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INTRODUCTION

Fuzziness is an unavoidable feature of most

humanistic systems [22] and it cannot be properly

studied within the frame-work of classical set theory

and two-valued logic. There has been several attempts

to develop the tools required for a proper study of

this concept. In 1965, Zadeh [57] introduced the

notion of fuzzy subsets as a generalisation of the

notion of subsets in ordinary set theory. Goguen's [24]

notion of L-fuzzy sets further generalises this concept.

In [36] Lou and Pan described fuzziness using four axioms

called " fuzzy axioms ", The theory of fuzzy sets ha s

been developed through a series of papers by Zadeh[57-62]

and hundreds of researchers all over the world. It

provides the right tool for studying fuzziness and other

human-centered systems [11]. Though there are some

controversies regarding the utility and essentiality of

fuzzy set theory, it has already developed into a theory

which challenges the traditional reliance on two-valued

logic and classical set theory as a basis for scientific

enquiry [22]. This theory has begun to b~ applied in

multitudes of scientific areas ranging from engineering
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and computer science to medical diagnosis and social

behaviour [22]. The theory of fuzzy sets is, in fact,

a step towards a rapprocheme~t between the precision

of classical mathematics and the pervasive imprecision

of the real world [29].

There were several attempts to fuzzify various

mathematical structures. The fuzzification of algebraic

structures was initiated by Rosenfeld [45]. He introduced

the notions of fuzzy subgroupoids and fuzzy subgroups;

and obtained some of their basic properties. Though

some other definitions of fuzzy subgroups are available

in the literature (see, for example, [2], [7], [8] and

[17]), Rosenfeld's definition seems to be the most

natural and popular one. Most of the recent works on

fuzzy groups follow Rosenfeld's definition. Abu Osman

([1], [2]), Ahsanullah and Khan [3-5], Anthony and

Sherwood ([9], [51]), Bhattacharya and Mukherjee

([12-14], [41], [42]), Das [19J, Dixit, Kumar and

Ajmal [21J, Liu [35J, Sessa [50J, Sidky and Mishref[52J

and Wetherilt [53] are some of the names associated

with recent developments in the theory of fuzzy groups.

The names of Bhattacharya and Mukherjee deserve special



3

mention. In a series of papers, they have developed

fuzzy parallels of several concepts in classical

group theory, and proved fuzzy generalisations of

some important theorems, like Lagrange's and Cayley's

theorems. Biswas [16] introduced and studied the

dual concept of anti-fuzzy subgroups. Studies on

some other fuzzy algebraic structures like fuzzy

semi-groups, fuzzy rings, fuzzy vector spaces and

fuzzy algebras are also available in the literature

(see [18], [28], [30-32], [43-44]). Fuzzy topological

groups were studied by Foster [23], Hohle [26], 3i Liang

Ma and Chun Hai Yu ([38-39], [54-55]).

In this thesis we study the properties of fuzzy

groups and their chains of level subgroups. We also

study the effect of group homomorphisms on the chain

of level subgroups of a fuzzy group, and its fuzzy

translates. Some results available in these areas

have been generalised, and many new results obtained.

Some of the results have been communicated [46-49J.

The thesis is divided into five chapters. Defini­

tions, notations and preliminary results from fuzzy set
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theory, which are required in the sequel, are

included in chapter I.

Generalisations of some results of Das [19]

are obtained in chapter 11. Examples of fuzzy sub-

groups are constructed to show the existence of fuzzy

groups of any finite level cardinality, and of

infinite level cardinality. Existence of fuzzy sub-

groups of a particular level cardinality is characterised

in terms of lengths of chains of subgroups. Groups

having fuzzy subgroups of every finite level cardinality

are identified as those having non-terminating chains

of distinct subgroups.

The effect of group homornorphisrns on the chains

of level subgroups of fuzzy groups is studied in chapter Ill.

If f:G --+ ~ is a group homomorphism and F[F*] is a fuzzy

subgroup of G[G*], then f(F) [f-l(F*)] is a fuzzy subgroup

of G*[G]. Level subgroups of a homomorphic pre-irnage of

a fuzzy group can be obtained as pre-images of level sub-

groups of the fuzzy group. It is observed that the

collection of all pre-images need not be distinct.

Surjectiveness of f is shown to be a sufficient condition

for the distinctness of pre-images. However, this
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condition is not necessary. In the case when the

collection of pre-images is countable, a necessary

and sufficient condition has been arrived at.

Dixit, Kumar and Ajmal [21] have studied the relation­

ship between the chains of level subgroups of a fuzzy

group F and its homomorphic image f(F). They assumed

that IIm(F)1 <~. We have studied the general case

and obtained a condition for the chain of level sub-

groups of f(F) to be the same as the image of the

chain of level subgroups of F under f. This generalises

the corresponding theorem in [21]. Further, we have

proved that f-invariance of F is a necessary and suffic­

ient condition for the images of level subgroups of F

under f to be distinct.

Fuzzy translation operators T + and Tarea a-
introduced and studied in chapter IV. Fuzzy subgroups

and fuzzy normal subgroups are characterised in terms

of their fuzzy translates. It is observed that these

operators commute with formations of fuzzy conjugates

and fuzzy cosets. However, fuzzy translates of a fuzzy

abelian subgroup need not be fuzzy abelian. All constant

fuzzy groups and their fuzzy translates are fuzzy abelian~

if and only if the group is abelian. For a non constant
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fuzzy subgroup of a non-abelian group we obtain a

condition on the translation parameter a, under which

fuzzy abelianness becomes translation invariant.

In the final chapter, the effect of the fuzzy

translation operators on the chains of level sub­

groups of.fuzzy groups is analysed. It is proved

that, in general, the chains of level subgroups of

fuzzy translates of a fuzzy group Fare subchains

of that of F. A sufficient condition on a is found,

for which the above chains coincide. The combined

action of the fuzzy translation operators and group

homomorphism on a fuzzy group is also studied.

All notations used in this work are either

standard or explained in the text. A list of notations

is provided at the end for easy reference. We shall

follow the usual convention of refering to item m.n

in chapter p, by m.n within the same chapter; and by

p.m.n elsewhere.



CHAPTER I

PRELIMINARIES

1. INTRODUCTION

In 1965, Zadeh [57] introduced the concept of

fuzzy subset as a gene~alisation of the notion of

'characteristic function in classical set theoryo

A fuzzy subset A of a non-empty set X is one which

is characterised by its membership function.

This chapter contains some definitions and

results in fuzzy set theory which are required in

the sequel. We assume familiarity with elementary

lattice theory as presented by Birkhoff [15] and

Davey and Priestly [20J. Throughout this work X

denotes an arbitrary non-empty set and I, the closed

unit interval [0,1].

~FUZZY SUBSETS

2.1. Definition [57]. A fuzzy subset A of X is a

function A:X~ I. Fuzzy subsets taking the values

o and 1 only are said to be crisp.

2.2. Notations. The following notations are used

throughout this work.
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2 {O, I}

N

a

V

/\

[a]

Im(A)

·•
··
·•

Collection of all fuzzy subsets of X

Collection of all crisp subsets of X

Constant fuzzy subset taking the value a.

Supremum or lattice join

Infemum or lattice meet

Cardinality of a

{ A(x):x € x]
V{ A(x):x€ X}

/\ {A(x):x € x}

2.3. Definition [56]. If A and a are fuzzy subsets
·of X, then,

(a)

(b)

A ~a

A = a

iff

iff

A( x) ~ a ( x), V x EX, and

A(x) =a(x), -V xEX.

2.4. Definition. For a fuzzy subset A of X, IIm(A)1

is called the level cardinality of A.

2.5. Definition [56].

of fuzzy subsets of X.

respectively defined by

Let lA.: j € J} be any collection
J

Their union and intersection are
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( U A.) (x) = V {AJ.(X): j E J}, and
j E J J

( n A) (x) =/\ {Aj(X): jE J}, ~x EX.
j f J j

2.6. Remark. The relation £ is a partial order

on IX. Further, (IX, ~ ) is a complete lattice with

- -1 and 0 respectively as the lattice infinity and zero.

Also 2X is a complete sublattice of it.

2.7. Definition [37]. The fuzzy complement of a fuzzy

subset A of X is defined by AC(x) = l-A(x),-\I x e X.

2.8. Definition [45]. A fuzzy subset A of X is said

to have V-property if for every S e 2X there exists

Xo E S such that

.
A -property is defined dually.

2.9. Remark. If A is a fuzzy subset of X with IIm(A)I< ~,

then A has both V and A-properties. In general, A has

V "';'property does not imply tha t A ha s 1\ -property, and

vice versa.
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2.10. Example. Let X be the set N of all natural

numbers. Define fuzzy subsets A and B by

A(x) = ;, B(x) = 1 - ; , ~ x 6 X.

Then A has V -property, but not A ; and B has

A -property, but not V •

3. IMAGES OF FUZZY SUBSETS.

In this section, we consider images and pre-

images of fuzzy subsets, and observe some of their

properties. Throughout this section X and Y are non­

empty sets; f:X ~Y is a function; A, Aj are fuzzy

subsets of X; and B, Bj are fUzzy subsets of Y.

3 01. Definition [56]. The image of A under f is the

fuzzy subset f(A) of Y, defined by

f(A) (y) ={V{ A(x): x e f-l(y)} , if f-l(y) I: ~

o , otherwise

Thepre-image of B under f is the fuzzy subset f- l(3)

of X given by

f-l(B)(x) = B(f(x»,\I x 6 X.
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3.2. Proposition [56]

(a) Al E A2 ~ f(Al) S f(A 2 )

(b) 81 So B2 ===* f-l(B l) S f- l(B
2).

3.3. Proposition [10]

(a) f-l( U Bj ) = U f-l(B
j

)
jEJ jeJ

(b) f- 1 ( n .B.) = (1 f-l(B
j

)
j E J J j E J

(c) f ( U A.)
j E J J

= U f(A].), and
jE.J

(d) f ( n A.) s
j € J ]

n f(A].), J being any index set.
j E J

3.4. Proposition

f(f-l(B»~B. If f is a surjection, then f(f-l(B»=B.

Proof: Let yE Y. We have two cases.

Case (il. y e f(X): Then, we have

f(f-l(B»)(y) =V{B(f(x»:f(x)=y}

= B(y).

Case (ii). y ~ f(X): Then f-l(y) is empty, and hence

we have,
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f(f-l(B»(y) = 0 ~ B(y)

Hence,

If f is a surjection, then case (ii) is absent, and

hen ce' f ( f -1 (B» = B. ..

3.5. Proposition

f-l(f(A»::::) A. If f is an injection, then

f-l(f(A» = A.

Proof: For any x E X,

f-l(f(A»(x) = f(A) (f(x»

= V[A(z): f(z) = f( x)} ·······d)

~ A(x)

Hence,

f-l(f(A» ;2 A.

If f is an injection, then it follows by (i) that

f-l(f(A»(x) = A(x),::V x € X·

We proceed to prove that equality of f-1(f(A» and A

can be ensured by a weaker condition than injectiveness

of f.
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3.6. Definition [45]. A is said to be f-invariant

if A(Xl) = A(x2 ) whenever f(x l) = f(~); xl,x2 E X.

3.7. Example. Let P = {a,b,c,d} and Q = N. Define

g: P ~ Q by g(a) = g(d) = 5, g(b) = 3, and g(c) = 4.

F:X~ I by F(a) F(d) 1 F(b) = F(c) 1Define = = 2' and = 3 •

Then F is g-invariant.

3.8. Remark. If f is an injection, then every fuzzy

subset of X is f-invariant. Also, constant fuzzy sub-

sets of X are g-invariant with respect to any function

9 on X.

3.9. Theorem.

f-l( f'{A) = A ~ A is f-invariant.

Proof: ( =9): Assume that f-l(f(A» =A. Let

xl'x2 € X such that f(x l) = f(~). Then,

= f(A) (f(xl »

= V{A(z) ef'{z ) = f(x l)}

= V(A(z) ef {z ) = f(~)}

= A(x2)·
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( ~ ): Let A be f-invariant. Then for any x € X,

we have,

f-l(f(A))(x) = f(A) (f(x))

=V{A (z ) : f (z ) = f ( x)}

= A(x)

3.10. Proposition. Let f be a surjection and 1 be

the collection of all f-invariant fuzzy subsets of Xo

Then ~f: S-~ IY defined by 'lrf(A) = f(A), :v A E '3- ,

is a bijection.

Proof: For Al ,A 2 € $- ,

'lrf(A l) = '4 f(A 2) =:) f(A l) = f(A 2)

=> f-l( f(A
l))

= f-l( f(A
2))

Hence 4-f is an injection. Now, let B E IY and A = f-l(B).

Then A E IX. We want to see that A € ~ • That is, A is

f-invariant. Let xl,x2 e X such that f(x l)=f(x2). Then,

Hence Aft]. Also, by Proposition 3.4, we have,
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Thus ~f is a surjection also.

3.11. Remark. It follows from the above proposition

that for any function f:X ~Y, there is a set-

theoretic isomorphism between the collection ~ of all

f-invariant fuzzy subsets of X and rf(X). For any

non-empty set X, I If(X) I ~ c, where c is the cardinality

of the continuum R. Hence, for any function f on X, there

are uncountably many f-invariaht fuzzy subsets of X.



CHAPTER 11

FUZZY SUBGROUPS

1. INTRODUCTION

The study of fuzzy algebraic structures was

initiated by Rosenfeld [45]. He defined fuzzy subgroup

as an extension of the concept of sUbgroup in classical

group theory. Some other definitions of fuzzy subgroups

are available in the literature ([2], [7], [a], [17]).

Most of the rQcent studies on fuzzy groups use Rosenfeld's

definition.

In this chapter, we first give some definitions

and results from fuzzy group theory which are used in

this work. Then we proceed to obtain extensions of

some results of Das [19]. We prove that the groups

A(N) and Z(p=) admit fuzzy subgroups of all finite level

cardinalities; and give a characterisation of such groups.

The terms and results from classical group theory

which are used in this work are as in Herstein [25],

Hungerford [27], Lang [34], and Kurosh [33]. Throughout

this work G is an arbitrary multiplicative group with e

as the identity element.
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2. BASIC CONCEPTS

2.1. Definition [45]. A fuzzy subset F of G is said

to be a fuzzy subgroup of G if for every x,y € G

(1) F(xy) '?/\ { F(x), F(y)}; and

(2) F(x-l) = F(x).

2.2 Remark. All constant fuzzy subsets of G are

fuzzy subgroups of G. For any non-empty subset F of G,

X, F is a fuzzy subgroup of G if, and only if, F is a

subgroup of G. Hence the above definition extends the

concept of subgroup in classical group theory, to the
N

fuzzy context. If F is empty, then XF = 0 is a fuzzy

subgroup of G, but F is not a subgroup of G.

The terms "fuzzy group" and "fuzzy subgroup" are

used interchangeably.

Examples of fuzzy groups of small level cardinality

are given by various authors. We give below an example

of a fuzzy group with infinite level cardinality.

2.3. Example. Let Z be the group of all integers under

addition. We observe that if x is a non-zero even integer,
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then it can be written uniquely as x = m.2 n, where

m and n are integers, m is old, and n > O. We shall

call this the standard form of x. Define F:Z ~ I by

J:_1 , if x is odd

F(x) = if x = m.2 n in the standard formII n , .if x = 0

It follows that F(-x) = F(x),:V x€ Z and IIm(F)1 = ~o'

where No is the cardinality of N. Now, it suffices to

verify that

F( x+y) ~ A {F ( x) ,F (y)} ,V x, y € z,

When x or y is zero, the result is obvious. The case

when x or y is odd also is trivial. Now let x and y be

both integers. Let x
nl

and y 2!'l2non-zero even = ml·2 = ~.

be their standard forms. Let "i < ~. Then

x+y =

F(x+y) 1 -
1= nl

= A {l- 1 1- L} since nl <~n ' n '1 2

= A {F(x), F(y)}.
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2.4. Proposition [45]. If F is a fuzzy subgroup of G

then,

(a) F(e) ~ F(x), ~ x € G; and

(b) GF = [x E G:F(x) = F(e)} is a subgroup of G.

2.5. Proposition [45]. A fuzzy subset F of G is a fuzzy

subgroup if, and only if,

F(xy-l) ~A [F(x), F(y)} ,-V x,y € G.

2.6. Proposition [45]. The intersection of any collection

of fuzzy subgroups of G is a fuzzy subgroup of G.

2.7. Remark. It is known from classical group theory

that the union of two subgroups, in general, is not a

subgroup. Hence it follows that the union of two fuzzy

subgroups need not be a fuzzy subgroup.

Let ~(G) denote the collection of all fuzzy sub­

groups of G. Then ~(G), under fuzzy set inclusion, is
1'\1 ,."

a complete lattice with I as the largest and 0 as the

smallest elements. If Fj € ~(G), -V j e J, J being an

arbitrary index set, we have,
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1\ F. = n F. ; and
j € J J j € J J

V Fj = n{F E g(G) . F::::> U F.}..
j E J jEJ J

It may be observed that ~(G) is not a sublattice

of I G•

2.8. Definition [41]. A fuzzy subgroup F of G is

said to be fuzzy normal if

F(xy) = F(yx), ~ x,y € G.

We shall denote the collection of all fuzzy normal

subgroups of G by ~N(G).

2.9. Proposition [41]. Let F be a non-empty subset of G.

Then ?VF is a fuzzy normal subgroup of G iff F is a normal

subgroup of G.

2.10. Proposition [41]. A fuzzy subgroup F of G is fuzzy

normal iff

F(y-lxy) = F(x), -V x,y € G.

2.11. Definition [42]. Let F be a fuzzy subgroup of G

and x E G. Then the fuzzy subsets Fx and xF of G defined

by



Fx(g)

xF(g)

=

=
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F(gx-l), and

F(x-lg), ~ g € G

are respectively called the rioht anj left fuzzy cosets

of F determined by x.

If F is an ordinary subgroup c: G and x € G,

then (XF)x =NFx and x(XF) =XxF•

2.12. Definition [42]. If F is a fuzzy subgroup of G

and x E G, then the fuzzy subset Cx(?) of G

by

Cx(F)(g) = F(x-lg x), ~ 9 6 G

defined

is called the fuzzy conjugate of F determined by x.

2.13. Definition [13]. A fuzzy subgroup F of G is

said to be fuzzy abelian if G_ is an abelian subgroup
t:

of G.

We shall denote the collection er all fuzzy

abelian subgroups of G by 5-R(G).

2.14. Proposition [13]. A non-empty subset H of G is

an abelian subgroup of G iff ~H is a :uzzy abelian

subgroup of G.
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2.15. Proposition [42]. A fuzzy subgroup F of G

is fuzzy normal iff Fx = xF, -¥ x 6 G.

2.16. Remark. In recent times, Bhattacharya and

Mukherjee ([12-13], [41-42]) have made some significant

contributions to the theory of fuzzy groups. They

introduced fuzzy parallels of several concepts in

classical group theory, and obtained extensions of

some important theorems.

Ajmal and Thomas [6] have studied the lattice

structure of 3'(G). They proved that, if

L f = {F63(G) :

Lt = tF E 1(G) :

IIm(F)1 < co},

F(e)=t}

and

then Lf and Lt' and hence LfO Lt are sublattices of ~(G).

Also, if Lf nt denote the collection of all fuzzy normal

subgroups of G having finite range and the same support t

at e, then Lf nt is a modular sublattice of Lfn Lt; and

hence of ~(G).

We do not go into the details of these as we do

not use them in this work.
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3. LEVEL SUBGROUPS

Das [19] used Zadeh's notion of level subsets

to define level subgroups of a fuzzy group. Many

properties of fuzzy groups have been characterised

by using their level subgroups; and hence it has

become one of the important tools used in the study

of fuzzy groups.

3.1. Definition [19]. Let A be a fuzzy subset of X

and t € I. Then At = {,x e X:A(x) ~ t} is called the

level subset of A at t.

3.2. Notation. We shall use the notation Ft for

t € R" I also, in the following sense

,

,
if t > 1

if t < 0

3.3. Proposition [19]. If F is a fuzzy sUbgroup of G,

then

(a) Ft = 1Z5,-V t) F( e) , and

(b) Ft is a subgroup of G, for every o ~ t ~ F( e) •

3.4. Proposition [19]. A fuzzy subset F of G is a

fuzzy subgroup of G iff Ft is a subgroup of G,

-\'t€ [O,F(e)].
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3.5. Definition [19]. If F is a fuzzy subgroup

of G and 0 ~ t ~ F(e), then Ft is called the level

subgroup of F at t.

3.6. Proposition. If F is a fuzzy subgroup of G

and t l,t2 € I, then

In particular, if t l,t2 € Im(F), then

Proof: Trivial.

The following is the corrected form of theorem 3.1.

of Das [19] as given by Mashinchi and Zahedi [40].

3.7. Proposition. Let G be a group, F be a fuzzy sub-

group of G and t l,t2 € I with t l < t 2• Then F
t l

and F~

are equal iff there exists no x € G such that

3.8. Proposition [19]. If F is a fuzzy subgroup of a

finite group G with Im(F) = {t i: i=l,2, •.• ,n}, then
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{ Ft. : i = 1,2, •• ,n} contains all level subgroups
~

of F. Further, if t l > t 2 > ••• > t n then the level

subgroups of F form a chain GF = Ft ~ Ft ~ ••• $Ft =G.
1 2 n

The above proposition considers only fuzzy sub­

groups having finite level cardinality. We shall

extend it to an arbitrary fuzzy subgroup.

3.9. Proposition. Let F be a fuzzy subgroup of G

wi th lm( F) = {t.: j 6 J} and '3' = {Ft: j t J}. Then
J j

(a) there exi sts a unique j 0 e J such tha t

tjo~tj,-VjE.J.

(b) n Ft. =
jEJ J

andG =(c) U Ft.'
j E: J J

(d) the members of ~ form a chain.

Proof (a).

jo E: J such

we have, t.
J o

t. ~ t., -V
J o J

Since F(e) E lm(F), there exists a unique

that F(e) = t .• By proposition 2.4(a),
J o

~ F(x), for every x E G and hence

j e J.
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(b) We have,

Ft. ={x e G:F(x) ~ t. }
J o J o

={XEG: F(x) = t.} , by Prop. 2.4(a)
J o

Since t. ~ tj'~ . E J, by Proposition 3.6., we have
J o J

Ft S Ft. ,-V j E J.
jo J

Hence,

Ft c;: n Ft .:
jo jeJ J

Also, since jo E J, we get

=

(c) Since Ft.C G,\r' j€ J, we have,
J

U Ft ~ G.
j e J j

Now let x E G. Since F(x) E Im(F), there exists

jx € J such that F(x) = Obviously, x e Ft. ,
J x

and hence x e U Ft.. Hence,
j E J J

G c:: U Ft .:
j € J J
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( d) Since I is a cha in, for any i,j e J,

either t. ~ t. or t. ~ t j• Hence, by Proposition 3.6,
~ J ~

Ft.e; Ft. or Ft . 2 Ft .: This proves (d) •
~ J 1 J

3.10. Remark. In the finite case, '3' in the above

proposition is the chain of all level subgroups of F.

However, in general, ~ need not contain all level

subgroups of F. The following example proves this

observation.

3.11. Example. Let Q be the set of all rational

numbers, Z the set of all integers and p be a prime

number. Then

a,b E Z, b = pm for some

integer m ~ O},

is a Sylow p-subgroup of ~ , of infinite order. For

n = 0,1,2, •.. , let Cn be the cyclic subgroup of ~

generated by Z

of Z(pClO) such

1+ -. Then C is a proper subgroup
pn n

that Cn S Cn+1, for every n. Further,

C , where N = NU to} . [27J.n 0
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Define F: Z(p=) ~ I by F(x) = 2-n, if Cn is the

smallest subgroup containing x. Then F is a fuzzy

subgroup of Z(p=) with

But,

does not contain all level subgroups of F, since

Z( pOO) does not belong to '3 •

3.12. Theorem. Under the assumptions in Proposition 3.9

~ contains all level subgroups of F if and only if F

attains its infemum on all subgroups of G.

Proof. Necessity. Assume that ~ contains all level

subgroups of F. Let H be any subgroup of G. If F is

constant on H, there is nothing to prove. Assume that

F is not constant on H. We divide the proof into two

cases.

Case (i). H = G: Let t* = /\
j e J

t ..
J

Then t* ~ t.,
J

for every j E J, and hence
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F 2 Ft.' ~ j e J
t* J

Since ~ contains all level subgroups of F and

F = G, we have, G e 'd. Hence, there existso

t.* E Im(F) such that G = Ft • Also, by (1),
J j*

we have, Ft* 2 Ft.* = G. But all level subgroups
J

of F are subgroups of G, and hence

Ft* = Ft = G.
j*

(1 )

the definition of t*, we have, t* ~ t.*.
J

The proof is complete if we show that t* = t.*" By
J

Suppose

t* c t.* • Then there exists t. E Im(F) such that
J J

t* ~ t. < t.* • This implies that Ft.~ F = G,
J J J t j*

which is a contradiction.

Case (ii). H~ G: Let FH denote the restriction of
-1F to H. For any x , y € H, we have xy EH, and hence

=

~ /\ {F(x) ,F(y)}

= A{FH(X), FH(y)}·

Therefore, by Proposition 2.5, FH is a fuzzy subgroup
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of H. Now, let

= {j € J: F(h)

= {( FH) t .: j f
J

= t., for some h E H}, and
J

J HJ.

SinGe g contains all level subgroups of F, ~H

contains all level subgroups of FH; and hence by

case (i), there exists x* € H such that

FH(X*) = 1\ FH( x)
x E H

By the definition of FH, this implies that

F( x*) = 1\ F( x) •
x € H

Sufficiency. Assume that the infemum of F on every

subgroup of G is attained at some point of it. Let Ft

be any level subgroup of F. We want to prove that

Ft e ~. If t=t. , for some j E J, there is nothing
J

to prove. We assume that t ~tj,-Vj E J. Then

there does not exis t x E G such that F(x) = t. Let

H= tx e G:F(x) > t}. Then,
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x,y E H~ F(x) » t and F(y) > t

~ F(xy-l) ~"{F(x),F(y)} > t

-1
~ xy E H.

Hence H is a subgroup of G. Therefore, there exists

h* E H such that

F(h*) = 1\ F(h)
h E': H

Now, F(h*) E Im(F) and .hence F(h*) =

Then we have,

A{F(X) : F(x) > t} = t j*.

to*, for some j*E J.
J

Obviously, t j* 1 t, and hence by assumption, t j * > t.

Also there does not exist x e G such that t ~ F(x) < t j * .

Hence, by Proposition 3.7, Ft =

Ft E "3'

F and therefore
t o *J

3.13. Remark. It may be observed that in Example 3.11,

X~G F(x) = O. But F does not attain the value zero at

any point in G.

If F € 'a'(G) wi th IIm(F) I < 00, then F attains its
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infemum on all subgroups of G. Hence the above

theorems generalise the corresponding result of

Das [19J to the case of an arbitrary fuzzy group.

4. LEVEL CARDINALITY

In this section we present two gr.oups which

admit fuzzy subgroups of any finite level cardinality.

We also give a characterisation of groups having

this property.

Let A(N) be the group of all permutations on N.

For any n e N, let

f(k) = k, ~ k = 1,2, ••. ,n}.

Then An is a subgroup of A(N) and An~ An+l, -¥ n ,

401. Proposition. A(N) has fuzzy subgroups of level

cardinality m, ~ mEN.

Proof: The case when m=l is trivial. Assume that

m ~ 2. We have,

Choose t i (i=1,2, ••• ,m) in I such that t l>t2>••• >tm•
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Define F:A (N) ~ I by

F(Am_l) =

F(A .\ Am+ I .) = t 1· , V i =2 , 3, ••• , m-I; and
m-1 -1

Then F is a fuzzy subgroup of A(N) with level cardinality

m.

4.2. Proposition. Z(p~) has fuzzy subgroups of level

cardinality m,"V mEN; and of infinite level cardinality.

Proof: The case when m=l is trivial. Assume that ~2.

Then we have,

Fix t i(i=l,2, •.. ,m) in I such that t l>t2> ••. >tm and

define F: Z( pool~ I by

=

F(C. \ c. l) = t. l' -V i=l, 2,3, ••. , m-2; and
1 1- 1+
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It is straight forward to verify that F is a fuzzy

subgroup of Z(p=) with level cardinality m.

Fuzzy subgroup of infinite level cardinality

is constructed in example 3.11.

4.3. Remark. If G has a fuzzy subgroup of level

cardinality m, then o(G) ~ m. But the converse

is not true, as evident from the example below.

4.4. Example. Let G= 53 ={e,(12), (13), (23),

(123), (132)} and m = 4. Then o(G) > m. But G does

not have a fuzzy subgroup of level cardinality m.

For: If G has a fuzzy subgroup F of level cardinality 4,

let Im(F) ={ti:i=1, •.. ,4}, t l>t2>t3>t4• Then by

Proposition 3.8, Ft ~ Ft ~ Ft ~ Ft must be a chain
123 4

of distinct subgroups of G. But we have the following

lattice diagram for subgroups of 53.
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where Gl = {e, (123), (132)}, G2 ={e,(12)},

G3 = {e, (13)} and G4 ={e,(23)} •

Hence G cannot have a chain of subgroups with more

than three components.

4.5. Theorem. G has a fuzzy subgroup of level

cardinality m if and only if G admits a chain of

distinct subgroups of length m.

Proof. Necessity. Assume that G has a fuzzy sub­

group of level cardinality m. Let

... > s .m

Then by Proposition 3.8, we have the chain

of length m.

Sufficiency. Assume that G admits a chain

of distinct subgroups of length m, say,

Gl~ G2 ~ ~ Gm· Without loss of generality,

we assume that G = G. Fix t.(i=1,2, .• m) such thatm 1

t l>t2> ••• >tm• Define F: G~ I by
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Then F is a fuzzy subgroup of G with level cardinality m.

4.6. Corollary. G has a fuzzy subgroup of level

cardinality m if and only if G has fuzzy subgroups

of level cardinali ty n, ~ n ~ m

4.7. Corollary. If G has a fuzzy subgroup of level

cardinality m, then it has uncountably many fuzzy

subgroups of level cardinality m.

We now proceed to give a characterisation of

groups like A(N) and Z(p~) which admit fuzzy subgroups

of every finite level cardinality. Its proof is an

extension of the proof of theorem 405, and hence is

omitted.

4.8. Theorem. G has fuzzy sUbgroups of every finite

level cardinality iff G has a non-terminating chain

of distinct subgroups.



CHAPTER III

FUZZY GROUPS AND GROUP HOMOMORPHISMS

1. INTRODUCTION.

The effect of group homomorphisms on fuzzy

groups was studied by Rosenfeld [45], Anthony and

Sherwood [8], Sidky and Mishref [52] and Akgul [7].

Rosenfeld [45] proved that if f is a group homo­

morphism on G, then

F e S{ G) =* f ( F) E ~(f (G) )

provided F has V-property; and

Later, Anthony and Sherwood [8] observed that in the

first case, the restriction "F has V-property" is

redundant. In [52], Sidky and Mishref proved that

if f:G ~ G* is a group homomorphism and F is a

fuzzy subgroup of G "with respect to a continuous

t-norm T" then f(F) is a fuzzy subgroup of G* with

respect to T. Since /\ is a continuous t-norm [8],

it follows that, f(F) E '3'(G*) whenever F E c;;.(G).
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It was proved by Akgul [7] that

We, in this chapter, study the effect of group

homomorphisms on the chains of level subgroups of

fuzzy groups. Throughout this chapter f:G ~ G+

is a group homomorphism.

2. HOMOMORPHIC PRE-IMAGES OF FUZZY GROUPS.

2.1. Notation. For any fuzzy group F, C(F) denotes

the chain of all its level subgroups. Distinctness

of the components of C(F) is assumed throughout. We

shall denote by fCC(F» [f-l(C(F»], the chain

consisting of ima es [inverse images] under f of

members of C(F).

2.2. Proposition. Let F* € ~(G+) and {F:.: j E J}
J

be the collection of all level subgroups of F*. Then

{f-l(F:. ):j E J} is the collection of all level sub­
J

groups of f-l(F*).

Proof: Let F = f- l (F*) and t E. I. Then,
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~ F* ( f ( x» ~ t

~ f'{x ) E F~

~ x e f-l(Ft)

Hence,

Ft = f- l (F t *) , JV t E I

In particular, we have,

(-1)

If F has a level subgroup Ft which does not belong

to {f-l(F~. ):j E J}, then F* must have a level
J

subgroup F~ which does not belong to {F~. :j E J}
J

such that (1) holds. This is a contradiction. Hence

{f-l(Ft. ):j € J} is the collection of all level sub­
J

groups of F •

-l( 1t )We observe that some of the f Ft. 's may be
1 J

equal, so that C(f- (F*» has fewer components than

C(F*), as evident from the following example.

2.3. Example. Let G = {l,-l,i,-i} and G* = 53'

Define f:G ~ G* by f(x) = e, for every x E G.
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Then f is a group homomorphism. Define F*:G* --+ I

by

e I ) 1, (12) I ) 0.5, G* -, {e, ( 12)} I ~ 0.3

Then F* e ~(G*) with level subgroups

F'" = {e},
it

= {e, (12)} ,
'It

= G*.1 FO•5 FO• 3

And F = f-l( F*) is defined by F(x)=l, ~ x Er G. Hence,

Fl = FO•5 = FO•3 = G

"* (j e J)2.4. Proposition. If Ft. of Proposition 2.2
J

are distinct and f is a surjection, then f-l( F* ) aretj
all distinct.

-l( * )Proof. Suppose f Ft. are not all distinct. Then
J

there exist p,q € J with t 1= t and f-l(~ ) = f-l(ft ).
P q P q

Hence, f(f-l(~'» = f(f-l(F~ ». Since f is a surjection,
p q

this implies that ~ = ~ . This contradicts the
p q

assumption that ~. 's are all distinct.
J

2.5. Corollary. If f is a surjection and F* E '3'(G*) ,

then
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The following example shows that surjectiveness

of f is not a necessary condition for the distinctness

-le if' )of all f Ft .r :
J

2.6. Example. Let G = {l,-l} and G* = {l,-l,i,-i}.

Define f:G ~ G* by f(x)=x, for every x E G. Then

f is a group homomorphism which is not surjective.

Define F* G* ~ I by F*(l) = 0.8 and F*(x) = 0.5

for every x ~ 1. Then F* is a fuzzy subgroup of G*

with level subgroups

fI' {} *FO• 8 = 1, FO• 5 = G*

Now, f-l(F*) is given by

1 ....--+~ 0.8, -1 ....-~) 0.5.

Its level subgroups are

which are distinct.

We proceed to derive a necessary and sufficient

-le *)condition for distinctness of all f Ft., in the
J

case when J is countable. For t E Im(F*),

FibF* ( t) = {x e G*: F* ( x) = t}



42

is called the fiber of F* at t.

2.7. Theorem. Let F* e C:;-(G*) with Im(F*)={tj:j E J}
-l( *)where J is a countable index set. Then f Ft. are

J
all distinct iff

.
f (G) n FibF* ( t j) F '/J, -¥ j e J.

Proof: Let J = {ji:i ~ K}, where KSN. Without

loss of generality, we assume that either K = N or

K ={1,2,3, ••• ,k} for some k € N; and tji > t j i+ l,
for every i, i+l e K.

Necessity.

distinct.

-l( *)Assume that f Ft., j E
J

Let e* denote the identity

J, are all

element in G*.

Since f is a homomorphism, e* E f(G).

for every i e K and hence F*(e*) =

e* e FibF*(tjl)' Therefore,

Also, tjl ~ t j i,
Hence

Suppose f(G) n FibF* (t. ) is empty, for some p > 1.
Jp

Since tj > t
J
. , by Proposition 2.3.6,

p-l P
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and hence

-1 (* ) C -1 (* )f Ft. - f Ft. •
Jp_l Jp

Now,

*> f'{x ) E: Ft. ' by assumption
Jp_l

~ x e f-l(F:. )
Jp_l

Hence,

C -le * )f Ft.
Jp_l

Therefore,

-le * )= f Ft. •
Jp_l

-1 (* )This contradicts the assumption that f Ft. are
J

all distinct. Hence,
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-le * )Sufficiency. Assume that f Ft.
J

Then we can find p,q E J such that

are not distinct.

-le *f Ft
P

) = -le *f Ft
q

) (1 )

Without loss of generality, we assume that t p < t q•
Since,

there exists x E G such that

This implies that F*(f(x» =

have, f( x) E F~ and f( x) ~
p

Since t p < t q, we

Therefore,

XEf-l(F
t*)

and x ~ f-l(F~)
p q

(2)

(1) and (2) contradict.

all distinct.

Therefore f - l ( F*t . ) are,
J

2 08. Remark. It can be observed from the proof that

the sufficiency of the condition in the above theorem

hold even when J is uncountable.
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If f is a surjection, then,

and hence Proposition 2.4 can be derived as a particular

case of theorem 2.7.

3. HOMOMORPHIC IMAGES OF FUZZY GROUPS

Dixit, Kumar and Ajmal [21] have briefly studied

the relationship between C(F) and C(f(F». We have the

following result from [21].

3.1. Proposition. Let G be a finite group, f:G ~G*

be a surjective group homomorphism, and F be a fuzzy

subgroup of G with Im(F) = {ti: i=1,2, ••• ,n} where

t l ) t 2 > ••• > t n• - I f the chain of level succ roup s

of F is

c

then the chain of level subgroups of f(F) is

In the following proposition we remove the

restriction on the finiteness of both G and lme?).



46

3.2. Proposition. Let f: G~ G* be a surjective

group homomorphism and F be a fuzzy sUbgroup of G

having V-property. If {Ft.:j EJ} is the collection

of all level subgroups of F: then {f(Ftj):j e J} is

the collection of all level subgroups of f(F).

Proof. Let f* = f(F). For any t E I,

*u EFt:::;> F* ( u ) ~ t

~ V{F(x): x Ef-l(u)} ~ t, since of is
surjective.

Since F has V-property, this implies that, F(xo) ~ t,

for some Xo e f-l( u}, Hence, Xo E Ft. Therefore,

f(x o) E f(F t), and hence, uE f(F t). Thus we have,

Now, if u € f(F t), then u = f(x) for some x E Ft; and

hence,

F* ( u ) = V {F ( z ) : z E f- l ( u ) }

= V {F(z):f(z) = f(X)}

~ F( x)

~ t, since x € Ft"
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* *Therefore, u E Ft and hence f(F t) C Ft. Thus we

have,

( 1)

In particular,

Hence all f(Ft.)'s are level subgroups of F*. Also,
J

it follows from (1) and the assumption that these are

the only level subgroups of F*.

3.3. Remark. Proposition 3.1 can be obtained as a

corollary to Proposition 3.2.

The following example shows that surjectiveness

of f is essential in the above proposition.

3.4. Example. Let G = {l,-lJ and G* = {l,-l,i,-i} •

Define f : G ---+ G* by f(x) = x , .y x € G. Then f

is a group homomorphism which is not surjective.

Define F:G ~ I by F(l) = 0.3 and F(-l) = 0.1.

Then F is a fuzzy subgroup of G having V-property.

The level subgroups of Fare FOo3 = flY and FO• l = G.

Now. F* = f(F) is defined by

1 II--~) 0.3, -1 1-1-"'0.1, {i,-i} 1-1-~) 0
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Hence the level subgroups of F* are

* f(FO•3) { l}FO•3 = =
.*

f(FO• l) = {l, -l} ,FO• l = and

*FO = G*

The re for e, {f ( F0 •3)' f ( F0 • l)} doe s not co ntai n a 11

level subgroups of F*

We observe from the following example that

surjectiveness of f does not guarantee the distinctness

3.5. Example. Let G = 53 and G* be the subgroup

{e, (12)} of 53. Define f:G ~ G* by

{e, (123), (132)} I--~) e, {( 12), (13), (23)} I...--~> (12)

Then f is a surjective group homomorphism. Fix

t l )' t 2 ) t 3 in I and define F:G ~ I by

Then Fis a fuzzy subgroup of G having V-property. The

level subgroups of Fare:
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Now, f(F) is given by

(12)

and hence its level subgroups

f(F t ) = { e}
1

are not distinct.

The following theorem shows that f-invariance

of F is a necessary and sufficient condition for the

distinctness of the images of the level subgroups.

3.6. Theorem. Let F of Proposition 3.2. be such that

Im(F) ={tj:j E J} where J is a countable index set.

Then f(F t.), j E J are all distinct iff F is f-invariant.
J

Proof: Let J and K be as in the proof of Theorem 2.7.

Necessity. Suppose f(Ft.)'s are all distinct. Since
J

t , > t . , ~ i, i+l E K, by assumption, we have
J i J i+l

and hence
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Let x,y e G such that f(x) = f(y). Let f(Ft. ) be
Jp

the smallest f(Ft.) which contains f(x).
J

Case (i): jp=jl. Then f(x), f(y) eFt. = GF, and
J

lhence F(x) = F(y) = F(e).

Case (ii): j > jl. Then f(x), f(y) e f(Ft. ) and
p Jp

f(x), f(y) f f(Ft. ). Hence x,y ~ Ft. and
Jp-l Jp

x,y fFt. • Therefore, F(x) = F(y) = tj •
Jp-l P

Thus in both cases we have F(x) = F(y), and hence

F is f-invariant.

Sufficiency. Assume that F is f-invariant. Then

for any z e G*,

f ( F)( z ) = F( x ) , ¥ x E f- l ( z ) (1)

If f(Ft.)'s are not distinct, then there exists t,t cIm(F)
J p q

such that t p F t q and f(F t p) = f(F t q). Since tp,tq =Im(F),

F(x) = t p and F(y) = t q for some x,y E G. Hence, by (1),

we have, f(F) (f(x» = t , and f(F)(f(y» = t. Hence,
p q

tp,tq E Im(f(F», and it follows by Proposition 2.3.6
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that f(F t ) ~ f(Ft). This is a contraciction.
p q

Hence f(Ft.), j e J, are all distinct.
J

We observe that the proof of t~e sufficiency

part does not require the countability of J. Hence,

we have,

3.7. Corollary. If f:G ~ G* is a surjective group

homomorphism and F is an f-invariant fuzzy subgroup

of G having V-property, then

C(f(F» == f(C(F»

3.8. Corollary. Let f: G --+ G* be a surjective

group homomorphism and F be a fuzzy subg~oup of G

with Im(F) = {.ti:i=1,2, ••• ,n} where tl>~> ••. >tn·

Then,

(a) {f(Ft.): i=1,2, ••• ,n} contains all level
1

subgroups of f(F).

(b) f(Ft.), i=l,.···,n, are all d i s t i nc t iff F is f-
1.

invariant.

(c) If F is f-invariant, then Im(f(F» = Im(F).

and



CHAPTER IV

TRANSLATES OF FUZZY GROUPS

1. INTRODUCTION.

As an abstraction of the geometric notion

of translation, we introduce t~o operators Ta+ and

T called the fuzzy translation operators. Firsta-
we define the operators on fuzzy sets and derive

some of their properties. Then we investigate

their action on fuzzy groups. We prove that all

translates of fuzzy subgroups [fuzzy normal sub­

groups] are fuzzy subgroups [fuzzy normal sUbgroups].

We study the interaction of these operators with

fuzzy coset formation and fuzzy conjugation; and

we prove that the Qperators commute with both.

We observe that fuzzy abelianness is not translation

invariant. We prove that, with suitable restrictions

on a, fuzzy abelianness can be made invariant under

the action of T and Ta •a+ -

2. THE OPERATORS Ta+ and Ta_

2.1. Definition. Let X be a non-empty set, a € I

and A be a fuzzy subset of X. We define
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Ta+(A)(x) = A {A(x) + a,l} , and

Ta_(A)(x) = V {A(x)-a, o},"Vx E X

T (A) and T (A) are respectively called the a-upa+ a-

and a-down fuzzy translates of A. We shall refer to

T and T as the fuzzy translation opera:ors.a+ a-

2.2. Proposition. For any A E IX and a e I,

(a)

(b)

IIm (T 0:+ (A) ) I ,
IIm (Ta_(A» I ~

IIm(A) I, and

IIm(A) I

Proof: Trivial.

2.3. Proposition. For any A e IX and a e I,

(a)

(b)

Ta+(A
C)

=

T (Ac) =
a-

(Ta_(A»C, and

(T a+(A) ) C

Proof. For any x € X, we have,

Ta+(AC)(x) = A tAc(x) + a, l}

= A {l-A ( x) + a, l}

= 1 - V{A ( x)-a, o}
= 1 - To:_(A)(x)

= (Ta_(A»c (x)
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The proof of (b) is similar.

We observe that, in general, for a given a,

Ta+ and Ta_ are not inverse operators. That is,

2.4. Example. Let X = {a,b,c} and define A:X~ I
1 1by A(a) = 1, A(b) = 2 and A(c) = O. Put a = 3 •

Then the actions of T a+ and Ta_ are as follows:

I--~) .1
3

5
Cl~ 6'

1
I~ 6' c

b l-l-0+

b II--~

a........-+ 1,

T (A):
a-

Therefore, we have,

Ta- (Ta+ (A) ) a I
2 bl )

1
) 0) 3' 2 , C I

Ta+(Ta_(A» ) 1, b~ 1 c I ~
1a I 2 , 3

Hence,

We further notice that

2.5. Theorem. For any A e IX,



(a)
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T (T (A» = A ~ a! 1 - Ava- a+ "'

Ta+(Ta- (A» = A ~ a ~ AA

Proof (a)(~): An easy computation shows that, for

any x E X,

= {A (x), if A(x ) + a < 1
I-a, if A(x) + a ~ 1

( 1)

Case (L}, A(x) + a < 1, ~ x € X: Then Av + a ~.1;

and hence a ~ 1- Av •

Case (ii). A(x)+a ~ 1, for some x e X:

By assumption, we have,

By (1), this implies that A(x) = I-a, for every x E X

for which A(x)+a ~ 1. Therefore, Ay = I-a; and hence

a = 1 - Av •

(~): Assume that a , I-Ay. Then Av + a, 1.

If Av = 1, we have, a = 0; and hence Ta_(Ta+(A» = A.

Now, let Av < 1. Since A(x) ~ Av ,:Vx € X, we have
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A(x)+a 'Av + a < 1,:V x ex.

Therefore,

and hence

Ta- (Ta+(A ) ) ( x) = A l x) , V x e X

The proof of (b) is similar.

2.6. Proposition. For any A E IX and a,~ E I,

(a) Ta+ (T~+ (A) ) = !~+(Ta+(A»

=r(a+~)+ (A).
if a+~ < 1

1 , if a+~ ~ 1

(b) Ta_(T~JA» = T~ _(Ta- (A) )

if a+~ < 1

if a+13 ~ 1

Proof. Straight forward.
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2.7. Remark. For A,B € IX with A~B, we have,

Ta+(A) C;; Ta+(B) and Ta_(A) C;; Ta_(B), -V a € I.

Hence the fuzzy translation operators are isotones.

Further, they are lattice homomorphisms which are,

in general, not isomorphisms.

3. TRANSLATION OF FUZZY GROUPS

In this section we study the action of Ta+

and Ta_ on fuzzy groups. We prove that these

operators take a fuzzy group to a fuzzy group, and

preserve some properties of fuzzy groups.

3.1. Theorem. The following are equivalent:

(a) F E 3'(G)

(b) Ta+(F) E 9'(G) ,.JrI a E I, and

( c) Ta- ( F) € ';7( G) ,~a € I.

Proof: (a) ~ (b): Let F € S'(G) and a e I. For

any x,y e G, we have,

Ta+(F)(xy-l) =A {F(xy-l)+a, l}

~ A {A {F( x) , F( y~ +-a, l}, by Prop .2 .2 .5
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= 1\ {/\ {F(x) + a, l}, /\ {F(y) + a, l} }

= A {Ta+(F)(X),Ta+(F)(y)}

Hence, by Proposition 2.2.5, Ta+(F) E '3'(G).

The converse follows from TO+(F) = F.

The Proof of the equivalence of (a) and (c)

is similar

If Ta+(F) [ Ta_(F) ] is a fuzzy subgroup of G

for a particular a E I, then it cannot be deduced that

F is a fuzzy subgroup of G.

3.2. Example. Let G be the Klein 4-group {e,a,b,ab}
2 2 2

where a = b = (ab) = e. Define F:G ----+ I by

3
Put a = 5. Then Ta+(F) is given by

{e,a} II--~) 1, {b, ab} ...., -~> !~

It is easy to verify that Ta+(F) E S' (G) and

F f 3'(G)
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The following results improve theorem 3.1.

3.3. Proposition. If T<x+(F) E ~(G) for some <X e I

with <X < 1- V{F(x):x E G" GF} , then F E c:7(G).

Proof: Let <X < 1 - V{F(x):x E G" GF} and

T<x+(F) E ~(G). Then by Proposition 2.2.5, for any

x,y E G, we have,

Case (i). T<x+(F)(x) = 1 and T<x+(F)(y) = 1: Then

F(x) + <X ~ 1 and F(y) + <X ~ 1. By the choice of <x,

this implies that x,y e GF• Since GF is a subgroup

of G, we have, xy-l e GF; and hence F(xy-l) = F(e) =

A {F(X), F(y)} •

Case (ii). T<x+(F)(x) = 1 and T<x+(F)(y) < 1: Then

F(x) + <X ~ 1 and F(y) + a < 1. Hence, from (1), we

have,

/\ {F(Xy-l)

~ F(xy-l)

+ a,l} ~1\{l,F(y) + a}

+ a ~ F(y) + a

=* F( xy-1) ~ F(y) =/\ {F ( x) , F( y)} •
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Case (iii). Ta+(F)(x) < 1 and Ta+(F)(y) ( 1:

Then (1) implies that,

1\ {F(xy-l) + a, l} ~ 1\ {F(X) + a, F(y) + a}

> F( xy-l) + a ~ /\ {F(x), F(y)}+ a

===> F(xy-l)
~ 1\ {F(X), F(y)}

Hence, by Proposition 2.2.5, F € 3KG)

3.4. Proposition. If Ta_(F) E ~(G) for some a E I

with a <A{F(x):F(x» Fv } ' then FE 9-(G).

Proof: Similar to the proof ~ proposition 3.3

Some results on the translation of fuzzy

normal subgroups are given below.

305. Theorem. The following are equivalent:

(a) F € StK(G)

(b) Ta+(F) E ~N(G), ¥ a E I, and

(c) Ta_(F) Eo S-N(G),4I a E I

Proof: (a)~ (b): Let F E '3-}{(G) and a E I.

By theorem 3.1, Ta+(F) E S'(G) • Now, for x,y E G,
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T (F)( xy) = A {F( xy) + a,l}a+

= /\ {F(YX) + a,l}, since Fe 3-N(G)

= Ta+(F) (yx)

Hence Ta+(F) E ~H(G). The converse follows from

T (F) = F.0+

The proof of the equivalence of (a) and (c)

is similar

Conditions (b) and (c) in the above theorem

can be relaxed. We state the results without proof.

3.6. Proposition. If Ta+ (F) € ~H(G) for some a e I

wi th a < 1 - V{F( x) : x E G" GF} ,then F E ~H(G)

3.7. Proposition. If T (F) E ~N(G) for some a E Ia-

with a < 1\ {F(x): F(x» FA}' then F E 3-H(G)

3.8. Proposition. For any F E ~(G), x e G and a E I,

(Ta+(F»x = Ta+(Fx)·
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Proof: For any 9 E G, we have,

(Ta+(F»x (g) = Ta+(F) (gx-
l)

= A {F(9x- l
) + a,l}

= 1\ {FX(9) + a,l}

= Ta+ (Fx)( g)

3.9. Remark. Similar to proposition 3.8, we can

prove that for any F e ~(G), x e G and a E I,

(1)

(2)

(3)

(Ta_(F»x

x(T a+ (F»

x(Td_(F»

= Ta_(Fx)

= Ta+(xF), and

= Ta_(xF).

That iS,the fuzzy translation operators commute with

fuzzy coset formation.

In the next proposition we prove that the fuzzy

translation operators and formation of fuzzy conjugates

also commute.

3.10. Proposition. For any F E ~(G), x E G and a E. I,



(a)

(b)

Cx(Ta+ (F»

Cx(Ta_(F»
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Proof: (a) For any g e G, we have,

= 1\ {F(x-l9 x) + a,l}

= A {Cx(F)(9) + a, I}
= Ta+ (C x(F) )( g)

The proof of (b) is similar

4. TRANSLATION OF FUZZY ABELIAN GROUPS.

In the previous section we observed that some

fuzzy group theoretic concepts are well-behaved with

respect the fuzzy translation operators, in the sense

that, they either remain invariant under the action

of the operators or commute with them. But all

properties of fuzzy groups are not so. The following

example shows that fuzzy translates of a fuzzy abelian

subgroup need not be fuzzy abelian.
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4.1. Example. Let G = 53. Define F : G~ I by

Then F e :;'(G). Also GF = {e} is an abelian subgroup

of G; and hence F E. "3'it(G). Now, put a = ~ and
5

~ = 6. Then,

Hence,

l'L- - G - 5
-ra+(F) - T~_(F) - 3

which is not abelian. Therefore, Ta+(F) and T~_(F)

are not fuzzy abelian

4.2. Proposition. For any F E ~(G) and a E I,

Proof. Trivial

4.3. Remark. If F is a constant fuzzy subgroup of G,

then for every a E. I,

= GT (F) = GF = G;
a-

and hence the following statements are equivalent:
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(1) F € 3'ft< G)

(2) T (F) E ~A(G), .J.I a e I
a+

(3) T (F) € gf\.(G), ~ a € I; anda-

(4) G is abelian.

4.4. Theorem. Let F be a non-constant fuzzy subgroup

of G. Then,

The converse holds if F has V-property.

Proof. Let a < 1- V{F(x):x Eo G" GF}

By proposition 4.2.,

( 1)

(2)

Let y E G such that y f: GF• Then

F(y) f; F(e)

==> F(y) < F(e), by Prop. 2.2.4.(a)

~ F(y) ~ V{F ( x) : x e G" GF}

F(y) + a < 1, by (1)

Also,

F(y) + a < F(e) + a

(3)

(4 )
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By (3) and (4), we have,

This implies that

Hence,

y ~ Gr (F)
a+

This together with (2) proves that

Conversely, let

Also assume that F has V-property. If possible, let

(5)

a ~ 1- V{F ( x): x E G" GFJ (6)

Since F has V-property, there exists X o E G" GF
such that

By (6), we have,
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and hence,

Therefore,

Ta+( F)( x0) = 1\ {F ( x0) + a, l}

= 1

~ Ta+(F)( e)

By proposition 2.2.4(a), this implies that

Hence X o E GT (F) • Since X o E G" GF, this
a+

contradicts (5). Therefore,

If IIm(F)! < ~, and in particular if G is a

finite group, then F has V-property, and hence we

have,

4.5. Corollary. Let FE 3{G) with 1 < I Im(F) I < 00.

Then,

G = GF ~ Cl < 1- V{F( x): x E G" GF1 .
Ta+(F)
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4.6. Theorem. Let F be a non-constant fuzzy

subgroup of G and a < 1- Y {F( x): x E G" GF} .

Then

Proof:

~ Gra+(F) is abelian and Ta+(F)E '3-(G)

~ GF is abelian and F € go (G), by
theorem 4.4 and prop. 3.3.

~ F E ~tUG)

We _now state the corresponding results for T (F)a-

wi thout proof.

4.7. Theorem. Let F be a non-constant fuzzy subgroup

of G. If a < F(e), then Gra_(F) = GF.

holds if F has V-property

The converse

4.8. Corollary. Let FE ~(G) with 1 < IIm(F)1 < ~. Then

Gr (F) = GF ~ a < F(e)
a-
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4.9. Theorem. Let F be a non-constant fuzzy

subgroup of G and a < 11 {F(x):F(x) > ~}

Then,



CHAPTER V

LEVEL SUBGROUPS OF THE TRANSLATES

1. INTRODUCTION.

In this chapter we investigate how the

operators Ta+ and Ta_ affect the chain of level

subgroups of a fuzzy group F. We prove that for

any a E I, C(Ta+(F» and C(Ta_(F» are formed with

members of C(F); and with some restriction on a,

We proceed to study the interaction between the

fuzzy translation operators and group homomorphisms,

by observing the change produced in C(F) by their

combined action on F. We prove that if f is a group

homomorphism, then for any a El,

and for some particular choice of a, we have,

We give similar results for Ta_(F) also.
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2. CHAINS OF LEVEL SUBGROUPS OF -IRANSUTES

2.1. Proposition. For any F E 3(G) and a e I,

= Ft-a' Jf t E I

Proof:

~ A{F( x ) + a, I} ~ t

~ F(x) + a ~ t, since t ~ 1

~ F(x) ~ t-a

We now investigate the chain of level subgroups

of Fa+ more closely.

2.2. Theorem. Let FE 3\G) with Im(?) = {tj:j E J},

a ~ I, Fa+ = Ta+(F), Im (F
a+ ) = {srn: m E M}, where J

and M are suitable indexing sets, t~ = F(e) and
..1

0

Then,

(a) IMI ~ IJI

(b) If a ~ I-t· then IMI = IJI and for every
J o '

m € M, srn = tj+a, for some j E. J.
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(c) If a > I-tj , then srn = 1 and for every
o 0

m (F mo) e M, sm = tj+a, for some j ~ J.

(d) For every m E M,

Fa+ = Ft., for some j E J.
srn J

(e) If a < 1- V{t j: j F jor, then for every j e. J,

Ft
j

= Fs:+ , for some m e M.

Proof.

(a) Follows from proposition 4.2.2.

(b) Let a ~ I-tjo· Then tj+a ~ 1 , '\" j e J

and hence, for any m E M,

srn = Fa+(x), for some x e G

= A {F(x) + a,l}

= 1\ {tj+a, l}, for some j E J

= t . + a
J

(c) Let a > I-tj • Then t. + a > 1 and hence
0 J o

srn = Fa+(e) = I\[tj +a,l} = 1.
0 0

Now, for m ( F mo) f M,

s = Fa+(x) , for some x E G with Fa+(x)<lm
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= " {F(x) + a, l}
= F( x) + a,

tj+a, for some j E J

(d) Follows from Proposition 2.1, (b) and (c).

(e) Let a < 1- V {tj: j f. jo}. Cons ider any

Ft.,j E J. If j = jo' then we have,
J

a+ ..1.Ft. = Fs If j F jo' then tJ.+a < 1.
Jo mo

Hence tj+a = srn for some m E M. Therefore,

a+by Proposition 2 01, Fs = Ft .•
m J

We now state the corresponding results for

Ta_(F) without proof.

2.3. Proposition. For F E ":f(G) and a E. I,

Fa - Ft = t+a' .JrI e s r.

2.4. Theorem. Let Fe "3'(G) with Im(F)= {tj:jEJ}, aEI,

Fa- = Ta_(F), Im(Fa-) = {Sm:mEM}, where J and M are

suitable indexing sets, tjl =A{tj:j € J}, and
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(a) IMI, IJI

(b) If a ~ t
j l

then IMI = IJI and for every

m E M, srn = tj-a, for some j e J.

(c) If a) tjl' then sml = 0 and for every

m (~ ml) e M, srn = ~j-a, for some j E J.

(d) For every m ~ M,

F
a- F f= t.' or some j e J.
srn J

(e) If a < 1\ {t j : j ~ jl}' then for any j E: J,
a-Ft. = Fs ' for some m e M.

J m

2.5. Remark. The above results completely describe

the relationship of C(F) with C(F a+) and C(Fa-)o

For any a E: I, we have, C(Fa+ ) £ C(F) and C(Fa- ) £; C(F).

But if a < 1- V{t j: j ~ jo} , then C(F
a
+) = C(F) and

if a < A {t j : j ~ jl} , then C(F
a- ) =C(F). In particular,

if

we have,
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3. TRANSLATION AND GROUP HOMOMORPHISMS

In this section we study the combined action

of the fuzzy translation operators and group homo­

morphisms on fuzzy groups. We shall continue to

use the notations in the last section •

.
3.1. Theorem. Let f:G --~) G* be a surjective group

homomorphism and F* e 3(G*). Then for any a e I,

C( f- l (Ta+ ( F*») == C(Ta+ ( f- l ( F* »)) == f- l (C(Ta+ ( F* »),

In particular, if a < 1- V{tj: j 1= jo}' then

C( f-l(T (F*») = f-l(C(F*»a+ -

Proof: Follows from Corollary 3.2.5 and Remark 2.5.

3.2. Remark. In view of Theorem 3.2 0 7 , surjectiveness

of f in the above theorem may be replaced by the weaker

condition

We now give some similar results without proof.

3.3. Theorem. If f: G~ G* is a surjective group

homomorphism, and F* e '3{G*), then for any a el,
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In particular, if a < A {tj: j I: jl}' then

3.4. Theorem. Let f:G --+ G* be a surjective group

hornomorphism and F be an f-invariant fuzzy subgroup

of G having V-property. Then for any a E I,

C( f (Ta+( F) ) ) =C(Ta+( f ( F) ) ) =f (C(Ta+ ( F) ) )

and

If

C(f(T (F))) = f(C(F))a-
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CONCLUSION

In the thesis, we have made an attempt to

study more about fuzzy groups. Several existing

results have been extended. However, there remains

a lot more to be explored. For example, the member­

ship set has been taken as-[O,l]. Taking the

inspiration from Goguen [24] and many other researchers

the study could be extended, replacing [0,1] by a chain,

and later by an arbitrary lattice. Apparently several

results of the thesis could be generalised to the case

where the membership lattice is a chain.

A study on the structure of the collection of

fuzzy subgroups will be a propserous venture. We have

made a humble beginning in this direction. We have

studied the action of some operators on certain sub­

lattices of the complete lattice of all fuzzy subgroups

of a fixed group. Lattice properties of the collection

of fuzzy groups is a problem to be tackled further.
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LIST OF NOTATIONS

Collection of all crisp subsets of X.

Collection of all fuzzy subsets of X.

Constant fuzzy subset taking the value a

The empty set

Characteristic function of A

Set complement of B in A.

Cardinality of A.

An arbitrary multiplicative group

Order of G

Identity element in G.

{x € G: F(x) ~ t}

{x E G: F(x) = F(e)}

Collection of fuzzy subgroups of G.

Collection of all fuzzy normal subgroups
of G.

Collection of all fuzzy abelian subgroups
of G.



Ta+ (A)

Ta- (A)

Im(A)

V

1\

A

C(F)

N

z
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a-up translate of A.

a-down translate of A.

Range of A

Supremum or lattice join

Infemum or lattice meet

V{A (x) : x EX] if A E IX

A{A(X):X e: X}. if A E IX

Chain of level subgroups of F.

Jhe set of all natural numbers

The set of all integers

The set of all rational numbers

Group of all permutation on N

Sylow p-subgroup of Q/Z

Symmetric group of degree three.
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