
STOCHASTIC MODELLING, ANALYSIS 
AND APPLICATIONS 

ANALYSIS OF SOME STOCHASTIC INVENTORY 
SYSTEMS SUBJECT TO DECAY AND DISASTER 

THESIS SUBMITTED TO THE 
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

FOR THE DEGREE OF 
DOCTOR OF PHILOSOPHY 

UNDER THE FACULTY OF SCIENCE 

BY 
VARGHESE T. V. 

DEPARTMENT OF MATHEMATICS 
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

KOCHI - 682 022, KERALA. INDIA. 

SEPTEMBER 1998 



CERTIFICATE 

Certified that the thesis entitled "ANALYSIS OF SOME STOCHASTIC 

INVENTORY SYSTEMS SUBJECT TO DECAY AND DISASTER" is a 

bonafide record of work done by Sri. Varghese T. V. under my guidance in the 

Department of Mathematics, Cochin University of Science and Technology, and 

that no part of it has been included any where previously for the award of any 

degree. 

Kochi. 680022 
September 15, 1998 

J;""", 
Dr. A. Krishnamoorthy 
Supervising Guide 
Professor, 
Department of Mathematics 

" ~ , . Cochin University of Science 
I'<''\~ ()t _SCIENc~~, and Technology 

• '0"0./ '" ..,., 
, ,'-0 '. ~, 

I ..... VI ' , 
4!~ ~\.\ 
.1:;:, fJEPMHMFNT r<"' \ 
11 Of: n: I 

I,~ MAfHEMATICS :1)' 
, ~ ~I 
, U ":::::;1 
\ Z, "0" I 

" <:) I ;. * *~// \,. cOe r/ 
.......... ' HI'" -(l.- 1.-' ~ 

.... .:::.. ~----=-:-- ... ~ 



CONTENTS 

Page 

Chapter I INTRODUCTION 1 

l.1 Inventory Systems 

l.2 Some Basic Concepts in Stochastic Processes .. 4 

1.2.1 Stochastic Process 5 

1.2.2 Markov Process 5 

1.2.3 Renewal Process 7 

1.2.4 Markov Renewal Process 9 

1.2.5 Semi-Regenerative Process 11 

1.3 Review of the Literature 13 

1.3.1 Earlier Works 13 

l.3.2 Works on (s, S) Continuous Review Policy 13 

1.3.3 Works on Perishable Inventory 16 

1.3.4 Works on Multi-Commodity Inventory 18 

1.4 An Outline of the Present Work 19 

Chapter II SINGLE COMMODITY INVENTORY PROBLEM 

PERISHABLE DUE TO DECAY AND DISASTER 23 

2.1 Introduction 23 

2.2 Notations 24 

2.3 Analysis of the Inventory Level 25 

2.3.1 Steady State Probabilities 27 

2.4 Probability Distribution of the Replenishment Cycles 29 

2.5 Optimization Problem 32 

2.6 Numerical Illustrations 34 



Chapter ID 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.6.1 

3.7 

3.7.1 

3.7.2 

3.7.3 

3.7.4 

Chapter IV 

4.1 

4.2 

4.3 

4.4 

4.4.1 

Page 

SINGLE COMMODITY PERISHABLE 

INVENTORY PROBLEM WITH LEAD TIME 38 

Introduction 

Model Formulation and Analysis 

Time Dependent Probabilities 

Steady State Solution 

Cost Function 

Special Case 

Cost Analysis 

Exponential Lead Times 

Steady State Inventory Level Probabilities 

First Passage Times 

Optimization of the Cost Function 

Numerical Illustrations 

SINGLE COMMODITY INVENTORY 

SYSTEM SUBJECT TO DISASTER WITH 

GENERAL INTERARRIVAL TIMES 

Introduction 

Formulation and Analysis 

Transient and Steady State Solutions 

A Particular Case 

Illustrations 

38 

39 

42 

43 

44 

45 

47 

47 

49 

50 

51 

53 

57 

57 

58 

62 

64 

66 



Chapter V 

5.1 

5.2 

5.3 

5.4 

5.4.1 

Chapter VI 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

Chapter VII 

7.1 

7.2 

7.3 

7.4 

7.5 

7.6 

SINGLE COMMODITY INVENTORY SYSTEM 

WITH GENERAL DISASTER PERIODS 

Introduction 

Analysis of the Inventory Level 

Time Dependent and Limiting Distributions 

A Special Case 

Illustrations 

MULTI-COMMODITY INVENTORY PROBLEM 

Page 

70 

70 

71 

74 

77 

78 

PERISHABLE DUE TO DECAY AND DISASTER 83 

Introduction 

Notations 

Analysis of the Inventory States 

Steady State Probabilities and Replenishment Periods 

Optimization Pwblem 

Numerical Illustrations 

MULTI-COMMODITY PERISHABLE 

INVENTORY SYSTEM WITH SHORTAGES 

Introduction 

Notations 

Transient Probabilities 

Steady State Probabilities and Replenishment Cycles 

Cost Analysis 

Numerical Illustrations 

83 

84 

85 

88 

90 

93 

96 

96 

97 

98 

100 

103 

104 



Chapter VIII 

8.1 

8.2 

8.3 

8.3.1 

8.3.2 

8.3.3 

8.3.4 

8.3.5 

8.4 

8.4.1 

8.4.2 

8.4.3 

8.5 

TWO COMMODITY INVENTORY PROBLEM 

WITH MARKOV SHIFT IN DEMAND 

Introduction 

Notations 

Model I 

Analysis of the Model 

Time Dependent System State Probabilities 

Limiting Probabilities 

Time Between the Replenishments 

Optimization Problem 

Model 11 

Analysis of the Model 

Transient and Steady State Probabilities 

Replenishment Cycles and Optimization 

Numerical Illustrations 

REFERENCES 

Page 

107 

107 

108 

110 

110 

112 

114 

116 

118 

120 

120 

121 

122 

125 

130 



Chapter I 

Introduction 

In this thesis we study some problems in stochastic inventories with a 

special reference to the factors of decay and disaster affecting the stock. The 

problems are analyzed by identifying certain stochastic processes underlying 

these systems. Our main objectives are to fmd transient and steady state 

probabilities of the inventory states and the optimum values of the decision 

variables that minimize the cost functions. Most of the results are illustrated 

with numerical examples. 

This introductory chapter contains some preliminary concepts in 

inventory and stochastic process, a brief review of the literature relevant to our 

topic and an outline of the work done in the present thesis. 

1.1 INVENTORY SYSTEMS 

Inventory is the stock kept for future use to synchronize the inflow and 

outflow of goods in a transaction. Examples of inventory are physical goods 

stored for sale, raw materials to be processed in a production plant, a group of 

personnel undergoing training for a firm, space available for books in a library, 

power stored in a storage battery, water kept in a dam, etc. Thus inventory 
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models have a wide range of applications in the decision making of 

governments, milit8.I)' organizations, industries, hospitals, banks, educational 

institutions, etc. Study and research in this fast growing field of Applied 

Mathematics taking models from practical situations will contribute 

significantly to the progress and development of human society. 

There are several factors affecting the inventory. They are demand, life 

times of items stored, damage due to external disaster, production rate, the time 

lag between order and supply, availability of space in the store, etc. If all these 

parameters are known beforehand, then the inventory is called detenninistic. If 

some or all of these parameters are not known with certainty, then it is 

justifiable to consider them as random variables with some probability 

distributions and the resulting inventory is then called stochastic or 

probabilistic. Systems in which one commodity is held independent of other 

commodities are analyzed as single commodity inventory problems. Multi

commodity inventory problems deal with two or more commodities held 

together with some fonn of dependence. Inventory systems may again be 

classified as continuous review or periodic review. A continuous review policy 

is to check the inventory level continuously in time and a periodic review policy 

is to monitor the system at discrete, equally spaced instants of time. 

Efficient management of inventory systems is done by finding out 

optimal values of the decision variables. The important decision variables in an 

inventory system are order level or maximum capacity of the inventory, re

ordering point, scheduling period and lot size or order quantity. They are 

usually represented by the letters, S, s, t and q respectively. Different policies 

are obtained when different combinations of decision variables are selected. 

Existing prominent inventory policies are: i) (s, S) - policy in which an order is 

placed for a quantity up to S whenever the inventory level falls to or below s, 
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ii) (s, q) - policy where the order is given for q quantity when the inventory 

level is s or below it, iii) (t, S) - policy which places an order at scheduling 

periods of t lengths so as to bring back the inventory level up to Sand 

iv) (t, q)- policy that gives an order for q quantity at epochs of I interval length. 

In multi-commodity inventory systems there are different replenishment 

policies. A single ordering policy is to order separately for each commodity 

whenever its inventory level falls to or below its re-ordering point. A joint 

ordering policy is to order for all the commodities whenever the inventory 

levels are equal to or below a pre-fixed state. The pre-fixed state may be the re

ordering point of at least one of the commodities, of at least some of the 

commodities, or of all the commodities. In the latter two cases there is a 

possibility of shortages of inventory. 

The period between an order and a replenishment is termed as lead time. 

If the replenishment is instantaneous, then lead time is zero and the system is 

then called an inventory system without lead time. Inventory models with 

positive lead time are complex to analyze; still more complex are the models 

where the lead times are taken to be random variables. 

Shortages of inventory occur in systems with positive lead time, in 

systems with negative re-ordering points, or in multi-commodity inventory 

systems in which an order is placed only when the inventory levels of at least 

two commodities fall to or below their re-ordering points. There are different 

methods to face the stock out periods of the inventory. One of the methods is to 

consider the demands during the dry periods as lost sales. The other is partial or 

full backlogging of the demands during these periods. Partial backlogging 

policy is an interesting field for recent researchers, with the adaptation of 

N-policy, T -policy and D-policy from queueing theory, in which local purchase 
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is made when either the number of backlogs or the lead time exceeds a pre

fixed number. 

In most of the analysis of inventory systems the decay and disaster 

factors are ignored. But in several practical situations these factors play an 

important role in decision making. Examples are electronic equipment stored 

and exhibited on a sales counter, perishable goods like food stuffs, chemicals, 

pharmaceuticals preserved in storage, crops vulnerable to insects and natural 

calamity, etc. 

Large stores usually stock more than one commodity at a time that are 

also inter-related. For example, computer and its peripherals, electric equipment 

and voltage stabilizers, sanitary wares and their fittings, automobile spare parts, 

clothes for shirts and other suits, etc. 

In this thesis we study single and multi-commodity stochastic inventory 

problems with continuous review (s, S) policy. Among the eight models 

discussed, four models are about single commodity inventory systems with a 

special focus on natural decay and external disaster. The next two are their 

extensions to multi-commodity. The last two models are two commodity 

problems with Markov shift in demand. These problems are analyzed with the 

help of the theories of stochastic processes, namely, Markov processes, renewal 

process, Markov renewal processes and semi-regenerative processes. 

1.2 SOME BASIC CONCEPTS IN STOCHASTIC PROCESSES 

Many a phenomenon, occurring in physical and life sciences, 

engineering and management studies are widely studied now not only as a 

random phenomenon but also as one changing with time or space. The study of 
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random phenomena which are also functions of time or space leads to stochastic 

processes. 

1.2.1 Stochastic Process 

A stochastic process is a family of random variables {XCt), tel} taking 

values from a set E. The parameter t is generally interpreted as time though it 

may represent a counting number, distance, length, thickness and so on. The 

sets I and E are called the index set and the state space of the process 

respectively. There are four types of stochastic processes depending on whether 

I and E are discrete or not. A discl'ete parameter stochastic process is usually 

written as {Xn , neI}. If the members of the family of random variables {XCt), 

tel} are mutually independent, it is an independent process. In the simplest 

fonn of dependency the random variables depend only on their immediate 

predecessors or only on their immediate successors, not on any other. A 

stochastic process possessing this type of dependency is known as a Markov 

process. 

1.2.2 Markov Process 

A stochastic process {XCt), t e I} with index set I and state space E is 

said to be a Markov process if it satisfies the following conditional probability 

statement: 

Discrete valued Markov processes are often called Markov chains. A Markov 

process can be completely specified with i) the marginal probability 
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Pr{X(to) = Xo}, called the initial condition and ii) a set of conditional density 

functions Pr{X(tr) = Xr I X(ts) = Xs ; tr < ts }, called the transition probability 

densities. The Markov process is said to be stationary or time homogeneous if 

Pr{X(tr +a)=jIX(tr)=i} =Pr{X(ts +a)=jIX(ts)=i}; forallrands; a >0 

(1.2) 

In that case (1.2) is denoted as Pit or pij{a). A discrete parameter stationary 

Markov chain can be completely specified by the initial condition and the one 

step transition probability matrix P = (Pij); i, j E E, where Pij = Pr{Xr+ 1 = j I 

Xr = i}. For a stationary continuous parameter Markov chain the role of the one 

step transition probabilities is played by the infinitesimal generator or the 

transition intensity matrix, Q = (qij); i, j E E where 

(1.3) 

The following results on limiting probabilities of stationary Markov 

chains have wide range applications in many practical situations. Proofs of the 

results quoted in this chapter can be found in standard books on stochastic 

process. 

Theorem 1.1 

Let {Xn , n E. I} be an irreducible and aperiodic Markov chain with 

discrete index set I and state space E. Then all states are recurrent non-null if 

and only if the system of linear equations 

L 7riPij=7rj; JEE and L7ri= (1.4) 
iEE iEE 
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has a solution n = (1tl ,1t2 , .....•. ). If there is a solution n, then it is strictly 

positive, unique and 7f j = lim pij for all i,j E E. 0 
n~oo 

When E is finite all the states are recurrent non-null, therefore, a unique 

solution n exits always. n is callec the invariant measure of the Markov chain 

{Xn, neI}. 

Theorem 1.2 

Suppose {X(t), t e R+} be an irreducible recurrent continuous time 

Markov chain with discrete state space E. Then 

7fU) = lim Pr{X(t) = j}; j E E (1.5) 
t~oo 

exists and is independent of X(O). If E is finite, then 1tU)'s are given by the 

unique solution of L7f(i)qij = 0; j E E and L7f(i) = 1. (1.6) 
ieE ieE 

1.2.3 Renewal Process 

Suppose a certain event occurs repeatedly in time with the property that 

the interarrival times {Xn , n = 1, 2, .... } fonn a sequence of non-negative 

independent identically distributed random variables with a common 

distribution F(.) and Pr{Xn = O}<1. Let us call each occurrence of the event a 

renewal. Since Xn 's are non-negative, E(Xn) exists. Let So = 0, Sn = XI + X2 

+ ...... +Xn for n > 0. Then Sn denotes the time of the nth renewal. If 

Fn(t) = Pr{Sn ~ t} is the distribution of Sn , then Fn(t) = F*n(t) (n-fold 
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convolution of F(.) with itself). Define N(t) = Sup{ n I Sn ~ t}. Then N(t) 

represents the number of renewals in (0, t). The three interrelated processes, 

{Xn, n = 1, 2, .... }, {Sn, n = 0, 1, .... } and {N(t), t ~ O} constitute a renewal 

process. Since one can be derived from the other, customarily one of the 

processes is called a renewal process. 

The function M(t)= E[N(t)] is called the renewal function, and it can 

00 

easily be seen that M(t) = ~) *n (t). The derivative of M(t) is called the 
n=l 

renewal density, which is the expected number of renewals per unit time. The 

integral equation satisfied by the renewal function, 

M(t) = F(t) + J M(t - u) dF(u) 
o 

(1.7) 

is called the renewal equation. Suppose Xl has a distribution different from the 

common distribution of {Xn , n > 1}, then the process is called delayed or 

modified renewal process. 

The following two asymptotic results are used in the sequel. 

Theorem 1.3 (Elementary Renewal Theorem) 

Let ).1 = E(Xn) with the convention, 1/).1 = ° when ).1 = 00 . Then, 

lim M(t) =~ 
t~oo t J1. 

(1.8) 



9 

Theorem 1.4 (Key Renewal Theorem) 

If H(t) is a non-negative function of t such that r H(t)dt < 00, then 
o 

l 1 or 
lim J H(t - u) dM(u) = - J H(t)dt (l.9) 
t~ooo f.l 0 

1.2.4 Markov Renewal Process 

Markov renewal process is a generalization of both Markov process and 

renewal process. Consider a two dimensional stochastic process {(Xn ,Tn), 

ne N°} in which transitions from Xn to Xn+l constitute a Markov chain with 

state space E, and the sojourn times Tn+l - Tn constitute another stochastic 

process with state space R+ which depends only on Xn and Xn+ 1 • Then 

{(Xn ,Tn), n eND} is called a Markov renewal process on the state space E. We 

restrict our discussion to the case where E is finite. F onnally Markov renewal 

process can be defined as follows: Let E, a finite set, be the state space of the 

Markov chain { Xn , n eNo } and R+ , the set of non-negative real numbers, be 

the state space ofTn (To = 0, Tn < Tn+l ,n = 0,1,2, ..... ). If 

for all n, k eE, and teR+, then { (Xn ,Tn), n eNo } is called a Markov renewal 

ptocess on the state space E. 

We assume that the process, { (Xn ,Tn), n eNo } is stationary and denote 

Q(i,j,t)=Pr{Xn+l=j,Tn+l-Tn-~t IXn=i} foralli,j E E, lE R+ (1.11) 
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{QCi,j,t); i,j E E, t E R+} is called semi-Markov kernel. The functions 

R(i,j,t)=E[the number of transitions into statej in (O,t) I Xo =i, i,j EE] 

are called Markov renewal functions and are given by 

00 

R(i,j, t) = LQ *m (i,j, t); where Q * denotes convolution of Q with itself. (1.12) 
m=O 

{R(i,j, t); i,j E E, t E R+} is known as Markov renewal kernel. 

The stochastic process {X(t), t e R+} defined by X(t) = Xn for T n ::;; t < 

Tn+l is called the semi-Markov process in which the Markov renewal process 

{(Xn ,Tn), n eNo } is embedded. Let p(i,j, t) = Pr{ X(t) = j I X(O) = i }. Then 

p(i,j, t) satisfies the Markov renewal equations 

t 

p(i,},t) = 8(i,}) h(i,t) + L J Q(i,k,du) p(k,j, t - u); for i,j E E (1.13) 
kEE 0 

where, 

and 

Theorem 1.5 

h(i,t)=l- L Q(i,k,t) 
kEE 

{ I if i = j 
8(i,j) = ° otherwise. 

The solution of the Markov renewal equation (1. 13) is 

I 

p(i,j,t) = JR(i,j,du) hU,t - u); for i,j E E. 
o 

(1.14) 
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Theorem 1.6 

If the Markov renewal process is aperiodic, recurrent and non-null, the 

limiting probabilities are given by 

" "m" 
I· C"") J J "E lID P 1,),1 = " ;) E 
t~oo L..J "kmk 

(1.15) 

k=.E 

and are independent of the" initial state, where n = (7lj), j E E is the invariant 

measure of the Markov chain {Xn, n E NO} and mj is the sojourn time in the 

state j. 

1.2.5 Semi-Regenerative Process 

Let Z = {Z(t), t ~ O} be a stochastic Process with topological space F, 

and suppose that the function t ~ Z(t, ill) is right continuous and has left-hand 

limits for almost all ill. A random" variable T taking values in [0, 00] is called a 

stopping time for Z provided tha";" for any t < 00, the occurrence or non

occurrence of the event {T:$; t} can be determined once the history {Z(u), u:$; t} 

of Z before t is known. 

The Process Z is said to be semi-regenerative if there exists a Markov 

renewal process { (Xn ,Tn), n eNo } satisfying the following: 

i) For each n eNo, Tn is a stopping time for Z. 

ii) For each n e NO, Xn is determined by {ZC u), u :$; T n } 

iii) For each n eN°, m ~ 1, 0 :$; tl < tz < ...... < tm , the functionfddined 

on Fm and positive, 
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E[f {Z(Tn + td,· ... ,Z(Tn + tm)} I {Z(u),u ~ Tn}, {Xo = i}] 
=E[f{z(tl),····'z(tm)} I {Xo =j}] on {Xn = j}. 

Theorem 1.7 

Let Z be a semi-regenerative process with state space El and let {~n1 

.In), n etf} be the Markov renewal process imbedded in Z. Let the semi

Markov kernel and Markov renewal kernel of { (Xn , T n), n e NO } be as defined 

in (1.11) and (1.12) respectively. Then 

where 

p(i,j,t)=Pr{Z(/)=j I Z(O)=Xo =i} 

= L J R(i,k,dS') K(k,j, t - s); for i E E, j E El 
keE 0 

K(i,j,t)=Pr{Z(t)=j, TI >1 I Z(O)=XO =i} 

The limiting probabilities are given by the following 

Theorem 1.8 

(1.16) 

In addition to the hypotheses and notations of Theorem 1.7 assume 

further that {(Xn, T n), n e N°} is irreducible, recurrent and aperiodic and the 

sojourn time mj in the state j is finite. Then 

L 1Z"k j K(k,j, t)dt 

I· ( .. ) keE 0 . E E Impl,J,t = ,,----;JE l> iE . 
t~oo ~ 1Z"kmk 

keE 

where 1Z"k'S are as in (1.15). 

(1.17) 
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1.3 REVIEW OF THE LITERATURE 

1.3.1 Earlier Works 

The mathematical analysis of inventory problem was started by Harris 

(1915). He proposed the famous EOQ fonnula that was popularized by Wilson. 

The flrst paper closely related to (s, S) policy is by Arrow, Harris and Marchak 

(1951). Dvorestzky, Kiefer and Wolfowitz (1952) have given some sufficient 

conditions to establish that the optimal policy is an (s, S) policy for the single

stage inventory problem. Whitin (1953) and Gani (1957) have summarized 

several results in storage systems. 

A systematic account of the (s, S) inventory type is provided by Arrow, 

Karlin and Scarf (1958) based on renewal theory. Hadley and Whitin (1963) 

give several applications of different inventory models. In the review article 

Veinott (1966) provides a detailed account of the work carried out in inventory 

theory. Naddor (1966) compares different inventory policies by discussing their 

cost analysis. Gross and Harris (1971) consider the inventory systems with state 

dependent lead times. In a later work (1973) they deal with the idea of 

dependence between replenishment times and the number of outstanding orders. 

Tijms(1972) gives a detailed analysis of the inventory system under (s, S) 

policy. 

1.3.2 Works on (s, S) Continuous Review Policy 

Sivazlian (1974) analyzes the continuous review (s, S) inventory system 

with general interarrival times and unit demands. He shows that the limiting 

distribution of the position inventory is unifonn and independent of the 
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interarrival time distribution. Richards (1975) proves the same result for 

compound renewal demands. Later (1978) he deals with a continuous review 

(s, S) inventory system in which the demand for items in inventory is dependent 

on an external environment. Archibald and Silver (1978) discuss exact and 

approximate procedures for continuous review (s, S) inventory policy with 

constant lead time and compound Poisson demand. 

Sahin (1979) discusses continuous review (s, S) inventory with 

continuous state space and constant lead times. Srinivasan (1979) extends 

Sivazlian's result to the case of random lead times. He derives explicit 

expression for probability mass function of the stock level and extracts steady 

state results from the general formulae. This is further extended by Manoharan, 

Krishnamoorthy and Madhusoodanan (1987) to the case of non-identically 

distributed interarrival times. 

Ramaswami (1981) obtains algorithms for an (s, S) model where demand 

is a Markovian point process. Sahin (1983) derives the binomial moments of the 

transient and stationary distributions of the number of backlogs in a continuous 

review (s, S) model with arbitrary lead time and compound renewal demand. 

Kalpakam and Arivarignan (1984) discuss a single item (s, S) inventory model 

in which demands from a fInite number of different types of sources form a 

Markov chain. Thangaraj and Ramanarayanan (1983) deal with an inventory 

system with random lead time and having two ordering levels. Jacob (1988) 

considers the same problem with varying re-order levels. Ramanarayanan and 

Jacob (1987) obtain time dependent system state probability using matrix 

convolution method for an inventory system with random lead time and bulk 

demands. Srinivasan (1988) examines (s, S) inventory systems with adjustable 

reorder sizes. Chikan (1990) and Sahin (1990) discuss extensively a number of 

continuous review inventory systems in their books. 
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An inventory system with varying re-order levels and random lead time 

is discussed by Krishnamoorthy and Manoharan (1991). Krishnamoorthy and 

Lakshmy (1991) investigate an (s, S) inventory system in which the successive 

demand quantities fonn a Markov chain. They (1990) further discuss problems 

with Markov dependent re-ordering levels and Markov dependent replenishment 

quantities. Zheng (1991) develops an algorithm for computing optimal (s, S) 

policies that applies to both periodic review and continuous review inventory 

systems. Sinha (1991) presents a computational algorithm by a search routine 

using numerical methods for an (s, S) inventory system having arbitrary 

demands and exponential interarrival times. 

Ishigaki and Sawaki (1991) show that (s, S) policy is optimal among 

other policies even in the case of fixed inventory costs. Dohi et al. (1992) 

compare well-known continuous and detenninistic inventory models and 

propose Qptimal inventory policies. Azoury and Brill (1992) derive the steady 

state distribution of net inventory in which demand process is Poisson, ordering 

decisions are based on net inventory and lead times are random. The analysis of 

the model applies level crossing theory. Sulem and Tapiero (1993) emphasize 

the mutual effect oflead time and shortage cost in an (s, S) inventory policy. 

Kalpakam and Sapna (1993a) analyze an (s, S) ordering policy in which 

items are procured on an emergency basis during stock out period. Again they 

(1993b) deal with the problem of controlling the replenishment rates in a lost 

sales inventory system with compound Poisson demands and two types of re

orders with varying order quantities. Prasad (1994) develops a new classifi

cation system that compares different inventory systems. Zheng (1994) studies a 

continuous review inventory system with Poisson demand allowing special 

opportunities for placing orders at a discounted setup cost. He proves that the 

(s, c, S) policy is optimal and developed an efficient algorithm for computing 
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optimal control parameters of the policy. Hill (1994) analyzes a continuous 

review lost sales inventory model in which more than one order may be 

outstanding. In an earlier work (1992) he describes a numerical procedure for 

computing the steady state characteristics where two orders may be outstanding. 

Moon and Gallego (1994) discuss inventory models with unknown 

distribution of lead time but with the knowledge of only the first two moments 

of it. Mak and Lai (1995) present an (s, S) inventory model with cut-off point 

for lumpy demand quantities where the excess demands are refused. Hollier, 

Mak and L~ (1995, 1996) deal with similar problems in which the excess 

demands are filtered out and treated as special orders. Dhandra and Prasad 

(1995a) study a continuous review inventory policy in which the demand rate 

changes at a random point of time. Perry et al. (1995) analyze continuous 

review inventory systems with exponential random yields by the techniques of 

level crossing theory. Sapna (1996) deals with (s, S) inventory system with 

priority customers and arbitrary lead time distribution. Kalpakam and Sapna 

(1997) discuss an environment dependent (s, S) inventory system with renewal 

demands and lost sales where the environment changes between available and 

unavailable periods according to a Markov chain. 

1.3.3 Works on Perishable Inventory 

Ghare and Schrader (1963) introduce the concept of exponential decay in 

inventory problems. Nahmias and Wang (1979) derive a heuristic lot size re

order policy for an inventory problem subject to exponential decay. Weiss 

(1980) discusses an optimal policy for a continuous review inventory system 

with fixed life time.· Graves (1982) apply the theory of impatient servers to 



17 

some continuous review perishable inventory models. An exhaustive review of 

the work done in perishable inventory until 1982 can be seen in Nahmias(1982). 

Kaspi and Perri (1983, 1984) deal with inventory systems with constant life 

times applicable to blood banks. Pandit and Rao (1984) study an inventory 

system in which only good items are sold. These are selected from the stock 

including defective items with known probabilities until a good item is 

picked up. 

Kalpakam and Arivarignan (1985a, 1985b) study a continuous review 

inventory system having an exhibiting item subject to random failure. They 

(1989) extend the result to exhibiting items having Erlangian life times under 

renewal demands. Again they (1988) deal with a perishable inventory model 

having exponential life times for all the items. Ravichandran (1988) analyzes a 

system with Poisson demand and Erlangian life time where lead time is 

assumed to be positive. Manoharan and Krishnamoorthy (1989) consider an 

inventory problem with all items subject to decay having arbitrary interarrival 

times and derive the limiting probabilities. 

Srinivasan (1989) investigates an inventory model of decaying items 

with positive lead time under (s, S) operating policy. Incorporating adjustable 

re-order size he discusses a solution procedure for inventory model for decaying 

items. Liu (1990) considers an inventory system with random life times 

allowing backlogs, but having zero lead time. He gives a closed fonn of the 

long run cost function and discusses its analytic properties. Raafat (1991) 

presents an up-to-date survey of decaying inventory models. 

Goh et al.(1993) consider a perishable inventory system with finite life 

times in which arrival and quantities of demands are batch Poisson process with 

geometrically sized batches. Kalpakam and Sapna (1994) analyze a perishable 
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inventory system with Poisson demand and exponentially distributed lead times 

and derive steady state probabilities of the inventory level. Later they (1996) 

extend it to the case of arbitrary lead time distribution. Su et al. (1996) propose 

an inventory model under inflation for stock dependent consumption rate and 

exponential decay with no shortages. Bulinskaya (1996) discusses the stability 

of inventory problems taking into account deterioration and production. 

1.3.4 Works on Multi-commodity Inventory 

Balintfy (1964) analyses a continuous review multi-item inventory 

problem. Silver (1965) derives some characteristics of a special joint 0rdering 

inventory model. Ignall (1969) deals with two product continuous review 

inventory systems with joint setup costs. Some models of multi-item continuous 

review inventory problems can be seen in Schrady et al. (1971). Sivazlian 

(1975) discusses the stationary characteristics of a multi-commodity inventory 

system. Sivazlian and Stanfel (1975) study a single period two commodity 

inventory problem. Multi-item (s, S) inventory systems with a service objective 

are discussed in Mitchell (1988). Cohen et al. (1992) study multi-item service 

constrained (s, S) inventory systems. Golany and Lev-Er (1992) compare 

several multi-item joint replenish-ment inventory models by simulation study. 

Kalpakam and Arivarignan (1993) analyze a multi-item inventory model with 

unit renewal demands under joint ordering policy. 

-
Krishnamoorthy, Iqbal and Lakshmy (1994) discuss a continuous review 

two commodity inventory problem in which the type of commodity demanded 

is governed by a discrete probability distribution. Krishnamoorthy and 

Varghese (1995a) consider a two commodity inventory problem with Markov 
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shift in demand for the type of the commodity. The quantity demanded at each 

epoch is arbitrary but limited. Dhandra and Prasad (1995b) analyz~ two 

commodity inventory problems for substitutable items. Krishnamoorthy and 

Merlymole (1997) investigate a two commodity inventory problem with cor

related demands. Krishnamoorthy, Lakshmy and Iqbal (1997) study a two 

commodity inventory problem with Markov shift in demand and characterize 

the limiting distributions of the inventory states. 

1.4 AN OUTLINE OF THE PRESENT WORK 

The thesis is divided into eight chapters including this introductory 

chapter. Chapter 11 deals with a single commodity continuous review (s, S) 

inventory system in which items are damaged due to decay and disascer. We 

assume that demands for items follow Poisson process. The lifetime of items 

and the times between the disasters are independently exponentially distri

buted. Due to disaster a unit in the inventory is either destroyed completely, 

independent of others, or survives without any damage. Shortages are not 

pennitted and lead time is assumed to be zero. By identifying a suitable Markov 

Process transient and steady state probabilities of the inventory levels are 

derived. The probability distribution of the replenishment periods are found to 

be phase type and explicit expression for the expectation is obtained. Some 

special cases are deduced. Optimization problem is discussed and optimum 
-

value of the re-ordering level, s, is proved to be zero. Some numerical examples 

are provided to find out optimum values of S. 

Chapter III is an extension of the model discussed in chapter II to 

positive lead time case. Shortages are allowed and demands during dry periods 
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are considered as lost. We derive transient and steady state probabilities of the 

inventory levels by assuming arbitrary lead time distribution. A special case in 

which the stock is brought back to the maximum capacity at each instant of 

replenishment by an immediate second order is also discussed. The case III 

which the lead time distribution is exponentially distributed is discussed III 

detail. Expected replenishment cycle time is shown as minimum when s = O. 

The cost analysis is illustrated with numerical examples. 

In chapter IV we study a single commodity inventory problem with 

general interarrival times and exponential disaster periods. Here we assume that 

the damage is due to disaster only. The quantity demanded at each epoch 

follows an arbitrary distribution depending only on the time elapsed from the 

previous demand point. Other assumptions are same as in chapter 11. Transient 

and steady state probabilities of the inventory level are derived with the help of 

the theory of semi-regenerative processes. A special case in which the disaster 

affecting only the exhibiting items and arriving customers demanding unit item 

is discussed and steady state distribution is obtained as uniform. Illustrations are 

provided by replacing the general distribution by gamma distribution. 

Chapter V considers a single commodity inventory problem with general 

disaster periods and Poisson demand process. Here also the damage of item is 

restricted to disaster. Concentrating on the disaster epochs which form a 

renewal process, the transient and steady state probabilities of the inventory 

level are derived. Special cases are discussed and numerical illustrations are 

provided. In the special case where the disaster affects only an exhibiting item 

the steady state probabilities of the inventory levels are proved to be unifonn. 

Chapter VI generalizes the results of chapter 11 to multi-commodity 

inventory. There are n commodities and an arriving customer can demand only 
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one type of commodity. Demands for an item follow Poisson process and life 

times of items are independent exponential distributions. Disaster periods are 

also exponential distribution and the disaster affects each unit in the inventory 

independently of others. Fresh orders are placed and instantaneously replen

ished whenever the inventory level of at least one of the commodities falls to or 

below its re-ordering point. The inventory level process is an n-dimensional 

continuous time Markov chain. Hence the time dependent and long run system 

state solutions are arrived at. Cost function for the steady state inventory is 

fonnulated and re-ordering levels are found out to be zeroes at optimum value. 

Numerical examples help to choose optimum values for maximum inventory 

levels. 

The assumptions of chapter VII are similar to those in the preVIOUS 

chapter except those concerning the replenishment policy and shortages. A new 

order is placed only when the inventory levels of all the commodities fall to or 

below their re-ordering levels. Hence there are shortages and the sales are 

considered as lost during stock out period. Results are illustrated with numerical 

examples. 

In the last chapter there are two models of two commodity inventory 

problems. Each arrival can demand one unit of commodity I, one unit of 

commodity II or one unit each of both. The type of commodity demanded at 

successive demand epochs c_onstitutes a Makov chain. Shortages are not 

allowed and lead time is assumed to be zero. Neither decay nor disaster affects 

the inventory. The interarrival times of demands are i.i.d. random variables 

following a general distribution. In the first model fresh orders are placed for 

each commodity separately whenever its inventory level falls to its re-ordering 

level for the first time after the previous replenishment. In the second model an 

order is placed for both commodities whenever the inventory level of at least 
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one of the commodities falls to its re-ordering level for the first time after the 

previous replenishment. Transient and steady state probabilities of the system 

states are computed with the help of the theory of semi-Markov processes. 

Distributions of the replenishment periods and that of replenishment quantities 

are formulated to discuss optimization problem. Numerical examples are given 

to illustrate each model and to compare the two. 

The notations used in this thesis are explained in each chapter. 

Numerical examples provided at the end of each chapter are solved with the 

help of a computer; for brevity, the respective computer programs are not 

presented. The thesis ends with a list of references. 



Chapter 11 

Single Commodity Inventory Problem 

Perishable due to Decay and Disaster* 

2.1 INTRODUCTION 

In this chapter we discuss a continuous review inventory system in which 

commodities are damaged due to decay and disaster. The maximum capacity of 

the warehouse is S and the sock is brought to S whenever the inventory level 

falls to or below the re-ordering point, s . Shortages are not permitted and lead 

time is zero. Demands are assumed to follow Poisson process with rate A . The 

times between disasters and life times of an item have exponential distributions 

with parameters J..l and co respectively. Each unit in the inventory, independent 

of others, survives a disaster with probability p and succumbs to it with 

probability l-p. 

Our objectives are to find transient and steady state probabilities of the 

inventory level and long run optimum value of the pair, (s, S). Numerical 

examples provided in the last section illustrate the results. 

The review by Nahmias (1982) discusses most of the earlier perishable 

inventory models. Kalpakam and Arivarignan (1988) deal with a perishable 

• The results of this chapter are published in Optimization, 35, 85 - 93, (1995). 
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inventory model in which the life time of an item is exponentially distributed 

and the demands fonn a Poisson process. This chapter is an attempt to 

generalize their model by adding the possibility of a disaster. 

2. 2 NOTATIONS 

S : Maximum inventory level 

s : reordering point 

M : S-s 

q : 1-p 

R+ : The set of non-negative real numbers 

NO : The set of non-negative integers 

E : {s+ 1, s+2, ......... , S} 

El : {s+1,s+2, ...... ,S-l} 

Es : {s,s+l, .............. ,S} 

Ea : {cr, s+ 1, s+2, ....... , S} 

EM : {I, 2, ................ , M} 

n : (1t5+1. 1t5+2, ......... , 1ts} 

e : (1, 1, ................... )T~ eT E RM 

a : (0, 0, ............... , 0, 1) E RM 

al : (0, O, ..... ~ ......... , 0, 1) E RM+l 

A : (ajj)MxM~ ajj 's are defined by (2.5). 

Dj : the determinant of the sub matrix obtained from A by 

Ds 

deleting the first i-s rows, the last and first i-s-l columns; 

i E El. 

: 1 

: C(O, S) - C(O, S-l). 

: ~C(O, S) - ~C(O, S-I) 
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2.3 ANALYSIS OF THE INVENTORY LEVEL 

Let X(I) denote the inventory level at any time t ~ O. Then {X(t), teR+} 

is a continuous time Markov chain with state space E. We assume that the 

initial probability vector of this chain is a.. 

Let 

P;j(I)=Pr{X(t)=i IX(O)=i}; 

Then the transition probability matrix, 

P(t)= (Pij (t))MxM; i, j e E 

i,j E E. 

together with a. will uniquely determine the Markov chain {X( t) }. 

Theorem 2.1 

The transition probability matrix pet) is uniquely determined by 

00 Bn tn 
pet) = exp(Bt) = I + L:--

n=l n! 

where matrix B = A +C, in which A and C are defined as follows : 

with 

I as+l,s+l 

I a s+2,s+1 

A=I 
I 
l·~·;~~;~ . 

and C = (Cij) MxM; i,jeE, with 

a s+l,s+2 as+l S l , I 
a s+2,S I a s+2,s+2 

. . . . . . . .. I 
I 

as,s+2 
. ~;:; .. J 

(2.1 ) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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I i (.} 

I A+im+ ~ ~ i-kqkJl 
k=l-S 

I i (.} I i-k k 
ci)= ~ k q Jl 

I k=l-S 

if j = S; i = s + 1 

if j = S; i > s + 1 (2.6) 

lo otherwise 

Proof: 

For a fixed i, we have the following: 

Pi) (t + 0 t) = Pi) (t){l- (A + Jl + jm)o t} + P;j+l (t)[A + U + l)m]o t + 

~ {·+k} LP;j+k(t J. jqkJlot+o(ot); 
k=O } 

(2.7) 
JEE) 

P;s(t+o t)=P;s(t){l-(A+Jl+Sm)o t+ps Jlot} 

+ P;S+l (t)[A+ (S + l)m]o t (2.8) 

S r (rl 
+ L L P;r(t) kyr-kqk JlO t+o(o t) 

r=s+l k=r-s 

Hence the difference differential equations are 

Pij(t) = P;j(t)[-(A+ f.J + jm)] + P; j+l (t)[A+ (j + l)m]+ 

~ {j+k}.k 
LP; j+k (t . lq Jl; 

- k=O } 

(2.9) 

Pis(t) = P;S(t)[-(A+ Jl + Sm) + pS Jl]+ P;S+l (t)[A+ (S + l)m] 

(2.10) 

From (2.4) - (2.6), (2.9) and (2.10) we can easily see that the Kolmogorov 

equations, 

pi (t)= P(t)B and pi (t) = BP(t) (2.11) 

with the condition, 

P(O) = I (2.12) 
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are satisfied by P(t). The solution of (2.11) with (2.12) is (2.3). Since B is a 

finite matrix the series in (2.3) is convergent and the solution is unique. Hence 

the theorem. 

2.3.1 Steady State Probabilities 

Since in the Markov chain {X(t), t ~ O} transition from any state i(i E E) 

to any state j U E E ) is possible with positive probability, it is irreducible. 

Hence the limiting probabilities, lim ~j (t) = 7r j ; j E E exist and are given by 
t-+x> 

the unique solution of 

nB=O 

and ne = 1 

Theorem 2.2 

The steady state probabilities 7tj (i E E) are given by 

where 

Proof: 

"j = S 
F(s,S) n (-akk) 

k=i 

S D. 
F(s,S)= L S I 

i=s+l n (-akk) 
k=i 

i E E 

(2.13 ) 

(2.14) 

(2.15) 

(2.16) 

Because of (2.14), the last colwnn of B is not needed for solving the 

equations. Hence it is enough to take A instead of B. Construct a series of 

determinants from A as follows: Let Dj be the determinant of the sub matrix 

obtained from A by deleting the first i-s rows the last and first i-s-l columns, 
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i E El, and Ds = 1. Then we can easily see that the solution of (2.13) and (2.14) 

IS 

(2.17) 

1 
and lrs = (-ass)F(s,S) 

(2.18) 

Substitution of (2.18) in (2.17) yields (2.15). Hence the theorem. 

Corollary 2.2.1 

When there is no disaster and the items are non-perishable, then the 

stationary probabilities are uniformly distributed. 

Proof: 

When there is no disaster and the items are non-perishable, J.l = 0 and 

co = 0 . Then ak,k = -A for every k, Di = AS- i , i E E and F(s,S) = MlA . Therefore 

from (2.15) , 1ti = IIM, hence uniform distribution. This agrees with the result of 

Sivazlian (1974). 

Corollary 2.2.2 

Proof: 

If there is only decay and no disaster, then 

1 
lrj = S ;i E E 

(A+iw) L 1 
)=s+l (..1.+ jw) 

(2.19) 

In case of perishable items with no disaster, J.l = 0 . Then ak,k = - (A + kw) 

for every k and Dj = n]:l(-a J+l,J+d; i E El' Therefore from (2.16), 
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F(s,S)= L (A . ) 

i=s+l +llV 
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(2.20) 

and from (2.15) the corollary follows. (See Kalpakam and Arivarignan (1988». 

Corollary 2.2.3 

If the goods are non-perishable and only an exhibited item affects the 

disaster, then the stationary probabilities are uniform. 

Proof: 

In this case, 

if i = j 
ifi=j+l 

otherwise 

(2.21 ) 

Then akk = - (A. + ~q) for every k, Dj = (A. + ~q)s-j , i e E. Hence from (2.15) 

and (2.16), 

1tj = lIM. (2.22) 

2.4 PROBABILITY DISTRIBUTION OF THE REPLENISHMENT 

CYCLES 

Let 0 = To < T 1 < T 2 < ............ be the epochs when orders are placed. 

The inventory level at Tn is S, n e NO. Therefore {Tn , n e NO}is a renewal 

process. 

Theorem 2. 3 

The probability distribution of the replenishment cycles is phase type on 

[0, 00) and is given by 

G(t) = I-a exp (At)e for t ~ 0 (2.23) 
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Proof: 

Since lead time is zero, the inventory is replenished whenever stock level 

is reduced to s or below it for the fIrst time after each replenishment. Let cr 

denote the instantaneous state representing the states s, s-l, ..... l, O. Assume that 

the stock level is cr for an infmitesimally small interval before making it S. 

Derme the Markov chain {YCt), t e R+} with state space Ea and initial 

probability vector <11 and transition probability matrix 

- 10 ol 
B =lc AJ where C= Ce. (2.24) 

Since matrix A is non-singular, state cr is absorbing and all other states 

are transient (see Neuts (1978» for the Markov chain {Yet), teR+}. If G(.) is 

the probability distribution of the time until absorption into the instantaneous 

state cr with initial probability vector <11, then G(.) is the distribution of the 

phase type on [0, 00) and is given by (2.23). When the time spent in cr tends to 

zero G(.) becomes the probability distribution of the replenishment cycles of the 

Markov chain {X(t), teR+}. Hence the theorem. 

Theorem 2.4 

The expected time between two successive re-orders, 

E(T) = F(s, S) = 1 
-aSS"S 

(2.25) 

Proof: 

The characteristic values of the lower triangular matrix A are ajj 's, hence 

distinct. Therefore A can be represented as 
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as+2,s+2 
(2.26) 

where Q = (Rs+l, Rs+2, ..... Rs) and Ri is the right eigen vector corresponding to 

the eigen value aii (i e E). 

and 

Thus, 

I exp(as+l,s+1 t) 

exp(At) = QI exp(as+2 s+2 t) , 

l 0 

I 1 
I as+l,s+1 

1 exp(At)dt = - Q 1 

o -I 
l 0 

Therefore from (2.23) 

E(T) =1 a exp(At)e dl 
o 

= - a. A-I e 

1 

a s+2,s+2 

Let A-I = (af}); i,j E E. Then 

D· as i = S I ;i E E 

I1(-akk) 
k=i 

Hence (2.30) becomes 

o 1 
I Q-l (2.27) 

exp(as,s t) J 

o 1 
I 
I 
IQ-I 
I 

1 I 
as,S J 

(2.28) 

(2.29) 

(2.30) 

(2.31) 
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S S D; 
E(1) = Las; = L --'s--=-- (2.32) 

;=s+1 ;=s+1 n (-akk) 
k=; 

and from (2.18) and (2.16) the theorem follows. 

Corollary 2.4.1 

When there is no disaster and the items are non-perishable, then 

E (n =MI}'" 

Corollary 2.4.2 

In case of perishable inventory, with no disaster, we have from (2.20), 

S 1 
E(1) - " (2.33) 

-. L.. (A+icu) 
l=s+1 

and the result reduces to Kalpakam and Arivarignan (1988). 

Corollary 2.4.3 

When the disaster affects only an exhibiting item, 

M 
E(T)=--

A+q/l 

2.5 OPTIMIZATION PROBLEM 

(2.34) 

Due to disaster, the stock level may go below s, at any instant. Hence the 

re-ordering quantity is not always M = S - s. If M* represents the expected re

ordering quantity at steady state, then 

I S ( ; G'] . . .~l 
M*=E(1)lA+.L1f;licu+/l ~j . pl-lqljJ1 

l=s+1 1=0 

(2.35) 

s 

=E(T) [A+(CU+ q/l)H(s,S)], where H(s,S) = Li7r; (2.36) 
i=s+1 
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Let h be the unit holding cost per unit time, c the unit procurement cost 

of the item, K the fixed ordering cost and d the unit cost for the damaged item. 

Then the cost function to be minimized is 

K+cM* 
C(s,S) = E(1) +h H(s,S)+d(m+ f.1. q)H(s,S) 

K 
= F(s,S) CA+ [(c+d.) (m+f.1. q)+h ]H(s,S) 

Theorem 2.5 

Proof: 

The cost function C (s,S) is minimum for s = O. 

Consider the matrix A =( Gij ), i, j E Es, where 

r -(,1.+ f.1. +/m) + pj f.1. if i = j 

_ J-<+i(l)+C}Jqi-J p if i=j+! 
aij -I (i) 10 pi qj-i f.1. if i > j + 1 

la otherwise 

(2.37) 

(2.38) 

(2.39) 

Let Dj = be the determinant of the sub matrix obtained from A by deleting the 

ftrst i-s+ 1 rows, the last and first i-s columns (i i= S), and D s = 1. Then Dj = Dj 

for i E E . Also observe that Dj is positive for every i since it has negative 

entries on the super diagonal, non-negative entries in the lower triangular 

portion and zeros elsewhere. Then 

s -
" D· F(s-l,S) = L. s I 

j=s nJ ,.1,+ km + f.1. - pk f.1.) 
k=l 

s -
_ "Dj Ds 
- L. S + S 

i=s+l rr.(A+ f.1. + km - pk f.1.) rr (,.1,+ f.1. + km - pk f.1.) 
k=l k=s 

> F (s, S) (2.40) 



Also 

1 ~ if5;+s 
H(S-I,S)=s+-(--S-) L,. S 

F s - I, ;=0 ~ (A + p + kOJ _ pk p) 
k=I+S 

1 S-S 'D 
'" 1 ;+S <S+--L,. S 

F(s, S) . 1 ( k ) 
1= ~ A + p + km - p p 

k=l+s 

=H(s, S) 

Thus from (2.38) , (2.40) and (2.41), 

C(s-l, S) < C(s, S). 

by (2.40) 

Hence the proof. 

Let <l>(S) =F(O,S) and \f' (S) =H(O,S). Then (2.38) becomes 

K 
C(O,S) = <ll(S) +cA+[(c+d)(OJ+ pq)+h]\f(S) 

K +cS [ ] = <ll(S) + d(OJ + p q) + h \f(S) 

2.6 NUMERICAL ILLUSTRATIONS 

34 

(2.41 ) 

(2.42) 

In general C(O,S) is not a convex function as evidenced by table 2.1. 

However, numerical examples indicate that when S is large ~C(O,S) tends to a 

constant. This can be seen in figure 2.1. In practice the maximum capacity of 

the warehouse is also delimited by other constraints and hence given an upper 

limit we can easily fmd out the optimum value of S for a minimum value of 

C(O,S) . Tables 2.2, 2.3 and 2.4 show variation of the optimal values of S for 

different values of p, 1..,00, and Jl. The effect of decay and disaster on the cost 

function is illustrated in figure 2.2. 
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Table 2.1 

(Showing that the function C(O, S) in not convex) 

A = 2, ID =1, J..l = 10, P = 0.1, K = 50, c = 10, h = 2, d = 0.4. 

S C(O,S) ~C(O,S) ~2C(0,S) 

3 693.566 
42.351 

4 735.917 2.663 
45.014 

5 780.931 -0.149 
44.865 

6 825.796 -0.792 
44.073 

7 869.869 

Figure 2.1 

(The graph of ~C(O,S)) 

A = 2, ID =1, J..l = 10, P = 0.1, K = 50, c = 10, h = 2, d = 0.4. 
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Figure 2.2 

(The effect of decay and disaster on the cost function) 

A = 4, P = 0.5, K = 200, c = 10, h = 2, d = 0.4. 
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S VALUES 

Table 2.2 

p= .1, K=200, c=1O, h=2, d=.4 

~~ 4 3.5 3 2.5 2 1.5 1 .5 

1 6 6 6 7 7 7 8 9 
2 6 7 7 7 8 • 8 9 10 
3 7 7 8 8 8 9 10 11 
4 7 8 8 9 9 10 11 12 
1 6 6 6 6 6 7 8 9 
2 6 6 6 7 7 8 9 10 
3 6 7 7 7 8 9 10 12 
4 7 7 8 8 9 10 11 13 
1 6 6 6 6 6 6 6 7 
2 6 6 6 6 6 7 7 9 
3 6 6 6 7 7 8 9 12 
4 6 7 7 7 8 9 10 14 
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Table 2.3 

p= .5, K=200, c=10, h=2, d=.4 

co ~ 
4 3.5 3 2.5 2 1.5 1 .5 0 

1 9 9 10 10 10 10 10 10 11 
2 2 10 10 10 11 11 11 11 12 12 

3 11 11 11 11 12 12 12 13 13 
4 11 12 12 12 12 13 13 14 14 
1 9 9 10 10 10 10 10 11 11 

1 2 10 10 11 11 11 11 12 13 14 
3 11 11 12 12 12 13 13 14 15 
4 12 12 12 13 13 14 14 15 17 
1 9 9 9 10 10 10 11 11 14 

0 2 10 11 11 11 12 12 13 15 20 
3 11 12 12 13 13 14 15 17 25 
4 12 13 13 14 14 15 17 20 28 

Table 2.4 

p= .9, K=200, c=lO, h=2, d=.4 

co ~ 
4 3.5 3 2.5 2 1.5 1 .5 0 

A-t: 
1 10 10 11 11 11 11 11 11 11 

2 2 12 12 12 12 12 12 12 12 12 
3 13 13 13 13 13 13 13 13 13 
4 14 14 14 14 14 14 14 14 14 
1 11 11 11 11 11 11 11 11 11 

1 2 13 13 -13 13 13 13 13 13 14 
3 14 14 14 14 15 15 15 15 15 
4 15 16 16 16 16 16 16 17 17 
1 12 12 13 13 13 13 14 14 14 

0 2 15 16 16 17 17 18 18 19 20 
3 18 18 19 19 20 21 22 23 25 
4 20 21 21 22 23 24 25 26 28 



Chapter III 

Single Commodity Perishable Inventory 

Problem with Lead Time 

3.1 INTRODUCTION 

A continuous review inventory system with arbitrary lead time 

distribution in which the commodities are damaged due to decay and disaster is 

discussed in this chapter. The re-ordering level is s and the maximum capacity 

of the ware house is S. Assume that S > 2s. The demands during stock out 

period are assumed to be lost. Demands follow Poisson process with rate A and 

the life times of an item follow exponential distribution with parameter ill. The 

interarrival times of disasters is also exponential distribution, but with 

parameter J..l. The lead times are LLd. random variables with absolutely 

continuous distribution function G{.) having finite mean m. A unit in the 

inventory, independent of others, survives or not with respective probabilities p 

and I-p. All the distributions mentioned are independent of each other. 

Kalpakam and Sapna (1994) deal with a continuous review (s, S) 

perishable inventory system with exponential lead times. Later they (1996) 

have extended it to the case of arbitrary lead time distribution. We further 

extend the problem to disaster case. 
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Section 3.6 deals with a special case of the problem where the inventory 

level is brought back to S at each replenishment epoch. We come ac~ross this 

situation in the common market where the suppliers bring some items additional 

to the prior order so as to get instantaneous order from the stockists to fill the 

inventory. In section 3.7 exponentially distributed lead time case is discussed in 

detail and useful results are obtained which are illustrated with numerical 

examples. 

Notations 

M :S-s 

E :{O,I, ....... ,S} 

EM :{M,M+I, ..... ,S} 

NO :{O, I, 2, ........ } 

e : (I, I, .................... )T~ eT E RS+1 

a : (0,0, ............... 0, 1) E RS+1 

Q*n(i, j, t) : n-fold convolution of Q with itself where 

*0 .. {I if i = j 
Q (l,j,t) = O'f' . 

1 l"j; J 

3.2 MODEL FORMULATION AND ANALYSIS 

Let X(t) be the inventory level at time t ~ 0. Then X(t) takes values from 

E. Let 0 = To < T 1 < T 2<..... be the epochs at which the replenishments take 

place. Concentrating on the pure death process X(t), in between two replen

ishment epochs, and disregarding the order placement, let 

~j(t) = Pr {X(p+t) = j I X(p+) = i, Tn< p < p+t < Tn+l , no order placed 

even if i andj ~ s}; p> 0 ~ i,j E E~ (3.1) 
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and <I>(t) = (~lt)); i, j E E (3.2) 

be the square matrix of order S+ 1. Assume that 

<1>(0) = I, (3.3) 

then the difference differential equations satisfied by the components ~l t) are 

rl_(A. + ~ + joo)cl>ij (t) + [A. + (j + 1)00 l4>i j+l (t) + ~if".(j ~ k 1 j qk~i j +k 
k=O J)P 

I O<j~i-l 
~ij'(t)=1[-(A.+~+joo)+~~j)l>ij(t) i=j 1:- 0 (3.4) 

I I 

I (A. + oo)cl>il (t) + ~ Lqk~i k (t) i > 0; j = 0 

lo k=O 
otherwise 

i,j E E 

Let A = (aij) (S+I) x(S+I); i, j E E, be the infinitesimal generator of the pure 

death process. Then, 

We have 

Theorem 3.1 

The matrix <I>(t) is given by 

<I>(t) = H exp(Bt) H-I 

i=j1:-0 

i=j+l 

i>j+l 

otherwise 

(3.5) 

(3.6) 

where H is a non-singular matrix formed with the right eigen vectors of A and 
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f 1 0 0 l 
10 eallt 0 I 
I I 

exp(Bt) =1··· I (3.7) 

l~ 0 e~~t J 

Proof: 

From (3.4) and (3.5) we can see that <D(t) satisfies the Kolmogorov 

differential equations, 

<D'(t) = <D(t)A and <D'(t) = A<D(t) 

The solution of (3.8) with (3.3) is 

00 An t n 
~t) = exp(At) = 1+ L , 

n=l n. 

(3.8) 

(3.9) 

The eigen values of the lower triangular matrix A are ajj (i e E), hence 

distinct. Let 

• 

Then 

fo o 
I 0 all 

B=I··· 

l~ o 

o l 
o I 
. .. I 

~~J 

Substituting in (3.9), we get (3.6). Hence the theorem. 

Now defme Xn = X(Tn+); ne N°. Then we have 

Theorem 3.2 

(3.10) 

(3.11 ) 

{(Xn, T n); n e NO} is a Markov renewal process with state space EM and 

semi Markov kernel, Q = {Q(i, j, t); i, j eEM , t ~ O} where 



where 

Q(i,j,t) = Pr{Xn+l = j, Tn+l - 1'" ~ t I Xn = i} 
= fh (i,j, t) + O2 (i,j, t) 

It 

0 1(i,j,t)=[A+(s+l)m] JJ~iS+l(U) ~sJ-M(V) dG(v)du and 
Ou 
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(3.12) 

i k-<S-J)(k} rJt 
O2(i,j,t)=p L L r k-rqrJ ~ik(u) ~k-rJ-S+k-r(V) dG(v)du(3.13) 

k=s+l r=k-s Ou 

with ~ij defined in (3.1). 

Proof: 

From the assumptions it is clear that {Xn, T n} is a Markov renewal 

process. To derive the expression for Q(i, j, t) note that the transition from i to j 

(i, j e EM) occurs in the following two mutually exhaustive and exclusive ways: 

1) The inventory level reduces to (s+ 1) and by a demand or by natural decay it 

becomes s in between (u, u+8u) causing placement of an order which 

materializes at time v (v < t). 2) The inventory level reduces to k (k = s+ 1, ..... ,i) 

and by a disaster it again falls to or below s resulting in placement of an order 

in between (u, u+8u) which materializes at time v (v < t). The Probability for 

the first event is E>I (i,j, t) and f~r the second event is E>2(i,j, t). 

3.3 TIME DEPENDENT PROBABILITIES 

Let p(i, j, t) = Pr{X(t) = j I X(O+) = i }, i e EM, jeE. Once the inventory 

level at Tn = Sup { T; < t} is known, the history of X(t) prior to Tn loses its 
i 

predictive value. Hence {Tn ; n e NO } are stopping times and {X(t); t ~ O} is a 

semi-regenerative process with embedded Markov renewal process, (X'I> T n). 
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The functions p(i, j, t) satisfy the following Markov renewal equations, 

s t 

p(i,j,t)=k(i,j,t)+ L JQ(i,r,du)p(r,j,t-u); ieEM;jeE (3.14) 
r=Mo 

k(i,j,t)=Pr{X(t)=j, 11 >t I X(O+)=i}; ieEM ; jeE (3.15) 

{
ifJij(t) 

= ~l(i,j,t)+ Ih(i,j,t) 

s+li:; j ~ i 

o ~ j ~ s 

i < j ~ S 

(3.16) 

in which 

Pl(i,j,t)=[A+(S+l)W]JifJ;S+l(U) ifJSj(t-u) [l-G(t-u)]du and 

. .0 (3.17) 

P2(i,j,t)=p, ± kf (~}k-rqrJifJ;k(U) tPk-rj(t-U) [l-G(t-u)]du 
k=s+l r=k-s 0 

The solution of (3.14) can be fonnulated as the following 

Theorem 3.3 

S t 

p(i,j,t)= L JR(i,r,du)k(r,j,t-u); ieEM , jeE; (3.18) 
r=M 0 

co 

where R(i,j,t) = LQ*n(i,j,t); i,j e EM 
n=O 

3.4 STEADY STATE SOLUTION 

Let Ql = (qij), i, j e EM , be the transition probability matrix of the 

underlying Markov chain {Xn , neNo.} associated with the Markov renewal 

process (Xn , T n ). Then 



lim 
qij = t ~ ooQ(i,j,t) 

= [A+ (s+ l)m] II'i s+l (u) 'S j_M(V) dG(v) du 
Ou 

i k-lJ,.,-j)(k} 11 
+ J.I L 2.. r k-r qr 'ik (u) 'k-r j-S+k-r (v) dG(v) du 

k=s+l r=k-s 0 u 
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(3.19) 

Since qij > 0 for every i, j e EM , the fInite Markov chain {Xn , neN° } is 

irreducible and hence it is recurrent. Therefore it possesses a unique stationary 

distribution, 

- (' I I) h' h . fi .;;:n - d ~ , 7( = 7( M, 7( M+l, ........ 7(s w le satls les "',n = 7( an .:...7(j = (3.20) 

Let v = (VO, VI, ........... , VS) denote the steady state probability vector of 

the inventory level. Since G(t) is absolutely continuous with fInite expectation, 

we get from (3.14) and (3.18) the following 

Theorem 3.4 

where 

The limiting probabilities of the inventory levels are given by 

L 7(ilk(i,j,t)dt 
iEEM - 0 

JEE 

mi =E[Tn+l - TnlXn =i]=E[1J.IXo =i]= L Jk(i,j,t)dt 
JEE 0 

3.5 COST FUNCTION 

(3.21 ) 

(3.22) 

Let the various costs associated with the inventory be: K, fIxed ordering 

cost per order; Cl, unit procurement cost of an item; h, unit holding cost per unit 
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time; d, cost for a damaged unit; C3 , unit shortage cost. Let the different 

expected rates at steady state be: RI rate of depletion of inventory due to decay 

and disaster; R2 ,rate of shortage; R3 , rate of re-order. Then 

s 
RI = (m+ f.1. q)LjVj; 

j=1 

Let M* be the expected re-ordering quantity at steady state, then 

1 S S 
M* = -[1 L Vj +(m + f.1. q) LjVj] 

R3 j=s+1 j=s+1 

Therefore, the steady state expected total cost, 

S 

C(s,S) = (K+ cIM*)R3 +hLjVj +dR1 +c3R2 
j=1 

S S S 

(3.23) 

(3.24) 

(3.25) 

= KR3 + Cl [I.. LVj +(ro+~q) LjVj]+[d(ro+~q)+h]LjVj +c3 AVO 
j=s+1 j=s+1 j=l 

(3.26) 

3.6 SPECIAL CASE 

Suppose the inventory level at To is S and at each replenishment epoch 

it is brought back to S by a fresh order, if necessary, which is met instanta

neously. Then {XCt), t ~ O}, is a regenerative process and 0 = To < TI < T2 (. ..... 

are regenerative epochs. 

Theorem 3.5 

The transient probabilities are given by 

S 
p(S,j,t)= L 

t 

J R(S,r,du) k(S,j,t - u) 
r=M 0 

JEE (3.27) 
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where p(S, j, t), k(S, j, t), and R(S, r, t) are as defined in section 3.3 

Proof: 

Conditioning on the first replenishment epoch T 1 we have, 

t 

p(S,j,t) = k(S,j,t) + J p(S,j,t - u) dF(u) j E E 
o 

s 
where F(t) = LQ(S,r,t) 

r=M 

The solution of the above renewal equations is 

t 

P(S,j,t) = k(S,j,t) + J k(S,j,t - u) dM1 (u) ; 
o 

ao S 
where M1(t) = LF *n (t) = L 

j E E, 

ao 

LQ *n (S,r,t) 
n=l r=M n=l 

Therefore we get 

S t 

p(S,j,t) = L JR(S,r,du) k(S,j,t - u); j E E 
r=M 0 

(3.28) 

(3.29) 

In the limiting case, since k(S, j, t) is non-negative, non-increasing and 

tends to zero as t tends to infinity, such that f; k(S,j, l)dl < 00, the application of 

Key Renewal Theorem yields; 

Theorem 3.6 

r k(S,j,t)dt 
lim 

r k(S,j,l)dt 
o t~ooP(S,j,t)=7]j =-=;----= 

J[1- F(t)]dt L r k(S,j,t)dt 
o JEE 0 

j E E. (3.30) 
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3.6.1 Cost Analysis· 

As in section 3.5 the expected quantity ordered at time of usual order is 

1 S S 
Ml * = R[A. L 11) + (m + ~L q) LJ11)] 

3 )=s+l )=s+l 
(3.31) 

where 

The expected long run quantity to be ordered at the time of replenishment is 

m s s 
M2 * = -s-[A.{-l1o + L11j)+ (m+ ~ q) LJ11j] (3.31 ) 

~ )=0 )=0 
L.J 11j 
)=0 

where m is the mean of the lead time distribution. If C2 is the unit procurement 

cost of this order, and all other costs same as in Section 3.5, then the total cost 

function in this case is 

S 

Cl (s,S) = [K+clMl *+c2M2*]R3 +[d(m+~q)+h]LJ11) +c3A.11o (3.32) 
)=1 

3.7 EXPONENTIAL LEAD TIMES 

When the lead time distribution is exponential with parameter y, the 

inventory level process {X(t), t ~ O} is a continuous time Markov chain with 

state space E. As in Section 3.6 assume that the inventory level is brought to S 

at the time of replenishment by a new order, if necessary. The analysis is done 

as in chapter 2. 

Let 11) (t) = Pr{X(t) = J I X(O) = i} i, j E E 

and pet) = [11) (t)](S+l)x(S+I) i,j E E (3.32) 
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If we assume that the initial probability vector is ex then (3.32) uniquely 

detennine the Markov chain {X(t)}. 

Theorem 3.7 

The matrix pet) is uniquely given by 

00 Aim t m 
p(t) = exp(Alt) = 1+ L--=--

m=l m! 

where Al = (aij ) (S+I)x(S+I) and 

f-y 
I-(A+ ~+i(O +y) ~ pi ~ 
I-(A+ ~+i(O) + p' ~ 

ifi=j=O 

ifl~i=j~s 

if s<i=j~S 

Proof: 

-.. _I A+iOl+ttJqi-JIl 
a'J -1 ttj qi-j 11 

Iy 
lo 

ifi=j+l 

ifi>j+l 

O~i~s, j=S 

othelWise 

(3.33) 

(3.34) 

For a fixed ieE, we have the following difference differential equations. 

P;'j (t) = -(1+ f.J + jm + r)~ i (1) + [1+ (j + l)m]~ j+1 (t) 

+ Sf(j~k'l iqk ~i+k(t) O<j~s (3.35) 
k=O } Y 

P;'j(t) = -(1+ j.J + jw)~ j (t) + [1 -+ (j + l)w]~ j+l (t) 

S;..I(j + k'l . k 
+ k2:0 j ylq ~j+k(t) s<j~S-l 

S 

P/o (t) = - r Pi 0 ( 1) + (1 + w ) Pj} (t) + L q k f.J Pi k (t) 
k=O 

s 

P;'s(t) = -(2+ j.J + Sw)P; s(t) + pS f.J P; set) + Lr P; k (t) 
k=O 

(3.36) 

(3.37) 

(3.38) 
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Therefore, 7t; = S i E E. (3.44) 

F(s,s)Il (-ak,k) 
k=; 

3.7.2 First Passage Times 

Let To = 0 < T 1 < T 2 < ........ be the epochs when the stock is replenished. 

Then {T rn, m e NO } is a renewal process. 

Theorem 3.8 

If E(T) represents the expected time between two succeSSIve 

replenishments, 

Proof: 

1 
E(1) = F(s,S) = -_---

-as,s1ts,S 
(3.45) 

By a similar argument as in Section 4 of Chapter 2 we can derive the 

expression 

E(1) = r a exp(A It)edt 
o 

= -aA-1 e 

From (3.42) and (3.43) the theorem follows. 

Theorem 3.9 

(3.46) 

(3.47) 

Let E(T*) represent the expected time between a replenishment and the 

successive order. Then 



Proof:. 

S D; 
E(T*) = L -s-~-

;=s+1 TI( - ) -ak,k 
k=; 
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(3.48) 

When the lead time is zero, the replenishment epochs and order epochs 

coincide. Therefore, E(T*) is the expected time between two successive re

orders in the zero lead time case. From (2.5) and (3.34) and from the definition 

of Dj we observe that ajj and Dj are equal in both cases for i E { s+ 1, 

s+2, ....... ,S}. Hence from 2.32, 

Corollary 3.9.1 

Proof: 

S D; 
E(T*) = L -s-~-

;=s+ITI( - ) -ak,k 
k=; 

~_ ~ D; 
- L.J S 

Y i=OTI( - ) -ak,k 
k=; 

(3.49) 

Since the random variables involved are independent of each other and 

the mean of the lead time distribution is 1Iy , 

E(T) = E(T*) + 1Iy. (3.50) 

Therefore from (3.48) and (3.47) the corollary follows. 

3.7.3 Optimization of the Cost Function 

Let r 1 and r 2 be the expected rates of depletion of inventory due to 

decay and disaster during the period between a replenishment and the 
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successive order, and during the lead time period respectively, r3 be the 

shortage rate. Then 

s 
(co + Jl q) Li7t; 

;=s+l r1 = ---::s-=---=~-
L7t; 

;=s+l 

Theorem 3.10 

;=0 r 2 = -------=s:----'----"--- (3.51 ) 

L7t; 
;=0 

IfNI* and N2* represent the expected quantities ordered at the time of 

usual order and at the instant of replenishment respectively, then 

s 
NI* =E(D L7t;[A,+i(co+Jlq)] (3.52) 

;=s+l 

s 

N2* = E(D{-7toA,+ L7t; [A, + i(co + Jl q)]} (3.53) 
;=0 

Proof: 

Since the expected quantity ordered is the product of expected time and 

rate of depletion of inventory during the period, 

NI* = E(l*) [A + fd. 
s s 

E(T*)[A. L7t; + (co + Jl q) Li7t;] 
;=s+l ;=s+l 

=----~~~~----~~~-s 
L7t; 

;=s+l 

Therefore from (3.43) and (3.48) 

s s 
E(T*)[A. L7t; + (co + Jl q) Li7t;] 

NI*= ____ ~;=~s~+~l~~----~;-=~s+~l--
E(T*)/ 

/F(s,S) 

and substitution of (3.45) gives (3.52). 

(3.54) 

(3.55) 

(3.56) 



s s 

[A(-1tO+ L1t;) +(ro+Jlq)Li1t;] 
;=0 ;=0 

=----~~--------~~--

From (3.43) and (3.49) we get, 

s 

Y L1t; 
;=0 

s s 

[A(-1tO+ L1t;) +(ro+JlQ)Li1t;] 

which is same as (3.53). Hence the theorem. 
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(3.57) 

(3.58) 

(3.59) 

Let the various costs be as in section 3.6. Then the total cost function is 

K + Cl NI * +c2 N 2 * ~ . 
C2(S,S) = ( +hL..l1t; +d[fl +f2]+C3f 3 

E T) ;=1 

K S s 
= E(T) + Cl. L 1t; [A + i(ro + Jlq)] + c2 {-A1to + .L 1tj [A + i(ro + Jlq)]} (3.60) 

l=s+1 1=0 

3.7.4 Numerical Illustrations 

S 

+ h 'l)1t; + d[fl + f2 ] + c3 A1t0 
j=1 

From (3.50) and (2.40) we get E(T) is maximum when s = O. Naturally 

Cl ::;; C2. When C3 ::;; Cl numerical examples indicate that C(s, S) is minimum 

when s = O. However, when C3 is large the optimum value of s need not be zero. 

These are illustrated by Table 3.1. Table 3.2 gives optimum values of the pair 

(s, S) for different values of)..l. and y which explains the effect of disaster and 

lead time on the inventory system. Figures 3.1 and 3.2 show that sand S 
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ecrease with the increase of J..l. Comparing these two figures we can conclude 

lat higher the lead time greater the values of sand S when J..l is small. 

Table 3.1 

(Optimum values of (s, S) for different values of Cl and C3) 

A = 10, J..l = 1, P = .7 co = 1, Y = 3, K =300, h = 10, d = 5, C2 = Cl X 1.5 

::K 10 20 30 40 50 60 70 80 90 100 
C3 -J, 

20 0,15 0,12 0,9 0,8 0,6 0,5 0,4 0,4 0,4 0,4 

40 0,17 0,13 0,10 0,9 0,7 0,6 0,6 0,5 0,4 0,4 

60 0,18 0,14 0,11 0,10 0,8 0,7 0,6 0,6 0,5 0,5 

80 0,20 0,15 0,12 0,10 0,9 0,8 0,7 0,6 0,6 0,5 

100 0,21 0,16 0,13 0,11 0,10 0,9 0,8 0,7 0,6 0,6 

120 1,23 0,17 0,14 0,12 0,11 0,9 0,8 0,8 0,7 0,6 

140 1,24 0,18 0,15 0,13 0,11 0,10 0,9 0,8 0,7 0,7 

160 2,25 0,19 0,16 0,14 0,12 0,11 0,10 0,9 0,8 0,7 

180 2,26 1,21 0,17 0,14 0,13 0,11 0,10 0,9 0,8 0,8 

200 3,28 1,22 0,18 -0,15 0,13 0,12 0,11 0,10 0,9 0,8 

220 3,28 2,23 0,19 0,16 0,14 0,13 0,12 0,11 0,10 0,9 

240 4,29 2,23 1,19 0,16 0,14 0,13 0,12 0,11 0,10 0,9 

260 4,30 2,24 1,20 0,17 0,15 0,13 0,12 0,11 0,10 0,9 

280 4,31 3,25 2,21 1,18 0,16 0,14 0,13 0,12 0,11 0,10 

300 5.32 3.25 2.22 1.19 0.16 0.15 0.13 0.12 0.11 0.10 



Figure 3.1 
(Optimum (s, S) values when y = 0.5) 

A = 10, P = .7 co = 1, K =300, h = 10, d = 5, Cl = 10, C3 = 200, C2 =15 
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Figure 3.2 
(Optimum (s, S) Values when y = 20) 
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Table 3.2 

(Optimum values of (s, S) for change of J.l and y) 

A = 10, P = .7 ID = 1, K =300, h = 10, d = 5, Cl = 10, C3 = 200, C2 =15 

~ 0 1 2 3 4 5 6 7 8 9 

20 1,23 1,22 0,20 0,19 0,18 0,18 0,17 0,17 0,17 0,16 

16 1,23 1,22 1,21 0,19 0,19 0,18 0,18 0,17 0,17 0,16 

12 1,23 1,22 1,21 1,20 0,19 0,18 0,18 0,17 0,17 0,17 

8 2,25 1,23 1,22 1,21 1,20 1,20 0,18 0,18 0,17 0,17 

6 2,25 2,24 1,23 1,22 1,21 1,20 1,20 0,19 0,18 0,17 

4 3,27 2,26 2,24 2,23 1,22 1,21 1,21 1,20 1,19 0,18 

2 5,33 4,31 3,29 2,27 2,26 2,24 1,23 1,22 1,21 0,20 

1.5 5,36 4,33 3,31 3,29 2,27 2,26 1,24 1,23 1,22 0,21 
, 

1 6,41 5,38 4,35 3,32 2,30 1,28 1,26 1,24 0,23 0,22 

.5 7,51 4,45 3,40 2,36 '1,33 1,31 0,28 0,26 0,25 0,23 



Chapter IV 

Single Commodity Inventory System Subject to 

Disaster with General Interarrival Times 

4.1. INTRODUCTION 

In this chapter we discuss a single commodity continuous review (s,S) 

inventory system in which commodities are damaged due to disaster only. 

Shortages are not permitted and lead time is assumed to be zero so that 

inventory is replenished instantaneously whenever the inventory level falls to or 

below the re-ordering point s. The times between disasters follow independent 

exponential distribution with parameter Jl. Each unit in the stock, independent 

of others, survives a disaster with probability p, and perishes with probability 

(I-p) = q. The failed items are disposed off immediately. The interarrival times 

of demands constitute a family of i.i.d. random variables with common 

distribution function F(.). The quantity demanded at a demand epoch is r and 

has an arbitrary distribution br(t) (r = I, 2, .... ) depending only on the time t 

elapsed from the previous demand point. 

The main objective in this chapter is to derive the transient and steady 

state probabilities of the inventory level. We have done this with the help of the 

theory of semi-regenerative processes. A special case in which the disaster 

affects only the exhibiting item and arriving customers demand unit item is 

discussed in Section 4.4. In this case the steady state distribution of the 
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inventory level is obtained as unifonn. Optimization analysis is done and results 

are illustrated with examples in Section 4.4.1. 

Notations 

E : {s + 1, s + 2, ......... , S} 

M : S-s 

q : I-p 

NO : {O, 1, 2, ................... } 

P(t) : 1- F(t) 
00 

br (t) : ~)r (t); (k = 1,2, ....... ) 
r=k 

(j) . {I if )? 0 
. 0 if )<0 

J(t) * get) : Convolution of the functions f(t) and get) 

J*n (I.) : n-fold convolution off(t); wherej*o(l) == 1 

if 1= J 

if i:t:- j 

4.2. FORMULATION AND ANALYSIS 

Let X(t) be the inventory level at time t. Then X(t) assumes values from 

E = {s+l, s+2, ...... S}. Assume that the times at which the demand occurs are 

0= To < Tl < T2 < T3< ........ Defme Xn = X(Tn+), n e NO. 

Let 91 < 92 < 93 < ........ be the times at which the inventory IS 

replenished. Define 

j'l'j(t) = Pr{X(p+t ) = j I X(p+ ) = i, no demands in (p, p+t], 

9r <p<p+t<9r+ I }; forsomer(r= 1,2, ...... ). 

L t r < r < r (9 < < r < r < r < +t < 9 ) b th . e 'tl 't2 't3...... r p 'tl 't2 't3 ........ - p r+ lee successive 

disaster epochs in (p, p+t]. Let i l . i2, h, ..... be the inventory levels just after the 
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disaster at these epochs and j}' j2, j3, ...... be the units destroyed at these epochs. 

Then 

i'¥j(t) 

r f e-pt (p t)n p'i 
I n! 

=(:0 e-pt (pt)n .. . 
ILL ZlUl) z2U2)········· 'ZnUn); 
l~=l jl+h+ ...... +jn=i-j 

where 

which reduces to 

i'¥j(t) 

n! 

if i = j 

if i > j 
(4.1) 

otherwise 

J
e-p t(I_pi) if i = j 

<Xl e-pt (pt)n i! ...... (4.2) = ~ ~ p'r+12+ .... +'n qlI+12+ .... +Jn·if i >J' 
L..J L.J n!" . , ., ., ' 

lno=l h+h+ ...... +jn=i-j }·11 ·12 .... }n . 

otherwise 

Defme i<t>S(t) = the conditional probability that the inventory level 

reaches for the ftrst time at S by a replenishment in (t, t+ot) given that the 

inventory level was initially at i and only disasters (at least one) in between. 

Then 

<Xl 

jCl>s(t) = LL 
n=l h+h+ .. · .. ·+jn-1<i-s 

h+h+ ...... +jn~i-s 

e- pt p (p t)n-l 

(n -I)! 

., 
1. 

----------------------
[ . (.. . )] I . I . I . I 
1- }1+}2+"'+}n ·}}·}2 .... }n· 

(4.3) 

Defme gn(i,t)= lim Pr{t<Bn~t+otIX(O+)=i, Tt>t}/ot (4.4) 
ot~O . 
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Then gn (i, I) denotes the conditional probability that the nth replenishment takes 

place in (t, t+8t) given that the inventory level is initially at i and T 1 > t. 

Since 9n = 91 + 92 - 91 + ........ + 9n - 9n-1 and 91 , 92 - 91 , ...... 9n - 9n-1 

are independent random variables, we have 

gl (i, t)=; <Ps (1) 
(4.5) 

Theorem 4.1 

The stochastic process { (Xn' T n), n e NO } is a Markov renewal process 

with state space E and semi-Markov kernel {Q (i ,j, I); i, j e E, t ~ ° } where 

Q(i, j, t) = Pr{Xn+1 = j, Tn+l - Tn 51 I Xn = i} (4.6) 

r ;- . t 

',0(i-j-Of Jbr(u) ;'Pj+r(u)dF(u) 
r=l 0 

I <Xl ~ t J + ~ ~ ! by (u )[gn (i, u)' S'Pj+Y (u)] dF(u) for j'" S 

I ~ J b r (u) ;'Ps+r (u) dF(u) 

(4.7) 

Ir=l 0 

I <Xl S-s Jt l +,E ~ Obr (u)[gn(i,u) * S'Ps+r(u)]dF(u) for j=S 

Proof: 

The fact that {(Xn, T n), ne NO} is a Markov Renewal Process with state 

space E is clear from the assumptions. If we denote the nwnber of 

replenishments in (0, t) by N(t) and defme 

On(i,j,t)=Pr{X1 =j, N(1J.)=n, 1J. ~t IX(O+)=i}; n=0,1,2, .... (4.8) 

then the semi-Markov kernel is given by 
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00 

Q(i,},t) = LOn (i,), t) (4.9) 
n=O 

To derive the expression for .on (i, j, t), (n = 0, 1, 2, ...... ), assume that 

the next demand after the initial one occurs in (u, u+8u) where u < t. There are 

four cases. 

(1) n = ° and j * S 

In this case there is no replenishment in (0, u]. Assume that the demand 

that occurred at time u is for r items (r = 1, 2, ....... , i-j ; if i > j). In order that 

the inventory level is j at time u, the inventory level must have reduced to j+r 

U+r < i) due to disasters in (0, u) from the initial level i. Therefore 

i-' t 

00(i,},t)=8(i- }-l)f Jbr(u) /Pj+r(u)dF(u) (4.10) 
r=l 0 

(2) n * 0, j * S 

Here the nth replenishment occurs at some time v « u) and the inventory 

level is instantaneously brought to S. If the demand at u is for r items (r = 1, 2, 

.... , S-j), in order to have the inventory level j, the stock must have reduced 

from S to j+r due to disaster in (v, u). Hence 

s- . t 

On (i,},t) = i! Jbr (u)[gn(i,u) * S\}'j+r(u)]dF(u) (4.11) 
r=l 0 

(3) n = 1, j = S 

Assume that there is no replenishment in (0, u) and a replenishment is 

triggered by the demand at u. This will happen when the inventory level is s+r 

and there is a demand for at least r units (r = 1, 2, .... , i-s) at time u. The 

disasters in (0, u) must have destroyed (i-s-r) items of the stock. So we have 
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;-s t 

0l(i,S,!)= L Jbr(u) {f's+r(u)dF(u) (4.12) 
r=l 0 

(4) n > 1, j = S 

Suppose that the (n-lyh replacement is at some time v « u) and another 

replenishment is triggered by the demand at u. For this the inventory level is 

brought down from S to s+r (r = 1, 2, ..... , S-s) by the disasters in (v, u) and 

there must have been a demand for at least r items of inventory at u. Then 

S-s t 

On (i,S,!) = L Jbr (u)[gn-l(i,U) * S'¥s+r(u)]dF(u) (4.13) 
r=l 0 

Substituting (4.10) - (4.13) in (4.9) we get (4.7). Hence the theorem. 

4.3 TRANSIENT AND STEADY STATE SOLUTIONS 

Let p(i, j , t) = Pr {X(t) = j I X(O+) = i }, i, j E E. Then we have 

Theorem 4.2 

The transient solution of the inventory levels is given by 

S t 

p(i,j,t) = L J R(i,r,du) k(r,j,t - u); i,j E E (4.14) 
r=s+l 0 

00 

where R(i,j,t) = LQ*n (i,j,t); i,j E E 
n=O 

and 
IF(t)[ ;'¥j(t) + fgn(i,t)*S'¥S-j(t)]; j~S 

k(i,j,t)= n~} 

IF(t)[ ;'¥s(t) 4- Egn (i, t)*s'¥s(t)]; j = S 

(4.15) 
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Proof: 

The stochastic process {X(t), t ~ O} is a semi-regenerative process with 

the embedded MRP {(Xn, Tn), n e NO}. Conditioning on the first demand epoch 

TI we can find that p(i, j, t) satisfy the following Markov renewal equations, 

S t 

p(i,j,t) = k(i,j,t) + L J Q(i,r,du) p(r,j,t - u); i,j E E (4.16) 
r=s+1 0 

where k(i,j,t) = Pr{X(t) = j, 1) > t I X(O+) = i}; i,j E E. 

To derive the expressions of k(i, j, t) in (4.15) note that, since T 1 > t, the 

depletion of inventory is only due to disaster and there may be n (n = 0, 

1,2, ....... ) replenishments in (0, t).The solution of (4.16) is given by (4.14). 

Hence the theorem. 

Consider the underlying Markov chain { Xn, ne NO } associated with the 

MRP {(Xn, T n), n e NO}. Its transition probability matrix Q = (q i j ) ; i, j e E, is 

given by 

qij = lim Q(i,j, t) 
t~oo 

r i- . 

I o(i - j - \) ~ r br (u) ;'I'j+r (u) dF(u) 

I 00 S-j op J. +,E ~ !br(u)[gn(i,u) * s'l'j+r~U)ldF(U) for j"'S (4.17) 

I I Jbr(U) /Ps+r(u)dF(u) 

I r=1 00
0 S-s op 

l +~E ~br(U)[gn(i,U)*s'¥s+r(U)]dF(U) for j=S 

If bl(t) *" ° for some interval in [0, (0) it can easily be seen that the finite 
.. 

Markov chain {Xn, n e NO} is irreducible and hence it is recurrent. Since the 

chain is irreducible, it possesses a unique stationary distribution, 
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TI= (7l"s+1,7l"s+2, ........ 7l"S) which satisfies TIQ = TI and L7l"j = 1. (4.18) 

Let P = (Ps+I. Ps+2, ..... , Ps) denote the steady state probability vector of the 

inventory level where P j = tim p(i, j, t). 
t~oo 

Theorem 4.3 

If F(t) is absolutely continuous with finite expectation, m, then the steady 

state probabilities of the inventory level are given by 

L7l"i 1 k(i,j,t)dt 
iEE 0 

m 
j E E. (4.19) 

Proof: 

Since F(t) is absolutely continuous with finite expectation, it follows 

from (4.14) that 

iEE 0 
JEE (4.20) 

where mi = mean sojourn time in state i = J tdF(t) = m. Substitution yields 
o 

(4.19). Hence the theorem. 

4.4 A PARTICULAR CASE 

Suppose the disaster affects only an exhibiting item which is replaced 

instantaneously by another one upon failure, and the arriving customers demand 

only unit item, then the rate of disaster is J.lq and that of survival is J.lp whence 



This results in 

Theorem 4.4 

if r = 1 

otherwise. 
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(4.21) 

If the disaster affects only an exhibiting item and each arrival demands 

exactly one unit of the item, then the steady state probabilities of the inventory 

level are uniformly distributed. 

Proof: 

Because of the special assumptions in this section, 

{ 
(j.J. qt) <.i- j). e - P qt 

if i ~ j 
/I'j (I) = (1 - J)! 

o otherwise 

and 
. I f.J q(f.J qt)[(n-l)M+i-s-l] e-P qt 

gn(/,)= [(n-I)M+i-s-I]! for n = 1,2, ..... . 

Therefore from (4.21) 

and 

Q(i,j,t) = 
00 Jt e-P qu(f.J qu)k 
L: - kl dF(u) 

n=o (j-i) 0 . 
for i, j E E 

k=(i-j+nM-l) 

00 

qij = Q(i,j, 00) = L: 
n=o (j-i) 

ocre- P qu(f.J qu)k 
J kl dF(u) fori,j EE 
o . 

k=(i- j+nM-l) 

Since qij is a function of (i-j), 

S 00 ocr e - pqu (f.Jqu)k 
L:qij = L: J kl dF(u) 

i=s+1 k=O 0 . 

= JdF(U) = 1 
o 

for j E E 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
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Therefore the transition probability matrix (qij) is doubly stochastic and 

from the uniqueness it follows that the invariant measure 7tj = lIM for j E E. 

Also note that 

f 1 k(i,j,du) = 1(1- F(u»du = m (4.27) 
i=s+1 0 o 

Therefore from (4.19) we get Pj = 1/M for j E E. Hence the theorem. 

4.4.1 Illustrations 

Now suppose that the interarrival times follow a gamma distribution 

with parameters (v, A.), then 

Q(i,j,t) = 
00 J e -(.u q+l)u (p q)k AV uk+ v- 1 

n=oLu-i) 0 k!( v-I)! du 
for i, j E E (4.28) 

k=(i-j+nM-l) 

and 

% = Q(i,j,oo) = 
00 

L 
n=o(j-i) 

'1e-(.uq+l)u(p q)k AvUk + v- 1 ' .. 

J k'( _ )' du forl,J E E o . vI. 
k=(i-J+nM-l) 

f (1\+ V-I)( p q )k ( It )V fori,j E E. 
n=o (J -i) k P q + A P q + A 

(4.29) 

k=(i-j+nM-l) 

Since 

Jk(i,j,t) = f 1 It ~l(a;b)( p q AJb ( A A)a for i,j E E. (4.30) 
o n=o(j-i-l)pq+ a=O pq+ pq+ 

b=(i- j+nM) 

Therefore the steady state probabilities of the inventory level are given 

by 
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p . = A ± 7r. f 1 y:l(a + bJ ( j.J q )b ( A )a. j E E 
J v i=s+1 I n=t5(J-i-l) j.J q + A a=O b· j.J q + A j.J q + A ' 

b=(i-J+nM) 

= A ± tri f 1 y:1(a+b)( j.J q )b ( A Ja. j E E 
v i=s+1 n=t5(J-i-l) j.Jq+Aa=O b j.Jq+A j.Jq+A' 

b=(i-J+nM) 

= ~ ± f 1 y:l(a + bJ ( j.J q Jb ( A )a; 
lM i=s+1 n=t5(J-i-l) j.J q + A a=O b j.J q + A j.J q + A 

b=(i-J+nM) 
(4.31 ) 

1 V-l( A )a+l 00 (a +b)( J.I. q )b 
= lMa~o j.J q+A b~ b J.I. q+A 

= _1_ V-l( A )a+l(l_ J.I. q )-(a+l) =_1 

M\f a~ J.I. q + A J.I. q + A M 

In this case, the expected replenishment cycle time is M/()lq+/../v). 

Therefore, if the fixed ordering cost is K , unit purchase cost of the item is c, 

and the holding cost per unit time is h, the unit cost for a damaged item is d, the 

cost function to be minimized is 

(K+cM) h~. 
C(s, S) = M I ( A I ) + M L.JI + dJ.l. q 

j.J q + . V i=s+1 (4.32) 

= [( K / M) + c] [j.J q + A / v] + hs + (h / 2)( M + 1) + dj.J q 

which is clearly minimum for s = 0. Therefore the cost function reduces to 

C(O,S) =[(K I S) + c][J.I. q + AI v]+ (h I 2)(S + 1) + dJ.l. q. (4.33) 

Clearly C(O,S) is a convex function since, 

L12C(O S) = 2K[J.I. q + (A I v)] > ° 
, S(S + 1)(S + 2) . 

(4.34) 

If S* denotes the value of S minimizing C(O, S), then it is given by 

S *(S *-1) < 2K[j.J q:(AI v)] <S *(S *+1). (4.35) 
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The following three tables give optimum values of S for different values 

of K, h, Jl, v, A. and q. Figure 4.1 Illustrates the effect of disaster on the cost 

function. 

Table 4.1 

(Optimum value ofS when K = 100 and h = 2.5) 

~ 
.2 .6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 

.1 5 8 9 11 12 14 15 16 17 18 

.4 7 9 11 12 13 14 16 17 17 18 

.7 9 10 12 13 14 15 16 17 18 19 
1 10 11 13 14 15 16 17 18 19 20 
1.3 11 12 14 15 16 17 18 19 19 20 
1.6 12 13 14 15 17 17 18 19 20 21 
1.9 13 14 15 16 17 18 19 20 21 21 
2.2 14 15 16 17 18 19 20 20 21 22 
2.5 15 16 17 18 19 19 20 21 22 22 
2.8 15 16 17 18 19 20 21 22 22 23 

Table 4.2 

(Optimum value ofS when K = 200 and h = 2.5) 

~ 
.2 .6 1 1.4 1.8 2.2 2.6 3 3.4 

I 
3.8 

.1 7 11 13 16 17 19 21 22 24 25 

.4 10 13 15 17 19 20 22 23 25 26 

.7 12 14 17 18 20 22 23 24 26 27 
1 14 16 18 20 21 23 24 25 27 28 
1.3 16 17 19 21 22 24 25 26 27 29 
1.6 17 19 20 22 23 . 25 26 27 28 29 
1.9 18 20 22 23 24 26 27 28 29 30 
2.2 20 21 23 24 25 27 28 29 30 31 
2.5 21 22 24 25 26 27 29 30 31 32 
2.8 22 23 25 26 27 28 29 30 32 33 



~ 
.1 
.4 
.7 
1 
l.3 
l.6 
1.9 
2.2 
2.5 
2.8 

~ 
Cl) 

o 
(J 

.2 

9 
12 
15 
17 
19 
21 
22 
24 
25 
27 

260 

200 

160 

100 

50 

o 
1 
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Table 4.3 
(Optimum value ofS when K = 300 and h = 2.5) 

.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 

13 16 19 21 24 25 27 29 31 
16 18 21 23 25 27 29 30 32 
18 20 22 25 26 28 30 31 33 
20 22 24 26 28 29 31 33 34 
21 24 25 27 29 31 32 34 35 
23 25 27 29 30 32 33 35 36 
25 26 28 30 31 33 34 36 37 
26 28 29 31 33 34 35 37 38 
27 29 31 32 34 35 36 38 39 
29 30 32 33 35 36 37 39 40 

Figure 4.1 
(The effect of disaster on the cost function) 

K = 100, c = 20, h = 2.5, d = 5, A = 2, v = 10, q = 0.5. 

8 15 22 29 36 43 50 

S VALUES 



Chapter V 

Single Commodity Inventory System 

with General Disaster Periods 

5.1. INTRODUCTION 

This chapter deals with a single commodity continuous review Cs,S) 

inventory system in which commodities are damaged due to disaster only. 

Shortages are not permitted and lead time is assumed to be zero. The demands 

constitute Poisson process with parameter A. The times between disasters 

follow general distribution G(.) which is absolutely continuous with finite 

mean m. Each unit in the stock, independent of others, either survives a disaster 

with probability p, or damages completely with probability (1 - p) = q. The 

failed items are disposed off immediately. 

The structure of this chapter is similar to chapter 4. As in the previous 

chapter, the principal aim of the present chapter is to derive the transient and 

steady state probabilities of the inventory level. A special case in which the 

disaster affects only the exhibiting item is discussed in Section 5.4. For this 

special case, the steady state distribution of the inventory levels is shown to be 

uniform. Illustrations are provided in Section 5.4.1. 



Notations 

E 

M 

q 

NO 

G(t) 

DU) 

: {s+l,s+2, ......... S} 

:S-s 

1- p 

: {O, 1,2, ................... } 

: 1- G(t) 

:{1 if j~O 
o if j<O 

Q*n(i,j,t): n-fold convolution ofQ(i,j,t) with itself. 

*0 .. {I if i = j 
Q (I,J,t): 0 'f . . 

1 1 :;t: J 

5.2. ANALYSIS OF THE INVENTORY LEVEL 

71 

Let X(t) be the inventory level at time t (t ~ 0). Then X(t) takes values on 

E = {s+1,s+2, .... ,S}. Assume that the disaster epochs are 0 = To < TJ < T2< ..... 

Define Xn = X(Tn+), nE NO. 

Theorem 5.1 

The stochastic process { (Xn, T n), n E NO } is a Markov renewal process 

with state space E and the semi-Markov kernel {Q (i ,j, t), i, j E E, t ~o } where 

Q(i,j, t) = Pr{Xn+1 = j, Tn+l - Tn 5, t I Xn = i} (5.1) 
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r i;J,· ( . +} I (Ali)i- j-r 
I o(i - j) L J. r j qr J.. e-Au dG(u) 
I r=O } 0 (1 - ) - r)! 

I 00 S.;.)(j+r}. Jt (Ali)kM+i-j-r I + L L . ) qr .. e-Au dG(u) 
I k=l r=O } 0 ("kM + 1 - ) - r)! 

for j;t S 

= ~ tool ().,U)kM+i-S 
lo(i-S)pSJ e-lUdG(u) + LpSJ (kM .. _ ),e-Au dG(u) 
I 0 k=O 0 +1 S. 

I i a (a} Jt (Ali)i-a 
I + L L a-r qr. e-Au dG(u) 

r (I-a)' I a=s+ 1 r=a-s 0 . 

(5.2) 

I 

l 
00 S a (a 1 Jt (Ali)kM+i-a 

+ L L L r ,a-r qr (kM +i _ a)! e-Au dG(u) for j = S 
k=l a=s+l r=a-s 0 

Proof: 

Since the demand process is Poisson, the interarrival times are 

exponentially distributed. Hence Xn+l depends only on Xn and Tn+l - Tn. 

Therefore {(Xn, Tn), ne NO} is a Markov Renewal Process with state space E. 

Let the number of replenishments in (0, t) be N(t) and define 

Ok (i,j,/) = Pr{X1 = j, N(1!) = k, 11 ~ I I X(O+) = i}; k = 0, 1, 2,.... (5.3) 

then semi-Markov kernel Q(i, j. t) is given by 

00 

Q(i,j,t) = LOk(i,j,t) 
k=O 

(5.4) 

To derive the expression for Ok (i. j. t) (k = 0, 1, 2, ...... ) assume that the 

next disaster after the initial one occurs in (u, u+8u) where u < t. There are five 

cases. 

(1) k = ° andj ;t; S. 

In this case there is no replenishment in (0, u]. Assume that the disaster 

that happened at time u destroys r items (r = 0,1, 2, ....... , i - j ; if i ~ j). In 

order that the inventory level is j just after this disaster, the inventory level must 
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have reduced to j+r U+r ::; i) due to demands in (0, u) from the initial inventory 

level i. Therefore 

i;J, (j + r) , t (lu)i- j-r e-AU 
00(i,j,t)=8(i-j)L plqr J ('_ '_ )' dG(u) 

r=O r 0 I } r, 
(5.5) 

(2) k:;t 0, j :;t S. 

Here there are k replenishments in (0, u) due to depletion of inventory by 

demand and the stock level is instantaneously brought to S each time. If the 

disaster at u destroys r items (r = 0, 1, 2, ...... , S - j), in order to have the 

inventory level j just after the disaster at u, the arrivals in (0, u) must have 

demanded (kM + i - j - r) units in (0, u). Hence 

s~' ('+ fr 1(1 )kM+i-j-r -AU ., _ j r j r /LU e 
nk(/,j,t) - q J (kM . _ . _ )1 dG(u) 

r=O r 0 +1 j r, 
(5.6) 

(3) k = 1, j = S. 

There are two possibilities. (i) There is exactly one replenishment due to 

demand in (0, u) and the S units in the inventory survivei the disaster at u. (ii) 

There is no replenishment in (0, u) and a replenishment is triggered by the 

disaster at u. The former case will happen when the demands in (0, u) are 

exactly for i - s units and the disaster at u affects none of the items in the stock. 

The latter case happens when the inventory level is a just before the disaster 

and at least (a - s) units ( s+ 1 ::; a ::; i ) are destroyed by the disaster at u. So 

we have 
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(4).k>l,j=S. 

In this case also there are two possibilities. (i) There are exactly k 

replenishments due to demand in (0, u) and the S units in the inventory survive 

the disaster at u. (ii) There are (k - 1) replenishments due to demand in (0, u) 

and a replenishment is triggered by the disaster at u. In the former case exactly 

[(k - I)M + i - s] units are demanded in (0, u) and the disaster at u affects none 

of the items in the stock. The latter case happens when the inventory level is 

brought to a by [(k - I)M + i-a] demands in (0, u) and at least a - s units 

(s+ 1 ::;; a ::;; S) are destroyed by the disaster at u. So we have 

. S t (Au)(k-l)M+i-S e-AU 

f4(I,S,t)=p ! [(k-I)M+i-s]! dG(u) 

S a (a 'I Jt (AU)(k-l)M+i-a e-AU 

+ aE+l r=~s r ,a-r qr 0 [(k -l)M +i -a]! dG(u) 

(5.8) 

(5) k = 0, j = S. 

This happens only when i = S, when there is no demand in (0, u) and the 

disaster at time u affects none of the units in the stock. So we get 

t 

no(S,S,t) = pS J e-AudG(u) (5.9) 
o 

Substituting (5.5) - (5.9) in (5.4) we get (5.2). Hence the theorem. 

5.3 TIME DEPENDENT AND LIMITING DISTRIBUTIONS 

Let p(i, j, t) = Pr {X(t) = j I X(O+) = i }, i, j E E. Then we have 
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Theorem 5.2 

The time dependent probabilities of the inventory levels are given by 

where 

and 

Proof: 

s 
p(i,),t) = L 

t 

J R(i,r,du) k(r,),t - u); i,) E E 
r=s+l 0 

00 
~ *n R(i,),t) = L.Q (i,),t); i,) E E 

n=O 

"" _ 00 (A.t)nM+i- j e-At 

k(I,},t)=G(t) L (nN/"- ")1 . 
n=8(j-i-l) + I }" 

(5.10) 

(5.11) 

The stochastic process {X(t), t ~ O} is a semi-regenerative process with 

the embedded MRP {(Xo, To), n e NO}. Conditioning on the fIrst disaster epoch 

T 1 we see that pO,), t)' s satisfy the following Markov renewal equations, 

s t 

p(i,),t) = k(i,),t) + L J Q(i,r,du) p(r,),t - u); i,) E E (5.12) 
r=s+l 0 

where k(i,),t) = Pr{X(t) =), 11 > t I X(O+) = i}; i,) E E. 

To derive the expressions of k(i,), t) in (5.11) note that, since T 1 >t, the 

depletion of inventory is only due to demand and there may be n replen

ishments in (0, t). If i < j then there should be at least one replenishment and n 

varies from 1 to 00 in (5.11), otherwise n varies from zero to 00. The solution of 

(5.12) is given by (5.10). Hence the theorem. 

Consider the underlying Markov chain { Xo, ne NO } associated with the 

MRP {(Xo, To), n e NO}. Its transition probability matrix Q = (q ij) ; i, j e E, is 

given by 
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qij = lim Q(i,j,t) 
t~oo 

f8(i- .)if (j~rl j rJ(~):-j-r e-AudG(u) 
I J r=O J f q 0 (1 - J - r) ! 

I 00 S:;.i(j + r~. ~ (AU)kM+i- j-r 

I + L L . ) qr J . " . e - Au dG( u) for j :;t: S 
I k=l r=O J o(kJvf+I-J-r)! 

= ~ 00 ~ (AU)kM+i-S (5 13) 
8(i - S) pS J e-AudG(u) + LPS J kJvf' I e-Au dG(u) . 

o k=O 0 ( + 1- s). 

I + ± t (a1 a-r qr J(~)i-a e-Au dG(u) 
rf (/-a)1 I a=s+ I r=a-s O· 

l OOS a (a~ ~ (AU)kM+i-a 
+ L L L a-r qr J kJvf' e-Au dG(u) for j = S 

k=l a=s+l r=a-s r 0 ( +l-a)! 

Since the transition from any state i to any state j (i, j e E) is possible 

with positive probability the finite Markov chain {Xn, n e NO} is irreducible 

and hence it is recurrent. Since the chain is irreducible, it possesses a unique 

stationary distribution, 

n = (1l's+ I, 1l's+2, ........ 1l' S) which satisfies nQ = n and ~1l' j = 1. (5.14) 

Let P = (Ps+l, Ps+2, .... , Ps) denote the steady state probability vector of 

the inventory level where P j = lim p(i,j,t). Then we have 
t~oo 

Theorem 5.3 

If G(t) is absolutely continuous with finite expectation, m, then the 

steady state probabilities of the inventory levels are given by 

L1l'i J k(i,j,t)dt 
iEE 0 

m 
jE E. (5.15) 
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Proof: 

Since G(t) is absolutely continuous with finite expectation, it follows 

from (5.10) - (5.12) that 

LJZ"i J k(i,j,t)dt 
ieE 0 

jeE (5.16) 

where mi = mean sojourn time in state i = J tdG(t) = m. Substitution yields (5.15). 
o 

Hence the theorem. 

5.4 A SPECIAL CASE 

In this sub-section we discuss a special case in which the disaster affects 

only an exhibiting item. 

Theorem 5.4 

If the disaster affects only an exhibiting item and it is replaced 

instantaneously by another one upon failure, then the steady state probabilities 

of the inventory level are uniformly distributed. 

Proof: 

In this case the semi-Markov kernel {Q (i ,j, t), i, j e E, t ~o } is given 

by 

• • CIJ Jt e-}.,u (AU) (i-j+kM) 
Q(I,j,t)= P L c _. kM)' dG(u) 

k=t5 (j-i-l) 0 I j + . 

CIJ Jt e-}.,u (AU) (i- j+kM-l) 
+q L .. dG(u) 

k=t5 (j-i) 0 (I - ) + kM - I)! 

(5.17) 

for i,j e E 



and the transition probabilities, 

. . 00 je-AU(A.U)(i-J+kM) 
qij =Q(/,j,OO)=P L ('_ '+kM)1 dG(u) 

k=t5 (J-i-l) 0 I j . 

00 '?e-AU(Au)(i-J+kM-l) 
+ q L J .. I dG(u) 

k=t5 (J-i) 0 (I - j + kM - 1). 

Since qij is a function of (i - j), 

'. S 00 re-AU(AU)n 00 

. Lq ij = P L J I dG(u) + q L 
i=s+l n=O 0 n. n=O 

= (p + q) J dG( u) = 1 
o 
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(5.18) 

for i,j E E 

(5.19) 

for j E E 

Therefore the transition probability matrix Q is doubly stochastic and 

from the uniqueness of solution it follows that the invariant measure 7tj = lIM 

for j E E. Also note that 

S '? '? 00 (Au)n e-AU '? 
L J k(i,j,du) = J L [1- G(u)]du = J[1- G(u)]du = m (5.20) 

. n l 
I=s+l 0 on=O' 0 

Therefore from (5.15) we get Pj = IIM for j e E. Hence the theorem. 

5.4.1 Illustrations 

As in chapter 4 we shall illustrate the above results by taking the general 

distribution of disaster periods as gamma distribution with parameters (v, J.l). 

Then for i, j e E, 
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00 t -(M,u)u (. . kM 
Q(i, j, t) = P L J e A /-J+ ) Ji v u(i- j+kM+v-l) 

k=b (J-i-l) 0 (i - j + kM)!( v - I)! du 

00 Jt e-(M,u)u A(i-j+kM) v (i-j+kM+v 2) (5.21) 
+q L Ji u -

k=b (J-i) 0 (i - j + kM -1)!(v -I)! du. 

Therefore 

q Q(..) "n + v-I v 1 n 
00 ( J( J ij = I,J,OO = P ~ _Ji_ __11,_ 

ko/) (j-H) n I' + 1 (I' + 1J 

and 

n=(i-j+kM) 

v-I ( a 
Since G(t) = e-P / L pt) 

a=o(a -I)! 

for i, j E E 

for j E E 

Jk(i,j,t)dt= L _1_ L a+b _Ji_ a _A_ b. .. ~ 00 V-I( J ( 
o n=o (j-;-l) I' + 1.=0 b I' + J (I' + J ' fOrI,J E E 

b=(i-j+nM) 

Therefore 

s 
L f: k(i,j,t~t 

i=s+l 

1 v-I ( )a ( =--L ~ f a +b A b 

1'+1.=0 1'+1 b=O b J(.u+ 1J 
=~ II (~)a+l (1 __ A_)-(a+l) 

Ji a=O Ji + A Ji + A 
v 

for j E E 

\5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 
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In this case, the expected replenishment cycle time is M/(A + J.1q/v). 

Therefore, if the fixed ordering cost is K , unit purchase cost of the item is c, 

the holding cost per unit time is h, and the unit damage cost is d, then the cost 

function to be minimized is 

(K + cM) h~. 
C(s,S) = M / (1 /) + M ~l + dpq / V 

11..+ pq v i=s+l (5.27) 

= [( K / M) + c][ A + f.Kl / v] + hs + (h / 2)( M + 1) + df.Kl / v 

which is minimum for s = o. Therefore the optimum cost function reduces to 

C(O,S) = [(K / S) + C][A+ pq / v] + (h / 2)(S + I) + dpq / v (5.28) 

Since 
2 2K[A+ pq / v] 

Ll C(O, S) = S(S + I)(S + 2) > 0, (5.29) 

the cost function in (5.28) is convex. If S* denotes the optimum value of S, 

then it is given by 

S*(S*-I)< 2K[A+ Jlq/ v] <S*(S*+I) 
h 

(5.30) 

The following three tables show that there is increase in the optimum 

values of S with the increase of the values of A, J.1 and q. In all the tables K = 

200, h= 2.5 and v = 3. Figure 5.1 depicts the effect of disaster on the cost 

function. 

Table 5.1 
(Optimum values of S for A = I) 



~ 
0 5 

.1 31 31 

.2 31 32 

.3 31 32 

.4 31 33 

.5 31 33 

.6 31 33 

.7 31 34 

~ 
0 5 

.1 42 42 

.2 42 43 

.3 42 43 

.4 42 43 

.5 42 44 

.6 42 44 

.7 42 44 

Table 5.2 
(Optimum values of S for A = 6) 

10 15 20 25 30 

32 32 33 33 33 

33 33 34 35 36 

33 35 36 37 38 

34 36 37 39 40 

35 37 39 40 42 

36 38 40 42 44 

37 39 41 44 46 

Table 5.3 
(Optimum values of S for A = 11) 

10 15 20 25 30 

43 43 43 44 44 

43 44 44 45 46 

44 45 46 46 47 

44 46 47 48 49 

45 46 48 49 51 

46 47 49 51 52 

46 48 50 52 54 
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35 40 45 50 

34 34 35 35 

37 37 38 39 

39 40 41 42 

41 43 44 45 

44 45 46 48 

46 47 49 51 

48 50 51 53 

35 40 45 50 

44 44 45 45 

46 47 47 48 

48 49 50 51 

50 51 52 53 

52 53 54 56 

54 55 57 58 

55 57 59 60 
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Figure 5.1 
(The effect of disaster on the cost function) 

K = 200, c = 20, h = 2.5, d = 5, A = 1, v = 3, q = 0.5. 

~ 
~--1!=20 

8 15 22 29 36 43 50 

S VALUES 



Chapter VI 

Multi-Commodity Inventory Problem 

Perishable due to Decay and Disaster* 

6.1 INTRODUCTION 

In this chapter an attempt is made to study a continuous review multi

commodity perishable inventory system. The n commodities, Cl, C2, ...... Cn, are 

diminished from the inventory due to demands, decay and disaster. The 

maximum inventory level and the re-ordering point of commodity Ck are Sk and 

Sk respectively, (k = 1, 2, ...... n). Shortages are not allowed and the lead time is 

assumed to be zero. Fresh orders are placed whenever the inventory level of at 

least one of the commodities falls to or below the re-ordering point for the first 

time after the previous replenishmellt. Demands for commodity Ck are assumed 

to follow Poisson process with rate Ak. The life times of commodity Ck follow 

exponential distribution with parameter (Ok. The distribution of the times 

between the disasters is exponential with mean 1I~. Each unit of commodity Ck 

survives a disaster with probability Pk and is destroyed completely with 

probability 1-Pk independently of others. The damaged items are removed from 

the inventory instantaneously . 

. The results of this chapter have been presented in the International Conference 
on Stochastic Processes held at Cochin (1996). 
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This chapter generalizes the results of chapter II to multi-commodity 

case. The objectives of this chapter are to fmd transient and stationary 

probabilities of the inventory states and the optimum value of the 2n-tuple, 

SI,S2, .... Sn) at steady state. The scheme of presentation of the 

chapter is. as follows: In section 6.2 the notations used are explained while in 

section 6.3 the transient solution is arrived at. The stationary probabilities and 

the expected length of the replenishment periods are derived in section 6.4. 

Section 6.5 discusses optimization where as section 6.6 illustrates the model 

with numerical examples. 

6.2 NOTATIONS 

Sk :Maximum inventory level of commodity Ck(k = 1,2, ...... , n) 

Sk :Re-ordering level of commodity Ck (k =1, 2, ...... , n) 

Mk :Sk-Sk 

M :M l xM2x .... xMn 

qk : I-Pk 

R+ :The set of non-negative real numbers 

NO :The set of non-negative integers 

Ek :{sk+l, sk+2, ....... ,Sd 

Elo :{s), s)+l, ....... ,Sd 

E :E\xE2X .............. xEn 

Eo :E\ oxE2x .............. xEn 

i* : in + (in-I -l)Mn + (in-2 -1)Mn-1Mn+.·····+(i1 -1)M2M3····Mn 

s* : Sn +l+sn_IMn +sn-2Mn-IMn+. .. .+sIM2 ... Mn 

Sl* : Sn +l+sn-IMn +sn-2Mn-IMn+.··.+(sl-l)M2 ... Mn 

S* : Sn + (Sn-I -l)Mn + (Sn-2 -1)Mn_1Mn+···.+(SI -1)M2 ... Mn 
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E* :(s*, s*+ 1, ............ , S*) 

a. :(0,0, ......... 1); M components 

e :(1,l, ......... l)T; M components 

A 

Dj* :The detenninant of the sub matrix obtained from A by deleting 

the first i*-s*+ 1 rows, the last and first i*-s* colwnns; 

i* e E*-{S*} 

Ds* :1 

8(i, j) : 1 if i = j; ° otherwise 

6.3. ANALYSIS OF THE INVENTORY STATES 

Let XlI) denote the inventory level of commodity Ck (k = 1,2, ..... n) at 

any time t ~ 0. If X(I) = {XlI), X2(1), ...... Xn(t)} , then {X(I), I ER+} is a 

continuous time Markov chain with state space E. We assume that the initial 

probability vector of this chain is a.. 

Let the transition probability matrix of the Markov chain {X(t)} be 

p(t) - [P . . .. . (t)]M M 
- Ij /2 ...... l n lI12 ...... Jn x 

where 

~h .. .Jn iJi2 .... .jn (I) = Pr{X I (t) = h , ... ,Xn (t) = in / XI (0) = i l , .. ,Xn (0) = in} (6.1) 

ibik E Ek; k= 1,2, ..... n 

Theorem 6.1 

The transition probability matrix pet) is uniquely detennined by 



00 Bm t m 
p(t) = exp(Bt) = 1+ L rn l 

111= I . 

where the matrix B = A + G, in which A and G are defined as follows: 

with 

if 

and G = [g.. . .. . ] 
1112·· .. ·1n lJ12· .... )n MxM 

if ik = ik k = 1,2, .... n 

n 

L(ik - ik) > 1 
k=l 

otherwise 

and gili2 ..... in lJ12 ..... in 

I n 

I L8(sk + 1, ik )[,.1, k+ (sk + I)CVk] + JI. (1- Ail Ai2 .... Ai) 
k=l 
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(6.2) 

(6.3) 

J for every k (6.5) 

-I 

10 
l 

Proof: 

otherwise 

For a fixed io = (i\,h, ...... ,in) the difference..differential equations satisfied 

by the transition probabilities are: 



n 

~~ ilh-..... in (I) = -[,u + L(Ak + JkOJk )]lio i!i2 .... .jn (I) 
k=l 

n 

li~ SIS2 ...... Sn Ct) = -[,u + LCA k+ SkOJk )]lio SIS2 ..... Sn (t) 

+ 

k=1 

n 

L 
k=1 

1"j=i if i <k 

1"j=i+l if i~k 

{ SI S2 Sn 
+,u PI P2 .... ·Pn lio SIS2 ..... Sn (t) 
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i li 2 ..... .j n (t) (6.7) 
(jk =Sk+ l ) 

S S S 

+ I: f ..... 2: lio Jlh- ..... Jn(t)(l-AJIAh···AJ)} 
iJ=sl +1 h=s2+1 Jrn-1=SI+l 

From equations (6.3) - (6.7) we can easily see that the Kolmogorov 

equations, 

pi (t)= P(t)B and pi (t) = BP(t) (6.8) 

with the initial condition, 

P(O) = I (6.9) 

are satisfied by pet). The solution of (6.8) with (6.9) is (6.2). The finiteness of 

B guarantees the convergence of the series in (6.2) and the solution obtained is 

unique. Hence the thereom. 
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6.4. STEADY STATE PROBABILITIES AND REPLISHMENT 

PERIODS 

Since the transition from any state (i 1, i2, .•••• , in) to any state Ul, j2, ..... , jn) 

in E is possible with positive probability the Markov chain {X(t), t 2 O} IS 

irreducible. Therefore 

(6.10) 

exist. 7r hh- .... jn 's are obtained by solving 

nB=O and ne = 1 (6.11) 

simultaneously. To solve (8) we define a function/from E to E- as 

/CUI,i2 ,·····,in ))=i*=in +(in-l- 1)Mn + (in-2 -1)Mn-1Mn+········ 

C· l)M M M· C·· .) E· .* E *(6.12) + 11- 2 3····· 11' 11,/2,···,ln E ,lE ~ 

Since/is one-one and onto, henceforth (i1 h , ..... ,in ) will be represented by t. 

Theorem 6.2 

The steady state probabilities of the inventory states are given by, 

where 

Proof: 

D .• 
I 

7ri1i2·····.Jn = s· 
* * n F(s ,S) (-ak• k.) .. , 

k =i 

s· D. 
F(s* ,s*) = L. S. i 

i = s n C -a k· k. ) .. , 
k =i 

.* £* 1 E (6.13) 

(6.14) 

Let Dj" be the determinant of the submatrix obtained from A by deleting 

the first i* - s* + 1 rows, the last and first i* - S* columns, i* E E* - {S*}, and 

Os. = 1. With these notations we can see that the solution of (6.11) is 
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(6.15) 

and (6.16) 

Substituting (6.16) in (6.15) we get (6.13). Hence the theorem. 

Let To = 0 < TJ < T2 < ........ be the epochs when the orders are placed. 

This occurs whenever the inventOlY level of one of the commodities Ck falls to 

Sk or below it for the first time after the previous replenishment (k = 1,2, ........ n). 

Since lead time is assumed to be zero, the stock level is immediately brought to 
. 0 

(SI, S2, ........ , Sn). Thus clearly {T m, mEN} is a renewal process. 

Theorem 6.3 

If E (T) represents the expected time between two successive re-orders, 

then 

1 
E(T) = F(s*,S*) = ----

-Qs*s* 7rs* 
(6.17) 

Proof: 

By a similar argument as in section 4 of chapter 2 the probability 

distribution of the replenishment cycles can be proved as phase type on [0, 00) 

and is given by 

Therefore 

G(t) = I-a exp (At)e for t ~ ° 

E(T) = J a exp(At)e dt 
o 

A -I =-a e 

(6.18) 

(6.19) 

(6.20) 



S• D .• 
= "'" __ --'-1 __ 

~ s· . . 
I=S n (-ak• k·) 

k· =i" ' 

= F(s*, S*). 

From (6.16), the theorem follows. 

6.S OPTIMIZATION PROBLEM 

(6.21 ) 

Let Mk * represent the random variable of the re-ordering quantity of 

commodity Ck, then 

= E (1)[ A k + ( cv k + q k Ill) H k (s* , S * )] 
s s 

where Hk (s* ,S*) = f ~ 
i1=sl+1i2=s2+ I 

(6.22) 

Let hk be the unit holding cost per unit time, Ck the unit procurement cost 

and dk the unit damage cost of commodity Ck (k = 1, 2, ..... , n). Assume that the 

fixed ordering cost for placing an order is K irrespective of the number of 

different items ordered for replenishment. Therefore the cost function is 

n 

K + LCkE(Mk *) 
k=I 

C(Sb S2,····'Sn SI ,S2,'" ,Sn) = -~":"'-E-(T)---

n 

+ L[hk +ddcvk + ,uqk)]Hk(s*,S*) (6.23) 
k=I 
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Since shortages are not allowed and lead time is assumed to be zero it is 

reasonable to expect that Sk = 0, (k = 1, 2, .... , n) for the optimum cost function. 

Theorem 6.4 

Proof: 

Consider the matrix .It = (aih .. .in iIh- .... }n)' (i1,i2,····.in ), Ci1,h,···· ·)n) E Eo 

where 

Let 15 .• be the determinant of the submatrix obtained from A by deleting the 
I 

first i * - SI * + 1 rows, the last and first i * - SI * columns (i * :t:. S*), i5s* = 1. 

Then Di* = Di* for i* E E * and Di* is positive for every i*. 

From (6.15) we get 
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> F(s*,S*) (6.25) 

Also 

H1(sl-1,s2, ... sn SI,S2 .... SI1)= I ~ ........ ~ (i1-Sls:SI)15i* 
i1=SI i2=S2+ 1 in=sn+1 F(s~ ,s*) n (-ak*,k*) 

k*=i* 

S* . 
" (/1 - SI )Di* 

< SI + ~ S* 
i*-s* * n ( ) - F(s*, S ) -ak*,k* 

by (6.25) 

k*=i* 

Thus, from (6.24) - (6.26) we have 

C(sl- 1,s2, .... 'sn SI,S2, .... 'Sn) <C(s),s2, .. ·,sn S),S2, .. · .. 'Sn) 

Therefore, 

C(O,s2, .... 'sn S),S2, .... 'Sn) < C(sj,s2,· .. ,sll S),S2, .. · .. ,SII)· 

(6.26) 
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If Sk > ° for k > 1, then interchanging the position of SI and Sk we can 

similarly prove that the cost function is minimum for Sk = ° for each k. Hence 

the theorem. 

Let F(O, S*) = cI>(S*) and Hk(O, S*) = \!fk(S*) 

Then (6.24) will become 

6.6 NUMERICAL ILLUSTRATIONS 

In this section we provide some numerical examples. Table 6.1 gives the 

optimum (SI, S2, S3) values of a three commodity problem when J.l = 5. Figure 

6.1 depicts that optimum values of SI and S2 decrease with the increase of value 

of J.l. The last three tables compare the optimum (SI, S2) values of a two com

modity inventory problem when the disaster rates are J.l = 10, 5, 1 respectively. 

Table 6.1 
(Optimum values of(S" S2, S3) 

J..l = 5, p,=.l, P2 =.2, P3 = .3, K=100, c,=25, c2=1O, C3 = 30, 
h, = 5, h2 = 2, h3 = 6, dl = 5/3, d2 = 2/3, d2 = 2. 

(1..,,1..2,1..3)-+ (1,1,1) (1,1,4) (1,2,4) (3,1,1) (3,1,4) 

(CO" C02,C03)-!.. 

(0,0,0) (1,2,1) (1,2,2) (1,2,2) (2,2,1) (2,2,2) 

(0,3,5) (1,3,2) (1,3,3) (1,2,4) (2,3,2) (2,3,3) 

(2,0,5) (2,2,2) (2,2,3) (2,2,3) (2,2,2) (2,2,3) 

(2,3,0) (2,3,1) (2,3,2) (2,3,2) (2,3,1) (2,3,2) 

(2,3,5) (2,3,2) (2,3,3) (2,3,3) (2,3,2) (2,3,2) 

(3,2,4) 

(2,2,2) 

(2,3,3) 

(2,2,2) 

(2,3,2) 

(2,3,2) 
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Figure 6.1 
(Optimum values of (S\, S2) 

PI =.3, P2 =.1, K =100, Cl =20, C2 =10, hi = 4, h2 = 2, 
dl = 4/3, d2 = 2/3, Al = 2, A2 = 1, ID! = 0, ID2 = 0. 

~ 
~ 

o+------+------~----~----~~----~----~ 

o 0.6 1 1.5 2 2.5 3 

Table 6.2 
(Optimum values of (S I, S2 when Jl = 10) 

(AI,A2)-+ (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) 

(ID !,ID2).J.. 

(0,0) (1,2) (1,2) (1,2) (2,2) (2,2) (2,2) (2,2) (2,2) 

(0,1) (1,2) (1,2) (1,2) (2,2) (2,2) (2,3) (2,2) (2,2) 

(1,0) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) 

(1, I) (2,2) (2,2) (2,3) (2,2) (2,2) (2,3) (2,2) (2,2) 
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(3,3) 

(2,2) 

(2,3) 

(2,2) 

(2,2) 
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Table 6.3 
(Optimum values of(S" S2 when ~l = 5) 

(1..1,1..2)----)0 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

(ro\,Oh)-l.-

(0,0) (2,2) (2,3) (2,3) (2,2) (2,2) (2,3) (2,2) (2,2) (2,3) 

(0,1) (2,3) (2,3) (2,3) (2,2) (2,3) (2,3) (2,2) (2,3) (2,3) 

(1,0) (2,2) (2,2) (2,3) (2,2) (2,2) (2,3) (3,2) (3,2) (3,3) 

(1,1) (2,2) (2,3) (2,3) (2,2) (2,3) (2,3) (3,2) (3,3) (3,3) 

Table 6.4 
(Optimum values of(S\, S2 when ~ = 1) 

(1..\,1..2)----)0 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

(ro "ffi2)-l.-

(0,0) (3,3) (3,5) (3,6) (4,3) (4,5) (4,6) (5,3) (5,4) (4,5) 

(0,1) (3,4) (3,5) (2,6) (4,4) (3,5) (3,6) (4,4) (4,5) (4,6) 

(1,0) (3,3) (3,4) (3,5) (4,3) (4,4) (4,5) (5,3) (5,4) (4,5) 

(1,1) (3,4) (3,5) (3,6) (4,4) (4,5) (4,6) (4,4) (4,4) (4,5) 



Chapter VII 

Multi-Commodity Perishable Inventory 

Problem with Shortages 

7.1 INTRODUCTION 

A continuous review (s, S) multi-commodity inventory system perishable 

due to decay and disaster allowing shortages is studied in this chapter. The n 

commodities are denoted by Cl, C2, ...... , Cn. The maximum inventory level and 

the re-ordering point of commodity Ck are Sk and Sk respectively, (k = 1,2, ... n). 

Lead time is assumed to be zero and the sales are considered as lost during 

stock out period. Fresh orders are placed whenever the inventory levels of all 

the commodities fall to or below their re-ordering points after the previous 

replenishment. Demands for commodity Ck are assumed to follow Poisson 

process with rate Ak and the life times of commodity Ck follow exponential 

distribution with parameter (Ok. The distribution of the times between the 

disasters is exponential with mean 1I~. Each unit of commodity Ck, independent 

of others, survives a disaster with probability Pk or is destroyed completely with 

probability I-Pk. The damaged items are disposed off from the inventory 

immediately. 

The objectives of this chapter are to find transient and stationary 

probabilities of the inventory states and the optimal value of the 2n-tuple, 
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(SI,S2, .... 'sn SI,S2, .... 'Sn) at steady state. The scheme of presentation is similar 

to chapter VI. The time dependent solution is arrived at in section 7.3. Section 

7.4 deals with the stationary probabilities and the replenishment periods where 

as section 7.5 discusses optimization problem. Some numerical examples are 

provided in the last section. The present chapter also generalizes the results of 

chapter 11 to multi-commodity case. 

7.2 NOTATIONS 

Sk :Maximum inventory level of commodity Ck (k = 1,2, ...... , n) 

Sk :Re-ordering level of commodity Ck (k = 1, 2, ...... , n) 

Mk :Sk-Sk 

.M :MIXM2X .... xMn 

qk : I-Pk 

NO :{O, 1,2, ......... } 

R+ :The set of non-negative real numbers 

Ek :{O, 1, 2, ....... , Sd 
Eks :{O, 1,2, ....... , sd 

E :(EIXE2X .............. xEn) - (El sXE2 sx .............. xEn s) 

~k :{(iI,i2, .. .in) EEl ik = O} 

s* :j((SI, S2, ........... sn)); fis defined in (7.12) 

S* :(SI+ I)X(S2+ l)x ......... x(Sn+ 1) - (Sl+ I)X(S2+ I)x ......... x(sn+ 1) 

E* :{ 1,2, ................ , S*} 

a :(0, 0, ......... ,1); S* conponents 

e :(1, I, ......... , I)T; S* components 

A aih ..... in I S are given by (7.4) 

8(i, j) : 1 if i = j; ° otherwise 
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k = 1, 2, ...... ,n. 

Dj. :The detenninant of the submatrix obtained from A by deleting 

the first i* rows, the last and first i* - 1 columns, i*EE* - {S*} 

Ds. :1 

7.3. TRANSIENT PROBABILITIES 

Let Xk (t) denote the inventory level of commodity Ck (k=1,2, ...... ,n) at 

any time t ~O. If X(t) = {Xlt), Xlt), ..... 'Xn(t)}' then {X(t), tER } is a 

continuous time Markov chain with state space E. We assume that the initial 

probability vector of this chain is u. 

Let the transition probability matrix of the Markov chain {X(t)} be 

p(t) - [P . . .. . (t)]s* S* - /1/2····· Jn JI12 ...... Jn x 

where 
(7.1 ) 

111i2 .... in ith .... Jn (I) = Pr{X l (I) = il,'''' Xn (I) = in IXl (0) = i l ,· .. , Xn (0) = in} 

(i 1 .i 2 ' ..... in), (J 1 , h , ..... .in) E E 

Theorem 7.1 

The transition probability matrix pet) is uniquely detennined by 

IX) Bm I m 

PCt) = exp(Bt) = 1+ L -
ml m=l . 

(7.2) 

where the matrix B = A + G , in which A and G are defined as follows: 

with 

(7.3) 
(i}.i2, .... ·,in ), (J},h,· .... ,.in)E I~' 



Proof: 

if 

[*" 

if 
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if i k = ik k = 1,2, ... , n 

ifik =ik +l;i[ =i!(l=1,2, ... n;l*k) 

(7.4) 

n 

L(ik-ik»l 
k=l 

otherwise 

.. 

G I, j 2,·····, j n) * (S I, S 2,··· .. , S n) 

For a fixed io = (i l , i2, ...... ,in) the difference-differential equations sat-

isfied by the transition probabilities are the following: 

n 

~~ hh-..... Jn(t)=-[JI + L{l-8(Q,jk)}(Ax + jk wd]l1o Jlh-.... Jn(t) 
k=l 



n 

~~ SIS2 ...... Sn (I) = -[,u + I(~ + SkOJk )]fjO SIS2 .... .sn (I) 
k=l 

n 

+ ~)~ + (sk + l)OJk] 
k=l 

fj=i if i <k 

fj=i+l if i"?k 

{ SS s 
+f.1 Pllp22 ..... Pnn~0 SIS2 ..... Sn(/) 

+ " p .. . (t)(A· A· A.)} L...., 10 1i12······in 1i 12'" in 
(j1,h,····.jn)EE 

100 

(7.7) 

From equations (7.3) - (7.7) we can easily see that the Kolmogorov 

equations, 

pi (t)= P(t)B and pi (t) = BP(t) (7.8) 

with the condition, 

P(O) = I (7.9) 

are satisfied by pet). The solution of (7.8) with (7.9) is (7.2). The finiteness of 

B guarantees the convergence of the series in (6.2) and the solution obtained 

is unique. Hence the theorem. 

7.4. STEADY STATE PROBABILITIES AND REPLENISHMENT 

CYCLES 

Since the transition from any state (il, i2, ..... ,in) to any state V),.h ..... l/n) 

in E is possible with positive probability the Markov chain {X(t), t ~ O} is 

irreducible. Therefore 

(7.10) 
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exist and are independent of the initial state. re hh- .... jn'S are obtained by solving 

IIB= 0 and IIe = 1 (7.11 ) 

simultaneously. 

Defme a relation ~ in E as follows: 

(1) il <iI 
or (2) i 1 =iI; i2 <h 
or (3) 11=11; i2 =h; i3 <13 
or 

Then clearly ~ is a partial order relation in E. Arrange the elements of E in 

ascending order. In this alTangement (0, 0, ....... , sn+ 1) will be the first element 

and (SI, S2, ..... , Sn) will be the S*th element. Now define a function/from E to 

E*. as 

f((il, i2, ... ,in)) = i* if (il, i2, ... ,in) is the i*th element in the alTangement, i* E H*. 

(7.12) 

Since/is a bijection, henceforth (it, i2, ... ,in) will be represented by t. 

Let D j* be the determinant of the submatrix obtained from A by deleting 

the first i * rows, the last and first i * - 1 columns, i * EE* - {S*}, and Ds* = 1. 

With these notations we have 

Theorem 7.2 

The steady state probabilities of the inventory states are given by 

* * i E E (7.13) 
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where 
s· D .• 

F(s* , S*) = L:----'-'--
. 1 s· 
1= n (-ak• k.) 

k· =;* , 

(7.14) 

Proof: 

As in the previous chapter, we can see that the solution of (7.11) is 

i" EE* -{S*} (7.15) 

and 7rs S S = 7r • = 1 2····· n S F( * s*) -a • • ' s 
S,S ' 

(7.16) 

Substituting (7.16) in (7.15) we get (7.13). Hence the theorem. 

Let To = 0 < TJ < T2 < ........ be the epochs when the orders are placed. 

This occurs whenever the inventory levels of all the commodities Ck fall to their 

reordering levels or below those for the first time after the previous replen

ishment (k = 1,2, ..... , n). Since lead time is assumed to be zero, the stock level is 

immediately brought to (S\,S2, ..... 'Sn). Thus clearly {T m, mENO} is a renewal 

process. 

Arguing in the similar lines of Theorem 6.3, the expected replenishment 

cycle time is obtained by 

Theorem 7.3 

If E(T) represents the expected time between two successive re-orders, 

then 

E(T) = F(s*,S*) = ---- (7.17) 
-as*s* 7rs* 
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7.5 COST ANALYSIS 

Let Mk * represent the random re-ordering quantity of commodity Ck. 

Let, hk be the unit holding cost per unit time, Ck the unit procurement 

cost and dk the unit damage cost, bk be the unit shortage cost of commodity Ck 

(k=1,2, ..... n), K be the fixed ordering cost per order. Then the cost function is 

l 
+{(Ck + dk )(CVk + J1fJk) + hdH k (s*,S*) + (ilh, ... ~n~~:Jrili2 ....... in J 

K n 
= * * +L[Ck~+{(Ck+dk)(CVk+.Ut1k)+hdHk(S*,S*) 

F(s ,S) k=l 

+ 4 (bk - ck) LJrih ..... .in 
(ilh,·······in)Etl k (7.19) 
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7.6 NUMERICAL ILLUSTRATIONS 

In this section we provide some numerical examples for two commodity 

inventory problems. Numerical examples show that optimal values of Sk = 0, 

(k = 1, 2, .... , n) when shortage cost is zero. This can be seen from tables 7.3 

and 7.4. Figure 7.1 illusrates the effect of disaster on the optimum values of 

(s\, SI), (S2' S2). Tables 7.1 and 7.2 compare the optimum values (s\, Sd, (S2, S2) 

of a two commodity problem for disaster rates Jl = 1 and ° respectively when 

the shortage costs are b\ = 200 and b2 = 100. The third and fourth tables 

compare the same when shortage costs are set at zero. The effect of shortage on 

the optimum inventory level can be seen by comparing tables 7.1 and 7.3, and 

tables 7.2 and 7.4. The optimum values are found out with the aid of a computer 

giving upper bounds to Si = 9 and assigning Si = 0, 1 ;i = 1,2. 

Table 7.1 
Optimum values (SI, SI), (52, S2) for ~l = 1 and b l =200, b2=100, 

PI=.3, P2 =.1, K=100, cI=20, c2=10, hi = 4, h2 = 2, d l = 4/3, d2 = 213. 

(A.J,A.2)~ (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) 
((() J,(()2)-!-

(0,0) (0,3),(1,3) (0,3),(0,5) (1,3),(0,6) (0,4),(1,2) (0,4),(1,4) (0,4),(1,6) 

(0,1) (0,3),(0,3) (0,2),(0,5) (1,2),(0,6) (0,4),(1,3) (0,4),(1,5) (0,3),(1,6) 

(1,0) (0,3),(0,3) (0,3),(0,4) (1,3),(0,5) (0,4),(1,2) (0,4),(1,3) (0,4),(1,4) 

(1,1) (0,3),(0,3) (0,3),(0,5) (0,2),(0,5) (0,4),(1,2) (0,4),(1,4) (0,4),(1,5) 



Table 7.2 
Optimum values (SI, SI), (S2, S2) for ~ = ° and bI=200, b2=1 00, 

PI=.3, P2 =.1, K=100, cI=20, c2=10, hI = 4, h2 = 2, dI= 4/3, d2 = 2/3. 
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(I .. I, A2)-+ (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) 
(0)I,0)2)-l-

(0,0) 

(0,1) 

(1,0) 

(1,1) 

(0,8),( 1 ,8) (1,6),(1,9) (1,5),(0,9) (0,9),(1,5) (1,9),(1,9) (1,8),(1,9) 

(0,4),(1,6) (1,4),(0,9) (1,3),(0,9) (0,6),( 1,6) (0,6),(1,9) (1,5),(0,9) 

(0,5),(1,3) (0,5),(1,6) (1,5),(0,8) (0,6),( 1 ,2) (0,7),(1,4) (0,7),(1,6) 

(0,4),(1,4) (0,4),(0,7) (1,4),(0,9) (0,5),(1,3) (0,5),(1,5) (0,5),( 1,7) 

Table 7.3 
Optimum values (SI, SI), (S2, S2) for ~ = 1 and bI=O, b2=0, 

PI=.3, P2 =.1, K=100, cI=20, c2=10, hI = 4, h2 = 2, dI= 4/3, d2 = 2/3. 

(AI,A2)-+ (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) 
(O)I,0)2)-l-

(0,0) 

(0,1) 

(1,0) 

(1,1) 

(0,2),(0,3 ) (0,2),(0,4) (0,2),(0,5) (0,3),(0,3) (0,3),(0,4) (0,3),(0,5) 

(0,3),(0,2) (0,3),(0,3) (0,2),(0,4) (0,4),(0,2) (0,3),(0,3) (0,3),(0,4) 

(0,2),(0,3) (0,2),(0,4) (0,2),(0,6) (0,2),(0,3 ) (0,2),(0,4) (0,2),(0,5) 

(0,2),(0,3 ) (0,2),(0,4) (0,2),(0,5) (0,2),(0,3) (0,2),(0,4) (0,2),(0,5) 

Table 7.4 
Optimum values (SI, SI), (S2, S2) for ~ = ° and bI=O, b2=0, 

PI=.3, P2 =.1, K=100, cI=20, c2=10, hi = 4, h2 = 2, dl = 4/3, d2 = 2/3. 

(AI,A2)-+ (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) 
(0)\,0)2)-l-

(0,0) (0,5),(0,7) (0,4),(0,9) (0,4),(0,9) (0,7),(0,6) (0,7),(0,9) (0,6),(0,9) 

(0,1) (0,4),(0,4) (0,4),(0,6) (0,4),(0,7) (0,7),(0,4) (0,6),(0,6) (0,5),(0,7) 

(1,0) (0,2),(0,6) (0,2),(0,8) (0,2),(0,9) (0,3 ),(0, 5) (0,3),(0,7) (0,3),(0,8) 
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Figure 7.1 
(Optimum values of(s\, SI), (S2, S2) 

PI =.3, P2 =.1, K =100, Cl =20, C2 =10, hi = 4, h2 = 2, d l = 4/3, d2 = 213, 
bl =200, b2=100, Al = 2, A2 = 1, illl = 1, ill2 = 1. 
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., I I I I· I I I I I I I 
o 2 3 4 5 6 7 8 9 10 
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Chapter VIII 

Two Commodity Inventory Problem 

with Markov Shift in Demand* 

8.1 INTRODUCTION 

Two models of a two commodity - Cl and C2 - inventory problem are 

discussed in this chapter. The type of commodity demanded at successive 

demand epochs constitutes a Markov chain. Each arrival can demand one unit 

of Cl, or one unit of C2 or one unit each of Cl and C2. Shortages are not 

permitted and the lead time is assumed to be zero. The interarrival times of 

demands are i.i.d. random variables with absolutely continuous distribution 

function G(.) having finite mean J..l. 

In the first model, the replenishment policy is to order for C alone so as 

to bring the inventory level to Si whenever the inventory level of Ci falls to the 

reordering point Si after the previous replenishment (i = 1, 2). In the second 

model, the replenishment policy is to order for both Cl and C2 so as to make 

the inventory levels maximum (SI and S2) whenever the inventory level of at 

least one of the commodities reaches its reordering point (SI or S2) after the 

previous replenishment. 

• The results of this chapter are published in International Journal of Information alld 
Management Sciences, Vol. 5,3, (1994 ). 
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The objectives are to fmd time dependent and steady state system state 

probabilities, to find optimum values of (Si, SD, i = 1, 2, at steady state and to 

compare the two replenishment policies in the two models. Section 8.2 explains 

the notations used in this chapter. Section 8.3 is devoted to Model I and section 

8.4 deals with Model 11. Numerical problems are discussed in section 8.5 in 

which the last two problems compare the two models. 

Krishnamoorthy, Iqbal and Lakshmy (1997) deal with a two commodity 

inventory problem with Markov shift in demand in which each arrival can 

demand only unit item of either of the commodities but not both. Tqey provide 

characterization for the limiting distribution of the system states. 

Krishnamoorthy and Varghese (1994a) generalize their model to arbitrary units 

of demands. In this chapter we generalize the problem to arrivals demanding 

unit item of either of the commodities or both. As an application of the models 

studied here consider computer and printer. Initially both are purchased and 

subsequently one or the other or both are replaced at various epochs. 

8.2 NOTATIONS 

C : Commodity of type i (i = 1, 2) 

Si : Maximum inventory level of C (i = I, 2) 

Si : Reordering point of C (i = 1, 2) 

~ :Si - Si (i = 1, 2) 

G(.) : The distribution function of inter arrival times of demands. 

R+ : The set of non-negative real numbers. 

If :The set of non-negative integers. 

o[x, y] : 1 if x = y ; 0 otherwise. 

Pij : Pr{ demand is for q I the previous demand was for C} 

P : (pij) i, j = 1, 2, 3. 



(aI, a2, a3): Invariant probability measure ofP. 

rl' b ,I 

nl 

bl · ,I 

b· O ), 

boo 
),1 

r· . b j,l 

nJ 

if nl =O;'li =O;i=O,l, ..... nl , 

if nl = 0; rl,i :;t: O. 

if III :;t: O. 

if rl,O = O. 

if rl,O :;t: O. 

if rl,i = O. 

i = 1,2, .... nl -1 
if rl,i :;t: 0 

if rln =0. , I 

if rj,O = O. 

j = 2,3, ..... ,k 
if 'j,O :;t: o. 

if rj,i = O. i = 1,2, .... l1j-1 

if r· . :;t: 0 j = 2,3, ......... , k 
),1 

if r)· n. = O. 
, j 

j = 2,3, ...... ,k 
if r)' n :;t: 0 

, j 

if nj = O;rj,i = O;i = O,l, ..... nj. 

if nj = O;rj,o:;t: O. j = 2,3, .... ,k 

ifnj:;t:O. 
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r.. r· 
d j,l : are obtained from b/" by interchanging the subscripts 1 and 2 
~ j 

of Pij '5 and ai '5. 
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,. r· 
h ),1 : are obtained from b/I by interchanging the subscripts 1 and 3 
~ ) 

of Pij 's and Ui 'So 

~I'i : are obtained from b;;,i by replacing Ui by Pi 

h-'I,i 'I· 
nl : are obtained from hnl,1 by replacing Ui by Pi 

h~I'i : are obtained from h;;,i by replacing Ui by cri 

-'I· 'I· 
dn/ : are obtained from dnl,1 by replacing Ui by crj 

Ej : {sj+l, Sj +2, ........ , Sj} ; i = 1,2. 

Ejj : {sj+l, Sj +2, ........ , Si -I}; i = 1,2. 

E3 : {I, 2, 3} 

El : El x E2 x E3 

E2 : (Ell x E22 x E3) U (Ell x {S2} x {1}) u ({ S d X E22 X {2}) 

u ({Sd x {S2} x E3) 

E*n : {(i,j,k) I (i,j,k) =(i l - Sl,jl- S2, k l), (il,jl, kl ) E Ell}; n =1,2. 

nn : [nn (i,j,k)]; (i, j, k) E En, n = 1,2. 

8.3 MODEL I 

In this model, the replenishment policy is to order for Cj alone so as to 

bring the inventory level to Si whenever the inventory level of Cj falls to the 

reordering point Si after the previous replenishment (i = 1, 2). 

8.3.1 Analysis of the Model 

Let 0 = To < T I <T 2<. ..... <T n <... be the succeSSlve demand epochs. 

Denote by Xn I, Yn I ,n e NO, the inventory levels of Cl and C2 respectively, just 

after meeting the demand at Tn, and X(t), yl(t) the respective inventory levels at 



1 1 1 

time t. We assume that X o = X (0) = SI and io = i (0) = 82 and the initial 

demand at To is for Cl. Let 

r 1 if the demand at Tn is for Cl 

Zn = ~ 2 if the demand at Tn is for C2 

l3 if the demand at Tn is for both Cl and C2 

and Pr{Zn+1 = jlZn = i} = Pij ; (i,j = 1, 2, 3; n eNo). Then {Zn, ne N°} IS a 

Markov chain on the state space E3, with initial probability vector (1, 0, 0) and 

one step transition probability matrix P = (Pij); i, j = 1,2,3. Assuming that P is 

irreducible and aperiodic {Zn, ne NO} will be an irreducible ergodic Markov 

chain. 

We have the following 

Lemma 8.1 

{(X n,yin, Zn), neN°} is a Markov chain, whose states space is El with 

initial probability, 

Pr{ (X 6 ,rJ ,Zo) = (i,},k») = {~ 
otherwise. 

and one step transition probability matrix, 

pI = [ql {(ibh ,kl ), (i2 ,h ,k2 )}]; (i l ,h ,kl ),(i2 ,h ,k2 ) E E 

where ql{(i l ,h,k l ),(i2,h,k2 )} 

r I Pk1k2 

I Pk1k2 

I 
IPk1k2 

_I Pk1k2 

-1 Pklk2 

IPk1k2 

I Pk1k2 

lpOk1k2 

if k2 =l;Jt =h)2 =il-1;sl +l<il 

if k2 =l;h =h;i2 =Sl;il =sl +1 

if k 2 = 2; h - 1 = h ; i 2 = i 1; s2 + 1 < h 
if k2 =2;il =i2;h =S2;h =s2 + 1 

if k2 = 3)2 = Sl;h = il -l;il = SI + l;iI > s2+1 

if k2 =3;i2 =h -l;h =S2· il >sl +l;h =s2 +1 , 

otherwise 

(8.1) 

(8.2) 

(8.3) 



112 

Lemma 8.2 

{ (X ~ , y; , Z n ), Tn ; n E NO } is a Markov renewal process on the state space 

El with semi-Markov kernel, 

QI =[QI{(iI,iI,kl ),(i2,h,k2),t}; (i1,iI,k l ),(i2,h,k2) EEI;t ER+ (S.4) 

where 

QI{(il>iI,k l ), (i2,h,k2), t} 

=Pr{(X~+1 =i2,y;+1 =h'Zn+1 =k2),Tn+l-l~ ~tl(X~ =il,Y; =)I,Zn =kl)}(S.5) 

=ql{(iI,)I,kd,(i2,h,k2)}.G(t); (i1,)I,kd,(i2,h,k2) EEl 

8.3.2 Time Dependent System State Probabilities 

Since the depletion of inventory is only due to demand, we have, 

XI(t) = XI!} 
I I for Tn ~ t < Tn+I' 

Y (I) = Yn 

(S.6) 

Ifwe define Z(t)=Zn for Tn ~t < Tn+l>then ([XI(t),yl(t),Z(t)], lE R+}is a 

semi-Markov process III which the Markov renewal process, 

{X~,y; ,Zn), nE NO}, is embedded with semi-Markov kernel Ql. 

If pl{(iI,iI,k l ),(i2,h,k2),t} 

= Pr{X I (t) = i2, yl (t) = h, Z(t) = k2)1 (X 1(0) = i l , yl (0) = )1, Z(O) = k l )} (S. 7) 

{(iI,iI,kJ},(i2,h,k2),E £I,t E R+ 

we have the following 

Theorem 8.1 

The transient probabilities of the inventory states are given by 

t 

pl{(Sl>S2,l),(i ,),k ),t}=J R I{(SI,S2,l),(i ,) ,k ),du}{l-G(t-u)} 
° (8.8) 

for all (i,), k ) EEl, I E R+ 



where 

00 

RI (SI ,S2 ,l),(i ,j , k ), t} = L I*m Q { (S I, S 2 ,1), (i , j , k ), t} 
m=O 

with the convention, 
1*0 {I if x = Y 

Q (x,y, t) = 0 otherwise 

Proof: 

Define 

then, 

el{(i,j,k),t}=l-G(t) for all (i,j,k)EEI,tER+. 

Conditioning on the first demand epoch T 1, we have 

pl{(SI,S2,l),(i ,j ,k ),t} 
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(S.9) 

= Pr{[X I (1) = i, yl(t) = j, Z(1) = k]; 1i > t I [Xl (0) = SI,YI (0) = S2, Z(O) = I]} 
(S.lO) 

+ Pr { [X I (t) = i, Y I (t) = j, Z (t) = k ]; 1i ~ t I [X I (0) = SI, Y I (0) = S 2 , Z (0) = I]} 

=o[(SI,S2,1),(i,j,k)] el {(SI,S2,l),t} 

+J L QI{(SI,S2,1),(iI,iI,k l ),du} pl{(iI,iI,k1),(i,j,k),t-u}(S.11) 

o (i\,jJ,k\)EE 1 

The solution of the above Markov renewal equations are 

pi {(SI, S2 ,1), (i,j, k), t} 

= J L RI {(SI ,S2 ,l),(il ,iI ,kl ),du} OWl ,JJ ,kI ), (i,j, k)]e l {(i,j, k), t - u} 
o (iJ,iI,k\)EE\ 

(8.12) 

from which the theorem follows easily. 



8.3.3 Limiting Probabilities 

At steady state the one-step transition probability matrix, 

lim Ql{Ul,jl,kd,(i2,h,k2),t}] 
t~oo 
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IS pi (see (8.2) - (8.5)). Since the conesponding Markov chain, 

{X~'Ynl,Zn),n E NO}, is ineducible and ergodic, the invariant probability 

measure, ni, of this Markov chain obtained as the solutions of 

L;rrl(i,j,k) ql {i,j,k),(il,h,kd} = ;rrl(il,h,k1) for all (il,jl,k l ) E E 1(8.13) 
(i,j,k)eEI 

with L;rrl(i,j,k) = 1, IS umque. (8.14 ) 
(i,j,k)e El 

Theorem 8.2 

The probabilities that the system state is at (i,J, k) at steady state, 

lim pl{(SI,S2,l),(i,j,k),t} = ;rrIU,j,k); (i,j,k) E ~.I (8.15) 
t~oo 

which are independent of the initial state. 

Proof: 

From theorem 8.1, we have 

. 1 . . ;rr I(i,j,k) n(i,j,k) 
hm p {(SI,S2,1),(I,j,k),t} = " 1.. I.. (8.16) 
t~oo L...J ( .. k) EI;rr (11,1l,k1) m (11,ll,kI> 

II,li, I e 

where m'(hJ"k,) is the mean sojourn time in the state (iIJI,kl ) of the Markov 

I { ( 110} d renewa process, [X n, Yn , Zn ), Tn ], n E N an 

n(i,j,k) = 181 {(i,j,k),t}dt. 

° 
= 1[1- G(t)]dt. 

° 

(8.17) 
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But ml(il,h,k l ) = E[Tn+l - Tn I(X~ = i,Ynl = ),Zn = k)] = 7[1- G(t)dl. (8.18) 
o 

Substituting these values in (8.16) we get (8.15). Hence the theorem. 

Theorem 8.3. 

The probabilities that the inventory system state is at (i. j. k) at steady 

state is independent of i and j and is given by 

They are uniformly distributed if and only if P is doubly stochastic. 

Proof: 

where 

From (8.13) we get 

3 

L1l' lU,),k)Pkl = 1l' l( < i -1 >,),1) 
k=l 

3 

L1l'1(i,),k)Pk2 = 1l'l(i,<) -1 >,2) 
k=l 

3 

L1l' l U,),k)Pk3 = 1l'1« i -1 >,<) -1 >,3) 
k=l 

{ i -1 
d-1>= SI 

if i 'i=- sI + 1 {) - 1 
and <) -1 >= 

if i = sI + 1 S2 

It can be easily verified that 

1( .. k) ak 
1l' 1,j, = M M; 

1 x 2 
(i,),k) E El 

if ) 'i=- s2 + 
if j= s2 + 1 

(8.19) 

(8.20) 

(8.21 ) 

is a solution to the system (8.20) and (8.14) .Since the solution is unique, there 

is no other solution to the system. Substituting (8.21) in (8.15) we get (8.19). If 

P is doubly stochastic the uniqueness forces the invariant measures (a}, a2, a3) 
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to be uniform. Therefore from (8.21) ;rrl(i,j,k); (i,j,k) E El will be uniform, 

hence from (8.19) the steady state probabilities are uniform. Conversely, if the 

probabilities at steady state are uniform, then from (8.19) and (8.21), UI=U2=U3 

3 

and substituting in Lai Pi} = a j; j = 1,2,3 
i=1 

we at once see that P is doubly stochastic. Hence the theorem. 

8.3.4 Time between the replenishments 

In the present model, the replenishment of one commodity IS 

independent of the other. Hence considering the replenishment epochs of Cl 

alone we have the following 

Theorem 8.4 

Let TI represent the time elapsed between two consecutive replen,shment 

epochs of commodity Cl and FI {(SI,jl,kl ),( SI,j2,k2), t} be its distribution, then 

FI {(SI,jl,kl ),( SI,j2,k2), t}= FII {(SI,jl,kl ),( SI,j2,1), t} 

where 

FII{(SljJ,kl ),( SI,j2,1),t} 

Mfk 

k=) nl/l2,·····nk=0 Z=Zo 

In) +k=MI 

+ F21 {(SI,jl,kl ),( SI,j2,3),t}, (k 1 = 1, 3) 

zM2I-h 

"! o,"! I , ...... 'i n 1''2 o,·······rk =0 " , , ,nk 

Ir),; +In)=zM2+JI-h 

and F21{(SI,jl,kl ),( SI,j2,3),t} 

Ik 00 

I 
zM2~-h 

k=l nl,f/2,·····nk=O z=Zo 

In) +k=MI 
rl O,rll,······/j n 1 ,r2 o,·······rk,n =0 

" " k 
'f"),, +k=zM2+jl-jz 

(8.22) 

(8.23) 

(8.24) 
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in which {o if iI ~ 12 
z -
0- 1 if)) < 12 

Proof: 

Assume that there is a replenishment of commodity Cl just after the nth 

demand epoch ,then Zn may be 1 or 3. Hence (8.22). Consider a replenishment 

period ending with the nth arrival, where Zn = I, in which there are exactly k(k = 

1,2, .... MI) demands for Cl alone after the previous replenishment. In this 

replenishment period there may be z (varying from Zo to CIJ) replenishments of 

commodity C2. Denote by njU = 1,2, ..... k) the number of demands for both Cl 

and C2 in between the U - Iyh and fh demands for Cl alone and r .. 
j,1 

U = 1,2, ... , k, i = 1,2, .... ,nj -1) the number of demands for C2 alone in between 

the ith and (i + 1)th demand for both Cl and C2 that happened after the U - 1 )th 

demand for Cl alone, and jth demand for Cl alone. Since there are exactly k 

demands for Cl alone and the replenishment is due to a demand for Cl alone, nj 

can vary from zero to MI - k with the condition that k + L"j = M, and rj.i's 

can vary from zero to zM2 + )1 - )2 with the condition that 

L>j,; + 'Lnj = zM2 + )1 - )2' With these notations (8.23) follows easily. 

Now consider a replenishment epoch of Cl ending with the nth arrival, 

where Zn = 3. Suppose that there are exactly k combined demands for C I and C2 

.Let nj denote the number of demands of C I alone in between the U - 1 yh and fh 

combined demands, rj,i U = 1,2, ... k; i = 1,2, .... nj - 1) denote the number of 

demands of C2 alone in between the ith and (i+ 1 yh demand of C I that happened 

after the U - 1 yh combined demand of Cl and C2 , rJ· n. denote the number of 
, J 

demands of C2 alone in between the nj th demand of C I that happened after the 

U - Iyh combined demand of Cl and C2 , and the fh combined demand of Cl 
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and C2 . Since there are exactly k combined demands for Cl and C2, 

L>i.; + k = zM2 + J, - J2 during this period. Hence (8.24). 

In a similar way considering the replenishment epochs of commodity C2 

we can prove the following 

Theorem 8.5 

Let T2 represent the time elapsed between two consecutive replenishment 

epochs of commodity C2 and F2 {(i), S2, k)), (i2, S2, k2), t} be its distribution, 

then 

F2 {(i), S2, k)), (i2, S2, k2), t}= F)2 {(i), S2, k)), (i2, S2, 2), t} 

+ F/ {(i), S2, k)), (i2, S2, 3), t}; (kl=2, 3)(8.25) 

where F)2 {(i), S2, k)), (h, S2, 2), t} 

=I Mfk 
00 

I 
k=! nl/12,,,,,,nk=O 

L.nj+k=M2 

z=Zo (8.26) 

=~ 
00 

L ';:;;fil· "2· rk· h ,I h ,I h ,I 

nl n2···· nk 
k=l z=zO nl,n2 ,,,,,)1k =0 r 1,0, r 1,1,,, .. ,,r I,n I'r2,0 ,."""rk,nk = 0 

Lnj +k=zMI+il-i2 Lrj,; +k=M2 
(8.27) 

in which 

8.3:5. Optimization Problem 

Let Wj be the holding cost for one unit of Cj per unit time (j =1,2).Then 

the expected holding cost per unit time, 
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E(Hl) = L 
(i,j,k)eE l 

(8.28) 
L (iwl+}w2);r lUl+Sl,h+ S2, k)+slwl+s2 w2 

(ibh,k) e E·1 
= 

Hence E(HI) is minimwn for Sl= S2 = O. Also because of (8.19), 

E(H 1 )= LUWI+jW2) ak +SIWI+S2 W2 
( .. k) E.1 M 1 x M 2 I,j, E 

1 
='2[WI (MI +1)+w2 (M 2 +l)]+SIWI +s2 w (8.29) 

1 
= E (H 1 ) + E (H 2 ), w here E (H i ) = '2 [ W i (M i + 1)] + si W i ' j = 1,2. 

From (8.22) - (8.27) we can easily calculate the expected replenishment 

cycle times, E(T i ) and E(T2). Also note that M j is the quantity of C j ordered at 

each replenishment epoch of C j (i = I, 2). 

If Kj is the fixed ordering cost and Cj is the unit procurement cost for 

Cj (i = 1, 2), then the total expected cost (TEe l ) for the inventory system per 

unit time is 

(8.30) 

= Total expected cost of Cl + Total expected cost of C2. 

Since E(TI) is independent of Sj for a given value of M j (i = 1,2), TEe I is 

minimum when SI = S2 = o. 
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8.4 MODEL 11 

In this model, the replenishment policy is to order for both Cl and C2 so 

as to make the inventory levels maximum (SI and S2) whenever the inventOlY 

level of at least one of the commodities reaches to its reordering point (SI or S2) 

after the previous replenishment. 

8.4.1 Analysis of the Model 

Let 0 = To < TI< T2< ...... <Tn < ... be the successive demand epochs. 

Denote by Xn2, Yn2 ,n E NO, the inventory levels of Cl and C2 respectivdy, just 

after meeting the demand at Tn, and X2(t), y2(t) the respective inventory levels 

at time t. We assume that X20 = X2 (0) = SI and y20 = y2 (0) = S2 and the 

initial demand at To is for C I. Let {Zn, nE N°} be the Markov chain as defined 

in section 8.3.1. 

We observe that {X;, Yn2 , Zn), nE NO} is also Markov chain, whose state 

space is El.. Here, starting from the state (S I, S2, 1) some of the states are not 

visited by the process. Hence the Markov chain will not be ilTeducible. So 

excluding these states we have the following: 

Lemma 8.3 

{(X2 n, y2n, Zn), nE N°} with state space E2 is an ilTeducible and ergodic 

Markov chain, having initial probability, 

Pr{(XJ, rJ ,Zo) = (i,j,k)) = g i/(i,j,k) = (SI ,S2 ,1) 

otherwise. 
(8.31 ) 

and one step transition probability matrix, 

p2 =[q2{(iI,iI,kd,(i2,h,k2 )}]; (iI,iI,k I),(i2,h,k2 ) E E2 (8.32) 

where 



Lemma 8.4 

if k2 = l;it = h ;i2 = il - l;sl + 1 < il 

if k2 = 1;h = S2;i2 = SI;i1 = SI + 1 

if k2 =3;i2 =il- 1;SI +1<il;h =it -1;s2 +1<)1 

if k2 =3;i2 =SI;h =S2; il =sl +1 or it =s2+1 
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(8.33) 

{ (X; , Y;; , Z n ), Tn ; n E NO} is a Markov renewal process on the state space 

E2 with semi-Markov kernel, 

Q2 =[Q2{(il,it,k1),(i2,h,k2),/}; (il,it,k1),(i2,h,k2) E £2;1 E R+] (8.34) 

where 

Q2 {(il ')1 ,kl),(i2,h ,k2)' I} 

= Pr{(X;+1 = i2 , Yn2+1 = h, Zn+l = k2), Tn+l - Tn ~ II(X; = il ,Yn2 =)1, Zn = k1)} 

(8.35) 

8.4.2 Transient and Steady State Probabilities 

Since 

X2(t)=x;1 

y2 (t) = Yn2 ~for Tn ~ 1< Tn+l 

Z(t) = Zn J 
(8.36) 

and if we denote p2 {(il, it, k1), (i2 , h, k2 ), I} 

= Pr{X 2 (I) = i2 ,y2 (I) =)2 ,Z(/) = k2 )1(X2 (0) = il ,y2 (0) =)1, Z(O) = k 1)} 

{Ul,)I,kd,(i2,h,k2 ),E E2,1 E R+ 

(8.37) 

we have, similar to Theorem 8.1, the following 
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Theorem 8. 6 

The transient probabilities of the inventory states are given by 

/ 

p2{(Sl,S2,l),(i ,j ,k ),t}=J R2{(Sl,S2,l),(i ,j ,k ),du}{l-G(t-u)} 

° 
for all (i, j ,k ) E E 2 ,t E R+ 

where (8.38) 
00 

R2(Sl,S2,1),(i ,j ,k ), t} = L 
m=O 

with the convention, 
2*0 {I if x = y 

Q (x,y,t) = 0 otherwise 

As in section 8.3.3, the invariant probability measure, [12 of the Markov 

chain, {X; ,Yn2 ,Zn),n E NO}, is obtained as the unique solution of 

L;rr2(i,j,k)q2 {i,j,k),(i1,jl,kd} = ;rr2 U1 ,h,k1) for all Ul,h,k1) E £2 8.39) 
(i,j,k)EE2 

with L;rr 2 (i, j, k) = 1 . 

(i,j,k)EE2 
(8.40) 

Also by the argument that led to theorem 8.2 we can prove that the probabilities 

that the system state is at (i,J, k) at steady state, 

lim p2{(SI,S2,l),(i,j,k),t} = ;rr2(i,j,k); (i,j,k) E 1~'2 (8.41 ) 
t~oo 

8.4.3 Replenishment Cycles and Optimization 

In this model, the stock levels of both Cl and C2 are brought to their 

maximum whenever the inventory level of at least one of the commodities has 

reached to its reordering point . The expression for the distribution of inter 

replenishment times is derived in the following 
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Theorem 8.7 

Let T represent the time elapsed between two consecutive replenishment 

epochs and F{ (SI, S2, kl ), (SI, S2, k2 ), t}, its distribution. Then 

3 

F{(SI ,S2, kd, (SI ,Sl, k1 ), t} = LFk {(SI ,S2 ,kd, (SI ,S2, k), t}; kl = 1,2,3; (8.42) 
k=I 

where 

(8.43) 

(8.44) 

(8.45) 

where 

<1>1= ~ Mfk Ntk hrl,i hr2,i hrk,i 
n n ...... n 

k=I nl.fl2 , ..... nk =0 rl,O, rl,1 , ...... rl,n J ,r2,O , ....... rk ,nk = 0 
J 2 k 

k~M2 LnJ+k=MJ Lrjj +k ~ M2 
(8.46) 

x G*(k+Lr),1 +LI1)) (t) 

and 

<1>2 = I M~-I Mfk rJ i r2 I rk J 

h n'J h112' ...... hl1k 
k=l nl.fl2 ..... ·l1k =0 rl,Q, rl,l ,·: .. ..rl,n J ,r2,Q , ....... 1} ,nk = 0 (8.47) k<MI Ln)+k<MJ Lr. +k = M2 ),1 

x G*(k+Lr),i +Ln)) (t) 

Proof: 

If the replenishment is just after the nth demand epoch, then Zn may be 1, 

2 or 3. The expressions (8.43) and (8.44) are derived on the same lines as (8.22) 
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and (8.25). Now consider a replenishment epoch ending with the nth arrival 

where Zn =3. If the replenishment has happened due to the falling of inventory 

level of Cl to SI or the levels of both Cl and C2 together to (SI. S2), then its 

distribution is given by (8.46), otherwise by (8.47). 

If Wj be the holding cost for one unit of Cj per unit time (i = 1,2),then 

the expected holding cost per unit time, 

E(H 2 )= L (iwI + Jw2);r 2(i l+sl,it +s2, k)+slwI +S2 W 2· 
(i1,iJ,k) EE*2 

Therefore E(H2) is minimum for SI = S2 = o. 

(8.48) 

The quantity ordered at each replenishment epoch is not fixed in the 

present model. Let MI and M2 represent the random replenishment quantities of 

Cl and C2 respectively. Since each arrival can demand utmost one unit of Cl, 

from (8.42), 

~ M2-1 

E(M)=L L 

+~ 

k=I nl.f!z,····J1k:::{) 

Lnj+k=M1 

Mfk 

nl /12 , ..... nk =0 

"L,nj+k=M I 

M~-l 

nl /12 ,····J1k =0 

Lnj+k<lvh 

Mz-I 

L 
rl,O> ri, 1 , ...... r l,n 1 ,r2,O,·······,rk,nk :::{) 

:u '+Ln<M2 j,1 j 

AIk 
rl,O, rI, I , ...... rl,n I ,r2,O , ....... rk .nk = 0 

"L,rj; +k:s; M2 

A'Ik 
rl,O, rl,l , ...... rl,n 1 ,r2,O , ....... rk ,nk = 0 

Lrj,j +k = M2 

An expression for E(M2) can be obtained similarly from (8.42). 

(8.49) 



125 

Let KJ, K2 be the fixed ordering costs for Cl, and C2 respectively and K 

be the joint fixed ordering cost. Then 

(8.50) 

Though the replenishment policy is to order for both Cl and C2 there 

may be replenishment periods without a single demand for C2. The probability 

for this event is 

(8.52) 

Similarly the probability for a replenishment period without a single demand for 

Cl is 

Therefore the expected fixed joint ordering cost is 

E(K*) = K(1- PI - P2) + KIPI + K 2P2 

(8.53) 

(8.54) 

The expected replenishment cycle time, E(1) can be derived from (8.42). 

If Cj is the unit procurement cost for C j (i = 1, 2), then the total expected cost 

(TEC2) for the system per unit time is 

2 E(K*)+CI£(M I )+E(M 2 ) , 2 
TEe = £(1) + E(H ) (8.55) 

Since E(1), E(MI), E(M2) are dependent only on M j (i = 1, 2), and not on 

Si , TEC2 is minimum when SI = S2 = o. 

8.5 NUMERICAL ILLUSTRATIONS 

In this section, we provide some numerical results for the models 

discussed. There are three sets of two problems each. The first set (Problem 8.1 

and 8.2) contains problems related to Model I. The second set (Problems 8.3 
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and 8.4) illustrates the second model. The third set (Problems 8.5 and 8.6) 

compares the expected total cost of the two models for different values of K. 

Figure 8.1 shows that the second model is not preferable if K ~ 53. Similarly we 

can conclude from Table 8.6 that the first model is better than the second if K ~ 

70. The probability of demanding C2 is more than that of Cl in Problems 8.1, 

8.3, and 8.5 where as in the other problems it is reversed. In each table the 

optimum values of the pair (Ml' M2) and the corresponding total expected cost 

are indicated. 

Problem 8.1 

1.1 .8 .11 
P =l.3 .6 .1J .1 .7 .2 

Kl = 40, K2 = 30, Cl = 5, C2 = 4, Wl = 1 ,W2 = .8, Il= 3 

Table 8.1 
(TEC) of Problem 8.1) 

Ml M2 E(Hl) Or. Cost Total cost E(H2) Or. Cost Total cost 
of C) of C) ofC2 ofC2 TEC) 

2 2 1.5 
1 3 1.0 
3 1 2.0 
2 3 1.5 
3 2 2.0 

13 3 1 2.0 

Problem 8.2 

1.6 .1 .31 
P =l·7 .2 .1J 

.8 .1 .1 

2.8782 4.3782 1.2 5.0319 
5.2174 6.2174 1.6 3.6668 
2.1050 4.1050 0.8 9.2727 
2.8782 4.3782 1.6 3.6668 
2.1050 4.1050 1.2 5.0319 
2.1050 4.1050 1.6 3.6668 

Kl = 40, K2 = 50 , Cl = 6 , C2 = 8, Wl = 1.2 ,W2 = 1.6, Il= 3 

6.2319 10.610095 
5.2668 11.484222 

10.0727 14.177761 
5.2668 9.645047 
6.2319 10.336912 
5.2668 r 9.371865] 



Table 8.2 
(TEC I of Problem 8.2) 

I M2 E(H I ) Or. Cost Total cost E(H2) Or. Cost Total cost 
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of Cl of Cl ofC2 ofC2 TEC I 

2 2 1.8 
1 3 1.2 
3 1 2.4 
2 3 1.8 
3 2 2.4 

13 3 1 2.4 

Problem 8.3 

1.1 .8 .1l 
P =l.3 .6 .1J 

.1 .7 .2 

7.7037 9.5037 2.4 3.7993 6.1993 
13.6296 4.8296 3.2 2.8323 6.0323 
5.7284 8.l284 1.6 6.7246 8.3246 
7.7037 9.5037 3.2 2.8323 6.0323 
5.7284 8.1284 2.4 3.7993 6.1993 
5.7284 8.1284 3.2 2.8323 6.0323 

K = 60, KI = 40, K2 = 30, Cl = 5 , C2 = 4, WI = 1 ,W2 = .8 , J.l.= 3 

2 2 
1 3 
3 1 

12 3 1 
3 2 
3 3 

Problem 8.4 

,.6 .1 

P=l·7 .2 

.8 .1 

E(H) 

2.903213 
2.809675 
3.549750 
3.293567 
3.767602 
4.031526 

.3l 

.1J 

.1 

Table 8.3 
(TEC2 of Problem 8.3) 

0.748667 1.875667 
0.748000 1.617333 
0.336667 0.998333 
1.099400 2.585000 
0.777200 1.981900 
1.202287 2.911327 

E(T) 

7.030000 
6.360000 
3.550000 
9.902000 
7.393000 
11.051400 

15.702962 
20.861941 
16.453034 
15.536015 
14.327653 

114.1607061 

11.198045 
12.136090 
16.125337 

110.1551781 
11.772507 
10.371303 



E(H) 

2 2 4.660237 
1 3 5.799283 
3 1 4.314512 
2 3 6.129279 

13 2 I 5.163030 
3 3 6.496425 

Problem 8.5 

1.1 .8 .11 
P =l·3 .6 .1J 

.1 .7 .2 

Table 8.4 
(TEC2 of Problem 8.4) 

1.893333 0.711667 
0.994667 0.348000 
1.874667 0.748000 
1.975467 0.741800 
2.708433 1.029600 
2.924533 1.105983 

Kl = 40 , K2 = 30, Cl = 5 , C2 = 4, Wl = 1 ,W2 = .8 , ~= 3 

Figure 8.1 

E(T) 

6.490000 6.902662 
3.480000 23.210777 
6.360000 17.388726 
6.786000 18.040154 
9.221000 115.3145761 
9.981300 16.129946 

(Comparison ofTEC I and TEC2 in problem 8.5 when Ml = 2 and M 2 = 3 ) 

11 

10.5 

10 

I-
Cl) 9.5 
0 
U 

9 

8.5 

8 

40 

--Joint Or. 

--lnd.Or. 

45 50 55 

KVALUES 

60 65 70 
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Table 8.5 
(TEC I and TEC2 for different values ofK in Problem 8.5) 

TEC2 (K=40) TEC2 (K=45) TEC2 (K=50) TEC2 (K=60) I 

2 2 10.610095 9.595390 9.996054 10.396717 1l.198045 
1 3 11.484222 10.307998 10.765021 11.222044 12.136090 
3 1 14.177761 14.444585 14.864773 15.284961 16.125337 

2 3 1 9.645047 1 8.678035 11 9.047321 11 9.416606 1110.155178 
3 2 10.336912 10.207964 10.599100 10.990236 11.772507 
3 3 1 9.3718651 9.020645 9.358309 9.695974 10.371303 

Problem 8.6 

1.6 .1 .3l 
P=l·7 .2 .1J 

.8 .1 .1 

Kl = 40, K2 = 50 , Cl = 6 , C2 = 8 , Wl = l.2 ,W2 = 1.6 , ~= 3 

Table 8.6 
(TEC' and TEC2 for different values ofK in Problem 8.6) 

TEC2 (K=50) TEC2 (K=60) TEC2 (K=70) TEC2 (K=80) 1 

2 2 15.702962 14.344880 15.197474 16.050068 16.902662 
1 3 20.861941 20.670548 21.517291 22.364034 23.210777 
3 1 16.453034 14.489355 15.455812 16.422269 17.388726 
2 3 15.536015 15.499629 16.346471 17.193312 18.040154 

3 2 1 14.327653 112.967759 1113.750031 1 114.532303 1115.3145761 
3 3 1 14.160706 1 13.8·97772 14.641830 15.385888 16.129946 

**************** 
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