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CHAPTER 1

INTRODUCTION

In early days of the development of Statistics, normal

distribution played an important role in statistical analysis. The

discovery of the central limit theorem was one of the reasons for this.

Later it was observed that the use of normal distribution is not the

appropriate model in many real life situation. The deviation from

normality was noticed and need of using non-normal distributions was

keenly felt. It was found that in many cases exponential distribution

serves as an alternative to normal, when the form of variation in the

population is known and is far from normal. The popularity of the

exponential distribution is mainly due to the well known non-ageng or

memory less property. If we see that the random life length of a device

is as fresh as a new one, after an elapsed time, we say that it is not

ageing, but its life is terminated by a sudden event. The probabilistic

interpretation is that the remaining life time is the same as the initial

life time. Due to the applications in real life situation, this property
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plays a crucial role in theoretical as well as in applied work. In

engineering problems exponential distribution is more suitable than

other distributions. Hence it is widely used in reliability and life

testing. By reliability we mean the capability or the failure free

operation of a device or component or organism to perform its

functions adequately for a specified period without failure. The

concepts and tool in reliability have found applications in disciplines

like biology, medicine, engineering, economics, demography, etc. One

of the most important problems in reliability analysis is to identify the

underlying model which generate the observation when only the data

on failure times is available. Some innovations in this regard are to

identify a characteristic property of the distribution that is of interest.

From this point of view, we change our direction to a new property

which is called Setting the Clock Back to Zero (SCBZ) property. In

reliability this property ensures that the conditional distribution of the

additional length of survival of the device given that it has survived

certain time units XQ is the same as the unconditional distribution

except for a slight change in the parameters. Evidently this property

will be an extension of the lack of memory property I The main

objective of the present study is to investigate the importance and uses

of the SCBZ property in the context of reliability. Even though the

concept was introduced in 1990 by Rao and Talwalker, they did not
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give a look into the scope of characterizations of the family of

distributions having this innovative concept. Also the study of this

property in discrete distributions are not yet considered. Under this

background, through the present study we try to investigate the SCBZ

property of the continuous univariate distributions in more detail and

to seek the importance and uses in the context of reliability and life

testing.

This thesis is divided into five chapters. First orie is the present

introductory one. In the second chapter we have mentioned the Lack of

Memory Property (LMP) and various other concepts used in the present

study. In chapter 2 itself we have introduced the concept of SCBZ

property defined by Rao and Talwalker (1990). Chapter 3 starts with an

idea of developing certain characterizations which brings the family of

continuous univariate distributions possessing this property under a

uniform framework. After deriving a partial differential equation

(PDE) for the class of distributions with this property, some of its

important members which admit the PDE are identified and are tabled.

By envisaging the application of this property in reliability, the

equivalence of this concept in terms of the quantities designed to

measure the ageing phenomenon are also considered. Cox. (1962.) has

shown that the asymptotic distribution of the residual life is the
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equilibrium distribution. The comparison of these distributions with

the parent distribution brings an idea about the ageing aspects. In this

viewpoint we have done some work on equilibrium distribution and is

presented in chapter 3.

In the same way as the extension of the LMP to the bivariate as

well as the multivariate cases, there is a scope for extending the

concept of SCBZ property to higher dimensions. As there is no unique

way of extension, the different ways, particularly' in the bivariate

case, are discussed in chapter 4. Most of the characteristics considered

in chapter 3 are amenable for the extensions to the bivariate case.

In many practical situations, we face the cases in which the life

time is measured in discrete time units. Hence it is desirable to have a

consideration about this property in the discrete distributions. In

chapter 5 we try to introduce the concept of SCBZ in discrete

situations with emphasis on reliability. Both the univariate and

multivariate cases are considered here.



CHAPTER 2

LACK OF MEMORY PROPERTY AND ITS VARIANTS

2.1 Introduction

This chapter covers a review work of the essential ideas to be

utilised for this thesis. We start with the well known lack of memory

property and then its multivariate extensions. While carrying out an

extensive study, it is seen that, there are several situations where the

LMP is not satisfied but properties which are very near to LMP is

satisfied. This was one of the motivations for extending the LMP. In a

sense the SCBZ property is an extension of the LMP.

2.2 Lack of memory property and exponential distribution

Let us consider a device which was functioning for sometime. If

its future performance does not depend on the past, knowing its present

condition, we say that the device is having LMP. In proper

mathematical terms if X is a non-negative random variable (r.v.)
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possessing absolutely continuous distribution with respect to the

Lebesgue measure, we say that the random variable X or its

distribution has LMP if for all x, y;;:::O,

P(X~ x+ y\ X~ y) = P(X~ x)

with P(X;;::: y) strictly greater than zero or equivalently.

P(X~ x+ y)=P( X~ x) P(X~y)

for all x, y~O and P(X=O):t: 1.

(2.1)

(2.2)

In theoretical and applied work this property plays a crucial role

due to its application to real life situation. If R(x)=P(X~x) denote the

survival function of the random variable X, then in terms of R(.), the

LMP can be stated as

R(x+y) = R(x) R(y) (2.3)

Galambos and Kotz (1978) have established the equivalence of

LMP, constancy of failure rate and constancy of mean residual life.

Cauchy (1821) and Darboux (1875) have established that the unique

non-zero solution of (2.3) is R(x) = e-A.-: for some constant A, which is

the survival function of the exponential distribution. So exponential

distribution is the only distribution having this property.

The lack of memory property can be extended either to widen the

domain of the random variable or to provide a class of distributions in
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which the exponential is included. We can observe different types of

extensions in various directions suggested by different authors. Some

of them are listed here.

If (2.3) is satisfied for almost all x,Y~ 0 with respect to a

Lebesgue measure, then Fortet (1977) had shown that this amounts to a

characterization of the exponential distribution. Sethuraman (1965)

have considered another relation of the domain of X, by considering

finite induction as given below. The equation (2.3) can be written as

If Xl =X2= ... =xn=x~O, (2.4) becomes

R(nx)=[ R(x)]n

(2.4)

(2.5)

If (2.4) holds for any two integers n, and nz such that logn1 IS
log»,

irrational, then it characterizes the exponential distribution. Marsaglia

and Tubilla (1975) showed that (2.3) is valid for two values Yl and Y2

of y such that 0< YI< Y2 and y 1/Y2 is irrational for all x>O, then X

follows a negative exponential.

Another attempt towards the extension IS due to the functional

form of the conditional expectation of a function specifically,

E(h(x)IX~x) = g(x), x~O (2.6)
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or

E(h(X-x)IX~x)= g(x), x~O (2.7)

Here h(.) and g(.) are known functions ending up with the

solutions that are proper survival functions. More details are available

in Kotlarski (1972), Laurent (1972), Shanbhag and Rao (1975), Dallas

(1976) and Gupta (1976).

Mulier and Scarsini (1981) made an extension in the following

manner. In place of (2.2) they used the equation

P(X> x* y)= P(X> x) P( X> y), (2.8)

'.' being taken as an associative and reducible binary operator. In this

case (2.3) reduce the form

R(x*y) = R(x)R(y).

The unique solution of (2.9) is

x*y = g-l(g(X)+g(y»

(2.9)

(2.10)

with g(.) being continuous and strictly monotonic. Chukova and

Dimitrov (1992) introduced the concept of almost lack of memory

property (ALMP). X is said to have the ALMP if there exists a

sequence of distinct constants {an}:=l such that

P(X~b+xIX~b) = P(X~x)

holds for any bra«, n= 1,2, ... and for all x~o.

Galambos and Kotz (1978) bring out the equation

(2.11 )
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P(X~IIVIX~v)= P(X~U), O~u,O~v~ 1 (2.12)

to characterize the uniform distribution in [0,1] of X. Also the equation

P(X~uvIX~v)=P(X~u), U, v>1

characterizes the Pareto distribution with survival function

R(x) = x", xz l , r>O.

(2.13 )

(2.14)

(2.12) and (2.13) are called the multiplicative lack of memory

property. Dimitrov and Collani (1995) introduced the multiplicative

almost lack of memory property.

A random variable X is said to have the multiplicative almost

lack of memory property of type 1 (MALMI) if there exists a sequence

of numbers {vn }:=t ' O~vn~ 1, vn:;tVm for n:;tm such that

(2.15)

for all u~o. A random variable X is said to have multiplicative almost

lack of memory property of type 2 (MALM2) if there exists a sequence

{vn}:=t , vn~l, Vn~ Vm for all n:;tm such that

(2.16)

for all ue: 1.

A somewhat different approach to the extension was considered

by Huang (1981). If X and Y are two independent non-negative random

variables, we say that X is ageless relative to Y if P(X>Y»O and
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P(X>Y+x\X>Y) = P(X>x)

for all x~O.

2.3 Lack of memory property and geometric distribution

(2.17)

(2.18)

Let us consider LMP in a discrete set up. If X is a non-negative

integer valued random variable satisfying the condition

P(X~ x+ y\ X~ y) = P(X~ x)

then X follows a geometric distribution with

P(X=x) = p(l_p)X, x =0,1,2, ... ; 0<p<1.

The geometric random variable is the only discrete random variable

having the LMP.

The lack of memory property is equivalent to the constancy of

failure rate and constancy of mean residual life function. The

characterization of geometric distribution and discrete IFR (DFR)

using order statistics are established in Neweichi and Govindarajulu

(1979). Another characterizations of geometric distribution in terms of

order statistics are studied in Arnold (1980) and Srivastava (1974).

Nair and Hitha (1989) characterizes the discrete models using

distributions on partial sums. The "motivation behind this was the work

of Xekalaki (1983).
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2.4 Multivariate Extensions.

The concepts of LMP explained in sections 2.2 and 2.3 can be

extended to higher dimensions. Let us first present some important

variations in the bivariate cases.

Let (X1,X2 ) represent a bivariate random vector with support

{(Xl,X2): Xl,X2 ~O} and the survival function R(Xl,xi). A natural

extension of the LMP in the bivariate case is defined by

(2.19)

where

R(Xl,X2) = P(Xl~ Xl,X2~X2).

The unique solution of (2.19) turns out to be

(2.20)

which is the product of the marginals. If (X1,X2 ) is taken to be the

lifetimes of a two component system, (2.20) shows that the life times

of the components are independent, which does not have any relevance

in life testing. To introduce the -dependency of the component life

times we consider the equation

R(Xl+t,X2+t) = R(t,t) R(Xl,X2)

for all Xl,X2, t~O.

(2.21 )
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Marshall and Olkin (1967) obtained the unique solution of (2.21)

as

(2.22)

Here also the marginal distributions are again exponential but they are

not independent. Also P(X1=X2»O. That is the failure times of the two

components can be equal or the distribution is not absolutely

continuous. It can be observed that LMP, absolute continuity and

exponential marginals cannot occur simultaneously except for bivariate

distribution with independent exponential marginals. Block and Basu

(1974) derived a bivariate exponential distribution preserving LMP and

absolute continuity in which marginals are not purely exponential but

are mixtures of exponentials.

Another way of studying the equipment behaviour is to

investigate the behaviour of one of the components, when lifetime of

the other is pre-assigned. The first work in this direction is due to

Johnson and Kotz (1975) who defined the vector valued failure

(2.23 )
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and considered the situation of h;(XI,X2) = C;, a constant. It can be seen

that this situation exists when the distribution is the product of the

independent exponential marginals. Hence they considered the

situation of the local constancy of the failure rate vector. That is

(2.24)

(2.24) characterizes the Gumbel' s (1960) bivariate exponential

distribution with survival function

R(XI,X2) = exp {-AIXI-A2X2-t? XIX2},

AI, A2>0, 0~t?~AIA2.

(2.25)

Johnson and Kotz (1975) defined the local lack of memory

property of the random vector (X1,X2) by the relations

P(X;>x;+y; !XI> Xl, X 2>X2) = P(X; > y;! Xj>Xj), iJ =1,2; i*j (2.26)

or

(2.27)and

G2(Xl, X2+Y2) = G2(Xl,X2)G2(Xt,Y2),

for all Xl,X2, YI,Y2>0 where G;(Xl,X2) = P(X; > x;! Xj>Xj), iJ =1,2; iej.

The equivalence of (2.24) and (2.27) is given in Nair and Nair

(1988b). Nair and Nair (1991) defined the notion of conditional lack
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of memory for a random vector in the support of R;={(XI,X2), XI,X2 >O}

by

P(X·>x·+y·IX·> x, X·=r·) = P(X· >Y·I X·=x·) iJ' =1 2' i=l:-J'1- 1 1 1- I, J J 1 - 1 J J, , , (2.28)

for all Xi, v, >0 and proved that (2.28) holds iff the distribution is the

bivariate exponential by Arnold and Strauss (1988) with joint

probability density function (p.d.f.)

(2.29)
eo

where e =e(~) = ~e-l//) /-E;( 1/~)with E;(u) = -Ie-Ww-1dw
11

[E; is the exponential integral].

Analogous to the various extensions of the lack of memory

property in the bivariate continuous case, a similar approach can be

taken in the discrete case also. The bivariate discrete Lack of Memory

Property in the usual case is

Xl, X2,t =0, 1,2, ....

(2.30)

In Nair and Asha (1994), it IS shown that the relation (2.30)

holds if and only if
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(2.31)

The local LMP

(2.32)

for all Xl, X2, t = 0,1, 2, ... is characteristic of the bivariate geometric

distribution with survival function given in Nair and Nair (1988a).

The conditional LMP in the discrete case is studied by Nair and Nair

(1991). For multivariate results both in the continuous and discrete

vectors we refer Puri and Rubin (1974), Puri (1973), Shaked et.al.

(1995) and Zahedi (1975). Pointing out the inconsistency in the

definition of failure rate defined by Nair and Hitha (1989), Kotz and

Johnson (1991) extended the use of partial sums to the bivariate

discrete case. The possible distributions are geometric, waring and

negative hypergeometric.

2.5 Reliability characteristics

Let X be a non-negative continuous random variable denoting the

lifetime of a device or a component or an organism. If the survival
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function P(X~x) is denoted by R(x) and the probability density function

by f(x), then the failure rate h(x) is given by

h(x) = f(x)
R(x)

dlogR(x)

dx

The mean residual life

r(x) = E(X-xIX>x)

1 00

= -JR(t)dt
R(x) x

(2.33)

(2.34)

is another important concept in reliability. It can be seen that the h(x)

and r(x) uniquely determines the distribution through the relations

and

R(x) = exp {-!h(t)dt}

r(O) {Jx

1 }R(x) = -exp - -dt .
r(x) 0 r(/)

(2.35)

(2.36)

An interesting feature of the extension of the univariate concepts

of the failure mechanism into higher dimensions is that there is no

unique way of representation. In the bivariate setup (X1,X2) is a non-

negative random vector admitting the continuous distribution function

F(Xl,X2). The survival function is denoted by
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(2.37)

and the density of (XI,X2 ) by

(2.38)

ClS

If (XI,X2 ) is treated the lives of the components in a two-
"

component system, the bivariate scalar failure rate defined by Basu

(1971) is

(2.39)

a(XI,X2) is a constant independent of Xl and X 2 if and only if Xl and X2

are independent and exponentially distributed. Galambos and Kotz

(1978) derived a differential equation connecting the failure rate and

the survival function as

(2.40)

where

Johnson and Kotz (1975) gives another approach to define the

(2.41)
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This vector valued failure rate determines the distribution

uniquely through the equation

(2.42)

or

(2.43)

The third approach IS to define the failure rate vector as

(2.44)

Buchanan and Singpurwalla( 1977) define the bivariate mean

residual life (m.r.l.) function r(xl,x2) by

r(xl,x2) = E«X1-Xl) (X2-X2) I X1>Xl, X 2>X2) (2.45)

The second definition is provided by Shanbhag and Kotz( 1987) and

Arnold and Zahedi (1988). The vector valued Borel measurable

(2.46)

(2.47)
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Nair and Nair (1989) provides the unique representation of R(Xt,X2) in

(2.48)

or

(2.49)

The basic formulation to the study of discrete life distributions

are provided by Cox( 1972), Kalbfleish and Prentice (1980) and

Lawless( 1982). Let X be a non-negative integer valued random

variable having the survival function R(x)= P(X zx) and probability

mass function j(x). The failure rate h(x) is defined to be

h(x) = f(x)
R(x)

and the mean residual life function by

r(x) = E(X-x IX>x)

1 00

= LR(t).
R(x + 1) t=x+l

(2.50)

(2.51 )

R(x) is uniquely determined by h(x) and r(x) through the relations

(Salvia and Bollinger, 1982)

x-I

R(x) = [J[1-h(Y)]
y=o

(2.52)
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R(x) = ft[r(U -1) -1][1_ 1(0)]
u=l r(u)

(2.53)

where 1(0) is determined such that L!(x) =1. Hitha and Nair (1989)
x

have established the relationship between h(x) and r(x) as

r(x) -1
1-h(x+l) = ,x=O,I, ...

r(x +1)
(2.54)

Life distributions with virtual hazard rate, mean residual life etc.

were studied in Abouammoh(1990) and Roy and Gupta (1992).

Coming to the case of bivariate distributions it is desirable to

have a single quantity for failure rate as provided by Puri and Rubin

(1974-) and Puri (1973). They define the multivariate failure rate as

(2.55)

In particular the bivariate failure rate is

(2.56)

The second alternative definition is introduced by Nair and Nair

(2.57)
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and this vector determines the survival function uniquely through the

formula

Xl ~

R(Xl,X2) = f][1-h1(xt - r ,x2 ») I1[1-h2 (O,x 2 -r»).
r=1 r=1

(2.58)

The third alternative definition of the failure rate is suggested in

Kotz and Johnson (1991) who view it as the vector (Cl(Xl,X2), C2(Xl,X2»

where

(2.59)

The failure rate in the multivariate set up is attempted by Shaked et.

al.(1995).

In the case of m.r.l. it can be observed that the first work in

higher dimentions is due to Nair and Nair (1988a) in which they define

where

(2.60)

It is also proved that ri(xl,x2)= c, for i=I,2 if and only if Xi'S are

independent geometric random variables and ri(xl,x2) = A;(xj), t, j= 1,2;
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i*j iff (X1,X2) IS distributed as bivariate geometric with survival

function

2.6 Equilibrium Distribution

Let X be a random variable admitting an absolutely continuous

distribution function F(x) with respect to the Lebesgue measure in the

support of the set of non-negative reals and having a finite mean u.

Associated with X, a new random variable Y is defined, whose p.d.f is

g(x) = R(x) , x>O (2.62)
f.J

where R(x) = P(X~x) is the survival function of X. This distribution

has a special significance in the context of renewal theory.

Consider a system of components whose times to failure are of

interest. Let us start the experiment with a single new component at

time zero and replace it upon failure by a new second component and

so on. These failure times Xi, i=1,2, .. are independent and let they are

identically distributed with distribution function F(x). Then

Sn=Xt+X2+ ... +Xn will constitute renewal process. Take a sampling

point t at random over a very long time interval. Define the r. v. Ut as
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the length of time measured backwards from t to the last renewal at or

before t. That is Ut denotes the age of the component in use at t. Let

V, be the time measured from t to the next renewal to occur after it.

That is Vt is the residual life time of the component in use at time t.

Cox (1962) proved that the limiting distribution of Ut and V, is

common, called the equilibrium distribution and has a density of the

form specified by (2.62). In this physical situation Y represents the

residual life of the component whose life length is X. For the

applications of equilibrium distribution in reliability studies, we refer

Scheaffer (1972), Rao( 1985), Deshpande et. al. (1986) and Blumenthal

(1967).

The probabilistic comparison of Y with parent population of X is

utilised to explain the phenomenon of ageing. Gupta (1984) obtained

the equilibrium distribution as a weighted distribution with weight

[h(X)]-l where h(.) is the failure rate. Let G(.) denote the survival

function of Y.

The relationship of the characteristics of equilibrium distribution

with that of the parent distribution in the context of reliability are

studied by Gupta (1984), Gupta and Kirmani (1990) and Hitha and N air

(1989). Some of the important identites among them are
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1 ex>

(i) G(x) = - JR(t)dt
IJ x

(ii) hy(x) = _1_, where hy(x) is the failure rate of Y.
r(x)

In the point of view of Deshpande et. al. (1986) the life

distribution of a unit which ages more rapidly will come off worse in a

comparison of R(x) and G(x). The wide spread applicability of

weighted distribution in univariate case has prompted many researchers

to extend the .concept to the higher dimensions. However the

applications to real problems in such cases have rarely been pointed

out.

Let (XI,X2) be a random vector in the support of {(Xl ,X2):

O<XI,X2<00} with an absolutely continuous distribution function

negative weighted function with E[W(XI,X2 ) ] <00, Mahfoud and Patil

(1982) defined a bivariate weighted distribution as the distribution of

the vec.toY(YI,Y2 ) with p.d.f

(2.63 )

When
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= R(xt,x2 )

!(X1,X2
) ,

That is

Hence

Let G(.,.) denote the survival function of (Yl,Y2). Then

J
OO Joo R(t t)

G(x x) = l' 2 dt dt1, 2 1 2·

xl x2 fJ

We can see that

(2.64)

(2.65)

(2.66)

where hy( ., .) is the scalar failure rate of (Y1,Y2) and r(xl,x2) is the

scalar m.r.l function of (X1,X2 ) .

2.7 Setting the Clock Back to Zero Property

Having the discussion in the previous section let us now

introduce the concept of setting the clock back to zero property. As

mentioned earlier, this setting the clock back to zero property can be

defined as an extension of the lack of memory property. Rao and
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Talwalker (1990) introduced this concept of setting the clock back to

zero(SCBZ) property.

A fami Iy of life distributions {f(x, (}), x ~O, () E e} is said to

have the SCBZ property if the form of f(x, 8) remains unchanged

under the following three operations, except for

the value of the parameters, that is

j(x, (}) ~ j(x, () *)

where 8· E0,

1. Truncating the orginal distribution at some point xo~O.,..

(2.67)

2. Considering the observable distribution for life time X ~Xo and

3. Changing the origin by means of the transformation given by

XI=X-Xo, so that Xl ~O.

In terms of the survival function R(x,8), the definition can be

restated as the following

A family of life distributions { R(x,(}), x ~O, () Ee} is said to

have the SCBZ property if for each Xo ~o and 0 Ee, the survival

function satisfies the equation

R(x+xo,(}) = Rtx«, 0) R(x,(} *)

with () • = 8 *(xo)E0.

(2.68)
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Here () may be a single or vector of parameters.

Q.

The random vQ1i
Able

X is said to have SCBZ property if

P(X~x+xoIX~xo)= P(X*~x), (2.69)

where X· has the same distribution as that of X, except for the

parameters. It is not necessary that all the parameters are to be

changed. The parameters which does not undergo any change under

the SCBZ transformation has been called normalizing constants.

In this operation of SCBZ, truncating the distribution at time

Xo and then setting the origin at Xo leaves the form of the distribution

invariant expect for the parameters.

In reliability, this property ensures that the conditional

distribution of the additional length or time of survival of a living

organism or a device, given that it has survived Xo time units is the

same as the unconditional distribution except for a slight change in

the parameters. That is the residual life distribution (RLD)has the

same form as that of the original distribution except for a change in

the parameters.
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Rao (1990) proved that the life expectancy has a simple form

if the family has SCBZ property and used this property of the time to

tumor distribution with survival function

R(xo,O) = exp {-:(Xo-; (l-eJ«o»)}, a, P, r>O

which is the generalization of the simple time to tumor model by

Chiang and Conforti (1989). If r(xo,8) denote the mean residual

life, that is, it shows how long an organism or a device of age Xo

would survive, on the average

r(xo,8) = Eo(X-xo IX>xo)

= j R(x,O) dx
%0 R(xo,8)

That is

00

r(xo,O) = JR(x,O·)dx
o

if R(x,8) has SCBZ property.

(2.70)

Exponential, Pareto type 11, finite range, Gompertz, linear

hazard model, the model for time to tumor given by Rao (1990)

possess this property. The growth model, Gompertz distribution has a



29

biological significance that the same growth curve can be described

from any point on it taken as the origin. Rao (1992) have proved

that the tampered random variable model is equivalent to tampered

failure rate model. Another application of this SCBZ property is

given in Rao et. al. (1993a). They have shown that the family

of survival distributions under the proportional hazard model and

accelerated life models have SCBZ property if the baseline survival

distributions have. The effect of the covariate vector X on the

tumor free life expectancy are also considered there. Rao and

Damaraju (1992) have shown that the inequalities in the definitions

of the measures New Better than Used (NBU) and New Better

than Used in Expectation (NBVE) of the maintance policies

become equalities iff the family of distribution has SCBZ property.

Rao et. al. ( 1993 b) extended the notion of SCBZ In the

bivariate case which he called the extended SCBZ property.

Consider an individual exposed simultaneously to two risks RI

and R2, with hypothetical life times Xl and X2, respectively. The joint

survival function of Xl and X2, is defined by R(XI,X2,,8) , o~ XI,X2,<oo,

where 8 is the parameter or a vector of parameters. The survival

function of the individual upto age XQ can have the idea that the
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individual's hypothetical life times satisfy XI~XO and X2~XO. The

conditional distribution of the additional survival time of an

induvidual due to risk RI given that the individual has survived for a

time of Xo units is

(2.71)

In a similar way,

(2.72)

Using this notations Rao et. al.(1993b) defined SCBZ property in the

bivariate case as follows.

A class of bivariate life distributions] R(Xl,X2,B) , Xl,X3 ~O,BEe}

IS said to have the SCBZ property if for each BEe and xo~O, the

survival function satisfies the pair of equations

and (2.73)

where ()*= (f(xo) and (}.*= (f*(xo) E00 where 0 0 denote the boundary

or0.
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They have showed that the life expectancy vector(rl(xO,xO, B),

'2(XO,XO, B) has a closed form, since

rL)

=JR{x1 ,xo,ft)dxl .

o

Similiraliy

00

T2{XO,xo,8) =JR{xO,x1,(t*)dx1 .
o

The examples cited in Rao et. al. (1993b) include the bivariate

exponential distributions proposed by Marshall-Olkin (1967) and

Gumbel (1960), Bivariate Gompertz and Bivariate Pareto models.



CHAPTER 3

SETTING THE CLOCK BACK TO ZERO

PROPERTY IN CONTINUOUS UNIVARIATE SET UP

3.1 Introduction

In the previous two chapters we have introduced the concept of

SCBZ property and reviewed the important results in that connection.

As identified in section 2.7, the problems that required further

investigation will be considered in this and subsequent chapters. In

particular the concern in the present chapter is to develop some new

results in the univariate SCBZ property, especially characterizations of

probability models.



3..2 Characterization of the probability distributions with SCBZ
property (Mini and Nair (1994»

In the discussions that follow in this section we continue the

notations in the previous chapters and assume that the two limit

B· - B
a(B) = lim--

%--+0 x

and

b( 8) = lim logR(y,O)
Y--+O y

exist and are finite. A characterization of the family of distributions

possessing SCB.Z property and satisfying the above mentioned

regularity conditions is presented in the theorem below. We call a

family of distributions possessing the regularity conditions as a regular

family.

Theorem 3.1

Let the family of survival functions {R(y,O), y>O, eE e} be

regular. Then a necessary condition that the SCBZ property holds for

the family is that the partial differential equation

az az
- - a(B)- = b(B)ay aB

where

(3.1)



Z = log R(y,B)

is satisfied by R(y,O).

Proof

The SCBZ property of the family {R(y, B), y>O, eE 0} implies

R(x+y,O) = R(x, 0) R(y, r/)

where B* is a function of Band x.

That is,

log R(x+y, 0) = log R(x, 0) + log R(y, 0*).

Now (3.3) can be written as

(3.2)

(3.3)

logR(x+ y,O)-logR(y,O) _logR(y,O·)-logR(y,O) = logR(x,O)

x x x
(3.4)

Taking the limit as x -e-O in (3.4), we find that

alogR(y,O) I" 10gR(y,O*) -logR(y,O) (0* -0) _I" 10gR(x,O)
-----lm. - Im .ay x~o 0 - 0 X x-+o X

Since x ~O , 0- ~ 0, we have from (3.5)

810gR(y,B) 810gR(y,B) I" (B* - 0) _I" 10gR(x,O)---- - Im - Im---ay aB x-+o X x-+o X

or

az az
- - a(O)- = b(O)ay BO

as stated in Theorem 3.1.

(3.5)
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Some well known distributions possessing this partial

differential equation (3.1) with the corresponding a(O), b(O) and (J*

are given in Table 1. Since a limiting process is involved in Theorem

3.1, converse of the Theorem 3.1 does not hold in general. However a

partial converse exists under the following conditions.

Theorem 3.2

If there exists functions a( 0) and b( 0) in 0 such that

(3.6)

then (3.1) implies that the SCBZ property is satisfied for the family of

survival functions {R(y, 0), y>O, eE e}.

Proof

Assuming (3.1), we have by direct integration

~JY ologR(t 8) }
R(y,O) = ex a(8) , dt +b(O)y

o 00

Thus



{

X+Y al R(t fJ) }
R(x+y,O) = exp I a(O) og , dt +b(O)(x +y)

o aB

{IX alog R(t B) }= exp a(B) , dt +b(B)x
o aB

{

x+
y al R(t B) }

exp !a(O) Og80' dt +b(O)y

= R(x, B) R(y, (/)

where

R(y, fJ·) = exp{Ja(O) 8logR(t + x,O) dt + b(O)y}
o aB

which implies that {R(y, B), y>O, ge0}has the desired SCBZ property.

It is of some interest to look at a general solution of the partial

differential equation (PDE) (3.1). This is explained in the following

theorem.

Theorem 3.3

The general solution of (3.1) is of the form

F(U(y,8,Z), V(y,8,Z) =0 (3.7)

where F(. , .) is an arbitrary function of U and V with U(y,8,Z)=Z-

b( 8)y and V(y, 8,Z)= y + g(9).



Proof

From Sneddon (1957), the general solution of (3.1) can be

identified as F( U, V)=O where U and Vare the solutions of the ordinary

differential equation

dy -dO dZ
- = - = - a(9)*O b(9);tO.
1 a(O) b(O) , ,

From the first pair of equations in (3.8») we get

I
- dO

y= -- + Cl·
a(O)

That is

y + g( (J) = Cl

where

I dO
g( (J) = a(8)'

From the first and third terms of (3.8) we get
~

Z - b(9)y = C2.

Hence the general solution of the system is F( U, V)=O where

U = Z - b«(J)y

and

v = y + g(9).

(3.8)

(3.9)

(3.10)



By imposing suitable boundary conditions on () and y, the

particular solutions can be obtained, but all such solutions need not be

satisfying SCBZ property conforming our earlier remark. In view of

(3.6) and (3.8) through (3.10) we can offer the following results of the

probability distributions. Let Vo be the value of V at y = 0.+

Theorem 3.4

The general solution of (3.1) is of the form

U= - clog (~) + c(~ -1) (3 .11)

-c
with b(8) = - and g(8)=8 for any c>O iff the distribution is Pareto

8

type 11.

Proof

(3.11) with b( 0) = -c and g( 0)=0 implies
()

C (8+ y) (8+ Y )log R(y, 0) + 0 y = - clog -8- + C -8-- 1

That is



log R(y, 0) = -c IOg(I+;)

or

which is the survival function of Pareto 11 distribution. The converse

part can be easily verified from the given survival function.

Theorem 3.5

The general solution of (3.1) is of the form

(3.12)

with b(O) = E. and g(O)= -0 for any c>O if and only if the distribution
()

is finite range with survival function

Proof

By giving the values of U and V in the given form (3.12) it can

be obtained that R(y,O) = (1-;J, which is the survival function of



finite range distribution. The converse is obtained from the functional

Theorem 3.6

The general solution of (3.1) is of the form

U = -b(V-Vo)2

with b( 8) = -8 and a( 8) = 2b iff

R(y, 8) = exp {-( 8y+by 2) } .

Proof

(3.13 )

By giving the values of U and V with b( 8) = -8 and a( 8) = 2b in

(3.13), we get

(
8 8 )2log R(y 8)+8y = -b -+y--

, 2b 2b

or

R(y,8) = exp {-( 8y+by 2) },

which is the linear hazard exponential. The converse also can be

verified.



As in the earlier theorems the Gompertz distribution holds the

following result.

Theorem 3.7

The general solution of (3.1) is of the form

with b( 8) = -8 and a( 8) = 8a if and only if

R(Y,8) = exp {-: (eay -I)}.
The proof is similar to the earlier cases.

(3.14)

3.3 Characterization by functional form of {}* (Mini and Nair
(1994»

Now we establish characterizations of probability distributions

in which 8* has certain simple functional forms.

Theorem 3.8

Let X be a continuous random variable in the supp-ort of T c R+

with survival function R(x,8). Then R(x,8) has SCBZ property with

8· =(}+x, iff



R(x fJ) = k(x+O)
, k(B)

(3.15)

where k(.) is non-negative, non-increasing continuous function

satisfying k( 00)=0

Proof ·

Suppose R(x,B) has SCBZ property with B*=(}+x. Then from

(2.68)

R(x+y,B) = R(x,(}) R(y, x+B)

for all x, yET and for all BEe.

For a fixed B, the last equation implies

R(x+y) = R(x) R(y,x)

or

R(y x) = R(x+ y) .
, R(x)

Thus R(x, B) has the desired form with k(x) = R(x), so that, conditions

on k(x) are satisfied. When R(x, B) has the given form, we have

R(x+y,O) == k(x+y+B)/k(B)

R(x,O) k(x +B) / k(B)

= k(x+ y+8)

k(x + 0)

= R(y, x+B),

which implies the converse.



Examples

(i) Pareto distribution with survival function

so that k( 0) = (fa.

(ii) Linear hazard model with survival function

R(x,O) = eXP{-(lk+ ~)}, x,f1>O

so that k( 0) = exp{_ 0; } .

Theorem 3.9

Let X be a continuous random variable in the support of (0, B)

with survival function R(x,O). Then R(x,O) has SCBZ property with

O-=O-x if and only if

R(x, 0) = k(O)
k(O - x)

where k(.) is a non-negative, non-increasing continuous function

satisfying k(O) = 00.



The proof follows in a similar line as that of Theorem 3.8.

Example

(i) Finite range distribution with survival function

R(x 8) = (1- ~)a O<x< 8 (»O a>1, ()' "

so that k( ()) = (fa.

3.4 Reliability Measures

In this section we establishes the equivalent condition of SCBZ

property in terms of the failure rate and some properties of the

distributions. These relationship enable the interpretation of SCBZ in

terms of reliability concepts and there by enabling the use of the

former in reliability and life testing.

Rao and Talwalker (1990) have proved that the SCBZ property is

equivalent to

(3.16)



Theorem 3.10

A continuous distribution has reciprocal linear hazard function

only if it has the SCBZ property.

Proof

We have, from (2.35)

R(x,8) = exp {-1h(t,8)dt} .

Let h(x,8) = l/(ax+b). Then we have

R(x,8) = exp {- ]_l_dt}
o at+b

{-I I}= exp ~log(ax+b)+a 10gb

= bl/a (ax +b)-lIa .

R(xI + x2,8)

R(xl ,8)

where 8- = ax c-b,

blla(a(x
I
+x

2)+b)-l/a

blla(axl +b)-lIa

That is, the family {R(x, 8), x~O} has SCBZ property.



Note 1.

If {R(x, 8), x~O, 8E0}has SCBZ property, then In terms of the

failure rate we have the condition (3.16)

Taking X2 ;::; 0 in (3.16), we get

h(Xl,8) = h(O, 8*)

= g( 8*).

That is, the failure rate is a function of 8* only.

Theorem '3.11

If h(x,8) is a one to one function of 8*, then 8* uniquely

determines the distribution.

Proof

Let the one to one function from 0* to h(x,O) be g(8*). We know

that the failure rate h(x,O) uniquely determines the distribution through

the formula (2.35). That is

R(x,O) = exp{- !h(X,O)dx}.

Since h(x,8) = g( 8*), we have

R(x,O) = exp{-!g(O·)dx}



which implies that g(O-) uniquely determines the distribution.

The meen residual life is a superior concept than the failure rate.

For the reasons we refer Muth (1977). The following theorem gives

the equivalent condition of the SCBZ property in terms of the mean

residual life function.

Theorem 3.12

The SCBZ property is equivalent to

r(xI +X2,0) = r(x2, f)-) (3.17)

where f)* =f)-(XI) E0 and r(., 0) is the mean residual life function of the

random variable X having survival functionR(x, 0).

Proof

SCBZ property implies, for Xl, X2, t ~O

R(xI +X2, 0) = R(XI, 0) R(X2, 0-)

and

R(x 1+ I, 0) = R(x I, 0) R( I, 0-)

where 0* =O-(XI) E0.

Then on dividing (3.19) by (3.18), we get

(3.18)

(3.19)



R(x) +t,8)

R(x) +x2 ,8)
(3.20)

Integrating with respect to t within the limit (X2,OO), we get

That is

Retracing the steps backward, we can arrive at (3.20). Then

or

Taking X2 = 0, we get

(3.21)

(3.22)

On substituting (3.22) in (3.21), we get (3.18), which shows the SCBZ

property of X.

In connection with Theorem 3.10 we can offer the following

theorem.

Theorem 3.13

A continuous distribution has linear mean residual life function

only if it has the SCBZ property.



(3.23)

Proof

Hitha (1991) has proved that reciprocal linear hazard rate

implies and is implied by linear mean residual life function. Hence by

Theorem 3.10 the present assertion holds.

Note 2.

If {R(x, 0), x?,O, Oe0}has SCBZ property, then in terms of the

mean residual life we have the condition (3.17).

Taking X2 = 0, we get

r(Xt, 8) = r(O, 0*)

= f( 0*).

Hence mean residual life is a function of 0* alone.

Observation: It can be observed that if r(x, 8) is a one to one function

of 0*, then 0* uniquely determines the distribution.

3.5 SCBZ property in Equilibrium Distributions

Let X be a random variable admitting an absolutely continuous

survival function R(x,8) with respect to the Lebesgue measure in the



support of the set of non-negative reals with a finite mean J1.. Then a

new random variable Y with p.d.f

R(x (})
g(x, (}) = " x>O

J1.

IS said to be the random variable corresponding to the equilibrium

distribution. As explained in section 2.6, Y has a p.d.f which is the

limiting distribution of the forward and backward recurrence times.

The probabilistic comparison of Y with X can be used to explain the

phenomenon of ageing. In this regard here we established that the

SCBZ property of X preserves in Y and vice versa.

Theorem 3.14

X has SCBZ property if and only if Y has SCBZ property.

Proof

Let R(x, (}) denotes the survival function of X and G(x, (}) that of

Y. Then G(., (}) and R(., (}) are related through

00

G(x,O) = p-l JR(t,O)dt
x

Hence

00

G(X2, 0-) = u:' JR(t,O·)dt



00

where u'> Eo· (X)= JR(t,O")dt , and
o

00

G(Xl+X2,O) = p.l JR(t,O)dt

00

= p.l JR(t + Xl + x2,O)dt .
o

Then by the SCBZ property of X, we have

where 0* =O-(Xl) E0, the parametric space.

Hence

00

G(Xl +X2, 0) = p.l R(Xl, 0) JR(t + x2,O")dt

o

But

00

p" R(Xl, 8) = R(Xl, 0) JR(t,O")dt
o

et'\

= JR(t + xl,O)dt ,
o

by the SCBZ property of X.

Then

00

R(Xl, 0) = P"·1 JR(t + xl,O)dt
o

and hence



00 00

G(Xl+X2,O) = pol p*.l jR(t+xl,O)dt jR(t + xz,O*)dt
o 0

which implies the SCBZ property of Y.

Let hy(.,O) denote that failure rate of Y and r(x,O), the mean

residual life of X. For the equilibrium distribution from Gupta and

Kirmani (1990) and Hitha and Nair (1989) we have

hy(x,O) = 1/r(x,O).

Hence if Y has the SCBZ property we have the condition that

or

Then by Theorem 3.12, we can have the result that X also holds this

SCBZ property.

By connecting the above theorem with Theorem 3.4 and 3.5, we

can have the following corollaries.

Corollary 1

Y has SCBZ property with o: = O+Xl if and only if the survival

function R(., 0) of X is of the form



where SI(.) is a non-negative, non-increasing function satisfying

Corollary 2

X has SCBZ property with o: = (}+Xl if and only if the

survival function G(., 0) of Y is of the form

where S2(.) is a non-negative, non-increasing function satisfying

Corollary 3

R(x,O) = S}(x+B) where Si(.) is as defined In Corollary 1 iff
SI (0)

G(x Ll) -- S2(X+(}) h S ( ) · · d i C 11 2o --- were 2. IS as mentrone In oro ary. .
, S2«(})

Corollary 4



where Sl(.) is a non-negative, non-increasing continuous function

satisfying Sl(O)=OO iff

where S2(.) is a non-negative, non-increasing continuous function

satisfying S2(O)=OO.

Theorem 3.15

If X has SCBZ property then

hy(x,O) + a( 0) alogG(x,O) = p-l
. aB

(B·-B)where a( B) = lim .
x~o x

Proof

(3.24)

From Theorem 3.14, the SCBZ property of X imples the SCBZ
-fur:\c:i."on

property of Y. When Y has SCBZ property its survival should satisfy
1\

the partial differential equation

alogG(x,O) _ a( 0) atogG(x,O) = b( 0)
Ox aB

where a( B) = lim(B· - B) and b( 0) = lim(lOgG(X,O»).
x~o x x~o X

We have

(3.25)
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ologG(x,O) = G'(x,O)

OX G(x,O)

= - hy(x,O)

b( (}) = li....(IOgG(X,O»)
Z-:IO\ X

= li....( OIOgG(X,O»)
Z-:IO\ ox

= lirn~(lOg,u-l + log"'JR(t,O)dt)
.x~oax

Z

= lirn~(!R(t,O)dt)

HO jR(t,O)dt
X

I
. - R(x,O)

= Im--
X-+O COJR(t,O)dt

s

_ - R(O,O) _ -1
- QC - -p. .

JR(t,O)dt
o

On substituting (3.26) and (3.27) in (3.25), we get

h ( ()) ( ()~ ologG(x,O) _ -1
- Y x, - a J 00 - -J-l

or it is same as (3.24).

(3.26)

(3.27)



Table 1

Name of Survival Function Residual LifeDistribution e* a(~ b(~
Distribution
Exponential e-tk (x~O;6>O) -~ {} 0 -{}e
Pareto (1+ ;Ja (x,B>O;0>1) (1+2-Jd 1

{}+x -al{}
O+x

Finite Range (1- ;r(0<x<l1, 6>0; 0>1) (I_--L)d -1
{}-x -al{}{}-x

Linear hazard exp{-((Jx+bx2
) } 2b

model (x~O, (}, b>O) exp{-(lA+2bx)y-bY} {}+2bx -0
Gompertz

exp{- : (ear -I)} exp{- =ear{eY -I)} {}e'" aO -0

(x~O, 8>O;-oo<a <00)
Chiang-Conforti

exp{- ~ ( x - ~ (I- e ~ ))} exp{-~(y_lkv~(I-e~))} -:(1- ~)ik~ (Jv

(x~O, 8>0, {J>O, 11>0)



CHAPTER 4

CONTINUOUS MULTIVARIATE SCBZ PROPERTY

4.1 Introduction

Having the discussion of univariate SCBZ property in chapter 3,

let us now draw our attention to the concept in multivariate case with

special relevance to bivariate cases. Since there is no unique way of

extension of univariate concepts in higher dimensions, we can define

the bivariate SCBZ property in four different ways. These are discussed

in the succeeding five sections. The various equivalent forms of

bivariate SCBZ properties in terms of reliability measures are explained

in section 4.7. Just as the main result of chapter 3, we can bring the

distributions having bivariate SCBZ( 1) property into a class, which is

shown in section 4.3. In section 4.9 it is shown that the bivariate

SCBZ(2) property is preserved in the equilibrium distributions. The

various SCBZ properties of n variables are discussed in the concluding

section of this chapter.



(4.1 )
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4.2 Bivariate Setting the Clock Back to Zero (1) Property

As in the case of the natural extension of lack of memory

property due to Marshall and Olkin (1967), the SCBZ property in the

univariate case also can be extended to the bivariate case.

Definition

A class of survival distribution {R(Xt,X2, 8), Xt,X2~O, 8E El} is said

to have bivariate SCBZ( 1) property if

R(Xt+I,X2+t,8) = R(t,t, B) R(Xt,X2,8-)

with ()- = 8·(/) EEl.

Consider a two component system. By this property we mean

that if the system has an age I, then the conditional distribution of the

remaining life time of the system is again in that family of orginal

distributions. In the relaibility context this property ensures that the

residual life-time of a sytem belongs to the same family of distributions.

Examples

1. Bivariate Pareto distribution with survival function

R(Xt,X2,(}) = (1 +UtXt+ U2X2)-a, Xt,X2~O (4.2)
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where 0 = (0"1, 0"2, a) and the parametric space is

e = { (ai, 0"2, a): 0"1,0"2>0, a>l}.

In this case the new parameter vector (/ = (0-; ,o-;,a) where

er;· = cri (l+O"tt+ 0"21)-1 for i=1,2.

2. Marshall-Olkin class of bivariate exponential distribution with

survival function

R(Xt,X2,O) = exp{-AIXI- A2X2- AI2max(xI,X2)}, XI,X2~0 (4.3)

with 0 = (At, A2,AIZ) and the parametric space is

e = { (AI, A2,AIZ): AI, A2,AIZ ~O, A;+AIZ >0, i=1,2}.

Here (/ = 0 itself.

3. Gumbel' s bivariate exponential distribution with survival function

R(XI,X2,O) = exp {-AtXI- A2X2- 8 Xl X2}, XI,X2~O,

withO = (At, A2,8) and e = { (AI, A2,8): AI, A2>0, 8 ~O}.

Here (/ = (A~,.t2,8) with A: = A;+8t, i = 1,2.

4. Bivariate Gompertz distribution with survival function

R(Xt,X2,(}) = exp{r(1-eIJX1+bX1)}, Xt,X2~O

(4.4)

(4.5)

where 0 = (a, b, y) and e = { (a,b, y) : a,b>O,y ~1}.

Here O· = (a, h, y.) with y. = yeat+bt.

5. Bivariate finite range distribution with survival function
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with 0 = (PI, P2,d) and the parametric space is

4.3 Characterization of the Probability Distributions with
Bivariate SCBZ(l) Property.

In the following discussions we assume that the two limits

(0·-0)a( 0) = lim --
1-+0 t

and

b(8) = lim(IOgR(t,t,O»)
1-+0 t

exist and are finite. A characterization theorem concerning the

bivariate SCBZ( 1) property is stated below.

Theorem 4.1

Let the family of survival functions {R(Xl,X2,B), Xl,X2>O, BEe} be

regular. Then a necessary condition that bivariate SCBZ( 1) property
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holds for the family is that, the auxiliary system of partial differential

equation

8Z 8Z 8Z
- + - - a(8) -= b(8)at &2 (}8

where Z = log R(Xl,X2, 8), is satisfied by R(Xl,X2, 8).

Proof

Bivariate SCBZ( 1) property implies (4.1).

On taking logarithm on both sides of (4.1), we get

Now (4.7) can be written as

(4.7)

- [log R(Xl,X2,(}~) - log R(Xl,X2,8)]/t = [log R(t,t,8)]/t. (4.8)

Taking the limit as t~O in (4.8), we get

81ogR(x) ,xz ,0) lim(O* - B)
f}(} t~O t

= lim(IOgR(t,t,O))
t~O t

That is,
8Z 8Z 8Z- + - - a(B) -= b(O)at a 2 {}B

as stated in the Theorem 4.1.

(4.9)
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It is of some interest to have a general solution of the partial

differential equation (4.9). It is explained in the following theorem.

Theorem 4.2

The general solution of (4.9) is of the form

(4.10)

where F(.,.,.,8) is an arbitrary function of Xl,X2,Z,8 with 11 = x,.:- g(e)~

V=X2 -Xl and w= Z-b( 8)x--.
~

Proof

Sneddon (1957) has shown that a general solution of the linear

partial differential equation

IS of the form F(Ul, U2, ... , un)=O, where U;(Xl, X2, ... , xn,Z)=c;

(j= 1,2, ... ,n) are the independent solutions of the equations

Using this result, it can be seen that the general solution of (4.9) is of

the form
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where 11, V and w which are the functions of Xl,X2,Z and 0 are the

solutions of the ordinary differential equation

dx1 = dx 2 = -dO = dZ
1 1 a(O) b(O)

From the first pair, we get

or

From the first and third, we get

J-1
x = --dO +C2

I a(O)

or

Jae
C2 = x:\ + g( 8), where g( 8) = a(8) .

From the second and fourth, we get

z = b( 0) X1.+C3

or

C3 = Z - b( B) x".,

Therefore we have u = x,.+ g(8); V=X2 - Xl and w= z-b(O)x1.in (4.10).
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4.4 Bivariate Setting the Clock Back to Zero (2) Property

In terms of the bivariate LMP with independent marginals SCBZ

property in bivariate case can be defined which we call as bivariate

SCBZ(2) property.

Definition

A class of bivariate survival functions{R(xl,x2,0), Xl,X2~O, OEE>}

is said to have bivariate SCBZ(2) property if the survival function

satisfies the condition

R(Xl+t,X2+S,0) = R(t,s,O) R(Xl,X2,O-)

for every Xl,X2,t,S~O, 0- = O-(t,s) EE>.

(4.11)

By this property we mean that the conditional distribution of the

additional time of survival of the components of the system given that

the two components have survived t and s units respectively, remains in

the original family of distributions itself.

Examples

1. Bivariate Pareto distribution with survival function (4.2)

In this case the new parameter vector ft = (CT;,CT;,a) with
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2. Gumbel's bivariate exponential distribution with survival function

(4.4)

3. Bivariate Gompertz distribution with survival function (4.5)

where the new parameter vector is (). = (a, b, y.) with y. = yeQ1
+

bs
.

4. Bivariate finite range distribution with survival function (4.6). Here

4.5 Conditional Setting the Clock Back to Zero (1) Property

In the direction of the local lack of memory property due to Nair

and Nair (1988a), we can define the SCBZ property in a more precise

manner, which we call, the conditional setting the clock back to zero (1)

property. Let (X1,X2) be a random vector defined on R; with an

absolutely continuous survival distribution R(.,., (}). Let us denote the

conditional survival function of X; given ~·>Xj by G;(.,Xj) for all i,j= 1,2,

That is

G ·(x · x·)= P(X·>x· I X·>x·)1 I, J I 1 J J'
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Definition

A family of survival distributions {R(XI,X2,0): XI,X2>0, OE e} IS

said to have conditional SCBZ( 1) property if it satisftesthe equations

and (4.12)

for all 11,/2, SI,S2 >0 where 0· and. 0·· belong to e.

P(X1 > t1,X 2 > t 2 ,0)

P(X2 > t 2 ,0)

R(t 1, 12 ,0)

R(0,t2 ,0)

and

(4.13)

(4.14)

This property ensures that the conditional distribution of the

additional length of survival of a component given that it has already

survived I; units and the other has survived Ij units belongs to the same
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family of conditional distribution of the former component given the

other.

Examples

1. Gumbel' s bivariate exponential distribution with survival function

(4.4). In this case (/ =O**=().

2. Bivariate Gompertz distribution with survival function (4.5). Here

(/ = (a, b, r*) with y* = year} and 8** = (a, b, r**) with y*. = ye">,

4.6 Conditional Setting the Clock Back to Zero (2) Property

In accordance with the conditional lack of memory property

defined by Nair and Nair (1991), a new approach can be taken to define

the SCBZ property in the bivariate case. We call that property as

conditional SCBZ(2) property.

Let (Xt,X2 ) be a non-negative random vector defined on R; with

an absolutely continuous survival distribution R(.,., 8). Denote the

conditional survival function of X; given Xj=tj by 8;(I;,tj , 8) for all

i,j= 1,2~ iej.

That is
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where dt, is a small increment in l j .

Definition

A family of survival distributions {R(tl,t2,8), tl,t2>0, 8E e} is said

to have conditional SCBZ(2) property if it satisfies the equations

and (4.15)

P(X) ~ /),t 2 ~ X 2 ~ 12 +dt2 ,O)

P(t2 s X 2 ~ 12 +dI 2 ,O)

and

- aR(t), t2,0)

att82( /1,/2, 8)= ---
- aR(t),0,0) .

att

(4.16)

(4.17)
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Examples

1. Gumbel' s bivariate exponential distribution with survival function

(4.4). In this case (f = (A, ,;1,;,8) with and

0" = (;1,;,;1,2,8) with X\= ;1,\+812.

2. Bivariate Gompertz distribution with survival function (4.5). Here

()* = (a, b, y*) with y* = yeal} and e: = (a, b, y*.) with y** = yebt2 •

3. Consider the bivariate distribution with exponential conditionals due

to Arnold and Strauss (1988) with joint probability density function

f( t 1, t2, 8) = ex p {m tit 2 - at 1- bt2 +C }, t 1, t2>0

where 8= (m,a,b) with 0 = {(): a,b>O, m~O}. Here ()* =(j** =8.

4.7 Reliability Measures

In view of the importance of SCBZ property in reliability theory,

this section establishes the various relationships of SCBZ property with

reliability characteristics.

The following theorem gives the condition of bivariate SCBZ(2)

property in terms of the scalar failure rate.
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Theorem 4.3

Bivariate SCBZ(2) property implies

where a(.,.,B) is the scalar failure rate defined by Basu (1971).

Proof

For the proof of the theorem let us assume the condition (4.11).

Then on taking the logarithms on both sides of (4.11), we get

Differentiating w.r.t. Xl and X2, we get

That is

a2 10g R(x1 +1,x 2 +s,O)

ax1ax2

a2 10gR(xl ,x2 ,0· )

Oxt0x2

(4.18)

The bivariate scalar mean residual life r(xI,x2, B) has a closed form

when the family has SCBZ(2) property.

r(xt, x2,0) = EO[(XI- XI)(X2 - X2) IXl> Xl, X 2> X2]
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0000

= J[R(ft,f2,tt)Jf,df2

which is the expectation of Xl X 2 with parameter (}•.

Theorem 4.4

Bivariate SCBZ(2) property implies

Proof

The bivariate SCBZ(2) property implies (4.11), which is

with O-(t,s) E0 and Xl,x2,t,s z O.

Then for any Yl, Y2 we have

On dividing (4.20) by (4.11) we get

(4.19)

(4.20)

or

R(Yl +1'Y2 +s,(})

R(x] +t,x2+s,O)
R(Yt'Y2'(}·)
R(X1, X2 ,O· )
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That is

(4.21)

As the mean residual life is practically more useful than the

failure rates Theorem 4.4 is any way necessitate our study.
/

The equivalent condition of conditional SCBZ( 1) property in

terms of the vector valued failure rate defined in (2.41) is established

in the following theorem.

Theorem 4.5

The conditional SCBZ( 1) property is equivalent to

and

(4.22)

(4.23)

component of the vector failure rate

Proof

Conditional SCBZ(I) property means (4.12).

That is
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and

Taking the logarithm on both sides of (4.24), we get

Differentiating with respect to SI, we get

(4.24)

(4.25)

aJ1( t 1 +SI,t2 ,O)

&1

That is

That is

R(t 1 + SI , t 2 ,0)
R(O,t2 ,8)

- OR(t1 + SI' t2 ,0)

&1

R(sl,tz,8· )
-0--

R(O, t
2

, ().)

&}
R(s},t2 ,O· )

R(O,tz,O·)

(4.26)

or we have (4.22).ln a similar line we can obtain (4.23).

Retracing the steps backward we get (4.26) and then on integrating

within the range (SI,OO), we have

Taking SI ~O, we get
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Therefore

or

G 1( t I+SI, t2, 0) = G 1( t 1, t2, 0) G 1( SI, t2, 0*),

which is (4.24).

Similarly we can obtain (4.25) also and they together show the

conditional SCBZ( 1) property.

As in the case of failure rate, we can obtain the necessary and

sufficient condition of conditional SCBZ( 1) property in terms of the

vector valued mean residual life , which is presented through the

following theorem.

Theorem 4.6

The conditional SCBZ( 1) property is equivalent to

'1 (tl +SI, tz. 8) = '1 (SI, t2,O·)

and

(4.27)

(4.28)

where r i(.,., 8) is the jth component of the vector valued mean residual

life.
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Proof

Conditional SCBZ(l) property implies (4.24) with (J. = (J·(t1)EE> -

Then for YI>O, we have

Dividing (4.29) by (4.22), we get

(4.29)

G1( t 1 +Y1 , t 2 , (J)

G1(t 1 +SI' t 2 , (J)

That is

R(/I +Yl ,Iz ,(J)

R(/I + SI ,Iz ,(J)

or

GI (y I , t 2 , (j. )

GI (SI ,Iz ,(J.)

R(y I , 1z, (J. )

R(sl,lz,(J·)

That is, we have (4.27).

In a similar way we can obtain

which is (4.28). For the converse part, retrace the steps backward to get

Letting SI ~O in (4.30), we get

(4.30)
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Hence, we have (4.24). Similarly we can obtain (4.25) also.

Thus the desired conditional SCBZ( 1) property is provred.

Remark

When the random vector (X1,X2 ) has conditional SCBZ( 1)

property, then ri(xl, X2, B) has a closed form

eo

JR(t) +xpx2 ,(J )dt)
o=-------

R(X1 , X2 , (} )

00

= JR(t),x2 , lt )dt) , (/(Xl) E0
o

= Eft (X1lX2>X2).

Similarly

When SI ~O in the condition

we get

(4.31)

(4.32)
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which is independent of 11. It can also be shown that h2( t l , 12, B) IS

independent of t i.

Just as in the case of conditional SCBZ( 1) property the

equivalence of conditional SCBZ(2) property in terms of reliability

characteristics are studied in the following theorems.

Theorem 4.7

The conditional SCBZ(2) property is equivalent to

(4.33)

and

(4.34)

where

8 2R(x) ,x2 ,8)

i1\a2

Proof

Conditional SCBZ(2) property implies (4.15). That is

(4.35)

and

(4.36)
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Differentiating the first equation (4.35) with respect to SI, we get

or

That is

81ogS1(t1 +Sl,/2 ,O )

a)

OS)(t) +S),t2 ,O )

a)

8 2R(t I + SI , t 2 , 0)

a)a2

a2R(/) +SI,/2 ,O)

a2

8log SI (SI ,/2 ,0. )

a1

and is same as (4.33). Similarly, we can obtain (4.34) also.

Retracing the steps backward and on integration, we get

Taking SI ~O, we get

Hence

and it implies (4.35). Similarly we will get (4.36) also and shows the

conditional SCBZ(2) property.

According as the failure rate defined in (2.44), the mean residual



(4.37)

The following theorem grves the necessary and sufficient

condition of conditional SCBZ(2) property.

Theorem 4.8

The conditional SCBZ(2) property is equivalent to

r 1· (t 1+SI, t2, 0) = r 1· (s 1, t 2, 0-)

and

r2· (t 1, t 2 + S 2, 0) = r2· (t 1, s2, 0--)

Proof

Conditional SCBZ(2) property implies (4.35) and

S 1( t 1+Y 1, t2, 0) = S1( t 1, t 2, 0) S1(y 1, t 2, 0-)

Hence on dividing (4.40) by (4.35), we get

That is

(4.38)

(4.39)

(4.40)
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{} R(t) +y) ,/ 2 ,8)

a2

(} R(t) +S),t2 , (})

a2

or

8 R(/) +s),t2 , (})

tl2

which implies (4.38). In a similar line we can obtain (4.39) also

Retracing the steps backward and by taking SI ~O, we get (4.35) and

(4.36), which shows the conditional SCBZ(2) property.

Remark

When the bivariate distribution has conditional SCBZ(2) property,
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Similarly, we can obtain
r2·(xl, X2,9) = Eo·· (X21X1=x }).

4.8 Properties of Distributions with SCBZ Properties

(4.41)

(4.42)

In this section we establish the implications between the

definitions of bivariate SCBZ( 1) and bivariate SCBZ(2) properties and

certain identities and characterizations of the property.

Theorem 4.9

Bivariate SCBZ(2) property implies the bivariate SCBZ( 1)

property.

Proof

Bivariate SCBZ(2) property implies (4.11). Puting s=t in (4.11), we get

which is the SCBZ( 1) property.

Theorem 4.10

The converse of the Theorem 4.9 need not be true
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Proof

The theorem can be established by considering a counter example.

Consider the bivariate distribution with survival function

with (J= (a,p) where O<a<l, a+ P=l.

(4.43)

R(x1 +t,x2 +t,O)

R(t,t,O)

ae-(X1+t+X2+t) +Pe- max{xl +t ,X2+t )

ae-(n-t) + Pe-max/..t,t)

ae-2t-(Xl +X2) + Pe-t - max( Xl ,X2 )

oe:" + Pe-t

='R(xt ,X2, 0*)

• a 21 • P t * * *where a = e: and P = e: and () =(a ,P )EE> and
ae" +Pe- t ae:" +Pe-I

O<a*<l, a*+f3*=l.

That is, the given

R(Xt,X2,O) satisfies SCBZ(I) property. But

R(x] +t,x2 +s,O)

R(t ,s, 0)
=

ae-(Xl+t+X2+ S) + /le-max(xl +t ,X2+S)

ae-(t+s) + /le -max(t .s)

for (a· ,p.), element of the same parametric space. Hence R(Xl ,X2, 0)

does not satisfies SCBZ(2) property.
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Characterization of the family of survival functions having

SCBZ(2) property in terms of the unique representation of the new

parameters (J. is given through the following theorem.

Theorem 4.11

The family of survival distributions {R(Xl ,X2,8): BE 0, Xl ,X2>O}

has bivariate SCBZ(I) property with B· = (}+§t if and only if R(Xl,X2,f))

is of the form

Where s(.,.) is a non-negative, non-increasing continuous function

satisfying s(O,oo)= s(oo,O)= s(oo,oo)=O.

Proof

Bivariate SCBZ( 1) property with f). = (}+8t implies (4.1) with

(}+§t in the place of B·. Then on taking limit as f) ~ 0+ in (4.1), we get

and hence
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s(x] + t,x2 + t,O+)

S(t,t)

or

(4.44)

For the converse part, let us assume the form (4.44) for

R(xI +t,x2 +t,O)

R(t,t,O)

(
O+8t O+8t)

s Xl +-a-'X2 +-8-

JO+8t O+8t)
\ a ' 8

where t/ = ()+& E 0, which implies the bivariate SCBZ( 1) property.
8

The following theorems show that the bivariate SCBZ(2) property

preserves also in the marginals and the family of the distributions of the

minimum.
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Theorem 4.12

The bivariate SCBZ(2) property of the vector (X1,X2) implies the

univariate SCBZ property of the marginals.

Proof

Bivariate SCBZ(2) property implies (4.11) for every Xl,X2,t,s~0,

0# = O#(t,s) EE>. Letting t=O and Xl=O, we get

R(0,X2+S,8) = R(0,s,8) R(0,X2,8·)

That is

R2(X2+S,O) = R2(s,O) R2(X2,8· ) (4.45)

where R2 ( . , 0) denote the survival function of X 2 . The relation (4.45)

shows the SCBZ property of X 2 .

In a similar way we can prove the SCBZ property of the random

variable X"

Theorem 4.13

If (X1,X2 ) is a random vector having bivariate SCBZ(2) property,

then Z=min(X1,X2 ) has univariate SCBZ property

Proof

Let R(., 0) denote the survival function of Z. Then

R(x,O) = P(Z~x, B)
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= P(Xl~X,X2~X, (J)

= R(x,x, (J)

and hence

R(x+s,O) = R(x+s,x+s,O)

= R(x,x, 0) R(S,5, (J.),

= R(x,O) R(s,O·),

where (). = (}·(x) E 0, which implies the SCBZ propertyof Z.

A similar property of the bivariate SCBZ(2) property explained in

Theorem 4.12 also holds in the case of distributions having conditional

SCBZ( 1) property. And this is explained in the following theorem.

Theorem 4.14

The conditional SCBZ( 1) property implies the SCBZ property of

the marginals

Proof

Conditional SCBZ(l) property implies (4.24) and (4.25) for every

tl,t2,S}'S2>O, O· and 0·· E0. When tz ~o in the equation (4.24) we have

G1( t 1+SI, 0, 0) = G1( t 1,0, B) G1( SI, 0, 0·) .
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That is

or

which implies the SCBZ property of Xl. In a similar line, by setting

11~O we can show that X2 has univariate SCBZ property.

4.9 Preservation of SCBZ properties in bivariate equilibrium
distribution

As mentioned in section 2.6, the bivariate equilibrium distribution

has a density of the form

where R(Xl ,X2, 8) is the survival function of the parent distribution. Let

the original random vector be (X1,X2 ) and the random vector

corresponding to the equilibrium distribution be (Yl,Y2). Let G(Yl,Y2,8)

be the survival function of (Y 1,Y2) . As in the case of univariate

situation if hy (Xl ,X2, B) denote the scalar failure rate of (Yl,Y2) and
01 C)(\J X1.)~

r(xl,x2, B) denote the scalar mean residual life; we will get the identity

(2.66), which is
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Theorem 4.15

The random vector (XI,X2) has the bivariate SCBZ(2) property if

and only if (Yl,Y2) has the SCBZ(2) property.

Proof

Assume that (X1,X2 ) has the bivariate SCBZ(2) property. Then

00 00

G(Xt+tI,X2+ t2, (}) = p-t J JR(u,V, (})dudv
XI +11 X2+'2

00 00

= p-t JJR(u+x, +t"v+xz +tz,(})dudv
o 0

00 00

pot R(X"X2, (}) JJR(u+tt,v+tz,(}·)dlldv
o 0

ex) 00

p. R(Xt,X2. B) = R(Xt,X2, (}) JJR(u, v, (}·)dudv
o 0

= JJR(lI+xpv+xz,(})dudv.
o 0

Hence

00 00

R(Xt,X2, (}) =p.-t JJR(lI+x"v+xz,(})dudv.
o 0
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Therefore

G(x\ +/ \ ,X2+/2, 0)=p-\ p.'\ JJR(lI + xI>V + X 2 , O)dudv JJR(u + /\' V + /2' O·)dlldv .
o 0 0 0

(4.46)

which shows the bivariate SCBZ(2) property of the vector (Y 1,Y2 ) .

Bivariate SCBZ(2) property of the vector (Y1,Y2) implies (4.46)

Taking the derivative with respect to 11 and 12, we get

On dividing (4.47) by (4.46) we get

That is

Since R(.,., 8) is continuous, we have

(4.47)

(4.48)

or

R(xI + SI 'X2 + S2 ,8)

R(xt + It ,x2 +12 ,8)

R(xt +I t ,x2 +/2 , (} )

R(tt,t2 , (} · )

=
R(St ,S2 ,8·)
R(l t ,1

2
,(}.)
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That is

R(X I +t I ,x2+t2, B) = R( t I , t 2, B·) C I ( X I ,x2, B).

Taking 11~0 and 12 ~O, we get

C I ( X I , X 2, 8) = R (X I , X 2, 8) .

Hence, on substituting (4.50) in (4.49), we get

R(x I+t 1, X 2+t 2, B) = R( t 1, t 2, 0·) R(Xl, X 2, 0),

which shows the bivariate SCBZ(2) property of (X1,X2 ) .

4.10 Multivariate Setting the Clock Back to Zero Properties

(4.49)

(4.50)

The SCBZ properties in the bivariate case can also be extended to

more than two variables cases. In this section, we present the

corresponding definitions, examples and some important results.

Let (XI ,X2 , ... ,Xn ) be a non-negative random vector in the support

of R;={(xl,x2, ... ,xn,(}):xi,~O,i=1,2, ... ,n}with the survival distribution

R(x I ,x2, ... ,Xn, 0) , 0E e.

Definition I

A class of multivariate life distributions {R(XI,X2, ... ,X n , B), Xi ~O,

BE e} is said to have multivariate SCBZ( 1) property if for each BE e

and Xo ~O, the survival function satisfies the condition
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Examples

1. Multivariate Exponential distributions with survival function

(4.51)

R(XI,X2, ... ,Xn , (}) = ex p {- ia;x; - ~aijX;Xj-...-alLnX1X2 ...Xn} (4.52)
1=1 I<}

where ()= (ai, .... ,an, all, .... ,UI2 ...n) with 0={(}: ai's are non-negative}.

Here 0- = (at·, .... ,an· , all·, .... ,aI2· ...n) where

• ~ n-laj = aj + .L..JayO Xo +...+ aI2 ... n Xo
;<}

and

a,ii · = a., + ~ + + n-2 t
J J .L..J Uijk X 0 . . . a 12 ... n X0 . e c.

i-cj-ck

2. Multivariate analogue of the Marshall-Olkin bivariate exponential.

R(XI, ... ,xn,O)=exp {- fAjX j - :LAM2 max(Xjl,Xh)- ...-A12...nmax(Xl'2,.1n)}
l=t 11<12

(4.53)

where 0 = (AI, .... ,An, A12, .... ,A12...n)

with 0={O: At, .... ,An, A12, .... ,A12 ...n~O}. Here (J* =0.
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3. Multivariate Lomax distribution with survival function

(4.54)

where 0 = (ai, ..... ,an,k) with 0= {O: a, ~O, \;f i= 1,2, .. .,n ,k> 1}. In this

O• •• • Q;
case = (at, ... ..a; ,k) where a, = ( n ) .

1+ La;xo
;=1

4. Multivariate Gompertz distribution with survival function

(4.55)

0= (ai, .... ,an,y) with 0={ 0: a, >0, y~1}. Here O· = (aI, .... ,an,y·) with

Definition 2

A class of multivariate life distributions {R(Xl,X2, ... ,x n , B), Xi ~O,

8Ee} is said to have multivariate SCBZ(2) property if for each BE 0

and 11, 12, ... .t; ~O, the survival function satisfies the condition

Examples

(4.56)

1. Multivariate Exponential distribution specified in (4.52). In this case
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a/ = a, + Lay lj +...+ al2 ... n 1112,.. In
i<j

and

ai/ = aij + LaYk l ijk +,.. + al2 ..i n 11 12,.. In. etc.
i c j-ck

2. Multivariate Lomax distribution specified by (4.54)

• •• • a i
Here () = (at, .. .. .a; ,k) where a; = ( n J.

1+ Laiti
i==l

3 Multivariate Gompertz distribution with survival function (4.55).

Theorem 4.16

Multivariate SCBZ(2) property implies Multivariate SCBZ( 1)

property, but the converse does not holds good.

Proof

Multivariate SCBZ(2) property implies (4.56), when tl=12= ...

=tn=Xo, we get
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which shows the multivariate SCBZ( 1) property. ..

Now consider the multivariate analogue of Marshall-Olkin

bivariate exponential distribution with survival function (4.53). We can
r1)U It,·vQ.y,'"te-.

observe that the condition for: "SCBZ( 1) is satisfied by it while it does
1\

not satisfy the condition for multivariate SCBZ(2) property.

Theorem 4.1 7

Let (Xt,X2 , ... ,Xn ) be a non-negative random vector in the

support having multivariate SCBZ(2) property. Then

Y=min(Xt,X2 , ... ,Xn ) has univariate SCBZ property.

Proof

Let Ry ( . , 0) denote the survival function of Y. Then

RJ (y + Xo,0) = ,R(y+ Xo,y+ xo,...,y + xo,O)

R; (x, ,.0) R(xo, xo, .·., xo,8)

= R(y,y, ... ,y,O·)

That is

which shows the SCBZ property of Y.
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Theorem 4.18

Multivariate SCBZ(2) property implies the SCBZ property of the

marginals of less orders.

Proof

We have the marginal survival of k random variable as

Rjl, j2, ..., jt.(Xjl,Xj2, ... , Xjk, B)=R.(O,O, ... ,O,x jl,X j2, ... , Xjk,O, ... ,0, (}),

R}.}. }. (O, ... ,O,x)' +t}.,O, ...»», +t}. ,0,...,0,0)
I' 2' ._, k I' k k

R}.}. }. (0, ... ,0, t). ,0, ... ,0, t}. ,0, .. .0,0)
I' 2'"'' t I k

= R.(O,O, ... ,O,x jl,X j2,... , Xjk,O, ... ,0,0*)

where 0* = 0*.(ljl,lj2, ... , Ijk), which implies the SCBZ property of the

marginal survival of k random variables out of n random variables.

Definition 3

A class of multivariate life distributions {R(Xl,X2, ... ,X n , B), X; >0,

BE e} is said to have multivariate conditional SCBZ property if for each

BE 0 it satisfies the equation

for each i = 1,2, ... , nand 0* = e*(x;) E0, where
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l~(x I , ' , , , Xn )

R(Xl"",Xi-l,O,Xi=l"",Xn) ,

Example

Multivariate Lomax distribution with survival function (4,54), If

b;=



CHAPTER 5

SETTING THE CLOCK BACK TO ZERO
PROPERTY OF DISCRETE DISTRIBUTIONS

5.1 Introduction

In the last two chapters we were discussing the concept of SCBZ

property in the continuous univariate as well as multivariate situations.

The study of this property in the discrete set up is of more interest,

since in actual practice the life of the components are measured in

discrete time units, that is the time is measured discretely as the

completed years of life or as number of cycles. The difficulties, in

measuring the time continuously are discussed by authors like

Xekalaki (1983), Cox (1972) and Kalbfleish and Prentice (1980).

From this view point we try to define SCBZ property in the discrete

cases- both for univariate and multivariate distributions. It can be

noticed that, we will get almost all the results parallel to those we have

obtained for continuous distributions with necessary modifications.
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5.2 Univariate discrete SCBZ property. (Nair and Mini, 1999)

Let X be a discrete random variable defined on the support of

]+={O, 1, 2, ... } with a survival function R(x, B)=P(X~x) and probability

mass function j(x, B). As in the case of continuous random variable the

SCBZ property can be defined in the discrete case as follows.

Definition

A non-negative discrete random variable X defined on r or its

family of survival functions {R(x, B): XEI+, BEe} is said to have the

SCBZ property if for each BEe and x, t E/+, the survival function

R(x, B) satisfies the condition

R(x+ t, B) = R(t, 8) R(x, (/)

where B* = (/(t)Ee, the parametric space.

(5.1)

By this property we mean that the conditional distribution of

additional time of survival of a device or an organism given that it has

already survived t units of time remains in the same family. In the

reliability context, this property ensures that the residual life

distribution remains in the original family of distributions.
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Examples

1. Consider the geometric distribution with survival function

R(x,8) = qX, X = 0, 1, 2, ... ; O~q~ 1.

where () = q and e = {q: Osq~ 1}. It can be noticed that

R(x + t,B) = ex = R(x (}*)
R(t~B) , ,

where ()* = ().

(5.2)

2. Consider the Waring distribution specified In Irwin (1975) with

survival function

R(x,B) = (b)x , x = 0,1,2, ... ; a,b>O
(a)x

(5.3)

where (a)x = a(a+1) ... (a+x-1); with O=(a, b) and 0={(a,b): a,b>O;

a>b+ 1}. In this case

R(x + t,(})

R(t,(})

= R(x, (}*),

where ()* = (a+t, b+t).

3. Consider the case of negative hypergeometric distribution with

survival function
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c+n

-

x

)

R(x,8) = (n-x), X = 0, 1, 2, ... .n;kfn

n

where O==(k,ll) and e = {(k,ll):k,ll>O}.

Here

(5.4 )

R(x + 1,8)

R(1;,8)

where 0* = (k, 11-t).

(

k+n- t- X)

n-t-x

(
k+n-t)

n-t

= R(x, 8*),

5.2.1 Reliability Characteristics (Nair and Mini, 1999)

In this section we establish the equivalent conditions of SCBZ

property in terms of reliability characteristics especially the failure

rate and mean residual life.

Theorem 5.1

The SCBZ property is equivalent to

h(x+ t, 0) = h(x,O·)

where h(., 8) is the fai lure rate defined in (2.50).



Proof

The SCBZ property of the random variable X implies (5.1).

Hence

R(x+I+l, (}) =R(t, (}) R(x+l, (}*). (5.5)

On taking the difference between (5.1) and (5.5) and dividing by

(5.1) we get

R(x+t,(})-R(x+I+l,(}) = R(x,O·)-R(x+l,(}·)

R(x+I,(}) R(x,(}·)

That is in terms of the failure rate h(., (}), it can be written as

h(x+ I, (}) = h(x, (}*). (5.6)

For the converse part use the relation (2.52) connecting h(x, (}) and

R(x, (})

R(x + t,(})

R(/,(})

x+t-·l

O[l-h(y,(})]
y=o
I-I

O[l-h(y,(})]
y=o

x-t/·l

O[l-h(y,(})]
y::.;t

x-I

= O[I-h(y+t,e)]
y=o

x-I

= 0[1- h(y,e·)].
y=o
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Assuming (5.6), we can write

R(x+t,O) = R(x 8*)
R(t,8) "

which establishes the desired result.

From the above theorem, it is noticed that the failure rate IS a

function of the transformed parameter. That is

h(x, fJ) = h(O, fJ*)

= g( fJ*) (say).

The following theorems give the two important results concerning the

.
functional form of the failure rate and SCBZ property.

Theorem 5.2

If the failure rate is linear, then the family of survival function

possesses the SCBZ propery.

Proof

The survival function of a discrete random variable defined on r

IS uniquely determined by the equation (2.52). If h(x,8) = a+bx, we

have



R(x + t,O)

R(t,O)

where 0* = (a+bt, b).

Theorem 5.3

l(jJ

x+I--l

Il (I-a-by)
y=0

1-1n(l-a-by)
y=O

x-I

= n(I-a -bi -by)
y=O

If h(x, 0) = is a one to one function g(.) of 0*, then g( 0*) uniquely

determines the distribution.

Proof

Let the one to one function of htx, 0) is g(O*). Since the failure

rate uniquely related to thesurvival function by (2.52)

x-I

R(x, 0) = 0[1- h(t,O)]
t=O

.-;--)

= n[1-g(O·)]
1=0

which implies that g( 0*) uniquely determines the distribution.
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Now we can think about the mean residual life. The following

result gives a characterization of SCBZ property in terms of the mean

residual life.

Theorem 5.4

SCBZ property of a discrete random variable with 1(0)=0 IS

equivalent to

r(x+t , 0) = r(x, 0*)

where r(.,O) is the mean residual life defined in (2.51).

Proof

(5.7)

SCBZ property of the random variable implies (5.1) and (5.5).

Also

R(u+t+I,O) = R(t, 0) R(ll+l, 0*).

Therefore

R(lI +t +1,0) _ R(u +1,0·)

R(x+t+l,O) R(x+l,O·)·

That is

1 ~ I 00

---- LR(u+t+l,O) = • LR(ll+l,O·).
R(x+t+l,O) U=X R(x+l,O) U=X

That is

r(x+t,O) = r(x,O*)



For the converse part, let us assume the relation (5.7) with 1(0)=0.

Using (2.53),

R(x + t,O)

R(t,O)

n[r(u -1,0) -1]
u~1 r(u,O)

ft[r(U -1,8) -1]
14=1 r(u,O)

= ftl[r(U -1,8) -1]
.,_, r(u,O)

= fi [r(U+t-I,8)-I]
UDO r(u + t ,0)

= rt [r(U-I,O:)-I]
11=-=0 r(u,8 )

= ft[r(U -1,0:) -I]
IIcl r(u,O )

= R(x, (/),

which shows the SCBZ property.

5.2.2 Distribution of Partial Sums (~air and Mini, 1999)

In this section we investigate certain characteristics of the

distributions based on the partial sums. Let X be a discrete random
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variable defined on the set of non-negative integers with probability

mass function fi», 8)/ . survival function R(x,8) = P(X ~x, 8) and a

finite mean u. Then the random variable Y specified by

g(x,8) = P(Y=x)

= p-t P(X>x)

= /J-t R(x+1, 8) (5.8)

is said to have the distribution based on partial sums corresponding to

X. Gupta (1979) has shown that Y is the residual lifetime of a

component in a system where a component of life length X is replaced

upon failure by another having the same distribution, so that it forms a

renewal process. He also showed that the failure rate of Y is the

reciprocal of the mean residual life of X. Some other properties are

studied by Johnson and Kotz (1969). Nair and Hitha (1989) obtained

certain relations between the failure rate and mean residual life

function to characterize certain discrete distributions by considering

the relevance of these models in reliability analysis.

Let hy(x,8) denote the failure rate of Y and r(x,8) denote the

mean residual life of X. Then we have

hy(x, 8) = [r(x, 8) ]-1 . (5.9)
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The following theorem shows that the SCBZ p.roperty of the parent

distribution preserves in the distribution based on partial sums.

Theorem 5.5

The SCBZ property of X implies the SCBZ property of Y.

Proof

Let G(., 0) denote the survival function of Y.

IX)

G(x+t,O) = Lg(u,O)
u=x+t

00

= p-l LR(u +1,0)
u=x+t

00

= p-l LR(x + t + 11 +1,0)
u=o

rt)

= p-l LR(t,O)R(x +u +1,0·)
u=o

00

p*R(t, 0) = R(t, 0) LR(u,O·)
u=1

00

=R(t, 0) LR(u +1,0·)
u=o

oo

=LR(t + u + 1,0)
u-=o

Therefore



00

R(t, (}) =(p*)-l :LR(t+u+l,(})
14-=0

and

C'rl 00

G(x+t, (}) = (pp*)-l :LR(t +U +1,0) :LR(x + 11 + 1,0·)
14=0 U~O

= G(t, (}) G(x, (/),

which shows the SCBZ property of Y.

(5.10)

The converse of the above theorem need not holds always. If j(O)=O,

then it holds. It is established in the following theorem.

Theorem 5.6

The SCBZ property of Y implies SCBZ property of X if1(0)=0.

Proof

SCBZ property of Y implies (5.10). Then as in the line of proof

of Theorem 5. 1 we can have

hy(x+t, (}) = hy(x, (}*).

By the relation (5.9), we have

r(x+t, (}) = r(x, (}*).

Then by Theorem 5.4, we have the desired result that X has SCBZ

property.



5.3 SCBZ Property of Bivariate Distributions

The analogous discrete situations of the Chapter IV is discussed

in this section. In the previous section we define the SCBZ property of

univariate case. The extension of this property to the bivariate case is

not unique and hence we can define it in various ways. Let (XI,X2 ) be

a vector of random variables with support I; = {(Xl,X2): Xl ,X2=0, 1,2, ... }

and family of survival functions {R(Xl,X2,8):( Xl,X2)E I; ,8 Ee}, where

R(Xl,X2,8) = P(Xl~Xl,X2 ~x2,8).

5.3.1 Bivariate SCBZ(l) Property

The natural extension of the definition of SCBZ property In

univariate case leads to the following definition.

Defin ition

A family of survival distributions with support 1; or the random

vector (X1,X2 ) is said to have bivariate SCBZ( 1) property if for each

8E e andxl' X2, t= 0, 1, ... , the following condition

(5.11)



where O· = O· (I) E El, the parametric space holds.

Examples

1. Bivariate Waring distribution with survival function

where B(a,fJ) = ~~~~~; with () =(a,fJ).

(5.12)

(This distribution can be regarded as the discrete analogue of

bivariate Pareto distribution and it belongs to the Pearson' s system

of discrete distributions(Ord, 1972)). Here

R(x) +1,x2 +t,O) = B(a,p+x) +x2 +2t)

R(t,t,O) B(a,p + 2t)

where 0* = (a,p+2t).

2. Bivariate negative hypergeometric distribution with survival

function

(k+n-x.-x2 )

R(XI,X2,O) =
n-xl - x2

(5.13)

C:
n
)

xi , X 2 = 0, 1, ... ,11; 11,k> 0," Xl + X 2 ~ 11 with 0 =(k ,11) .



(Xekalaki (1983), by the slope to mean ordinate ratio method has

shown that the continuous analogue of negative hypergeometric

distribution is finite range distribution).

R(x) +t,x2 +t,O)

l~(t,t,(})

where 0* = (k,II-2t).

3. A bivariate geometric distribution (discrete analogue of Gumbel' s

bivariate exponential) with survival function

(5.14)

O<Pl, P2<1; O~a~l; I-a ~(l- Pla)(l- P2a) where () = (Pt, P2,a).

5.3.2 Bivariate SCBZ(2) Property

The second definition to the SCBZ property of bivariate

distributions is as follows



(5. 15)

11~

Definition

A random vector (X I,X2 ) defined on I; or its family of survival

distributions {R(Xl,X2,8), 8Ee, (XI,X2)E I;} is said to have bivariate

SCBZ(2) property if for each 8E e and all (XI,X2) and (11,12) El;, it

should satisfy the condition

R(XI+II,X2+12,0) = R(tl,t2,0) R(Xl,X2,(f)

where 0·= 0·( tl,t2)E0.

Examples

1. Bivariate Waring distribution specified In (5.12). Here

(J*=( a,p+tl +t2)'

2. Bivariate negative hypergeometric distribution specified In (5.13)

where (}*=( k,n-tl-t2).

3. Bivariate geometric distribution with survival (5.14). It can be seen

that (f=(PI a"-, P2 at, ,a).

In terms of the local lack of memory property, the SCBZ

property can be defined as in the subsequent section.
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5.3.3 Conditional SCBZ (1) Property

Definition

A class of life distributions {R(XI,X2,B), BEE>, (Xt,X2)E I;} or a

vector (XI,X2 ) is said to have conditional SCBZ( 1) property if for each

BE e and SI, S2, 11, 12 = 0, 1, 2, ...

and (5.16)

where 0* = (/(/1) and 0·* = 0**(/2) belong to the same parametric space

Therefore

and

Examples

1. In the case of the bivariate Waring distribution (5.12), 0- =(a,p+/I)



2. Bivariate negative hypergeometric distribution specified in (5.13).

Here () = (k,11). In thi s case (}~=( k,11-/l) and (}~~=( k,11-/2).

3. Bivariate geometric distribution with survival function (5.14). It

can be seen that (}*=(Pl, P2a'l ,a) and (}··=(Pl a'' ,P2,a).

5.3.4 Conditional SCBZ(2) Property

In view of the conditional lack of memory property defined by

Nair and Nair (1991), here we investigate to study the SCBZ property

of one component when the value of other component is preassigned.

Definition

A class of bivariate survival function s {R(Xl,X2,O), (}E 0,

(Xl,X2)E I;} or a vector (X1,X2 ) is said to have conditional SCBZ(2)

property if the following set of conditions is satisfied for each BE e

and St, S2, It, t2=0, 1,2, ...

(5.17)and

S2( I 1, 12+S 2, 0) = S2( I 1, t'2 , 0) S2( I 1, S'2, 0*•)

where ()~ =(}~(tl) and ()~~ =(}~~(/2)Ee. Si(lt, 12, ()) = P(Xi~/il ~·=Ij, (}) for

i.j = 1,2; i~j.



We have

P(X. ~t.,X2 =t2,O)
P(X2 = t2 ,O)

R(/I ,/2 ,0) - R(/1,12 +1,0)

R(O, 12 ,0) - R(O,t2 +1,0)

and

Examples

1. Consider the bivariate Waring distribution (5.12). Here

SI(/. +s.,t2 ,O) = B(a,p+/I +/2 +sl)-B(a,p+/. +/2 +SI + 1)

SI (/ 1'/2,0) B(a,p + /1 + 12) - B(a,p + /1 + 12 + I)

where O*=(a,p+/l).

Similarly

(5.18 )

(5.19 )

2. For the bivariate negative hypergeometric distribution with survival

function (5.13)
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St(lt +St,12 ,O)

s.a,»,»

where o: =(k,ll-tt) and

3. In the case of bivariate geometric distribution with survival function

(5.14),

St(/t +St,t2 , (} )

s, (It ,t2 ,O)

h ()**- (p '2 )were - t a ,J}2, a .

5.3.5 Extended Bivariate SCBZ Property

Rao et. aI. (1993~ has extended the notion of SCBZ property to

the bivariate continuous case as the one discussed in section 2.7. By



applying a similar approach we can define the SCBZ property of the

discrete case to that in bivariate case as follows.

Definition

A class of bivariate survival functions{R(XI,X2,B), BEe,

(Xt,X2)E I;} or a vector (Xt,X2 ) is said to have the extended bivaraite

setting the clock back to zero property if for eexh BE e and XI,X2 = 0, 1,

2, ... the survival function satisfies the equations

and

R(X 1+ t, t, B) = R( t, t, 0) R (Xl, t, (/ )

R( t, X 2+t, B) = R( t, t, B) R( t, X 2, (/*)

(5.20)

• " •• /'1**with B =B (t)E eo and B =f7 (t)E eo where eo denotes the boundary

ere

Example

1. Consider the geometric distribution specified in (5.14)

R(x) + t,I,O)

R(t,t,O)

= R(Xt, t, 0*)

where (/=(Pl, p;,a) with p;=l.
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Also

R(t,xl +t,O) x tx

R(/,I,O) = P2
2a

2

where O**=(P;,P2, a) with p;=l.

boundary eo, which includesO~Pl,P2~1.

5.4 Properties of SCBZ property

HereO* and 0·* belong to the

In this section we establish certain implications between various

definitions and some of their properties.

Theorem 5.7

Bivariate SCBZ(2) property implies bivariate SCBZ( 1) property,

but the converse is not true.

Proof

When I} = 12 = I In the equation (5.15) of bivariate SCBZ(2)

property, it reduces to (5.11), which is the condition for bivariate

SCBZ( 1) property. For proving the converse part, let us consider a

bivariate geometric distribution (the discrete analogue of Marshall-

Olkin exponential distribution) with survival function (2.32). (2.32)

can also be written as
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R(x x B) = pmin(X1,X2) ptnaX(0,X1-X2) pJDaX(0,X2-Xl)
], 2, 1 2 , (5.21)

Here

with ()* =(). But

R(x] +t,x1 +t,B)

R(~,ti()

pmin(X1+11'X2+ 12) pr;w'(0,XI-X2 -+11-12) p~X(0,X2-Xl +12 --11)

pmin(11,12) pr;w'(0,+11- t2) p~L,,( 0, +12 --11 )

Then, it can be noticed that the bivariate geometric

distribution with survival function (5.21) holds bivariate SCBZ( 1)

property but does not holds bivariate SCBZ(2) property. Hence we can

conclude that bivariate SCBZ( 1) need not imply bivariate SCBZ(2)

property.

The next theorem shows that the bivaraiate SCBZ(2) property

implies the SCBZ properties of the marginal distributions.

Theorem 5.8

Bivariate SCBZ(2) property implies the SCBZ property of marginal

distributions
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Proof

Bivariate SCBZ(2) property implies (5.15). On setting X2 = t2 = 0,

(5.15) becomes

with 0* = (/(tl) EEl, which indicates the SCBZ property of the component

Xl. Similarly we can show the SCBZ property of X2 also.

As in the case of continuous variables a parallel result of Theorem

4.13 holds for the bivariate discrete case also.

Theorem 5.9

The bivariate SCBZ(2) property of (XI,X2 ) implies the univariate

SCBZ property of Z = min(XI,X2 ) .

Proof

Let R(., 0) denote the survival function of Z. Then

R(x+t,O) = P(Z~x+t, 0)

= P(Xl~X+t, X2~X+t,O)

= R(x+t,x+t,8)

= R( t , t , 8) R(x ,x , 0*)

with 0* = (/(t) EEl. That is
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R(X+I,O) = R(/,O) R(x,(/),

which shows the desired result.

The property of bivariate SCBZ(2) property described in Theorem

5.8 holds for the conditional SCBZ(1) property also and is established in

the following theorem.

Theorem 5.10

Conditional SCBZ( 1) property of (XI,X2 ) implies SCBZ properties

of Xl and X2 .

Proof

Conditional SCBZ( 1) property implies (5.16). When 12

first equation of(5.16), we get

G 1( 11+ SI, 0, 0) = G 1( 11,0, 0) G 1(s 1,0, (/ ) .

That is

R(11+ SI, 0, 0) == R(11, 0, 0) R(SI, 0, (/ ) .

That is

o In the

R 1( 11+ SI, 0) = R I ( t 1, 0) R 1( SI, 0*)

with ()* = (/(/1) E0, where RI(/I,(}) is the survival function of XI which

implies the SCBZ property of the component Xl. In a similar way we can

show that X2 has SCBZ property.
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5.5 Distribution based on Partial Sums in Bivariate case

An appropriate bivariate extension of partial sum distributions

are firstly given by Kotz and Johnson (1991). Let Xl and X 2 are the

original random variables with survival function R(Xl,X2,(J). Then the

random vector (YI,Y2) corresponding to the partial sums has a

probability density function of the form

=P(X1 > X1, X 2 > x2 ,(J )

E(X1X2 )

R(x) + 1, x2 +1,8)

fJ
(5.22 )

Stipulated along the lines of the univariate case, we can obtain

the analogous result of Theorem 5.5.

Theorem 5.11

The bivariate SCBZ(2) property of (X1,X2 ) implies the bivariate

SCBZ(2) property of (Yl,Y2).

Proof

Let G(.,.,8) denote the survival function of (YI,Y2 ) . Then
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That is

G( 0)
= ~~R(1I+1,v+l,0)

XI,X2, LJ LJ .
U=Xl V=X2 f.J

Therefore

(~) (f)

G(XI+ll,X2+12,B) = p.-I L LR(1I+1,v+l,B)
uc-=xl HI v=x2 +12

00 r~

=p-l LLR(lI + XI + I 1 +1,v + X2 +/2 + 1,0)
u=o v-=o

rt:' (t)

=p-l LLR(/1 , / 2 ,0 )R(u + x t +1,v+x2 +1,0+), (5.23)
u=o v=o

since (XI,X2 ) has bivariate SCBZ(2) property. We have

p* R(/),/2,0) = LLR(/ t , / 2,0)R(1I+1,v+l,0·)
u=o v-=o

= LLR(u+/) +1,V+/2 +1,0)
u=o v=o

Therefore

00 00

R(t),t2,O) =(,u*)-l LLR(u+I. +1,v+t2 +1,0)
u=o v-=o

Hence on substituting (5.24) in (5.23), we get

(5.24 )
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~ "I:)

G(XI+tl,X2+t2,0) =(pp*)-l LLR(lI+t. +1,v+t1 +1,0)
u~o \·...=.0

LLR(u+xt +1,v+x1 +1,0·).
u=o v=0

That is

which shows the desired result.

5.6 Conclusion

In the present study we formed a class of univariate continuous

distributions that admit a partial differential equation. The general

solution of that equation also can be derived. But the formulation of

the PDE in the case of all the bivariate models cannot be possible.

Eventhough a PDE in the case of bivariate SCBZ (1) property is

obtained, we are not able to show that all the distributions admitting

that PDE should hold that property.

It can be proved that the SCBZ property preserves in the

equilibrium distributions of univariate continuous and discrete cases.

But the converse of that result can be proved only in the case of

continuous distributions. In chapter 4 we have obtained that bivariate

SCBZ (2) property preserves in the equilibrium distribution in
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continuous distributions and vice versa. But the converse of the

parallel result in the bivariate discrete case cannot be proved. The

study of the preservation of conditional SCBZ (I) property also

requires some interest. These problems are set for future work. Also

the study of the measures for maintanance policies in the distributions

with SCBZ properties are meant for our future work.
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