
STUDIES IN CONDENSED MATTER PHYSICS USING
q-OSCILLATOR ALGEBRA

Thesis submitted

in partial fulfilment of the requirements

for the award of the Degree of

DOCTOR OF PHILOSOPHY

K. K. LEELAMMA

DEPARTMENT OF PHYSICS

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

KOCHI - 22

1997



Cerrificd that the work presented in this thesis is the bonafide work

done by S111t. K.K.Leelamma, under my guidance in the Department of Physics,

Cor.hin University of Science and Technology and that this work has not been in-

eluded in any other thesis sul:>IIutted pre~iously for the award of any degree.

]{och.i-22,

Supervising Teacher



1.1 Quantum groups and non-commutative spaces.

1.2 q-deformed numbers and q-differential calculus ...

Simple examples of quantum groups and quantum algebras

Corrterrts

PRF~F~CE

S~iNOPSIS

1. Ir~TR,ODUCTION

1.3

......................

......................

i

iV

1

4

7

10

2 q-DEFORMED HA.RMONIC OSCILLATOR 14

2.1 Introduction. . . . . . . . . . . . . . . . . . . . ·14

2.2 Harmonic oscillator as a realisation of Heisenberg-Weyl algebra 15

2.3 q-deformed Heisenberg-Weyl algebra (q-oscillator algebra) . . . . . .. 20

2.4 q-oscillator description of "Uq(2) and SUq(l "1) 21

2.5 Properties of q-boson operators . . . . . . . . . . . . . . . . . . . . .. 23

2.7 Energy spectrum of q-deformed harmonic oscillator

2.6 Eigenstates of Nq • • • • • • • • ..... 27

..... 29



2.8 Statistical mechanics of q-harrnonic oscillator . . . . . . . . . . . . .. 32

2.9 Description of some physical systems in terms of q-oscillator algebra . 33

3 q-.AN·HARi\10I"lIC OSCII~LATORWITH Q1JARTIC INTERAC-

TICJN 36

3.1 Introduction . . ............. 36

3.2 Anharmonic oscillator and its energy spectrum . . . . . . . . . . . .. 37

3.3 Energy spectrum of q-AO . . . . . . . . . . . . . . . . . . . . . . . .. 37

3.4 Statistical Mechanics of q- ..l\O ............. 42

3.5 Conclusion ... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48

4 LAT'TICE HEAT- CAPACITY OF CRYS'I'ALS-A q-OSCILLATOR

DEBYE M.ODEL 49

4.1 Introduction . . . . . . .. . . . .. 4!)

4.2 Heat capacity of a Harmonic crystal-Debye model. . . . . . . . . . .. 51

4.3 Heat capacity of a slightly q-deformed harmonic crystal (q-oscillator

Debye .model) . · · . · · · . · · · · · · · · · · .. 55

4.4 Comparison with experimental data 62

4.5 Conclusion ~......................................... 65



5 'I'HE~Rl\10DYl\TAr.AIC IlROPERTIES OF A q-DEFORlVIED HEISEN-

13ERJG FERROl\1AGNE'r 66

5.1 Introduction. . . . . . 66

5.2 Ferromagnetic magnons-basic concepts. . . . . . . . . . . . . . . . .. 69

5.3 q-deformed Heisenberg ferromagnet .. . 75

5.4 Thermodynamics of q-deformed Heisenberg ferromagnet . . . . . . .. 81

5.5 Comparison with experimental data .. . . . . . . . . . . . . . . . .. 87

5.G COIIClllS~.Oll ..............•.................• 9~1

Bibliography 94



PREFACE

The whole history of physics is a story of deformations. In classical mc­

chanics itself, tile Lorentz transformation between two inertial frames is Cl deformation

of Galilean transformation with {3 == ~ as the deformation parameter and in the limit

(J -"f 0, tile original non-relativistic mechanics is regained. Thus special relativity is

a deformation of Galilean relativity. Similarly, Quantum Mechanics is a deformation

of Classical Mechanics with 1i as the deformation parameter. In the limit 1i --+ 0,

the results of quantum mechanics merge with the classical results.

Quantum groups and quantum algebras are deformations of classical

Lie groups and their structure is much more complex than that of Lie groups. They

are symmetry groups of non-commutative spaces. Though initially introduced in con­

uoction with tile '_i\lantunl inverse scattering theory, they have found applications in

Inany problems of physical and mathematical interest such as conformal field theory,

integrable lattice models, knot theory, quantum optics and gauge field theory. How-

ever, direct applications of quantum symmetry to real physical systems are limited.

There had been a great deal of interest in the study of quantum groups during the

last decade.

The representation theory of the quantum algebras has led to the de­

velopment of q-deformed oscillator algebra. Since then, there b.F..S been an increasing

interest in the study of physical systems using q-oscillator algebra. It has found

applications ill several branches of physics such as vibrational spectroscopy, nuclear



physics, IIH1IIY body t hcory and quantum optics, The work presented in this thesis

is also along similar lines, The concept of q-oscillator algebra is applied to some

problems ill condensed matter physics,

This thesis is organised as follows: It contains five chapters. III the

introductory chapter, vie present a brief history of the development of the con­

C(~I)t of quantum groups and quantum algebras. We review the concept of non­

commutative spaces and introduce quantum groups as symmetry groups of non­

commutative spaces. The q-deformation of numbers and basics of q-differential c.d­

culus are presented. Some simple examples of quantum groups are also illustrated.

In chapter 2, a brief review of the q-harmonic oscillator and the salient

features of its energy spectrum are given. The statistical mechanics of slightly de­

formed oscillator is discussed. It develops the pre-requisites for the investigations

reported in the subsequent chapters. A few applications of q-oscillator algebra to

real physical systems are also cited.

Chapter 3 deals with the problem of all anharmonic oscillator with

quarr.ic interaction, The energy spectrum and the statistical mechanics of q-deformed

anharmonic oscillator are discussed.

In chapter 4, the Debye model of lattice heat capacity of crystals is

reformulated using q-oscillator algebra, treating the vibrational modes as q-bosons.

The th.eoretical results on lattice heat capacity are compared with experimental data.

n



Chapter 5 deals with application (Jf q-oscillator algebra to the linear

Spi:l wave theory of ferromagnets. TIle magnons are treated as q-bosons, A COII1!)ar­

at i vc study of the theoretical results Oil spontaneous magnetisation and magnon heat

capacity wit.h experimental data is also presented.

A part of these investigations has appeared in the form of the following

publications:

a (i). q-Anharmonic oscillator with quartic interaction: V C Kuriakose, K K

Leelamma and K Babu Joseph, Pramana ..T.Phys, 39, 521 (1992) .

• (ii). Lattice heat capacity of crystals- a q-oscillator Debye model: K K Lee­

larnma, V C Kuriakose and K Babu Joseph, I1tt.J.Mod ..Phys. B, 7, 2697

(19D3)

• (iii). Thermodynamic properties of a q-deforrned Heisenberg ferromagnet (C(Jffi­

municated to Phys.Lett...4.)

iii



SYNOPSIS

TIle thesis deals with some applications of q-deformation and quantum

group ideas to problems in condensed matter physics. They are deformations of

classical groups and their structure is much more complex than that of Lie groups,

They generalise our familiar concepts of symmetries to the 'realm of non-commutative

geometry.

The q-deformation of numbers was introduced by Heine in 1878. The

q-differential calculus which is a generalisation of ord.inary differential calculus was

also developed in the nineteenth century, Recently, there has been a great deal of

interest in the study of quantum groups and qu.antum algebras. The representation

theory of quantum aigebras with a single deformation parameter q, has led to the

development of tile now well-known q-deformed harmonic oscillator algebra. But 'Ne

know that in real physical systems one CaUI1()t dismiss the role of anharmonicity. The

fact that the energy levels of the q-oscillator are not equally spaced and the success of

the q-oscillator model in accounting for the measurements on the infra-red spectrum

of a umnber of molecules, indicate that q-deformation can take care of anharmonicity

effects to some extent.

Motivated by these considerations, we have studied the problem OJ."

q-deforrnations of an anharmonic oscillator with quartic interaction and obtained

the energy spectrum, TIle energy values are found to depend 011 the deformation

parameter lJ. We have also evaluated various thermodynamic quantities SUCll as

IV



partition function, entropy and internal energy. Such studies are expected to be

relevant in the context of lattice dynamics.

Tl1(~ Debyc model of lattice heat capncity of solids has been remarkably

successful ill describing the experimental observations at low temperatures ill maI1Y

puro crystalline solids, AIIGlli elements SUCll as potassium, rubidium and caesium

have a low temperature heat capacity proportional to T 3 in accord.ance with Debye's

theory, III the high temperature region (T» 8D), the Debye model leads to the

Dulong-Petit law, However, measurements in this region indicate deviations from

the predictions of Debye model.

Debye's theory is based on the harmonic approximation, Real crystals

do. exhibit anharmonic effects such as thermal expansion. We have reformulated the

Debye theory, taking each mode as a q-oscillator. In the low-temperature limit, the

q-deformcd model yields a q-dependent correction for Ctl which is negligible arid thus

when T << (~D, tile model effccti vel)' coincides with the Debye model. III the high

temperature limit, C; is found to be T-dependent, in very good agreement with the

experimental results obtained ill tile three cases studied. The investigations lend

support to the view that phonons in crystals may be q-quancised excitations, Such

!)hOIIOIlS may be termed q-phonons, When T is very large (1'..1 300K or more), the

variation of C; with T is found to be more rapid than predicted. The deviation may

perhaps be taken care of by q-anharmon.ic model incorporating interactions.

The concept of q-deformation is also applied to investigate the

v



magnetic properties of ferromagnets. The agreement between tile linear spin wave

theory of ferromagnetism and experimental observations on ferromagnets is not sat­

isfactory. The q-deformed Holstein-Primakoff transformation is used to describe the

spin variables of a Heisenberg ferromagnet and tile magnons are treated as q-bosons.

The exchange Hamiltonian ill tile nearest neighbour approximation is obtained for

small values of the deformation parameter when tile excitation is low, The thermo­

dynamic quantities ill the low temperature region are also evaluated. It is found that

the spontaneous magnetisation and magnetic contribution to the heat capacity have

q-dependent T! terms in addition to the well known Bloch T ~ term. Calculations

are done for the cases of EuD and EuS, the simplest Heisenberg ferromagnets known.

A comparison of the theoretical results and experimental values indicates that our

model is an improvement over the linear spin wave theory, Th.e general pattern of

temperature dependence of rnagnon heat capacity and spontaneous magnetisation is

predicted by the model.

VI



Chapter 1

INTRODUCTION

Symmetry plays an important role in physics. Progress in modern physics

has been intimately related to the study of symmetry. Applications of symmetry

principles and conservation laws have paved a novel way of understanding physical

systems. Gauge symmetry has led to the standard model in high energy physics.

Crystallographic space symmetry is fundamental to solid state physics and confonnal

symmetry plays an important role in string theory and critical phenomena. The

mathematical tool for studying the symmetry of a system is group theory.

Quantum groups and quantum algebras have attra.cted much attention

of physicists and mathematicians during the last eight years [1]. There had been a

great deal of interest in this field, especially after the introduction of the q-deformed

harmonic oscillator [2&3]. Quantum groups and quantum algebras have found unex­

pected applications ill theoretical physics.

Historically quantum groups first appeared as a deformation of tile

1



universal enveloping algebra of <1 Lie algebra in the study of integrable quantum sys­

terns. In. tile beginning of the 1980s, there was much progress made in the field of

quantum integrable field theories. One of the most important studies is the develop­

rr.cnt of a quantum mechanical version of the well-known inverse scattering met .iod

used ill the theory of integrable ncnlinear evolution equations like the Korteweg de

Vries tK<i"V) equation.. This method was developed by Faddeev, Sklyanin and Takhta­

jaIl [L1:-{i] in formulating a quantum theory of solitons. Kulish and Reshetikhin [7]

showed that the quantum linear problem of the quantum sine-Gordon equation was

not associatec ·ttV~t~l the Lie algebra sl(2) as ill the classical case, but with a defor-

mat.ion er this algebra. Sklyanin showed that [S&D] deformations of Lie algebraic

structures were not special to tile quantum sine-Cordon equation and that it seemed

to be part of a gen~ral theory, It was Drinfel'd who showed that a suitable quantisa­

tion of Poisson Lie groups reproduced exactly the same deformed algebraic structures

encountered ill the theory of quantum inverse scattering [1 f}--12]. Almost at the same

time, Jimho arrived at the same result [13&14] from a slightly different angle. In

his work, the quantum algebras appeared in the context of tpe solution of the Yang­

Baxter Equation (YBE).

There is 110 universally accepted definition of a quantum group. There

are several approaches [15--17]. As Vie have seen, ill Drinfeld's approach, tile quan­

turn group is defined as a deformation of the Universal Enveloping Algebra (UEA)

of a Lie algebra. This approach is similar to the study of Lie groups via their Lie



algebras. Jimbo also gave almost the same definition. TIle new algebraic struc­

tures are called Quantised Universal Enveloping Algebras (QUEA). In Manin's work

[18], quantum groups are defined as symmetries of non-commutative or quantum

spaces, We discuss this point in detail in Section 1.2. Woronowicz [19-21] gave an

entirely different approach to quantum groups, based on non-commutative C· al­

gebras. This is analogous to the classical theory of topological groups. He called

these groups, pseudo-groups. His approach is popular among mathematicians. The

theory of Faddeev alld the Leningrad school [22] introduces quantum groups in terms

of Il.-matrices which are solutions of the Quantum Yang-Baxter Equation (QYBE).

1"'11is approach is directly connected to integrable quantum field theories and has no

classical analogue.

III all the f01Ir approaches, quantum groups have the structure of a

Hopf algebra [15]. The word 'quantum' in quantum groups is different from the

canonical quantisatiou. It comes from the Yang-Baxter Equation. Solutions of the

classical YBE are closely related to the notion of classical groups while solutions of

tile (~YBE are related to quantum groups. Thus the relation of quantum groups to

ordinary Lie groups is analogous to that between quantum mecha.nics and classical

mechanics. TIle structure of quantum group is much more complex than that of Lie



1.1 Quantum groups and non-commutative spaces

The quantum algebras have been linked to geometries that have non-

commutative structures [23&24]. The concept of space-time continuum has been

fundamental to all successful physical theories. However there are arguments that

on. a submicroscopic level, this concept has to be abandoned [25]. There is no ex-

perirnental proof for the assumption that space..-time is smooth down to arbitrarily

small distances. Perhaps it may be because of this idealisation of space-time concept

that one comes across tremendous problems in the unification of various interactions

[26]. 'This motivates one to look for a new space-time concep; Quantum mechanical

phase-space is only partially non-commuting, only co-ordinates and rnomenta 110n-

commute, co-ordinates, themselves are commuting. If at a sufficiently small length

scale, co-ordinates become non-commuting operators, it will be impossible to mea-

sure the position of a particle exactly. In this way, one may hope to remove the

ultra-violet divergences of conventional quantum field theory which are due to the

possibility of measuring field oscillations at one point. Thus non-commutativity is

introduced as a necessary condition in the generalised space-time concept. It has

been argued that physics at the Planck scale may be understood only with the help

of non-commutative geometry [26&27].

In a ncn-commtatlve space with real co-ordinates (x y z) a unit of
i.U '"
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length along the x-direction is defined as

6.x - (q - 1) x

or equivalently

(1.1)

(1.2)

where q is some parameter which is real. 1"11C width of the interval ~x is not a

constant. III the limit q -+ I, the interval ~x -~ 0 and we have space-time

continuum,

Consider a system with two degrees of freedom. TIle quantum mechan­

ical phase-space of the system is spanned by the co-ordinates x ,y and conjugate

momenta Px and Py. This phase-space is only partially non-commuting:

[ x, pz] - ,itt - [y, Py ]

[x, y] = 0 = [Pz, Py ]

(1.3)

(1.4)

Le, the x-y plane and PZ-PJI plane have continuum structure and only X-Px and Y-Pr

planes may have discrete structure, In a non-commutative space, non-commutativity

is prescribed for co-ordinates also:

The q-commutator

xy qyx (1.5)

[ x, Y]q - x Y - q Y a: - 0 (1.6)



Eq.(1.5) should remain eo-variant under a co-ordinate transformation (x, y) ---i'

(x', y'). Let

T = (a b)
e II

(1.7)

be the matrix effecting the transformation. a, b, c and d are in general non-

commuting elements. Then

_ (ax + by)
ex + dy ·

I I "X Y =qy x

implies

(ax + by) {ex -1- (111) = q (ex + dy) (ax + by)

If we assume that a, b, c, d commute with (x, y), we can write

( x' y') = (x y) (: ~ ) = (ax + cy bx + dy )

Then invariance of (1.5) implies

(ax + cy) (bx + dy) = q (bx + dy) (ax + cy)

(1.8)

(1.9)

Relations (1.8) 1l11d (1.9) give a complete set of conditions to be obeyed by the non-

commuting objects a, b,c, d to preserve the structure of the quantum plane:

ab - qba;

cd - qdc;

ac - qca ;

6



bd = qdb;

be = cb;

all - da = (q - q._.l) be (1.10)

These are commutation relations obeyed by a, b,c, d. T is called a quantum matrix.

It is shown that [28] the matrices T satisfy all the axioms of a non-

commutative Hopf algebra and thus constitute a quantum group. It is denoted by

Gl~q(2), the quantum linear general group in t\VO dimensions. It is the group of

linear transformations in two-dimensional non-commutative space that preserves the

commutation relation (1.5). The additional relation

ad - qbc - 1

yields the quantum unimodular group t'Lq(2). The object defined by

detq(T) -- ad -- qoc

is called the quantum determinant or q-determinant.

(1.11)

(1.12)

1.2 q-deformed numbers and q-differential calculus

The q-deformation of numbers was introduced by Heine [29] in 1878. The

q-basic number [nJq is defined as

q~ -- 1
----
q - 1

7
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or alternatively,
nn -71.
'1 - q

[n]q = q _ q_!

limq_... l [n]q = ri, the ardinary number.

'TIle q-functions are also defined [30]. For example, the q-exponential function

where

It follows that

[l]q - 1;

[O]q = 0;

Tile q-sine and q-cosine functions are defined as

(~X2r+l 1.
· () ~~ (IX lJe.,-iX)

S't'fL
q ~I.: = ~ [2r + 1]q! = 2i eq ....

() ~ x
2r

1 (ix e
q

- ix )
cosq x = LJ -[2]' = '2 eq +

r=O T q- -

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1_1~)

(1.20)

q-differential calculus is a geueralisatiou of ordinary differential calculus, It was

developed in the nineteenth century by Jackson [31&32].

Let f(x) be a function of the real variable x, Its q-derivative is defined

f(qx) - f(x)
-------

x (q - 1)
(1.21)



where 'l is in goneral some complex parameter. D'J:j is a differnco quotient ~ where

6./ == f(qx) --- f(~;) and t:i~1; = :c(q -- 1) under the scaling i: --+ qx. q is called the

base. All altcruat.ivc definition of q-dcrivati V(~ is

'D f(x) = f(qx) - f(q-l X)
x X (q _ q.--l) (1.22)

This defines a difference quotient ~ under the scaling q-l x --+ qx or x --+ rjx.

TIle q-derivative becomes the ordinary derivative DS q --+ 1.

8/
8x

(1.23)

Thus q-differentiation defines a finite differential calculus where tile intervals ~x are

finite. As q --+ 1, ~x --+ 0 and tile variation of x is continuous. In this respect,

q-diffcrential calculus is convenient for the description of non-commutative space.

The cl-derivative satisfies the following properties:

Vx(x) - 1 (1.24)

Vx(~C11.) [r1 ] 'cn - 1 (1.25)l. q .-'

V J: ({L~;1L) a [r~]q ;];n··1 (1.2fi)

V x (at + by) aVx(f) -t- b1Jx (g) (1.27)

1Jx (fg) - g(x) o, (f) + f(qx) Vz(g) (1.28)

V x x - q--t x 1Jx - rtD1: (1.29)

9



(1.3D)

(1.31)

Here (I, and b are constants and f and 9 are functions of x. In proving these properties,

we assume definitions (1.13) and (1.21).

The q-aualoguc of integration ill tile case of finite limits a.b is also defined as

.f f(:r) d(qx) = (1 - 'I) { b f q" <,,(q'"b) - a f (l cP(qTa) }
I·· 0 1"~:'~O

(1.32)

1.3 Simple examples of quantum groups and quan­
tum algebras

Two well-known examples of quantum group are SLq(2) and SUq(2).

This group has already been introduced in Section 1.1. It is the system of 2x2

matrices T = (: ~) with non-commuting matrix elements, i.e, the algebra Aq

g(~lJ(~.ralctl by tile four clcmeuts a, b, c, d satisfy the relations (1.10):

qbo. ;

ell == qdc ;

bd == qdb

ac == qca

be == cb ; all - da == (q - q-1 ) be

The matrix elements a: b, c, d cannot have a realisation in ordinary numbers.

However when q ~ 1, these elements commute and the matrix Tturns to an ordinary

10



matrix that belongs to the group GL(2) or .SL(2) if det (1) =: 1. If T l and T2 are

two matrices with non-commuting matrix elements satisfying tile above relations and

if elements of T] eOII1IIlute with those of T2, then tile elements of tile product matrix

'1'1 T'2 also satisfy the above relations, III this sense, the set of matrices T has one of

the propert.ies of tile groups-t.hc CIOS\lre property, It is to be noted that T}1"2 is uot

a'l 0 b2 + b1 tU (12 )

Cl 0 b2 .+ (ll 0 d2

However ill order to form a group, for every matrix T, there should exist an inverse

r-1 such that

r- 1 T - I~

the unit matrix. TIle matrix T-l obtained from T by the standard methods does

not satisfy this property, However, for every matrix '1' satisfying relations (1.10), a

correspond!ng matrix

can be defined such that

S(1) _ ( (1
-qc

8(1) T - T 8(1) (1.34)

where (ll-;tq(T) == all - qbc, The quantum determinant detq('I) commutes with all

elements of tile algebra A q • 8(1) can be considered as the analogue of the inverse

matrix except for (letq (7) (111d is called autinode.

11



Thus the set of mat.riros T is not exactly Cl matrix gr()ll!>, but something

like a group. Woronowicz labelled it as 'COII1!)act matrix pseudo gr(HII), . However, ill

the limit CJ ~ 1" it turns into the 8£(2) group. For (1 =1= 1, tile Het of matrices T call

be considered a q-deformation of the group GL(2) and is called the quantum group

GLq (2). Physically it represents the set of all linear transformations in the x - y

quantum plane satisfying tile relation x y = q y x. In particular, if detq('I) = 1,

it forms the quantum group SL q(2).

SUq (2):

The other well-studied quantum group is S[Tq (2) which is the q-deformation of the

classical group SlT(2), the group of angular momentum. TIle Lie algebra s'u(2) con-

sists of three elernents L + 'I L__ and L;:; which satisfy the commutation relations

tz; Lt] ± t.; (1.:l5)

[L+, L_.] 2 L;:; (1.~16)

with

t

L+T - L. (1.37)

Kulish and Reshctikhin [7], while studying the solution of YBE, introduced the al-

(1.38)

12



III the limit q -4 1, this algebra gC)CS into the s'u(2) algebra. Thus it is called q­

deformation of su(2) algebra. and is denoted by suq(2).

Both suq(2) and slq(2) are quantum algebras with a single deformation

parameter 'l- Going to higher dimensions with more than two non-commuting eo­

ordinates, one has to use more than one 'deformation parameter. Several authors

have worked on two parameter deformations (:~:~&34].



Chapter 2

q ..·DEFOR.MED HARMONIC
OSCILLATOR

2.1 Irrtroduction

The Simple Harmonic Oscillator (SHO) problem has an indispensable role

ill physics, It is customary to use the SHO to illustrate the basic concepts and new

met110ds ill classical as well as quantum physics. The wave mechanical theory of

oscillators provides the basis for understanding the properties of a wide variety of

systems which are analysable ill terms of harmonic oscillators. It is useful not only in

the study of vibrations of diatomic and polyatornic molecules, but also in the study

of vibrations of other rnore complicated systems expressed in terms of their 110fIIlal

modes. Thus its applications are not limited to molecular spectroscopy, but extend to

a variety of branches of modern physics such as solid state physics, nuclear structure,

quantum Held theory, quantum optics, quantum statistical mechanics and so forth.

14



0111' study is essentially based on the q-deformed oscillator introduced

by Biedeuharu [2] and Macfarlane [:~]. They have investigated the connection between

q-oscillators and q-dcformed algcbras. SiIlC(~ then, there 11~lS been an increasing in-

tercsr ill the study of physical systems using the concept of q-oscillators. We start

with a discussion of Heisenberg-Weyl algebra and its q-deformation.

2.2 Harmonic oscillator as a realisation of Heisenberg­
Weyl algebra

For simplicity, we consider tile one-dimensional harmonic oscillator. III

classical mechanics, its Hamiltonian H is expressed in terms of tile co-ordinate x and

the conjugate momentum p as

H
p2 1 ? 2+ - m w- x
2m. 2

(2.1)

where m is the mass and w is the angular frequency of the oscillator. The transition

to the quantum mechanical scenario is carried out by replacing x and p with their

operator analogues:

x~x

.1) ~ p
8

-'if; !) .
uX

~r; and 1) satisfy the commutation relation

(2.2)

15



or in the case of Cl SYStCIll with many degrees of freedom,

(2.3)

where QJl and PJ.L are co-ordinates and conjugate momenta and t is the identity oper-

ator. The set of elements QJ." PJl and 1i j close an algebra known asthe Heisenberg

alqebra 'H [35].

The Hamiltonian can also be represented in terms of the abstract op-

orators a and at:
JTnW A i A

a - 2ft x + J2mw1i. p (2.4)

Thell

i ...
J2mwh p

(2.5)

TIle operator

N = at a

(2.6)

(2.7)

also plays all important role. It is hermitian, Le, N = Nt. It satisfies the relations

[N, a] := - a

(2.8)

(2.9)

The four elements a, at, Nand 1, satisfying the above commutation relations, con-

stitute what is known as Heisenberq- Weyl algebra, denoted by 'H4.

If)



The quantum mechanics of the system is based 011 the Heisenberg-Weyl algebra.

In terms of tile 11e\V operators,

1/

(2.10)

Thus If commutes with N and hence H and N possess simultaneous eigen functions.

It: is well-known that the spectrum of N consists of the set of non-negative integers

n 0, 1, 2, ,00 (2.11)

The normalised eigenvector of N belonging to the eigenvalue n is denoted by the ket

I n). Le,

N In.) = ri In) (2.12)

The set {I n)} of vectors for n varying from 0 to 00 constitutes a complete orthonor-

mal set and defines a representation called occupation number representation: The

operators .1'1 and H are diagonal in this representation.

(rn. I N In) = n s.; (2.13)

'l'lle Hilbert space spanned by {I Tt)} is called Fock space. l'he state I n) is obtained

by at, acting n times on the state I0):

17



In)
(at)'1

(2.14)- -10)
v'Ti!

at In) - v'n + 1 In + 1) (2.15)

a In) - vn In-I) (2.16)

a I 0) - 0 (2.17)

The matrices representing the operators a, at, Nand H are respectively

a =

o v'I
o 0
o 0

o
v'I
o
o

o
V2
o

o
o

V2
o

o 0
o 0

v'3 0

o 0
o 0
o 0

v'3 0

o 0 000
o 1 000

N= 00200
o 0 030

18



H - lu»

1
2
o
o

o
~
2
o

o
o
5
2

o 0
o 0
o 0

Tile energy vales ~ttW, ~1iw, ~"lW... arc equally spaced,

'1"1115 abstract operat.or analysis permits the following interpretation:

T1H~ oscillator in the state I rt) is an assembly of rt non-interacting particles, each of

energy lu», The different states of the oscillator correspond to different numbers of

the particles, TIle operator at raises tile particle number by 1 whereas the operator

a lowers the particle number by 1. Hence at and a are referred to as creation

operator and osvnihilation operator respectively. !'IT is interpretted as the number

operator since its eigenvalue gives the number of particles i.n the given state. The

state! 0) corresponds to no particle and is called the vacuum, state. a I 0) = 0

and at I 0) -I 1) are consistant with this interpretation since a particle cannot be

destroyed when no particle is initially present, whereas a particle can be created even

when lHJ particle is initially present.

The operators a, at and N are usually referred to as boson operators

since there is no restriction to tile .number of particles occupying any state.

If one deforms the underlying algebra (2.6-2.9), the quantum ruechan-

ics based on the deformed algebra will have a different form.

IB



2.:3 q-deforrned Heisenberg-Weyl algebva (q-oscillator

algebra)

The algebra of the three elements N q , o,q and aqt is referred to as a q-

deformed Hcisenberg-Weyl algebra 1i4q if they satisfy the commutation relations

(Nq , aqt] = aqt

(2.18)

This definition was given by Beidenharn [2]. The opera.tors aqt, aq and Nq are referred

to as q-boson creation operator, q-boson annihilationoperator and q- boson number

1\r I +
lV q r (L q I a'q (2.19)

aqt ]q is called the q-commutator. In general, for any two operators A and B,

[A, B]q = A B - q B A (2.20)

where q is some parameter which may be real or complex, It satisfies the properties

and

lirn lA B] = l·A B],
q--+1 ''l ,

the usual commutator in quantum mechanics,

20
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TIle q-commutators do not satisfy the Jacobi identity. Quesne [36] has

ShO\VIl that q-commutators satisfy some q-deformed Jacobi identity.

Tile algebra (2.18) is also referred to as q-oscillator algebra or q-boson

algebra. III tile limit q --+ 1, it tends to the standard oscillator algebra or Heisenberg­

Weyl algebra and tile q-deformed quantu.m mechanics will tend to the standard quan­

tum mechanics, This is a manifestation of the correspondence principle.

There exist other equivalent definitions of q-deformed Heisenberg-Weyl

algebra in terms of other sets of operators [35] which differ from (2.18). In some cases,

they have some advantages from a practical point of view.

The q-oscillator algebra is proved to be a quantum group. Its Hopf

ulgcbraic structure also has been set up [37].

2.4 q-oscillator description of SUq(2) and SUq(1, 1)

The harmonic oscillator is a convenient tool to obtain representations of

SUI-ne Lie algebras, TIle concept of q-deforrned harmonic oscillator was introduced

by Bicdenharn [2] and independently by Macfarlane [3] in 1989. Biedenharn had

developed Cl new realisation of the quantum group SUq(2) using a q-analogue of

the Jordan-Schwinger mapping. To achieve this, he postulated the q-oscillator alge­

bra (2.18) which is a generalisation of the Heisenberg-Weyl algebra. To realise the

Lie algebra of the generators of SUq(2), a pair of mutually commuting q-harmonic

oscillator systems with operators at and lLiq with i = 1, 2 is considered. Then the

21



q-analogue of the Jordan-Schwiuger map is defined:

J~-
t

ul q a2q

J. t J)aZq 0'1(/ -

1
N 2q) (2.23)Jz - 2(N1q -

These generators satisfy the suq(2) algebra (1.38):

TIle algebra generated by the three elements K +, /1:_ and Ko SUCll that

-2Ko (2.24)

is referred to as 8u{1,1) algebra. In the quantum case, the generators of suq{l, 1)

satisfy the commutation relations [38&39]

(2.25)

TIle generators Ki , K: and Ko of SUq{l, 1) accept tile following q-boson represen-

tar.ion:

(2.26)

22



2.5 P'ropert ies of q-boson operators

From tile defining relations (2.18), the following properties of q-boson

operators can be deduced.

(1)

f(Nq - 1) aq
t (2.27)

(2.28)

or ill general,

(2.29)

o (2.30)

where f(Nq ) is an arbitrary function of Ni;

To prove relation (2.27), vie consider the algebraic relation

i.e,

a t }or. 2q q

a tq

(Nq --- 1) aqt

(Nq - 1) aqtNq

(Nq -1)2 aqt



and by induction,

t "AT k
lLq 1v q

Let

s

~ t N S
Z:: c, aq . q

s

L c, (Nq - 1Yaqt
s

Relation (2.28) call be proved in a similar way by considering the defining

relation

Relation (2.29) immediately follows from relations (2.2"1) and (2.28).

(2) The parameter q is either real or is a pure phase.

To prove this, we take the defining relation

Taking the hermitian conjugate,

III order that these two equations coincide, eit.her q* = q or q* = «'. i.e,

either q is real or q is a pure phase.
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If 'I is real, it. call be expressed as

e'l.,

IJ being real. Then the q-number

it - q-X
q _ q--l

sinb.(rp: )
-----
sinhi7])

If q is a pure phase, of the form

'i:'1q - e ,

sir~('TJx)--_._._-
sinei } )

(3) 1'11e bilinear forms become

(4) The above properties remain invariant w. r. t. the symmetry q ~ «'.

(2.31)

(2.32)

(2.33)

(2.35)

(2.36)

(5) III tile limit q ~ ~., the q-Illunbers (or operators) tend to the ordinary numbers

(or operators).

s'in(1JX)
HIll ------
·'r-··O si n ('TJ)

25
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,. ( t)urn'. ac; O'q
(j-41

(8) In general, 1"[" =1= iL"t (J'(j" However, Polychronakos [40] have shown that there

exists a classical realisation of the q-oscillator algebra in which Nq = N = ata.

We call this as tile bosoii realisation of q-oscillator algebra. In this,

(L t J[~q at (2.37)q

{Lq fl~~;q a (2.38)

t t -N (2.3H)aqaq - f](Lq {Lq q

and

Nq .- N (2.40)

rfl·'.en.

t [Iv] (2.41)a~ a q -

t [N1- 1] (2.42)aqaq -

In this realisation, tile eigenstates of Nq are the same as those of N.

It is worth noting that there is an isomorphism between the q-oscillator

aigobra and tile q-differentiai operator algebra, Tile q-oscillator algebraic relations

--1\1q 0

2fi



possess Cl one-to-one correspondence to the commutation relations in q-differential

calculus:

x

Here 'Vx is the q-derivative w.r.t. x.

Thus

X L-.l.. a t ~ ~ a x8 ~ N
"r-r q, L/x q,. z q

2.6 Eigenstates of N q

(2.43)

III the classical realisation of the q-oscillator algebra introduced by Poly­

chronakos [40], Nq = N = ata and the basis vectors In}q of Nq are chosen to be the

same as those of the usual harmonic oscillator:

(2.44)

i.e, tile eigenvalues of Nq are also the integers from 0 to 00, and hence Nq is interpreted

as the number of q-deformed bosons. In order to obtain the representation of the

q-deforrned boson algebra bounded below, it is postulated that there exists a vector

I 0)q with the properties

(Lq I 0) == 0;

o (2.45)

27



I 0)'1 is referred to as the q-deformed vacuum state and is intorprettrd as a state

without bosons. The interpretation of Uqt and uq as raising and !owering operators

or as creation and annihilauiou op(~rators also holds.

The eigenstates , n,) Cl are orthonormal.

, Ill) q

It can be easily seen that

(2.46)

(Lq 11t) q - I[n]q I ri - 1)q

t I
...

a q I r~) q \j[n+l]q IrL+1)q

q(n+ 1 Ia} I n}q J[n + 1]~-

q (n, - 1 I aq ! n.)q
tr:V[n]q

(2.47)

(2.48)

(2.49)

(2.50)

In general, the operators aqt and (Iq can 'oe represented as infinite dimensional

matrices

a tq

o
o
o

J[ik
o
o

o
J[2]q

o

2K

o 0

o 0

J[3]q 0



I 0 0 o 0

r~~ 0 0 0

J12k 0 0aq -

I 0 0 J[3]q 0

\

The Hilbert space spanned by {I Tl.}q} is positive definite only if Iq I~ 1. For larger val-

ues of I Cl l, states with negative squ..ared norm arise end the probability interpretation

of quantum mechanics is lost.

Vlhen OIIC tries to appl)T the q-deformed algebras for tile description

of real physical systems, it is seen that good agreement with experimental data is

obtained only if q is chosen as a pure phase, of the form eiT1 and "1 is chosen to be small.

2.~l Energy spectrum of q-deforrned harmonic os­
cillator

The Hamiltonian of the q-deforrned harmonic oscillator is

2

H' pq 1. 2 2= - + --111(",) X q'q 2m, 2 (2.51)

where the q-position x q and the q-momentum P« of the oscillator are related to the

q-creation and q-annihilation.operators aqt and aq as in eqs.(2.4) and (2.5).

x q - ~~ ( a'l t + a,'l) (2.52)

rtr:':
I hnu» .+

Pq - V-2 ( aq ' -. aq ) (2.53)



where aq and aq
t satisfy the q-oscillator algebra (2.18). In terms of aq and aq

t, the

Hamiltonian reads

(2.54)

Here we are using the boson realisation of the q-oscillator algebra in which Nq = N.

The number and energy eigenstates of th.e q-oscillator are then the same as those

of the usual harmonic oscillator and are q-in.dependent. Only eigenvalues are q-

dependent. The energy eigenvalues are given by the eigenvalue equation

Thus

u, In) e; In)

e; In)

(2.55)

i.e, the energy levels of the q-oscillator are not uniformly spaced for q =1= 1. The

behaviour of the energy spectra is completely different in the ~ases q = eTJ and

q = Cif]. When q is real (q = e17 ) , the separation between the levels increases with

the value of 'no i.e, the spectrum is extended. On the other hand, when q is a pure

phase, the separation betweell the levels decreases with increasing n. i.e, the spec-

trum is squeezed. The spectrum in this case exhibits many characteristic features

of the anharmonic oscillator. 'The energy levels of the anharmonic oscillator are not

equidistant but their separation decreases when the value of the oscillator quantum



number v increases:

1 2 (1)3
Iuax, (V + 2) + hWYe v + 2 (2.56)

where WYe <t:: WXe « w and v takes only a limited number of values (v :::; vm ax )

because of the finite depth of the potential well. The energy values of the q-deformed

harmonic oscillator can be written as

Eqv -
1
- 1iw ( [v]q'+ [v + u, )2 .

= {

1 t: ( si7th 17(V+ !))- tu» . h (,,)2 Sln 2

1 1iw (sin T/(V+!»)
2 sin (~)

if q = eTJ

(2.57)

The second expression on expanding, we get

1 1] [ 1 rf 1 3 ]Eqv = - hw . (!l) (v + -) - - (v + -) + .... ··
2 S'ln 2 2 6 2

(2.58)

Comparing this with the expression (2.56), we see that there is a great similarity

between the spectrum of the q-deformed harmonic oscillator and that of the anhar-

monic oscillator describing the vibrational spectra of diatomic molecules. However,

the coincidence is only a qualitative one. Expression (2.58) contains only the odd

powers of (v + ~) whereas expression (2.56) contains odd as well as even powers of

1
E = lu» (v -l- -)qv I 2 (2.59)

Le, in the limit q ~ 1, the energy spectrum of the q-deformed harmonic oscillator

coin.cides with that of tile standard harmonic oscillator.
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Besides the energy spectrum, other properties of q-oscillators are also

well studied. For example, coherent states and squeezed states of q-harmonic oscil-

lators have lleen investigated by many authors [41---43].

2.8 Statistical mechanics of q-harmonic oscillator

Neskovic and Urosevic [44] have studied the statistical mechanics of q-

deformed harmonic oscillators. Using the boson realisation of q-oscillator algebra and

taking q to be real, they have calculated the partition function Z and thermodynamic

potentials such as Gibb's free energy F, entropy S and internal energy U for a Sl.ghtly

Deformed Oscillator (SDO). Taking q = eTJ and for small values of 'fJ, they obtained

the following results for Hamiltonian and the themodynamic functions:

H SDO (2.60)

and

(2.61)

ZSDO

FSDO

USDO

SSDO

1]2
Zo { 1 + f3 3! El } j

2
17

Fo - 31 El ;

'1/
2

{ {JE l }Uo_.- El - T- ·
3! . fIT '

s ' rf aEl
o ;- 31 fIT
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(2.63)

(2.64)

(2.65)



where Zo, Fo, Uo and So are the corresponding quantities for the usual harmonic

oscillator and

(2.66)

2.9 Description of some physical systems in terms

of q-oscillator algebra

Numerous applications of quantised algebra to real physical systems have

been worked out by various authors. Here we cite a few of them.

The suq(1,1) quantum algebra has been used to describe the vibra-

tional spectra of diatomic molecules [45]. It is seen that when q is chosen as a phase,

the results show fair agreement with the experimental data in the case of vibrational

spectra of diatomic molecules such as H 2 , for 1] ~ .06. The second order Casimir

operator of suq(1,1) corresponds to a special form of the Dunham expansion con-

raining all powers of (v + 4) while in the classical case of su(l, 1), only the first two

non-vanishing powers of (v + ~) are obtained.

A q-rotator model with SUq(2) quantum symmetry has been set up to

describe the rotational spectra of diatomic molecules [46]. For deformation parameter

T} ~ .01, the spectra of the q-rotator model coincide with the observed spectra to sat-

isfactory accuracy. A complete quantum group theoretic treatment of vibrating and

rotating diatomic molecules has also been given [47] by assuming the deformation pa-

rameter q of the q-oscillator algebra to depend on the rotational quantum number J.
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TIle coiucideucc between tile predictions of the IJ10d(~1 and conventional phenomeno­

logical formulae is remarkable. The dependence of q on J seems to characterise the

interaction between vibration and rotation,

The 8'lL q(2) algebra llas been used for tile description of energy spectra

of the deformed even-even nuclei [48], and it is shown that there is good agreement

with experimental results when q is chosen as a phase (q = ei '7 ) with 'T} ~.•04

The many-body problem of q-oscillators has been investigated by sev­

(,1'a1 authors (49-51]. Tile spectra of the system are found to be rich, exhibiting

interactions between the levels of the individual oscillators. The deformed algebra

has also been employed to the many-body problem of composite particles [52]. The

deformation parameter is. interpreted as a measure of the effects of the statistics of

the internal degrees of freedom of the com.posite particles.

The q-oscillator models in two and higher dimensions is applied to the

spectra of triatomic molecules such as H 20 and superdeformed nuclei [53].

The SOq(4) algebra has been used for the description of a q-analogue

of the hydrogen atom [54] and it is seen that tile spectrum and degeneracy of the

q-analogue of the hydrogen atom is different from that of tne real systems.



The natureof an electromagnetic field of high intensity , modelled by

q-oscillators has beell discussed and it is shown that tile non-linearity of such an

electromagnetic field may produce in the electrostatic regime, a deviation from the

Coulomb law and a form-factor of a charged particle [55].



Chapter 3

q-ANHARMONIC OSCILLATOR
WITH QUARTIC
INTERACTION

3.1 Introduction

TIle q-harruonic oscillator algebra discussed in detail in the second chap-

ter, is a well studied topic. In real physical systems, one cannot dismiss the role of

anharmouicity. For example, the assumption of molecular and crystalline vibrations

to be of harmonic type is an idealisation and experimental observations indicate de-

viations from the predictions based on harmonic approximation. The discrepancy

between theoretical predictions and experimental results, to a certain extent, can

be removed by assuming that the vibrations are of anharmonic type. In this chap-

ter, we present the study of q-deformations of an anharmonic oscillator with quartic

interaction in first order perturbation theory. The energy spectrum and statistical

mechanics of q-Anharrnonic Oscillators (q-AO) are discussed.
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3.2 Anharmonic oscillator and its energy spectrum

We consider the anharmonic oscillator described by tile Hamiltonian

H-
., 1 \

p- 2 2 /\·1+ - 1TlW X -J- -x
2rrt 2 4!

(3.1)

where ,\ is positive and assumed to l>e very small.

In the Fock-space representation, H takes the form (56]

H hW(N+~) + A, (~)2 (6JV2+6N+3)
2 4. 2mw

(3.2)

where N is the number operator having eigenvalues 0, 1, 2, ... 00. The second

expression on the RHS of eq.(3.2) makes sense only for low-lying le·vels

3.3 Energy spectrum of q-AO

'Tile Hamiltonian of the q-analogue of the anharmonic oscillator is taken

to be

H- p2 + ~ rnw2x- 2 + A x-4
. - 2711 2 4! ~

(3.3)

The q-position cperator X and the q-momentum operator p of the q-,£L\O are related

to the q-boson operators uq and aqt in the same way as in the case of q-deformed

harmonic oscillators (see eqs.(2.52) and (2.53)). WA work in the boson realisation
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in which Nq = N = at a and the eigenstates are those of the usual harmonic oscil-

lator. Hereafter we drop tile suffix q for q-deformed operators and q-numbers for

convenience. TI1US

J f1~ ( a + at )
2rnw .

0-
.-

n1T1w t
i V2 (a--a·)

where

[N, at] = at ;

[N, a] = -a;

III terms of these operators, the Hamiltonian takes tile form

..- 1 t t A 1i 2 t4
H = - lu» (a a+aa ) + - (-) (a+a)

2 4! 2mw

(3.4)

(3.5)

(3.6)

(3.7)

What we are interested in, is the expectation values of fI in the eigenstates I rt).

'The terms in fI containing different powers of at and a have zero contribution to the

(r1, i a I n)
, I I

(n I a2 i Tt)

J[nj (n In - 1) = 0

~y,;-'- 1] (n In -- 2) = 0

J[nJ [n - 1] (n In - 1) = 0 and so OTt.

Thus in expanding (a+at)4, we keep only those terms having same powers of a and

at. Using properties (2.2>l) and (2.28) of q-bosonic operators, we simplify these terms
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as follows:

2 t 2

- [N + 1] [N+ 2]a a

t2
'J [N] [N - 1]a a IW -

a at a at - [N + 1] [N + 1]

a a
t2

a - [N+l][N]

at a2 at - [N] [1\'+1]

a,t a (Lt a [N] [N]

Using these, eq.(3.7) becomes

fI -

+

~ hw ( [N+ 1] + [N] )

A 1i {'-, (_)2 [N+ 1] [N+ 2] + [N+ 1] [N+ 1]
4. 2mw

+ 2[N+ 1] [N] + [N] [N] + [N] [N - 1] }

In the limit q -+ 1, the q-number operators become ordinary operators and

(3.8)

+

12 1iw ( 2N+ 1 )

~ (~)2 { (N + 1)(N + 2) + (N + 1)2+ 2(N + 1)N+~ + N( N ., 1) }
4. 2mw

1 A 1i
(N + -2) t"LW + ,(-2-)2 (6.N2 + 6N + 3)

4. nu»

which is the same as (3.2), the Hamiltonian of the ordinary anharmonic oscillator.

To get an explicit expression for the Hamiltonian fI of the q-AO, we

consider only slight deformations. Also q is chosen to be real:

q = eTJ
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or

1-' - In (q) (3.9)I

Thell

[ lV]
sinli (N1J)

-
sinh (1])

and

H _ ! nw { sinh, (N1]) + sinh (N + 1)1]}
2 sinh (7])

+ ~ (~)2 . \() { sinh (N + 2)1] sinh (N + 1)1]
4! 2mw sinh. 1]

+ sin,h2(N + 1)1] + 2 sinh (N·-t- 1)1] sinh (N1])

+ sinh2(Nf}) + sinh (NTJ) sinh (N - 1)TJ} (3.10)

For a. Slightly Deformed Anharmonic Oscillator (SDAO), tile deformation parameter

fJ is very close to unity or 'I"] is very close to zero. Then tile hyperbolic functions are

expanded in Taylor series ill powers of 7] and we retain only terms upto 0(7])2 in H.

x3 x5 x7

sinh(x) = x + 3! + 5! + 7! + .

sinh (N1]) + sinh (N + 1)1]
sinh (1])

(NTJ) + ~: + ..... + (N + 1)TJ + ®:~)3rf. + .....
(TJ+ ~ + .....)

TJ {(2N + 1) + ~ (NJ + (N + 1)3)}
~

TJ(1+ft)

~ {(2N+1)+ ~ (Ni+(N+1)3)}(1- ~)

~ (2N +- 1) + .~ (NJ + (N + 1)3 - (2N + 1»)

40
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s-ln}t (N -t- 2)'/] sinh. (N + 1)1]

sinh21]

{ (N 2) (N+2)3i } {( 1\T 1) (N+l)3!]3 + }+ "7 + 3! + .... .Ll + 11 + 3! ••.

(11+~)2 .
3.

'" 1/{ (N + 2) + ~ (N + 2)3}'T/{ (N + 1) + ~ (N + 1)3}

'" rf(1+~)2

~ (N+2)(N+l)+~ {(N+2)3(N+1)

+ (N+1)3(N+2)-2(N+2)(N+1)}

Similarly

(3.13)

(
Sin k .(N + 1)1])2

sinb. 7J

sirth (N + 1)11 sink (N",)

s'irth2TJ

(in~ (N1]))2
sinb. 1]

Birth. (NrJ) si'fl,h (N - 1)",

sinh21}

2

~ (N + 1)2 + 1], {2(N + 1)4 - 2(N+ 1)2} (3.14)
3.

~ N(N + 1)+ ; {N3(N + 1)

+ (N + 1)3N - 2N(N+ 1)} (3.15)

~ N'l -+ ; {2ft - 2N'l} (3.16)

~. N(1'1 - 1) + ; {N3(N - 1)

-+ (N - 1)3N - 2N(N -1)} (3.17)

Substituting eqs. (3.12)-(3.17) irl eq.(3.10), tile Hamiltonian of the SDAO is obtained

as

HSDAO
1 21

- ? lu» (2N + 1) -+ :, -2 Iu» ((N + 1)3 + N3
- (2N + 1))

~ 3.

+ ~ (-21i )2(6.L-y2 + 6N + 3)
4. mw

+ ~ ~ (2~W)2 (12.~ + 24N3 + 36JVl + 24:N+ 6) (3.18)
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As (} --; 1 or 1] ~ 0, this expression tends to (:~.2), the Hamiltonian of the usual

boson anharmonic oscillator. Tile quart.ic anharrnonic correct.io 1:) (to first order ill

,,\) to tile energy levels of the boson realisation of the q-oscillator follow at once by

calculating (Tt I HSDA{) I rt) where I Tt) '8 are the unperturbed cigcnstates.

3.4 Statistical Mechanics of q-AO

The quantity which is of prime interest ill the study of thermodynamics

of systems is the partition function

z (3.19)

where {3 = k~T' ko being the Boltzmann's constant, T, the absolute temperature of

the system and H, the Hamiltonian of the system. In the case of an assembly of

SDAC)s, H is given by ec.l.(3.18). For convenience, we write it in the form

where

HSD AO (3.20)

Ho

H'

H"

1
2 Iu» (2N + 1)

~ nw ((N + 1)3 + N'J - (2N + 1))

A !i, 2 ~ T2
, (-2-) (61V- +6N + 3)
4. nu»

A 1i
4

' (-2_)2 (12~ + 24N3 + 36JV2 + 24N + 6)
. rnw
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Ho is tile Hamiltonian of thc unperturbed harmonic oscillator. 1J and .A are assumed

to l)e very small. Hence the last term ill HS1JA() which contains both 1( and .A is very

very small and is neglected. We consider the boson realisation in which the I n) arc

tile eigenstates of Ho. Tlle part.ition function for the SDA() is then given by

where

2:(-rL I
1(

I'n)~ exp( -.8 (Ho + 3! HI + H))ro...;

'It

2:(n·1 e:cp( -(3 Ho)
1]2

In)exp( -13 (3! HI + H))
n

2:(11, I ~ rr .
exp( -/3 Ho) J - j1 (3! HI + H) } In)

11

2

2:(nl eXIJ( -,8 IIo) In) -,8 L(n, I 1J In)3! HI +H
n 11.

2

z; {I - a (7L (HI) -+- (H\) } (3.25)( '3! \ I

z, = L(n I exp( -,t] Ho) I n) (3.26)

is tile part.ition function of the ordinary harmonic oscillator and (HI) and (H) are

the thermal averages of HI and H respectively:

E~o (n i HI eX]J(-,13 Ho) I n,)
E~=o \11. I exp(---(3 Ho) 111)

(3.27)

E~=o (n I.. ~ ttw{ (N -+- 1)3 + NJ - (2N + I)} exp( -j1(N + ~)1iw) In)

E~-o (rt I exp(-:8(N + ~)hw) I ·n)

1.~ E~,o [(n + 1)3 + n3
- (2n + 1)] exp( -(n + ~)x)

- ,1W - (3.28)
2 2:::0 exp(-(n + ~)x)
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where we have put

/j 1i w -- ~c

Now

(3.29)

f (n + 1)3 e:cp( -(n + ~)x)
n-O

:c ou
exp(2" ) L (n + 1)J e--(1l+1)x

1&,--0

~c 00

exp( 2") L n3 e-m
;

n=O

1 00 00

2 li W {eX/2 L n 3 e-1lX+ e-x/2 L n 3 e-1lX

n=O 11.:=.::0

2e-x/2 'to n e-1lX - e-x/ 2 Ee-1lx} / e-x/ 2 ~ e-1lX

100.
~1iw {I: n3 e- n x (eX + 1)
~ n=O

DO

22.: n e-n x

n=O

00

c --]LX (3.30)

Using the results

00
e

3x -t- 4e 2x + e"
L n3 e-nx

(ex - 1)4
n=O

00 e-x

L --nxne - (1 - e-J:r~",=0

(3.31)

(3.32)

00

L e-nx
­

11.=0

(3.33)

P(l. (~~.:~O) gets simplified as

1 hw
-2 f" W - (e{3hw _ 1) + Iu» sinh(/3hw) ,qCBnw)
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where

g(/31l.w) -
e3f3hw + 4e2f3ftuJ -t- edhw

(e/3hw - 1)4
(3.35)

(If)
E~=o (n 1 H exp( -{3 Ho) I n)
L:~~o (n I eXIJ(-/j Ho) In)

L~=o (n·1 ~ (~)2(6N2 + 6N + 3)exp( -j3(N + 4)/iw) 1n)
L~=o (Tt. Iexp(-(J(N + !)/iw) I n)

A /i ,.00 (6n2 + on + 3) e-2;(n+ ! )( )2 L.J71=O '

41 2mw - I::=o e-x(n+!)

Ah
2

h?(f3hw)
cot ~ -

32'ln2w2 2

(3.36)

where we have used eqs.(3.32),(3.33) and also the result

Thus we find the partition function of the SDAO as

(3.38)

Z"'DAO [
TJ2 {I lu»

z, 1 + (3-3' -2nw+ , ('Hi') - 1.. . exp\l lW

.' } (3'\ft
2

? j3hw ]
lu» sin.lt(/3iz,w) g(;3!l.w) - -,-22 cotJt-(-)

32nn w 2
(3.39)

III the limit q --t 1, this expression reduces to that of the usual anharmonic oscillator

[56].

A knowledge of the partition function enables us to evaluate other

thermodynamical quantities such as free energy F, internal energy U and entropy S

which are defined b)' [57]

F -kn T In. (Z)
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k» TJ :r In(Z)
S

(3.41)U -- --- -+F
(3

S - !~2 of (3.42)
8/J

TIle partit.ion function given by eq. (3.30) can be written as

1 /iw-nw + - lu» sinh(B1iw) g({3hw)
2 exp(j3hw) - 1

i.e,

UJ - U« - hi» sinlt(~1rtW) g(j3/iw)

with

In lu»Uo - - w+-----
2 exp(;3hw) - 1

3h2 f3/iw
U2 = - 2 2 cotl,,2(-)

4mw 2

The free energy F of tile SDA.O is then given by

(3.43)

(3.44)

(3.45)

(:~ 46)

(3.47)

FS DAO

where we have used the result

-kn1
1 In (ZSDAO)

J/2 A
---kBT In Zo(l -t- f3 -- U1 + fJ - U2)

- . 3! 4!

-knT (InZo + {j rl c. + (j ~ U2)
3! ~ 4!

(3.48)

In (1 +x) ~ x uihen » «: 1
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Thus·

where

FS/JAO
'1/

2 A
- F,() - - lft - - eT.)

:J! . 4! -
(3.50)

is the free energy of the usual harmonic oscillator.

'The entropy S of the SDAG is

(3.51)

SSDAO

(3.52)

Here

...., _ 1:12 8Fo
So - fJ aj3

is the entropy of the ordinary harmonic oscillator and

(3.53)

The internal energy U of the SDAO is given by

(3.55)

US DAO
SSD.40 + F

SDAO{3

So _ '1 r{ aUt _ 13~ aU2

B f 3! 8(3 4! 8{3
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Here

-t-
1"J'2 A

}'() - - [T} - - lJr)
3! 4!-
1/'2 . lJffl A. alT.)

[I() - -- (Ut + [3-) - - (U2 + 13-''')
3!' {){3 4! t 8(3

Soo; = 7f+Fo

(3.56)

(3.57)

is the internal energy of the usual harmonic oscillator.

Thus we find that the expressions of thermodynamic quantities of the

q-deformed anharrnonic oscillator consist of q-dependent correction terms and ill the

lirmt q -4 1.. the results coincide with the classical results.

Conclusion

The effect of anharmonicity is well studied in classical and quantum physics.

The study of q-AO and its thermodynamics carried out here is expected to be of rel-

evance to investigations of anharmonic effects in molecular and condensed matter

systems.
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LATTICE HEAT CAPACITY OF
CRYSTALS-A' q-OSCILLATOR
DEBYE MODEL

"f "I"1-*. Introduction

In th.is cliaptcr , we present a model for lattice heat capacity of solids

\)a~~e(l OIl q-osci.Iaror algebra. The Debye Ino(101 for lattice heat capacity is modified

rot.aining all the basic assumptions except that each mode is here treated as a q-

deformed harmonic oscillator. The lattice heat capacity is evaluated in the high and

low temperature limits. A comparison of the theoretical results with experimental

data is also presented,

'TItle two basic 'experimental facts about the heat capacity of solids

which any theory J11l1St explain are:

(i) At room temperature, the heat capacity of most solids is close to 3k B per atom

so that for molecules consisting of '71, atoms, the molar heat capacity is close to
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~lnR where R is the universal gas constant. Accurate measurements indicate

temperature dependence of heat capacity ill t his region.

(ii) At low temperatures, tile heat capacities decrease and vanish at T = O. Tile

decrease goes as T 3.

The Debye model for lattice heat capacity of solids has been remarkably

successful in describing the experimental observations at low temperatures in many

pure crystalline solids. In the low temperature regime, the Debye's theory predicts

(~\, ex 'T 3 in agreement with experimental results. In the high temperature region

(T » en), the Debye model leads to the Dulong-Petit law: C; = 3R/g.atom, a

constant for all monoatomic crystals and is independent of temperature, This is not

in exact agreement with experimental observations which show an increase of heat

capacity with temperature.

Debye's theory involves three basic assumptions [58]: (i) isotropy of the

solid (ii) nondispersion of sound waves in the medium and (iii) degeneracy of different

branches of allowed modes. Above all, it is based 011 the harmonic approximation,

Real crystals do exh..ibit anharmonic effects such as thermal expansion; the adiabatic

and isothermal elastic constants are in general different and dependent on tempera­

ture and pressure. The influence of the anharrnonicity on the various quantities for

sr~eclflr. cases uas been dealt with in a number of papers l59-621.

The concept of q-deformed harmonic oscillators has been discussed in
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t.ho second chapter. It is £0110<1 that the energy levels of the q-oscillator are not equally

q-oscillator model has been 1'0\111(1 to be suitable ill accounting for tile measurements

Oll tile infra-red spectrum of a number of molecules (45]. TIIUS there is already some

appreciation of the fact that q-deformation can take care of anharmonicity effects to

some extent. Motivated by this, we try to explain the temperature dependence of

lattice heat capacity in the temperature region T >> eD by suggesting a q-oscillator

Debye model.

Before presenting the q-oscillator Debye model, we recall the harmonic

oscillator Del>ye model [63].

4.2 Heat capacity of a Harmonic crystal-Debye
rnoclel

The solid is assumed to be a crystal lattice of atoms whose oscillations

generate elastic waves. There are as many normal modes as the number of degrees

of freedom. These normal modes behave as independent harmonic oscillators. The

propagation of elastic waves in crystalline solids retaining their atomic structure is

a difficult problem, However, for the propagation of sound waves which are elastic

waves of low frequency, the wavelength A is very large compared with tile interatomic

spucing a of the crystal (A » a) and one can. ignore the discrete atomic structure of

the solid and describe it as Cl homogeneous elastic medium. Thus it is assumed that

51



only waves of low frequencies lying within a certain range 0 < w < wo can propagate

through tile crystal. The cut-off" frequency Wn is called the Debye frequency. For

simplicity, it is assumed that tile IIIC<iiuIIl is isotropic S() that tile velocity of propa-

gation of elastic waves is independent of direction, To find the normal modes for low

frequencies, we then need only find the different modes of standing waves possible in

the medium, For each wave vector k, there are two independent transverse directions

of polarisat.iou and one lougitudinal polarisation, It is also aSSUIIled that for suffi-

ciently 10""1 frequency, tile velocity v of sound waves does not depend on frequency,

i.e, there is 110 dispersion of sound waves in the crystal. Then the number of modes

of each. polarisation type with frequency between (w) and (w+ dw) i.s given by

D(w) dw
Vw2

---dw
27r2 v3 (4.1)

where V is the volume of the crystal. It is further assumed that the phonon velocity

is tile same for the three directions of polarisation.

Tile total number (No) of atoms ill the specimen is then related tu t !tC

cut-off frequency W [) through

i.e,

ID D(w) dw 3No (4.2)

This gives
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Here it is assumed that the number of modes is so large that summations can be

replaced by integrations.

The partition function of a harmonic oscillator with angular frequency

W z at temperature 'T is given by [57]

00 1
L (n I exp(-,B(N+ 2)1iw) In)
71.=0

exp( -~f3/iWi)

1 - exp(f3/iwi)

The contribution to the internal energy of the crystal from the i t h oscillator is

The total internal energy of the crystal is

(4.4)

(4.5)

u (
1 liWi)

I: o, - ~ 2 luo, + exp(,Bhwi) - 1

,""" 1 [D 1iw- '7 2 hWi + 3 0 exp(,Bhw) _ 1 D(w)dw

The summation in the second sum has been replaced by integration. The factor 3

takes care of the three independent directions of polarisation. Substituting for D(w)

from (4.1), we get

. 3/iV "WD w3
U = lTo + -- I - ---- dw

21r2·vJ la exp(f3/iw) -- 1
(4.6)

The zero point energy Uo, being a constant, can be ignored in heat capacity calcula-

tions,
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Putting

/l.w e
x - -- -

T'kBT

liwn en
Xn -

kBT
- T'

du:
kBT

- T dx ,

T 3 lXD x3 dx
U - 9NokBT (e

D
) 0 eX - 1

(4.7)

(4.8)

eD is called the Debye temperature of the solid.

The lattice heat capacity at constant volume (Cv) is defined by the relation

au
&T

1\'0\1/ we discuss the results in the high and low temperature limits,

(i) l'he high temperature limit defined by T» en or xn « 1 :

(4.9)

In this case, we may expand the exponential function in the integrand of eq. (4.8)

and retain only the first order terms. This gives

(4.10)

TI1US lattice heat capacity becomes a constant = 3R/g.atom at high temper-

atures for monoatomic solids. However, measurements indicate a temperature

dependence of C; in this region.
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[ii) The low cemperuture limit defined by T << (~D or ~;D >> 1 :
~ -_._------_._---_._.._-_.._------

!11 this limit, \ve may replace the upper limit of integration in eq.(4.8) to infinity.

One obtains

(4.11)

This is tile Debye T:J law and it works well for most solids at low temperatures.

The discrepancy in the high temperature limit is usually explained on the

basis of anharmonic terms ill the potential energy function. We explain it by treating

the modes ?...5 q-oscillator modes,

4 ..3 Heat capacity of a slightly q-deformed har­
monic crystal (q-oscillator Debye model)

The properties of q-deformed harmonic oscillators have been discussed at

length ill chapter 2. The eigenstates and eigenvalues of its Hamiltonian Hq are in

general q-dependent. However, in the boson realisation, the eigenstates of Hq are

q- independent and are the usual harmonic oscillator eigenstates. The q-oscillator

Hamiltonian reads (See eCl.2.54)

u, = ~tzw ([N + 1] + [N J)

where N is tile number operator satisfying the commutation relations (2.18). Treating

Cl as a pure phase, Le, writing

(4.12)



aud

[N' -t- 11 _. ",·i71,( JV -1- 1)r,
sin, ''I

[N]
sir~ N1]

siri 1]

1 [Sin,(N + 1)7] sui Nr,]
- lu» . + -.--
2 sui 1] S'l11 7J

( ) !l ( ):J N!i 1\ tJ1 [ N + 1 1] - 3' N + 1 + .... + r/ - 3' iv + .... ]- nw' .
2 TJ-*+ ....

\\1e treat tile phonon modes as slightly deformed q-oscillators (SDO). i.e, ", is taken

to be very small, close to zero. Then we may retain only terms upto O(r(). Doing

this, the Hamiltonian of the slightly deformed oscillator is obtained as

1lsDO

where

1
Ho = 2 lu» (2N + 1)

is the Hamiltonian of the usual harmonic oscillator and

HI = ~ flW{ (N + 1)3 + N1 - (2N + 1)}

The partition function for tile SDO is then given by

(4.14)

(4.15)

(Z)SDO Tr.exp( -(3 H SDO )

00 .,
L (n I TJ-

I'n)e:I:p(-/3 (Ho - 3! Ht})
11.·-:0

Xi TJ2L (In I eX]J(--{3 Iio) exp(j3 3! Hd In)
n:=:.·O



f~ (n i exp( - J1 Ho) {l + {j ~ HI} I 11)
1l='-:-:O

00 . r( ~L (n I exp( --(j Ho) In) T {3, I: (n I H1exp(-{3 Ho) In)
n::::"O 3. 71.:=0

(4.16)

where Zo is the partition function of the usual harmonic oscillator, of the form (4.4)

which is the same as eq.(3.27) and has been evaluated as

1 1iw
(H ]) ~== - - h. W -- _.- + n.w S'iTLh ((3tzw) g(11nw)

2 (e~~hw -- 1) ·

whore

(Z)SDO
.)

( 3 1J- [T)Zo 1- ,f , )1
3.

(4.17)

Here

r > 1 h hw
L;l -- 2" w + (ef3hw _ 1) - lu» s'inh([3hw) g([3ll,w) (4.18)

g(x) =
e3x + 4e2x + e"

(ex - 1)4

See eq.(3.35). Thus for tile it h SDO,

Here

(4.19)

:C'i - (-Jftw.: -
n'Wi

kBT
(4.20)



The partition function for a slightly deformed harmonic crystal is

The internal energy of the crystal is

(4.2i)

(4.22)

where \VC have used the result (3.49). Z = Ili(zo) is the partition function of the

usual harmonic crystal. Simplifying,

l) arT-... u- rT (LT" T 1 )[I = + - 11- -
:~! or

,vhere U is the internal energy of the usual harmonic crystal and

Substituting for (Ut)i from (4.19) and simplifying, eq.(4.23) becomes

- ') ID 1 e' { 2}[I = U + TJ- 3 -hw-(-.--)4 1 + x + 4xex + e X(x - 1) D(w)dw
o 2 eX - 1

(4.23)

(4.24)

(4.25)

\\Te have replaced the summation over Wi [)Y integration over w. The factor 3 in the

numerator arises because of the three polarisation types. Thus we have retained all
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th« fundamental premises of r.ho Debye model except for tile Cl-<lcfc)rrrlati<.>Il. IIlC()r-

porating (4.1) ill (Ll.25),

(4.26)

Using (4.7)~

[r

and substituting for v from (4.3),

Using (4.8),

-:2 {X D tf 4 4 2 4 3 3 3 (tX} )
+'~ lo (~r.ae" + x e" + 4x e u: + x e x - z e X) (ex _ 1)4 (4.27

Here we have dropped the zero point energy term. The lattice heat capacity of the

q-deformcd crystal can now be evaluated as (~;). We compute this quantity in the

t\VO limiting cases:

(a) '! ~~_.f2.J):. In this case, »o » 1 and the upper limit of integration in (4.27)

call be extended to infinity without introducing any appreciable error because the

intcgrands decay very rapidly for higher values of x. The integrals are then reduced

in. terms of Riemann zeta function (. We use the results [64]



f
Olk' ir"-- 1 (l~r 1

-~--- == -- f(v) ((v)
. 0 cJ.!;J.· - 1 II,v

for R(~ /1- > 0, Re L' > 1 (4.28.1)

r(v) [«(v - 1, J1. + 1) - (/1 + 1) «(v, /1' + 1)] (4.28.2)

[or tu.» > 2, Re./l > -2

where the Ricmann zeta function

((v) = (( l), 1)

arid the generalised zeta function

~ 1

I: n2
IF::}

for Re.v> 1 (4.28.3)

00 1
«(v, p) = I: -, )

n=O (p. -1- n v
for Re.v > 1 Re.Jl > 0 (4.28.4)

B:~m. are the Bernoulli numbers:

'flltlS

22nt--11r2rn

(21,t) !

Bo 1

B2
1

--
6

B4
1

--
30

(4.28.5)

(4.28.6)

22 --11r :l .)

((2) I B 2 1 =
1r-

---
2! 6

")i~" 1 4
7r4

((4)
~ 7r

! B 4 I---- -
4! DO

nO

(4.28.7)



The integrals in (4.2"1) are obt.aiued as

i'LP ~c:l da:
L'~

~C:~ da:
= :4 rr4) ((.1)

1r/1

-- ---)

.0 eX - 1 .0 eX - 1 15

l J

:

v :r:\e" ll:c
((1) - 3 «(2) + 2 «(3)~

(ex - 1)4

l
LD x4ex fix

4 ((2) - 12 «(3) + 8 ((4)------ ~
(ex - 1)4

{XV 4x 4e2x dx
16 ((2) ~_. 16 ((4)./0 ----- ----+

(e.x - 1)4

ID ~c -1 eax (1:1;
8 «(4) + 12 ((3) + 4 «(2)------ ---;

(x 1)4.0 e --

lLD :c:i eax da:
2 ((3) + 3 ((2) + ((1)------ .~

.0 (e·r - 1)4

Subst ituting (4.28)-(4.a:J) ill CCl.(4.27),

[T = 9 No k n T (_T-):l [71
A

+ 'fl 18 ((2)1e 15 2 J

(4.28)

(4.2!»)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

where VJe have used (4.28.7). Comparing this expression with (4.11), we note that q-

deformation brings ill a q-dependent correction which is negligible. Thus this model

coincides with the Debye model ill the low tem.perature limit.

(b) 'J.""'» __8 Q: In this case, ':CD « 1 so that we may expand the exponential func-

tions in (4.27) and retain only the first order terms, Then
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(4.3fi)

III the high temperature limit, eq.(4.27) becomes

_ (T)3 [XD
3

TJ2 ?)]U = 9 No k» T e 3 + 2 (4 Xv + 6 XD~

1 h .. 2 2 HHowever, since 1j << 1 and xn << 1, we neg ect t e terms containing TJ Xn. ence

HIHJ

{()(J) .. 8 'I '2c. = ~ "u]' v = 3 No k lJ (1 + rl 1e;T)

(4.38)

(4.39)

This expression exhibits a T '2 dependence ill contrast to eq.(4.10). Though rT is small,

the correction term becomes significant for T >> e1). The lattice heat capacity per

g-atom for a monoatomic solid is

(4.40)

'4.4 Cornparison with exper-irnent.al data

Thr lat.tice heat capacity per g-at.om is calculated according to eq.(4.40) for three

alkali elements namely Potassium, Rubidium and Caesium for which the Debye tem-

pcratures (ElD) are relatively 10\\'. TIle deformation parameter 1] is assigned
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T(K)

100

110

120

130

140

150

160

170

180

190

200

'llO

220

230

2·10

250

zeo
270

273.15

2RO

290

298.15

300

Caesium Rubidium Potassiurn
I

I00 = 38.41< 90 =55.6 K OD = 9O.6K

TJ =. 8.5 X 10-5 TJ =9.0 X 10-5 TJ = 10-4

Cv (cal/g-atonl/K) c, (cal/g-atoln/K) Cv(cal/g-atom/K)

theoretical Iexperimental theoretical experirnental theoretical experimental
I ----r ...

6.034 I 6.00 1
I

6.049 I 6.01 I
6.067 i

6.04 I
I

6.085 I 6.08I I6.106 I 6.13 6.057 6.02

~~.127 I 6.16 6.072 I 6.04

6.151 6.17

I
6.087 I 6.07

I s.rre 6.18 6.104 I 6.09

II lie202 6.20 6.121 I 6.11 6.050 5.983

6.230

I
6.2'1 6.110 I 6.13 6.002 6.005

6.259 6.26 6.159 6.14 I 6.073 6.030

6.290 I 6.30 6.180 6.17 I 6.085 6.057

6.322 I 6.33 6.201 6.1 !~ 6.098 6.085

6.356
,

6.35 6.22-1 6.22 6.110 6.117I

I 6.391 6.38 6.218 6.26 6.121 6.150

6.428 G.,If) 6.272 6.30 6.140 6.183

6.4f>6 6.55 6.298 6.35 6.150 6.219

I 6.506 6.61 6.325 6.40 6.170 6.263
I 6.519 6.64 6.333 6.42 6.173 6.278

I - 6.547 6.71 6.352 .).47 6.180 6.317

6.590 6.84 6.381 6.56 €.200 6.379

\" 6.626 6.97 6.·105 . 6.67 6.214 6.439

I-
6.635 I 7.00 6.411 6.69 6.217 6.45·1

Table 1. Experimental and theoretically predicted values of lattice heat capacity (Cv) of alkali
metals cs, Rh and K.
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values rv 10--5 . TIle results are shown ill Table 1. Experimental values [65,66] are

also given, 'TIle results are plotted tor the range lOO-300K along with tile experimental

curves (Fig.I). It is observed that there is very good agreement for not too high values

of T. A.s tile temperature becomes higher, descrepancies arise , the heat capacity

increases much more rapidly than predicted by the theory.

4~5 Conclusion

Thus the q-oscillator Debye model proposed here rectifies the weakness

of the original model ill the high temperature regime. Tile deformation, though

marginal (1] rv lo-5)j produces excellent agreement in the three cases studied over

a wide range of temperature. The investigations lend support to the view that

phonons in crystals may be q-quantised excitations. Such phonons may be termed

q-phonons.The deviations observed at higher temperatures may be explained taking

into account. quartic and higher order .interactions possibly within the framework of

a q-anharmonic oscillator model.
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Chapter 5

THERMODYNAMIC
PROPERTIES OF A
q-DEFORMED HEISENBERG
FERROMAGNET

5.1 Introduct.ion

In this chapter, we present the study of the Heisenberg model of ferromag-

netism using q-deformed oscillator algebra. The spinwave theory has been remarkably

successful in predicting the low temperature properties of ferromagnets [67-70]. The

theory is built upon the ideal model consisting of a lattice or identical spins with

cubic symmetry and with isotropic exchange coupling between nearest neighbours,

The notion of spin waves was introduced by Bloch [71&72]. He showed that low-

lying excitations of a Spill system with the above mentioned properties are wave-like

in. character. Tile energy of a Spill wave is quantised and the quanta are known as

magnons. Ho'stein and Primakoff [73] suggested the methods of field theory to spin
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waves and this gave rise to the linear spin wave tb.eory where the magnon interactions

are neglected 8,11(1 the Hamiltonian is expressed as a sum of energies of uncoupled os­

cillators. The theory yields a 1i dependence both for magnon heat capacity and

spontaneous magnetisation of a ferromagnet.

The effect of spin-wave interaction on the energy levels of the crystal

will be negligible only if the total number of spin-waves is small. Many authors

[74--·76] have tried to incorporate magnon interactions into che spin-wave theory.

The most important among them is the work due to Dyson [75&76]. He perfected

the spin-wave theory by introducing magnon interactions and showed that at low

temperatures, the effect of spin-wave interaction is slight. The lowest order correction

to the spontaneous magnetisation is proportional to T 4, which for low temperatures

is very small compared with the leading Bloch 1i term. Thus the spin-wave theory

remains as a genuine method for investigating the low temperature properties of

materials with ordered elementary magnetic moments.

However, the agreement between the spin-wave theory based on Hcisen­

berg exchange model of ferromagnetism and experimental observations is not per­

fectiy satisfactory. Many attempts have been made to improve the model [77-·80}.

Tile work presented here is also one such attempt. Recently, Bonechi etal. [81]

have investigated the one dimensional Heisenberg ferromagnet by means of quantum

Galieli group and found that in this approach, some of the results provided by the

Bethe-ansatz method emerge naturally, It is already appreciated that q-deformation
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call characterise interaction between various degrees of freedom. For example, Zhe

Cbang and Hong Yan [46], in their description of rotation-vibration spectra of di­

atomic molecules using q-oscillator algebra, have shown that q-deformation charac­

terises the rotation-vibration interaction. Motivated by this fact and by the fact

that q-deformation brings ill non-linear effects, we study the Heisenberg model of

ferromagnetism using q-deformed oscillator algebras. In the linear spin-wave theory

of ferromagnets [82], the Heisenberg Hamiltonian is diagonalised by transforming

the spin operators into boson operators using the Holstein-Primakoff transforma: ion

~73]. We develop a q-deformed version of the spin-wave theory using the q-deformed

Holstcin-Primakoff transformation [83] for the spin variables, treating the magnons

as q-bosoru., The exchange Hamiltonian in the nearest neighbour approximation,

is obtained. for small values of the deformation parameter TJ. The thermodynamic

quantities ill the low temperature region are also evaluated. It is found that the

spontaneous magnetisation and m.agnetic contribution to specific heat capacity have

q-dependent T ~ terms ill addition to the well-known Bloch T ~ term. In the limit

q ~ 1, 011r results coincide with the classical results. We have also made a com­

parative study of the theoretical results with experimental data in the case of the

well-known Heisenberg ferromagnets EuD and EuS.

Before discussing the q-deformed model, we briefly recall the basic

concepts in linear spin-wave theory.
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5.2 Ferrornagnetic magnons-basic concepts

We consider tile simple case of a finite cubic crystal with periodic boundary

couditio.is and with N atoms) each atom having z nearest neighbours, To each atom

:i is atf.ached a spin vector sj of magnitude s. Then the Hamiltonian of the crystal

with isotropic nearest neighbour exchan.ge interaction can be written as

N z

'H .- - J L L Sj.Sj+6
j=l 6=1

(5.1)

The vectors LT connect atom j with its lfh nearest neighbour on the bravais lattice.

.I is the exchange integral bet\veen the J1hatom and its Y.h nearest neighbour and

for ferromagnets, J is positive. J-Ln is the Bohr magneton, 9 is the spectroscopic

splitting factor. The first term in 'H is the Heisenberg exchange energy expressed

in tC·"l.n~; of the atomic spin operators. The second term is the Zeeman contribution

which gives the interaction energy of each atomic magnet with the external magnetic

field HO whose direction is taken as the positive z-direction. When the system is

ill the ground state, the magnetic moments are lined up along the positive z-axis.

The dipole-dipole interaction arid the interaction of higher order magnetic poles are

neglected here ..

The Hamiltonian (!l.l) involves the three components of each spin vec-

'H - -J L { siz S(j+6)z + Sjy s(jt<5)y + Si:: s(j+6)::} - g JJB H L Si:: (5.2)
~ j



The components Sjx, Sjy, and Sjz are not independent, but are connected by the

identity

sj.Sj - s(s + 1)

The total Spill

and the total z-component
N

s, = L Sjz

j=1

are constants of motion of the spin. In the ground state 10) of the system,

(5.3)

s, 10)
JV

L Sjz 10)
f=;1

N S 10) (5.4)

It is more convenient to work with the two operators Sj+ and Sj - which are indepen-

dent and defined as

Then the spin operators satisfy the su(2) algebra:

(5.5)

Substituting (5.5) ill (5.2),

(5.6)

1t=
J N z

- L L [s/ Sj+6-- + Sj- Sj+6+ + 2 Sjz S(j+6)z ]
2 j=l 6=1

9 JIB H L Sjz

i
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TIle spin operators Sj+- and Sj- are ll0W transformed to the boson creation and anni-

hilation operators aj t and aj using the Holstein-Primakoff transformation [73]:

~._-_.-
J.

8'+
a· I a,

(5.8)- 2s(1- J
2s

J) aj;
}

t { a·t a· (5.9)Sj - a. 28(1 - _J_J)
J 28

,
wnere

[a· a" t ] 15··/ (5.10)
}' } JJ

Tllen

8jz - 8 - a·t a· 8 - n· (5.11)J } }

The above transformation preserves the su(2) algebra.. In this representation, nj =

(s - 8jz) measures the deviation of the J1h spin from its maximum value s and hence

is interpretted as the spin deviation operator.

Usually one describes the oscillatory system in terms of the normal modes, For this,

one USBS the Fourier expansion of the magnon operators aj and ajt :

~ L exp(-ik.~) b" ;
vN k

1 ,"" (·k- -:) b tr;;r L..J exp ~ ..Xj k
vN k

(5.12)

Here Xj is the position vector of the i" atom. The operator b"t creates a magnon of

wave vector k and the operator bk destroys a magnon of wave vector k. The discrete
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values of k summed over are those obtained from periodic boundary conditions. The

operators bk and bkt satisfy theboson commutation relations:

(5.13)

Using the above transformations, the Hamiltonian can in principle be expressed in

terms of the bk's and bkt,s. In the linear spin wave theory, the fo!.lowing approxima-

tions are invoked[73]:

(i). 0111:y low-lying states of the system are considered so that one can neglect

the magnou-magnou interactions and also one call aSSWIle the 'quasi-saturation

approximation' - Le, the fractional decrease in spontaneous magnetisation M(T)

from the maximum possible value NJ(O) is small. Le,

< Tt} >av « 1.
28

or

~, t a ' R'1--}--)= 1-....l.~1
28 2s

This is valid at temperatures sufficiently below the Curie temperature.

(5.14)

(ii). Terms proportional to njnj are neglected, Assuming that there is no correlation

ill the location of the different spin deviations, the expectation value of these

terms will be negligible in comparison with the expectation value of Zsri].
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(iii). 'Ierms proportional to J2Sa}ajaj' t are neglected. These are terms which

cau.se the system to undergo transitions between states of different total spin.

Unlike terms ofthe type J2S a}aj't which also cause such transitions, they are

different from zero only for transitions taking place near atoms on which spin

deviations arc alrea.dy present. The ratio of the number of transitions arising

from the two types of terms is thus f'V <;fit << 1.

With the above assumptions, the Hamiltonian takes the form [SI]

- J N Z 8
2

- 9 J1,B H N 8

+ L[ 2 J s z (1 - I'k) + 9 J.tB H) bkt bk
le

- Hoo + Ho

rioo = -J N Z 8
2

- 9 .UB H N 8

(5.15)

(5.16)

(!) .17)

represents the minimum value of the Hamiltonian representing the completely ordered

ground state I0) of tile system and

Ho = L [ 2 J s z (1 - I'k) + 9 J.tB H] bkt »,
It

Here,

1 z ~

"fit = .- L exp(ik.6)
z 6=1

(5.18)

(5.19)

For crystals havin.g a centre of symmetry, 'Y1c = 'Y-k. A.lso LI. 'Y1c = o. ?-lo is of the



form

'Ho - L rl'k Wk

k

For If.eSl << 1 and for cubic lattices of lattice constant a,

1 - -2 2
z(l - 'Yk) ~ 2 L (k.6) = (ka)

6

In t his case,

where

D = 2 J s a2

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

Thus in the linear spin wave theory described here, the Hamiltonian takes the forrn

(5.25)

This leads to the following results for the magnon heat capacity per unit volume ern

and spontaneous magnetisation Al(1):

c; _ 15 k. (~B T)~ (~)
4 u 4 7r D (2'

9 /lB K~B T;« 3, .. 3
Jvf('I) = 9 /LB N s - - (-)2 f(-) ~(-)

4 7r2 D 2 2

The thermal decrease in spontaneous magnetisation. is given by
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~M - 1\;1(0) - .Lvl('I)

9 J-LB (k B T)! r(~) ((~)
47("2 D 2 2

(5.28)

This is the well-known Bloch 1i law. Thus according to the simple linear spin wave

theory based OIl Heisenberg's exchange model, both ~ versus T plot and~
11 M(O)~

versus T plot are straight lines parallel to the temperature axis. However, if one

retains all the terms in the expansion of (1 - Tk), one obtains n, ~ ... terms along

with the leading 1i term.

5.3 q-deformed Heisenberg ferromagnet

As in the case of q-oscillator Debye model, here also we retain all the basic

assumptions ill the linear spin wave theory except that the magnons here are treated

as q-magnons. Thus the Hamiltonian (5.1). in the context of a q-deformed Heisenberg

fcrromagnet when expressed in terms of the spin raising and lowering operators takes

tile form

1i- ~ L [S) sj+6 + .9j S)+6 + 2 Sjz SUH)z ]
j,lJ

9 JlB H L Sj:':
j

(5.29)

TIle operators s]", sj and Sjz satisfy the sU'q(2) algebra:

r- -±] ± -±Sjz, Sj - Sj ;

[-+ sj] 2 [Sjz]Sj , -
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Now we express the Hamiltonian in terms of the q-boson operators aj and aj using

tile q-deformed Holstein-Primakoff transformation introduced by Kundu and Mallick

-+ )[28 - nj] aj;s· -}

s··.- _..1

Jfis~ nj];- a~
} }

8jz - s - nj

(5.31)

(5.32)

Q.j and iij satisfy the q-oscillator algebra:

at.
J '

(5.33)

The above transformation preserves the e"'uq (2) algebra (5.30). YVe choose q as a pure

phase. i.e, we write

Then

q - exp(i77) , "., E R (5.34)

'Ve consider only slight deformations (q very close to 1). Expanding the sine func-

tions ill Taylor series and keeping only terms upto O(r(),

) [28 - Tlj] n, {rJ2 }--- J2; (1 _.2) 1 + - (1 - 4s2 + 4sn-)
48 2.3! J
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Then eq.s.(5.31) become

....+
s·}

Le,

J2s {1 + 2~! (1 -- 48
2

) } G.j ;

at J2S {1 + _'rT_ (1 - 482) 1.
} 2.3! J

(5.35)

where

s·} at x
}

(5.36)

(5.37)

Here we have retained all the three assumptions so that terII1S in higher orders of

1)OSOI1 operators are neglected. Now we use the Fourier expansion for the q-boson

operators aj, and aJ:

a·1

-·fa·J

1 '"'" ....-vR 7' exp(-ik.~) ble ;

1 ~ .r:»: -t
fij L.J exp(zk.xj) bk

vN k
(5.38)

The quantised spin wave excitations in this case are called q-magnons. 'The operators

b", and I;! satisfy the q-boson commutation relations

[ nk, bk] - -s.,

-t bt.[nk ,bk] - ,~ ~

-t - [-nk] ;blr bk
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- -t
['n l.: ~t 1)b:,bk -

.- ··t rt bk «>bk bk q bIt -

+.

b;:l bk • Using cqs.(;j.:J(»)··-(5.3!)),

(5.39)

S-;+ s-;+
j i+b

Sjz S(j+6)z

? S
s: -- - L 2nk

1'1 k
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Here we have worked in the boson realisation of the q-oscillator algebra and used

eq.(5.12). Substituting the above equations in (5.29),

+

Using eq.(5.19),

__ Xl ~ _"
L exp(ik.6) [nk + 1] + N L exp(-ik.6) [nk]

k k

2 S~} ~ 1",)2 (8 - - L..J 2nk) - 9 ttB H L (8 - - LJ n"
N " j N le

1-£ =

i.e,

J Xl Xl }- 2' ~{N Z 1k [nk +1]+ N z 1-11: [nil:]
],

J 2: (S2 - ; 2: 2 nil:) - glJBHNs + g/JRH L nil:
~b le le

JNzs2
- YJ.LBHNs + 2: nk(2 Jsz + YP,BH)

k

~ X 2 Z 2: 111: {[nk + 1]+ [nkJ}
le

it = 1100 + 'Ho'

(5.40)

(5.41)

\Vllere ?-loo is the same as that given by eq.(S.17) and

Ho' = (2 J 8 Z + YJlBH) 2: 'n"
k

J 8 z{ 1 + ~ (1 - 48
2

) } ~ 111:{ [nil: + 1] + [nll:l} (5.42)

In the slightly deformed case (1J -+ 0), we may express [nle +. 1] and [nle] in terms of

sine functions and retain only terms upto 0(""). We get
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(5.43)

IT · l·· (" 42)sing this in eq. '. n. ,

1-£0' = (2 J s z + 9 JJB H) L nk
k

2

J 8 Z {1 + ~ (1- 48
2

) } ~ "lA: {(2 nk + 1) - ~! (2 nk
3 + 3 nk

2 + nk)}

- L nk {2 J 8 z(1- "Ik) + 9 Il1] H} + 1~ L {nk J 8 z '1'k(8 8
2

- 1)
k 3. k

+ 2 nk3 J s Z "Ik + 3 nk2 J s Z "IJ: }

- L nk Wk + ~ L {nk wJ:'(8 8
2

- 1) + 2 nk3 Wk'
k k

+ 3 nk2 Wk'}

where

(5.44)

For cubic lattices of lattice constant a,

(5.45)

Here D is given by eq.(S.24) and Wk is given by eq.(S.23). Thus

+

IHoo + L nkWk
k

~ ~ Wk' {nk(8s2 -1) +3 nk
2 + 2 nk3} (5.46)

In the limit q---i' 1, 'H -7 'H, the Hamiltonian of the usual Eeisenberg ferromagnet

as given in eq.(5.25).
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5.4 Ther.modynamics of q-deformed Heisenberg fer­
romagnet

The partition function Z of the q-deforrned Heisenberg ferromagnet is

given by

z

+

Tr. exp( - /3il)

For small values of 'T}, this reduces to

Z = exp( -f3Eoo ) ilk L exp(-,Bn"Wk) {1 -
n.

?

f3 ~ w,,' (nk(8s2
- 1) + 3 nk2 + 2 nk3

) } (5.47)

Writing

and using the results

(5.48)

00

L e--n x ­

fl.::.-=o

00

L 'n2e-nx
-­

71=0

ex)

E n.3e-n x
-

7l=::Q
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Z == eXIJ( -~3E'00) IT
It

1" --Xk

{ /j![ (Vk'lr(8s2 _. 1) __e__
1 - e-;Z;k . 3! (1 - e- x k )2

3 (l+e-Xk) + 2 (e3Xk+4e2Xk+eXk)]}
+ (1 - e-Xk)3 (exk - 1)4

= exp( -(3Eoo) n ZOk {I - (3 TT ZOk3 Wk' [3 + e-Xk(l + 882
)

k 3!

where

1
1 - exp( -Xk)

(5.51)

The free energy Fof the system is

F -kJ)T In(Z)

Eoo - kBT L {In(Zoir) + In [1 -- fJ ~ ZOk3 Wk'( ..... )]}
k 3.

Eoo - kB'T L In(ZOk) + ~ L ZOk3 Wk'( ..... )
k 3. k

(5.52)

where we have used the result

l1L(1 - x) ~ -x uiheri x« 1.

To evaluate the sums in eq.(5.52), we put

TIlell

(3D
D

m -- - -
kBT

y - (3gltBH

R2

(5.53)

(5.54)

(5.55)



and tile ,q. dependent terms in CCl-(5.52) are

Replacing the summation over k by integration

~( ....) = (2~)3 471" 100(....)k2dk,

the above sum is

, V
-- 3 (271")3 471"

(5.57)

Similarly

2: ZOk:l Wk' e-:t:/c (1 + 882 )

k

L ZOk
3 w;/{7 - 16s2)e- 2 Z k

k

L ZOk3 w k' (1 + 8s2)e··· 3
:t k

A·

II
= (271")3 471" (1 + 8s

2
) { Jsz

J
e--(mk2+Y)k2dk 1·' k4e - (1nK2 +Y)dk

(1 - e-(mk2+Y»)3 - "iD J(1 _ e-(mk2+Y»)3 X5.58)



L In(l_~-Xk)
le

- _.. L In(l - e-Zk )

k

v L~ 1 f 2,1 e-nxkk eLk
-(27t")3 "J:7r n

1l.=-0

(5.61)

7'1,=1

where we have used the results

-In(l - x)
00 x,."

-- L
n

(5.62)

r 2n -pz"ld _ (211. -- I)!! ~
./0 x e x - 2(2pr Vp (5.63)

N()Vl we evaluate the integrals in eqs.(5.57)--(S.60) in the region of low temperatures:

-'('nk'l+11) -a. 1k --wl./kn']' -'00 0 T 0e :I = e 1-'u. = e" ---t e ~ as ~

The denominators in the integrands, i.e,
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Then the integrals

11 = Jk2dk
--+ 00 j

12 = Jk4dk
--+ 00 j

1., Je-(mK/+y) ~dk -+
Vi' _y 1

- -e _.
4 mt '

14 Je-(m~+y) k4dk ---+
3 v:rr _y 1 .

- -8- e -5'm1J

Is Je-2(mK/+y) k2dk ----+
Vi' -2y 1

- --e _.8\1"2 3 ,
6J m2

16 Je-2(m~+y) k4dk ----+
3Vi' -2y 1

- -.j2e -5;
32 2 ms

17 - Je-3(m~+y) k2dk
---t Vi' e-3y ~ •

12V3 m~ '

18 = Je-3(mk2+y) k4d.1.; --+ Vi' -3y 1--e -
24V3 mi

(5.64)

Substituting eqs.(S.64) and (5.61) in eq.(5.52), we get the free energy of the system

as

F - Eoo - ~ 471" Vi' (kB'I)(kBT)~ f exp(-n~H/'I)
{27r)3 4 \ D n=l n~

rf V { 2+ 31 (271")3 471" Jsz(1 + 8s )(13+17)

- ~ D(1 + 882)(14 + Is) + (7 - 1682
) Jsz Is - (7 - 16s2

) ~ 16 } (5.65)

so that

y -

u -
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The quantity which is of great interest is the spontaneous magnetisation defined by

(5.68)

Substituting eq.(5.65) in eq.(5.68) and using eqs.(5.64) and {5.67) and simplifying,

we get

_ gJLBNs __ gJLB r(~) {(kBT)J(~)
47["2 2 D 2

~ (k~T)J[k~T Jsz (6.527 + 1.305s2
) - (2.750 + 2.913s

2)l}(5.69)

The thermal decrease in spontaneous magnetisation is given by

U(O) ..- £;1('1)

glln r(~) {(kBT)!(~)
47r2 2 D ) 2

TJ2 kB'1' 3 1 2 }
3! ( D -)'1 [kBT Jsz (6.527 + 1.305s) - (2.7~0 + 2.913s

2
) ] (5.70)

As q --+ 1,

which is the result given by the original model (See eq.5.28).

The internal energy U per unit volume of a system is defined by

eq.(3.41). Thus for the q-dcformed Heisenberg ferromagnet, it is given by

2 a ~
U = kBT or (lnZ)

We evaluate" it at H = 0 and obtain

[I =--=



'12 1, 3 kB1' ~ { . . I .2) (! _1_)
- (-.-) ~ (---) • Jsz (1. -r Rs \ 2 + 6· {'i)3
3! 411'" D' y"

1 9 1 · 1
- (1 + 882

) (J.~D'I) (- + .~) + (7 - 168
2

) Js» 4- 1022 4 4y3' y~

! (7 0- 16s2)(kB'I) ( 9 fii)}
2 16v2

(5.71)

The magnon heat capacity per unit volume of the q-deformed Heisenberg ferromagnet

is therefore

dU
(o;lT)

_ ~5 k» (kBT)i (~)
4 4?TD 2

!l ( leB )J { r.P Jsz (2.750 + 2.91382
)

3! 47rD

+ kBT~ (0.487 - 15.98882
) } (5.72)

In the limit q-~ 1, this expression coincides with eq.(S.26), the result in the original

model.

Thus the present calculations bring in q-dependent corrections to the

temperature dependence of spontaneous magnetisation and magnon heat capacity.

5.5 Comparison with experimental data

The sirnplest Heisenberg ferromagnets known are EuO and EuS. Both

have fee lattice structure and the. magnetism is due to the well localised 4f electrons

having s = ~. TIle data required for the calculation of magnon heat capacity and

spontaneous magnetisation [84] is furnished in Table 2. The Riemann zeta functions
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((~) ~= 2.612; «n = 1.3/11. With these data, we have calculated the magnetic con-

tribution to the molar heat capacity e'm and the thermal decrease in spontaneous

magnetisation for EuO and EuS for temperatures much below their Curie tempera-

ture T:

s z g Tc tJ a molecular density

~
(K) (kH) (A) weight (xlO3kg/m3

)

7A 12 2 69.15 0.606 5.14 167.96 8.216

l BuS JIi 12 2 16.57 0.236 5.95 184.02 5.7

Table 2. Properties of EuO and EllS [84].

'Ve obtain

for E1IO,

and for EnS,

;; = 10-3
{ 3.24 + 1]2(20.94 _ 1O~79)}

if~O~'Ii = 10-
4

{ 4.79 + 7{(1l.75 - 1~)}

;~ = 10-3
{ 13.52 + 1]2(87.55 _ 17~67)}

M~~ = 10-3
{ 1.972 + 1]2(4.836 _ 28;8)}

R8

(5.73)

(5.74)

(5.75)

(5.76)
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The results for '1j ::.-.:: 0.1 are plotted graphically ill Figs. (2-5). The results of

linear Spill wave theory ('TJ = 0) are also shown. In the case of EuO, there is quali­

t.at ive agreement between the present theoretical values and experimental 'values [85]

whereas ill the case of EuS, the agreement is I)()Of.

5.6 Conclusion

The results of linear spin wave theory based on Heisenberg exchange model

of ferromagnetism are not in perfect agreement with experimental observations. The

vr~~sel\.t work is an attempt to improve the model using the concept of q-oscillators.

"\Ve developed the model in the nearest neighbour approximation. The resulting

Hamiltonian contains anharmonic contributions in addition to the uncoupled classi­

cal contribution, The additional terms may be interpretted as arising from q- magnon

interactions. Only small deformations of the standard spin wave rnodel arc considered

ill the present work. The graphs indicate that the present model is an improvement

over the linear spin wave theory and the general nature of temperature dependence

of magnon beat capacity and spontaneous magnetisation is predicted by the model.

Bet.ter results may be obtained if next nearest neighbour exchange interaction and

dipole-dipole interaction are also taken into aCC()1.1nt.
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