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PREFACE

The study of temperature and density dependent effects in field theories with spon-
taneous symmetry breaking (SSB) has attracted considerable attention during the
last decades mainly because of its relevance to the understanding of several im-
portant issues in cosmology and condensed matter physics. We have undertaken
studies of phase transitions in certain models of gauge and non-gauge theories at
finite temperature and finite density (FTFD) using the perturbative as well as the
non-perturbative methods of calculation. We find that in certain field theoretical
models with SSB at finite temperatures, the increase of bosonic density or tem-
perature induce multiple phase transitions. The thesis, which is spread over five

chapters contain a detailed account of these studies.

Chapter 1 is an introductory chapter, which gives the necessary back-
ground for the work done in later chaters. In the earlier part of this chapter,
we shall be concerned with the formal content of FTFD and the perturbative loop
expansion method of evaluating effective potential using Feynman path integral
technique. The basic ideas on phase transitions in field theories are also briefly
mentioned. In the later part, we review the gaussian effective potential (GEP)

method which is a non-perturbative approach used in field theory.

In chapter 2, we study the phase transitions in a self interacting, 2-
component ¢*-theory with O(2) symmetry at finite bosonic densities, in the one-loop
and improved one-loop approximations. The behavior of effective mass and effective

coupling constant are analyzed. It is shown that at non-zero temperatures, as the



chemical potential  cor-esponding to a conserved bosonic charge is increased from
zero, symmetry restoraticn takes place at a finite value of u. However as the density
is increased further, the symmetry is again broken at a sufficiently large value of
u. A similar result is obtained as temperature is increased with a finite . The
existence of two critical densities and critical temperatures are demonstrated in the
high temperature limit. The validity of these calculations for all temperatures is
established by numerical methods, making them applicable for cold dense matter
as well. However, at zero temperatures chemical potential has no effect at least at
the level of approximation considered. These one-loop results are shown to be valid
in the improved one-loop calculations also, where the imaginary parts of effective
potential are removed by taking into account the effect of multiple insertions of

quadratically divergent bubbles.

In chapter 3, we study the U(1) invariant abelian Higgs model at
FTFD at the one-loop level of approximation and show the existence of density
induced double phase transitions. Following the real time formalism of finite tem-
perature field theory, we define a FTFD dependent mass on the mass-shell of the
particle, at temperature zero and chemical potential zero, by including momentum
dependent self energy diagrams. The spontaneously broken symmetry is restored at
a finite chemical potential is again broken at a further large value of u. The critical
temperatures and critical densities responsible for these phase transitions are cal-
culated in the high temperat::re limit and the validity of these calculations for all
ranges of temperatures is established by numerical methods. We also demonstrate
the gauge invariance of these results. The effective potential is calculated in the

unitary gauge. The finite density behaviour «f effective scalar and effective gauge
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coupling constants are studied and the results show an increase of gauge coupling
constant with rise of u , while the scalar coupling shows a reverse trend. However
for an asymptotically large value of u , both these coupling constants reach their
tree level values.

Chapter 4 present a GEP study of FTFD phase transitions in A¢?
model, making use of both the cutoff and autonomous versions of GEP. It is shown
that in the presence of SSB at finite non-zero temperatures, increase of bosonic
chemical potential induces a sequence of symmetry restorations and symmetry
breskdowns. For an asymptotically large value of chemical potential, these mul-
tiple phase transitions end in a symmetry broken phase. Similarly in the case of
SSB at a finite non-zero value of bosonic chemical potential, increase of temperature
induces a series of symmetry restoring and symmetry breaking phase transitions.
For an asymptotically large value of temperature, symnmetry remains restored. With
zero chemical potential, increase of temperature only restore the SSB phase, without
any multiple phase transition. We also study the FTFD behaviour of effective Higgs
mass. Possibility of multiple phase transitions as revealed by gaussian approxima-
tion contrasts with the double phase transition found in perturbative analysis and

may be attributed to the non-perturbative eflects.

Chapter 5 presents a brief summary of our work and some possible
applications of the result obtained. After a brief discussion of possible cosmologi-
cal applications of our results, their relevance in the context of high temperature
superconductivity are discussed. The results of the specific heat calculations are

presented and the experimental claims for the existence of reentrant superconduct-
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ing transitions in high 7, materials which support our results regarding multiple

phase transitions are discussed.

Most of the work presented in the thesis has been published or communicated for

publication in the form of following papers:

1. Phase Transitions in ¢* Theory at Finite Densities,
V. J. Peter and M. Sabir, Mod. Phys. Lett. A 4, 783, (1989).
2. Phase Transitions in Abelian Higgs Model at Finite Densities,
V. J. Peter and M. Sabir, Int. J. Mod. Phys. A 6 , 4063 (1991).
3. Gaussian Effective Potential Study of Finite Density Phase Transitions in ¢4 Model,
V. J. Peter and M. Sabir, J. Phys. A, (in press).
4. Finite Density Phase Transitions and High Temperature Superconductivity,
V. J. Peter and M. Sabir, Pramana - J. Phys. , (communicated).
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Chapter 1

INTRODUCTION

Finite temperature and density field theories (FTDF) or statistical fleld theories
had their origin in early works of relativistic many body theories {1-7]. The present
interest in the amalgamation of field theory and statistical mechanics springs from
the realization that many problems encountered experimentally and theoretically
in particle physics have many body aspects {8]. In the context of spontaneously
broken gauge theories (SBGT) the observation of symmetry restoration at finite
temperature [4-10] has been one of the important reasons for the increased interest
in FTDF since the early seventies. Since SBGT provide the basic frame work
for unificstion of fundamental interactions the possibility of phase transitions in
these theories at finite temnperature / densily has important implications especially
regarding the early stages of the universe in the hot big bang model |9, 10]. Auother
important arca of application of FTDF is in the study of phase transitions from

hadrouic to quark-gluon plasina.

In this introductory chapter, we outline the general fortnalisin of



FTDF starting with the basic principles of statistical mechanics and field theory.
This development is most elegantly accomplished by means of Feynmans functional
integral formalism, which is used here to go from an expression for the tirme transla-
tion operator exp(—ift) 1o the partition function Tr(exp(— ﬂ(f] - uﬁl))) by means
of analytic continnation. Having a functional integral expression for the partition
function then allows a straight forward derivation of diagrarnrnatic rules [or inter-
acting theories. Following this we describe two important techniques useful for the
study of finite temperature / density phase iransitions. One is the effective potential
method and its evaluation by the loop expansion procedure. The other one is the
non-perturbative variational method of gaussian effective potertial. Some general

remarks on phase transitions in field theories are also given here.

1.1 Finite Temperature / Density Field Theory
1.1.1 Grand Canonical Partition Function

Consider a dynamical system characterized by a time independent Hamiltonian H
and a set of conserved number operators N;. The equilibrium state of the systern at

rest in a large volume V is described by the grand-canonical density matrix [11-20)
p= exp(—ﬂ (I:I - ’L‘-N;)) (1.1)
where p; is the chemical potential of the #* species and

B=(ksT) =T (1.2)
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in units with the Bolizmann constaut kg set equal to 1. The ensemble average of

an operator A is

>

Ty
A= T (1.3)
The grand canonical partition function is
Z=Trp (1.4)

The function Z=Z(V, T, u;, 42, -+ - ) I8 the single, most important function in ther
modynamics. From it all other standard thermodynamic properties may be deter-
mined. For example, the pressure, particle number, entropy, and energy are in the

infinite volume limit,
8InZ

P=T—2, (1.6)
dinZ
N=T B (1.6)
8(T In
§= 81,3), (1.7)
E=—PV+TS+M¢N;. (18)

The partition function (1.4) may be formulated as & path integral
by the following series of steps [21]. First we take the independent states of the
system to be the eigenstates of the Schrodinger picture field operators and imtroduce
eigenstiates | #(x), ¢ > of the Heisenberg picture field operators ¢(¢, x) by

$(t,z) | dlx),t > = d(x) | (), t >, (1.9)

where ¢(z) are complex functions. The Schrodinger picture field operators are

$(t = 0,x), and the corresponding eigenstates | $(x),¢t = 0 > are given by

$(t =0,z) | $(z),t =0> = §(x)| $(z),t =0>. (1.10)
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Then the partition function of ( 1.4) may be written explicitly as a sumrnation over

the eigenstates:
Z=3 <$(@),t=0|exp(-B(H-uN))|4(z),t=0>. (1.11)

Second, we make an analogy with the zero temperature field theory of a scalar field.

The transition amplitude written as a path integral is

<@, | Fz)t > = <¢(2)t=0]exp(—iA{’ - )| F(x),t=0>

x qus waexp (.' [ dt fdsz (wi;ﬁ ~ M, ¢))) (1.12)

where the path integral is over all momentum functions (¢, x), and over field func-

tions ¢(¢,x) satisfying the boundary conditions
¢(t",z) = ¢"(z), ¢(t,x) = ¢ (=z). (1.13)
If, heuristically we introduce a imaginary time variable
=it =iz (1.14)
and take the limits of integration in ( 1.12) to be
=0, ¢'=-if (1.15)
we obtain,

<#@)t=0] exp(-p (A-uk)) |#@),e=0>
oc/w* ’D¢>/'Dvr‘ ’Dwe:(p(/:dr &z

(-'«'%w'r%‘—;—ﬂw, " & $) +w)) . (1168)
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where ¢ and 7 are now regarded as [unctions of rand x, and the path integral is over

all functions n(7; =) and over functions ¢(r;, z) satisfying the boundary conditions
exp(Bu) ¢(B,z) = ¢"(2), $(0, ) = ¢'(z). (1.17)
The final step is 10 take
|¢'(x)t=0> = |$(x),t=0> = |P(x),t=0> (1.18)
in ( 1.16 ) and sum over all eigenstates as in (1.11). Then we obtain

D¢* D Dn* Dwexp (fd‘r d’z (iar’a;; + iw% -H+ )) .

(1.19)

<,
KB )=K0)

The boundary conditions (1.17) together with (1.18) mean that the path integral is

now restricted to functions ¢(7, z) which are periodic in 7 with

$(r=0,z) = exp(Bu) ¢(r=p,=). (1.20)

When the Lagrangian and Hamiltonian densities take the form
C (¢| ", 8p¢» 8u¢‘) = (8n¢) (apd’)' - f(¢| ¢* Vg, V‘ﬁ‘) (121)

and

H=n'"r- f($,9", V¢, V¢*) (1.22)

the integration over 7, may be carried out explicitly to obtain

s oo ove(ffee(£) (%)
~f($,4",V$,V$") + uN))

= N(ﬂ)-[m&exp (/:dr &z (L (4,4, 8,$,0.9") + MN)) (1.23)
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where

d
0% = (ia—f, Vqs)

and N(p) is a temperature dependent normalization factor.

1.1.2 Finite Temperature and density (FTD) Greens Func-
tions and Generating Functionals

FTD Greens functions are extremely useful ob jecte which contain informaiion abeut
the equilibrium thermodynamic properties of the FTDF system [22-25]. For sim-
plicity of presentation we shall restrict the discussion to a single complex scalar

field. The 2-point FTD Greens function is defined by
A g =< T (H@d@) > (1.24)
where
i = (—inz) (1.25)

and 7, is the 7- ordering operator which orders the fields from right to left in the
order of increasing 7. The expectation value < > here means a thermal average
rather than just a vacuum expectation value.

teevien) o o TR (CB(H - ul)) T ($(204E0))
<1, (#1@né@) > = T (A () (1.26)

where, the trace means to sum the matrix elements of the operators in the square

bracket between all independent states of the system. The method described earlier

for partition function can be easily extended to obtain a path integral representation
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for the Greens functions. One finds:

6@, 2) = g[8 Do ppuso( [ar[ e (L #,0,00,8) + ).
(1.27)

By analogy with zero temperature case, we now introduce & generating

functional for FTD Green functions {26, 27]
wWJ = % f D¢* D (eXp ( f: dr[d®c (L ($,¢",8ud, Bud®) + N )) (1.28)
oxp (- [[ar(@y + 4°3) ).

where the sources J are complex functions of Z. The FTD Greens functions are

obtained from W[J] by functional differentiation

G(z)(fhﬁz) = ﬁ%——‘f(ﬁﬁ '(J'=J=D) . (1.29)

Usually, it i8 more conivenient to work with Greens functions in mo-
mentum space. Fourier transformed FTD Green functions G? may be introduced

through

GO(s, B} 8 (ko + ko) (2n)'8 = [dy [dzsexp (i (ko1 + ad)) GO(21,52)

(1.30)
where
dz = /:dffd%, k= (iwn, K) (1.31)
with
Wp = 22—"— - i, kz=w,r— K.X. (1.32)



and
6(k1 + kz) w,+u,6(K1 + Kz) (133)
The discreteness of the frequencies w, is a consequence of the periodicity condition

(1.20).

A generating functionel X[J] for connected FTD Green functions G?
may be defined through
W = exp(XL) (130
with the relations

59X

g(z)(il,fz) = 6.]‘(52) BJ(EI) |(.l=0, J*=0) (].35)
and
K= X 5 fmre- fazn 020 (1.36)

1.1.3 Perturbation Theory and Feynman Rules

In the case of a free complex scalar ficld with Lagrangian density

0 a¢ 8¢ * 2 s
Lo ((ﬁ, 3#9") =~ (g) (g) - V¢§'Vé - m°¢’ (1.37)
the generating functional can be evaluated exactly to yield the Greens function

G(@ -7) =A@ - ) (1.38)

with

A -%) == 2 / G )3exp( —ik(e — z)) A(R) (1.39)
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and

AR) = - (2 + K +m?) (1.40)

where w, is defined by (1.32).

If we have a Lagrangien of the form
£ = CO + £I(¢)

where C; represents an interaction term which is higher than quadratic in ¢ the

generating functional can not be evaluated exactly. But using the result

WIJ] = exp (.- [axt, (—557]%3) WO[J]) (1.41)

a perturbation series can be developed by expanding the exponential operator as a
power saries. As is well known in the case of zero temperature field theory this leads

1o the perturbation evaluation of Greens function by means of Feynman diagrams.

The usual spproach used for ordinary Greens functions can be easily
adopted to FTD Greens functions. The only difference arise because kp has been
replaced by iw, , and because various factors of i no longer occur in Greens functions
and generating functionals, compared with the zero temperature case. The result-
ing Feynman rules for perturbative computation of the 2-point connected Greens

functions in ¢*-theory are as follows [23, 25]:

1. Draw all possible connected, topologically distinct, graphs with 2 external lines ;

2. With each line carrying ‘momentum’ k = (iw,, K) we associate a factor

> : (el + K> +m?);



2. With each vertex of four lines carrying ‘momenta’ ki, k,, ks, k¢ we associate a

factor (—A) , constraining the 'momenta’ so that there is overall conservation

-A (El+’_\72+'§3+7ﬁ¢=0>§

3. Integrate and sum over each independent internal loop 'momentum’ k = (iw,, K)

with weight
1 d*K 2m
1_32. ./(211')" =TT

The corresponding modifications are made to the Feynman rules for
gauge fields. No factors of i for vertices or propagators,
ko —iw, and [ (d'k/@2m)) — (1/8) L, (d*K/(27)%) .

1.1.4 Real Time Formalism

The discussion of FTDF has so far been in the so called imaginary time formalism
or Matsubara formalism which includes a discrete set of energies. The study of
dynamical problems requires the use of real time Greens functions which requires
a continuation from the discrete energies to the real axis. In principle, this can be
done by a process of analytic continuation. However, this process is mathematically
difficult and sometimes result in ambiguities. The time path method [25, 27-31] has
heen developed as an alternative scheme for real time FTDF. Since our interest is
not in formal developments and most of our calculation can be done satisfactorily in

the imaginary time formalism, we do not describe these developrnents in detail. We
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make use of real tirne Greens functions only in Chapter 3. The connection between

the real and imaginary time Greens functions is surnmarized in an appendix.

1.1.5 The Effective Potential Method

The concept of effective potential ig a very ugeful one in understanding many im-
portant questions in quantum fleld theory, particularly those related to spontaneous
symmetry breaking (SSB) [32-36]. The effective potential includes all quantum cor-
rections to the clasgical field theory potential. By minimizing the effective potential

the true ground state of the theory can be identified.

Effective Potential at Zero Temperature

Let ug consider the simple case of a gcalar fleld with the generating functional

Wi = [Dyexp (i [d'z (L@(@) + =2)9()) ) - (1.42)

When In W[J] is expanded in a functional Taylor series in J(x), the coefficients will

be the connected Greens functions
1
W =Y = /d‘a:l o dizy Gy ) Hy) - H). (1.43)

We define the classical field ¢, as the vacuum expectation value of the operator ¢

in the presence of the source J(x)

_SnW  (<O0|¢(x)|0>
$o(x) = @) =( <0105, ’). (1.44)
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The effective action of the classical field I'(¢,) is defined by the functional Legendre

transform
I($.) = ln WJ] - / &z J(z)d.(). (1.45)
From this definition, it follows that
o = - s (146)

We can algo expand I'(¢.) in powers of ¢,
M) = 3 3 fdmr o dion T madelz) - den). (147)

It is possible to show that I'™(x; .. =,) is the sum of all one-particle irreducible
(1PI) Feynman diagrams with n external lines. Alternatively we can expand the
effective action I'(¢.) in powers of momentum about zero momentum. In position

space this expansion takes on the form

M) = [d'e[~Var(dd +5 Oude) 2(9e) + -+ (148)

The tetmn without derivatives, V,;(¢.) is called the effective potential. If ¢, is
constant in space and time, from (1.46) it follows that

aVess
d.

The vacuurn expectation value of the full operator can be found by solving this

l=0y =0. (1.49)

equation. In this case V,j; can be expanded in terms of 1P1 Greens functions, first

writing T™ in momenturn space

[‘(ﬂ)(tl vee !L',.) (‘::)14 (2 )4 (21[')‘8‘(’61 k,,) exp (i(klml 4 s k,.a:,.))
T (k- k). (1.50)

12



Substitution of this into (1.47) gives

S [ oG e [#aso i v

exp (i(k1.zy + + - knotn)) (l‘(")(()’ e 0)Pe(Zn) Pelzn) + - - )
f‘f'mz,‘%(F‘"’(O,---O)(éc)"+---). (151)

(¢c)

Comparing (1.48) and (1.51) we find that V (¢.) which means sum of all 1P1
diagrams with n external lines carrying zero momenta
Va4 = = £ 57 TO(0---0) @) (152)
An elegant method particularly suited for study of non-perturbative
phenomena like SSB is the loop expansion technique. This is an expansion according
1o the increasing number of independent loops of connected Feynman diagraras.
Thus the lowest order graphs will be the Born diagrams or iree graphs. The next
order consists of the one-loop diagrams which have one integration over the imternal
momenta, etc. For the effective potertial (1.52) each loop level still involves an
infinite summation corresponding 1o all possible lines. The usual classical potertial
is simply the first term (the iree graphs ) of V,;(¢.) in ihis loop expansion. In

fact it can be shown that, the loop expansion can be identified as an expansion in

powere of the plancks consiant h.

We now illustrate the calculation of effective potential in the simple

case of A¢* theory In the one-loop approximation. The Lagrangian density is given
by

L = Co + C; (1.53)

13



with
= Yeppr_1oop
Eo - 2(aﬁl¢) 2m¢ ]
A 4
C; = —Htﬁ. (1.54)

To calculate the effective potential in eqn (1.52), we must sum all one-loop diagrams
with an even number of external lines having zero mementa (see Fig. 1.1). The 1P1

Greens function is given by

P20 - 0) = iS / o (- a,\)-k;——n{“r—“)" (1.55)

where S, is the symmetry factor

(2n)!

Sy = —~
n2on

(1.56)

O OO

Fig. 1.1 One-loop diagrams contributing to the effective potential

14



corresponding to the fact that there are (2n)! ways to distribute 2n particles to the
external lines of the diagram and that interchanges of any two external lines at a
given vertex or reflections and rotations of n vertices on the ring do not lead to new

comributions. The no-loop and one-loop effective potential is then given by

2 42 p AN CY:) Y
3™ ¥ +414’ ¥ f(21r)‘22n(k2 m2+te)

, d'k A/2)¢?
= § et o ¢‘ 2 (2)41 (1+k({n2¢+ ) (1.57)

Verr(9o)

The integral is divergent. If it is cut off &t some large momemtum A, we obtain

32m2
(o) (o222 )

To remove the cut off dependence we introduce counter terms which have the same

2
V) = gmil+ T+ o (’““' %453)

giructure as the original potential
A B
V.ii(9a) = 5'95: + ;ﬁd’: ; (1.59)
so that the renormalized effective potential, given by

VT (9e) = V(o) + V. (4e) (1.60)

i finite and cut-off independent. The coefficients A and B in (1.58) can be deter

mined by the renormalization conditious

d?V.
‘d‘,;zﬂ =0 (1.61)
and
AL
d¢4 I(¢e=0) ' (1.62)

15



In this way we have
‘ 2 2
e _ L oa0 A 2, A2 m? + (\/2)$7
qi = gt gtgm||™ tad) n m?

A 242 3 24
—E ¢c_ gA ¢c) . (1.63)

The computation of one-loop effective potential can be easily extended
to gauge models. However, the combinatorial method is limited to one-loop and

1o calculate the higher loop effects systematically functional techniques have been
employed [20].

1.1.86 Finite Temperature Effective Potential (FTEP)

The technique of effective potential can be easily generalized 10 the case of finite
temperature field theory by replacing the generating functional and Greens func

tions at zero ternperature by those at finite temperatures {21). Let us define a
classical field ¢.(Z) by

¢e = gf_([;% . (1.64)
From (1.29) _
%f% = < $&) >, (1.65)

where < $(Z) >, is the expectation value (thermal average) of $(Z) in the presence
of the source J. Using (1.34)

5y e S $(E) >/
¢e(2) T (1.66)
For zero source
$(®) = < 2) >, J=0 (1.67)
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since

Wi} = 1. (1.68)
Moreover,
L (exp(—ﬂf])q;(‘r; :c)] Tr [exp(—ﬂfl)cf(ﬂ,z)] .
B> =—5 lexp(-8H)] T [exp(-pH)| (1.69)

where we have used the connection between the field operator at 1ime 1 and iime

zero, with ¢ — —i7. Combining (1.67) and (1.69),
$(2) =< $(0,z) > , J=0. (1.70)

Thus, for zero source, ¢(Z) is the expectation value (thermal average) of $(0, £),
the Schrodinger picture field operator. An effective action is defined by

Migd = X1 - [ az H@)e(2) (1.72)
and the source is given by _
Xz) = - gj‘(‘g . (1.72)

1PI temperature Greens functions I'™, may be defined by the expansion

f[¢c] = i '_:-l/dil) tr /d:t—n r(N)(ill v ainN) ¢c(x_l) i '¢c(m—;*l) (1'73)

N=1

and momentum space 1PI temperature Greens functions, f’('o, by

f‘(m(kl, ceo I‘CN)(21I‘)3ﬂ = jd.’i; cee /d.'_iN exp[i(l_cl.:il + .- —.57")] P(M(:i;, oo .'EN)
(1.74)
with 8(ky+ - - +ky) a8in (1.33). The FTEP V,’;I(dt,) may be defined by an expansion

f‘[¢¢] = ‘/‘di (_ st](¢¢) + ﬂgﬁgu¢c{r¢c + - ‘) . (].75)
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If the classical field has no spatial (or 7) dependence then only the V,’I’,(¢,) term in
the expansion (1.75 ) need to be retained, and (1.72) becomes

dv?

—dl =g, 1.76

= (1.76)
If we set the source term to zero, then from (1.70) ¢. has the significance of the
expectation value (thermal average) of the field operator, and

av}

—l 9, 1.77

73 (1)
Thus when it has no spatial variation, the expectation value of the field operator

at finite temperature may be obtained by minimizing the FTEP.

Using the inverse of (1.74) in (1.73), the effective potential may be
expanded in terms of Fourier transformed temperature Greens functions at zero

'momenta’

V,?,(%) = - i (_]%!.fw(m(gl. .-0) ¢:’) ) (1.78)

N=1

To actually compute the FTEP, we can use the loop expansion method
discussed earlier for the zero temperature case. The diagrams which contribute to
the FTEP are same as that of zero temperature effective potential. Making use
of the Feynman rules discussed in Sec. 1.1.3 we get the effective potential. This is

shown below by computing V,‘;, upto the one-loop terms for spinless particles.

Consider the simplest model of one self interacting bose fleld described

by the Lagrangian (1.53). The tree level potential is

Vo(¢) = % 24 + %q&‘ ) (1.79)
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First we write the one-loop effective potential at zero temperature [37-39]. Dia-

grammadtically we have

g = | >< +Q
+ +O+Q+----

Fig. 1.2

so that V, (@) where, ¢ is & constant field, can be written as

L& dk  \"
Var'(9) = V"“”‘Ef (2«)4%(k2(:\/n2zgi ic.)

After a Wick rotation &® = ik, kg = (—iky, K), ¥* = (F)'-K? = —k}’-K* =
-k%. Eqn. (1.80) can be cast as

d'k O/
T=0 B
VIR =i+ 3 [ 1+ ). (181)
At finite temperature, the Fig. 1.2 can be computed with the help of the rules of

Sec. 1.1.3:

- ; o (A/2)$?
V@) = Ve(d)+- 2/(2 g ( (—4mn?/) - K* - m’)
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S+ ﬂz / (‘;3 };'3 (41211

where B, = K+ M?, M? =m?+ (/\/2)5'2

+ E’,,) . (1.82)

The sum over n in (1.82) diverges, but the infinite part does not
depend on ¢. The finite part which contains the ¢-dependence, can be computed

{o give

VI = B+ [ (o4 Sl sp(-pE) . (199

The first integral in (1.83) is just the one-loop effective potential at

zero-temperature. It is

@K En _ —i [ d*% 2 2 Ap .
WT-7 Wlﬂ(—ko+’(2+m +§$2-!£). (1.84)

From (1.84) and (1.81) we see that
Vi) = Vi (9 + V.i7°(9) (1.85)

with V ¢/ £%(¢) given by (1.81) zero temperature one-loop effective potential and

&K
Vir @) = ﬁ Gy 2 (1 - exp(=FEw)). (1.86)

1.2 Phase Transitions in Field Theories
A symmetry is said to be spontaneously broken if ¢. = < 0| ¢ | 0 > # 0 which

correspouds to & minimurn of the effective potential. At finite temperatures the
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ground state value of the field ¢ , does not correspond to the minirnum of the
effective potential V,}}:D(c;), but to the minimurn of the FTEP V,fl(@. Thus even if
the minimum of the V,ﬁ“(&) occurs at ¢ = o # 0, very often, for sufficiertly large
temperatures, the minimum of V$(#) 1s at ¢ = 0: this phenomenon is known as
gymmetry restoration at high temperature [2-6, 21, 40]. This gives rise to the phase

iransition from § =010 ¢ = 0.

To illustrate the analysis of such phase transitions consider the simple
model corresponding to (1.53) with m?>0. At the iree level, the posible ground
states of the theory determined by (8V0/8$) =0ared =0and ¢ = £ (m/\/X)
The state ¢ = 0 is & unstable local maxirmum and the energetically favored states
corresponding to the minimum of V(¢), at ¢ = £ (m/ \/X), are shown in Fig. 1.3.
The symmetry § — —& of the Legrangian (1.53) is spontaneously broken.

To investigate what happens to spontaneously broken symmetry at
finite temperatures, one must compute the FTEP. At high temperatures this can

be approximated as [5, 21}:

(WO

"wix | Y™ix /
>

L 1 4 >
: :
«

Fig. 1.3
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1, 2 (m'+ /2)F)

1
Vﬂ = — 2 _ . Y 4_
1= =™~ G - Gog 2UF
The behaviour of V,‘;, is shown in Fig. 1.4 for a number of different temperatures. 1t

+O@). (187

ig clear from Fig. 1.4 that as T riges, the equilibrium value of ¢ at the minimum of
V,‘;, decreages and above some critical temperature T, the only remaining minimum
isthe one at ¢ = 0, i.e., symmetry ig restored. Eqn.(1.87) then implies that the field
¢ decreases continuously to zero with rising temperature. The critical temperature

for thir phase transition is determined by the condition
=) =0, (1.88)

where myg is called the temperature dependent mess. In this model we have

—24m?

(1.89)
The method employed in studying the phase transitions in scalar models can be

extended 1o theories involving gauge flelds.

AV:;,; C b/a
Qé/ > ¢

Fig. 14 (a)T=0 (plo<T<T, (e)I>1T,
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1.3 Non Perturbative Study of FTDF using
Gaussian Approximation

Jaussian approximation is a non-perturbative variational principle based ou rather
clementary and concepiually simple ideas well known from quantum mechanics of
mauny body systems. Making use of this principle and a Gaussian trial wave func-
tional for the ground state, a modified effective potential, namely the Gaussian
effective potential (GEP) may be computed. In addition to its intuitive appeal [41,
42}, this GEP is known to contain the one-loop and leading order 1/N results in the
appropriate limiting cases [43-46]. The technique has been extensively developed,
particularly in the last few years along the lines initiated by Stevenson, Consoli and
others [41-91]. These various works differ in certain technicalities in the computa-
tion. It has been established that, in four dimensions a simple and viable non-trivial
theory called precarious theory arising from a bare coupling constant of a partic-
ular negative infinitesimal form exist. Without regularization, this is stable, but
does not possess SSB. However using a finite ultraviolet cutoff for the momentum
integrals SSB can be induced. This cutoff version GEP method has been applied
to various scular and fermion models [92-96]. Ni et al [95, 97] have evaluated the

GEP in cutoft version of certain gauge models including SU(2)xU(1) and obtained

limits on Higgs boson mass.

Another version of GEP that has been shown to exist is the au-
tenomous form, which possess SSB, and allows a positive value for the bare coupling

constant {97-101). But its stability depends strongly on the wave function renor-
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malization and it is not definitely established whether autonomous theory is only
un artifact of the Gaussian approximation or not. Extension of the GEP method
to finite temperature field theory has been done by many authors [99-106]. In the
evaluation of finite temperature GEP, puzzling nature of some of the earlier results
were carefully analyzed by Stevenson and Hajj {101]. They had shown that, increase
of temperature restores the sponianeously broken syrnmetry in scalar model. This

gection is devoted to review the finite temperature GEP (FTGEP) formalism.
1.3.1 Principle of GEP

We begin with the zero temperature definition of GEF. For definiteness, we shall
consider A¢* theory in 341 dimensions. It is described by the Lagrangian
1 1
= -2- ‘“qsa‘(ﬁ - §m254>2 - )\B‘#‘ (190)

which corresponds to a Hamiltonian density

M= 2d + (V4 + omdd? + dod (191)

Let us write the field ¢ as ¢p + ¢ , where ¢y is a constant classical
field, and ¢ is & quantum free field of mass 2. The state | 0 > is then defined as

the vacuum state of this free field of mass {). Following the usual field theoretical

conventions, we write

¢ =do+ / E:)%ﬁ)- (an(K ) exp(—tkzx) + az,(k) exp(ikx)) (1.92)

and hence
8= [ (57)321(71.(55 (—:’k,‘ (ag(k) exp(~ikz) — ab(k) mrp(t'k:z))) . (193)
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where the energy componert of the four vector k, is
K = w(0) = VK + 02, (1.94)
The creation and annihilation operators obey the usual commutation relation
[aa(k), ab(¥ )] = S = 204(@)(2m 5O (K - K'). (1.95)

The state | 0 > has the defining property

aa(k) |0>=10 (1.96)
and
<0|¢|0>=¢y. (1.97)
The GEP is then defined as
Voldo) =T Val(do, Q) =T <0|H|0>. (1.98)

The evaluation of Vg(do, 1) for the Hamiltonien (1.91) is a straight
forward exercise [107, 108]. Term by term we have

. @K
<0 -12-[¢2 +(Ve)ijlo>= @ oy (‘\’f(ﬂ) - %92> ; (1.99)
<0 -m8¢2|0>— 5m,, (¢§+fm) (1.100)
and
) . &K
<0|Agd* |0 >= Ap (4’0 + 643 (2 )3/2 3/(2,'.)312 wd (2m)2 w*) .
(1.101)
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Introducing the notation

o) = [ (—2;-);‘,,—&—@ (k> +2)", (1.102)

we can write the result as
1 1
Va(do, Q) = I1 + §(m§ - 0L + Emgqbg + Apds + 6ApLp®] + 32515, (1.103)

The GEP itself, V¢(¢y), is obtained by minimizing this expression with respect to
the variational parameter € , in the range 0 < Q < 0o . We denote the aptimum

value of Q by Q . Normally, Q will be given by the equation

% lo=ty =0, (1.104)
which, using the result that
‘% = (2N - 1)Qpey (1.105)
leads to the 'Q-equation’
2= ';‘—;” + As (I(8) + ¢8) - (1.108)

Using (1.106) we write Va(¢o) in the form
Valds) = I ~ 3ol + smbdh + Asd (1.107)

The -equation in (1.106) may have more than one solution, and care must be taken
to choose the solution which is a minimum of Vi ; also the solution must not occur
at the end point of the range 0 < < 00 . The argument of the / integrals which
is 1, implicitly depends on ¢, through (1.108).
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1.3.2 Renormalization

The above expression for the GEP are full of divergent integrals and non-finite bare
parameters mp and Ap. It is poesible to re-express Vo(¢p) a8 & manifestly finite

function of ¢y , by including renormalized parameters mz and Az , except for &
divergent, but ¢ independent constant D

D = Va(do = 0) = I((h) - 338 (b))’ (1.108)

where € is the solution to the {} equation at ¢y = 0. The constant D represents
the vacuum energy density of the ¢p = 0 vacuum. The presence of this divergent
constant has no physical consequences, since only energy differences, not absolute

energies are measurable. A convenient choice for the two new parameters is 1o

define :
, &V -

my = > [0y = O (1.109)
and ‘
- 1 d‘VG [l - 12)\51_1(171;()]
Aw = gt lw=o = As 1 +6xp1_;(mpg)] - (1.10)

1t can be shown that the GEP is exactly renormalization group invariant (59, 60}.
That is, the physical content of the results are the same no matter how one chooses

to parameterize them. Eliminating mp and Az in favour of my and Ax gives

Ve(#0,Q) = D+ -m,,¢° + Agdd + L’(z)szﬁ + 3)\st (= - 1)’ (1 (mp))*

e o )

Lz(a.:)s%3 ((a: -1)- 3 (Lg( ) + 32"2%)) (1.111)

mg
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where

Lz)=xz lnz-z+1,
and
Ly(z) = %(m2 Inz - 2z - 1) - 8z - 1)2).

Similarly the § equation becomes

(:B - 1) (1 + 6/\31_1('113) 3:: (Lz( ) + 16“2¢ ) (1.112)

m}
Both these equations cortain the divergent integral I_;. We shall therefore treat I_;

as arbitrarily large and positive, taking the limit J_; — oo. The relation between Ap
and Ag, eqn.(1.110), allows the possibility that A is a finite parameter. However a
detailed analysis show that finite values, positive or negative do not lead to viable
models. A positive value of Ap which vanishes like 1/7_; lead only to a trivial theory.
A natural theory is, however, obtained if

Ap = . (1.118)
With this value of Ap GEP (1.107) becomes

2 LB("’)”‘}!
16A( D+ =5

dropping terws of order 1/1_; or smaller. Vg is now finite for any Q. The 2 equation
is also manifestly finite, since (1.113) ioserted into(1.112) gives

(x-1)=-7 ( () + 16"24"’) (1.115)

It can be shown that the GEP (1.114) is bounded from above and below and de-

1
Va(40,Q) = D + 5”"‘714’% (1.114)

scribes & phase with massive particle interactions through an attractive force.
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Cutoff Version of GEP

The above form of GEP has nothing to do with the Higgs mechanism, since it has no
SSB. However, SSB can be induced in the model, by including an ultraviolet cutoff
A for the momentum integrals. The stability property of cutoff ¢* and ¢* are the
opposite of one another. In cutoff ¢* , positive Ap gives a bounded potential with
& pair of minima at very large ¢y, corresponding to a SSB phase, while negative
Ag leads to su unbounded potential [42]. However in the absence of & UV cutoff
the situation is the reverse:  positive Ap gives an unbounded potential, while

& negative Ap of the form —1/(61_,) leads to a stable, non-trivial theory, with
unbroken symmetry.

More detailed discussion about cutoff version GEP will be given in chapter 4.

Autonomous Version of GEP

Stevenson and Tarrach [98] were the first 10 note that with a re-scaling of the field
¢o , there exists a different renormalization method leading to a stable, non-trivial
GEP with positive Ag. Consider a renormalization of the theory in which

1

Ap = 2I.0) ° (1.116)
3 2
m2 + 120515(0) = 57:’:%)_) (1.117)
and the field is rescaled by
¢5 = I1(0)®] . (1.118)
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This leads to & GEP which, a8 A — o0, remains manifestly finite in terms of
&g, mp and p. By a straight forward calculation one obtains Vg(®o);

N SO < 203\ 3
Va(®) = D+ gmi#d + 7oks (in (32 ) - 3 ) (1.119)

This GEP ig valid for all values ®,. Eqn.(1.119) allows SSB when m} is negative or

not oo large. It is then convenient to rewrite it in terms of the vacuum value of &y

, denoted by a , which is given by

2 2 361!"2 2
la (3;:,) =1- 22T (1.120)

Eliminating p in favor of a gives

_p=lmerfi- B}, % (. (%)_1
Va(d) D—2mod>o(1 20z ) ¥ Taa in =)~ 3) (1.121)

This GEP is renormalization group invariant up to the rescaling of &y .

1.3.3 FTGEP

In equilibrium thermodynamice the GEP at finite values of temperature T is eval-
uated by Stevenson [101] by minimizing the Helmholtz free energy F of a quantum
fleld system in a finite volume V calculated from the partition function Z

Z =Tr(exp (-BH)) (1.122)
and
1
= 3 InZ. (1.123)

This amounts to a replacement of ;(2) and J(f) integrals in (1.121) by /() +
F($) and Ip(Q) + F5() respectively, where
- 1 rdK
R(@) = 5 [ Gy 'n (1 = oxp(~Aon) (1.124)
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and

1
2O = [ G oD (1135)

with
wi=K 4+ Q8.
Following this rule it is shown that [101], for the autonomous ¢* model the FTGEP

is obtained in the form

= 1 2432
Vaﬂ(‘bo) -D= am?)(bz 144“24" ( —’;% - 5) + f (ﬁz = —4’2) (1.126)

where v is & parameter with the dimension of mass. The constant of integration

D in (1.126) is temperature independent and is the usual divergent vacuum energy

constant.
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Chapter 2

Phase Transitions in ¢ Theory

The study of FTD effects in field theories with SSB has attracted considerable
attention during the last two decades, mainly because of its relevance to the under-
standing of several important cosmological questions [8]. Though most cosmological
scenariog are based on models in which symmetries are restored at sufficiently high
temperatures, there also exist models where symmetry always remains broken or
is restored at a finite temperature but is broken again at a higher temperature {5,
6, 109—112]. The effect of fermion density increase has also been investigated. It
happens that while in non-gauge modeis symmetry is restored at high densiﬁe;,
in gauge ones symmetry breaking increases further with increasing density [9, 26).
The nature of the phase transitions thus depends on the detailed relations among

temperature, density and the various parameters of a model.

1o spontaneously broken gauge models, in addition to fermionic mat-
ter, bosonic matter is present in the form of Higgs particles. Though direct ex-
perimental searches have failed to reveal the existence of Higgs particles of mass
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[113] less than b GeV in the absence of viable alternatives, we take the view that
such particles must be considered seriousty. It then becomes significant to study
the finite density effects of these particles in the early universe. With this back-
ground, we investigate in this chapter the effect of the bosonic chemical potential on
phase transitions. By means of a perturbative analysis of & 2-component ¢4 theory
with O(2) symmetry in the presence of finite chemical potential corresponding 10 &
conserved bosonic charge, it is seen through the effective potential method that at
non-zero temperatures as the chemical potential u is increased from zero symmetry
restoration takes place at finite values of u . However as the density is increased
further, the symmetry is again broken at a sufficiently large value of u . The exis-
tence of two critical densities iz demonsirated by one-loop and improved one-loop
approximations at finite temperature and densities. it iz further shown that at zero

temperatures chemical potential has no effect, at least at the level of approximation

considered here.

2.1 FTD Effective Potential

Consider the model of a self interacting 2-component spinless fleld with an O(2)
invariant interaction described by the Lagrangian,

£ ((;5.(2)) = ’;'8%».8’ s — %m2¢c¢c - %(¢c¢s)2’ a= 112' (2-1)

We shall study a weak coupling case (0 < A << 1) with tachyonic mass for the
fleld (m?® < 0) at finite temperature and density. The counter terms which must be
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added to (2.1) are
SV V) 2

To compute the effective potential V (¢), we shift @, in L(Pa(x)) by constant
fields ¢, and drop all terms independent of linear in ¢2 . In quantum statistics
at non-zero chemical potential, the effective potential Veﬂ" is given by the same
1P1 vacuurn diagrams as in field theory with oy, in the integrals for the diagraims
replaced by (iu — 2mn/B) and integration over w, replaced by summation over n.

The lowest order effective potential is the tree approximation,
Vo(d) = 5(m + Bm?)P + (A + 5N (23)
which is FTD independent. The one-loop term is computed from Fig. 2.1 as
ORST> / s 2 — mD(E - md) (2:4)

where

m? = m? 4+ &m?* + -;—(,\ + 8A)¢?,

mé = m? +5m? + %(,\ + 8¢,

Fig. 2.1 The one-loop contribution to the effective potential
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and

k= (iwa, K) with w,= y-%" .
Eqn.(2.4) can be expanded to give
2 ok o
Z/& )3[ln(k +M§)+1n(kZ-M§) Kz_w Kz-—Mg]‘

(2.5)

where
A 5\
M =m?+ 5&; SM? = 5m? + —2-&
A 8\
Alg=m2+-€¢2; 6M§=6m2+-§~¢2.

In (2.5), we need consider only the first two terms, as the others get
canceled in the next order of calculation. The first term is

2 _ daK 4w’n?  dmnip |,
232/(2 )3m(k 2;;2[@ E ("T‘*‘ B +u
-K* - M3). (2.6)
The summation may be done by defining
”-Eln( L +4“;‘“+u’-k2—blf). (2.7)
Hence
= = 5 (ke (4 (n- 2w v B))
("—P?.'r Vm*”’?)) ) (2.8)
Using the relation,
%) 1 - N
,,,Z_w r-z)(n-1vy) Ty-=z (cot(wz) - cot(ny)) (29)
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we find

v=ln (ainz (‘%) cos? (%m) - cod® (é%‘f) sin? (% m)) .
(2.10)

A similar computation of the second term in (2.5) give the one-loop effective po-
tential term in the form

VARG = ?:Tﬂ j:“ dK K?
s () (22) o2
+io [s’m’ (%“) cos? (@‘5&) ~ cos’ (B%) sia (p‘TX!)]]

(2.11)

®

where X2 = K24+ M* and X2 = K*+ M:. From (2.3) and (2.11), we find
VEH@) = gt + D04 SBR 4 CH A VARE),  @a2)

where B and C are the renormalization constants given by

-A rdk 1

B=-+ (2m) k2 —m? + i (2.13)

and

3 d‘k( 1 )*

C=5 e \E-mrie (2.24)
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2.2 Effective Mass and Effective Coupling Con-
stant

From the effective potential, it is possible to calculate many other physically inter-
esting quantities. The temperature and chemical potential dependent mass mg, M

and coupling constant Ag, , are given by

82 V¢ﬂ| “
mp , = —34;{‘— {g=0) (2.15)
and
# Veﬁ' &
A u = —a—#[— l=0) - (2.16)

Eqns.(2.12), (2.15) and (2.16) yield the following

_ A dK K*sinh(BX) X!
o =4 555 [ o B TS - s B e 217
and
No = At 5A% dK K? (sinb(BX) X% — 8 conh(BX) X~%) (2.18)

48m2Jo  sinh®(Bu/2) cosh?(BX/2) - cosh?(Bu/2) sinh*(BX/2) ’
where X? = K? + m? To analytically compute the effective mass and effective

coupling constart from (2.17) and (2.18), we are forced to imtroduce sore sppraxi-

mations, ag the integrals cannot be evaluated in a closed form.

For small values of i , we make a Taylor expansion of (2.17) and
(2.18) as a function of u . The first term is independent of chemical potential and
is same a8 the corresponding finite temperature expression which is known in the

high ternperature limit {5, 116]. The socond term of the expansion vanishes and
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the third tertn can be computed in the high temperature limit, after a Binomial

expansion in 8. Neglecting terus of O(8°m?), we get

A mA uil
2 _ 2 _ 2.2
mg ,=m +18ﬁ2 quﬁ+ s + O(f°m*) (2.19)
and
5A211 1 1 u? 2 32
A&“"A—-‘Z_‘@— ——i——ln(_n_xﬁ).'-lmrﬁm’ +O(,6m). (2.20)

Eqns.(2.19) and (2.20) at fixed temperature shows an increase of ef-
fective mass and effective coupling constant with incresse of chemical potential.
Here, m} . ey increase with u to such an extent that it becornes positive beyond
a particular value of u = u g restoring the spontaneously broken symmetry. The

critical chemical potential uy , at which this symmetry restoration is switched on
can be calculated from (2.19)

2 2
2 —— — ——
Ha = —3 @5 + B (2.21)
The corresponding critical temperature is

1 18m? 3u® 3m
= -t —. 2.22
2 Py w2 ' =B (2.22)

To study the behavior of (2.17) and (2.18) for large values of chemical

potential, we imtroduce the approximations

cosh? (%‘f) 5 exp (p—'zﬂ) and sinh? (%‘i) 5 exp (ﬁ_l;_‘_l) . (2.23)

Eqns.(2.17) and (2.18) can now be expanded in binomial series and on neglecting
terms of O(F*'m*), we get the effective mass and effective coupling constamt at high
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temperature as

A

T =7 e T
{1 + %ﬂzmz + ‘?T’" ln(pm) ‘)] (2.24)
and
)2 4y | lo(fm) ﬂm ﬂ’
Mo = At T BIaD 3 T 2 + Off'm } (2.25)

with 4 & 0.5772. For a fixed temperature, (2.24) and (2.25) gives a decrease of
mg , and Ag , with incresse in chemical potential. Starting from the symmetry
restored phase for a very large value of i , m},. 4 €80 become negative 1o give back
the original spontaneously broken phase. It is possible to define a critical chemical

potential u ., corresponding to this symmetry breaking phase transition. Using only
the leading terms of (2.24), we get

1 A
==In|—s—|. 2.26
Correspondingly, the u- dependent critical ternperature ig
1 2 1 [ 27 1 1
— = || —— |cosh | = cosh™ [—————— - 1”” - —} . 227
B = [T o [ |y 3l 221

For an asymptotically large value of | u |, the effective mass and effective coupling

constant become the same as the tree level vulues.

From the above analysis, we find that in high temperature surround-
ings, & symmetry restoration takes place at a relatively small value of chemical
potential and further at a large value, there is symmetry breaking. Now to extend

these results for all temperatures, we adopt a numerical approach. Effective tmass
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and effective coupling constant can be calculated by numerical evaluation of the
integrals in (2.17) and (2.18). The results are plotted in Figs. 2.2 and 2.3 for vari-
ous temperatures. The one-loop expressions (2.17) and (2.18) are actually complex
and we are taking only the real part here. The imaginary part will disappear when
we include the higher loop effects in the diagram [114]. From Figs. 2.2 and 2.3, it
is seen that effective mass increases with increase of chemical potential to produce
symmetry restoration and then decreases with further increase of chemical potemtial
10 give back the symmeiry broken phase. These effects are found to be present even
8t very low temperatures, which makes them applicable for cold dense matter like

neutron siars and quark stars. However, a separate calculation shows ihat at zero

temperature, chemical potential does not produce any effect.

2.3 Improved One-Loop Approximation

The results obtained above have all been deduced at the one-loop level. From
finite temperature studies, it I8 known that one-loop appraximation is not valid at
the critical temperature [115]. The occurrence of imaginary part in the effective
potential is also an indication of the inadequacy of the simple one-loop calculations.
These remarks apply equally well to the one-loop study of finite density effects
made here. 1t is easily seen that close to the critical densities uo and u.o , the one-

loop approximation breaks down. An imaginary part is also present in the effective
potential (2.12).

To improve the present calculations, we adopt the method suggested
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Fig. 2.2 Variation of effective mass with chemical potential
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10 B =0.01 0, 0001

Fig. 2.3 Variation of effective coupling constant with chemical potential
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by Fendley {114] to include multi-loop effects in the one-loop calculations. The
effect of multiple insertions of quadratically divergent bubbles may be studied by
considering the four simple contributions to the two point function in ¢* theofy
shown in Fig. 2.4. 1t is obvious that at high ternperatures, the largest graph 10 any
order in the loop expansion are the ones with the minimum number of quadratically
divergent loops, namely those like Fig. 2.5a. Ancther contribution 1o the effective
potential ip displayed in Fig. 2.5b. When we add & bubble on {0 any propagator
that is not part of a quadratically divergent loop, the diagram is multiplied by
AT 2/U*, where U is the mam scale of the theory. We can do this {0 any diagram
as in Fig. 2.6. This means that for a one-loop approximation 10 be valid, we must
have AT'?/U? << 1, along with the usual A << 1. Thus multiple insertions of
quadratically divergemt bubbles cannot be neglected.

To take imto account all such diagrams, we make use of the expansion

of the full propagator, shown diagrammatically in Fig. 2.7 and define an effective
mass M such that

11 & (= 1
k’+M“_k2+m",§, (R+m3 " kE+mit+o’ (2.28)
giving
M=mto. (2.29)
o i8 the 1P1 self energy, which may be approximated as in Fig. 2.8:
2\ d*K 1
o — + counterterms. 2.30
5 2y G e (2.30)

The logarithmically divergent part of the diagram may be ignored as a sub-leading

temnperature dependence of the diagram and the T=0 counter term cancels the
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Fig. 2.4 Lowest order contributions to the self energy,
with their orders of magnitude at high temperature
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Fig. 2.5 Multi-loop self energy contributions
and their orders of magnitude at high temperature



Fig. 2.6 A typical contribution to the effective potential,
that is relevant at high temperature
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Fig. 2.8 Lowest-order corrections to the self energy
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divergent piece. Now we replace m® with M? in the expression for the effective
potential and perform one-loop calculations in this improved approximation. This
includes the largest diagrams at high T, namely those given by the one-loop diagram
with bubbles attached, as in Fig. 2.5a and 2.6. Diagrams we are neglecting are
suppressed by some power of A or AT/M. Thus the improved expansion is valid if
AT/M < < and A << 1. The validity of the one-loop calcilation at and above critical
temperature is restored with the additional condition T' << M/A. Notice that the
expansion breaks down as T'— T, , because M — 0. Calculations of m} , and Ag, ,,
give the same results as in (2.19), (2.20), (2.24) and (2.25) with m? being replaced
by M. The behavior of m} » and Ag , with respect 1o the variation of chemical
potential can be studied, as done previously by numerical evaluation of the imtegrals
appearing in their expressions. We have found the same pattern of behavior as in

the simple one-loop study. The symmetry is restored at a finite density which is
aguin broken at a higher density.
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Chapter 3

Phase Transitions in the Abelian
Higgs Model

1t is well known that, the effective potential method when applied to gauge theories
leads to a gauge dependent result for the finite temperature effective mass, which
is an observable in the theory. The ensuing puzzles were solved, at least for the
abelian Higgs model, by Ueda [117], who showed that by slightly modifying the
definition of the effective mess, one can maintain geuge invariance even at & finite
temperature. This is achieved by including certain momentum-dependent diagrams
in the self energy which are absent in the effective potential treatment in some

gauges.

1n this chapter, following the approach of Ueda, we study the effective
mase of the theory at a finite deusity using the real-time formalism. It is shown that,
at non-zero termperatures, as the chemical potential 4 corresponding to a conserved

bosonic charge is increased from zero, syrameiry restoration takes place at a finite
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velue of u . However, us the density is increased further symmetry is again broken
at a sufficiemtly large value of u . The critical densities and critical terperatures
responsible for these phase transitions are calculated. We also study the finite
densily behaviour of coupling constants present in the theory. The effective coupling
conslants are calculated at the one-loop level, using the vertex renormalization
procedure, from their lowest order vertex diagrarms. The scalar coupling constant A
first decreases and then increases with the increase of the chemical potential, while

the gauge coupling constarmt e shows a reverse irend.

3.1 Effective Potential in the Unitary Gauge

We consider the locally gauge invariant abelian Higgs model of a two-componem

scalar field ¢ and a vector field A, . The Lagrangian describing their O(2)-invariant

interaction is

=7 (BA, - BA) | (B~ ieA) P -mid'e - 2(@'9)F.  (31)

Woe shall consider a case of weak scalar coupling (0 < A << 1) and weak gauge
coupling (e ~ A?) with tachyonic mass (m? < 0) for the field at a finite temperature
and density. Finite density effects are taken into account by introducing a chemical
potential u corresponding to the conserved bosonic charge of (3.1). The fields in
Lagrangian (3.1) admits gauge transformations and it i8 necessary to fix a gauge.
We choose the physically interesting unitary gauge for our computation. Expressing
the Lagrangian (3.1) in terms of polar co-ordinates ¢ and ¢

&(z) = 712- (¢(x) + C)exp (@) with < ¢(z)p>p =0 (3.2)
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and & new variable B, ,
B.(z) = Az) - éa,a(z) , (3.3)
we obtain the Legrangian in the unitary gauge:
€ = T(88,- 5B - ;(8.4) - 5 (OF B (ml r50t) ¢
-5 B (¢* +2C9) - ﬁdf - 504,’ - C¢ ( m? + %c“) : (3.4)

Using the corresponding effective Hamiltonian in the interaction representation and

choosing C? = (—6mi/A) leads to < ¢ >p = 0 at ths tree-level approximation.

The B, and ¢ meson masses are respectively,
M =(eC)* and m?’= gC" . (3.5)

The Lagrangian (3.4) leads to the one-loop effective potential,

Vi = Smig? + 2 T3> f(2 s (310 (K = M) +1n (¥ - MY)) . (38)

where M? = &¢* and M: =m?+ A¢?/2. The sums appearing in (3.6) can be
evaluated by following the steps described in Chapter 2 1o yield,

1 A

Vit = 2 4% + 54)‘ 41:-2[3/“ dK K?
. (ln (sin2 (ﬂ-;—) cog? (%\/W + J\lf)
- cos” (g;—p) sin? (%;\/Kz + M%))
+31n (ain’ (ﬂ—"i) cog? (E\/ K2 + Mf)

(). e
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3.2 Effective Mass

For the purpose of studying the phase transitions at a finite temperature and a finite
density, we calculate the effective mass according to Ueda's prescription {117]: We
define a temperature-and chemical potential- dependent mass mﬁ u » on the mass

shell of the particle at temperature zero and chemical potential zero, as
m% , =m?+ Re lg ,(P? = -m?) (3.8)

where IIg, ,, is the temperature- and chemical potential- dependent scalar meson self
energy and Re refers to the real part. This definition of the effective mass by Ueda
differs from the standard one by the inclusion of momentum dependent self energy
diagrams. These diagrams which contribute to the scalar-meson self energy at the
one-loop level are shown in Fig. 3.1. Following the standard Feynman rules for the

Lagrangian (3.4), we compute the self energy of the Higgs boson at the one-loop

level as,

mi, = m +,\](2 )4A(k)+2e2 %Aw(k)

3im?®A A(K)A(p — k) + 2ie* M? j A (p- k), (39)
2 (2 )‘ (2x)

where A(k) and A,,(k) are the temperature- and chemical potential-dependent
propagators for the scalar meson and vector meson respectively and m and M are
the scalar meson- and vector meson- masses respectively. In the real time formalism
of finite temperature field theory, these propagators in momentum space are given
by

i 2w §(k* + m?)
-m?—ie  exp(B(ko + u)) ~1

A(k) = (3.10)
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Diagrams contributing to the scalar-meson propagator
in the unitary gauge in the one-loop appraximation
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~ i 2 6(K* + M?) kK, |
50 = (i et 2| () - @

where u is the chemical potential corresponding to the conserved bosonic charge
in this system and we follow the metric k* = K? — k! . The real-time formal-

ism has the advantage of keeping separate the temperature and chemical potential
dependent terms from zero temperature- and zero chemical potential terms. Per-
forming renormalization at T=0 and u = 0 and considering only the temperature
and chemical potential dependent real terms in self energy, we write (3.9) es

s _ .3 2w 5(K + m?) 2w 85(K* + M?)
T ¥ '\f (21)‘ oxp(Blko ¥ W) -1 1 / (2m)* exp(Blko + 1)) - 1
" 5(k* + m?)
+3m / (2m) (((P K)? + m?) (exp(B(ko + u)) — 1)
8((p — k)* + m*) )
T m*)(oxp(ﬂ(ko +u)-1)
) 5(K + M?)
+éme Mf( ( ((p - k) + M*)(exp(B(ko + 1)) - 1)
5((p - k)’ + M) ) (5 i} k_»k:)
R expBR + ) - D) \ " T M

.(5,,- (- k)”M(f ")P). (3.12)

Since the effective mass is expected to be a measurable quantity, we have considered

only the real terms in obtaining that equation. Performing the ko integration in the

rest frame of the scalar meson using
((p=- k) + m?) = (K + m¥),

p? = 2pk) = ~m? 4+ 2mky , etc,

we get
P W R 3 [ M
B = i) xp(Blys + 1)) =1 | Zrlhm oxp(Blys + ) — 1
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dy1 i - m?

+3Am /“'
(exp(ﬂ(m T ) = D(Ea = )
dy 43 M + m2(3 - M?)
I axp(ﬂ(sa+u))-1( ros g ) (3.13)

where 33 = K? + m? and 33 = K? + M®. Since the imtegrals in (3.13) are difficult 1o

evaluate in a closed form without further approxirnation, we perform a nurnerical
computation. Fig. 3.2 plots the results of the nurerical evaluation of mz u 888
function of u , for various fixed values of temperatures. We see that, at finite
temperatures , starting from a spomaneously broken symmetry mf;. u increase with
12 1o puch an extent that it becomes positive beyond a critical value of p = uy ,
restoring the symmetry, and then decreases with further increase of u to break the

symmeiry at another critical value of y = u2 .

To calculate the critical chernical potertials and critical ternperatures
responsible for these phase transitions, we calculate the effective mass from (3.13) in
the high temperature approximation in the region of small value of u where there is
symmetry restoration and then for large values of u for further symmetry breaking.

For small values of u it is possible to expand (3.13) as & Taylor series in u . This

gives

A dy J1ii - m?
mé-# = m2+'4-;/:" —alE
+3€2 dy, \/y% - M + 3am? o dy \Jyi - m?

167 Jr y} ay

d M X
ﬁaw/w :Iz(zfa%é mz))[z”"'*m(ﬁ'm)]

pﬂz\f"“ dy y1 (i - mzexp(ﬂm)
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Fig. 3.2 Variation of the effective mass with the chemical potential
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_3pﬂezj"" dy: 2 /¥ —ZM"exp(ﬂm)
Y3 a3

2m
_3Am*Bu g dyr 1] — m? exp(By)
1602 Jm ut af
_&p f" dy; . /¥ — MPBM' + m?(y; — M*)] exp(By2)
mM (443 — m*)a}
/\ﬁ“u /"* s W (exp(ﬂy; 2exp£i2ﬂy1))
3e’ﬂ‘n exp(ﬂuz) 2 exp(2Py.)
e O i
__3/\yzﬂ‘m2 f’" dy1 \f1d — m? (exp(ﬂyl 2019(2311))
327|'3 - yf al al
WS o dw 13— MM+ mi( - M)
2m M In (432 - m?)
exp(Bya) 2 exp(2Bys)
_ ( e R ) , (3.14)

where a; = (exp(By;)—1) and a; = (exp(By;)—1). At high temperatures, expanding
the numerators of the integrands in (3.14) as a binomial series to O(Bm)

A @A e 3y uh m mé
2
mj , = m? +]8@+ 3+4ﬂ2 DY 31rzﬂ+61rﬂ +O(ﬂm) (3.15)

This shows an increase in ma  With increase of u at a finite temperature, indicating
& restoration of sportaneously broken symmetry. Using (3.15) we calculate the

critical chernical poterstial u.; , at which this symmetry restoration occurs, as

2
,‘§1=§I2. _mz__é_.__e__i.\_"_‘_ﬁ (3.16)
A 186 487 6x6 #f
The corresponding critical temperature is
1 36 2 uiA
Z - t9a ( ™ w) (3.47)
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For large vulues of u , it is possible to iutroduce the approximation

exp(B(y + 1)) - 1 ~ exp(Bly + 1)) - (3.18)

Using this, we find that eqn.(3.13) becomes

mg,, = m"+exp(-Bu) [Z%F@ 3efw dus - M

i exp(fy1) 2w exp(Pyz)

+3Am2 dy y%-m2+ e fﬂd'yz Vi - M2
167 Jm 3} exp(fy1)  AMPJn 33 exp(By;)
[3M + m*(h - MR))]. (3.19)

Binomial expansion of the numerators of (3.19) at high temperatures gives to
O(pm),

e 1 A +Am+3e2+3ew +0(m)
Bw™ Bexp(fu) |3xB ° 3w  2xB 2n? :

(3.20)

This shows & decrease of the effective mass with increese of u . Thus, starting from
a symmetry restored phase it is broken at a very large value of u . The critical

chemical potential u, , at which this symmetry breaking occurs, is obtained from
(3.20) as

i -1
“Q—Eln( yTp ( (1+mﬂ)+—--(] +Mﬂ))) (3.21)
The corresponding critical temperature is
. -1
i 4b, 1 1
— = |{f—sibh | ———— ] - — .
B [ 3 " (Ssmb"bz) 3u] ‘ (3:22)
where
A 32M 1
"= S T I R (3.23)
oVI[ A __ 2 éM A 3 (3.24)
20, |9mu? 27u3  2emiu? IMmdu 2mmiu
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To study the gauge dependence of the above FTD phase transitions,

we now compute the sume scalar meson mass in a ghost-free guuge. The Lagrangian

L= A - T +eAulds 01— d1 uda) - Smi¢ - S (), i=1,2

(3.25)
in terms of shifted flelds x and ¢ is expressed as
L = —§l-ex2A’ l2¢'2A2'—(¢4+X + 26%%%) - 2C‘xAi
A0 4= X0 £x - Xgx- e
-t = i~ MA, 06 = 100 - (0
—Z(F,,, 2- ﬂ(&,‘A,‘)z, (3.26)

where ¢y =x+C, $.=¢, mi=m?+()/2)C? m=m?+ (A/6)C* =0 and
M = eC. The lost term in (3.26) is added for fixing a gauge. The FTD propagators

taking into account the A, — ¢ mixing effects 10 all orders of A are

X — -1 27 5(’62 + m;)
we= ("2 +m} —ie  exp|fko + u)] - 1] (3:27)
- 2w 5(k?) am?

A = [kz Tie T Bt =1 T (kz)z] ' (3:28)

- ~i 2m8(k? + M?) ke

Bul) = sz-kMz—-ic*-exp[ﬂ(ko-g-“)]_]}[w 2 ]

_ 2w6(k?) kok,  akuk,

exp{B(ko + )] - 1} + )7 ] . (3.29)

‘The diagrams contributing to the scalar meson self energy are in Fig. 3.3 and the
Feynman rules in Fig. 3.4. Contributions from each of these diagrams can be split
up into three parts, namely, o, @ and a—independent terms. On summation of

these different diagrams, o and a terms cancel separately and we need to consider
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Fig. 3.3 Diagrams contributing to the scalar-meson propagator
in the ghost-free gauge in the one-loop approximation
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Fig. 34 Feynman rules in the ghost-free gauge
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only o independent terms which do not have any A, — ¢ mixing. The result obtained
by surnming all these terms is found to be the same as that from the unitary gauge,

indicating gauge invariance.

3.3 Effective Coupling Constants

The abelian Higgs model (3.1) cortains two unrenormalized coupling constants, the
scalar coupling constamt A and the gauge coupling constart e. The renormalized
coupling constants can be obtained either by the vertex-renormalization or from
the effective potertial. From finite temperature studies at the one-loop level it is
known that, in the absence of SSB, the effective scalar coupling consiant decreeses

and the gauge one increases with temperature [118].

Diagrams contributing 10 the vertex correction of the scalar coupling

constant to the order A? and the gauge one 1o the order e are shown in Figs. 3.5
aud 3.6 respectively, and they yield

Ao p=A— i / d'k A(k)A(2p - k) | (3.30)

&, =6 - ( 2 = /d‘lc K2 A(K)A(p - k), . (3.31)

Using the propagators (3.10) and (3.11) aud the mass-shell condition for the external

rmomentum gives the real parts of the above equations as

3A% dK K?
A u=A— .
i (K +miyh (opp/R v mi v g —1) ' O
= e t 53 dK K (3.33)

(K* + m?)¥2 (exp(BVEK® + m? +fu) - 1)
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Fig. 3.5 Vertex diagrams contributing to the scalar coupling constant
in the one-loop approximation
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Fig. 3.8 Vertex diagrams contributing to the gauge coupling constant
in the one-loop approximation



To study the finite density behaviour of Ag , and € , from (3.32) and (3.33), we
first use the numerical methods, and the results are plotted in Figs. 3.7 and 3.8
respectively for various values of ternperatures. Fromn these figures one finds that,
at fixed tempereatures, Ay, , first decreases and then increapes with the increase of u
while e‘ . Shows the opposite behaviour. These characteristics can be clarified by
evaluating Mg, , and €} , in the small value and large value regions of u separately
in ihe high temperature limit.

For small values of x4 , we make a Taylor expansion of (3.32) and (3.33)
as a function of u . Using the high temperature approximation after a binomial

expansion of (K? + m?)*? we get t0 O(Fm?)

3xC

Mop=A- -——‘ + O(F*m?) , (3.34)
C

Gu =+ 5 + O(Fm?) (3.35)

where

C = W + ! in (%) - ﬁT“ (Bm - In(Bm)) + —— o Hz - In(Bm)) . (3.36)

According to (3.22) and (3.35), at a fixed temperature Ag, , decreases with u while

& . 8hows the reverse behaviour.

For large values of i , by means of the approximation (3.18) at high
temperatures we get to O(F?m?)

3)\% C,
A =N —— 22
g u = A 87 oxp(B1) + O(8°m?*) , (3.37)
1
2 _ g2y e'C,
€, .= € 2“‘2 exp(ﬂp) + O(F*m?) (3.88)
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where

2
C; = 0.7886 - ‘-’21‘ _E ;" . (3.39)

Equations (3.37) and (3.38) at a fixed temperature indicate an increase of Ag, , with
the increase of u while e},. u Shows the reverse behaviour. For an asymptotically
large value of u both Ag , and ef& 4 approach their tree level values. Note that we
evaluated these coupling constants from the vertex diagrams using the mass-shell
condition for the external momentum. Hence all reasons we indicated for the guuge

independence of the effective rnass hold also for the gauge independence of these

effective coupling constants.
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Chapter 4

GEP Study of FTD Phase
Transitions in ¢ Model

The Higgs mechanism plays an important role in standerd unified model of funda-
mental interactions {119, 120]. However, there is some worry about its basis as some
authors have shown that the pure quantum A¢* model may be trivial (i.e., A — 0,
no interaction exists at all) in four space-time dimensions 85, 89]. Recently, aiming
at the revival of A¢* theory some effort has been made using the non-perturbative
GEP approach {41-43, 81, 121}, the important features of which have been presented
in chapter 1. One method is to introduce explicitly a large but finite momentum
cutoff A and treat the A¢* model as an effective model at low energy [92-95]. On
the other hand, in the so called autonomous theory {88, 101, 122], after performing
a special type of wave function renormalization while keeping the bare coupling
parameter Ag positive but infinitesimal {Ag — 0% ), one can let A — oo and regain
a meaningful A¢* model. From the practical point of view, there is a benefit in the
former kind of theory (with finite cutoff A ) as some bounds on the mass of the
elusive Higgs boson could be found when the gauge fields are included [95, 123-133],
whereas no observable restriction exists in the latter kind of theory (with A — c0).

In this chapter, we make a GEP study of FTD phase transitions in
A¢* making use of both the cutoff and autonomous versions of GEP. It is shown that
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in the presence of SSB at finite non-zero temperatures, increase of bosonic chemical
potential induces a sequence of symmetry restorations and symmetry breakdowns.
For an asymptotically large value of chemical potential, these multiple phase tran-
sitions end in a symmetry broken phase. Similarly in the case of SSB at a finite
non-zero value of bosonic chemical potential, increase of temperature induces a series
of symmetry restoring and symmetry breaking phase transitions. For an asymptot-
ically large value of temperature, symmetry remains restored. With zero chemical
potential increase of temperature only restore the SSB phase, without any multiple
phase transition. We also study the FTD behaviour of eflective scalar boson mass.
Possibility of these multiple phase transitions as revealed by gaussian approxima-
tion contrasts with the double phase transition found in perturbative analysis and
may be attributed to the non-perturbative effects. In the remaining part of this
chapter, we first discuss the FTD study of the cut off version of GEP and then the
autonomous version of it.

4.1 Cutoff Version GEP

The precarious form of ¢* has nothing to do with the Higgs mechanism, since it
has no SSB. However, SSB can be induced in the model, by including an ultraviolet
cutoff for the momentum in the integrals. This cutoff version GEP has been applied
to various scalar and fermion models {53, 54]. The stability property of cutoff ¢*
and ¢* are the opposite of one another. In cutoff ¢*, positive Az gives a bounded
potential with a pair of minima at very large ¢ , corresponding to a SSB phase,
while negative Ap leads to an unbounded potential [53]. In this section we evaluate
the GEP at finite temperature and density (FTDGEP) by introducing explicitly a
finite and very large cut off A for the momentum. This allows the bare coupling
constants to assume a positive value and to have SSB for the ground state. Following
the discussion of Sec. 1.3, the GEP at zero temperature and chemical potential is
defined by

Vo) =T Vo(dn®) =" aw(®H]0)q . (4.1)
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where M is the Hamiltonian density and | 0 >q, 4, is 8 normalized gaussian wave
functional centred on ¢ = ¢ . We first study the model of a self interacting
2-component spinless field in 3+1 dimensions with an O(2) invariant interaction
described by the Lagrangian

L (¢.(€C)) = % v¢¢ 8v¢¢ - %mza ¢¢¢¢ - ’\B (¢¢¢¢)2 y @@= 1’2 (4°2)

A study of GEP for this model with a cut off A shows that the ground state of (4.2)
poseess a SSB phase under the conditions (96}

0<Ag < E:/T) and —mpg> ﬂcAz ’ (4.3)
where
= A (A 1] - L0
Ja(p/A) = 33 (ln (p + (p) +1 mr;) , (4.4)
Xe A A
N = (m) -1_6535'?# ) (4.5)
with 2
xc=%exp(%:+l)>l. (4.8)

We shall follow Stevensons method [53] in calculating the GEP by writing the fleld
& 88 ¢o + ¢ where ¢y is a constant classical field and ¢ is a quantum free field of
mass {2 . This yields the GEP at zero temperature and zero density for the model
described by (4.2) as

Ve(d) = %mi ¢+ As ¢5+ L(Q) + % (ms — 92) L(D)
+8251o(Q)43(R) + 3As5(02) (4.7)
where the Iy integrals are given by (1.102). Minimizing the expression (4.7) with

respect to the variable parameter 1 give the optimum value of §2 to be used and is
a solution of the gap equation

2
0 = T2+ 2p (L) + ¢3)- (4.8)
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This method can be alternatively described as a calculation of the
vacuum energy density to first order in the perturbation theory generated by

H=Ho+Hins , (4.9)
Ho= 5 (7 + (Vo) +08), (4.10)
Hiw = — 309" + 3 (o + 9+ As (o + )" . (411)

Here the parameters ¢y and ) arise from the split up of the Hamiltonian and the
Iy integrals arise as

L=a<0|H|0>, IL=qa<0|§|0>,. (4.12)

Even though the method uses techniques of perturbation theory, this is not really a
perturbative scheme in the sense that no expansion in A is used. This method will
be applied to obtain the finite temperature / density generalization of GEP.

Method of Computing FTDGEP

The question of generalizing GEP from zero temperature to finite temperature had
led to some earlier confusions which were cleared by Hajj and Stevenson (101].
Following their approach we outline the calculation of FTGEP. We then extend the
method to finite density as well. We consider a fixed spatial volume V surrounded
by a heat bath at a fixed temperature T. A quantum field ¢ is defined in the region
V and obeys some suitable (eg., periodic) boundary conditions. The set of modes of
the ¢ field constitute the 'system’ in the thermodynamic sense. Thermal equilibrium
is achieved when the system has minimized its (Helmhcltz) free energy

F=E-TS, (4.13)

where E is the (internal) energy, and S is the entropy of the system. Thus the
phygically meaningful effective potential for the system corresponds to the function
of ¢y obtained by minimizing the free energy F , subject to the constraint that
< ¢ >== ¢y . To use the energy E instead, as was done in some early works, would
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correspond to the case where the entropy, rather than the temperature, is somehow
held fixed [101].

The proper finite temperature generalization of the GEP is therefore
obtained as follows. Calculate F to first order in the perturbation theory specified
by the free part of the Hamiltonian; divide out by an overall volume factor V; and
minimize with respect to 2. Standard thermodynamics [134] gives both F and E in
terms of the partition function Z:

Z=Tr(exp(—pH)) = ¥ < a | exp(=B(H)) | a > (414)
1
F=-5lnZ (4.15)

d Tr (exp (—GH) H)
E=——=—InZ=
dp Tr (exp (—4H))
where | a > denotes an eigenstate of H. Calculating Z to first order in H;, , trace
involves a summation over the unknown eigenstates of the full H.

(4.18)

Z = Tr(exp(—BHo) (1 — fH.n))
= Zo(1- B < Hi >1) , (417)
where
Zo = Tr (exp (—BHo)) = Y < g | exp (—-BHo) | a0 > (4.18)
and the notation < A >r stands for the ’thermal average’ of the operator A.
Inserting (4.17) in (4.15), the free energy to first order in Hy, is

F= —-% InZo+ < Hi > (4.19)

From the preceding discussion, the FTDGEP

VE(go) =T VE(o, 1) (4.20)
is obtained from the free energy of (4.19) as
. F
Vé(do, ) = 3, = --Bl-vln Zot < Hint >1 - (4.21)
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The first term is a free fleld theory quantity and represents the finite tempera-

ture generalization of the I, integral. A straight forward computation from first
principles gives

Zy = exp(—pLV) ((éaxp(—ﬂmw:)) (g_;oexp(-ﬂmw)) )

= exp(-BRV)[] ((1 - exp (-Bn))™"). (4.22)
Hence by defining
-‘[-;-‘l;lnzo = E™(Q) == L,(@) + B(@) , (4.23)
we have i 1+ K
B(Q) = 5] @ In (1 - exp (—Bwn)) , (4.24)

where the discrete modes w; have been replaced by wy = vVK? + (23 and the sum
replaced by the integration 3; — V[ d*K/(27)} .

The evaluation of < Hiy >7 , the other term in V{ in (4.21) involves
the calculation of < 47 >r and < Jr‘ >r . At zero temperature these would
give Io(2) and 3I2(?) respectively. Hajj and Stevenson have shown by detailed

calculation that for finite temperature generalization of these results I,(?) is to be
replaced by I;7(2), where

() = L) + B(Q) =< §* >r (4.25)

ith
v &fK 1

° 7 J @)y (exp (Bon) — 1)

The term < ¢* >p equals 3 (< & >T)2 up to a volume suppressed term, as at zero
temperature. A similar result holds for higher powers.

(4.26)

We now define FTDGEP by a direct extension of the technique de-
scribed above. At finite densities wy — wy — u and so replace

ET(0) = E™(Q) = L(@) + I * (427)
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and

IT(Q) = (@) = L) + I *(92) (4.28)
where
~ &K

1
= @ e AT

(4.30)

The final result can be summarized thus: the FTDGEP is obtained
from the GEP by the replacements

L(Q) - ™(Q), L&) — E™@). (4.31)
Furthermore, the relation
™))
—AZQ-(—) = QIFTP (4.32)

holds, so that the rule Iy(Q2) — If™°(Q) also applies to the £ equation (4.8).
For the ¢* -model described by eqn. (4.2) making use of the FTD
conversion expressions (4.31) in (4.7) we evaluate FTDGEP and obtain

VEFQ) = L(@)+ 5 (mh— ) (D) + sl + hadh + I H(0)

+% (mi, - ﬁz) B*Q)+ 2 ((Bfo(ﬁ)‘f’2 +35(Q) + 645 10 *
+BL(Q)IE *(Q) +3(L(D))?) (4.33)

Maultiple Phase Transitions

The complete FTD dependence of the effective potential (4.33) is carried by the
integrals 12 *(§}) and I *(§}). But it is difficult to analytically evaluate these
integrals in a closed form and hence to understand the characteristics of (4.33),
we resort to numerical methods. In Figs. 4.1-4.3 we show the results of numerical
studies made on the expression for the effective potential in the cutoff method.
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Values of the various parameters in (4.33) are selected in accordance with (4.3), so
as to have SSB. In Fig. 4.1, we plot the ‘_/;.a'—“ for various temperatures in the absence
of any chemical potential. It shows the usual finite temperature behaviour; starting
from a SSB phase, the increase of temperature restore the symmetry at a particular
critical temperature. In Fig. 4.2, Vcﬁ_" is plotted for various chemical potentials at
a non-zero temperature. We gee that, with the increase of chemical potential the
symmetry is restored and is broken a number of times and for an asymptotically
large value of x4 , the symmetry remains broken. In Fig. 4.3, we show the Vcﬁ'—“
for various temperatures at non-zero chemical potentials. As in Fig. 4.2, this also
show the existence of a temperature induced multiple phase transition. For a very
large value of temperature the symmetry is eventually restored, whatever be the
chemical potential. At zero temperature, variation of the chemical potential has no
influence on the spontaneously broken symmetry.

Another method of demonstrating the existence of multiple phase
transition is to compute the FTD dependent eflective scalar boson mass mg, , from
(4.33) by means of the relations

¢ VI
m}, = —T;_- lig=or - (4.34)
This gives
m5 ,=my+As (Io(ﬁ) +I¢ (ﬂ)) . (4.35)

Numerical evaluation of the expression (4.35) can be done and the
results are shown in Figs. 4.4 and 4.5. The variation of m} , with chemical potential
at a non-zero temperature is shown in Fig. 4.4. Fig. 4.5 shows the variation of mf,. M

with temperature at non-zero chemical potential. These figures also indicate the
same the FTD behaviour we found in Figs. 4.1-4.3.

To confirm the existence of temperature and density induced multiple
phase transitions, we shall now carry out an analytical study of effective potential
(4.33) employing a high temperature approximation. To do this, we Taylor expand
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the integrals I #(Q2) and I? #(1) in 8 to O(f# ) to obtain

BH®) = oy (7500~ ) — o (exp (82~ ) 1)

Lk o B — p)
_m-u))+8+1’m( 4n )+O(ﬂz) (4.36)
and
L (] QD@ p) 2
B = gt = " e
= 02 0 —
‘E,sz‘g'l” (exp (B(2 - ) - 1) - gl (____ﬂ( = "))
+0#) - (4.37)

The integrals Io({2) and I,(f2) are evaluated using a cutoff A for the momeatum
{96]. They yield

(@) = 15 (% (—%)2 +1-In (% + (%)2 +1 ) (4.38)
and

I,(ﬂ)=$ (% ((%)2+1)m_2_% (%)2 1-%111(%-!— (%)2+1 )
(4.39)

We calculate the critical values of temperature and density for these
phase transitions from the condition for vanishing of the effective mass mg, , in
(4.35). For u=0, the high temperature approximation (4.38) yield BHD) ~
1/(124) . Hence the critical temperature is

% = —6m, — 6Apo(S)) . (4.40)

c

There is only one critical temperature and this temperature correspond to the sym-
metry restoration transition. However for s # 0, the integral I5* #({2) given in (4.38)
contain terms corresponding to 1/82, 1/8, B, /,.... Inclusion of each higher order
term in I3 *(§2) raise the power of 1/ term and u term in (4.35) and hence leads to
the existence of multiple solutions. This will result in the possibility of temperature
and density dependent multiple phase transitions.
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4.2 FTDGEP in the Autonomous Version

As has been discussed in Sec. 1.3.2 the GEP allows a sst of renormalization condi-
tions in (1.116)-(1.118) leading to what is called the autonomous version. Within
this scheme the FTD substitution I, — I}™ gives the following modified 2 equation:

ﬁ’=-§-¢3+7_-;1-(;;) (m§+£%(ln (g)—1)+§l§“(ﬁ)). (4.41)

FTDGEP can now be computed by the first derivative method of Hajj and Stevenson
{101} to yield

2
VA (@) = D+% mi o3 + 17275 o (ln (3;‘}2) - g) I #(§1)(4.42)

evaluated at Q2 = (2/3) 82 , where D is the FTD independent vacuum energy
constant. A numerical study of (4.42) made by us demonstrates the same FTD
behaviour as we have come across in the cutoff version of GEP, This is also an-
alytically verified using the high temperature approximation (4.37) for I# *({}) in
eqn.(4.42).



Chapter 5

Conclusions and Applications

The central result of this thesis has been the demonstration that in theories with a
non-zero bosonic chemnical potential the variation of temperature can lead to multi-
ple phase transitions. This has been shown using the one-loop effective potential for
complex ¢* and abelian Higgs model and also using the gaussian effective potential
method for ¢*-model. We expect these results would hold even in models involving
non-abelian gauge fields for the reason that symmetry breaking mechanism is com-
mon to all these models. In this concluding chapter, we examine the significance of
the results obtained and discuss their probable applications. We envisage two broad
classes of applications. One is to the cosmological models of the early Universe and
the other is to solid state phenomena, particularly to superconductivity. While we
are able to make only some general observations on cosmological applications, we
make somewhat more detailed statements on applications to superconductivity and
make contact with some recent experimental results on high T, superconductors.

5.1 Cosmological Applications

In cosmological models based on grand unification the Universe begins in a highly
symmetric state and as it expands and cools several phase transitions occur, each one
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corresponding to one stage of symmetry breaking. If the Higgs mechanism is taken
literally and assume that Higgs particles may have existed with significant density
in the early Universe, it becomes necessary to investigate the consequences of the
tinite chemical potential of such particles. Our investigations assume significance
in this context and the results we have obtained would imply that for each stage of
symmetry breakdown there must have occurred several phase transitions. It will be
the last one in the sequence which will be mainly responsible for whatever relies we
obeerve today. If this scenario is actually realized it can result modifications to many
cosmological estimates. For example, the GUT monopole and its production rate
will be affected by multiple transitions. The inflationary models will also be affected
by this possibility. Whether these modifications will be significant or whether they
will produce any observable signature can be decided only after detailed studies
on models involving non-abelian gauge models. This will also require a better
understanding of the Higgs particles.

5.2 High Temperature Superconductivity

As is well known the complex ¢*-model discussed in the previous chapters is a
covariant version of the Ginzburg-Landau (GL) theory of phase transitions in su-
perconductivity [2]. With the inclusion of electromagnetic fields this becomes the
abelian Higgs model. An accurate phenomenological description of the familiar su-
perconducting states is given by these theories. ¢ may be considered as an order
parameter or in a microscopic point of view related to the wave functions of Cooper
pairs. The low temperature with SSB is the superconducting state. As temperature

is raised symmetry is restored and superconductivity disappears above the critical
temperature 7.

One of the exciting developments in physics during the last decade has
been the discovery of a new class of axide materials which have high superconduct-
ing transition temperatures (high 7.)[137-139]. Many questions relating to nature
and mechanism of superconductivity in these materials remain unanswered. Many
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theoretical models, phenomenological as well as microscopic, have been proposed.
Whether a simple extension of the BCS theory will be sufficient is a hotly debated
question. Here we describe briefly some unusual features of the superconducting
state of the high T, materials.

A superconducting phase transition is characterized by a specific heat
anomaly pear the transition temperature. The sharp break is somewhat smoothened
by thermal fluctuations near 7, and all ordinary superconductors show a peak in
their specific heat versus temperature curve. Surprisingly, in high 7, superconduc-
tors several experimenters have reported the existence of two neighbouring peaks
[140-142]. The interpretation of these two peaks has no unanimity in literature. One
of the difficulties in coming to a definite conclusion is the lack of accurate published
data in which an adequate variety of experiments, eg., IR absorption, tunneling,
critical field, specific heats, resistivity were performed on the same sample. The ex-
perimental situation upto 1990 has been reviewed by Choy et al {143} who concluded
that the double peaks represent two genuine superconducting transitions. A recent
experimental measurement by Seyoum et al [144] of resistivity on high T, thallium
based superconducting sample gives direct evidence for superconducting - normal -
superconducting transitions. This is referred to as reentrant superconductivity.

A phenomenological explanation of the double transition has been
developed by Choy et al by an extended GL theory with a two component order
parameter. There have also been attempts to explain this through a BCS approach
on an anisotropic layered superconductor. However the quantitative success of

these models in accounting for all the features of the transition have not so far been
demonstrated.

We shall now attempt to relate the double transition or reemtrant
transition observed in high T; superconductors to the results reported earlier in this
thesis. With the inclusion of the bosonic chemical potential we have cbserved the
existence of multiple phase transitions. To show this more explicitly in relation to
experimental transitions let us compute the specific heat in the ¢* model. In the
finite temperature and density gauseian effective potential method we had obtained
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the free energy of the ¢* model (see Sec. 4.1) from which the specific heat may be
obtained

-8 1 BVi: K
Cor = 50/A (fa 8(10/5)) (5.1)
A? 7 _02
= D)~ 3 O + 500 (T 403 (44 1le) + 7)) - T2)

(5.2)
where

(G-1)
E(Q) f' 212 Wi ((G 1) /ﬁ) ( 8 - (wk - “)(G + 1)) ’ (5'3)

F(Q)=/°'dKK’ PG (wy — 1)

o (G-1 (54)

o [ ()00 B a-y) oo
and

G=exp(B(wp— p)); wr=VK+Q2. (5.6)

We have evaluated this numerically and plotted the result in Fig. 5.1. The existence
of multiple peaks is clear.

As already noted with a finite bosonic chemical potential the ¢* or
abelian Higgs model will exhibit multiple or reentrant transitions. In the context of
superconductivity these corresponds to superconducting - normal - superconducting
transition. The temperature separation of these transitions, the number of such
transitions and other details relating to a high 7, superconductor can be obtained
only if we are somehow able to fix the relevant parameters in this model. Such
studies are not attempted here.

As far as we know reentrant transitions or multiple transitions are
exhibited by two classes of materials, conventional granular superconductors and
high 7, superconductors. Granular superconductors are arrays of Josephson junc-
tions and their properties depend on the tunneling mechanism to a certain extent.
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Our interest here is only on high 7, nongranular materials which exhibit reentrant
transitions. The question arise as to why conventional superconductors do not ex-
hibit this behaviour. In our approach, this becomes the question as to why bosonic
chemical potential is relevant to high T, superconductors but not to conveational
ones. An explanation for this fact can be given in terms of the mechanism involved
in the superconducting phenomenon.

The conventional superconductors are described by BCS theory. The
ground state of a superconductor can be looked upon as a condensate of Cooper
pairs (bosons). However, the Cooper pairs exist only below T, and disappear at
temperatures above T.. Such bosons can not be assigned a chemical potential.

The mechanism of superconductivity in axide superconductors is not
yet clear. Various proposals have been made [145-147]. A major question is whether
it is due to the usual BCS type pairing of fermions in k-epace or due to real space
pairs pre-existing at temperatures well above T.. There are reasons to suppose
that the latter may be the possibility. The bipolaron raodel of superconductivity
is a realization of such a mechanism [148]. In this model the superconductivity
is quite analogues to the superconductivity in He'. In such a real space boson
condensation, bosonic chemical potential plays an important role. Seen from this
point, the inclusion of chemical potential in the GL approach (as we have done)
can be justified if the mechanism is one of a real space condensation. We hope that
further elaboration of the work reported here will be useful in the phenomenological
understanding of high T, superconductivity.
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