (e —1)f
See eq.(3.35). Thus for the i** SDO,
i _ fuw; €% — e T, 3% 4 4e¥ 4 e
l:fl ; = - fi i —_— - W;
(Th); 2 “’+(e —qy el ) (e= — 1) }
e*(e" + 1)
= -3' —( ) (4.19)
Here
. hu},
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The partition function for a slightly deformed harmonic crystal is

Z = ]] (zspo)s

i

P, |
= H 20 (1 - /jg‘!‘(lj])i) (421)
The internal energy of the crystal is

U = kTt = (In.2)

in.{T] 2olt - 82 @)
{3 [mn.(z0) +1n.(1 - BT(01))]}

= ksT? 5 (In.2) - ksT* 3 %{ﬂg(m),} (4.22)

1

Sle

Y

= kpT?

> Slo ¥

where we have used the result (3.49). Z = [];(20) is the partition function of the

usual harmonic crystal. Simplifying,

_ ol

where U is the internal encrgy of the usual harmonic crystal and

Uy = > (Uy) (4.24)

i

Substituting for (U;); from (4.19) and simplifying, eq.(4.23) becomes
UC=U+7n3 /-./ 2 {1+£+4we +eh(:z:—l)} D(w)dw (4.25)

We have replaced the summation over w; by integration over w. The factor 3 in the
uumerator arises because of the three polarisation types. Thus we have retained all
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the fundamental premises of the Debye model except for the ¢-deformation. Incor-
porating (4.1) in (4.25),

_ 8 ., hV e Wle? { 2 .
T = U 4 =9t — {11 x4 4dzef 4 ez~ 1 4.26
¢ Ut 4 " w2 Jo (er = 1)1 ( )} ( )

Using (4.7),

r 3 4 £ wBCI z 22 _
U=1U-+ 71" 5 _m( 5T) / T {1+z+4ze" +(a 1)} de

and substituting for v from (4.3),

U =U+— Ui 9N0kBT(T) /ﬁb —ﬁ il + z + 4wt + % (x — ])} dz
©/ Jo (er—-1)*

Using {4.8),

e/ -1
le =0 KPR 4 x 4 2ux 3 3 d.’E
+ 72" /0 (il’,' e +xe + 4x°e -+ .I? 6 T e ) @1—_1)—4}(427)

Here we have dropped the zero point energy term. The lattice heat capacity of the

g-deformed crystal can now be evaluated as (E) We compute this quantity in the

two limiting cases:

(a) T << Op: In this case, xp >> 1 and the upper limit of integration in (4.27)
cail be extended to infinity without introducing any appreciable error because the
integrands decay very rapidly for higher values of . The integrals are then reduced

in terms of Riemann zeta function . We use the results [64]
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o gl 1 X
/ T W)  forRep>0, Rev>1 (4.28.1)
Joo e —1 un
» prlemHE ,
[ i P(w) [(v— 1o +1) = (u+1) (v p+ 1) (4.28.2)
Jo et —1)- -

for Rew > 2, Re.p > =2

where the Riemann zeta function

=01
) = ¢wnl) =) = for Rew>1 (4.28.3)
ne=1 n-
aud the generalised zeta function
v, p) = i - ! for Rew>1 Rep>0 (4.28.4)
n=0 (’l 1 n)u
22m~-17r2m
{(2m) = ————— n .28.
{(2m) Gt | B | (4.28.5)
B.,, are the Bernoulli numbers:
Bo = 1
1
By = —=
6
By = — L (4.28.6)
+ = T3 .28.
Thus
92-1,2 -
¢(2) = TR | By | = 3
A 9 -17.‘.4 71.4
(4) = — | Bil = 55 (4.28.7)
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The integrals in {4.27) arc obtained as

rzn o da ~ ot de 1 L
. == 1) = — 4.28
/0 et — 1 ’ /o et — 1 14 r(4) ¢ty 15 ( )
SIG S I )
/0 ‘ ____(:‘_ ‘f.)”: — (1) = 3¢2) +2¢B) (4.29)
2 gie® dr
Ji o T A@-120®) +8C) (4.30)

(=0 Azie® dx

./0 (e$_1)4_ —  16¢(2) - 16 ((4) 431)
I (—'Tl)“ — 8¢(4) +12¢(3) +4(2) (4.52)
[ (:% —  2(3)+342) + <) (4:39)

Substituting (4.28)-(4.33) in eq.(4.27),

4 "2

= 9Ny kp T (g)’ =+ % 18 ¢(2)] (4.34)
and
oU
G = ('3_]’)v
- Nk () (L + 3 5) (435)

where we have used (4.28.7). Comparing this expression with (4.11), we note that g-
deformation brings in a q-dependent correction which is negligible. Thus this model

coincides with the Debye model in the low temperature limit.

(b) T>> Op: In this case, 2p << 1 so that we may expand the exponential func-

tions in (4.27) and retain only the first order terms. Then
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["Z de _, =0 (4.36)
v -1 3
O 8 1 12 1 3z 3 3w % v, 2 Qe
/‘ (:L‘" At et 44 at et - e )—”————— —s 4+ 6xp” (4.37)
Jo . (()‘.L . 1)/)
[n the high temperature limit, eq.(4.27) becomes
_ T3 rzp° 172 9
U=9NokBT(-@—> [3 +7(4$1)+6.’0D)]

However, since 77 << 1 and zp << 1, we neglect the terms containing n°zp®. Hence

.

0= 9Noks 7 ()’ 2y S+ T4 2] (4.38)
atid
! oU . , 1877
C, = <(('§rz">v = 3 Noky (147 1(_);2_) (4.39)

{'his expression exhibits a T ? dependence in contrast to eq.(4.10). Though i is small,
the correction term becomes significant for T >> ©). The lattice heat capacity per

g-atom for a monoatomic solid is

C, = 3R (1-+—172 12);-)

(4.40)

4.4 Comparison with experimental data

‘Lhe jattice heat capacity per g-atom is calculated according to eq.(4.40) for three
alkali elements namely Potassium, Rubidium and Caesium for which the Debye tem-

- . { €3 arp vl 1 M H
peratures (@p) are relatively low. The deformation parameter 5 is assigned
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Cacsium Rubidium Potassium
fp = 384K fp = 55.6K fp = 90.6K
=8.5x10~% n=9.0x 10"% n=10"1

T(K)

Cv (cal/g-atom/K) C. {cal/g-atom/K) Cy(cal/g-atom/K)

theoretical |experimental | theoretical | experimental |thecrctical |experimental

100 6.034 6.0
110 6.049 6.01
120 6.067 6.04
136 6.085 6.08
140 6.106 6.13 6.057 6.02
150 6.127 6.16 6.072 6.04
160 6.151 6.17 6.087 6.07
170 6.176 6.18 6.104 6.09
180 6.202 6.20 6.121 6.11 6.050 5.983
190 5.2 6.22 6.140 6.13 6.062 6.005
200 6.259 6.26 6.159 6.14 6.073 6.030
210 6.290 6.30 6.180 6.17 6.085 6.057
220 6.322 6.33 6.201 6.19 6.098 6.085
230 6.356 6.35 6.224 6.22 6.110 6.117
240 6.391 6.38 6.248 6.26 6.124 6.150
250 6.428 6.46 6.272 6.30 6.140 6.183
260 6.466 6.55 6.298 6.35 6.150 6.219
270 6.506 6.61 6.325 6.40 6.170 6.263
273.15 6.519 6.64 6.333 6.42 6.173 6.278
280 " 6.547 6.71 6.352 6.47 6.180 €6.317
290 6.590 6.84 6.381 6.56 €.200 6.379
298.15 . 6.526 6.97 6.405 6.67 6.214 6.439
300 - 6.635 7.00 6.411 G.69 6.217 6.454

Table 1. Experimental and theoretically predicted values of lattice heat capacity (Cy) of alkali
meials Cs, Rb and K.
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Fig. 1. Values of latltice heat capacity calculated in the g-harmonic approximation plotted as a
function of temperature for alkrli metals Cs, Rb and K. Experimental values are also shown.
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values ~ 107%. The results are shown in Table 1. Experimental values [65,66] are
also given. The results are plotted for the range 100-300K along with the experimental
curves (Fig.1). It is observed that there is very good agreement for not too high values
of T. As the temperature becomes higher, descrepancies arise , the heat capacity

increases much more rapidly than predicted by the theory.

4.5 Conclusion

Thus the g-oscillator Debye model proposed here rectifies the weakness
of the original model in the high temperature regime. The deformation, though
marginal (7 ~ 107°), produces excellent agreement in the three cases studied over
a wide range of temperature. The investigations lend support to the view that
phonons in crystals may be g-quantised excitations. Such phonons may be termed
a-phonouns.The deviations observed at higher temperatures may be explained taking
into account quartic and higher order interactions possibly within the framework of

a g-anharmonic oscillator model.
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Chapter 5

THERMODYNAMIC
PROPERTIES OF A
q-DEFORMED HEISENBERG
FERROMAGNET

5.1 Introduction

In this chapter, we present the study of the Heisenberg model of ferromag-
netism using g-deformed oscillator algebra. The spinwave theory has been remarkably
successful in predicting the low temperature properties of ferromagnets [67-70]. The
theory is built upon the ideal model consisting of a lattice of identical spins with
cubic symmetry and with isotropic exchange coupling between nearest neighbours.
The notion of spin waves was introduced by Rloch [71&72]. He showed that low-
lying excitations of a spin system with the above mentioned properties are wave-like
in character. The energy of a spin wave is quantised and the quanta are known as

magnons. Ho'stein and Primakoff [73] suggested the methods of field theory to spin
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waves and this gave rise to the linear spin wave theory where the magnon interactions
are neglected and the Hamiltcnian is expressed as a sum of energies of uncoupled os-
cillators. The theory yields a T dependence both for magnon heat capacity and

spontancous magnetisation of a ferromagnet.

The effect of spin-wave interaction on the energy levels of the crystal
will be negligible only if the total number of spin-waves is small. Many authors
[74--76] have tried to incorporate magnon interactions into che spin-wave theory.
The most important among them is the work due to Dyson [75&76]. He perfected
the spin-wave theory by introducing magnon interactions and showed that at low
temperatures, the effect of spin-wave interaction is slight. The lowest order correction
to the spontaneous magnetisation is proportional to T *, which for low temperatures
is very small compared with the leading Bloch T? term. Thus the spin-wave theory
remains as a genuine method for investigating the low temperature properties of

materials with ordered elementary magnetic moments.

However, the agreement between the spin-wave theory based on Hcisen-
berg exchange model of ferromagnetism and experimental observations is not per-
fectly satisfactory. Many attempts have been made to improve the model [77-80j.
The work presented here is also one such attempt. Recently, Bonechi etal.[81]
have investigated the one dimensional Heisenberg ferromagnet by means of quantum
Galieli group and found that in this approach, some of the results provided by the

Bethe-ansatz method emerge naturally. It is already appreciated that g-deformation
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can characterise interaction between various degrees of freedom. For example, Zhe
Chang and Hong Yan [46], in their description of rotation-vibration spectra of di-
atomic molecules using g-oscillator algebra, have shown that g-deformation charac-
terises the rotation-vibration interaction. Motivated by this fact and by the fact
that ¢-deformation brings in non-linear effects, we study the Heisenberg model of
ferromagnetism using ¢-deformed oscillator algebras. In the linear spin-wave theory
of ferromagnets {82], the Heisenberg Hamiltonian is diagonalised by transforming
the spin operators into boson operators using the Holstein-Primakoff transformaiion
'73]. We develop a q-deformed version of the spin-wave theory using the q-deformed
Holstein-Prireakoff transformation [83] for the spin variables, treating the magnons
as g-bosons. The exchange Hamiltonian in the nearest neighbour approximation,
is obtained for small values of the deformation parameter 7. The thermodynamic
quantities in the low temperature region are also evaluated. It is found that the
spontancous magnetisation and magnetic contribution to specific heat capacity have
(q-dependent T % terms in addition to the well-known Bloch T'? term. In the limit
¢ — 1, owr results coincide with the classical results. We have also made a com-
parative study of the theoretical results with experimental data in the case of the

well-known Heisenberg ferromagnets EuO and EuS.

Before discussing the g-deformed model, we briefly recall the basic

concepts in linear spin-wave theory.



5.2 Ferromagnetic magnons-basic concepts

We consider the simple case of a finite cubic crystal with periodic boundary
conditions and with N atoms, eack atom having 2z nearest neighbours. To each atom
j is aitached a spin vector §; of magnitude s. Then the Hamiltonian of the crystal
with isotropic nearest neighbour exchange interaction can be written as

N 2z
H==J> Y 88— gusH s (5.1)
j=1 &=1 j
The vectors & connect atom j with its 6 nearest neighbour on the bravais lattice.
J is the exchange integral between the j*atom and its & nearest neighbour and
for ferromagnets, J is positive. up is the Bohr magneton, g is the spectroscopic
splitting factor. The first term in H is the Heisenberg exchange energy expressed
in te ras of the atomic spin operators. The second term is the Zeeman contribution
whick: gives the interaction energy of each atomic magnet with the external magnetic
field H whose direction is taken as the positive z-direction. When the system is
it the ground state, the magnetic moments are lined up along the positive z-axis.
The dipole-dipole interaction and the interaction of higher order magnetic poles are

neglected here.

The Harniltonian (5.1) involves the three components of each spin vec-

tor 5
H=-J 26: { 852 86102 + 83y 8640 + 81 S(8)s } 9w HY s, (52
¢ J
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The components s;;, sj,. and s;, are not independent, but are connected by the
identity

§.8; = s(s+1) (5.3)

The total spin

82 = Z Sj2

i

and the total z-component
N
S; =) 83
j=1

are constants of motion of the spin. In the ground state | 0) of the system,

N

s; [0) = > s |0)

7=1

= NS |0 (5.4)

It is more convenient to work with the two operators s;* and s;~ which are indepen-
dent and defined as
Sji = Sjz + ‘I:Sjy (5.5)

Then the spin operators satisfy the su(2) algebra:

(55 51 = *8;85;
[si*, 8571 = 26 872 (5.6)
Substituting (5.5) in (5.2),
J N z
H = - 5 2 2 [Sj+ 3j+6“ + Sj- Sj+5+ + 2 Sz S(j+5)z]
]= =
- gupHY s (5.7)
J
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The spin operators s;+ and s;~ are now transformed to the boson creation and anni-

hilation operators a.]-}r and a; using the Holstein-Primakoff transformation [73]:

s;t = \J‘Zs(l— a’;saj)aj; (5.8)
57 = ajf \stu— “f;“f) (5.9)

where
[aj a1 ] = 83 (5.10)

Then
Sjz = § — ajf aj = § — n; (5.11)

The above transformation preserves the su(2) algebra. In this representation, n; =
(s — s;,) measures the deviation of the j** spin from its maximum value s and hence
is interpretted as the spin deviation operator.

Usually one describes the oscillatory system in terms of the normal modes. For this,

one uses the Fourier expansion of the magnon operators a; and ajT :

1 7o
a; = TN > exp(—ik.T;) by ;
k
Foe 23 eap(ifa;) bl 5.12
a; = TN zk_/ efl)p(l .lj) k (o.). )

Here z; is the position vector of the j** atom. The operator b,j creates a magnon of
wave vector k and the operator b, destroys a magnon of wave vector k. The discrete
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values of k summed over are those obtained from periodic boundary conditions. The

operators b, and ka satisfy the boson commutation relations:
[ b, bk’T] = bw;

[ka- byT] = [by, bw] =0 (5.13)

Using the above transformations, the Hamiltonian can in principle be expressed in
terms of the by’s and ka’s. In the linear spin wave theory, the following approxima-

tions are invoked[73):

(i). Only low-lying states of the system are considered so that one can neglect
the magnon-magnon interactions and also one can assume the ‘quasi-saturation
approximation’ - i.e, the fractional decrease in spontaneous magnetisation M(T)

from the maximum possible value M(0) is small. i.e,

< n; >av

1
2% <<

or

T a. ,
1—%%:,/1—;’—;z1 (5.14)

This is valid at temperatures sufficiently below the Curie temperature.

(ii). Terms proportional to n;n; are neglected. Assuming that there is no correlation
in the location of the different spin deviations, the expectation value of thesc

terms will be negligible in comparison with the expectation value of 2sn;.
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(iii). ‘Terms proportional to ﬂgajtajaj:? are neglected. These are terms which
cause the system to undergo transitions between states of different total spin.
Unlike terms of the type v/2s a]-TaJvf which also cause such transitions, they are
different from zero only for transitions taking place near atoms on which spin
deviations are already present. The ratio of the number of transitions arising

from the two types of terms is thus ~ %i"—" << 1.

With the above assumptions, the Hamiltonian takes the form [81]

M = -JNzs* —gupHNs
+ ¥[2Jsz(1—vk)+guaH]bk‘”bk (5.15)
= Ho + Ho (5.16)
where
Ho = —JNzs* - gug HNs (5.17)

represents the minimum value of the Hamiltonian representing the completely ordered
ground state | 0) of the system and
Ho= 3 [27s2(0 =) + gus H] b by (5.18)
k

Here,

z

|-

ezp(ik.g) (5.19)

6=1

Y& =

For crystals having a centre of symmetry, ¢ = y_x. Also Y.y = 0. Hp is of the
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form
Hy = Z T W (520)
k
where

wy=2Jsz(l—w) +gpup H (5.21)

For | k.8'| << 1 and for cubic lattices of lattice constant a,

21l —v) = Z k.8)? = (ka)® (5.22)
In this case,
=DK +gugH (5.23)
where
D =2Jsad’ (5.24)

Thus in the linear spin wave theory described here, the Hamiltonian takes the form

H = Ho + D mkwi (5.25)
k

This lcads to the following results for the magnon heat capacity per unit volume Cp,

and spontaneous magnetisation M(T):

15 kpT s 5 \
Cu = T hy (22N () (5.26)
M(T) = 2l 2 hyird)od) (527)

The thermal decrease in spontaneous magnetisation is given by
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AM = M(0) — M(T)

_ [l,kBT
T 4nrw (D)

3

3, .3

=){(= 5.28

r) ) (5.28)

This is the well-known Bloch 7% law. Thus according to the simple linear spin wave
oz : ’ G AM

theory based on Heisenberg’s exchange model, both ;;‘ versus T plot and )

versus T plot are straight lines parallel to the temperature axis. However, if one

retains all the terms in the expansion of (1 — ), one obtains T%, T% ... terms along

with the leading T% term.

5.3 qg-deformed Heisenberg ferromagnet

As in the case of g-oscillator Debye model, here also we retain all the basic
assumptions in the linear spin wave theory except that the magnons here are treated
as g-magnons. Thus the Hamiltonian (5.1) in the context of a q-deformed Heisenberg
ferromagnet wien expressed in terms of the spin raising and lowering opcrators takes

the form

B

Z [ j J_+5 + §J_ §;+6 + 2 gjz §(j+-6)z]
76
- guH S (5.29)
J
The operators 57, 5, and 3, satisfy the su,(2) algebra:

35, 551 = 35

[§f 81 = 2[3;] (5.30)
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Now we express the Hamiltonian in terms of the g-boson operators a; and &j using
the g-deformed Holstein-Primakoff transformation introduced by Kundu and Mallick

(83):

5; = \/ [28 — le] (~LJ';

8 = a) y/i2s—ny; (5.31)
a; and &j satisfy the g-oscillator algebra:
Lo 5';] = ~j;
iy &) = -ajy
a; a;.f —q a,}t a, = q" (5.33)

The above transformation preserves the su,(2) algebra (5.30). "Ve choose ¢ as a pure

phase. i.e, we write
q = ezp(in), n € R (5.34)

Then

\/’m _ {sin n(23-—n]-)}§

sin n
We consider only slight deformations (q very close to 1). Expanding the sine func-

tions in Taylor series and keeping only terms upto O(n?),

- 2
n; 7
vV 2s—n;] = V2s (l—ﬁ) {1+2.3! (1—432+4snj)}
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Then egs.(5.31) become

Y \/2_{1+——(1—432)}a,-;

i 2.3!
5 = aj V2s {1 + -2%-, (1- 432)} (5.35)
ie,
8 ~ Xa;;
5 o~ a X (5.36)
where
X = Vv2s{1+ ;2% (1-4s%)} (5.37)

Here we have retained all the three assuinptions so that terms in higher orders of

boson operators are neglected. Now we use the Fourier expansion for the g-boson

Al

operators a;, and a;:

k
*';[ = —ITV 3 exp(ik.z;) bT (5.38)
k

The quantised spin wave excitations in this case are called q-magnons. The operators

b, and BI satisfy the q-boson commutation relations

[n, b = b ;
e b)) = B
Bbe = [nd;



o R (5.39)

R

Also ny = bt Using eqs.(5.36) +(5.39),

= 1
578, = X ﬁgexp( ik.%;) by X \/_Zemp (ik'. (x; +8) bT
= Z(Z-— Z emp(iké) by l;kT
N %
X2 =
= =Y exp(ik.6) [ng + 1]
N %

o X? SR
§ 8L = i doe (—ik.6) bk1 by
k
= 'X‘: Z ‘350P("i£-5_} [}

N k

]
|
—

§jz Sira: = (s = m)(s — njpe)

~ &8 = s(nj+njs)
= 5= s(a;1 a5 +ajsl au0)
2 S t
= - = 26! b,
s N ; & Ok
0 8
= 5 - 2
S N ; Nk
85 = S§—mn;
1
= S — ]—V ; N



Here we have worked in the boson realisation of the g-oscillator algebra and used

¢q.(5.12). Substituting the above equations in (5.29),

H = — g { £ exp(ik.6) [ne +1) + -)]{V: > exp(—ik.8) [ny]
76 k k
vo2E-d 3 2nk)}—guBH;(s—% 5 )
Using eq.(5.19),
A= -] zk{-— 2y et 1+ 5 2704 bl )
- 26 s — = Z 2 ni) — gupHNs + gupi Ek: Tk

= JNzs* — gugpHNs + Z ni(2 Jsz + gupH)
k

J

- 3 X? 2 ; Ye {[nk+ 1) + [nk]} (5.40)

i.e,
H = Ho + Mo (5.41)

where Hgy is the same as that given by eq.(5.17) and

Hy = (2Jsz + gugH) Y
p

- Js z{l +§ (1- 432)} > 'yk{[nk +1] + [nk]} (5.42)
: k

In the slightly deformed case (n — 0), we may express [n; + 1] and [n] in terms of

sine functions and retain only terms upto O(7*). We get

e+ 1 + [e] = @ne+1) — g(an + 3 + )
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Using this in eq.(5.42),

Hol = (2JSZ + gHBH)an
k

7 2 Ui 3 2
- JS,Z{1+§"(1—4S)} E 'yk{(an+1)—y(2n,, + 3 ng +nk)}
! 3 !

= Z ng {2Jsz(1—'yk)+guBH} + ;ﬁ'
k "k

+ Z’m,sJSZ’Yk +3nk2Jsz'y;,}

= Ek: ng Wr + %27 ; {nkwk'(8s2—-1)+2 e wi

+ 3 7’1*2 w,,"}

where

wy = Jszy (5.44)
For cubic lattices of lattice constant a,
! 2 2 1 2

wy = Js(z—k%a®) = Jsz — ka (5.45)

Here D is given by eq.(5.24) and wy is given by eq.(5.23). Thus

H = Hoo + Z Ny
k
+ %2! Z wy {n;;(SS2 -1) +3n% + 2 nka} (5.46)
"k

In the limit -+ 1, H — H, the Hamiltonian of the usual Beisenberg ferromagnet

as given in eq.(5.25).

80

Z{nk Jszv(8s-1)

(5.43)



5.4 Thermodynamics of q-deformed Heisenberg fer-
romagnet

The partition function Z of the g-deformed Heisenberg ferromagnet is
given by

Z = Tr ezxp(—BH)
= Y e:vp[—ﬂ{Eoo + ) npwy
ny=0 k

+ 33’—2, 3w {ra(8s*—1) +3n® + 20}
"k
For small values of 7, this reduces to

Z = exp(—fEw) Il Y. exp(—frwy) {1—

J] f wy’ (nk(832 - 1) +3 nk2 + 2 nk3)} (5.47)

3!
Writing
Buwr = x4 (5.48)
and using the results
= st [ % 4 1
> e =
n==0 1 —eF
i ne ™ = e’
n=0 (1 - P‘I)‘Z ’
= n2e—nz 1 + e
n=J0 ) (1 - e—zz)S ,
o 3T 2z z
3, —nz e +4e +e
n’e = )
HZ:% (ez._ 1)4 ) (049)
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eq.(5.47) becomes

5 AL ! H (85° - 1) 7 L

L= L.’L‘[)(-F 1./(‘,0) I;I { i—'—(—;'; — udk l S e zk)Z
3(1+e™)  2(+ 4e2“* ¥ e“)]}
(1 — e )3 (e= — 1)

= exp(—PEw) [[ Zox {1 - p gf'— Zox® wy [3 + e (1 + 8s%)
k

+ (7-16s%)e7®* + (1+8s%)e |} (5.50)

where
Zow = ! (5.51)
* 7 1—exp(—z) '
The free energy F of the system is
F = —ICBT l"l(Z)
= By — kgT Z {ln (Zox) + In [1 ~B g "z Zo® wk(.....)]}
= Eoo - kBT L In Z()k L Z()k wk ..... ) (5.52)
k
where we have used the result
In(l—z) ~ —z when z<< 1.
To evaluate the sums in eq.(5.52), we put
Pwg = B (DK +gupH) = mk’ +y (5.53)
Then
D
m = f(D = FT (5.54)
y = PgusH (5.55)



and the 177 dependent terms in eq.{5.52) are

Z 3 Z0k3 wkl — Z (1 3 (Uk
k

3 (Jsz - %Dkz)
& {1 — e-—(mk"’-l—y)}3

Replacing the summation over k by integration

Z( = 2‘;) 4 / (... kP dk, (5 56)
the above sum is
) 1% kdk
Zod wi = 3 —— 4 /
; 3 Zok~ Wk 3 (271’)3 ™ { Jsz (1 _e-(mk7+y))3
1 kidk
A= F+y))3} (5.57)
Similarly
, V
rr 3 !, =k ' )2 — 2 .
>:k: Zok" wi'e % (1 + 8s%) = @y 4m (1 + 8s ){Jaz
/ e‘—(mkz—é-y)k2dk 1 ke unk2+y)dk
(1 — 6—(mk2+y))3 o é /1\1 —e (m.k2+y) }(5 58
Y Zo’ wi (7 — 16s%)e 2 = 5 4m (7 — 165 )IJsz
p (2 )
-—2(mk2+y) }.2 o L4~ 2(mi2 +y)
/ ;,: dk _ lD lke dk<}5.59)
(1 ~ o~ (mk+y))3 27 J (1 — e mE+))3
S Zod wy (14 8sY)e I = v 4 (1 + 832){Jsz
k ' (2m)3

}5.60)

—3(mk? +y) k2dk 1 Kle 3(mk?+y) dk
f(—l“_t‘gumkz,,,) - 5D /(

2 1 — e-(rk )3
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Alsao

S n(Zu) = Y In(
k k

k
N
- Xi5
= GE Y
_ (2‘;)3 in i;
= (2‘7:)3 4” i,

@

where we have used the results

= fer =k

l /” e—n(mk2+y)k2dk
n Jo

e

. }w e——nmlr"k2dk

n Jo

e 1N [
n 2(2nm) nm

k T —ny
n=1

~In(l—-z) = Y, z
n=1 T

and

2n —pzzd — (2n o 1)" I
/: v 22p)" \p

Now we evaluate the integrals in eqs.(5.57)-(5.60) in the region of low temperatures:

e~~(mk7+y) — e——Bulk — e-~w;;/kg']'__’

The denominators in the integrands, i.e,

(1 a e~(n;k3+y))3 -1

84
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(5.61)
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Then the integrals
I = / K2dk — oo ;

I, = /k"dk-—»oo;

I = / o) g2y YT v Do
: 4 m}
I, = /'e-(mk’+y) kdk SN 3 ﬁ eV _1_5 :
8 mi
P |
Iy = [e e gk T e L
s € — 8v2 m3i
3/ 1
I — /6—2(mk2+y) k4dk —_— _Y_ e_2y —_— ;
6 32v/2 m}
1
I, = / —3(mk?+y) kzdk \/7_r -3y _—_ :
! ¢ — 123 © mi
— —~3(mki+y) kidk _\/i -3y L .64

Substituting eqs.(5.64) and (5.61) in eq.(5.52), we get. the free energy of the system

as
_— \% NZ3 kT\3 X exp(—nuH/T)
F = Ew (27)3 am 4 (kBT)(D) ,; n?
+ s am {Jsz(1 + 88%)(Is + I)
3! (2m)3
1 2 2 2y D
= 5 D(1+85") (s + Is) + (7 — 165°) Jsz I5—(7—163)-2—I6} (5.65)
where
u = 4B (5.66)
kp
so that
_guspH  uH
y = W~ T (5.67)



The guantity which is of great interest is the spontaneous magnetisation defined by

oF :
M) = - @‘)H 0,v=1 (5.68)

Substituting eq.(5.65) in eq.(5.68) and using eqs.(5.64) and {5.67) and simplifying,
we get

kgT

M(T) = gupNs—-73 (5 ){( )%c()

_ n2 (kBT);[_ Jsz (6.527+13055%) — (2.750 +2.913s%)]}(5.69)

The thermal decrease in spontaneous magnetisation is given by

AM = M{0) - M(T)
_ B3y gkslyy 3
= 3 T) {(D)c(2>
T]2 kaZ 2
- 55 ) [—— Jsz (6.527 +1.3055%) — (2.750 +2.9135%)]} (5.70)
As g— 1,
y = 9 3y ks 2
AM—AM = 25 T(3) () (2,

which is the result given by the original model (See eq.5.28).

The internal energy U per unit volume of a system is defined by

eq.(3.41). Thus for the g-deformed Heisenberg ferromagnet, it is given by
0 = ke? 2 (InZ)

We evaluate it at H = () and obtain

(ksT)}

- 3
I = FE, + = ——
© " 2 arD)}

)
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- L (__)?(k_B_q 3 {J.SZ o+ 882) (%+_é_\]:_/_§)
. 1
- —(1+832) (Aul’)( +4\/)+ (7 - 16s%) Jsz ™G
~ 163 — 5.71
- L - 169D (55 5) (5.71)

"The magnon heat capacity per unit volume of the q-deformed Heisenberg ferromagnet

is theretfore

- dU

i )

Cm - (dT/
10 kBT i 5

7 kg . ez
- ;3,T (E)% { T¥ Jsz (2.750 + 2.913s%)
+  kpT3(0.487 — 15.9885%)} (5.72)

In the limit q-— 1, this expression coincides with eq.(5.26), the result in the original

model.

Thus the present calculations bring in g-dependent corrections to the

temperature dependence of spontaneous magnetisation and magnon heat capacity.
5.5 Comparison with experimental data

The simplest Heisenberg ferromagnets known are EuO and EuS. Both
have fcc lattice structure and the. magnetism is due to the well localised 4f electrons
having s = ; The data reqtﬁred for the calculation of magnon heat capacity and

spontaneous magnetisation [84] is furnished in Table 2. The Rieraann zeta functions
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¢(3) = 2612; ¢(3) = 1.341. With these data, we have calculated the magnetic con-

tribution to the molar heat capacity C,, and the thermal decrease in spontaneous

magnetisation for EuO and EuS for temperatures much below their Curie tempera-

ture T,.
s vA g T, J a molecular density
(K) | (kp) | (A)| weight | (x10%kg/m?)
EuO 7/{ 12 2 169.15]0.606 | 5.14 167.96 8.216
EuS| U 12 2 | 16.57]0.236 ] 5.95 184.02 5.7
Table 2. Properties of EuO and EuS [84].
We optain
for EuO,

and for EuS,

Cnm
RT

M
M(0)T}

O _
o

M
M(0)T?

> =

= 107 { 479 + (117

107 { 13.52 + 7%(87.55 —

107 { 3.24 + n*(20.94 -

104.79)}

171
5 — —T—)}

170.67)}

28.08)}

107° { 1.972 + 7%(4.836 — e
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: 2 3 ‘ +
T (k)

Fig. 2. Mlagnetic molar heat capacity divided by T? vs T in EuO. The solid
curve represents theoretical results for 7 = 0.1. The dashed curve is the best fit to
experimental data [85].
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Fig. 3. Reduced magnetisation divided by T? vs Tin EuO. The solid curve repre-
sents theoretical results for n = 0.1. The dashed curve is the best fit to experimental

data [85].
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Fig. 4. Magnetic molar heat capacity divided by T% vs T'in EuS. The solid curve

represents theoretical results for n = 0.1. The dashed curve is the best fit to experi-

mental data [85].
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Fig. 5. Reduced magnetisation divided by T? vs Tin EuS. The solid curve repre-

sents theoretical results for § = 0.1. The dashed curve is the best fit to experimental

data [85].
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The results for 5 = 0.1 are plotted graphicaily in Figs.(2-5). The results of
lisear spin wave theory (n = 0) are also shown. In the case of EuQ, there is quali-
tative agreement between the present theoretical values and experimental values [85]

wherzas iu the case of EuS, the agreement is poor.
5.6 Conclusion

The results of linear spin wave theory based on Heisenberg exchange model
of ferromagnetism are not in perfect agreement with experimental observations. The
oresent work is an attempt to improve the model using the concept of g-oscillators.
We developed the mindel in the nearest neighbour approximation. The resulting
Hamiltorian contains anharmonic contributions in addition to the uncoupled classi-
cal contribution. The additional terms may be interpretted as arising from q- magnon
interactions. Only small deformations of the standard spin wave modecl arc considered
in the present work. The graphs indicate that the present model is an improvement
over the linear spin wave theory and the general nature of temperature dependence
of mnagnon beat capacity and spontaneous magnetisation is predicted by the model.
Better results may be obtained if next nearest neighbour exchange interaction and

dipcle-dipole interaction are also taken iuto acconnt.

93



Bibliography

[1] Vyjayanthi Chari and Andrew Pressley, A guide to Quantum Groups (Cum-

bridge University Press, 1994) and references therein
{2] L C Biedenharn, J.Phys.A 22, L 873 (1989)
(3] A J Macfarlane, J.Phys.A 22, 4581 (1989)

[4) L D Faddeev, Integrable models in (1+1) dimensionil quantum field theory,

Les Houches Session XXXIX (1982) pp563

(5] L D Faddeev, E K Sklyanin and L. A Takhtajan, Theoret. Math.Phys. 40, 194

(1979)
(6] L D Faddeev and L A Takhtajan, Russian Math.Surveys 34(5), 11 (1979)
{7) P P Kulish and N Yu Reshetikhin, J.Sov. Math. 23, 2435 (1983)
i8] E K Sklyanin, Funct. Anal. Appl. 18, 263 (1982)
191 E K Sklyanin, Funct. Anal. Appl. 17, 273 (1983)

(10} V G Drinfel’d, Sov. Math.Dokl. 32, 254 (1985)

94



1]

[12]

[13]

14)

[15)

(16}

17

[18]

(23]

V G Drinfel’d, Quantum groups, in Proc. of the International Congress of

Mathematicians, Berkeley, 1986, (American Mathematical Society, 1987) pp798
V G Drinfel’d, J-Soviet Math. 41, 18 (1988)

M Jimbo, Lett.Math. Phys. 10, 63 (1985)

M Jimbo, Lett. Math. Phys. 11, 247 (1986)

Andrew Pressley and Vyjayanthi Chari, Nuclear Physics B (Proc.Suppl) 18

A, 207 (1990)
T Tjin, Int.J.Mod.Phys.A 7, 6175 (1992)
Zhe Chang, Quantum group and Quantum Symmetry, IC/94/89 (1994)

Yu I Maain, Quantum groups and Non-commutative Geometry, Preprint

Montreal Univ. CRM-1561 (1988)

S L Woronowicz, Comm.Math.Phys. 111, 613 (1987)
S L Woronowicz, Invent.Math. 93, 35 (1988)

S L Woronowicz, Comm.Math.Phys. 122, 125 (1989)

L. D Faddeev, N Yu Reshetikhin and L A Takhtajan, Quantisation of Lie

groups and Lie algebras, LOMI Preprint E-14-87

J Wess and B Zumino, Nucl. Phys.3 Proc.Suppl. 18 B, 302 (1991)



(24] B Zwmino, Mod. Phys.Lett. A 6, 1225 (1951)

[25] S Majid, J. Classical and Quantum Gravity 5, 1587 (1988)
[26] F M Hoissen, J.Phys.A: Math.Gen. 25, 1703 (1992)

[27] Ya.Aref’eva I and Volovich I V Preprint CERN-TH 6137/91
(28] R Chakrabarthi and R Jagannathan, J.Phys. A 24, 5683 (1991)

[29] E Heine, Handbuch der Kugelfunktionen, Vol.1,Reimer, Berlin (1878),

reprinted by Physica—Verlag, Wurzburg (1961)

[30] H Exton, q-hypergeometric functions ond applications, Ellis Horwood; Chich-

ester (1983)
[31] F Jackson, Trans.R.Soc. 46, 1253 (1908)
[32] F Jackson, Q.J.Math. 41, 193 (1910)

[33] R Jagannathan, R Sridhar, R Vasudevan, S Chaturvedi, M Krishnakumari, P

Shanta and V Sreenivasan, J.Phys.A. 25, 6429 (1992)
[34] R Chakrabarti and R Jagannathan, J.Phys.A: Math.Gen. 24, L711 (1991)

[35] P Raychev, Quantum Groups: Application to Nuclear and Molecular Spec-

troscopy, Advances in Quantum Cheristry, Vol.26, Academic Press.Inc. (1995)

(36] C Quesne and U L Bruxelles, Raising and Lowering operators for Uy(n),

preprint PNT/1/92

96



(37] Hong Yan, J.Phys.A: Math.Gen. 23, L 1155 (1990)

[38] P P Kulish and E V Damakinsky, J.Phys.A: Math.Gen. 23, L 415 (1990)
[39] H Ui and N Aizawa, Mod.Phys.Lett. A 5,237 (1990)

[40] A P Polychronakos, Mod.Phys.Lett. A 5, 2325 (1990)

[41} G Vinod, K Babu Joseph and V C Kuriakose, Pramana J.Phys. 42,299 (1994)
[42] M Chaichian, D Ellinas and P Kulish, Phys. Rev.Lett. 65, 980 (1990)

142} P SLanta, S Chaturvedi and V Sreenivasan, J.Mod. Optics 39, 1301 (1992)
[44] P V Neskovic and B V Urosevic, Int.J. Mod. Phys.A 7, 3379 (1992) 799 (1991}

[45] D Bonatsos, E N Argyres and P Raychev, J.Phys.A: Math.Gen. 24, 1403

(1991)
[46] Zhe Chang and Hong Yan, Phys.Lett.A 154, 254 (1991)
[47] Zhe Chang and Hong Yan, Phys. Leti. A 158, 242 (1991)

[48] P Raychev, R P Roussev and Yu F Smirnov, J.Phys.G: Nucl. Part. Phys. 16,

L137 (1990)
[49] E G Floratos, J.Phys.A: Math.Gen. 24, 4739 (1991)

150] M Chaichian, R Gonzale Felipe and C Montonen, J.Phys. A: Math.Gen. 26,

4025 (1993)

97



[51] A K Mishra and G Rajasekharan, Pramana J.Phys. 45, 91 (1995)

[52] S S Avancini and G Krein, J.Phys. A: Math.Gen. 28, 685 (1995)

(53] A Ghosh, P Mitra and A Kundu , J.Phys. A: Math.Gen. 29, 115 (1996)
[54] Qin-Gzhu Yang and Bo-Wei Xu, J.Phys. A: Math.Gen. 26, L365 (1993)
[55] V I Man’ko, G Marmo and F Zaccaria, Phys. Lett.A 191, 13 (1994)

[56] G Parisi, Statistical Field Theory, (Reading MA: Addison-Wesley, 1988)
[57] R P Feynman, Statistical Mechanics (Benjamin, 1972)

(58] A K Ghatak and L S Kothari, An Introduction to Lattice Dynamics (Addison-

Wesley, London, 1972)
[59] G Mie, Ann.Physik. 11, 657 (1903)
[60] E Gruneissen, Ann.Phystk. 26, 393 (1908)

[61] Hiroko-Matsuo Kagaya, Naomi Shoji and Toshinobo Soma, Solid State Com-

mun. 65, 1445 (1988)

(62] P C Trivedi, H O Sharma and L S Kothari, Phys. Rev.B 18, 2668 (1978)

[63] C Kittel, Introduction to Solid State Physics, 4"*ed. (John Wiley, New York,

1971)

[64] T S Gradshteyn and I M Ryzhik, Table of Integrals, Series and Products,

(Academic Press, New York, 1965)

98



(65] J D Filby and Douglas I, Martin, Proc. Roy.Soc..A 284, 83 (1965)
{66] C A Krier, R S Craig and W E Wallace, J. Phys. Chem. 61, 522 (1957)
[67] D C Mattis, The Theory of Magnetism, (Harper and Row, New York 1965)

[68] S KrupiCka and J Sternberk, Elements of Theoretical Magnetism, (English

translation by W S Bardo, Ilefee Books Ltd, London, 1968)
|69} C Kittel, Quantum Theory of Solids, (John Wiley and Sons, New York 1963)

i70] CP Enz , A course on Many-body theory appiied to Solid-State Physics,

{World Scientific, Singapore, 1992)
1] F Bloch, Z.Physik. 61, 206 (1930)
(72] F Block, Z.Physik. T4, 295 (1932)
73] T Holstein and H Primakoff, Phys.Rev. 58, 1098 (1940)
[74] F Keffer and R Louden, J.Appl. Phys. 32, (1961)
[75] F J Dyson, Phys.Rev. 102, 1217 (1956)
(76} F J Dyson, Phys.Rev. 130, 1230 (1956)
[77) W Marshall and G J Murray, Phys.Chem. 2, 539 (1969)
(78] J F Cook and H A Gersch, Phys.Rev. 153, 641 (1967)

[79] B S Fishmear and G Vignale, Phys.Rev.B 44, 658 (1991)

99



50} H G Bohn, A Xollmar and W Zinn, Phys.Rev. 30, 6504 (1984)

i81] F Bonechi etal, Phys.Rev. B 486, 5727 (1992)

{82] vee for example ref. [67]

)

33] A Kundu and B B Mallick, Phys.Lett. A 156, 175 (1991)
{84} L Passel, O W Dietrich and J Als-Nielsen, Phys.Rev. B 14, 4897 (1976)

{85] O W Dietrich, A J Henderson,Jr and H Meyer, Phys. R:u. B 12, 2844 (1975)

100



	TITLE
	CERTIFICATE
	Corrterrts
	PREFACE
	SYNOPSIS
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Bibliography

