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PREFACE

The study of temperature and density dependent effects in field theories with spon­

taneous symmetry breaking (SSB) has attracted considerable attention during the

last decades mainly because of its relevance to the understanding of several im­

portant issues in cosmology and condensed matter physics. We have undertaken

studies of phase transitions in certain models of gauge and non-gauge theories at

flnite temperature and finite density (FI'FD) using the perturbative as well 88 the

non-perturbatlve methods of calculatJon. We find that in certain field theoretical

models with SSB at finite temperatures, the increase of bosonic density or tem­

perature induce multiple phase transitions. The thesis, which is spread over five

chapters contain a detailed account of these studies.

Chapter 1 is an introductory chapter, which gives the necessary back­

ground for the work done in later cha;,lters. In the earlier part of this chapter,

we shall be concerned with the fonnal content of FfFD and the perturbative loop

expansion method of evaluating effective potential using Feynman path integral

technique. The basic ideas on phase transitions in field theories are also briefly

mentioned, In the later part, we review the gaussian effective potential (GEP)

method which is 8 non-perturbative approach used in field theory.

In chapter 2, we study the phase transitions in 8 self interacting, 2­

component q,·-tbeory with 0(2) symmetry at finite bosonic densities, in the one-loop

and improved one-loop approximations. The behavior of effective m8BS and effective

coupling constant are analyzed. It is shown that at non-zero temperatures, 88 the
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chemical potential p corresponding to 8 conserved bosonlc charge is increased from

zero, symmetry restoration takes place at a finite value of u: However as the density

is increased further, the symmetry is again broken at 8 sufficiently large value of

Jl. A similar result is obtained as temperature is increased with 8 finite p: The

existence of two critical densities and critical temperatures are demonstrated in the

high temperature limit. The validity of these calculations for all temperatures is

established by numerical methods, making them applicable for cold dense matter

88 well. However t 8t zero temperatures chemical potential has no effect at least at

the level of approximation considered. These one-loop results are shown to be valid

in the improved one-loop calculations also, where the imaginary parts of effective

potential are removed by taking into account the effect of multiple insertions of

quadratically divergent bubbles.

In chapter 3, we study the U(l) invariant abelian Higgs model at

ITFD at the one-loop level of approximation and show the existence of density

induced double phase transitions. Following the real time formalism of finite tem­

perature field theory, we define 8 FI'FD dependent nl8S8 on the mass-shell of the

particle, at temperature zero and chemical potential zero, by including momentum

dependent self energy diagrams. The spontaneously broken symmetry is restored at

a finite chemical potential is again broken at a further large value of p,. The critical

temperatures and critical densities responsible for these phase transitions are cal­

culated in the high temperature limit and the validity of these calculations for all

ranges of temperatures is established by numerical methods. We also demonstrate

the gauge invariance of these results. The effective potential is calculated in the

unitary gauge. The finite density behaviour (~r effective scalar and effective gauge
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coupling constants are studied and the results show an increase of gauge C(UJI,lh,g

constant with rise of p, , while the scalar coupling shows 8 reverse trend. However

for an asymptotically large value of p. , both these coupling constants reach their

tree level values.

Chapter 4 present a GEP study of FTFD phase transitions in >'-r/J4

model, making use of both the cutoff and autonomous versions of GEP. It is shown

that in the presence of 8SB at finite non-zero temperatures, increase of bosonic

chemical potential induces 8 sequence of symmetry restorations and symmetry

breakdowns. For an asymptotlcally large value of chemical potential, these mul­

tiple phase transitions end in 8 symmetry broken phase. Similarly in the case of

SSB at 8 finite non-zero value of bosonic chemical potential, increase of temperature

induces 8 series of symmetry restoring and symmetry breaking phase transitions.

For an asymptotically large value of temperature, symmetry remains restored. With

zero chemical potential, increase of temperature only restore the SSB phase, without

any multiple phase transition. We also study the FTFD behaviour of effective Higgs

m888. Possibility of multiple phase transitions 88 revealed by geussian approxima­

tion contrasts with the double phase transition found in perturbative analysis and

may be attributed to the DOIl-perturbative effects.

Chapter 5 presents a brief 8UlDIDary of our work and some possible

applications of the result obtained. After a brief discussion of possible cosmologi­

cal applications of our results, their relevance in the context of high temperature

superconductivity are discussed. The results of the specific heat calculations are'

presented and the experimental claims for the existence of reentrant superconduct-
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ing transitions in high Tc materials which support our results regarding multiple

phase transitions are discussed.

Most of the work presented in the thesis has been published or communicated for

publication in the form of following papers:
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V. J. Peter and M. Sabir, 1nt. J. Mod. Phys. A 6 , 4063 (1991).

3. Gaussian Effective Potential Study of Finite Density Phase Transitions in c/J~ Model,

V. J. Peter and M. Sabir, J. Phys. A, (in press).
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V. J. Peter and M. Sabir, Pramana - J. Phys. , (communicated).

iv



CON'l'ENTS

I'REFACE

ACKNOWLEDGEMENTS v

1. INTRODUCTION 1

1.1 Finite 'Iemperature / Density Field Theory 2

1.2 Phase Transitions in Field Theories 20

1.3 Non-Perturbatlve Study of FTDF using Gaussian Approximation 23

2. PHASE TRANSITIONS IN 4J" THEORY 32

2.1 FTD Effect.ive Potential 33

2.2 Effective M8&8 and Effective Coupling Conetant 37

2.3 Improved One-Loop Approximation 40

3. PHASE TRANSITIONS IN TIlE ABELIAN IJIGGS MODEL 49

3.1 Effective Potentia) in the Unitary Gauge 50

3.2 Effective M888 52

3.3 Effective Coupling Constants 62

4. GEP STUDY OF FrD PHASE TRANSITIONS IN cfJ4 MODEL 69

4.1 Cutoff Version GEP 70

4.2 FTDGEP in the Autonomous Version 83

5. CONCLUSIONS AND APPLICATIONS 84

5.1 Cosmological Applications 84

5.2 High Temperature Superconductivity 85

APPENDIX 90

REFERENCES 93



Chapter 1

INTRODUCTION

Finite temperature and density field theories (FTDF) or statistica.l field theories

had their origin in early works of relativistic many body theories [1-7J. The present

interest in the amalgamation of field theory and statistical mechanics springs from

the realization that many problems encountered experimentally and theoretically

in particle physics have ma.ny body aspects [8J. In the context of spontaneously

broken gauge theories (SBGT) the observation of symmetry restoration at finite

temperature [4-10J has been one of the important reasons for the increased interest

in 1t"fDF since the early seventies. Since SBG'r provide tile basic frame work

for uuiflcation or fundamental interactions the possibility of phase transitions in

these theories at finite temperature / density has important implications especially

regarding the early stages of the universe in the hot big bang model (9, :I OJ, Another

important area of application of FTDF is in ttle study of phase transitions from

hadrouic to quark-gluon plasma,

Ir1 this introductory chapter, we outline tile general Iormalisrn of
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F'l~DF starting with the basic principles of statistical mechanics and field theory,

This development is most elegantly accomplished by means of Feynrnans functional

integral formalism, which is used here to go frorn an expression for the time transla­

tion operator exp(-iHt) 10 the partition function Tr(exp(-fJ(H - ~N»)) by means

of analytic continuatlon. Having a functional integral expression for the partitlon

function then allows a straight forward derlvatlon of dlagrammatlc rules for inter­

acting theories. Following this we describe two important techniques useful for the

study of finite "temperature / density phase transitions, One is the effective potential

method and lts evaluation by the loop expansion procedure. The other one is the

non-perturbatlve variational me1110d of gaussian effective poterrtlal. Some general

remarks on phase transitions in field theories are 0,180 given here.

1.1 Finite Temperature / Density Field Theory

1.1.1 Grand Canonical Partition Function

Consider 8, dynamical system characterised by 8. time independent Hamiltonian fJ

and a set of conserved number operators Nt • The equilibrium mate of 1he sy9terfi at

rest in 8, Large volume V is described by the grand-canonical density mat rix (11- 20)

p= exp ( -fJ(iI - IliNi))

where ~ is tile chemical potential of the r' species and

fJ= (kBT)-l = It-I

2

(J .1)

(1.2)



in units with the Boltsmann constant "B set equal to 1. The ensemble average of

an operator A is

A = n- pA
7rp

The grand canooicaJ partition function i'

(1.3)

(1.4)

The function Z=Z(V, T, 1J1t 1J21·· • ) is the single, most important function in ther­

modynamics. From it all other tn&D.dard thermodynamlc properties may be deter­

mined. For example, the pressure. panicle number, entropy. and energy are in the

infinite volume limit,

P::a T 81nZ
BV •

n. =T
8 1n Z

1 8~'

s= 8(T InZ) I

er
E= -PV+TS+~iNi.

(1.5)

(1.6)

(1.7)

(1.8)

The partition function (1.4) ma.y be formulated BB a path integral

by the following series of steps (21). First we take the independent states of the

syBteln to be the elgenstates of the Schrodinger picture field operators and imroduce

eigenstates I</J(:t) , t > of the Heisenberg picture field operators ~(t, x) by

~(t, rE) I 4J(:x:), t > = 4J(x) Iq,(x) , t », (1.9)

where c/J(x) are complex functions. The Schrodlnger picture field operators are

J(t =0, a:), and the corresponding eigenstares ] </J(x), t = 0 > are given by

~(t = 0, z) , c/J(z) , t = 0 > = 4J(x) , <fJ(x), t = 0 > . (} .10)
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'I'hen the partltlon function of ( 1.4) may be written explicitly 88 a summation over

the eigenstates:

Z = E < ,p(Z), t = 0 Iexp (-fJ(II- IlN)) I ,p(z),t = 0 > . (1.11)

Second, we make an analogy with the zero temperature field theory of a scalar field.

The transition amplitude written 88 a. path integral is

< cPl/(~),t"1 <fl(z),t' > = < 4J1/(~),t =0 Iexp(-aH(t" - t'» I<p'(x),t =0 >

ex jv,p jofrfIXP (i{Idt jtf:l: (1r: -1t(1r1 <!J») ) (1.12)

where the path integral is over all momentum functions 1f(t, x), and over field func­

tions tP(tJz) s&tisfying the boundary conditions

c/J(tll , x) =ql'(z), q,(t',z) =ql(z).

If, heuristically we introduce & imaginary 'time variable

and take the limits of integra.tion in ( 1.12) to be

(1.]3)

(1.14)

(1.15)

we obtain,

< ~J(X), t =0 I exp (-fJ (fJ - IlN)) I #(:1:), t =0 >

ex f V,p* 'Oq,f '01f* '01fexp ({drfcfx

('1f*O:; + '11": - 1t(1J'* 1 11", ,p*, rP ) +~)) 1 (1.16)



where c/J and 1r are now regarded BBfunctions of r and X, and the path integral is over

all functions 1r{'Tj x) arid over functions cIJ(1iz) satisfyirIg the boundary condltions

The final step is to take

<!J(O, x) = efJ'(x). (1,]1)

Ic/J"(x), t =0 > = 14l('z), t =0 > = I c/J(x) , t = 0 > (1.18)

in ( 1.16 ) and BUm over all eigenstates aB in (1.11). Then we obtain

ZCl: !~ >=-KO>Vq,* Vc/J V1f* V1fexp(tdr!d
3

rr; (i1f*: +i1l":' -1-£ +~)) ·
(1.19)

The boundary conditions (1.11) together with (1.18) mean that the path integral is

now restricted to functions c/J(1j x) which are periodic in T with

(1.20)

When the Lagrangian and Hamlltonian densltles take the form

and

(1.22)

the Integration over fr, may be carried out explicitly to obtain

Z = N(p)i~_vc/J· Vc/J exp ( - t dr!d3
x ( ( 8:;) (:)

-!(tP,q,*, Vq" V<fJ·) +,JI»
= H(fJ)!,mo- exp(tdrjd3x (t (c/J. c/J*.8p.c/J.8p."'*) +~») (1.23)
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where

and N(fJ) is 8, temperature dependent normaliaeaion factor.

1.1.2 Finite Temperature and density (FTD) Greens Func­
tions and Generating Functionals

FTD Greens functions are extremely useful objects which contain information about

the equilibrium thermodynamic properties of the FTDF system (22-25]. For sim­

plicity of presentation we shall restrict the discussion to 8, single complex scalar

field. The 2-point FTD Greens function is defined by

(1.24)

where

(1.25)

and T'7 is tile T- ordering operator which orders the fields from right to left in the

order of increasing T. The expectation value < > here means 8, thermal average

rather than just 8, vacuum expectation value.

(1.26)

where, the trace means to sum the matrix elements of the operators in the square

bracket between all independent states of the system. The method descrlbed earlier

for partltlon function earl be easily extended to obtain 8, path integral representation
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for the Greens functions. One finds:

a<Z)(Xll X2) = ~fVl/J· vt/J l/J.t/JexP(( dr!d3X(C(l/J,t/J.,8,.t/J,8,.t/J*) +~») ·
(1.21)

By 8,Ils,logy with zero temperature case,~ now introduce 8, generating

functional for FTD Green functions [26, 21]

W[.1J = ~fV4J· Vl/J (exp(tdrfd3z(C (t/J,l/J·,8,.c/J,8,.t/J*) +~») (1.28)

exp ( - tdr(J*(rt)4J +4>*J(x») ) ,

where the sources J are complex functions of z. The FTD Greens functions are

obtained from W[Jj by functional diff'erentl&tion

(1.29)

Usually, it is more convenient 10 work with Greens functions in [no­

mentum space. Fourier transformed FTD Green functions {]<t> ma.y be introduced

through

a(2)(kl,k2) 6(k1 +k2) (21r)3p - fdiit fdii2 f!Xp ( i (kt.xI +k2.x2) ) G(2)(xI ,x2) I

(1.30)

where

with
2",," •

CVn == p - '#-I,

7

k.f == W"T- K.X.

(1.31 )

(1.32)



and

(1.33)

The discreteness of the frequencies w" is a. consequence of the periodicity condition

(1.20).

A generating functional X(J] for connected FTD Green functions g(2)

ma.y be defined through

(1.34)

with the relations

(1.35)

and

(1.36)

1.1.3 Perturbation Theory and FeYJ1D18D Rules

In the case of a free complex scalar field with Lagrangian density

the generating functional can be evaluated exactly to yield the Greens function

with

G(z' - x) =a(:f' - z)

1~fd3K - -
A (fi - x) = p~ (211")3 exp (-ik(xI - x» A(k)

8

(1.38)

(1.39)



and

~(k) = - (w~ +KZ +m2)-1

where Wn is defined by (1.32).

If we have a Lngr8l1gian of the form

(1.40)

where £, represents a.n interaction term which is higher than quadratic in cP the

genera.ting functional can not be evalua.ted exactly. But using the result

(1.41)

a perturbation series can be developed by expanding the exponential operator as a.

power series. As is well known in the case of zero temperature field theory this leads

10 the perturbation evaluation of Greens function by means of Feynman diagrams,

The usual approach used for ordinary Greens functions can be easily

adopted 10 FTD Greens functions. The only difference arise because ko has beer!

replaced by iw" • and because va.rious factors of I no longer occur in Greens functions

and genera.ting functlonals, compared with the zero temperature case. The result­

ing Feynman rules for perturbatlve computation or the 2-point connected Greens

functions in 4J4-1heory are as follows [23, 25):

1. Draw all possible connected, 1opologically dlstlnct, graphs with 2 external lines ;

2. Wi1h each line carrying 'momentum' k = (iwft l K) we associate a factor

)

9



2. With each vertex of four lines carrying 'moments! kit k21k31k~ we associate a

factor (-A) J eonstralnlng the 'momenta' 80 that there is overall conservation

x -A

3. Integra.te and IIWI1 over each independent internal loop 'momentum' le = (w", .K)

with weight

1 f d3K

p~ (211},1
21m #I

W" =P - IIJ .

The corresponding modlflcatlons are made to the Feynman rules for

gauge fields. No factors of i for vertices or propagators,

1.1.4 Real Thne Formalism

The discussion of FTDF has so far been in the 80 called imaginary time formalism

or Ma.1subar& formalism which includes 8, discrete set of energies. The study of

dynamical problems requires the use of real time Greens functions which requires

a continuation from the discrete energies to the real axis, In principle, this can be

done by a process of analytic comlnuatlon, However, this process is mathematically

difficult and sometimes result in ambiguities. The time path method [25. 27-31J has

been developed BB 8J1 alternative scheme for real tlme FTDF. Since our interest is

not in formal developments and most of our calculation can be done satisfactorily in

1t18 imaginary time formalism, we do not describe these developments in detail, We

10



make use of real tlme Greens functions only in Chapter 3. The connection between

the real and lmaginary time Greens functions is summarised ln an appendix.

1.1.5 The Effective Potential Method

The concept of effective potential is 8. very useful one in understanding many im­

portent questions in quantum field theory, particularly those related to spontaneous

symmetry breaking (8SB) [32-36). The effective potential includes all quantum cor­

rections to the classical field theory potential. By minimizing the effective potential

the true ground state of the theory can be identified.

Effective Potential at Zero Temperature

Let us consider the simple case of a. scalar field with the generating functional

W[J] = !'D4J exp (i!tfx (,C(4J(x» +J(x) 4J(x») · (1.42)

When inW{J] is expanded in & functional Taylor series in J(x). the coefficients will

be the connected Greens functions

We define the classical field c/Je BB the vacuum expectation value of the operator c/J

in the presence of 1he source J(x)

tb (x) = SinW = « 0 I ~(z) I 0 >J) .
c 6J(~) <OIO>J

11
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The effective actlon of the classical field P(</Jc) is defined by the functional Legendre

transform

From this deflnltlon, it follows that

6r(~c) = -J(x).
&!JG

We can also expand r(4Je) in powers of q,a

(1.45)

(1.46)

It is possible to show that r(n)(Xl'" x,,) is the sum of all one- panicle irreducible

(JPI) Feynman diagrams with n external lines. AI1.eroa:tively we can expand the

effective action r(<pc) in powers of momentum about zero momentum, In position

space this expansion takes on the form

(1.48)

'The term without derivatives, v,,1/(4Jo) is called the effective potential. If c/Jc. is

constant in space and time, from (1.46) it follows that

dYe/I I
dq,c (J=D> =O. (1.49)

The vacuum expectatlon value of the full operator can be found by solving this

equation. In this case Veil can be expanded in terms of lPI Greens functions, first

writing r<") in momentum space

12



Substitution of this into (1.47) gives

Comparing (1.48) and Cl.51) we find that Ve/J(ePe-) which means sum of all lP]

diagrams with n external lines carrying zero mornenta

(1.52)

An elegant method particularly suited for study of non-perturbative

phenomena like 8SB is the loop expansion technique. This is an expansion according

to the increasing number of independent loops of connected Feynman diagrams.

Thus the lowest order graphs will be 'the Born diagrams or 'tree graphs. The next

order consists of 'the one-loop diagrams which have one integration over 'the internal

moments, etc. For 'the effective potential (1.52) each loop level still involves an

infinite summation corresponding 10 all possible lines. 'I'he USU&1 classical potential

is simply 'the flrtrl 'term (1he 'tree graphs ) of Ye//(<!Jc) in "this loop expansion. In

f&C1 it can be shown that, the loop expansion can be identified BB an expansion in

powers of the plancks constant h.

We now illustrate the calculatlon of effeetive potential in the simple

case of ).<j)4 theory in the one-loop approximation. The Lagrangian density is given

by

(1.53)

13



with

(1.54)

To calculate the effective potential in eqn (1.,52), we must sum all one-loop diagrams

with an even number of external lines having zero momenta (see Fig. 1.1). The JPI

Greens function is given by

where 8ft is the symmetry factor

S. _ (2n)!
" - 2"2n

(1.55)

(1.56)

+ + +

Fig. 1.1 One-loop diagrams contributing to the effective potential

14



corresponding to the fact that there are (2n)! ways to dlstrlbute 2n particles to the

external lines of the diagram and that interchanges of any two external llnes &t 8.

given vertex or reflections and rotations of n vertices on the ring do not lead to new

comributions. The no-loop and one-loop effective potential is "then given by

(1.51)

The integral is divergent. If i1 is cui of[ 8:\ Borne large momentum A, we ob1a.in

To remove the cut off dependence we introduce counter terms which have the same

structure BB the original potential

(1.59)

so 1ha:\ the renormalised effective potemial, given by

(1.60)

is finite and cut-off independent. The coefficients A and B in (1.59) can be deter­

mined by the renormallzatlon conditions

8Jld

- rtY.ll IA- ~ (~=O).

15

(1.61)

(1.62)



In this way we have

V_Inn/ = ! 2..1.2 ~..I.. _1_ (( z ~.,Lz)\ (mZ + (A/2)<J>~)
v 2m 'Pc + 4!'Pc + 64",2 m + 2 'Po n m2

_~m2.p~ _ ~)..2.p:) . (1.63)

The computation of one-loop effective potential can be easily mended

to gauge models. However, the comblnatorlal method is limited 10 one-loop and

to calculate the higher Loop effects systematically functional techniques have been

employed (20].

1.1.6 Finite 'Temperarure Effective Potential (FTEP)

The technique of effective potential can be easily generalized 10 the case of ftni'\e

temperature field theory by replacing the generating functional and Greens func­

tions &1 zero temperature by those &1 finite 'temperatures (21]. Let us define &

classical field q,c(f) by

(1.64)

From (1.29)

~j = < ~(ii) >J (1.65)

where < ~(z) >J is the expectation value (thermal average) of ~(z) in the presence

of the source J. Using (1.34)

For zero source

~ (_) < ~(i) >J
'Pt::r; == WI.1J ·

16
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since

Moreover,

W'[O] = 1.

A _ ne (exp(- p!J)~(r, :J:)]

< ~('Z) > = [ .tn] f"'V

11" ap(-fJnJ

(1.68)

(1.69)

where we have used the connection between the field operator at time 1 and time

zero, with t --+ -ire Combining (1.67) and (l.W),

cPc(x) =< ~(OJ x) > , J = o. (1.70)

Thus, for zero source, <p(x) is the expectatlon value (thermal &verage) of ~(Ot f),

the Schrodinger picture field operator. An effective action is defined by

and the source is given by

J(- ) = _ 8f'[~c]
lE ~c(x) ·

IPI temperature Greens functions 1'<") t m~ be defined by the expansion

(1.71)

(1.72)

and momentum space JPl temperature Greens functions, f'<H>. by

f(N)(kh .. · kN)(21r)3p = f dX1.. · fdXN exp[i(k1.Xl +....tXN)] r<~(Xh'" :iN)

(1.14)

with 5{k1+. ··+kN) as in (1.33). The FTEP VJ/(~r:> ma.y be defined by all expa.nsion

(1.75)

17



(1.16)

(l.TT)

If the classical field has no spatial (or 7'") dependence then only the V!fJ(~c) term in

the expansion (1.15 ) need 10 be retained, and (1.72) becomes

dV'/U=J.
dt$c

If we set 'the source term 10 zero, then from (1.70) <Pc has "the significance of 'the

expectation value (thermal average) of 'the field operator, and

dV~l =0.
dcPc

Thus when it has no spatial variation. the expectation value of the field operator

at finite temperature may be obtained by minimizing the FTEP.

Using the inverse of (1.74) in (1.73). the effective potential ma.y be

expended in terms of Fourier transformed tempera.ture Greens functions e.t zero

'momema'

(1 ~18)

To actually compute the FTEP, we can use the loop expansion method

discussed earlier for the zero temperature case. The diagrams which contribute to

the FTEP are 88J1le as that of zero temperature effective potential. MaJdng use

of the Feynman rules discussed in Sec. 1.1.3 we get the effective potential. Thi, is

shown below by computing V.1/ upto the one-loop terms for spinless particles.

Consider the simplest model of one self interacting bose field described

by the Lagrangian (1.53). The tree level potential is

(1.79)

18



First we write the one-loop effective potential at zero temperature (37-39]. Dia­

grammatically we have

+ +

+

Fig. 1.2

+ + + .... ~

so that ~11(jJ) where. (fJ is a. constant field, can be written 88

- • 00 f cfk 1 ( ().12)~2 )"- Vo(<!» +tE ---
,,:=1 (211")4 2,& Jil - m2 + if..

= - if cfJc ( (A/2)(f-)
VD(~) - 2 (21fr in 1 - /il- ma+ i~. • (1.80)

Aftera. Wick rotation k'> = ik~, ks =(-iko, K), k2 = (JcO)2_K2 = _k~2 - K2 =

-ki. Eqn. (1.80) can be cast BB

(1.81)

At finite temperature, the Fig. 1.2 can be computed with the help of the rules of

Sec. 1.1.3:
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- 1 00 f d'K (4~n2 )
= VO(</» +2P~ (2..-)3 In T +~N' I

where eAt = l(2 +APt M2 =m2 + (A/2)4l'.

(1.82)

Tb.e sum over n in (1.82) diverges, but the infinite pa.r1 does not

depend on~. The finite pa.rt which contains the t/rdependence, ca.n be computed

to give

(1.83)

The firs1 integral in (1.8S) is just the one-loop effective potential &1

zero-temperature. It is

f d'K EM" -if et4k ( a ~ a An .)
(211")52 ="2 (211")4 in -ko +1\ - +m + '2Y' -.~ ·

From (1.8') a.nd (1.81) we see tb.&t

(1.84)

(1,85)

(1.86)

with VC'JIi'°(~) given by (1.81) zero temperature one-loop effective potential and

7¥O - If d'K
V.1/ (</» = P (2..-)3 in (1 - exp(-(JEll»'

1.2 Phase Transitions in Field Theories

A symmetry is said to be spontaneously broken if ePc = < 0 I <I> I 0 > ~ 0 which

corresponds to 8, minimum of the effective potential. At finite temperatures the
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ground state value of the field 4J • does not correspond to the minimum of the

effective potential ~ifO(Ji). but to the minimum of the FTEP V/JJ(;{J). ThUB even if

the minimum of the Yelr(Ji) occurs at Ji = o :I O. very often. for sufficiently large

temperatures, 1he minimum or 'Ye11(Jj) is 801 Ji = 0: this phenomenon is known 8.B

ByIllmetry restoration a1 high temperature [2-6. 21, 40]. This gives rise to the phase

transition from iJ =0 10 4i = a:

To illustrate the analysis of such phase transhlons consider the simple

model corresponding to (1.53) with m 2>O. Ai the tree level, the possible ground

states of the theory determined by (8VD/lJ4,) = 0 are 4J = 0 and'" = ±: (m/VX).
The sta.te jJ = 0 is 8, unstable local maximum and the energetically favored .na.1es

corresponding to the minimum of V(~). a.t ~ = ± (m/v>:). are shown in Fig. 1.3.

The symmetry /J ..... -~ of the Legrangien (1.53) is spontaneously broken.

To investigate what happens to spontaneously broken symmetry at

finite temperatures, one mWJ\ compute the FTEP. Ai high temperatures this can

be approximated as [5, 21J:
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IJ 1 2 2 1 4 ~ (m2+(..\/2)~Z)
V~1J = - 2m 41 - 41.\41 - 90{J" + 24{Jl +O(fJ). (1.87)

The behaviour of v.1/ is shown in Fig. 1.4 for a number of different temperatures. It

is clear from Fig. 1.4 that as T riIJ8IJ, the equilibrium value of c/J at the minimum of

V!f/ decreases and above some critical tempera.ture Tc the only remaining minimum

is the one at c/J = 0, l.e., symmetry is restored. Eqn.(1.87) then implies that the field

q, decreases continuously to zero with rising temperature. The criticaJ temperature

for this phase transltlon is determined by the condition

2 8~11
mlJ = 84J2. 1(4#=0) =0 I

where I1lfJ is called the temperature dependent m8BB. In this model we have

T z _ ..!. _ -24m2

e - ~ - A

(1.88)

(1.89)

The method employed in studying the phase transhlons in scalar models can be

extended to theories involving gauge fields.

b a
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1.3 Non Perturbative Study of FTDF using
Gaussian Approximation

Gaussian approxlmation is a, non-perturbatlve variational principle based on rather

elementary and conceptually simple ideas well known from quantum mechanics of

many body 8Y&1ems. Making use of this principle and a. Gaussian trial wave func­

tional for the ground state. a modified effective potential, namely the Gausslan

effective potential (GEP) may be computed. In addition 10 its intuitive appeal [41,

42), 'this GEP is known to contain the one-loop and leading order I/N results in the

appropriate limiting cases [43-46). The technlque has been extensively developed,

particularly in 'the last few years along the lines initiated by Stevenson, Consoll and

others [41-91). These various works differ in certain technicalities in the computa­

tion. It has been established that, in four dimensions a. simple and viable non-trivia!

theory called precarious theory arising from a bare coupling constant of a. partic-

ular negative infinitesimal form exist. Without regularization. this is stable, but

does not possess 8SB. However using a flnlte ultraviolet cutoff for the momentum

integrals 8SB can be induced. This cutoff version GEP method has been applied

10 various scalar and fermion models (92-96]. Ni et al [95, 97] have evaluated the

GEP in cutoff version of certain gauge models including SU(2)xU(1) and obtained

limits on Hlggs boson mass,

Another version of GEP that has been shown to exist is the au-

tonomous form, which possess 8SB. 8J1d allows a. positlw value for the bare coupling

COrJ.B't&[11 [97-101). Bu1 its stability depends strongly on the wave function renor-
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rnaliaation and It is not definitely established whether &U10rlOU10Wi theory is only

an artifact of the Gaussian approximation or not. Extension of the GEP method

to finite temperature field theory has been done by ma.ny authors (99-106]. In the

evaluation of finne temperature GEP. puzzling nature of some of the earlier resul1s

were carefully analysed by Stevenson and Hajj (101). They had shown that, increase

of temperature restores "the spontaneously broken Byfnme1ry in scalar model. This

section is devoted to review the finite temperature GEP (FTGEP) formalism.

1.3.1 Principle of GEP

We begin with the zero temperature definnion of GEp:. For definiteness. we shall

consider A4J4 theory in 3+ 1 dimensions. It is described by '\be Lagra.ngi&n

(1.90)

which corresponds to a. Ha.miLtoni&n density

(1.91)

Let us write the field <I> as <Po +~ . where <Po is a, constant clusica!

field, and ~ is a, quantum free field of mass O. The state I 0 > is then defined as

the vacuum state of this free field of m8BS O. Following the usual field theoretical

conventions, we write

and hence
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where the energy component of "tie four vector k~ is

(1.94)

The creatlon and a.nnihlla.tion operators obey the usual commutation rela.tion

The sta.te , 0 > has the defining property

an(k) 10 >=0

8Jld

'The GEll is 1hen defined BB

(1.96)

(1.97)

(1.98)

The evaluation of Va(q,o.O) for the Hamiltonian (1.91) is a straight

forward exercise (107. l~]. Term by term we have

(1.99)

(1.100)

and
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Introducing the notatlon

(1.102)

we can write the result as

(1.103)

The GEP itself, Vc(<Po), is obtained by minimizing this expression with respect to

the variational parameter (1 , in the range 0 < (1 < 00 . We denote the optimum

value of 0 by 0 . Normally, 0 will be given by the equation

which, wing the resuh 1ha,"

dINan =(2N- 1)01H-l

ius to the 'O-equationS

1
-2 mB (- 2)o = 12 +AB 10(0) + 4>0 •

Using (1.106) we write VG(</>o) in the form

(1.104)

(1.105)

(1.106)

(1.101)

The O-equation in (1.106) may h&V8 more th811 one solution, and care must be taken

to choose the solution which is 8, minimum of Vd i also the solution must n01 occur

at the end point of the range 0 < () < 00 • The argument of the JN integrals whim

is 0, implicitly depends OD c/Jo through (1.106).
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1.3.2 RenorDlaJization

The above expressiorl for the GEP are full of divergent integrals and non-finite bare

pua.meters mB and AB- It is possible to re-express Va(~) &8 & m&nifestly finite

function of ~ , by Including renorma.llzed parameters mR and AR I except for &

divergent, but t/Jo independent coost&n1 D

(1.108)

where 00 is the solution to the Cl equation &1 4Jo = o. The cons\a.nt D represents

the V&CUUln energy density of the tPo =0 vacuum. The presence of this diverseIrt

constant has no physical consequences, since only energy differences, not ahIolu1e

energies are measurabie. A convenient choice for the two new parameters is to

define

(1.109)

a.nd

(1.110)

(1.111)

It can be shown that the GEP is ex&Ctly renormallsatlon group ln~ia.nt (59, 60].

Tha.t is, the physica.l content of the results &re the B8J1le no ma.t1er how one 0000888

to pa.rameterize them. Elimina.tlng ms and AB in favour of mR and )..R. giVEII
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where

~(z) = z Inz - :z: + 1,

and

L3(z ) == ~(2Z2 ln e - 2(z - 1) - 3(z - 1)2).

Similarly the 0 equatlon becomes

(1.112)

Both these equations contain the divergent integral [-1. We shall therefore 1re&11-1

as a.rbitra.rily large and positive, taking the limit 1-1 --+ 00. The relation be\\V8en As

and AB • eqn.(1.110), allows the possibiUty that AB is a ftni1e parameter, However a

detailed analysis snow that finite values. positive or negative do not lead to viable

models. A positive value of AB which vanlshes like 1/I -J lead only to & trivial theory.

A natural theory is. however, obtained if

-1
AB == 6L

1
•

With tws value of AB GEP (1.l07) becomes

() 1 2 2 m~ ( )2 Ls(:I:)m~
VG C;0,0 == D +2zmRC;o - 16AR z - 1 + 32r

(1.113)

(1.114)

dropping terms of order 1/1_1 or smaller. VG is now finite for a.nyo. The 0 equation

is also manifestly flnlte, since (1.113) inserted lnto(1.112) gives

(:I: - 1) =:; (L2(Z) + 1~t~) . (1.115)

11 can be shown 1h&1 the GEP (1.114) is bounded from above and below a.nd de­

scribes & phase with massive particle interactions through an at'\r&etiv8 force.
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Cutoff Version of GEP

The above form of GEP has nothing to do with the Higp mechanism, since it has no

SSB. However I 8SB can be induced in the model, by including a.n ultraviolet cutoff

A for the momentum integrals. The stability property of cutoff ~~ a.nd ~ &re the

opposite of one another. In cutoff ,4 • positive AB giV81 a. bounded potential with

a pair of minima &t very large 4Jo. corresponding to 8, SSB phase, while negative

A8 leads to an unbounded potential (42). However in the absence of & UV cutoff

the situatlon is the reverse: positive AB gives aa unbounded potential, while

8. r1ega,tive AB of the form -1/(6/-1) leads to & stable. non-trivial theory. with

unbroken symmetry.

More detailed discussion about cutoff' version GEP wUl be given in chapter ,.

Autonomous Version of GEP

S1evenson a.nd 'Iarraeh [98] were the firs1 to note that with & re-ecaling of the field

<Po • there exists a different renormalisation method leading to & stable, non-trivial

GEP with positive AB. Consider & renormallsatlon of the 1b.eory in which

(1.116)

(1 ;111)

a.nd the field is rescaled by

(1.118)
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(1.120)

(1.121)

This leads 10 a GEP which, aB A --+ 00, remains m&nifeB1ly finite ln 'terms of

~oJ mo and p. By a str&ight forwa.rd calculatlen one obtains VG(~D);

- 12 2 ~3 ( (2~) 3) ()Va(+o) =D + '2mo+o + 144-r In 3'; - '2 · 1.119

TIlls GEP is valid Cor all values ~o. Eqn.(1.119) allows SSB when~ is nep1iv8 or

not too lazge. It is then convenient 10 rewrite it in terms of 1b.e vacuum value of ~o

• denoted by Q • which is given by

(
2Q2

) 367r2m:
In 9 2 = 1- 2 •

~p Q

Elimina:ting p in favor of ex gives

r» () 1 2 2 ( 4>~ ) .3 ( (~~) 1)
VG +0 - D= 2mo+o 1 - 2~ + 144~ In cxZ - '2 ·

This GEP is renormallsation group inva.ri&n1 up 10 the rescaJing of ~D •

1.3.3 FTGEP

In equilibrium thermodynamics the GEP at finite values of temperature T is eval­

uated by Stevenson (101] by minimizing the HeLrnholtz free energy F of a. quantum

field system in 8. finite voLume V calculated from the partltlon function Z

and

Z =1r(exp(-{JH» (1.122)

(1.124)

1
F = -p in Z . (1.123)

This amoums to a. replacement of 11(0 ) and 10(0 ) integrals in (1.]21) by 11(0) +
PleO) and /0(0) +~(O) respectively, where

- 1JdSK
Jf(O) - P (2".)3 In(1 - exp(-~.»
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and

(1.125)

with

Following this rule it is shown that [101], for the autonomous </14 model the FTGEP

is obtained in the form

(1.126)

where 11 is & pa.ra.meter with the dimension of m&l8. The consta.nt of integrlLtion

D in (1.126) is temperature independent and is the usual divergent vacuum energy

constant.
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Chapter 2

Phase Transitions in 4J4 Theory

The study of FTD effects in field theories with SSB has a,ttraded oonsiderahle

a.ttention during the last two decades, malnly because of itl relevance to the under­

standing of several important cosmological question. (9]. Though most COBmological

scenarios a.re based on models in which symmetrie8 are restored at sufficiently high

temperatures, there also exist models where symmetry a.lwa.ys remains broken or

is restored at a finite temperature but is broken again &t It higher tempera.ture (5,

6, 109-112]. The effect of fermion density increase has also been investiga.ted.. 11

happens th&t while in non-gauge models symmetry is restored a.t high densities.

in gauge ones Bymme1ry breaking increases further with increasing deDBiiy [9, 26).

The nature of the phase tranaitlons thus depends on the detailed relations among

temperature, density and the va.rious parameters of a model.

In spontaneously broken gauge models, in addition to fermlonlc mat­

tar, bosonic matter is present in the form of Higgs particles. Though direct ex­

perimental searches have fa.iled to reveal the existence of Hlggs particles of mass

32



(113) less than 6 GeV in 'the absence of viable alternatlves, we 'take the view 'that

such particles must be considered seriously. 11 then becomes signlfiC&l.l1 to study

the finite density effects of these particles in the early universe. Wi1h this b&ck­

ground, we ilIVes1ig&1e in this chapter the effec1 of the bosonic chemical potential on

phase 1ransi1ions. By means of & perturbatlve &n&lysis of a 2-componen1 4J4 theory

with 0(2) symme1ry in the presence of fini1e chemical potemial corresponding 10 &

conserved bosonic charge, i1 is seen through the effective potemial method 1ha:\ &1

non-zero temperatures BB the chemical potential #J is increased from zero IJ)'mm8'\ry

restoration takes place a1 finite values of #J. However BB the densi1y is increased

further, the symmetry is agaln broken &1 8, sufficiently large value of #J • The ex1&­

tence of 1wo critical densities is demonstrated by one-loop and improved one-loop

apprcedmatlons 8,1 finhe temperature and densities. 11 is fw1her shown 1ba,1 &1 sero

temperatures chemical potemial has no effect, 8:\ leas1 a.11he level of approxima1ion

considered here.

2.1 FTD Effective Potential

Consider the model of 8, self lnteracling 2-componem spinless field wi1h an 0(2)

lnvariam interaction described by the Lagrangian,

a a 1,2. (2.1)

We shall study 8. weak coupling case (0 < A << 1) with tacbyonic mass for the

field (m2 < 0) &t finite tempera..ture and density, The counter 1erms which must be
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added 10 (2.1) are

~1 6m2~2 _ ~~4J4 • (2.2)

To compute the effedlve potential "y':~P(~)J we shift ~. in .c(~II(X» by constant

fields c!Ja and drop all terms independent of linear in </1:. In quantum sta.tis1ics

at non-zero chemical potentlal, the effective potential Ve1i P is given by the same

lPI vacuum diagrams as ln field theory with w,. ln the integrals for the diagrams

replaced by (i.u - 21rn/p) and lntegratlon over w,. replaced by summatlon over n.

The lowest order effective potential is the tree approximation,

(2.3)

which is FTD independent. The one-loop term is computed from Fig. 2.1 BB

(2.4)

where

Fig. 2.1 The one-loop contribution 10 the effective potential
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and

L (. K) .,.th · 211'71
If; = lW"s ""'. w.. = tlJ - T ·

Eqn.(2.4) CIUl be expanded to give

~ #£ 1 ~f d3
K [ 1 &~ I~ &. 6Mt 6~]

VI' = 2fJ~ (21r)3 In(k +Mi) +In(~ - Mi> - J(2 _ },ji - J(2 _ ~ I

(2.5)

where

'loll 2. 6>' 2-
6Mi =Srn +-~

2

5~ = 6m2+5:</12.

In (2.5). we need consider only the first two terms, as the others get

caaceled in the next order of calculation. The first term Is

The summation m~ be done by defining

(2.7)

Hence

:; = ~ (2KPZ/ (4,,2 (n -~ (IJ +JJ(2 +M:))
(n -~ (IJ - JJ(2 +~)) ) ) · (2.8)

Using the relation,

00 1 1r .E ( )( )=- (oot(n) - cot("1I» (2.9)
ft=-OO n - x n - y y- z
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we find

o =ln ( sin2(Pi;) COS2(~JJ(2 +~) -co" (P:)sin
2(~JJ(2 +14)).

(2.10)

A similar computation of the second term in (2.5) give the one-loop effective p0­

temial 'term in the form

vt·I£(~2) = 4~fJ.r dK KZ

.[In [sm2 (Pi;) co~ (Pi:l
) _ co~ (Pi;) sin2 (Pi:1)]

+ln [8m2(P~) cor (Pi:2) _cor (Pi;) sin2 (Pi:2)]]
(2.11)

where Xl = 1(2.+'" and X~ = K2+ ~. From (2.3) and (2,]1), we find

where B and C are the renormallsatlon constants given by

B = -~ f tJ41c 1
2 (2w)4 k2 - m2 + it.

and
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2.2 Effective Mass and Effective Coupling Con­
stant

From the effective potential, it is possible to calculate many other physica.lly inter­

esting quantlties, The temperature and chemical potential dependent mass m). ~

and coupling constant ~. ~ are given by

and
tJl V P, I'

A ell I
p, ~ = 84>4 (~O)

Eqns.(2.12). (2.15) and (2.16) yield the following

(2.15)

(2.16)

8Jld

where X2 = J<2 + m 2, 1b analytically compute the effective m8BB and effective

coupling constant from (2.17) and (2.18). we are forced to introduce some apprexl­

mations, as the integrals cannot be evaluated in a closed form.

For small values of I-l I we make 8, Taylor expansion of (2.11) and

(2.18) as a, function of #J • The first term is independent of chemical potential 8J1d

is same as the corresponding finite temperature expression which is known in the

high temperature limit (S, 116). The second term of the expansion vanishes and
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the third term can be computed in the high temperature limit. alter a Binomial

expansion in p. Neglecting terms of O(f!m2) . we get

(2.19)

and

(2.20)

Eqns.(2.19) and (2.20) 8.' fixed temperature shows an increase of ef­

fective mass and effective coupling constant with increase of chemical potential.

Here, ",1 ~ Ul&Y increase with JJ to such an extent tha.t it becomes positive beyond

a. partlcular value of IJ = #Jet restoring the spontaneously broken syrnrnetry. The

critical chemical potential JJc1 I 8:\ which this symmetry restoration is switched on

can be calculated from (2.19)

(2.21)

The corresponding critical temperature is

(2.22)

To study the behavier of (2.17) and (2.18) for large values of chemical

potential, we introduce the apprcxlmatlons

Eqns.(2.17) and (2.18) can now be expended in binomial series and on neglecting

terms of 0{f1m4
) , we get the effective ll18B8 and effective coupllng constant &t high
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temperature as

(2.24)

(2.25)

with. 'Y ~ 0.5712. For 8, fixed temperature, (2.24) and (2.25) gives IL decrease of

m~, ~ and AA 1£ with increase in chemical potential. Starting from the symmetry

restored phase for a very large value of IJ, m~. ~ can. become negative to give b&ek

the original spontaneously broken phase. It is possible to define 8, critical chemical

potential ~c2 corresponding to this gymmetry breaking phase 1rUlBition. Using only

the leading terms of (2.24), we get

Correspondingly, the IJr dependent critical temperature is

1 [ [ 2 [ !1 _I [ 27",2A ]] ] ] 1]-1pez = 311-' 1 cosh 3cosh 12~ t m 2 1- 1 - 311-' 1 ·

(2.26)

(2.21)

For an asymptotically large value of I JJ 's the effective mass and effective coupling

constant become the same as the tree level values.

From the above analysis. we find that in high temperature surround-

ings, B, symmetry restoration takes place at 8, relatively small value of chemical

potential and further o.t a large value. there is symmetry breaking. Now to extend

these results for all temperatures, we 'adopt 1L numerical approach, Effective llUL8S
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and effective coupling constant C8Jl be calculated by numerical evaluation of the

integrals in (2.17) arid (2.18). 'I'he results are plotted in Figs. 2.2 and 2.3 for vari­

ous temperatures. The one-loop expressions (2.17) and (2.18) are actually complex

and we are 1aJdng only 'the real part here. The imaginary pan will disappear when

we include 'the higher loop effects in "the diagram (114). From Figs. 2.2 and 2.3, 11

is seen 1ha1 effective mass increases whh increase of chemical potemlal to produce

symmetry restoration and then decreases with further increase of chemical potemial

to give back the symme1ry broken phase. These effects are found 10 be present even

8,1 very low temperatures, which makes them applicable for cold dense matter like

neutron stars and quark stars, However, 8, separate calculation shows "ha" &1 zero

temperature, chemical potemial does n01 produce any effect.

2.3 Improved One-Loop Approximation

The results obtained above have all been deduced at the one-loop level. From

finite "temperature studies, it is known 'that one-loop approximation is not valid at

the critical tem.perature [115]. The occurrence of imaginary. part in the effective

potential is &190 an indlcatlon of the Inadequacy of the simple one-loop calculations,

These remarks apply equally well to the one-loop study of finite density effects

made here. It is easily seen that close 10 the critical densities ~o1 and JJc2 J the one­

loop approximation breaks down, An imaginary put is also present in the effective

potential (2.12).

To improve the present calculations, we adopt the method suggested
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Fig. -2..2 Va.riation of effective mass with chemical potential
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Fig. 2.3 Va,riation of effective coupling constant with chemical potential
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by Fendley (114] to include multl-loop effects in the one-loop calculatlons. The

effect of multiple insertions of quadratlcally divergent bubbles ma.y be studied by

considering the four simple contributions to the two point function in 4J4 theory

shown in Fig. 2.4. 11 is obvious 1ha1 &1 high temperatures, the l&rgm graph 10 any

order in the loop expansion are the ones with the minimum number of quadra,1ically

divergent loops, namely "those like Fig. 2.5&. Another contributlon 10 "the effective

potemial is displayed in Fig. 2.5b. When we add a bubble on 10 any propagator

1ba:t is not part of 8, quadratlcally divergent loop, the diagram is multiplied by

ATzJLP, where U is 'the mass scale of 'the 'theory. We can do 'this 10 &rI3 diagram

as in Fig. 2.6. This means 1ha1 for a one-loop apprcodmatlon 10 be valid. we mUB\

have AT2./LP « I, along with the usual A « 1. 'Ihus multiple insertions of

quadratically divergent bubbles cannot be neglected.

To take into account a.ll such diagrams, we make use of the expansion

of the full propagator, shown dlagrammatlcally in Fig. 2.1 and define an effective

mass M such 1h8:\

giving

(2.29)

Cl is the 1PI self energy, which ma.y be approximated as in Fig. 2.8:

(2.30)

The logarithmically divergent part of the diagram may be ignored BB 8, sub-leading

temperature dependence of the diagram and the T=O counter term cancels the
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Fig. 2.4 Lowelt order contributions to the self energy,
with their orders of magnitude at high temperature



(a)

For n loops For (n+1) loo ps

Fig. 2.5 Multi-loop self energy contributions
and their orders of magnitude at high temperature
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Fig. 2.6 A typical contribution to the effective potential,
that is relevant at high temperature
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Fig. 2.7 Diagrammatic expansion of the full propagator
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Fig. 2.8 Lowest-order corrections to the self energy
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divergent piece. Now we replace m2 with M 2 in the expression for the effective

potential and perform one-loop calculations in this improved approximation. This

includes the largest diagrams at high T, namely those given by the one-loop diagram

with bubbles attached, as in Fig. 2.5& and 2.6. Diagrams we are neglecting a.re

suppressed by some power of A or >..T/M. Thus the improved expansion is valid if

ATJM< < and ~ < 1. The validity of the one-loop calculation &1 and above critical

temperature is restored with 1he addltlonal condi1ion T << M/A. Notice that the

expansion breaks down as T ..... Tc , because M -+ o. Calculations of ml ~ and Ap. #J.

give the same results BB in (2.19). (2.20), (2.24) and (2.25) with m3 being replaced

by Af. The behavior of m~, I' and Ap. #J. with respect 10 the varia,tion of chemical

potential can be studied, BB done previously by numerical evaluatlon of the imegra,ls

appearing in their expressions. We have found the same pattern of beh&vior BB in

the simple one-loop study. The symme1ry is restored 8,1 8, fi.ni1e density which is

again broken 8,'\ 8, higher density.
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Chapter 3

Phase Translt.ions in the Abelian
Higgs Model

11 is well known that, the effective potential method when applied to gauge theories

leads to a gauge dependent result for the finite temperature effective mass. which

is 8Jl observable if! the theory. The ensuing puzzles were solved. a.t least for the

abelian Hlggs model, by Ueda (117J. who showed that by sligh.tly modifying the

definition of the effective mass, one can maintaln gauge inva.ri&nce even 8.t 8. finite

temperature. This is achieved by including certain momentum-dependent diagra.ms

in the self energy which are absent in the effective potential treatment in some

gauges.

In this chapters following the approach of Ueda, we study the effective

mass of the theory at a, finite density using the real-time formalism. It is shown that,

at non-zero temperatures, as the chemical potential J-' corresponding 10 a conserved

bosonic charge is increased from zero. eyfnwe1ry restoration 'takes place &1 & ftni1e
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value of u . However I BB the density is increased further symmetry is again broken

at 8, sufficlemly large value of I-' • 'I'he critical densitles and critical temperatures

responsible for these phase transitions are calculated. We also study the finite

density behaviour of coupling eonstams present in the theory, The effective coupling

constants are calculated &1 the one-loop level, using the vertex renormaliaation

procedure, from their lowest order vertex diagrams, The scalar coupling constam A

firB1 decreases and then increases with the increase of the chemical potential, while

the gauge coupling constant e shows a reverse trend,

3.1 Effective Potential in the Unitary Gauge

We consider the locally gauge lnvariam abelian Higgs model of 8. two-component

scalar field +and 8, vector field A~ . The Lagrangian describing their O(2}-iIlV&ria.n1

interaction is

{, = ~l (811Ap - 8pAII)2- 1(811 - ieA II ) +12 -~+.+ - ~ (+·+f~. (S.l)

We shall consider a case of weak scalar coupling (0 < A << 1) and weak gauge

coupling (e '" A~) with tachyonic D18B8 (m2 < 0) for the field 8,1 a finite temperature

and density. Finite density effects are taken into account by introducing B, chemical

potential JJ corresponding to the conserved bosonic charge of (3.). The fields in

Lagrangian (3.1) admits gauge transformations and it is necessary to fix 8. gauge.

We choose the physically interestlng unitary gauge for our computation. Expressing

the Lagrangian (3.1) in terms of polar co-ordinates C; and (J

~(x) =Ji (4)(x) +O)exp cot» with < cfI(x)D >D = 0 (3.2)
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and a new variable B" •

1
B,,(:e) = A,,(:e) - ee8"o(:e) I

we obtain the Lagrangian ln the unitary gauge:

(3.3)

(3.4)

Using the corresponding effective Hamihonlan in the lnteractlon repeesematlon and

choosing (J2 = (-6"qjA) leads '\0 < c/J >D = 0 at the tree-Level approximaaion.

The B~ and 4J meson masses are respectively.

(3.5)

(3.6)

The Lagrangian (3.4) Leads to the one-loop effective potential,

Al' 1 22 ).. 4 1 ~fd3K ( (12 &il) (.~ 2))
Veil = 2m eP + 41 eP - 2pL;: (21f")3 3ln ~ - Mi + In ~ - AI, I

where Mt =filqil and Ml =m" +At/J"/2. The sums appearing in (3.6) can be

evaluated by following the steps described in Chapter 2 10 yield,

(3.7)
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3.2 Effective Mass

For the purpose of studying the phase transitions a.t a.finite temperature a.nd a. finite

density, we calculate the effective mass according to Ueda's prescription [111]: We

define 8. temperature-and chemical potential- dependent mass ml P , on the mass

shell of the particle a.t temperature zero and chemical potentia.l zero, as

(3.8)

where n~, 11. is the temperature- and chemical potential- dependent scalar meson self

energy and Re refers 10 the real part. This definition of the effective mBBIJ by Ueda

differs from t he standard one by the incl usion of moment urn dependent self energy

diagrams. These diagrams which contribute to the scalar-mason self energy at the

one-loop level are shown in Fig. 3.1. Following the standard Feynman rules for the

Lagrangian (3.4), we compute the self energy of the Higgs bOSOD at the one-loop

level as,

2 / ctk 2/ ~k
= m +>. (211")4 a(k) +2e (211")" a...(k)

31m
2A/

~k · 2 / tfk+ 2 (211")4 a(k)a(p - k) +2,e AP (211").f a.,,,(p- k) I (3.9)

where d(k) and a"p(k) are the temperature- and chemical potential-dependent

propagators for the scalar meson and vector meson respectively and m and M are

the scalar meson- and vector meson- masses respectively. In the real time formalism

of finite temperature field theory. these propagators in momentum space are given

by

a(k) = [ i + 211" 6(Jil +m
2

) ] I

k'J. - m~ - if. exp(fJ(ko+~» - 1
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(a)

(el

(c)

(f)

--.~-

(g)

FJg. 3.1 Diagrams contributing to the scalar-meson propagator
in the unitary gauge in the one-Joop approximation
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[
i 21r 6(J<2 + Ml) ] ( k.,k,)

Ll.,p(k) = k2+ W _ i~ + exp(p(ko+~» _1 6", - M2 I (3.11)

where ~ is the chemical potential corresponding to the conserved bosonlc cha.rge

in this tfYs'tem and we follow the metric JCl = K2 - k~. The real-time formal­

ism has the advantage of keeping sepe.ra.te the tempera.ture a.nd chemical potential

dependent terms from zero temperature- and zero chemical potential terms. Per­

forming renormalization a.t T=O and I-' = 0 and considering only the temperature

and chemical potential dependent real terms in self energy, we write (3.9) as

m! =·-~P. ,..
mZ +Ai .tfk 211" 5(kl +mZ

) +6e2f ~k 2". 5(kl +AP)
(21f)~ exp(fJ(ko+~» - 1 (21r)aC exp(j3(ko+ J..'» - 1

+31rAm2f cJ4k ( 5(~ +m
2
)

(21r)4 «P- K)" + m 2) (exp(p(ko+ ~» - 1)
6(,> - k)2 + fT~2) )

+(k1 +m2)(oxp(p{ko +~» - 1)

'lAP! etk ( 5(~ + AP)
+41re (211")4 «P - k)2 +W)(exp(P(ko +~» - 1)

5«P - k)2 +Ml) ) (5 k~,)
+(kZ +AP)(exp(fJ(ko+~» - 1) ." - MZ

. (cs." - (1' - le>;:: - le),) . (3.12)

Since the ·effet,'"1ive mass is expected to be 8, measurable qU8Jl'ti'ty, we have considered

only the real terms in obtaining that equation. Performing the ko Integration in the

rest frame of the scalar meSOD using

1'2 - 2(p.k) =- rr~2 +2mko. etc.•

we get

2 ). [ d!h y.Yt. - m 2 3e2
[ dth .j?A - Ml

- m +- - +- -
4-r ,,. ex p(fJ(YJ + IJ» - 1 211"2 f1I exp(P(Y2 + IJ» - 1
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3Am2
[ ayl y?A - m2

+--4w2 "' (exp(fJ(t/l + ~») - 1)(4y}- m2)

e2 r: d'1h J1A - All (3~ + m2(~ - Afl»)
+1tP M' e.xp(P(Yl +~» - 1 4Yl - m2

t

(3.13)

where 111 = J<2 +m2 and tA = J<2 +W. Since the imegrals in (3.13) are difficult 10

evaluate in 8, closed form without further approximeaion, we perform & numerical

computation. Fig. 3.2 plots the results of the numerical evaluation of ml " BB &

function of lA , for various fixed values of temperatures, We see that, &1 fini1e

temperatures , B'taning from 8, spontaneously broken symmetry m}, #I- increase wrth

IJ 10 such an extern tha1 it becomes positive beyond B, critical value of IJ = I-iet I

restoring the symme1ry, and then decreases with further increase of ~ 10 break the

symmetry 8:\ another critlcal value of I-' = 1Jc:2 •

To calculate the critical chemical potemials and crltical temperatures

responsible for these phase transitions, we calculate the effective mUB from (3.13) in

the high temperature approximation in the region of small value of ~ where "here is

&~mme\ry restoration and then for large values of IJ for further symmetry breaking,

For small values of I-J it is possible to expand (3.13) BB a, Ta,ylor series in #.& • This

gives
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Fig. 3.2 Variation of the effective m888 with the chemical potential
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_ 3#4)e2 I ay" 112 J'IA - Ml expCPtn)
2,.-2 114' a~

_3>.m2fJ~[ duI J1it. - m2expCP1h)

16r .. yf al
_ f?{3 r: d:Y2 1fl "lA -AP[S.Mt +m2(~ - N2)] exp(py2)

rAP AI (411l- m2)a~

_ >,(P~2[ ayI ./Jfi _ m2(exP(Pul) _ 2exP(2P11J»
8w2 M v: ~ al

_ 3f?{Jl~2 I" dtI" .I~ _ M"- (8XP<PJn) _ 2exP(2fJJ12))
4r JAI v· ~ 01

_ 3>'JJ2/pm" [ dYI J1A - m2 (eXP(PYl _ 2 exp(2Y1»)
32~ '" 1A af af

_J.J.2e2f1lr: d1fl J1A - Ml[3JV1 +m"(1A - All»)
2-ilMl- ",' (41/i - m1)

.(exp~,,) _2 exp(;{Jyz») , (3.14)
~ Q2

where Cll = (exp(fJyl)-l) &CId G2 = (fJxp~2)-1). At high temperatures, expe.ndiog

the numerators of the lrnegrands in (3.14) as a binornial series to 0(fJm)

This shows an increase in ml". with increase of IJ a1 8, finite temperature, indlcaung

a restoration of spontaneously broken symmetry, Using (3.15) we calculate the

critlcal chemical potential ~cl , &1 which this symme1ry restoration occurs, as

The corresponding critical temperature is

1 36 ( 2 ~2>")
fJ:J = 2>' +9e2 - m - ~ ·
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For large values of #J I it is possible to introduce the approxlmatlon

exP(fJ(lI + Il» - 1 ~ exp(p(y +~» · (3.18)

Binomial expansion of the numerators of (3.]9) at high temperatures gives to

O(JJm),

2 2 1 [A ).m 362 3e2M]
mp,,. = m + [Jexp(fJIJ) 3r[J + 3w2 + 2r[J + 2w2 +O(fJm) · (3.20)

This shows a decrease of the effective mass with increase of #" • Thus, st8J1.ing from

a. synune1ry restored phase it is broken at a, very large value of 1-£ • The critical

chemical potential J.'cZ t a1. which this symmetry breaking occurs, is obtained from

(3.20) BB

1 ( -1 (A 3e2 ))IJc2 =pin m 2{p r 3(1 + mfJ) +2"-(1 +MfJ) ·

The corresponding critical temperature is

where

(3.21)

(3.22)
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To study the gauge dependence of 'the above FTD phase 1r8J1SitioDB.

we now compute the same scalar meson mass in 8, ghost-free gauge. The Lagrangia.n

(3.25)

in terms of shifted fields X and 4> is expressed as

(3.26)

c = -1 1 1
"2e2x2A~ - "2e2,p2A~ - 24(,p4 +X4 +24J2X2) - e2CxA:

) AC 3 AC z 1 •~ 2+eAI'(8I'X <P - X 81'<P - 6X - 6<P X - "2 LkrA"

1 2-ft~ 1 2 2 1( )2 1( )2-"2 mxA: - 2m 2<P - MAl' 81'<P - 2 8,..;x - 2 81'<P

1 :1 1 ( )2
-4(F~) - 2Q 81'AI' I

where cPl = X +C t eP2 = <P, m~ = m2 + (A/2)C4, rnf = m2. + (A/6){]*l =0 and

M =eO. The last term in (3.26) is added for fixing a gauge. The FTD propagators

taking lmo account the A~ - c/J mixing effects 10 &11 orders of A are

[
- i 211" 5(k2 +m~) ]

~X(k) = + -,
k2 +m~ - it. exp[!3(ko -la IJ)] - 1

A" k [-i 21r 5(k
2

) am
2

]
~~( ) == + +-- ,

k2 - if exp{P(ko + ~)J - 1 (k2) 2

(3.21)

(3.28)

~(k) = [ [ -i + 21f5(k'l +AP) ] [5 _k"""]
k2 +M2 - it. exp{p(ko +IJ)] - 1 ~ k2

[
21f5(k2) ] k~k" Q~k,,]

- exp[p(~ + J.&)] - 1 Ml + (Jc2)2 •
(3.29)

The diagrams contributing to the scalar meson self energy are in Fig. 3.3 and the

Feynma.n rules in Fig. 3.4. Contributions from each of these diagrams can be 8pli~

up into three parts, n8JIlelYJ cil,Cl. and a-independent terms. On summation of

these different diagrams, a 2 and et 'tar1118 cancel aeparately and we need to consider
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Fig. 3.3 Diagrams contributing to the scalar-meson propagator
in the ghaat-free gauge in the one-loop approximation
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(3.30)

only er independerrt terms which do not have any A.u - cl> mixing. The result obtained

by summing all these terms is found 10 be the same as that from the unitary gauge.

indicating gauge invarlance.

3.3 Effective Coupling Constants

The abellan Hlggs model (3.1) contains two unrenorrnallsed coupling constants, the

scalar coupling constant A and the gauge coupling constam e. The renormalized

coupling constants can be obtained either by "the vel1ex-renormaliza1ion or from

the effective potential. From finite temperature studies a1 "the one-loop level 11 is

known that, in 'the absence of SSB, the effective sC&l8J' coupling constant decreases

and the gauge one increases whh temperature [118].

Diagrams contributing 10 the vertex correction of the scalar coupling

constant to the order A2 and the gauge one to the order e4 are shown in Figs. 3.5

and 3.6 respectively, and 'they yield

3A
2f>"IJ. ~ =>.. - 2f tfk d(k)d(2p - k) I

4

el ~ = e'l. - (2:)~ftrk K'J. ~(k)~(P - k),.. " . (3.31)

Using the propagators (3.10) and (3.11)and the mass-shell conditlon for the extemal

momentum gives the real parts of the above equations BB

(3.32)

(3.33)
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+

Fig. 3.5 Vertex dJagraDl8 contributing to the scalar coupling constant
in the one-loop approximation
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+

Fig. 3.6 Vertex diagrams contributing to the gauge coupling constant
in the one-loop approximation
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(3.35)

(3.34)

To study the finite density behaviour of Ap. Il- and e), #I- from (3.32) and (3.33). we

first use the numerical methods, 8J1d the results are plotted in Figs. 3.1 and 3.8

respectively for Va.riOUB values of temperatures. From these figures one finds that.

8:' fixed temperatures, Ap, ~ flm decreases and then increases with the increase of ~

while ei ~ shows the opposite behaviour. These characteristlcs can be clarified by

evaluating )..pI JI. and ea "in the small value and large value regions of '" separately

in 'the high temperature limit.

For small values of IJ , we make 8, 'Iaylor expansion of (3.32) and (3.33)

as a. function of IJ . Using the high temperature approximation af\er & binomial

expansion of (K2 +m2)3/ 2, we get 10 0({pm2)

3,\2Cl Id/. 2
AIJ.. #l =A - 8~ + O\p m } I

:1 2 e
4
C1 (dl 2

ell, #l = e + 2n-2 +0 ~ m ) I

where

1f 1 (fJrn) fJlJ 1J2{1Cl = - + -in - - - (j3m -In(Pm)) +- ({Jm - lr!({Jm» .
2{Jm 2 4n- 4 2

(3.36)

According to (3.22) and (3.35). at a, fixed temperature ).p, " decreases with #J while

eiJ. ~ shows the reverse behaviour.

For large values of ~ • by means of the approximation (3.18) &t high

temperatures we ge110 0(j32m2)

2
3A C2 (a2 2)

>..p #l =A- 8~ (fJ,) +DV" m I, exp JJ
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(3.39)
.., pm 11m2

O2 = 0.1886 - 2" - -8- ·

Equations (3.37) and (3.38) at a fixed temperature indicate an increase of All, ,. with

the increase of #J while e'tJ. I' shows the reverse behaviour. For an aaymptotically

large vaJU8 of IJ. both AA ~ and el Jj approach 'heir tree level values. Note that we

evaluated these coupling COwrtUlts from the vertex diagrams using the mass-libel!

condition for the external momentum. Hence all reasons we lndleated for the puge

independence of the effective mass hold also for the gauge independence of these

effective coupling constants,
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Chapter 4

GEP Study of FTD Phase
Transitions in cP4 Model

The Higgs mechanism plays an important role in standard unified model of funda­

mental interactions (119, 120). However, there is some worry about its basis 88101De

authors have shown that the pure quantum ).cjJ4 model may be trivial (Le., ,\ -+ 0,

DO interaction exists at all) in four space-time dimensions (85, 89). Recently, aiming

at the revival of At/J4 theory some effort has been made using the nOll-perturbative

GEP approach (41-43, 81, 121), the important features of which have been preeented

in chapter 1. One method is to introduce explicitly a large but finite momentum

cutoff A and treat the )"c/J4 model as an effective model at low energy (92-95). On

the other hand, in the 80 called autonomous theory (98, 101, 122), after performing

a special type of wave function renormalisenon while keeping the bare coupling

parameter ~B positive but infinitesimal (~R --+ 0+ ), one can let A ~ 00 and regain

a meaningful ~tP4 model. From the practical point of view, there is a benefit in the

former kind of theory (with finite cutoff A ) as some bounds on the ID.8S8 of the

elusive Higgs boson could be found when the gauge fields are included (95, 123-133),

whereas no observable restriction exists in the latter kind of theory (with A -+ 00).

In this chapter, we make a GEP study of FTD phase transitions in

~c/J4 making use of both the cutoff and autonomous versions of GEP. It is shown that
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in the presence of SSB at finite non-zero temperatures, increase of bosonlc chemical

potential induces a sequence of symmetry restorations and symmetry break.doWD8.

For an asymptotically lerge value of chemical potential, thEwe multiple phase trail­

sitioos end in a symmetry broken phase. Similarly in the case of SSB at a finite

non-zero value of bosonic chemical potential, increase of temperature induces a series

of symmetry restoring and symmetry breaking phase transitions. For an asymptot­

ically large value of temperature, symmetry remains restored. With zero chemical

potential increase of temperature only restore the 8SB phase, without any multiple

phase transition. We also study the FrD behaviour of effective scalar boeon m888.
Pawibllity of these multiple phase transitions as revealed by gausslan approxima­

tion contrasts with the double phase transition found in perturbative analysis and

may be attributed to the non-perturbative effects. In the remaining part of this

chapter, we first discuss the FrD study of the cut off version of GEP and then the

autonomous version of it.

4.1 Cutoff Version GEP

The precarious form of cjJ4 has nothing to do with the Higgs mechanism, since it

has no SSB. HoweverJ SSB can be induced in the model, by lncluding an ultraviolet

cutoff fof the momentum in the integrals. This cutoff version GEP has been applied

to various scalar and fennion models (53, 54J. The stability property of cutoff tlJ4
and 4J4 are the opposite of one another. In cutoff c/J., 'positive ~B glveJ a bounded

potential with a pair of minima at very large t/Jo , corresponding to a SSB phase,

while negative AB leads to an unbounded potential (53J. In this section we evaluate

the GEP at finite temperature and density (FTDGEP) by introducing expllcitly a

finite and very large cut off A for the momentum. This allows the bare coupling

constants to assume a positive value and to have SSB for the ground state. Fbllowing

the discU86ion of Sec. 1.3, the GEP at zero temperature and chemical potential is

defined by

(4.1)
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where 'It is the Hamiltonian density and I 0 >0. .. is a normalized gaWllian wave

functional centred on c/J == c/Jo. We first study the model of a self interacting

2-<:omponent spinlesa field in 3+1 dimensions with an 0(2) invariant interaction

described by the Lagrangian

.c(4)>.(z))=~ 8.,4J."4».- ~mt4».~.- ~B(~.4».)2, a=I,2. (4.2)

A study of GEP for this model with a cut off A shows that the ground state of (4.2)

possess a SSB phase under the conditions (96)

4
o< AB < J,(pIA) and (4.3)

where

with

J2(PIA) = 2~ (In (A + (A)2 +1_.j (Alp) ) , (4.4)
P P (A/p)2 + 1

_ ( Xc ) ~ < '\8 ( )
'le - .jro +1 16r - 161i' ' 4.5

Xc c: ~exp (~ + 1) :> 1. (4.6)

We shall follow Stevensons method (53) in calculating the GEP by writing the field

41 as tPo + ~ where t/Jo is a constant classical field and J, is a quantum free field of

ID888 {} • This yields the GEP at zero temperature and zero density for the model

deacribed by (4.2) as

VG (c/Jo) = ~m~ ~+,\s cP~ +11(0) + ~ (ms - 0') 10(0)

+6'\Blo(O)~~(O) + 3'\B~(O) (4.7)

where the IN integrals are given by (1.102). Minimizing the expraJ8ion (4.7) with

respect to the variable parameter n give the optimum value of {} to be used and is

a solution of the gap equation

(~.8)
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This method can be altematively described as a calculation of the

vacuum energy density to first order in the perturbation theory generated by

(4.9)

~ = i (;P2 + (Vq,)2 + (}l~2)·, (4.10)

I 2 ""2 1 2 ( ,,")2 ( ,,")41iiRt = -20 cl> +2m B r/Jo +,p + >tB tPo +q,. (4.11)

Here the parameters cPo and n arise from the split up of the Hamiltonian and the

IN integrals arise 88

1) = 0 < 0 1?to I0 >0 t 10 = n < 0 I 411 0 >0 · (4.12)

Even though the method uses techniques of perturbation theory, this is not really a

perturbative scheme in the sense that no expansion in ~ is used This method will
be applied to obtain the finite temperature / density generalization of GEP.

Method of Computing FTDGEP

The question of generalizing GEP from zero temperature to finite temperature had

led to 80IIle earlier confusions which were cleared by Hajj and StewDlOD (101).

Following their approach we outline the calculation of FI'GEP. We then extend the

method to finite density as well. We consider a fixed spatial volume V surrounded

by a heat bath at a fixed temperature T. A quantum field cP is defined in the region

V and obeys some suitable (eg., periodic) boundary conditions. The set of modes of

the c/J field constitute the 'system' in the thennodynamic sense. Thermal equilibrium

is achieved when the system has minimized its (Helmholtz) free energy

F= E-TS, (4.13)

where E is the (internal) energy, and S is the entropy of the system. Thus the

physically meaningful effective potential for the system corresponds to the function

of 4>0 obtained by minimizing the &ee energy F , subject to the constraint that

< t/J >== f/Jo It To use the energy E instead, 88 was done io some early works, would
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correspond to the case where the entropy, rather than the temperature, is somehow

held fixed (101).

The proper finite temperature generalization of the GEP is therefore

obtained 88 follows. Calculate F to first order in the perturbation theory specified

by the free part of the Hamiltonian; divide out by an overall volume factor V; and

mjnimize with respect to O. Standard thermodynamics 1134) gives both F and E in
terms of the partition function Z:

Z == Tr(exp (-,8B) == E < a Iexp (-~(H) IQ> (4.14)
Q

1
F=- -/i lnZ (4.15)

E = -~ In Z = 7t (exp (-(3ll) ll) (4.16)
d~ 7t (exp(-fJH)

where IQ> denotes an eigenstate of H. Calculating Z to first order in Hw , trace

involves a summation over the unknown eigenstates of the full H.

where

Z - 1)- (exp (-{3Ho) (1 - fjHinI »

- Zo (1 -13 < Hw >T) , (4.17)

z, == 7t (exp (-,8Ho») := E < Qc) Iexp (--{jHo) IQc) > (4.18)
Q

and the notation < A >T stands for the 'thermal average' of the operator ~

Inserting (4.17) in (4.15)t the free energy to fimt order in H iaJ is

1
F= -plnZo+ < Hint >T (4.19)

From the preceding discussion, the FrDGEP

is obtained from the free energy of (4.19) as

p - F 1 .
VG (c/Jot 0) == V:= - pvlnZo+ < Ri'" >T ·
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The first term is a free field theory quantity and represents the flnlte tempera­

ture generalization of the 11 lategrel. A straight forward computation from 8rst

principles gives

Zo :: exp(-Pll~((~exP (- tmlWl» (Eoexp<-Pn2W2» .. )

- exp(-Plt v> II ( l - exp(- {iJi»-l) . (4.22)
i

Hence by deflning

(4.23)

we have
t! - If tfK

1(O) = j1 (21r}3 in (1- exp (-tiJ.» , (4.24)

where the discrete modes Wi have been replaced by Wit =~+02 and the sum

replaced by the integration Ei -+ VJ tPK/(21r)3 •

The evaluation of < Hw >T ,the other term in V! in (4.21) involves

the calculation of < 4? >T and < ~. >T · At zero temperature th&Je would

give 10(0 ) and 3~(0) respectively. Haij and Stevenson have shown by detailed

calculation that for finite temperature generalization of these results 10(0 ) is to be

replaced by IF(o'), where

If(O) == 10(0 ) + .zg(fi) ==< ,'/J2 >T (4_.25)

(4.26)

with
~-f cPK 1
o - (21r)S/~ w, (exp((iJl) - 1) ·

The term < J,4 >T equals 3 « J; >T)2 up to a volume suppressed term, 88 at zero

temperature. A similar result holds for higher powers.

We now define FTDGEP by a direct extension of the technique de­

scribed above. At finite densities CM, --+ w, -p. and so replace

(4.27)
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and

where
.,a - IftPK )
11" "(0) = P (271")' in (1 - exp (-Pw. + (Jp) ,

~'''==f d'K 1
o (211")3/2 w'= (exp ({3w. - (jIJ) - 1) •

(4.28)

(4.29)

(4.3O)

The final result can be summarized thus: the FI'DGEP Is obtained

from the GEP by the replacements

(4.31)

Furthermore, the relation

dIrn:(fi) = illF (4.32)
dO

holds, so that the rule 10(0 ) --+ IF(O) also applies to the nequation (4.8).

For the cjJ4 -model described by eqn, (4.2) making use of the FI'D

conversion expressions (4.31) in (4.7) we evaluate FTDGEP and obtain

-;;p;; - - 1 (2 n2) - 1 2.a • JJ 1£ -Vc,I&(O) = 11(0)+2 mB-l~ 1o(0)+2mB'f\)+~Bc/JO+Ji' (0)

+~ (mi - 0') ~, 1&(0) +~B (610(0)41 +3~(n) +~ (w "

+61o(O)~' "(0) +3(10(0»') (4.33)

Multiple Phue TransltloD8

The complete FTD dependence of the effective potential (4.33) is carried by the

integrals ~ "(0) and it "(O). But it is difficult to analytically evaluate these

integrals in a closed form and hence to understand the characteristlca of (4.33) t

we resort to nwnerical methods. In Figs. 4.1-4.3 we show the results of numerical

Studi5 made on the expression for the effective potential in the cutoff method.
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Values of the various parameters in (4.33) are selected in accordance with (4.3)s 80

as to have SSB. In Fig. 4.1, we plot the vi' ~ for various temperatures in the absence

of any chemical potential. It shows the usual finite temperature behaviour; starting

&om a 8SB phase, the increase of temperature restore the symmetry at a particular

critical temperature. In Fig. 4.2, Vt ". is plotted for various chemical potentials at

a non-zero temperature. We see that, with the increase of chemical potential the

symmetry is restored and is broken a number of times and for an asymptotically

large value of IJ , the symmetry remains broken. In Fig. 4.3, we show the vl' ,.
for various temperatures at non-zero chemical potentials. As in Fig. 4.2, this also
show the existence of a temperature induced multiple phase transition. For a Vf!ZY

large value of temperature the symmetry is eventually restored, whatever be the

chemical potential. At zero temperature, variation of the chemical potential has DO

influence on the spontaneously broken symmetry.

Another method of demonstrating the existence of multiple phase

transition is to compute the FrD dependent effective scalar boson mass mA ,. from

(4.33) by means of the relations

This gives

m~, p = m~+ -'B (10(0) +~ "(0») .

(4.34)

(4.35)

Numerical evaluation of the expression (4.35) can be done and the

results are shown in Figs. 4.4 and 4.5. The variation of m~. " with chemical potential

at a non-zero temperature is shown in Fig. 4.4. Fig. 4.5 shows the variation of ml Jj

with temperature at non-zero chemical potential. These figures also indicate the

same the FTD behaviour we found in Figs. 4.1-4.3.

To confirm the existence of temperature and density Induced multiple

phase transitions, we shall now carry out an analytical study of effective potential

(4.33) employing a high temperature approximation. 'Io do this, we Taylor expand
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the integrals zg, 1&(0) and tt, 11(0) in f3 to O(f1l ) to obtain

zg. "(0) = _1_ (r + J.&~(fi - J.&) - J.&ln (exp ({j(0 - p,») -1)
21f2{3 6~

02
'11" ) {i2 ({j(0 - p»)

4(0 - J.&) + 8 +?r 2
ln 471' + O({:P)

and

(4.36)

112 112#J(0 -~) 02

PI' "(0) == - + -.24{J 2 41f2 811" (j(0, - p,)

_~ In (exp ({j(O, - p») - 1) _ 0,2 In ([3(0 - p))
2w2p 8w2 4.

+O({P) . (4.37)

The integrals Io{O) and 11(0) are evaluated using a cutoff A for the momentum

(96). They yield

10(0 ) = 4~ (~~(~)2 +1-ln(fi+ (~)2+1 ) (4.38)

and

I](0) == 8~2 (~ ( (fi) 2

+1)s~ - i1~ (fi)2

+1-i tu ( fi + (~) 2 +1) ·
(4.39)

We calculate the critical values of temperature and density for these

phase transitions from the condition for vanishing of the effective mass m~." in

(4.35). For IL==0, the high temperature approximation (4.36) yield (. 1&(0) ~

1/{12{P) . Hence the critical temperature is

1 2 -
~ = -6mB - 6~Blo({}) • (4.40)

There is only one critical temperature and this temperature correspond to the sym­

metry restoration transition. However for IJ :/: 0t the integral~ "(0) given in (4.36)

contain terms corresponding to l/{Pt liP, p, ~, .... Inclusion of each higher order

term in ~ "(0) raise the power of 1/{Jterm and p. term in (4.35) and hence leads to

the existence of multiple solutions. This will result in the possibility of temperature

and density dependent multiple phase transitioDS.

82



4.2 FTDGEP in the Autonomous Version

AB has been discussed in Sec. 1.3.2 the GEP allows a set of renormalization condi­

tions in (1.116)-(1.118) leading to what is called the autonomous version. Within

this scheme the FTD substitution 10 -+ IF gives the followingmodified fi equation:

fi2 = ~ ~~ + I_:(P) (m~ + ~;2 (in (~) -1) +~~ ~ (0)) · (4.41)

FTDGEP can now be computed by the first derivative method of Haij and SteveD80D

[101) to yield

~( ) 1 2 2 1 -t ( (~~) 3) JJ.. ,. h)( )VG ~o = D+ 2 mo ~o+ 1447r2.o In 3p2/2 - 2 + J'I" (u 4.42

evaluated at fi2 == (2/3) c)~ , where D is the FTD independent vacuum energy

constant. A numerical study of (4.42) made by us demonstrates the same FTD

behaviour as we have come across in the cutoff version of GEP. This is also an­

alytically verified using the high temperature approximation (4.37) for It 1&(0) in

eqn.(4.42).
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Chapter 5

Conclusions and Applications

The central result of this thesis has been the demonstration that in theories with a

non-zero bOSOIllC chemical potential the variation of temperature can lead to multi­

ple phase transitions. This has been shown using the one-loop effective potential for

complex cP4 and abelian Higgs model and also using the gaussian effective potential

method for q,4-lnodel . We expect these results would hold even in models involving

non-abelian gauge fields for the reason that symmetry breaking mechanism Is com­

mon to all these models. In this concluding chapter, we examine the signlflcance of

the results obtained and discuss their probable applications. We envisage two broad

classes of applications. One is to the cosmological models of the early Universe and

the other is to solid state phenomena, particularly to superconductivity. While we

are able to make only some general observations on oosmological applicatioDS, we

make somewhat more detailed statements on applications to superconductivity and

make contact with some recent experimental results on high Tc superconductors.

5.1 Cosmological Applications

In cosmological models based on grand unification the Universe begins in a highly

symmetric state and 88 it expands and cools several phase transitions occur I each one
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corresponding to one stage of symmetry breaking. If the Higgs mechanism is taken

literally and assume that Higgs particles may have existed with significant density

in the early Universe, it becomes necessary to investigate the coosequences of the

tlnite chemical potential of such particles. Our investigations 888ume slgni8cance

in this context and the results we have obtained would imply that for each stage of

symmetry breakdown there must have occurred several phase transitioDB. It will be

the last one in the sequence which will be mainly responsible for whatever relies we

observe today. U this scenario is actually realized it can result modi6catlons to many

cosmological estimates. For example, the GUT monopole and its production rate

will be affected by multiple transitions. The inflationary models will also be affected

by this pa18ibility. Whether these modifications will be significant or whether they

will produce any observable signature can be decided only after detailed studies

on models involving non-abellan gauge models. This will also require a better

understanding of the Higgs particles.

5.2 High Temperature Superconductivity

As is well known the complex cP4-model discussed in the previous chapters is a

covariant version of the Ginzburg-Landau (GL) theory of phase transitions In su­

perconductivity (2). With the inclusion 'of electromagnetic fields this becomes the

abelian Higgs model. An accurate phenomenological description of the familiar su­

perconducting states is given by these theories. q, may be considered 88 an order

parameter or in a microscopic point of view related to tb.e wave functions of Cooper

pairs. The low temperature with SSB is the superconducting state. As temperature

is raised symmetry is restored and superconductivity disappears above the critical

temperature Tc•

One of the exciting developments in physics during the last decade' has

been the discovery of a new class of oxide materials which have high superconduct­

ing transition temperatures (high ~)(137-139J. Many questions relating to nature

and mechanism of superconductivity in these materials remain unanswered. Many
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theoretical models, phenomenological as well 88 microscopic, have been proposed.

Whether a simple extension of the BCS theory will be sufllcient is a hotly debated.

question. .Here we describe briefly some unusual features of the superconducting

state of the high Tc materials.

A superconducting phase transition is characterized by a speclftc heat

anomaly near the transition temperature. The sharp break is somewhat smoothened

by thermal fluctuatioD8 near ~ and all ordinary superconductors show a peak in

their specific heat ver&U8 temperature curve. Surprisingly, in high ~ superconduc­

tors several experimenters haw reported the existence of two neighbouring peab

(140-142). The interpretation of these two peaks has no lJoanimtty in literature. One

of the difBculties in coming to a definite conclusion is the lack of accurate published

data in which an adequate variety of experiments, 81-, m. abeorption, tunneling,

critical8eld, speciftc heats, resistivity were performed on the same sample. The ex­

perimental situation upto 1990 has been reviewedby Choy et al(I43) who concluded

that the double peaks represent two genuine superconducting transitioDS. A recent

experimental measurement by Seyoum et al (I44J of resistivity on high Tc thallium

based superconducting sample gives direct evidence for superconducting - normal ­

superconducting transitions. This is referred to as reentrant superconductivity.

A phenomenologlcal explanation of the double transition has been

developed by Choy et al by an extended GL theory with a two component order

parameter. There haw also been attempts to explain this through a BCS approach

on an anisotropic layered superconductor. However the quantitative fR1CCE8 of

these models in accounting for all the features of the transition have not 80 far been

demonstrated.

We shall now attempt to relate the double transition or reentrant

transition observed in high Tc superconductors to the results reported earlier in this

thn. With the inclusion of the bosonic chemical potential we have observed the

existence of multiple phase transitioDB. 1b show this more explicitly in relation to

experimental transitions let us compute the specific heat in the ,4 model. In the

finite temperature and density gaU88ian effective potential method we had obtained
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the free energy of the q," model (see Sec. 4.1) from which the specific heat may be

obtained

-8 (I Bvl ")
C~" == 8{1/{!J ~ B(I/{J) (5.1)

_ D{O) - ~ CF{O)}2 +E{O) ( ~2 + ~~ (tf + loCO) +~ "CO» - ~8) 1

(5.2)

where

and

() f dK I(J G ( G - 1) ( ) (G 1»)
E n = 0 27iJ WIc «G -1) /fJ)s fJ - WIc -IJ + 1

F(O) == f dK J(J (1G(w. - 11) 1

o 2w2 w, (G - 1)2

D(O) == f dK I(J ((P(WIc -1l»)2 G + P(WIc - 11) -In(l- 1.»)
o 2".2 G - 1 G - 1 G

(5.3)

{5.4}

(5.5)

(5.6)

We have evaluated this numerically and plotted the result in Fig. 5.1. The esdstenoe

of multiple peaks is clear.

1u already noted with a finite bosonic chemical potential the 414 or

abelian Higgs model will exhibit multiple or reentrant transitions. In the context of

superconductivity these corresponds to superconducting - normal - superconducting

transition. The temperature separation of these transitions, the number of such

traositiOll8 and other details relating to a high Tc superconductor can be obtained

only if we are somehow able to fix: the relevant parameters in this model. Such

studies are not attempted here.

1u far as we know reentrant transitions or multiple transitions are

exhibited by two classes of materials, conventional granular superconductors and

high Tc superconductors, Granular superconductors are arrays of Josepbson junc­

tioos and their properties depend on the tunneling mechanism to a certain extent.
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Our interest here is only on high Tc nongranular materials which exhibit reentrant

transitions. The question arise as to why conventional superconductors do not ex­

hibit this behaviour. In our approach, this becomes the question 88 to why baionic

chemical potential is relevant to high Te superconduetcrs but Dot to conveotlonal

ones. An explanation for this fact can be given in terms of the mechanism involved

in the superconducting phenomenon.

The conventional superconductors are described by BCS theory. The

ground state of a superconductor can be looked upon as a coadeasate of Cooper

pairs (bosoos). However, the Cooper pairs exist only below Tc and disappear at

temperatures above Te• Such bosons can Dot be assigned a chemical potential.

The mechanism of superconductivity in oxide superconductors Is Dot

yet clear. Various proposals have been made (145-147). A major question is whether

it is due to the usual BCS type pairing of fermions in k-epace or due to real space

pairs pre-ex:isting at temperatures well above Te• There are re&8OD8 to suppose

that the latter may be the possibility. The bipolaron model of superconductivity

is a realization of such a mechanism (148). In this model the superconductivity

is quite analogues to the superconductivity in He4• In such a real space boeon

condensation, bosonic chemical potential plays an important role. Seen from this

point, the inclusion of chemical potential in the GL approach (as we have done)

can be justified if the mechanism is one of a real space condensation. We hope that

further elaboration of the work reported here will be useful in the phenomenological

understanding of high Tc superconductivity.
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