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CHAPTER 1 

INTRODUCTION 

1.1 KORTEWEG-de VRIES EQUATION 

It is well known that the celebrated Korteweg-de Vries 

(KdV) equation 

Ut + 6UU x + U = 0, xxx 

is the simplest model equation describing a nonlinear 

dispersive non-dissipative phenomenon. The most important 

property of the KdV equation is that it admits steady 

progressive wave solutions called solitary waves, which are 

long waves of small amplitude travelling without change of 

form. 

This equation represents physical phenomena arising out of 

a balance between weak nonlinearity and weak dispersion and 

describes the unidirectional propagation of small but finite 

amplitude nonlinear waves in a dispersive medium. The 

equation was first derived by Korteweg and de Vries (1895) as 

an approximation to the Navier-Stokes equation assuming that 

the waves being considered have small amplitude and large wave 

length compared to the undisturbed depth. 
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The first recorded observation of a solitary wave was made 

ln 1834 by the navel architect Scott Russell (1844, 1845). 

Boussinesq (1872) and Rayleigh (1876) analysed mathematically 

the phenomenon of solitary waves and derived approximate 

results for the shape and velocity of such waves. Rayleigh 

considered a solitary wave in a Eulerian frame of 

moving at a velocity that brings the wave 

reference 

to rest. 

Boussinesq's equation have travelling wave solutions moving to 

both left and right. Going a step ahead from Boussinesq 

theory Korteweg and de Vries restricted attention 

moving to the right only. They deduced Rayleigh's 

wave as the limiting case of the cnoidal waves 

wavelength. 

to waves 

solitary 

for long 

Though solitary waves continued to attract attention ln 

the ensuing decades (Weinstein, 1926; Lamb,1932; Keulegan and 

Patterson, 1940; Ursell, 1953; Friedrichs and Hyers, 1954; 

Lavrentiff, 1954; Stoker, 1957 to mention a few), the 

significance of KdV equation as a basic equation in 

mathematical physics was brought out when Gardner and Morikawa 

~1960) obtained the equation as a model for waves ln a cold 

collisionless plasma. The current interest in the KdV 

equation has its origin in a numerical experiment by Zabusky 

and Kruskal (1965) in which they observed that the solution of 

KdV equation might exhibit FPU recurrence (Fermi, Pasta, and 

Ulam, 1955, 1974). They found that a smooth initial profile 
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evolving under the KdV developed into a train of solitary 

waves. The most remarkable property of solitary waves they 

observed was that after interaction two such waves emerge 

unaffected in shape and suffered only phase shifts. The 

interaction was clean in the sense that no residual 

disturbances were created. This particle like behaviour led 

to the nomenclature 1solitons 1 • 

In the case of infinitesimal waves, the classical theory 

of linear waves gives a complete description of their 

evolution. If the waves have small but finite amplitude, the 

linear theory breaks down and nonlinear corrections are to be 

made to extend the range of validity of the theory to a longer 

time scale. The development of the soliton theories during 

the last two decades has enriched the theory of nonlinear 

waves. Typically, soliton theories provide the nonlinear 

corrections to render the linear theory valid on a longer time 

scale. There is a short time on which the linear theory 

applies followed by a longer time scale on which the soliton 

theory applies, and may be followed by even longer time scale 

on which this theory also breaks down. 

KdV equation has been found to be an evolution equation 

for a large number of rather distinct physical systems as it 

represents a balance between some form of dispersion (or 

variation of dispersion in the case of wave-packet evolution) 

and weak nonlinearity in an appropriate reference frame. This 
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includes water waves (Korteweg and de Vries,1895; Freeman and 

Johnson, 1970; Madsen and Mei, 1969; Madsen et al. 1970), 

plasma waves (Gardner and Morikawa, 1960; 1965) and anharmonic 

lattices and waves in elastic rods (Zabusky, 1967, 1968, 1969, 

1973). 

The study of solitons has richly contributed to different 

branches of mathematics. A major development in the theory of 

differential equations was the Inverse Scattering 

Transformation (1ST) method by Gardner et al. (1967, 1974) by 

which an exact solution for KdV equation was obtained. It has 

also given birth to new mathematical methods having 

applications ranglng from 'practical' problems of wave 

propagation to rather 'pure', topics in Algebraic Geometry 

(Dubrovin et al., 1976). 

It is to be noted that though the KdV equation was first 

derived in the context of water waves, the recent revival of 

interest in its studies owes much to development in other 

branches of physics. In this context it is worth mentioning 

that the KdV equation, inspite of its fame and popularity has 

not remained unchallenged as a model equation for long waves 

ln a channel (Peregrine, 1966). 

It is well known that the waves reaching a shelf are well 

separated and hence can be considered as solitary waves. Thus 

the development of a solitary wave over a region of varying 

depth is of great practical importance. Notable contributions 
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in this direction are due to Peregrine (1967) and Ippen and 

Kulin (1970). The results available concerning Kdv equation 

was first employed in the study of water waves by Madsen and 

Mei (1969). Grimshaw (1970) considered the problem of waves 

on water of slowly varying depth and investigated the 

condition for solution to be a solitary wave. Ott and Sudan 

(1970) modified the KdV equation to include energy 

dissipation. The dissipative term they treated was the 

Fourier transform of the linear damping, and obtained a time 

evolution of a solitary wave. Kakutani (1971) has shown that 

a modification of a KdV equation can describe shallow water 

waves propagation over gently slopping beaches. Johnson 

(1972, 1973a,b) has independently derived a KdV type equation 

for the same problem. These equations have later led to the 

study of a perturbed KdV equation. Zabusky and Galvin (1971) 

in their experimental studies on shallow water waves have 

shown that the KdV like evolution equation 

Ut + UU + o2U = 0, 
X xxx <1.2) 

of shallow water waves 1S very accurate even for large 

nonlinearities and found nontrival amounts of energy in wave 

number k > 0.5. While Zabusky and Galvin (1971) considered an 

initial value problem having spatial periodicity, Hammack 

(1973) and Hammack and Segur (1974) considered an initial 

value problem posed on the real line. 
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Benjamin, Bona, and Mahony (1972) have proposed an 

alternative model 

Ut + U + UU - U t = 0, x x xx ( 1 • 3 ) 

which they call a regularised KdV equation (BBM equation). 

Bona and Bryant (1973) have studied the system as a model for 

long water waves of small but finite amplitude generated in a 

uniform open channel by a wave maker at one end. But the 

solitary wave solutions of the BBM equation may not be 

solitons (Jeffrey, 1979). Specific examples of other types of 

model equations for long waves are given by Bona and Smith 

(1976) and Bona and Dougalis (1980). It has been shown by 

Bona and Smith (1975) that an exact relation exists between 

equation (1.3) and the KdV equation 

U + U + UU + U = 0, t x x xxx 
( 1 .4) 

ln the sense that for the same initial data both equations 

have unique smooth solutions. 

Longuet-Higgins (1974) has established some exact 

relations between the momentum and potential energy in the 

case of solitary waves. Extensive numerical studies carried 

out by Longuet-Higgins and Fenton (1974) have shown that 

speed, mass, momentum, and kinetic and potential energies for 

waves of amplitude less than the maximum do not increase 

monotonically with wave amplitude. This result has been 

confirmed by Byatt-Smith and Longuet-Higgins (1976), and 
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Longuet-Higgins and Fox (1977, 1978). 

Miura (1974, 1976) has given extensive review and detailed 

analysis of the works in this field. Some other review 

articles are due to Jeffrey and Kakutani (1972), Scott et al. 

(1973), Benjamin (1974), Whitham (1974), 

Cercignani (1977), Makhankov (1978), Miles 

Newell (1983) and Sander and Hutter (1991). 

Lax (1976), 

(1980, 1981a), 

Stability of solitary waves has been investigated by 

Benjamin (1972) and Bona (1975). Berryman (1976) have shown 

that a KdV soliton is stable whereas the Boussinesq solitary 

wave is unstable to infinitesimal perturbations. A general 

method for the study of stability of a solitary wave solution 

to KdV or BBM type equation has been given by Souganidis and 

Strauss (1990). 

Stoke's (1847) investigations in water waves are the 

starting point for the nonlinear theory of dispersive waves. 

Russell's solitary waves are regarded as the limiting cases of 

Stoke's oscillatory waves of permanent types, the wavelength 

being considerably large compared to the depth of the channel. 

So the widely separated elevations are independent of one 

another. But Stoke's theory fails when the wave length much 

exceeds the depth and hence it cannot unravel the physical 

causes leading to the formation of solitary waves. Amick and 

Toland (1981) have investigated the validity of Stoke's 

conjecture. 
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Bampi and Morro (1979) and Bona (1983) have investigated 

the physical and mathematical approximations that are at the 

basis of the Kdv equation as a model when nonlinear and 

dispersive effects are of comparable small order. 

Justification of Kdv approximation in the case of N-soliton 

water waves has been investigated by Sachs (1984). 

In the derivation of the equation, Korteweg and de Vries 

(1895) had taken into account the effect of surface tension 

also. They sho~ed that the solitary waves of depression exist 

for sufficiently large value of surface tension. Shinbrot 

(1981/1982) has attempted to study solitary waves with surface 

tension. By a formal perturbation expansion Vanden-Broeck et 

al. (1983) have considered the effect of surface tension on 

cnoidal waves by a systematic perturbation method. Solitary 

waves at the interface have been studied by Miles (1980), Koop 

and Butler (1981), Segur and Hammack (1982), Dai (1982, 1983), 

Gear and Grimshaw (1983), Mirie and Su (1984, 1986), Dai and 

Jeffrey (1989a) and Bona and Sachs (1989). Huang et al. 

(1989) have obtained exact and explicit solitary wave solution 

for higher order KdV equation for water waves with surface 

tension. 

Grimshaw (1983) has investigated solitary wave propagation 

in density stratified fluids and described applications to 

waves in atmosphere and ocean. Fission of a solitary wave 1n 

a stratified fluid with a free surface has been investigated 
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by~Zhou (1988). Gabov.(1989) has shown that nonlinear waves 

on the surface of shallow floating fluid can be described by 

the KdV equation. 

Naumkin and Shishmarev (1990) have studied the local and 

global existence of the solitons and asymptotic properties of 
' .. 

the equations of surface waves which include KdV equation. 

1.2 KORTEWEG-de VRIES-BURGERS' EQUATION 

Burgers' equation lS the simplest model of diffusive 

waves. The equation 

.; >0 ( 1. 5) 

was first introduced by Bateman (1915). Burgers (1948) showed 

that it is the simplest equation to combine nonlinearity with 

diffusion. The equation gained its significance when Hopf 

(1950) and Cole (1951) showed that general solution could be 

obtained explicitly. It has found application ln different 

fields like turbulence, sound waves in viscous media, waves in 

fluid filled visco-elastic tubes and magnetohydrodynamic 

waves. In the context of fluid dynamics, the nonlinear term 

represents convection while the second order term represents 

the viscous force. The effect of nonlinearity produces 

progressively more and more deformation in the wave profile 

with time. It achieves the smooth joining of two asymptotic 
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uniform states through continuously varying states, while the 

only bounded solution of linearised Burgers' equation is a 

constant state. The second order term counteract the effect 

of nonlinearity and check the development of steep slopes in 

the wave profile. 

Burgers' equation has 

solutions known as Burgers' 

unidirectional travelling wave 

shock waves. The speed of the 

travelling wave lS determined only by solutions at infinity. 

It has been shown by Jeffrey and Kakutani (1972) that 

these shocks waves are either asymptotically stable or stable 

to infinitesimal disturbances. Like KdV equations, Burgers' 

equation also is a model for a wide class of nonlinear 

Galilean invariant systems under weak nonlinearity with long 

wave length approximations (Su and Gardner, 1969). While KdV 

equation is a limiting form for nonlinear dispersive systems, 

Burgers' equation is a limiting form for nonlinear dissipative 

systems. 

There are many physical systems, the modelling of which 

requires incorporating the effects of nonlinearity, dispersion 

and dissipation, represented by an equation of the form 

+ a UU + b U + c U = 0, x xx xxx 
(1. 6) 

where a, band c are constants, which is called Korteweg-de 

Vries-Burgers' (KdVB) equation. Grad and Hu (1967) have used 

a steady state version of these equations to describe a 
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weak-shock profile in plasmas. Johnson (1970) has obtained 

this equation for waves propagating in a liquid-filled elastic 

tube. A comprehensive account of the travelling wave solution 

to the KdVB equation can be found in Jeffrey and Kakutani 

(1972). Jeffrey (1979) has also obtained an asymptotic shock 

wave solution of the KdVB equation that applies when 

dissipative effects predominate over dispersive effects. He 

has proposed a new Time Regularised Long Wave (TRLW) equation 

which is in the form of a conservation law and is capable of 

characterising bidirectional wave propagation. Numerical 

investigations of the solution have been carried out by Canosa 

and Gazdag (1977). Korebeinikov (1983) has studied solutions 

of KdVB equations for plane, cylindrical and spherical waves, 

and established all invariant solutions using group theoretic 

methods. Gibbon et al. (1985) have showed that KdVB equation 

does not have Painleve property. Shu (1987) has studied 

asymptotic behaviour of solutions of KdVB equation. Jeffrey 

and XU (1989) have shown that the equation can be reduced to a 

quadratic form involving new dependent variable in its partial 

derivatives. Melkonian (1989) has used the equation for 

nonlinear waves in thin films. Uniqueness of solution has 

been investigated by Vlieg and Halford (1991). 
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1.3 SOLITONS AND INVERSE SCATTERING TRANSFORMATION 

The most important development in the theory of partial 

differential equations during the 1960's was the invention of 

Inverse Scattering Transform (1ST) method by Gardner, Greene, 

Kruskal and Miura (GGKM) (1967, 1974) for finding exact 

solution of the initial value problem for KdV equation. Till 

then the only known exact solutions were the solitary waves 

and cnoidal waves. 1ST method provides a procedure for 

explicitly obtaining the pure soliton solutions and 

qualitative information about the general solutions. This 

method can be viewed as a generalization of Fourier analysis 

in the sense that it provides the exact solution to certain 

nonlinear evolution equations just as the Fourier transform 

does for linear evolution equations. 

A remarkable property of KdV equation is that it is in 

the form of a conservation law. Further conservation laws can 

be derived from the equation and Miura et al. (1968) have 

found that KdV equation has an infinite number of conserved 

densities. The existence of infinitely many conservation laws 

of multiple soliton solutions and solvability by 1ST are 

closely related. For any dynamical system there exist true 

connections between solvability and integrability conditions. 

Nonlinear evolution equations which are exactly solvable by 

1ST are said to satisfy the integrability condition. The 
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existence of infinite number of conserved quantities can also 

be termed as a necessary and sufficient condition for 

integrability and hence solvability by 1ST. 

The 1ST method can be briefly described as follows. Let 

us consider, following Miura (1976), the KdV equation 

If V lS a solution of the modified KdV equation 

then 

Vt - 6V 2Vx + V = 0, xxx 

u = V
2 

+ V 
X 

(1.7) 

(1.8) 

(1.9) 

is a solution of equation (1.7). Equation (1.9) defines a 

transformation analogous to the Hopf-Cole transformation of 

Burgers' equation. If U is known, we shall write equation 

(1.9) in the form 

2 
V + V = U, 

x 

and is a Riccati equation for V. 

Then the transformation V = W IW yields the linear equation x 

"'xx - UW = o. (1.10) 

Equation (1.10) is the time-independent Schrodinger equation; 

however missing the energy level term. Now U is a solution of 

the KdV equation which is invariant under Galilean 

transformation. Thus U can be shifted by a constant and x 
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differentiations remain unchanged. Without loss of generality 

we can replace the equation (1.10) by 

", - (u-X)'" = o. "'xx .,. (1.11> 

This is time-independent Schrodinger equation of quantum 

mechanics where 1P is the wave function, U is the potential and 

A represents energy levels. The variable t only plays the 

role of a parameter. The usual problem in quantum mechanics 

is, given the potential U, to find the bound state energy 

levels and the wave functions, le the eigenvalues and the 

proper and improper eigenfunctions. This lS called the direct 

scattering problem. But here the problem is to find U from 

apriori knowledge of certain information called scattering 

data, which includes the discrete eigenvalues, the normalizing 

coefficients for the corresponding eigenfunctions, and the 

reflection coefficient and this is called the inverse 

scattering problem. First it is solved in the quantum 

mechanics context, ie t lS fixed a constant. Then the 

dependence on t can be taken into account and thereby effects 

a solution of the initial-value problem for the KdV equation. 

This method reduces the problem of solving a KdV equation to 

that of solving a linear integral equation, the 

Gel'fand-Levitan or the Marchenko equation. 

This method was soon expressed in an elegant form by Lax 

(1968) and later by Ablowitz, Kaup, Newell and Segur (AKNS) 
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(1974). One of the most important feature of 1ST is that it 

maps an integrable field into a set of action-angle variable 

(the scattering data) in scattering space where the equations 

of motion for the scattering data become very simple, the 

spectrum becomes invariant and the phases execute a very 

simple rotation about the spectrum. Lax obtained exact 

expressions for how this scattering data evolved in time for 

any system integrable or not. The evolution of the scattering 

data from its initial spectrum follows from the appropriate 

AKNS equations. 

The special class of initial data for which exact 

solutions can be obtained corresponds to the 

solutions and are characterised by zero 

N-soliton 

reflection 

coefficient. There are contributions only from discrete 

spectrum. The solitons which propagate with positive velocity 

are the physical manifestation of the discrete spectrum for 

each eigenvalue. The continuous spectrum gives rise to a 

component of the solution which although nonlinear bears a 

close resemblance to the solution of the linearised KdV 

equation. The discrete eigenvalues are independent of the 

parameter t and are constants of motion for the KdV 

The two striking features of the method are that 

equation. 

for the 

associated eigenvalue problem, the discrete eigenvalues are 

constants in time and the time-dependence of the other 

scattering data <continuous eigenvalue) can be determined 
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apriori. Soliton solutions arise when the reflection 

coefficient in the scattering data is zero (Miura, 1976). 

With zero reflection coefficient the kernal and inhomogeneous 

term in the Gel'fand-Levitan integral equation are reduced to 

finite sums over the discrete spectrum and the equation 

becomes degenerate. 

Zakharov and Faddeev (1972) have shown that KdV equation 

is a completely integrable Hamiltonian system, that the 

inverse scattering data may be viewed as another set of 

canonical co-ordinates for this system, and that an infinite 

number of integrals of the motion arise rather naturally from 

this interpretation. 

Zakharov and Shabat (1972) and Ablowitz et al. (1973) have 

shown that the inverse scattering method is applicable to 

other nonlinear evolution equations also. Zakharov-Shabat 1ST 

provides a basis for a subsequent synthesis of the various 

equations that were known to exhibit soliton behaviour 

(Ablowitz et al., 1974; Zakharov and Shabat, 1974; Flaschka 

and Newell, 1975). A detailed description of the 1ST 

associated with the generalized Zakharov-Shabat and 

Schrodinger eigenvalue problem is available in Newell (1980). 

Wadati (1980) and Calagero and Degasperis (1980) have given a 

review on the matrix generalization of the IST method. 

Ablowitz and Newell (1973) have used the IST method to 

study the asymptotic behaviour of the KdV solution. IST 
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method has been extended to study nonlinear equations with 

periodic boundary conditions (McKean and Van Moerbeke, 1975; 

Novikov, 1974). The particle like behaviour of solitons has 

given rise to renewed interest in Backlund transformation to 

construct N-soliton solutions (Hirota and Satsuma, 1976). 

Jeffrey and Dai (1988) have obtained one soliton solution 

for a variable coefficient KdV equation by 1ST method. 

However, the particular equation considered by them can be 

transformed into the general KdV equation, so that it does not 

represent the most general case. Later Dai and Jeffrey 

(1989b) have extended the Zakharov-Shabat 1ST for the class of 

variable coefficient 

integrable. Hirota 

KdV equations which 

(1980) has developed 

are 

an 

directly 

important 

technique to find N-soliton solutions. This lS a direct 

method which does not require a solution of the 1ST problem. 

1.4 KdVB EQUATION FOR WAVES ON WATER WHERE 

THE DEPTH CHANGES FORMING A SHELF 

Pramod and Vedan (1992) have derived a KdVB type equation 

for long wave propagation in water when there is a sudden 

change in depth forming a shelf. Here we give briefly the 

derivation of the equation. 

Denoting the dimensional variables by prlmes, the depth of 

the water below the equilibrium level is h'. This depth is 
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defined by 

h' = h ' - E'H(x'-x ') 
o 0 ' 

(1.12) 

where H(x'-x ') is the Heaviside step-function. The flow is 
o 

irrotational. The velocity potential $' is given by 

( y , + h ' ) 2 a2 f' (x ' ) 
$' = f'(x') - 2.1 + 

( y , + h' ) 4 a4 f ' ( X ' ) 

a ,2 
x 

Dirnensionless variables are defined by 

x' = 1 x, x' 
0 

= lxo 

$' = 
gla 

$ and c 
0 

where 

0: = 
a 
ho 

E' 

f' 

= 

= 

h E y' 
0 

gla f, 
c 

0 

h 2 
o 

(3 = "2 ' 
1 

41 

= hoY' 

a ,4 
X 

(1.13) 

(1.14a) 

(1.14b) 

and 1 and a are characteristic wavelength and amplitude 

respectively. As in the derivation of KdV equation terms of 

O(a2
), 0((32) and 0(0:(3) are neglected. Retaining terms in Eo: 

and E(3 it is shown that the long wave propagation is governed 

by the equation 
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(1.15) 

where 

IS the Dirac delta function and the prImes denotes 

differentiation with respect to x. 

From equation (1.15), we find that 

3 1 
{3T)xxx 0, x<xo T)t + T)x + - c:tT)T) + 6" = 2 x 

(1.16) 

and 

T)t + (1 - i E)T)x + (~ a + i Ea)rmx 

+ (~ {3 - j E{3) T)xxx = 0, x>xo (1.17) 

Equation (1.16) 18 identical with the classical KdV 

equation for constant depth and equation (1.17) also reduces 

to it as E --->0. 

It has been shown that a local generalized solution can be 

obtained in the form 

<1.18) 

where T) and T) are solutions of equations (1.16) and 
1 2 

(1.17) 

respect i ve 1 y • 
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Assuming that n has compact support we find that at x = 0 

If E = 0 we have 

SOO ndt = o. 
-00 

(1.19) 

For E ~ 0 the mass flux is changed by the right hand side of 

equation (1.19) unless n satisfies 

1 5 2 5 
'2 n - '8 001 + 12 f3r1xx = 0 at x = o. (1.20) 

1.5 SCOPE OF THE THESIS 

Equation (1.15) is a KdVB type equation. Nonlinearity and 

dispersion are measured by the same parameters as in the 

classical KdV equation. The additional effect of change in 

depth is taken into account by a parameter E and by retaining 

terms linear in this parameter. As E --->0, we find that the 

equation reduces to the classical KdV equation. An additional 

feature is a diffusion term as in Burgers' equation. The 

thesis contains the results of various studies of equation 

(1.15) • 

Because of the complexity of equation (1.15) we start from 

a study of equations (1.16) and (1.17). If we consider the 
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two equations as defined for -ro <x <ro, equation (1.17) can be 

considered as a perturbation of equation (1.16) due to the 

parameter E. 

In chapter 2 equation (1.17) 1S studied. Method of 

derivative expansion is used to study wave interaction. 

In chapter 3 we consider 1ST analysis of the equations 

(1.16) and (1.17) separately. We further consider numerical 

study of the equations (1.16) and (1.17) using a soliton as 

initial condition. The two equations are used for the two 

domains, upstream and downstream of the shelf respectively. A 

finite difference scheme is used. 

Unlike equations (1.16) and (1.17), equation (1.15) 

contains a diffusion term as in Burgers' equation. To study 

the effect of diffusion we consider the following equation 

TIt + (1 - i E) Tlx + (~ a + ~ Ea) T)T)x + i E/3T1xx 

+ (l /3 - l E/3) TI = 0 6 3 xxx 
(1.21) 

This is a KdVB type equation. 

In chapter 4 we study equation (1.21). We first obtain an 

asymptotic form for travelling wave solution of the equation 

(1.21). Then exact solutions are also obtained using two 

different methods. The first method is a direct one based on 

a combination of solutions to the KdV and Burgers' equations. 

The second one is an extension of Hirota's method. 
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Kaup and Newell (1978) have used 1ST theory for exact KdV 

equation as a basis for a perturbation scheme. The study 

involves all perturbations of equations which are integrable 

by uSlng the 1ST associated with the Zakharov-Shabat 

eigenvalue problem (Zakharov and Shabat, 1972) or the 

Schrodinger equations. An exact expression for the solution 

in terms of the scattering data and squared eigenfunctions was 

used to avoid lnverse procedure given by the Marchenko 

equations. In chapter 5 we use this method to study the 

equation (1.15). 

The final chapter we summarise the results of chapters 2 

to 5 and point out the direction for further research work. 
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CHAPTER 2 

WAVE INTERACTION 

2.1 INTRODUCTION 

The study of wave-wave interactions has its origin 1n the 

fundamental paper by Peierls (1929) on heat conduction 1n 

solids. Since then it has been applied to other branches of 

physics, particularly in quantum field theory. Litvak (1960) 

has applied the theory to study plasma wave interactions. The 

same has found applications in scattering geophysical fields 

through the works of Phillips (1960), Hasselmann (1960, 1962), 

Benney (1962) and Longuet-Higgins (1962). The theory has also 

been applied to study 

surface waves (Ball, 

exchange of energy in internal and 

1964), capillary waves (McGoldrick, 

1965), waves in stratified fluids (Thorpe, 1966) and nonlinear 

interaction between gravity waves and turbulent atmospheric 

boundary layer (Hasselmann, 1967). 

Nishikawa et al. (1974), Kawahara et al. (1975) and Benney 

long (1976, 1977) have studied interactions between short and 

waves by means of the coupled equations for a single 

and the monochromatic wave and a long wave. The interaction 

statistics of many localised waves have been investigated by 
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Zakharov (1972) ln connection with Langmuir turbulence. Miles 

(1977a, b) has studied the general interaction of two oblique 

solitary waves and interaction associated with the parametric 

end points of the singular regime. 

In the case of two solitary waves propagating in opposite 

directions, there are significant differences between 

experimental results (Maxworthy, 1976) and theory based on 

Boussinesq equation (Oikawa and Yajima, 1973). Su and Mirie 

(1980) recasted nonlinear surface boundary conditions into a 

pair of equations involving the free surface elevation and the 

velocity along the horizontal bottom boundary and determined a 

third-order perturbation solution to the head-on collision of 

two solitary waves. They have shown that although the waves 

emerged from the collision without any change in height, were 

symmetric and changed slowly in time. 

Fenton and Rienecker (1982) have investigated the 

interaction of one solitary wave overtaking another, and the 

results supported experimental evidence for the applicability 

of the KdV equation. The phase-shift due to the interaction 

of large and small solitary waves has been studied by Johnson 

(1983). 

Various authors have investigated solitary wave 

propagation at the interface of an inviscid two-fluid system 

(Miles, 1980; Koop and Butler, 1981; Segur and Hammack, 1982; 

Gear and Grimshaw, 1983). Mirie and Su (1984) have studied 
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internal solitary waves and their head-on collision by a 

perturbation method. 

Strong interactions between solitary waves belonging to 

different wave modes have been studied by Gear (1985). Mirie 

and Su (1986) have investigated the head-on collision between 

two modified Kdv solitary waves where cubic and quadratic 

nonlinearities balance dispersion. It is shown that the 

collision is elastic because of a dispersive wave train 

generated behind ~ach emerglng solitary wave. 

Byatt-Smith (1988, 1989) has studied the reflection of a 

solitary wave by a vertical wall by 

collision of two equal solitary 

analytically that the amplitude of 

reflection is reduced. 

considering 

waves. He 

the solitary 

the head-on 

has found 

wave after 

The resonant interaction between two internal gravity 

be modelled by a 

small linear and 

waves in a shallow stratified liquid can 

system of two Kdv equations coupled by 

nonlinear terms. Kivshar and Boris (1989) have used this 

system. It is shown that two solitons belonging to different 

wave modes form an oscillatory bound state (bi-soliton). They 

have calculated the frequency of internal oscillations of a 

bi-soliton and the intensity of the radiation emitted by a 

weakly excited bi-soliton. 

It has been pointed out by Kawahara (1973) that the 

derivative expansion method can be applied in a systematic way 
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to the analysis of weak nonlinear dispersive waves in uniform 

media. He (1975a) has studied the weak nonlinear 

self-interactions of capillary gravity waves using this 

method. Derivative expansion method that avoids secularity 

incorporates partial sums in the sense that the solution thus 

obtained by a perturbation is not a simple power series 

solution (Jeffrey and Kawahara, 1981). Kakutani and Michihiro 

(1976) have applied this method to study the far-field 

modulation of stationary water waves and the same has been 

applied by Kawahara (1975b) to problems of wave propagation in 

nonhomogeneous medium. Using this method Kawahara and Jeffrey 

(1979) have derived several asymptotic kinematic equations for 

a wave system composed of an ensemble of many monochromatic 

waves having a continuous spectrum together with a long wave. 

Since the introduction of multiple scale concepts simplifies 

the order estimation necessary in a perturbation analysis, 

this method systematizes the wave-packet formalism. 

Nirmala and Vedan (1990) have used derivative expansion 

method to study wave interaction on water of variable depth 

based on Johnson's (1973a) equation. 

Here we use derivative expansion method considering 

equation (1.17) as a perturbation of system (1.16) due to the 

parameter E. 
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2.2 STUDY OF WAVE INTERACTION USING DERIVATIVE-

EXPANSION METHOD 

We consider the asymptotic series expanSl0n 

( 2.1> 

regarding D as a function of multiple scales of the parameter 

E. The partial derivatives with respect to t and x are also 

expanded as 

a a a E2 a ( 2 .2) at ii at 
+ E at 

+ 
at + •••••• 

0 1 2 

a a a E2 a ( 2. 3 ) 
ax -ax 

+ E ax 
+ 

ax + ....... 
0 1 2 

Then sUbstituting for Dt , Dx , T'fT1x , T1xxx ln equation 

(1.17) we get, 

aD
1 

aD2 aD
1 

[ 1 - ! EJ[ aD
1 

aD 2 ary ,] 
ato 

+ E at + E at 
+ 

axo 
+ E 

ax 
+ E --ax 

0 1 0 1 

[~ a + 
5 ] [ary ary aD

1 + 4" Ea Dl axl + ET11-ax
2

+ ED ax 1 o 1 1 

ary, ] [i J3 
[ a

3

ry a 3 

+ ED 1 
EJ3] ~l+ E 

D2 
+ "3 2 ax 3 

0 xo axo 

a
3 

] + 3E 
Dl o • ( 2 • 4 ) = 

ax 2ax o 1 
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Collecting O(EO
) ,O(El) terms ln equation (2.4) we get, 

( 2 .5) 

L Tl2 + L Tll + L2 Tl2 = No[TI~ J. 0 1 
( 2 • 6 ) 

where 

L 
a a 3 a + 1 

f3 
a 3 

= at + -- + - <XT1 ax "6 ° ax 2 1 ax 3 
0 0 0 

° 
( 2 .7) 

L a a 
+ ~ [3<XT1 1 

a - ~ ] = at + -- ax 1 ax axo 1 1 1 

+ 1 P[3 a
3 

2 
a 3 ] , -

6 ax2ax axo 
3 

o 1 

( 2 . 8 ) 

L2 
3 aTl

1 = "2 a --ax 
( 2 .9) 

° 
and 

N 
5 B = "8 a - . 

° Bx 
( 2 .10 ) 

° 
We note that equation (2.5) is a nonlinear homogeneous 

equation in Tl
1

• Solving this and substituting in equation 

(2.6) we get a nonlinear nonhomogeneous equation in TlZ" 

Now we study the nonlinear interaction between a long wave 

and an ensemble of short waves (Jeffrey and Kawahara, 1982), 

ie. a superposition of a number of monochromatic waves with 
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different wave numbers, or with a continuous spectrum. For 

this purpose, to the lowest order of approximation, we 

consider a solution of equation (2.5) in the form 

+ B (x , t , .... ), 
1 1 1 

(2.11) 

where A
1
(k) is a slowly varyIng complex amplitude with the 

~ave number k and Bl IS a slowly varyIng real function 

representing the long-wave component. The reality of T'll 

* requires that Al (k) = A
1

(k) where the asterisk denote complex 

conjugate. The dispersion relation of the linear equation 

(2.5) is 

D(k,w) 

Then we have 

= - iw + ik - i ~k3 
6 

w( k) = k - ~ ~k3 , 

and the group velocity is 

= 0, (2.12a) 

(2.12b) 

v ( g) = ~~ = 1 - ~ fjk
2

• ( 2 • 13 ) 

Substituting equation (2.11) in equation (2.6) we get, 

[ L +LJT'I 022 
!:I) . k 1.

3 
0 k

3 
] • V _v_ +~+ ~ 

g ox 2 
1 
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+ B1(X1,tJ I: 
00 

J 1\, (k' · x, ,t ,) exp 
-00 

+ B 1 (X l' t 1) 

aB 

aB1} 
aX 

1 

aB 
1 

at
1 

+ 1 + 
aX

1 

k")A (k')A (k"). 
1 1 

, (2.14) 

where V denotes the group velocity and w' and w" denote w(k') 
g 

and w(k") respectively. 

2.3 THREE-WAVE INTERACTION 

We now consider the resonant wave interaction between 

different wave modes. Two primary components of wave numbers 
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and and frequencies W 
1 

and give rise to an 

interaction term with the magnitudes of the wave number k3 and 

corresponding frequency w3 lying within the limits Ik +k I and 
1 2 

Phill ips <1960, 1977) has pointed out that a 

resonance is possible if the interaction frequencies w +w and 
1 2 

W -w corresponds to wave numbers lying within that range and 
1 2 

exchange of energy among wave modes is analogous to resonance 

in a forced linear oscillator. He has further shown that for 

three-wave interactions, the energy exchange 1S significant 

only when the conditions 

and 

are satisfied or nearly satisfied simultaneously. 

Linear dispersion relation (2.12) admits the three-wave 

interaction process if w'+w" = w for k'+k" = k Here the 

three-wave interaction process does not occur since this 

condition is not satisfied. 

In this case we obtain from equation (2.14) the following 

condition for the nonsecularity of the 0(E
1

) solution, 

[
a a 
Bt1 + Vg aX

1 

ik 
-2- _ i f3 k

3
] A (k) 

3 1 

31 



+ A (k) 1 aB ] 
1 aX

1 

with 

aB 
0 1 = , 

ax 
1 

There is a corresponding 

* conjugate A
1

(k) also. 

= o. 

equation 

Equation (2.15) can be written as 

[~t1 + Vg ~X}" (k) + 1 a a~J', (k)B,] 

(2.15 ) 

for the complex 

= Im{ [~ + P~}, (k) - { ak 11, (k)B, (x ,.t,)}. 
(2.16 ) 

* Multiplying by A
1

(k) we get, 

[a~, + Vg a~}1I1(k)12 + ~ a ~x,h(k)B,]«k) 

= Im < (k){ [~ + p~3]1I1 (k) - ~ ak 11, WB, (x, .t , )}. 

( 2 . 17) 

Equating the real parts in equation (2.17) we get, 
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(2.18) 

Equation (2.18) can be written as 

(2.19) 

where 

n(k) = IA
1
(k)1 2

, (2.20a) 

00 

N = J n(k)dk, 
-00 

(2.20b) 

1 
00 

V = N J Vg n (k) dk , 
-00 

(2.20c) 

and 

R = ~ I: i aB 1 n(k)dk • (2.20d) 

Here n(k) and N represent, energy density and total energy 

density of the short waves respectively. 

2.4 DISCUSSION 

Perturbation method can be applied in the study of a wide 

range of physicctl phenomena. The guiding principle for 

obtaining asymptotic equations is merely the nonsecularity of 
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the perturbation. 

Equation (2.19) is a conservation law. It is found that 

the dispersion relation (2.12) does not admit three-wave 

interaction process. Thus there is no transfer of 

between different wave numbers. But the total energy 

short wave components is conserved by transfer of 

energy 

of the 

energy 

long between the short wave components and the interacting 

wave. 
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CHAPTER 3 

1ST ANALYSIS AND NUMERICAL STUDY OF 

A PERTURBED KdV EQUATION 

3.1 INTRODUCTION 

In this chapter we consider 1ST analysis and numerical 

study of equations (1.16) and (1.17). 

As has been pointed out 

procedure for obtaining 

earlier 1ST method provides a 

pure soliton solutions and 

quantitative information about the general solutions of the 

KdV equation. Johnson (1973a) has ~riefly discussed 

development of solitary wave moving over an uneven bottom 

using 1ST method. He has obtained what he calls the 

eigendepths relating number of solitons formed to the depth of 

the shelves. Soliton solutions for various depths have also 

been examined by numerically integrating the relevant KdV 

equation. 

The 1ST method for one-dimensional Schrodinger operator on 

a straight line has been used by Mel'nikov (1990) to derive 

solutions for the KdV equation with self consistant source 

which describe creation and annihilation of solitons. 

Meinhold (1991) has used 1ST method to find solutions for KdV 
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equation and in particular soliton solutions that do not 

vanish at infinity. 

Apart from the analytical studies, numerical methods have 

also contributed equally to the qualitative study of KdV 

equation. Johnson (1972) has numerically studied the 

development of solitary waves moving over an uneven bottom. 

The reflection of the solitary wave in shallow water has been 

studied numerically using an improved MAC method by Funakoshi 

and Oikawa (1982) and a fourth order accurate difference 

scheme has been proposed by Wu and Guo (1983) for KdV, 

Burgers' and regularised long wave equations. 

Johnson's equation (1973a) belongs to a class of perturbed 

KdV equation. From this point of view Knickerbocker and 

Newell (1980) have numerically studied the equation and 

pointed out the possibility of a shelf formation. 

Iskandar (1989) has used a combined approach of 

linearization and finite difference method to solve the KdV 

equation and discussed the accuracy and efficiency of the 

scheme. The study involves interaction of solitary waves with 

different amplitudes. Pramod et al. (1989) have discussed 

solitary wave propagation and interactions using a KdV 

equation with variable coefficient. This study includes both 

the cases when the system is integrable and non-integrable. 

In this section, we briefly point out the possibility of 

soliton creations due to the discontinuity at x=x . o 

36 



3.2 1ST ANALYSIS 

Equations (1.16) and (1.17) can be written as 

Let 

T'J = I V + V2
, x 

where 

I = i ;r . 
If V is a solution of 

V + pV + qV 2v
x 

+ rV = 0, 
t x xxx 

then 

T'J = I V + V
2 

, 
X 

IS a solution of (3.1). 

For equation (1.16), 

1;;;;/=i~. 
1 I 3a 

For equation (1.17), 

I ;;;; 1=1 
1 

4~( 1-2E) 
a(6+5E) • 

( 3 .1) 

( 3 .2) 

( 3 • 3a ) 

( 3 • 3b) 

In equation (3.2) we take T'J to be known,then this 

corresponds to a Riccati equation for V and can be linearised 
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by the transformation, 

yielding 

v = I lI'x 
lI' 

( 3 .4) 

This is the time-independent Schrodinger equation; however 

it 1S missing the energy term. Now we use the fact that D is 

to be a solution of the Kdv equation which is invariant under 

a Galilean transformation. Under such a transformation D can 

be shifted by a constant and x-differentiations remain 

unchanged. Therefore, without loss of generality we can 

replace the above equation by 

which is the time-independent Schrodinger equation, where D is 

the potential, A's are the energy levels and W is the wave 

function. 

Thus the Schrodinger equation for the two equations can be 

written as 

( 3 • 5 ) 

The solution of the Kdv equation (1.16) 18 the potential 

of the Schrodinger equation. Consider a wave moving to right 

in the reg10n x(x , it is the potential of the Schrodinger o 

38 



equation 

( 3 .6) 

Let it reach x=xo at t=to . Then it becomes the initial 

condition for the KdV equation (1.17). Thus the potential in 

the Schrodinger equation 

( 3 .7) 

which is the solution for the KdV equation (1.17), lS the 

solution of equation (1.16) at t=t and we expect the spectrum o 

also different in this case. This will lead to emergence of 

new solitons by splitting of the wave reaching 

3.3 NUMERICAL SCHEME 

x=x • o 

Now we discuss numerical solution of equations (1.16) and 

(1.17). The numerical method is based on a finite difference 

scheme and the criterion for stability as proposed by 

Vliegenthart (1971) is used. 

Consider the transformations T=t and X=x-t then equations 

(1.16) and (1.17) can be written as 

3 1 
~T + 2 ~X + 6 ~~xxx = 0, (3.8) 

and 
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( 3 • 9 ) 

Equations (3.8) and (3.9) can be written as 

[
3 2 1 ] 

T}T + '4 aT} + '6 i3T}XX X = 0, (3.10 ) 

and 

1 2' ET} + 5 ) 2 + "8 Ea T} 

(3.11> 

Multiplying (3.10) and (3.11) by T), then the equations can 

be written as 

(3.12 ) 

and 

( 3 .13 ) 

Equations (3.10), (3.11> and (3.12), (3.13) can be 

interpreted as the conservation laws of momentum and energy 

respectively of the equations (3.8) and (3.9). 
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Difference schemes that approximate the equations (3.8) 

and (3.9) are 

and 

where 

n+1 T). 
) 

n-1 
= T). 

) 

1 
- '6 

a 
- '2 

fJ[ flT ) (T)~ -
(flX)3 )+2 

- (l fJ - l €fJ) [flT ). 
6 3 (flX)3 

(3.14 ) 

( 3.15) 

and T = nflT, flX and flT being the step lengths in X and T 
n 

respectively. Following Vliegenthart (1971) we see that the 

above difference scheme is stable if 

(3.16 ) 
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(3.17> 

The computations are carried out for the following values 

of parameters, 

(1) 

( 2 ) 

( 3 ) 

a = 0.00111111 

a = 0.01 

a = 0.01 

J3 = 0.01, 

J3 = 0.02, 

J3 = 0.04, 

In all the above cases, the parameter E takes values E=O 

and E= 0.1. 

The initial condition is taken as 

(3.18 ) 

where C is a constant which prescribes the position of the 

peak of the solitary wave. The integration is performed on a 

CYBER 180/830 machine with 500 steps in X. Taking ~X=O.l and 

assuming a maximum value ID\=24, the step length ~T is chosen 

to satisfy the conditions (3.16) and (3.17). We take the 

following step lengths for ~T, 

(1) ~T = 0.14, 

(2) ~T = 0.05, 

(3) ~T = 0.03, 

we take Xo = 0 and 3000 steps in T and the initial profile 

centered at X = -5 throughout the computation. 
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3.4 RESULTS OF NUMERICAL INTEGRATION 

Figures 1-3 show the results of the computations. Figure 

l(A) shows the wave propagation in the case when the 

nonlinearity and dispersion counterbalance each other and E=O. 

In this case the integrability condition is satisfied and the 

system is equivalent to the plane KdV equation. 

is propagated without change of shape. The 

energy are conserved as shown by Table 1(a). 

shows the wave propagation in the case E=O.1 • 

Here the wave 

momentum and 

Figure 1(B) 

In this case 

momentum and energy are not conserved as shown by Table 1(b). 

Thus figure shows solitons propagating off to the right 

together with the oscillatory waves. Figures 2 and 3 and 

Tables 2 and 3 are results of computations in which case the 

nonlinearity and dispersion are not balancing for E = 0 also. 

In all the cases we see that the effect of the parameter E is 

to give rise to oscillatory waves. The nonlinearity also 

become more prominent, resulting in the narrowing down of the 

peaks and increasing of the amplitude. 

3.5 DISCUSSION 

We have studied the equation (1.15) representing waves on 

water of variable depth due to a sudden change in depth. 

Equations (1.16) and (1.17) represents the wave into the 
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domains x<xo and x>xo respectively. 

equations considered in our analysis. 

(1.17) reduces to equation (1.16). 

These are the two 

For E=O, equation 

In section 3.2, we have considered 1ST analysis taking the 

two equations separately. 

In section 3.3, we have considered numerical study of the 

equations (1.16) and (1.17). The equations are transformed to 

equations (3.8) and (3.9) respectively uS1ng a scaling 

transformation. Shelf corresponds to X=O. Wave travelling 

from left to right is governed by (3.8) in the domain X<O and 

(3.9) in X>O. A finite difference scheme 1S used. From 

computations we find that the nonlinearity and dispersion are 

not balanced and harmonic waves are excited. 

Using 1ST technique Kaup and Newell (1978) have pointed 

out that in the case of a perturbed KdV equation, continuous 

spectrum is excited due to interaction between soliton and the 

perturbation and the reflection coefficient will have a Dirac 

delta function behaviour and conservation of momentum is 

possible only by the formation of a shelf. Equation (1.20) 

also points out the excitation of solitons due to the shelf in 

our case. The 1ST analysis in our case also points out the 

enlargement of spectrum as the wave crosses the shelf. Our 

numerical study shows that momentum and energy are not 

conserved and this is due to the neglecting of singularity at 

x=o. 
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Table 1(a) 

Time 

o 

140 

280 

420 

Table l(b) 

Time 

o 

140 

280 

420 

computational values of momentum and energy 

E=O.O, a=0.00111111, 

Total t-1omentum 

239.9999999999 

239.9812488449 

~40.0007749207 

~39.9975195932 

11=0.01 

Total Energy 

959.9999999998 

960.0005975577 

960.0006134471 

960.0000169623 

Computational values of momentum and energy 

E=0.1, a=0.00111111, ~=0.01 

Total Momentum Total Energy 

239.9999999999 959.9999999998 

446.6326680072 1517.617343429 

44.88500865291 266.8922448879 

274.4761013643 898.015530322 
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Table 2 

Value of E 

0.0 

0.1 

Table 3 

Value of E 

0.0 

0.1 

computational values of momentum and energy 

cx=O.Ol, 13=0.02 

Time Total Momentum Total Energy 

o 239.9999999999 959.9999999998 

50 239.9305707873 960.0342806722 

100 240.0009459306 960.0467549429 

150 239.97573907 960.0470581366 

o 239.9999999999 959.9999999998 

50 211.4214591654 941.79225341 

100 239.3741884093 959.9956914168 

150 226.3308302433 954.7334964146 

computational values of momentum and energy 

cx=O.Ol 

Time 

o 

30 

60 

90 

o 

30 

60 

90 

13=0.04 

Total Momentum 

239.9999999999 

240.1065617646 

239.9956813727 

240.0445399648 

239.9999999999 

237.5590856265 

239.9584327767 

239.271377768 
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Total Energy 

959.9999999998 

960.0002702658 

960.0032560182 

960.0057730142 

959.9999999998 

959.8403146036 

960.0025670368 

959.9818525025 
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CHAPTER 4 

ANALYTICAL SOLUTIONS OF A KdVB EQUATION 

4.1 INTRODUCTION 

In chapter ") ... , we have considered the effect of 

perturbations on a KdV equation. There we have the case of 

nonlinearity and dispersion. In this chapter we consider the 

effect of dissipation on the KdV equation. Thus in addition 

to nonlinearity and dispersion, we consider the dissipation 

1 
term -3 EfJl1 xx The resulting equation is a KdVB type 

equation. 

It is to be noted that we are interested in the effect of 

perturbation on the perturbed KdV type equation which 

incorporat~s the dissipation. 

While analytical solution exists for the travelling wave 

solutions of Burgers' and KdV equations, no comparable 

analytical solution exists for the KdVB equation. Numerical 

solutions by Grad and Hu (1967) and Johnson (1970) show that 

when dispersion dominates on dissipation the solution 

represents an oscillatory shock wave. Studies by Grad and Hu 

(1967) and Jeffrey and Kakutani (1972) show that when 

dissipative effect predominates the solution behaves like a 
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Burgers' shock wave. In this case Jeffrey (1979) has obtained 

an analytical solution for a KdVB travelling wave. 

In our analysis we follow Jeffrey (1979) and Jeffrey and 

Mohamad (1991). In the case of KdV equation solitary wave 

solutions exists due to a balancing of nonlinearity and 

dispersion. Unlike Jeffrey (1979), we are interested in a 

perturbation of the solitary wave solution due to dissipation. 

4.2 ASYMPTOTIC SOLUTION 

In this chapter we study the effect of dissipation uSlng 

three methods. First we consider the asymptotic solution for 

KdVB travelling wave solution interms of the parameter E. 

We consider the equation (1.21) as 

+ (1 -
1 

E) T1x + (~ a + i Ea) T}T} x + 
1 

EfJT1x x T1t 2" 3" 

+ (i fJ - 1 
EfJ) T1x x x O. 3" = ( 4 .1> 

Equation (4.1) can be written as 

T1t + (1 - ~ E) T1x + (~ a + 
5 

Ea) T}T}x "4 

+ lT1xx + lJT1xxx = 0, ( 4 • 2 ) 

where 
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1 I = "3 EfJ, and ( 4 • 3 ) 

As pointed above by Jeffrey (1979), equation (4.2) has 

travelling wave solutions. Such solutions have the form 

T}(x,t) = T}(C), ( 4 . 4 ) 

where C = x - At. 

The boundary conditions at infinity determine the 

permissible range of values of A. We consider equation (4.2) 

with the boundary conditions 

and 

Then T} must satisfy the equation 

-
- A dT} + (1 - 1 ) dT} +n a + 5 Ea) ~ dT} 

dC 2" E dC 4 dC 

+ I d2~ + #J 
d3~ 

= O. 
dC

2 
dC

3 

Integrating equation (4.5) with respect to C we obtain 

+ A _ I dT} 
dC 

where A is the constant of integration. 

( 4 . 5 ) 

( 4 • 6 ) 

This equation may be interpreted as an equation of motion 
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for a particle or of an anharmonic oscillator under the action 

of a nonlinear force together with a friction proportional to 

velocity provided that we regarded C and D as the time and 

space co-ordinates respectively. 

Using the boundary conditions and the vanishing of 

derivatives at infinity we get 

( 4 .7) 

A = ( 4 .8) 

Therefore equation (4.6) becomes 

1 
+ -2 

5 ) - 2 
+ '4 Ea D 

( 4 • 9 ) 

Making the variable changes 

= 

(4.10 ) 

reduces equation (4.9) to 
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(4.11) 

with the boundary conditions 

4>(-00) = 0 4>(00) = 1. (4.12) 

We look for an asymptotic solution of equation (4.11) in 

the form 

( 4 .13 ) 

we match an asymptotic solution of O(E) to the value of 4> at 

the point where the curvature of the travelling wave changes 

sIgn. Because of the invariant of the equation under an 

arbitrary fixed translation we can take the orIgIn at this 

point. Now to determine 4>(0) we consider the (4),s)-phase 

plane with s=d4>/d~. Then equation (4.11) becomes 

(4.14) 

d4> 
d~ = s. (4.15) 

This system has critical points at the origin (0,0) and at 

point (1,0), with the origin representing a saddle point and 

(1,0) a node or focus. These two points corresponds to the 

boundary conditions to be satisfied by the solution to 

equation (4.11). From this we conclude that the solution 

corresponding to the trajectory joining these two critical 
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points must be unique. Thus the point at which ds/d~=O will 

correspond to the point where the curvature of the wave 

changes sign. 

Now to find ~(O) we seek an expansion of s in the form 

s(~) = £ f (~) + £2 f (~) + ••••• 
1 2 

From equations (4.14) and (4.15) 

""s ds = -s - (12 a + .. d~ 

(4.16) 

( 4 . 17) 

substituting for s and equating terms of 0(£) we get 

s (~) = £ i a (~ - ~2) + ••••••• (4.18 ) 

Then to the same order it follows that ds/d~=O when 

~1(0)=0 and ~;(O)=i~ • It is to be noted that the equation 

(4.13) implies that the 0(1) solution corresponds to ~=O or 

~=1. Thus we are considering the solution corresponds to the 

perturbation only. The same thing follows, if we consider the 

corresponding terms in equation (4.16) also. From equation 

(4.11) we thus obtain the boundary value problem 

't ~ "( ~) + ~1'(~) 
3 

~ (~) 0 , - 2' a = 1 1 
(4.19) 

with ~1 ( 0 ) 
1 and ~1 '(0) 

5 = 2' = 16 a . ( 4.20 ) 

Solving equation ( 4 . 19) we get 
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(SCX + 8)1:].exp (/6CX1:+{ - 1]l; 
1 6cx1:+ l' 21: 

(SCX + 8)1: 

16cx1:+ l' ) _ (I 6CX1:+{ + 1) r .exp 21: ~ • 

By using equation (4.10) we get 

TI = Tloo + +: -~; ){ [4 + (5" + 8)"[]. 
1 6cx1:+1' 

(4.21> 

[I 6",+ i - l]~ - [f + ) . (Sa + 8)'[ 
exp 21: 

1 6cx1:+1' 

(4.22 ) 

Unlike in Jeffrey (1979) 1: and hence ~ enters as a 

nonlinear factor in the solution. 

It is to be noted that to the order of E we are not 

directly making use of the boundary condition at l;=± 00 • This 

corresponds to the fact that we cannot prescribe such a 

boundary condition in our physical problem. 

In the next two sections we give exact solutions of 

equation (4.1). The study involves the applications of the 

methods proposed by Jeffrey and Mohamad (1991) for the general 

KdVB equation. 
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4.3 DIRECT METHOD 

Equation (4.1) can be written as 

(4.23 ) 

where a, b, c and d are the constant coefficients of nx ' nDx 

~xx ' and n respectively. xxx 

We look for a solution of the KdVB equation (4.23) 1S of 

the form 

n=n(~), where ~ = kx - wt. ( 4 • 24 ) 

Here k and ware constants to be determined. Substituting in 

equation (4.23) we get, 

(4.25 ) 

Equation (4.25) can be integrated to get 

(4.26) 

where C is the constant of integration. 

The basis of the method is to assume a travelling wave 

solution of the form 

n = A sechn~ + B tanhm~ + D, (4.27) 

which is a superposition of solutions of Burgers' equation and 

KdV equation. In equation (4.27) A, Band D are constants to 

be determined. 

There are five undetermined constants and inorder to 
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obtain a unique solution, it is necessary to find and then 

solve five independent algebraic equations. 

By setting the integration constant C equal to zero and 

sUbstituting equation (4.27) into equation (4.26) we get, 

(- W + dk) (A sechnl; + B tanhml; + D) 

+ i bk(A sechnl; + B tanhml; + D)2 

+ ck - An sech l; tanhl; + Bm sech l; tanh l; 2 (n 2 m-1 ) 

- 2Bm sech2l; tanhml;) = O. 

n+2 
sech l; 

( 4.28 ) 

Then only when n = 2 and m = 1 in equation (4.28) we can 

arrive at five simultaneous equations from which to determine 

the five remaining unknowns. These equations are 

i bk(B2 + D2) 

4dk3
A + ck2B + 

bkD - (W - dk) 

_ 6dk2 + 1 bA 
2" 

- D(W - dk) = o , 

1 bk( 2AD - B2) - A(W - dk) 2" 

= 0, 

0, 
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= o , (4.30 ) 

(4.31> 

(4.32) 



~ bAB - ckA - dk
2 B = O. (4.33) 

It follows from equations (4.29) to (4.33) that 

c 
k = ± lOd ' (4.34) 

(4.35) 

and D 

(4.36) 

substituting these results into equation (4.24) and 

equation (4.27) with k c = lOd we get 

3c
2 

{ } n(x,t) = 25bd sech2(~/2) + 2 tanh(~/2) + 2 , 

where 

+ +]. 
Similarly when k = c 

lOd ' 

3c
2 

{ } n(x,t) = 25bd sech2(~/2) - 2 tanh(~/2) - 2 , 

where 

~ = - 5~ [x + (~~~d - +]. 

(4.37a) 

(4.37b) 

These results are In agreement with those obtained by 
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Jeffrey and XU (1989). 

Equation (4.37) represent a travelling wave solution to 

the KdVB equation (4.23). 

We also find the travelling wave solution D given by 

equation (4.37a) has the limit 0 as ~--->-ro and the limit 

12c2 /25bd as ~---)ro , ~hile the travelling wave solution D 

gIven by equation (4.37b) has the limit 0 as ~--->-ro and the 

limit - 12c2 /25bd as ~--->ro. 

It is also to be noted that the travelling wave solutions 

of either Burgers' equation or KdV equation cannot be obtained 

as limiting cases from the solution (4.37). 

4.4 SERIES METHOD 

We seek a solution of the KdVB equation (4.23) in the form 

2 

D(X,t) I j-2 = D· F , 
J 

(4.38 ) 

j=O 

where T'/. and P are functions of x and t 
J 

respectively. 

substituting equation (4.38) into equation (4.23) we find that 

(4.39a) 

T'/ = 12 (c/b) F + 12(d/b) F 
1 5 x xx (4.39b) 

where Do and D1 are the coefficients of the powers of p-s and 

-4 F respectively. Using equation (4.39), the coefficient of 
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F- 3 can be written in the form 

6 
-5 cF xx + 4dF xxx 

3dF -1 F 2 + 6F D = O. 
x xx X 2 

(4.40) 

A solution D(X,t) of the KdVB equation (4.23) may then be 

written as 

(4.41> 

substituting from equations (4.39), equation (4.41) can be 

written as 

a2 
= 12(dlb) logF 

ax 2 

12c a 
+ 5b Bx logF + D2 (x,t). (4.42) 

Equation (4.42) includes as particular cases, the 

transformation used by Jeffrey and Xu (1989), Weiss et al 

(1983) and the well known Hopf-Cole transformation (Cole, 

1951; Hopf, 1950). 

We set 

F(x,t) = 1 + exp(kx - wt), (4.43) 

where k and ware constants to be determined. 

Substituting equation (4.43) into equations (4.40) and 

(4.42) and setting D2 = 0 we find that a function F of the 
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form of equation (4.43) will be a solution of the KdVB 

equation provided 

6c 2 k 2 
+ 5ack - 50w = 0, (4.44a) 

and 

(4.44b) 

From equation (4.44) we have, 

(4.45a) 

and 

c 
k = ± 5d • (4.45b) 

c Thus corresponding to k = 5d and 

we have 

ry(x,t) 12(dlb) 8
2 

{l09(1+ exp(kx - wtl)} = 
8x

2 

12c 8 {l09(1+ exp(kx - wtl)} + 
5b 8x 

3c 2 

{seCh2(~/21 + 2 tanh(~/21 + 2} • = 25bd 

(4.46) 

Similarly corresponding to k c 
5d and = -

~ = - 5~ [x + (~~:a + +] , 
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we have 

(4.47) 

These results are identical with those we have obtained using 

the direct method. 

4.5 DISCUSSION 

As a further step in the study of equation (1.15) we have 

considered here equation (1.21) which includes a term k~ 3 ~I/XX 

in addition to nonlinearity and dispersion. Unlike the usual 

cases considered else where, ~ E~>O in our case. 

First, we have obtained an asymptotic solution. Here we 

see that unlike in Jeffrey (1979), the dispersion coefficient 

enters nonlinearly in the solution. It has already been 

pointed out by Jeffrey that KdVB shock solution is sensitive 

to a perturbation at the origin. 

We have also obtained analytic solutions using two 

different methods. It is found that the travelling wave 

solutions of either Burgers' equation or KdV equation cannot 

be obtained as limitting cases from the solution of KdVB 

equation. The results obtained by series method are identical 

with those obtained using direct method. 
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CHAPTER 5 

IST ANALYSIS OF KdVB EQUATION 

5.1 INTRODUCTION 

The celebrated KdV equation derived by Korteweg and de 

Vries (1895) is a model for unidirectional long waves of small 

amplitude travelling over a constant depth. In order to 

compute the deformation of a solitary wave climbing a beach, 

Peregrine (1967) used a finite-difference scheme and has given 

the quantitative results. He has derived a long wave equation 

in water of variable depth, which corresponds to the 

Boussinesq equation for water of constant depth. 

Madsen and Mei (1969) have investigated the problem of 

solitary wave propagating over a mild slope on to a shelf of 

constant depth. They have observed that while propagating 

over a shelf, the wave is disintegrating into a train of 

solitary waves of decreasing amplitude. 

If the depth of water is changing slowly the resulting 

equation is a perturbed KdV equation. Several successful 

attempts were made to find an asymptotic solution to this 

problem (Grimshaw, 1970, 1971; Leibovich and Randall, 1973). 

A remarkable development in this direction is the derivation 
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of such an equation by Kakutani (1971), and Johnson (1972). 

Johnson (1973a) proved that if the depth decreases to form a 

shelf, then for particular new depths a solitary wave breaks 

up into a finite number of solitons asymptotically far along 

the shelf. 

KdV equation with variable coefficients appears as a model 

for wave propagation in an inhomogeneous medium. In the case 

of water waves the inhomogenity may be due to change ln depth 

or cross-section. The equations due to Kakutani (1971) and 

Johnson (1972) belong to this class. Nirmala et al. (1986a, 

b) have considered the integrability of a particular class of 

KdV equations with variable coefficients. Some other works 

are due to Shen and Zhong (1981) Zhou (1981, 1983) and Sobezyk 

(1992). 

As pointed out in 3.1, Johnson's (1973a) equation belongs 

to a class of perturbed KdV equation. Kaup and Newell (1978) 

used the 1ST theory for the exact KdV equation as a basis for 

a perturbation scheme, and found that the zero wave number 

mode of the continuous spectrum was excited by the solitary 

wave interacting with the perturbation. This excitation is 

manifested by the creation of a shelf in the wake 

solitary wave extending between the rear of the wave and 

point to which the largest linear disturbances would 

of a 

the 

have 

travelled. The role of the shelf is to provide a balance in 

the mass flux relation. Kaup and Newell also showed that the 
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shelf acts as a precursor to the formation of new solitons. 

Their study involves all perturbations of equations which are 

exactly integrable by using the inverse scattering transforms 

associated with the Zakharov-Shabat eigenvalue problem 

(Zakharov and Shabat, 1972) or the Schrodinger equations. An 

exact expression for the solution interms of the scattering 

data and squared eigenfunctions was used to avoid the inverse 

procedure given by the Marchenko equations. Zakharov-Shabat 

method has another advantage that the unperturbed system 1S 

integrable and this system can be used as the basis for 

analysing the perturbed system. The fixed parameters (the 

action variables) of the unperturbed system will take on a 

slowly varying behaviour in the perturbed system. 

Knickerbocker and Newell (1980) conducted numerical 

studies of the analytical results of Kaup and Newell (1978) 

concerning the effect of a perturbation on a solitary wave of 

the KdV equation.Kalyakin (1991), Byatt-Smith (1992) and 

Grim~haw (1992) have also studied solutions of perturbed KdV 

equations. 

5.2 PERTURBATION METHOD 

We consider the KdVB equation (Pramod and Vedan, 1992), 
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Equation (5.1) can be written as 

- 45 cxH ( x - x ) TJTI - 1:.3 (30 ( x - x ) T) + o x 0 xx 

+ 13 (3H(x-x ) T) }. o xxx 

By the definition of a Dirac delta function we have, 

and 

= o(x-x ). 
o 

Then equation (5.2) can be written as, 
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5 {31°k) f:( ) 5 1 f:( ) 12 Dx U x-xo - 4 a ik nDx U x-xo 

( 5 • 3 ) 

Equation (5.3) can be again written as, 

( 5 • 4 ) 

where 

( 5 . 5 ) 

Equation (5.4) is a perturbed KdV equation. We consider 

the integrable system (in equation (5.4» 

65 



Let 

where 

If U is 

then 

T1t + T1x + 
3 
"2 aTJT1x 

+ 
1 

fmxxx o. 6" = 

T1 = I U + u2
, 

x 

I = i ;1f . 
a solution of 

Ut U 3 aU 2 U 1 
fJUxxx 0, + + "2 + 6" = x x 

T1 = I U + U2 is a solution of equation (5.6). x 

( 5 .6 ) 

( 5 .7) 

In equation (5.7) we take T1 to be known; then this 

corresponds to a Riccati equation for V and can be linearised 

by the transformation, 

( 5 .8) 

yielding 

V - T1V = 0, xx 
(5.9a) 

where 

(5.9b) 

This is the time-independent Schrodinger equation; however 

it is missing the energy level term. In 1ST method we 

consider the time-independent Schrodinger equation, 

66 



(S.10) 

where n is the potential, C2 's are the energy levels, where 

C= ~+in and V is the wave function. 

5.3 ZAKHAROV-SHABAT EIGENVALUE PROBLEM 

Equation (5.10) can be written as Zakharov-Shabat (Z.S.) 

eigenvalue problem (Zakharov and Shabat, 1972), 

(5.11a) 

and 

V + iCV2 = -V 
2X 1 

(S.llb) 

Following Kaup and Newell (1978) and Newell (1980), we 

define for real C, two pairs of linearly independent 

solutions. The solutions are ~(x,t,C) and ~(x,t,C) where 

- * * - - * * ~=(~2' -~1) and ~(x,t,C) and ~(x,t,C) where ~=(~2' -~1) and * 

denotes the complex conjugate, which have the following 

asymptotic properties, 

~ __ > e -iCx , x -->-<:D (S.12a) 

X --)-:11 

(S.12b) 

> iCx 11' -- e , X --><:D (5.12c) 
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x --)-a> 

(S.12d) 

Here 1/a is the transmission coefficient and bla is the 

reflection coefficient. The solutions are interrelated by 

~(x,t,C) = a(C,t) W(x,t,-C) + b(C,t) W(x,t,C), (S.13a) 

~(x,t,-C) = a(-C,t) W(x,t,C) + b(-C,t) W(x,t,-C). (S.13b) 

and the lnverse relations can be found by uSlng the fact that 

a(C,t) a(-C,t) - b(C,t) b(-C,t) = 1. 

The reality of n(x,t) implies that, 

* * a ( -C) = a ( C ), 

* * b ( -C) = b ( C ). 

The zeros of a(C,t), when Im(C»O are the discrete 

eigenvalues of equation (5.10). Assume that these zeros are 

simple. The linear integral equation which allows one to 

reconstruct the potential n(x,t) from the scattering data uses 

the following combinations, 

S+ ; {b(~,t)/a(~,t), ~ real 

s C real 
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(~k ,Jk ) , k=l, .••.• ,N} 
(S.14a) 

(~k ,Pk ) , k=l, .••.. ,~ 
(S.14b) 



Here lk = bk la k fJ = -11 bka k 
r and bk(t) is defined k 

by the relation, CP( C k ,t) = bk(t) 111 (C k ' t ) bk(t) is the 

analytic extension of b(C,t) to Ck if there is one. We will 

',wrk with S • We make the substitution ij = in equations 

(S.4) - (S.6). 

Equation (S.6) is the integrable system, 

(S. lS) 

In equation (S.lS) above, Po(C) is an entire function (real 

for C real) and M is the operator, 
s 

M (1112) = C
2 1112 

s 

.... ·here 

P (C 2
) = 

0 
-4C

2 , (S.16a) 

and 

1 1 a 2 _ .!l a/ 2 
(]) 

M = -, "4 -'24 fJ _ a/ 2 
T} J dyij s ax 2 8 x y 

(S.16b) 

The scattering data for the above integrable system is, 

(S.17a) 

( S .17b) 

(S.17c) 
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Now we can solve 

E F, 

where 

( 5 .18 ) 

cS( x-x ) 
o 

(5.18a) 

By mapping ry(x,t) in to the scattering functions associated 

with equation (5.10). Then, 

E 1: F lPk
2 

dx , (5.19a) 

+ (5.19b) 

for k = 1, 2, •••••. ,N and for real C 

and 

"" 2iC P (C 2 "" E 1: 2 (b la)t = )b la + F tp dx. 
0 2iC a 

2 

(5.19c) 

For the unperturbed system the multi-soliton state, 
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following methods similar to Zakharov and Shabat (1972) is 

ix(lP)· 
J 

lk lPk exp i(Ck+Cj)x 

2 
(C k +C j ) 

(5.20a) 

(5.20b) 

where lP. , j = 1,2, •..• ,N are found from the equations 
J 

N 

lP j + I 
k=l 

where j = 1, .••• ,N. 

exp i(C.x), 
J 

(5.20c) 

Using the property of delta function, equations (5.19) becomes 

{ [b~k - ~2 Pikh 

exp (2iCk x) [1 - 2 ~ 
k=l 
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lk lPk exp(iCkx) 

2C k 



N N 

+ L L 
k=l 1=1 

}k }1 ~k ~1 exp i(Ck +C 1 )x 

2C k (C k +C 1) 

d " 

f3kt + ( d

k

k 
r + 1 ) Q r C

k 
~k':.kt 

N 

+ 2 L 
k=l 

N N 

+L L 

}k ~k exp (3iCk )x 

(2C
k

)2 

k=l 1=1 

}k }1 ~k ~1 exp i(3Ck +C 1 )x 

(C1-C k ) 
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JLx 
o 

(S.21a) 



* * € (b la)t = 2iC Po(C 2 )b la + 

{[ (2ik 

1 
J3 

1 
+ "3 ik 

k=1 1=1 

2iC a
2 

S 
J3ik)nx -

5 1 
-12 "4 a ik 

T)xxx ].exp (i2~)x • 

Yktpk exp (iCkx) 

( C k +C) 

(S.21b) 

1 
J3n xx TP1x - "3 

(5.21c) 

It has been pointed out by Kaup and Newell (1978) that 

perturbed KdV equation cannot conserve mass flux. While 

conservation of energy is consistent with the fact that the 

eigenvalue of the Schrodinger operator for real potentials 

adjust its value in an adiabatic way to change in depth, the 

growing or decaying of soliton cannot correspond to supply of 

water across the shelf to keep a constant flux. We have 
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already noted (chapter 3, discussion) the excitation of 

solitons due to the shelf. Now to study the propagation of 

soliton past the shelf, we consider the contribution of 

continuous spectrum. For this we calculated the reflection 

coefficient bla from equation (5.21c) with = 

(bla)t=o = O. 

From equation (5.21c), 

* 3 * (b la)t + 8iC (b la) = 

exp (2iCX)[1 - 2 I 
k=l 

"1k 'Pk exp (iCkx) 

(Ck+C) 

N N 

+ L I 
k=l 1=1 

"11 tpk 'PI exp i(Ck+Cl)X]} 
(Ck+C) (Cl +C) 

x=x o 

and 

(5.22 ) 

Integrating we get (with Dt = 0 to first order) equation (5.22) 

becomes 
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b(~,t) = { [(2ik - ~2 Pi+i x - i a ik ~~x + 

+ ~ P~xx + j P ik ~xxx] exp (-2i<x), 

N N 

+ L L 
k=1 1=1 

~k ~l exp -i(~k+~l)X]} 
(~k+~) (~l +~) 

x=x o 

(5.23) 

From equation (5.23) we find that b(~,t) is not defined for 

~= O. 

In fact we have to solve the perturbed equation in an 

iterative manner treating E as a small parameter and using 

well known ideas from singular perturbation theory. Our 

interest is to obtain an asymptotic expansion for D(x,t) which 

is uniformly valid for times t = for some L >0. 

Uniformly valid asymptotic expansions in scattering space 

result in a uniform expansion in the physical space. But when 

the asymptotic expansions in scattering space is nonuniform we 
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resolve the question by demanding that the resulting 

asymptotic expansion (Kaup and Newell, 1978; Newell (1980) for 

n(x,t) in physical space interms of the scattering data and 

squared eigenfunctions 

n(x,t) (5.24) 

is uniformly valid. Here the summation corresponds to the 

contribution of the discrete spectrum and the integration 

corresponds to the contribution of the continuous spectrum. 

In equation (5.20), 

If N = 1, and 

-where 8 = - l1X + 8 then 

l+exp (-2nx+28) 

1 = 2 exp (-8> Sech 8. 

Therefore equation (5.20a) becomes 

il:x 
= e <,. (5.25 ) 

Now we find out the contribution of continuous spectrum 

n (x,t) of this term to n(x,t) which can be computed from 
c 

equation (5.24). We get, 
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Tj (x,t) 
c 

exp (2i~x) [1 _ 2Tj e
28

]2 
T)-i~ 1+e

28 

5 1 1 Q- 1 Q 1 
- 4 a ik T)T)x + 3 ~T)xx + 3 ~ ik 

exp (-2i~X)[1 - 2~ 
k=l 

l k lPk exp (-i~kx) 

(~k+~) 

k=l 1=1 

lPk lPl exp -i(~k+~l)X]} 
(l;k+~) (~r+~) 

x=x 
o 

(5.26) 

Clearly this has non-vanishing contribution in the 

neighbourhood of ~ = O. 

5.4 ONE-SOLITON CASE 

As a particular example we consider the motion of a 

soliton 
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Tj(x,t) 22-= 2~ sech ~(x-x), 

after it has passed the position x=x at which the o 

( S • 27 ) 

depth 

changes. We assume that the soliton reaches the position at 

t= o. We obtain the equations of motion for the amplitude ~(t) 

and position x(t) of the soliton. Then equation (S.18a) 

becomes 

lOa 5 4 - -
+ ik ~ sech ~(x-x)tanh ~(x-x) o(x-xo ) 

f3 
+ 3ik - 16~ sech 

(
52 ~(x-x) tanh ~(x-x) 

(S • 28 ) 

For the scattering functions associated with equation 

(5.10) we get, 

- 4~3 sech2 ~(x-x). tanh ~(x-x) 

lOa 5 4 
+ ik ~ sech ~(x-x) tanh ~(x-x) 
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a .. 
k 

- + a ' k 

f3 
+ 3ik - 1611 sech ( 

5 2 I1(X-X) tanh l1(x-x) 

+ 48~5 sech' ~(x-x) tanh ~(X-X»)] . 

exp (2iCkx)[1 - 2 I 
k=l 

k=l 1=1 

+ 

32-411 sech l1(x-x) tanh l1(x-x) 

lOa 5 4 - -
+ ik 11 sech l1(x-x) tanh l1(x-x) 

f3 
+ 3ik - 1611 sech 

(
52 
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I1(X-X) tanh l1(x-x) 

(S.29a) 



and 

* (b /a)t 

+ 48~5 sech' ~(x-x) tanh ~(X-X))]. 

2ix exp (2iCk x) [1 - 2 I 
k=l 

lk lPk exp (iCkx) 

2C k 

N 

I 

N 

+ 2 L 
k=l 

lk lPk exp (3iCk x) 

( 2C k) 2 

N N 

+ L L 
k=l 1=1 

lk 11 lPk lP1 exp i(3Ck +C 1 )x 

(C 1-C k ) 

Po (C 2
) b * / a E {[ (2~k 5 = 2iC + -12 

2iC a 2 

411
3 sech 2 I1(X-X) tanh l1(x-x) 

lOa 5 4 l1(x-x) tanh l1(x-x) + 
ik J1 sech 
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(5.29b) 

~ik) . 



- 16/.l sech ( 
5 2 

/.l(x-x) tanh /.l(x-x) 

+ 48p' sech' p(x-xl tanh P(X-Xl)]. 

exp (2iCX)[1 - 2 I 
k=l 

"1k !Pk exp (iCkx) 

(C k +C) 

k=l 1=1 

"1 1 !Pk !PI exp i(Ck+Cl)X]} 
(C k +C) (C 1 +C ) 

x=x o 

(S.29c) 

We calculate the reflection coefficient bla from equation 

(S.29c) with Po = -4C2 
and (bla)t=o =0. 

becomes 

* 3 * (b la)t + 8iC (b la) = 

Then the 

lOa 5 4 - -
+ ik /.l sech /.l(x-x) tanh /.l(x-x) 
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+ f3 
3ik - 16Ji sech 

[

52 Ji(X-X) tanh 

+ 48~5 sech' ~(x-x) tanh ~(X-X»)]. 

exp (2iCx) [1 - 2 

N 

I 
k=l 

1k VJk exp (iCk)x 

(C k +C) 

k=l 1=1 

VJk VJ 1 exp i(Ck+C 1 )XJ} 
(Ck+C) (C 1+C) 

x=x o 
( 5 • 30 ) 

Integrating (with Jit = 0 to first order) equation (5.30) 

we get, 

,.. 
b (l;,t) = 

a 

10cr 5 4 - -
+ ik Ji sech Ji(X-X) tanh Ji(X-X) 
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5 2 
16~ sech ~(x-x) tanh ~(x-x) 

+ 48~5 sech' ~(x-x) tanh ~(X-X»)]. 

N 

L 
k=1 

k=1 1=1 

"1k tpk exp (i~kx) 

(~k+~) 

The reflection coefficient b(~,t) becomes 

+ i~a ~s sech4 ~(x-x) tanh ~(x-x) 
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fJ 
+ 3ik - 1611 sech 

(
52 l1(x-X) tanh l1(x-x) 

+ 48~5 sech' ~(x-x) tanh ~(X-X»)]. 

N 

L 
k=1 

k=1 1=1 

lk ~k exp (-i~kx) 

(~k+~ ) 

(5.31) 

From equation (5.31) we find that b(~,t) is not defined 

for ~=O. Now we find out the contribution of continuous 

spectrum n (x,t) of this term to n(x,t) which can be computed 
c 

from equation (5.24). We get, 

n (x,t) = 
c 

10a 5 4 
+ ik 11 sech l1(x-x) tanh p(x-x) 
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f3 
+ 3ik - 16j..l sech 

(
52 j..l(x-x) tanh 

Clearly this 

exp (-2i~x) [1 - 2 I 
k=l 

k=l 1=1 

has non-vanishing 

neighbourhood of ~=O. 

5.5 DISCUSSION 

lk Wk exp -(i~kX) 

(~k+~) 

contribution 

(5.32 ) 

in the 

The equations of Kakutani (1971) and Johnson (1973b) has 

led to the study of a perturbed KdV equation as a model for 

diverse physical systems. Some of the major contributions in 

this field are due to Kaup and Newell (1978), Knickerbocker 

and Newell (1980) and Newell (1980), especially in the context 

of water waves. 
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The classical KdV equation is known to have an infinite 

number of conserved quantities. In the context of water waves 

this includes the conservation laws of mass and energy. The 

asymptotic solutions of perturbed KdV equation show that mass 

is not conserved which points out that the solution is 

nonuniform. 

To circumvent this difficulty Kaup and Newell (1978) 

studied this problem using a different method. 

the fact that the classical KdV equation 

They exploited 

is exactly 

integrable, ie an infinite dimensional Hamiltonian system. 

The 1ST transform is a canonical transformation which carries 

the old co-ordinates (wavefunction) to the scattering data of 

the corresponding Schrodinger equation. Here the bound state 

eigenvalues are the action variables which prescribe the 

constant amplitude, shape and speed of the soliton; the 

normalization constants corresponds to angle variable and 

defines its position. The reflection coefficient measures the 

degree to which the continuous spectrum is excited. 

In the case of the unperturbed system, reflection 

coefficient is identically zero. When the system is perturbed 

it is no more exactly separable. The normal modes become 

mixed so that an initial state consisting only of solitons can 

stimulate radiation and conversely the radiation can result in 

creation of new solitons. Thus the reflection coefficient is 

no more identically zero and the system doesn't have an 
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infinite number of conservation laws. 

The physical argument given by Kaup and Newell is as 

follows: KdV soliton has only one parameter, its amplitude, to 

adjust as it faces a perturbation. So it cannot 

simultaneously satisfy conservation of mass and energy flux. 

It chooses to satisfy the latter. The failure to satisfy 

conservation of mass flux means that another solution 

component must be excited to preserve the mass balance. The 

physical manifestation of this is the creation of a shelf and 

mathematically it means that the reflection coefficient 

develops a Dirac delta function behaviour. 

In this chapter we have studied equation (1.15) as a 

perturbed KdV equation. Following Kaup and Newell (1978), we 

have formulated the problem as a Zakharov-Shabat system 

(Zakharovand Shabat, 1972). Our 

excitation of continuous spectrum and 

study here shows the 

the evolution of new 

solitons. We have also considered an example in which the 

excitation of continuous spectrum by a one-soliton as it 

passes the shelf is pointed out. 
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CHAPTER 6 

CONCLUSIONS 

The general approach throughout the thesis is treating the 

KdVB equation (1.15) as a perturbed KdV equation. Though a 

rich literature exists in the case of KdV equation, not much 

works have appeared about KdVB equation. 

As pointed out in chapter 1, equation (1.15) gives rise to 

two equations of KdV type for the two domains to the left and 

right of the position of shelf. In chapter 2, we have 

considered the two equations to be defined in the whole domain 

-~ <x <~ and treated the second equation as a perturbation of 

the first one. In the next chapter we have considered the two 

equations defined in two domains and studied the solution 

numerically. 

The studies in chapters 2 and 3 involves only nonlinearity 

and dispersion. To take into account the effect of 

dissipation in chapter 4, an additional term is considered and 

studied the case when dissipation dominates. In chapter 5, we 

have studied equation (1.15) again treating it as a perturbed 

KdV equation. 
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It is well known that energy exchange among different wave 

modes is significant only when three-wave interaction lS 

possible. When we consider only an ensemble of short waves, 

the total energy is conserved by exchange of energy between 

different wave modes in the case of three-wave interaction. 

In our case the total energy of short wave components is 

conserved as a result of transfer of energy between short wave 

components and the interacting long wave. Mathematically the 

study of interaction between short waves and long wave is 

justifiable as KdV equation is known to be dispersive and the 

dispersion relation is that of the corresponding linearised 

equation. The study is also significant in the case of a 

perturbed KdV equation as the equation is known to give rise 

to oscillatory tails. 

The results of chapter 3 points towards the need for 

considering the equation (1.15 ) in detail. The 

to time-independent Schrodinger equations corresponding 

unperturbed and perturbed KdV equation show the enlargement of 

spectrum as the wave crosses the shelf. Numerical 

computations show that mass and energy are not conserved. It 

is possible only if we take into account the physical 

phenomena occurring as the wave crosses the shelf. 

To consider energy dissipation we have used a KdVB 

equation with a term % E~Dxx Here the coefficient % E~>O so 
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that this corresponds to addition of energy and not 

dissipation. This is justifiable physically also since the 

phenomena occurring at the shelf is not fully known. The 

dispersion coefficient is seen to enter nonlinearly 1n the 

asymptotic solution. 

The perturbation method due to Kaup and Newell (1978) is 

used in chapter 5, to study the equation (1.15). We see that 

the continuous spectrum is excited. This can lead to new 

solitons arising due to the shelf. This result has been 

obtained by Kaup and Newell also and they have drawn the 

conclusion that a perturbed KdV equation can conserve mass 

only if a shelf of elevation is created. In this context it 

1S to be noted that a perturbed KdV equation is no more 

integrable and need not have conserved quantities like mass 

and energy. The creation of shelf is a result of failure to 

conserve mass. 

KdV equation is completely integrable and belongs to a 

class of nonlinear partial differential equations exactly 

solvable by 1ST method. Long wave propagation on uneven 

bottom leads to perturbed KdV equations which are not 

completely integrable and cannot be solved by 1ST method. 

Solution of such a system is an open problem. 
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