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I

INTRODUCTION

The concept of convexity which was mainly defined

and studied in Rn in the pioneering works of Newton,

Minkowski and others as described in [18], now finds a place

in several other mathematical structures such as vector

spaces, poseta, lattices, metric spaces and graphs. This

development is motivated by not only the need for an

abstract theory of convexity generalising the classical

theorems in Rn due to Helly, Caratheodory etc., but also to

unify geometric aspects of all these mathematical

structures. In the course of the development it is found

that the properties of convex sets have been analyzed

mainly in three ways, qualitatively, quantitatively and

combinatorially and finds its applications in

pattern recognition, optimization, etc. [68].

problems of

The theory of graphs which originated in the

solution of the famous Konigsberg bridge problem during 1736

by Leonard Euler, now finds quite a lot of applications in
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many other branches of science, engineering and social

science. See [5], [6], [10] for details.

This thesis is an attempt to study mainly some

combinatorial problems of convexity spaces and graphs,

following the footsteps of Levi, Jamison, Sierksma, Soltan,

Duchet and others.

1.1 DBFINITIONS AND PRBLINIMARIBS

In this section, we consider some basic

definitions and concepts mainly from [2], [7], [8] and [12].

For notations and terms not mentioned here, we follow [7],

[8] and [12].

By a graph G = G(V,E) = G(p,q) we generally mean a

finite connected graph without loops and multiple edges,

with vertex set V, edge set E, of order p and pize q. The

symbol <S> means the subgraph induced by s.

Definition 1.1. Let G = (V,E) be a graph. d(u,v), the

distance between u and v in V(G) is the length of the

shortest path connecting u and v, the eccentricity of the
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vertex u, e(u) = max{d(u,v): v e V(G)},

diam(G) = max{e(u):u e V(G)}, rad(G) = min {e(u)iu e V(G)},

C(G) = {u:e(u) = rad(G)} the center of G and a graph G is

called self centered if C(G) = V(G).

The Cartesian product 0lx 02 of 01 and 02 is defined as the

graph G where V(G) = V x
1

and is adjacent to

(u
2,v2)

if either u
1
= u

2
and v

1v2
E E

2
or u

1u2
E El and

v1= v2. The join 01+02 is obtained by joining all the

vertices of ~l to all the vertices of 02. The sequential

vertices of G. to all vertices of G. 1 for i = 1,2, ... ,n-1.
1 1+

- -The graph S ~ K +K +K +K is called a double star.
m,n m 1 1 n

Definition 1.3. A chord of a cycle C is an edge connecting

non consecutive vertices of C. A graph G is chordal if

every cycle of length at least four has a chord.

Definition 1.4. A graph G is ptolemaic if for any

u,v,w,x e V(G),

d(u,v).d(w,x) ~ d(u,w).d(v,x)+d(u,x).d(v,w).



4

Definition 1.5. The size of the maximum clique in G is the

clique number ~(G) of G. S c V(G) is said to separate u,v

in V(G) if u and v lie in different components of G' S. S is

a clique separator whenever S induces a clique in G.

Definition 1.6. Let X be a set. Then I:X x X ~ X is an

interval function on X if the following conditions hold.

(a) 8,b e I(a,b) - Extensive law.

(b) I(a,b) = I(b,a) - Symmetry law.

Definition 1.7. Let G = (V,E) be a graph. s S V is

geodesical1y convex if for all x,y of S, I(x,y) = {z:z is on

some shortest x-y path} ~ s. These convex sets are also

called distance convex (d-convex) sets. S S V is minimal

path convex (m-convex) if for all x,y of S, I(x,y) = {z:z is

on some chordless x-y path} S s.

Definition 1.8. For a graph G, V(G), ~ and S S V(G) whose

induced subgraphs are isomorphic to K for n >0 are called
n

trivial convex sets. For any integer k ~ 0 a graph G is

k-convex if it has exactly k nontrivial convex sets.

A (k,w)-convex graph is a k-convex graph with clique
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number w. (O,2)-convex graphs are called distance convex

simple (d.c.s) if the convexity is geodesic convexity and

m-convex simple (m.c.s.) if the convexity is m-convexity.

When k=l the k-convex graphs are called uniconvex graphs.

Definition 1.9. A graph is convex simple if it is either

d.c.s or m.e.s.

Definition 1.10. A graph G is interval monotone if I(u,v)

is convex for each pair of vertices u and v of G. It is

connecting vertices of S}.

totally non interval monotone (t.n.i.m.) if no nontrivial

interval is convex. Here, the trivial intervals are those

I(a,b) for which a=b, a adjacent to b or I(a,b) = V(G).

Definition 1.11. Let G = (V,E) be a graph and S ~ V(G).

Then the closure of S, (8) = {x:x is on some shortest path

Then, define sk as follows.

geodetic iteration number gin(S) is the smallest number n

n n+1such that S = S • The'geodetic iteration number gin(G) is

defined as the maximum value of a gin S over all S ~ V(G).
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Definition 1.12. A family ~ of subsets of a nonempty set X

is called a convexi ty on x if

1) rP, X e ~

2) ~ is stable for intersection, and

3) ~ is stable for nested union.

(X,~) is called a convexity space and members of ~ are

called convex sets. The smallest convex set containing a

set A is called convex hull of A, denoted by CoCA).

Definition 1.13. A convexity space X is an interval

convexi-ty space if its convexi ty is induced by an interval.

Definition 1.14. A convexity space is of arity ~ n if its

convex sets are determined by n-polytopes. That is, a set C

is convex if and only if Co(F) S C for each subset F of

cardinality at most n.

Definition 1.15. A convexity space X is a matroid if it

satisfies the exchange axiom A S X and p, q e X, CoCA), then

p e Co({q} U A) implies that q E Co({p} U A) and is an

antimatrold (convex geometry) if it satisfies the
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antiexchange law, A £ X, p, q e X, Co{A) then,

P E Co({q} U A) implies that q e Co({p} U A)·.

Definition 1.16. A subset H of X is called a half space if

both H and X, H are convex. A convexity space X is said to

have separation property

SI: if all singletons are convex.

S2: if any two distinct points are separated by half

spaces. That is, if xl ~ x
2

e X then there is a

half space H of X such that xl e Hand x2 ~ H.

53: if any convex set and any singleton not contained

in C can be separated by half spaces. That is, if

C ~ X is convex and if x eX' C, then there is a

half space H of· X such that C ~ H and x • H.

54: if any two disjoint convex sets can be separated

by half spaces. That is if C
I'C2

S X are disjoint

convex sets then there is a half space H of X such

that Cl S Hand C2 eX' H.

Definition 1.17. A subset S of an interval space X is

star shaped at a point peS provided for every x E S,
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I(x,p) ~ s. The star center of 5 is the set of all points

at which S is star shaped. X is' said to have the Brunn's

property if the star center of each subset of X is convex.

The star canter is also called the kernel of S, denoted by

Ker(S).

Definition 1.18. Let X be convexity space then,

1. The Hel1y number of X is the smallest 'n' such that

for each finite set F c X with cardinality at least

n+1, n {Co(F' {a}): a e F} ~ ~

(that is, F is Helly (8-) dependent).

2. The Caratheodory number of X is the smallest number 'n'

such that for each F c X with cardinality at least

n+l, Co(F) c U {co(F'{a}): a E F}

(that i~, F is Caratheodory (C-) dependent).

3. The Radon number of X is the smallest number 'n' such

that each F c X with cardinality at least n+1, can be

partitioned into two sets PI and F
2

such that

CO(FI ) n CO(F2) ~ ~

(that is, F is Radon (R-) dependent).
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4. The exchange number of X is the smallest number n such

that for each F c X of cardinality at least n+1 and

for each p E F,Co{F' {p})c U {Co(F' {a}): a e F, a ~ p}

(that is, F is exchange (E-) dependent).

These numbers are called convex invariants, denoted

by, h,c,r and e respectively.

Definition 1.19. A convexity space X is said to be join

hull commutative (JHC) if for any convex set C and any p E X,

Co{C U {p}) = U{Co({c,p}): c e Cl.

Definition 1.20. An interval convexity space X is said to

have the

1. Pasch property if for any a,b,p of X, a'e I(a,p)

and h'e I(b,p) implies that I(a,b') n I(a' ,b) ~ ~.

2. Peano property if for any a,b,c,u,v of X such that

u e I(a,b), v e I(c,u), there is a v' in I(b,c) such

that v e I(u,v').

If X is having both the properties it is called Pasch-Peano

space (PP space).
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Definition 1.21. Let V be a vector space over R. Let $ be

a nonernpty family of a linear functionals on V

-1
Y = {f (-oo,a]:F e ~} generates a convexity ~ on V

Then,

called

the H convexity generated by $. If -f e $ whenever f e ~,

it is called the symmetric H-convexity.

1.2. BACKGROUND OP THE WORK

Convexity is a very old topic whose origin can be

traced back at least to Archimedes. This extremely simple

and natural notion was however systematically studied by

Minkowski during 1911. Bonnesen and Fenchel [1], Valentine

[11] and many others also discuss the early development of

the theory.

Among the different aspects of convex analysis,

such as quantitative, qualitative and .combinatorial, our

concern will be the last one, where in the classical

th f et e n feorems 0 conveX1 y 1n R 0

significant role.

combinational type play a

It is well known that, a subset A of a real vector
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space is convex if and only if it contains with each pair

x and y of its points, the entire line segment joining them.

It immediately follows that the intersection of any family

of convex sets is again a convex set, though the

intersection may be empty. The classical theorem due to

Edward Helly (1913) sets the condition under which this

intersection cannot be empty. Helly's theorem and the

theorems due to Caratheodory (1907) and Radon (1921) made a

tremendous impact in the development of combinatorial

convexity theory and has been studied, applied and

generalised by many other authors [21], [31], [72], [74]

since 19508. These theorems in Rn states as follows [8].

Belly's theorem: Let B = {B
1

, B
2

, ... ,B
r}

be a family of r

convex sets in Rn with r ~ n+1. If every subfamily of 0+1

sets in B has a nonernpty intersection then iQ1B ~ ~.

Caratheodory's theorem: If S is a nonempty subset of Rn,

then every x in the convex hull of S can be expressed as a

convex combination of n+1 or fewer points.
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Radons theorem: Let S = {x1,x2'.'"xr} be any set of finite

points in Rn. If r ~ 0+2, then S can be partitioned in to

Not only to generalise these classical theorems of

n
R , but also to unify the properties of a variety of

mathematical structures such as vector spaces, ordered

sets, lattices, metric spaces and graphs, an axiomatic

foundation of convexity was laid down by Levi[S1].

Let (X,~) be a 'Convexity Space'(convex structure,

aligned space, algebraic closure systems [31]). The members

of ~ are called convex sets and Co(A) = n {c: A £ C e ~ },

the convex hull of A. CO(F), with F finite is called a

polytope. A polytope which can be spanned by n or less

points (where n > 0) will be refered to as an n-polytope.

The empty set is a O-polytope. A 2-polytope Co({a,b}) is

also called a segment joining a and b. Aconvex

structure(or, its convexity) is of arity S n provided its

convex sets are precisely the sets C with the property

that Co(F) S C for each subset F with cardinality atmost
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n. That is, a convexity of arity n is "determined by its

n-polytopes".

The standard convexity of a vector space, the

order convexity of a poset, convexity in a lattice,

sernilattice and the convexity in a metric space [12] are

examples of convexity spaces of arity 2. The study of

H-convexity in a real vector space has been made in [19] and

[20].

For a convexity space X there exists four numbers

h(x), c(X), r(X), e(X) e {O,1,2, ... } called the Relly

number, the Caratheodory number, the Radon number and the

exchange number (Sierksma number), See Definition 1.18. It

may be noted that many authors define the Radon number to be

one unit larger, which is defined as the first n such that

each set with at least n points has a Radon partition.

However, we prefer the Definition 1.18.

Let f be a function defined on the class of all

convex structures, and ranging into the set {O,l,2, ... }.

Then f is called a convex invariant provided that isomorphic
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convex structures have equal f-values. Obviously, each of

the above defined functions h,c,r,e is a convex invariant.

Such functions allow for a classification of convex

structures according to their combinatorial properties. The

function h,c,r go back to traditional topics in the

combinatorial geometry of Euclidean space, and they are

therefore called classical convex invariants. Attempts to

find the interrelation between these invariants were made by

Levi [51], Sierksma [71] and Jamison [45]. We shall mention

some of these important results.

Levi's theorem [51]. Let (X,~) be a convex structure. Then

the existence of r implies the existence of hand h S r.

Eckhoff-Jamison inequality [45]. If c and h exists for a

convexity space, then r exists and r S c(h-l)+l if h ~ 1,

or C < 00.

Sierksma's theorem [71]. e-I S c S max{h,e-l}.

There are many other inequalities between these

invariants. The different cases regarding the existence or
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otherwise of c,h,r and e is analysed in [12]. Kay and

Womble [46] has shown that Levi's theorem is the only one

possible if we assume the finiteness of exactly one of the

numbers. study of generalized Belly and Radon numbers

[48],[49], extension of Radon theorem due to Tverberg [74],

etc. are also found in literature.

The survey paper by Danzer et al. [31], has

considerably stimulated the investigations on various

aspects of convexity spaces. In the pioneering paper of

Ellis [35]., the condition of join hull commutativity (JHC)

was considered though the term was introduced by Kay and

Womble [46]. It is known [12] that a JHC space is of

arity ~ 2. Products of convexity spaces were studied by

Sierksma [70] and proved that JHC property is productive.

The concept of half space familiar in vector space

has been generalized to a convexity space [42]. Four

separation axioms (Definition 1.16) were introduced by Kay

and Womble [46] and Jarnison [42]. Under the assumption of

51' it is an easy observation that 54 ~ 53 ~ 52'
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It is known that, a convex structure is 8
3

if and

only if it is generated by half spaces and that a lattice is

54 if and only if it is distributive.

We shall now consider the important concept of

interval operators (Definition 1.6) introduced by Calder

[22] in 1971 which provide a natural method of constructing

convex structures. The segment operator of a convex

structure (u,v) -+ Co{u,v} is an interval operator.

Conversely, if I is an interval operator, define a subset C

of X to be interval convex provided I(x,y) ~ C for all x,y

in C, we get a convexity space, called the interval

convexity space. If Co denotes the segment operator of ~,

then for any a,b in X, I(a,b) ~ Co {a,b}. The two operators

need not be equal. It is an important observation that,

though the standard intervals and order intervals are

convex, the metric interval {z e X:d(x,z)+d(z,y) = d(x,y)}

[52] need not be convex. Also, a convexity space is induced

by an interval operator if and only if it is of arity ~ 2.

Another important property of interval convexity which is of
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interest to us is Pasch-Peano property (Definition 1.20).

These properties are known to hold for vector spaces.

interesting results in this direction are,

Some

Theorem 1.1 [22]. A convexity space of arity two is JHC if

and only if its segment operator satisfies the Peano

property.

Theorem 1.2 [35].

and only if the

property.

A convexity space of arity two is

segment operator of X has the

s if
4

Pasch

Another interesting concept is that of

starshapedness (Definition 1.11). It was proved by Brunn in

1913 [47] that for Rn with standard convexity, the star

center of each set is convex.

Several other aspects of convexity theory has been

studied by many authors. The prominent among them include

the theory of convex geometries [34], ramification property

due to Calder [22] and Bean [17], Prenowits [9] theory of

join spaces linking up with the theory of ordered geometry,
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the theory Bryant-Webster spaces [21] and Eckoff's partition

conjecture [45].

Since 1950s the "theory of convexity spaces has

branched and grown into several related theories. An elegant

survey has been done by Van de vel [12] whose work has

been acclaimed as remarkable.

Attempts were also made by Changat, M and

Vijayakumar, A [28] to evaluate the convex invariants of

order and metric convexities of Zn and Onn [58] has studied

the Radon number of integer lattice.

Regarding the application part of convexity

interestingtheory,

determination of

problems

computational

attempted

complexity

include

of

the

the

construction of convex hulls and computational complexity

of the evaluation of convex invariants. A bibliography on

digital and computational convexity has been prepared by

Ronse [68].

CONVEXITY IN GRAPHS

It is natural that the concept of convexity could
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be introduced in graphs also, via its· intrinsic metric.

Convexity problems in graphs is an emerging line of research

in metric graph theory and has proved to be quite successful

with respect to applications also, such as facility location

problems, dynamic researching in graphs etc. [54]. Several

convexities can be defined in a graph, most widely discussed

being the geodesic convexity [73] and the minimal path

convexity [33] (Definition 1.7). It is obvious that any

m-convex set is d-convex. Introducing the notion of an

interval function of a 'graph, Mulder [53] observed that

geodesic interval in a graph need not be convex. He called

a graph to be interval monotone if all its intervals are

convex.

Edelman and Jamison [34] studied the convexity

spaces satisfying the antiexchange law (Definition 1.15) and

are called the convex geometries or antimatroids. It was

observed that antimatroids are precisely convex structures

satisfying the Krein-Milman property that, every convex set

is the convex hull of its extreme points. They investigated

this property for graphs also and proved that,
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Theorem 1.3 [38]. G is chordal if and only if the minimal

path of convexity is a convex geometry.

Theorem 1.4 [38]. G is a disjoint union of Ptolemaic graphs

if and only if the geodesic convexity is a convex geometry.

Theorem 1.5 [44]. G is a connected block graph if and only

if the connected alignment is a convex geometry.

Bandelt [14] studied separation properties in graphs and

Chepoi [29] gave a characterization of 8
3,

8
4

and JHC in a

bipartite graphs. The geodesic convexity and the

m-convexity being defined in terms of intervals, they have

some interesting properties.

Theorem 1.6 [12]. A connected graph with Pasch property is

interval monotone.

Theorem 1.7 [12]. If a connected graph is 8
3

with respect

to geodesic convexity, then it is interval monotone.

Theorem 1.8 [12]. Ptolemaic graphs with respect to geodesic

convexity are interval monotone.

Theorem 1.9 [14]. The geodesic convexity of a bipartite
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graph G is 8
3

if and only if G embeds isometrically in a

hypercube.

Considerable attempts have been made by

Bandelt [14], [15], Duchet [32] and Farber-Jamison [38] to

evaluate the convexity parameters in

interesting results in this context are,

graphs. Some

Theorem 1.10 [32] Caratheodory number of any graph with

respect to m-convexity is atmost 2.

Theorem 1.11 [33]. Let G = (V,E) be a connected graph with

at least two vertices and suppose the maximum size of a

clique in G is w. Denote by h(G) and r(G) respectively the

Helly number and the Radon number of the minimal path

convexity of G. Then

r(G) = W

r(G) = W + l,if W ~ 3

r(G) = 4 ,if w S 2

It is also proved that the Radon number of the

minimal path convexity in a triangle free graph G is 3 if

and only if the block graph of G is a path. It is known
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that the Helly number of a graph with respect to d-convexity

is bounded from below by w (0). Generalizing the results

for chordal graphs and distance hereditary graphs due to

Chepoi [29], Duchet [32] and others, Bandelt and Mulder [15]

proved that h(G) = W (G) for a dismantlable graph

(Pseudornodular graph). For other related results, see [26]

[36] [37] and [69].

As an attempt towards the classification of graphs

according to the number of nontrivial convex sets,

considerable study has been made by Hebbare [13],[39], [41],

Raa and Hebbare [66] and "Batten [16]. They called, the

empty set, singletons, vertices inducing a complete subgraph

and V(G) to be trivial convex sets. A graph is called

{k,w)-convex if it has exactly k nontrivial convex sets and

has clique number w. The (0,2) convex graphs with respect

to the geodesic convexity were called distance convex simple

(d.c.s) graphs [41] and such graphs with respect to

m-convexity were called m-convex simple (m.c.s) graphs by

Changat, M [26]. It is easy to observe that every d.c.s

graph of order p ~ 4 is a triangle free block. When k=l,
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(k,w)-convex graphs are called uniconvex graphs [40].

Several other interesting results on planar d.c.s graph,

o-convex graphs, (0,3) convex graphs, (1,2) convex graphs

are in [41]. Changat, M [26] while studying m-convex simple

graphs, has proved that, a connected graph G 4 P3' having no

nontrivial cliques is m.c.s if and only if G is

rn-self centroidal. Also, a connected graph G is m.c.s. if

and only if G has no nontrivial cliques or clique separator.

In [27] he has proved that a graph G has geodesic iteration

number 1 if and only if G is interval monotone which has

Caratheodory number 2. AI~o, a graph G is interval monotone

with respect to m-convexity if and only if the minimal path

iteration number of G, min(G) is 1. Some other results are

in [24] and [25].

We have thus given a survey of results on the

theory of convexity spaces and convexity in graphs, related

to the results mentioned in this thesis.

1.3 GIST OF THE THESIS

This thesis consists of five chapters including
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this introductory one, where in we have given some basic

definitions and a survey of results on the theory of

abstract convexity spaces and convexity in graphs.

In the second chapter, we study the properties of

convex simple graphs, interval monotone graphs and totally

non interval monotone graphs. It is observed that, two

necessary conditions given by Hebbare [41] are not

sufficient. Some of the important observations included in

this chapter are,

1. It is obvious that d.c.s. graphs are triangle free

and t.n.i.m. But, the converse is not true. We have given

two different methods of constructing a triangle free

t.n.i.m. graph having exactly k non trivial convex sets.

2. Regarding the separation properties of d.c.s and

t.n.i.m graphs, it is found that they are half space free.

3. For d.c.s graph, the convex invariants are,

h(G) = c(G) = r(G) = 2 and e(G) = 3.

4. Chordal graphs with m-convexity has Brunn's

property, though it is not true in general.
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5. There is no uniconvex graphs with respect to

m-convexity.

6 In difference with the observation mentioned in 1,

with m-convexity, for a triangle free, 2-connected graph to

be k-convex, it is necessary that there is an 'n' such that

n
(n-l) (n+2)/2 ~ k ~ 2 -2.

7. For any graph with geodesic convexity,if its

geodetic iteration number is 1 then it is interval monotone

and JHC. Converse need not be true. But, if G is a JHC,

interval monotone graph, we can give a bound for gin(S) for

S C V(G). In fact, gin(S) :::; k where k-l < ~:: I-fL:::; k.

8. If G is a geodetic, JHC graph then gin(G) = 1

The third chapter deals mainly with the concept of

solvable trees, which was introduced to answer the problem,

of finding the smallest d.e.s. graph containing a given tree

of order atleast four. We say that a tree T is solvable if

there is a planar d.e.s. graph G such that T is isomorphic

to a spanning tree of G. We prove that,

9. Any tree of order atmost nine is solvable. The bound

for the order is sharp. We note that there are graphs of
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order 10 which are not solvable.

10. Trees of diameter three, five and trees of

diameter four whose central vertex has even degree are

solvable. There are trees of diameter six which are not

solvable.

A similar problem was posed, with respect to

m-convex simple graphs and found that,

11. The size of the smallest rn-convex simple graph

containing a tree T satisfies, p-1+rn/2 ~ q ~ p+m-2 where

p = IV(T)I and m is the number of pendent vertices of T.

We further study the convexity properties of

product of graphs and have,

12. If G
1

and G
2

are d.c.s. graphs then G
1

x G
2

is not

so.

13. If G
1

and G
2

are connected, triangle free graphs,

Gi ~ K
1

or K2 for i = 1,2, then 01 x G
2

is m-convex simple.

14. If G
1

is m.e.s. and 02 is any triangle free graph,

then G
1

x G
2

is rn.e.s.

We conclude this chapter with a discussion on the



centers of d.c.s. graphs.
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•

15. If G is a planar d.e.s. graph, then G is self

centered if diam (G) = 2 and diam(G) = 2rad(G) or 2rad(G)-1,

-if diam(G) > 2, C(G) is isomorphic to K
2

or C
4

according as

diarn(G) = 2rad(G) or 2rad(G)-1~

In the fourth chapter, we initiate the study of

convexity for the edge set of a graph, which is less studied

earlier. We define S c E(G) to be cyclically convex if it

contains all edges comprising a cycle whenever it contains

all but one edges of this cycle. This convexity space

(G,~) satisfies the exchange law also and hence is a

rnatroid. Further,

16. The arity of (G,~) is 1 if G is a tree and is one

less than the size of the largest

otherwise.

chordless cycle in G,

Thus, (G,~) is not an interval convexity space in

general. The convex invariants have also been evaluated.

17. If G is a connected graph of order p, Belly number

h(G) = p-l.
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18. Caratheodory number C(G) = 1 if G is a tree

= circ(G)-l, otherwise.

19. Radon number of (G,~), r(G) = p-l.

20 For a connected graph G, the exchange number,

e(G) = 2 if G is a tree or a cycle.

= max {circ(G-v)/v e V(G)}, otherwise.

By generalizing the Pasch-Peano properties to any

convexity space, we have obtained a forbidden subgraph

characterization also.

21. The convexity space (G,~) is a Pasch space if and

only if K
4

- X is not an induced subgraph of G.

22 The convexity space (G/~) is a Peano space if and

only if G does not contain K
4

- X as a subgraph.

Though, for a matroid the Peano property implies

Pasch, the converse need not be true by the observations

made above.

The last chapter deals with some problems on the

H-convexity of Rn. The motivation for this study is the

problem posed in [12]. A symmetrically generated

H-convexity need not be JHC or 8
4

. Van de Vel asked as to
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n
whether each symmetric H-convexity of R (n>2) is of arity

two? We have obtained

23. The arity of the H-convexity in R
3 symmetrically

generated by a family of linear functionals corresponding to

a family of planes intersecting in a line, is two.

24. An example of an H-convexity in R
3

of infinite

arity.

25. The H-convexity symmetrically generated by a

family $ of linear functionals from R
3
-+ R, is 54 if and

only if for any two intersecting convex straight lines, the

plane dittermined by these lines is convex.

26. An example of an H-convexity which is neither JHC

nor 54 but is Pasch and Peano and hence not of arity two.

The study initiated in thesis is definitely far

from being complete. The last section of this chapter is a

list of problems that remains to be tackled, which include

some interesting problems posed by others also.

We have included as an appendix, a counter example

to a conjecture of Chang [23] on the centers of chordal

graphs.
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CONVEX SIMPLE GRAPHS AND INTERVAL MONOTONICITY

In this chapter, we focus on the properties of

convex simple graphs. Though any distance convex simple

graph is totally non interval monotone, the converse is not

true. We give two methods of constructing a triangle free

t.n.i.m. graph having exactly k non trivial convex sets. It

is also observed that d.c.s graphs and t.n.i.m. graphs are

halfspace free. However, with respect to minimal path

convexity it is seen that there are no uniconvex graphs and

that, values of k for which a k-convex graph exists should

satisfy certain conditions. We further concentrate on the

iteration number of an interval monotone, JHC graph and also

a geodesic, JHC graph.

2.1 DISTANCE CONVEX SIMPLE GRAPHS AND

TOTALLY NON INTERVAL MONOTONE GRAPHS

Let us first consider the two necessary conditions

for a graph G of order at least· five to be distance convex

simple.
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Theorem 2.1 [41]. A d.c.s graph G of order at least five

satisfies the following conditions .•

Cl. For any 2-path u-v-w in G, there is an x in V such that

< {u,v,w,x} > is a chordless 4-cycle of G.

C2. For any 4-cycle u-v-w-x-u in G there is a y in G such

that y is adjacent to either u and w or v and x.

Q3-graph of the 3-cube satisfies Cl but is not

d.c.s. We first observe that Cl and C2 are not sufficient

conditions. The graph in Fig.2.1 satisfies· both the

conditions but is not d.c.s.

G:

Fig. 2.1
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In G, {a,h,c,d,e} is a convex set.

All connected graphs of order atmost three,

for m,n > 1.
- - -
K +K +... +K ,n,

n
l

n
2

. or 1
> 2 for i = 1,2, ... ,r

K
m,n

are

examples of d.c.s graphs.

The following theorem gives another class of d.e.s

graphs.

Theorem 2.2. [13] Let G he a triangle free graph. Then the

G and joining each vertex u. in G, to the neighbours of the
1 1

corresponding vertex u, in G. for i,j = 1,2, ... ,A, is a
J J

d.c.s graph for A > 1.

The graph D
2(CS

) is shown in Fig. 2.2.

Fig. 2.2
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The following theorems from [41] are of much use

to us.

Theorem 2.3. Let G be a planar connected graph of order at

least four. Then the following are equiyalent.

1. G is d.c.s.

2. G is a block without an induced subgraph

isomorphic to a cycle C
3,

C
n

for n > 4 or a 6-cycle with

exactly one bichord.

3. For each vertex u of degree at least three,

there is a unique vertex u' in G such that N(u) = N(u').

Two such vertices u and u' are called partners.

Theorem 2.4. A d.c.s graph G{p,q) is planar if and only if

q = 2p-4.

Theorem 2.5. [66] Let G be a connected, planar graph of

order p ~ 4 and G ~ Q3- Then G is a d.c.s graph if and only

if it satisfies Cl.

Interval monotone graphs [53] are those for which
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all its intervals are convex. Trees, hypercubes, Ptolemaic

graphs are examples of interval monotone graphs. A graph is

totally noninterval monotone (t.n.i.m) if no nontrivial

geodesic interval is convex. It is clear that I(a,b) is

convex whenever a = h, a adjacent to b or I(a,b) = V(G).

These are called the trivial geodesic intervals.

Note 2.1. A t.n.i.m. graph satisfies the conditions Cl and

C2. Otherwise, if u-v-w is a 2-path in G such that there 18

not an x adjacent to u and w, then I(u,w) = {u,v,w} will be

a convex interval. Similarly, if C2 is not satisfied, then

the cycle u-v-w-x-u gives the convex interval

I(u,w) = {u,v,w,x}.

However, the conditions Cl and C2 are not

sufficient for a graph to be t.n.i.m. In the graph of

Fig. 2.1, I{a,e) = {a,h,c,d,e} is a convex interval.

It is clear that d.c.s graphs are triangle free

and t.n.i.m. But the converse is not true. The graph G of

Fig.2.3 is a triangle free t.n.i.m. graph which is not

d.c.s.
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Fig 2.3

In G, the only nontrivial convex set is {a,b,c,d,e,f} and it

is not an interval. That is, G is a uniconvex graph in

which no nontrivial interval is convex.

Since any connected graph of order atmost five

which satisfies Cl and C2 can be expressed as an interval
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(C
4

and K
2

, 3 ' which are the only such graphs, can be

expressed as interval) a convex set in a trianglefree

t.n.i.m. graph will contain at least six vertices.

However, for a triangle free planar graph G, the

following theorem holds.

Theorem 2.6. Let G be a triangle free planar graph. Then G

is d.c.s if and only if it is t.n.i.m.

Proof: If G is d.c.s then it is t.n.i.m trivially. Now,

let it be a triangle free planar t.n.i.m graph. Then G ~ Q
3

(the 3-cube) because Q
3

is not t.n.i.m. Now by theorem 2.4,

G is d.c.s ..

We shall now give two methods of constructing a

triangle free, t.n.i.m graph, having exactly k non trivial

convex sets.

CONSTRUCTION 1. Let G be a d.c.s graph with I(a,b) ~ V(G)

for any a,b E V(G) and let G
1

, G
2

and" G
3

be three copies

of G. Join each vertex of G
1

to the corresponding vertices

of G
2

and G
3

and-each vertex of G
2

to the neighbours of



corresponding vertices of G
3

.

1
denoted by G .
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The resulting graph is

Remark 2.1 G
1

can also be obtained by taking K
2

x G and then

multiplying all the vertices of the copy of G corresponding

to one of the vertices of K
2.

Also if u.v E G and u. ,v, are
1. 1.

the vertices corresponding to u and v, for i = 1,2,3.

d(u.,v.) = d(u,v) for i = 1,2,3
1. 1.

d(u
1

, v
2

) = d(u
1,v3)

=d(u
1,v1)

+1

The graphs induced by G
1

U G
2

and G
1

U G
3

are isomorphic

G x K
2

and that induced by °2 U G
3

is D
2(G).

Then

to

Claim: G
1

is having exactly one convex set and it is V(G
1

) .

It is enough to prove that Co({u,v}) =

whenever u,v E V(G
1

) and Co({u,v}) = V(G
1

) if one of u and v

Case 1: Let u
1

' v1 E V (°
1

) be non adjacent verti ces . Let

w e G. = +1 where w,
1.

is the

corresponding vertex of w in G. for i=1,2,3.
1.
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Hence, w
2

is not on a u1-v
1

shortest path .. Now, because G is

d.c.s no nontrivial subset of G
1

is convex. Hence,

Case 2. If u,v e G
2

U G
3,

then by theorem 1.2, °2 U G
3

induce a d.c.s graph and hence V(G
1

) , V(G
2

) c Co {u,v}.

Now, for any w e G, w2' W"3 e Co ({u,v}), where w
2

, w
3

are

copies of "W in G2and 03· w
1

is on a shortest w
2

- w
3

path

and hence W E co({w
2

, w
3

} ) c Co ( {u. v} ) . Therefore

Co({u,v}) = V(Gl) .

is

on a shortest u
l-v2 path. That is u

2;u3
E co({u

l,v2}).
1Then, as in case 2, Co ({u

1,v2})
= V(G ).

Now, since V(Gl) cannot be expressed as an interval, G
l is

t.n.i.rn. Taking G
l in the place of G, construct G

2 in which

1
V(Gl) and V(Gl) are the only convex sets. Proceeding like

this we get G
k

in which V(Gl)' V(G~), V(G~), ... , V(G~-l) are

the only convex sets.
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CONSTRUCTION 2.Let G be a d.c.s graph in which I(a,b) ~ V(G)

for any a,b E V(G) • replace each vertex of a star K1,k by a

copy of G. Join each vertex of the copy G of G
u

corresponding to the center of K1,k to the corresponding

vertices of the other copies. Now, replace each vertex of G
u

by a pair of nonadjacent vertices. The graph G so obtained

is a triangle free t.n.i.m graph with exactly k convex sets.

Remark 2.2. In general, the k-convex graphs obtained by

Construction 1 and Construction 2 are not isomorphic. In

Construction 1 the convex sets of ok form an ascending chain

V(G
1

)
1 k-l

in Construction theC V(G
1

) c ... C V(G
1

}. But 2 ,

k convex sets are disjoint. However, when k=l both the

constructions give the same graph.

We shall now discuss the separation properties

(Definition 1.16) of d.c.s graphs. Any graph trivially

satisfies SI property. The graphs in Fig.2.4 indicate that

there are graphs satisfying S. but not S. l' for i = 1,2,3.
1 1+
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Gt :
c.J,: (,.,3:

0

/o~.>.
<: ~ V

l

Vlf.
Xl ""1, V2,

Fig 2.4

Here, there is no

halfspace separating the convex set {x
1,x2}

and the vertex

{v
3,v 4

} are disjoint convex sets which cannot be separated

by halfspaces.

There are graphs for which V(G)\C is not convex

for any convex set C. We make the following.

Definition 2.1. A graph G is halfspace free if no subset of

V(G) is a halfspace.

Theorem 2.7. A connected triangle free graph G of order at

least five is halfspace free if it satisfies the conditions

Cl and C2.
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Proof. Let G be a connected triangle free graph satisfying

Cl and C2. Let C c V(G) be a convex subset. To prove that

V(G)\C is not convex.

Let u e V(G)\C, v e V(G)\C and uv E E(G).

Let W E V(G), W ~ v and wu e E(G). Note that such

a vertex exist because G is of order at least five and it

satisfies Cl. Now w-u-v is a 2-path and by Cl there is an x

in V(G) which is adjacent to wand v (see Fig.2.S)

w

u

y

x

v

Fig. 2 •. 5.

Now x e V(G)\ C because C is convex, v e V(G)\ C and

v e Co ({ u , x) ) .

If w E V(G)\ C, it is not convex because u e Co({w,v}), but

u c C. So let w ~ C and x G V(G)\C.

Now, w-u-v-x-w is a 4-cycle in G and QY C
2,

there is a

vertex y adjacent to either wand v or u and x.
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Let y be adjacent to wand v. Then y ~ C because in that

case v e Co({u,y}) c C which is a contradiction. Hence,

v E V(G)\ C. Then; since w e Co{y,x} and W E C, V(G)\ C is

not convex.

Similar is the case when y is adjacent to u and x. Hence,

for any convex set C, V(G)\ C is not convex. That iS,there

is no halfspace in G.

Corollary. Distance convex simple graphs and t.n.i.m graphs

are halfspace free.

Note 2.2. Neither Cl nor C2 is necessary for a graph to be

halfspace free. The graph G
1

of Fig.2.6 does not satisfy

Cl, and G
2

of Fig.2.6 does not satisfy C2, but both are

halfspace free.
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Fig 2.6

7
/

The convex invariant could easily be determined

for d.c.s graphs. If G is a d.c.s graph, then any set S of

three vertices contains a pair u.v of non adjacent vertices

and Co({u,v}) = V(G). This observation leads to

Theorem 2.8. For a d.c.s graph G, h(G) = c(O) = reO) = 2 and

e(G) = 3.

It is interesting to observe the star center

(Definition 1.17) of a d.c.s graph. It is known that

Theorem 2.9. [12]. A convex structure with Caratheodory

number 2 is JHC.

Theorem 2.10 [12]. A JHC convex structure has the Brunn's

property.
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By theorems 2.8, 2.9 and 2.10 it follows that

d.c.s graphs satisfies Brunn's property with respect to the

convex hull operator. But when we consider the geodesic

interval operator, this will not be true.

For example, the graph G in Fig.2.7 is d.c.s.

G:

Fig.2.7

Let S = {1,2,3,4}, Ker(S)is the set {2,4} which is

disconnected.

2.2. MINIMAL PATH CONVEXITY AND m-CONVEX SIMPLE GRAPHS

In this section by convex sets we mean only

m-convex sets and by intervals, only minimal path intervals.

It is known (Theorem 1.10) that for any graph G, c(G) is at
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most 2 and has JHC property. Hence, by theorem 2.10, G has

the Brunn's property. But, if Ker(S) is taken with respect

to the minimal path interval operator, this is not true.

Consider the graph G in Fig.2.8

u w

G:
/ -,
xo~ /oy

0
v z

Fig. 2.8

In G, let S = {x,u,v,w,z,y}. It can be seen that

x,ye Ker(S). But u, which is on a chordless x-y path is

not in Ker(S).

However, the following theorem gives a class of

graphs for which the Brunn's property holds with respect to

minimal path interval.

Theorem 2.11. Let G be ~ chordal graph and let,

Ker(S) = {z E S: I(z,s) c S} for every s e S} for S c V(G).

Then Ker(S) is convex.
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Proof: Let x,y e Ker(S), and z is on some x-y chordless

path where S c V(G).

To prove that I(x,y) c Ker{S) where,

I(x,y) = {z:z is on some chordless x-y path}

Since X,¥ E Ker(S), I(x,s) c S, I(y,s) c'S, for every s e S.

Let z E I(x,y). To prove that I(z,s) c S for every s s e S.

Assume without loss of generality that z is adjacent to x.

Let PI = z-a
1-a2

- . · .-an-s be an z-s chordless path and

P2 = x-z-b
l-b2

- · · .-bk = y be an x-y chordless path.

If is chordless, then clearly

z,a, ... ,a ,S E S.
n

Similarly when y-bk- ... -b1-z-a1- ... -an-z is chordless path.

So assume that these are having chords. If l is such that

at is adjacent to x, (Note that one end vertex of any chord

of this path is x, because z-a
1-a2-

... -a
n-s

is chordless).

Then x-al-a
l_1-

... -a1-z-x is a cycle in G. If l > 1 this is

a cycle of' length at least four and hence has a chord. Thus

we can see that x is adjacent to al. Similarly if b.
1

is
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adjacent to am for some m=l, we can see that a
1

adjacent to

b
1

(see Fig.2.9).

x z

Fig 2.9

As above, if x is adjacent to al for some l > 1 then x

is adjacent to a
2

. Also if b,is adjacent to a for some
1 m

m > 1, a
2

will be adjacent to some vertex on b
1-b2

... b
i

. Let

h j be the first vertex on b
1-b2-

... -b
i

which is adjacent

a
2

, (see Fig.2.10).

to
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zx hI b j hi hk = Y
11-------t'.1----0- - - - - - 0..:.-----0 - -----0

s

a
n

Fig. 2.10.

ofcyclechordlessawill beThen x-z-h l-b2- ... -b
j-a 2-x

length at least four. Hence either P3 or P
4

is chordless.

Hence l(z,s) c S and therefore z e Ker(S). Cl

m-convex simple (m.c.s) graphs are those whose

only nontrivial convex subsets are the null set, singletons,

pairs of adjacent vertices and the whole set V(G). The

following theorem gives a necessary and sufficient condition

for a graph to be m.c.s.

Theorem 2.12. [26]. A graph is m.c.s if and only if it has

no nontrivial clique or clique separator.
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It is clear that d.c.s graphs are rn.c.s. But the

converse is not true. For example, the graph in Fig.2.11 is

an rn.c.s graph which is not d.c.s.

2 7

G:

Fig. 2.11

By theorem 2.12 it is clear that G is an m.c.s graph. But

it is not d.c.s because {5,6,7} is a nontrivial d-convex

set. The question as to whether there exist for any given

k, a k-convex graph which is triangle free and totally non

interval monotone, with respect to m-convexity also, lead us

to following theorems.

Theorem 2.13. There is no uniconvex graph.

Proof: Let G be a graph having a nontrivial convex subset.

Then by theorem 2.12, G contains a clique separator S. Let
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Then C.U S
1

is convex in G because any chordless path connecting

vertices of C.U S will be contained in <C. US>. Note that
1 1

since S is complete, any path containing a vertex not in

et U S will have a chord. Thus the number of convex sets is

at least two. 0

We call a convex set C to be a minimal nontrivial

convex subset if no proper subset of C of cardinality at

least three is convex.

The following theorem specify the condition on k

which is necessary for a graph to be k-convex.

Theorem 2 .14. Let G be a k-convex, triangle free,

2-connected graph. Then there is an 'n' such that

(n-!)(n+2)/2 S k S 2n-2.

Proof: Let C
l'C2

' ... 'C
n

be minimal nontrivial subsets of G.

j .iforverticestwomostHence cin C j contains at

Otherwise C. n c. will be a nontrivial convex set which is a
1 J

proper subset of Ci " Let cin C j = Swith ISI = 2.
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Claim 1. 5 is a clique separator.

Let 5 = {x,y} Then,

Co(s)If x is not adjacent to y,Co(S) c C.n C ..
1 J

will be a nontrivial convex subset properly contained in C..
1

Hence x is adjacent to y, that is S is a clique.

Now to prove that G\S is disconnected. If not,

each pair of vertices in G'S is connected by a path. In

particular, each vertex of C.\S is connected to each vertex
1

chordless c,-c. path
1 J

of C.'S by some path in 0\5.
J

a

Let c. e C.\S and c.e
1 1 J

C.\ S.
J

in G\5.

Assume without loss of generality that c. is so chosen that
1

Since G is triangle free c. is not
1

adjacent to at least one vertex of S. Let it be x.

Consider the path joining c. and x which contain c. on it.
1 J

It is clear that some subset of this will induce a chordless

This is notC.- x path containing a vertex in C., S.
1 J

possible because C. is convex. Hence G\S is disconnected.
1

Therefore, if cin C
j
= S, any clique of size

then S is a separator set.

at least two,

Now, let H be a graph with,
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c.n c. is a clique separator.
1 J

Claim: H is a block graph.

If not there will be a block B in Hand C. ,c. E B
1 J

such that C. is not adjacent to C. in H,
1 J

loss of generality that d(C.,C.) = 2 and let i = 1, j = 3.
1 J

Let C
l-C 2-C 3

be a path and since these are vertices of a

block, there will be another path C
3-C4-"'-Ci-Cl

connecting

Let Cl n C2 = SI' C
2 n C3 = 53" 'C i n SI = S .. Note that

1

81 ~ S2' Otherwise SI = 52 C Cl n C3
and hence Cl will be

adjacent to C
3

which is a contradiction, Now, since G is

triangle free, we get an x E 5
1

, y E 8
2

such that x is not

adjacent to y, Note that x,y e c
2

' Assume without loss of

generality that SI ~ 5
i

and 82 ~ 53'

[If SI = Si = Si-I = '" = S3' Cl n C2 = S3' C3 n C4 = S3 and

Cl will be adjacent to C3 '

= S. ' ]
1

SimilarlY when
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Now because Cl n Ci ~ t ,C i n Ci - l ~ t, ... C
3

n C
2

~ t and

x E Cl and y e C2, we get an x-y path through C
i

, C
i

-
l

' ....

.. , c
3

' C
2

and hence a chordless path joining x and y

containing vertices of these sets. That is C
2

is not

convex, which is a contradiction. Hence H is a block graph.

Now observe that if Cl and C
2

are convex and Cl n C
2

= S, a

clique separator, Cl U C
2

is convex. Hence, the convex sets

of G are those corresponding to the connected subsets of H.

It is known that the number of connected sets of a block

graph is minimum when it is a path and is a maximum when it

is a complete graph. The number of connected sets other

than the whole set is (n-1)(n+2)/2 when it is a path and it

is 2
n

- 2 when it is a complete graph. Hence the number of

connected sets in H lies between (n-1)(n+2)/2 and 2
n-2.

Therefore, G is a k-convex graph implies that there is an n

such that (n-1)(n+2)/2 ~ k ~ 2
n-2

c.

Illustration: If n = 1, then k = 0 and G is an m.c.s.

graph.



54

If n = 2, then k=2. So, there is no uniconvex graph.

If n = 3, then 5 5 k 5 6, so there is no 3-convex graph

or 4-convex graph.

If n = 4, then 9 ~ k ~ 14, so there is no 7-convex or

a-convex graphs.

Remark 2.3. In the theorem 2.14, for any C.E H, if N(C.)
1 1

consists of rn pairwise nonadjacent vertices, then the

subgraph of G induced by C. consists of at least rn-edges.
1

This is because if Cl C are the neighbours of C, which
n 1

are pairwise nonadjacent, then in G,

COROLLARY: Let H be a block graph of order p. Then there

is a t.n.i.m graph a' such that G' is k-convex where k is

the number of convex subsets of H other than the null set

and the whole set.

Proof: Let G ~ K n ~ 3. Take n to be sufficiently large
n,n

so that if C
1,C2

, ... 'C
rn

are the vertices of H as in the

2
Remark 2.3, then m 5 n. Let V(H) = {C

1
,c

2,
... ,C

p
} . Now
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form G' as follows. Let G
I,G2,···,Gp

be p copies of G.

Identify an edge of G. with the corresponding edge of G. if
1 J

and only if C. is adjacent to C. in H. That is, G.n G.~ K
21 J 1 J

in 0' if C. is adjacent to C. in H. Now, the nontrivial
1 J

convex sets of G' are those corresponding to the convex sets

of H different from the null set and the whole set.

Now we prove that none of these is an interval.

If a,b E G. for some i, then, I(a,b) cannot be
1

convex. Assume that a E b e Then any path

connecting a and b contain the vertices of a clique

separator S where S C V(G
I). Let VI and V2 be the

bipartition of V(G). Let VI,1 and VI,2 be the corresponding

sets in V(G
I).

Let a E VI,1 (similarly when a E VI,2).

Let "i E VI,I \ (5 U {a}). Such a vertex exist because

S n VI,1 is a singleton and I VI,11 2: 3.

Claim: a
1

fi! I(a,b).

Hence, there does not exist a chordless a-b path containing

Hence no nontrivial interval is convex.



Illustration:

G:

H:

56
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,
G,

x 1

v 5

Fig. 2.12

2.3. ITERATION NUMBER

Minimal path iteration number of a graph G, min(G)

[27] is a concept analogous to geodetic iteration number

(Definition 1.11). It is obtained in a similar manner by

replacing the geodetic interval operator by the minimal path

interval operator.

It can be observed that for any given k, the

sequential join of k+l copies of K
2,

is a graph which is
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both d.c.s and rn.c.s and both its minimal path iteration

number and geodetic iteration number is k.

We know that the Caratheodory number of any graph

with m-convexity is atmost 2 and hence JHC. In addition, if

G is interval monotone with respect to m-convexity,

min(G) = 1 and conversely.

However, in the case· of graphs with geodesic

convexity it is necessary that G should be interval monotone

and JHC in order that gin(G) = 1. But, it is not sufficient

(See Fig.2.13).

Fig. 2.13.
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Let S = {a
2

, b
1

, d
1}.

Then,

s1 = {a1,b1,cl,dl,a2,b2,d2} and s2 = V(G).

Hence gin (0) ~ 1.

If G is interval monotone but not JHC, there

are graphs G and S c V(G) with ISi = 3 such that gin(S) is

large. However, we have,

Theorem 2.15. Let G be a JHC, interval monotone graph and

let s c V(G) • Then g in (8) S k, where k "is such that

k-l < log
·log

l!1
2

~ k.

since G is JHC.

interval monotone.
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Hence Co(S) = U {I(C
l

, c
2

) : c
l,c2

E Cl U C
2}

1= (Cl U C2) ·

Now let C
l l

= co({al,a2,··· ,arn/ 41})

C
1 2 = Co ( {a rn/41 +1 ' ... , a rn/21 })

C2 2 = Co({a r3n/ 41 +1' ... , a })
n

Then Cl = Co(C
1 1

UC
1 2)

and C
2

= CO(C
2l

U C
22).

1 1
above, Cl = (C

l l
UC

1 2)
and C

2 = (C
2l

U C
2 2)

Then as

Hence Co(S)

Proceeding like this,
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Now, When rn/2kl = 1

2
k

-
l

< n ~ 2
k

and co(al···arn/ 2kl) = co(al ) = {all

Co(S)

gin S ~ k, where
k-l

2
k

. That isHence, 2 < n <

k-1 <(log n/ log 2) ~ k. That is k-l <
log ISl < k
log 2

[]

The following discussion illustrates that there are graphs G

k-l k
and S C V(G) such that gin(S) = k where 2 < S S 2 .

k
Let k be any integer and n = 2 . Let Q be the

n

n-cube, vertices labelled with (0,1) valued n-tuples.

j ;It i and 6
0
= (0 , 0 , ••• , 0 ) . Then, d(6. ,6.) = 2, for i ~ o.

1 J
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If 6 .. = (xl"" ,x
n)

where x . =
1,J 1

X j = 1 and x
k

= o for

k ~ i,j, then 6 .. is adjacent to 6. and 6 ..
1 , J 1 J

Now if 0i,j 0k,l E N2 (0 0 ) be such that i,j ~ k,l, then

d(Oi,j , 0k,l) = 4 and if A = {i,j,k,l} and

m e A, then, 0AE I ( 0 · ., Ok 1)'
1 , J ,

Similarly, s3={00} U s U {N2(00 ) U ... U N 3(°
0

) , and
2

Hence, gin(S) = k.

V(Q ).
n
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example,
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If n is such that 2k- 1< n < in the above

Therefore if n is such that 2k- 1
< n ~ 2k

9 in (5) = gin ({6.}) = k.
1

If an interval monotone, JHC graph has the

additional property that the geodesic intervals are

decomposable [12], then 9 in (0) = 1. Also, we observe that

the class of graphs with decomposable intervals are nothing

but the class of geodetic graphs. Hence we have,

Theorem 2.16. If G is a geodetic, JHC graph, then

gin(G) = 1.

Proof: Since G is geodetic, it is interval monotone.

Because G is JHC also, the geodesic interval operator

satisfies the Peano property by Theorem 1.3. We denote by

ab the shortest path connecting a and b.



64

Now, let a,b,c e V(G), U.E ab, and v e cu. It is enough to

prove that v is in one of the intervals I(a,b), I(b,c) or

I{a,c}. Because G is geodetic I{a,b) = ab.

Fig. 2.14.

Assume without loss of generality that d(c,v) = 1. Let

d(a,c) = II and d(b,c) = l2' Now, by the Peano property,

there are vertices vI E bc, v2 E ac such that v E aVI n bv 2,

Now because d(a,c) = ll' d(a,v) ~ ll-I,

If d(a,v) = ll-1 then d(a,c) = d(a,v) + I = d(a,v) + d(a,c)

and hence v e ac.

So assume d(a,v) ~ ll'

If d(a,v) > II then d(a,vl) = d(a,v) + d(v,vl) >ll+ d(v,vl)

That is d(a,v
l)

> d(a,c) + d(v,v
l)

Now d(a,v
l)

~ d(a,c) + d(c,v
l)
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Therefore d(v,v
l

) < d(c,v
l

) and

l2- d(c,v
l

) < l2 - d (v,v
l

)

d(b,v
l

) < l2-d ( v , v
l

)

d(b,v
l

) + d(v,v
l

) < l2 and so d(b,v) ~12-I and

d(b,v) < l2-I is not possible and hence d(b,v) = 1
2

- 1 and in

this ease v E be.

Now assume that d(a,v) = ll'

a b

In this case d(a,v
l

) = II + d(v,v1)

Now,if d(c,v
l

) >d(v,v
1),then

d(b,v1) + d(v,v1) ~ l2- 1 and hence vI E bc,
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So let d(c,v1) ~ d(v,v
1).

But d(c,v
1)

< d(v,v1)is not

possible because aV
1

is a shortest path containing v.

Therefore d(c,v
1)

= d(v,v
1).

But this is again a contradiction because these give two

distinct shortest patmconnecting a and vI' 0





III

CONVEX SIMPLE GRAPHS AND SOLVABILITY

In this chapter, we continue the study of

properties of convex simple graphs. Motivated by a problem

posed in [41], we define the notion of solvability and make

an interesting observation that, all trees of order at most

nine are solvable and that the bound is sharp. All trees of

diameter three, five, and those with diameter four whose

central vertex has even degree are also solvable. However,

a characterization of solvable trees is yet to be obtained.

A problem of similar type with respect to m-convexity is

also discussed. We then discuss about the center of d.c.s

graphs. We conclude this chapter with the study of the

convexity properties of product of graphs. Some results of

this chapter are in [60].

3.1 SOLVABLE TREES

In this section, we introduce the notion of

solvable trees associated with a d.c.s graph, to answer the

following,



68

PROBLEM [41] Describe the smallest distance convex simple

graph containing a given tree of order at least four.

K is such a graph for K
12,0 ,n For a tree T which

is not a star, let VI and V
2

be the bipartition of V(T) with

I v11=m,lv21=n, then K is a d.c.s graph containing a treem,n

isomorphic to T. However, to find the smallest d.c.s.

graph, we note by theorem 2.4. that, for any d.c.s. graph

q ~ 2p-4 and the lower bound is attained if and only if it

is planar. So, for a given tree T if there exists a

planar d.c.s. 9raph containing T as a spanning

subgraph, then that will be the smallest d.c.s. graph

containing T. This observation leads us to,

Definition 3.1. A tree T is solvable if there is a planar

distance convex simple graph G such that T is isomorphic to

a spanning tree of G.

From the remarks made above, it is clear that K
1 ,n

is not solvable. Hence, in the following discussions we

consider only trees which are not stars.
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A USEPUL ORAPH OPBRATION:

We shall now describe an operation frequently used

in this section. Let u and v e V(G). Join u to all the

vertices in N(v) and v to all the vertices in N(u). The

resulting graph is denoted by G*(u,v) and in this graph

N(u) = N(v).

Remark 3.1 If G is planar and if G can be embedded so that

u,v,N(u) and N(v) are all contained in the same face, then

G*(U,v) is planar. Also, if U and v are partners then

G*(U,v) ~ G.

Lemma 3.1. Any path of length at least four is solvable.

Proof:

U E C(P).

Let P be a path of length at least four and let

Then N.(u) consists of two non-adjacent vertices
1

for i=1,2, ... r-l and" (u) is either a pair of non adjacent
r

vertices or a Singleton according as C(P) ~ K
1

or K
2

, where

r is the radius of P.

Now, the graph G = <u>+<N(u»+ ... +<N (u» is a planar d.c.s.
r

graph containing P. c
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Theorem 3.2. Any tree of order atmost nine is solvable.

Proof. If T is a path then it is solvable by the lemma 3.1.

Suppose that T is not a path. Let u be a vertex of T such

Case I. Any vertex in N
2

( U) is of degree one.

Choose

u'e "2(u) such that N2 ( U) n N(a1)\{u'} = ~. Construct

G ~ T*(u,u')*(al,a2)*···*(an_l,an) if n is even and

G ~ T*(u,u')*(a2,a3)*···*(an_l,an) if n is odd.

Using theorem 2.3 and the remark 2.3, it follows that G

is a planar d.c.s. graph which contains T.

Case 11. There is a vertex in N
2

( U) of degree at least two.

Choose U'E N
2

( U) such that d(u') = max{d(v):V E N
2

( U) } and

Note

that, m > 3. Since IV(T)I S 9, N(v.)-{u,u'} = ~ for at
1

least one value of i.

Sub case 1. N[u] UN[u'l = V(T). Then T*(u,u') ~ K
2,p-2

is

such a planar d.c.s. qraph.
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Sub case 2. N[u] UN[u'] ~ V(T), but

m
N[u] UN[u'] U (U N(v.» = V(T).

· 1 11=

Without loss of generality assume that

Then the required graph is

odd.

m
Sub case 3. N[u] U N[u'] U (U N(V

i
» ~ V(T). but

i=l

m m
N[u] UN[u'] U[ UN(V

i
) ] U[ UN

2(V.)]
= V(T).

i=l i=l 1

Here, note that N(v. )\{u,u'} ~ ~ for at most two values
1

be such thatof i, say 1 and 2. Let w1E N(V
i

) , {u,u'}

d(w
1

) ~ 2. Since IV(T)I ~ 9, d(w
1)

can not exceed three. If

d(w
1

) = 3, by the choice of ut, we can see that w1E N
4

( U) in

T and let u-v -u'-v -w
2 1 l'

be the u-w
1

path in T (That is,

Now, G ~ T*(u,w
1)*(v1,v2)

is the required planar

d.c.s. graph.
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m m
Sub case 4. N[u] UN[u'] U (i~lN(Vi» U (i~lN2(Vi» ~ V(T).

Then,
m m m

N[u] UN[u'] U ( UN(v.» U ( UN2(vi » U ( UN3(V.» = V(T).
i=l 1 i=l i=l 1

Note that, N(v.)' {u,u'} ~~, for only one value of i, there
1

is only one vertex w
1

in it and there are two vertices w
2

and w3 such that w
1w2 and w2W3E E(T).

Then, T*(U,U')*(v
1,w2)

is the required graph. o

Remark 3.2. In theorem 3.2 the upper bound for the order of

T is sharp. Consider the tree T of order 10,

T:

Fig. 3.1

A non- solvable tree of order 10 and diameter 4.
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Here, d(x.) >2 in T and hence also in G. 80, by theorem 2.3,
1

for each xi there is a unique partner xi in V(T}. Now,

x~ ~ a, or u
1 J

because and will

contain a triangle for i=1,2,3 and j=1,2, ... ,6. Hence x' can
i

only be x. for some j ~ i. Then there will be one x. for
J 1

which there is no partner.

Theorem 3.3. The following classes of trees are solvable.

(a) Trees of diameter three.

(b) Trees of diameter four whose central vertex has even

degree.

(c) Trees of diameter five~

Proof:(a) Since T is of diameter three, T ~ 8
m,n

(Definition l.2.)/for m/n > o.

Let cl and c
2

be the central vertices and

T as a spanning tree.

(b) Let diam(T) = 4 and the central vertex c has even

degree.
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T*(C,c')*(al,a2)* ... *(an_l,an) is the required graph.

(c) Let diam(T) = 5. Then T will be as in Fig. 3.2.

b
m

BC
1

u-:-------(J

B
2

0
Al

,Al
~,
\
\
\

CA a
n n

Fig. 3.2

Clearly A. and B. are independent sets and are nonemtpy for
1 J

at least one value each of i and j, i = 1,2, ... ,n and

j=1,2, ... ,m.

Case 1. Both m and n are even.
n

Then {c1,a1,···,an} U (iV1A i )

m
and {c2,b1,.··,bn} U (jV1B j )

induce trees say T
1

and T
2

respectively. Note that

diam(T.) < 5 for i = l,2.Choose a c' from some Ai and a c'
1 1 2

from some B.. Then
J

Gl~ Tl*(cl,ci)*(al,a2)*···*(an_l,an)' and

G2~ T2*(c2,c~)*(bl,b~)*... *(bm_l,bm) are planar d.c.s
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graphs containing T
1

and T
2

respectively. Now, embed G
1

Then,

join cl and ci to c
2

and c~. Note that the resulting graph

G is planar and for each vertex of degree at least 3 there

is a partner ut. Hence G is d.c.s.

Case 2. m is even and n is odd.

Obviously, d(c
1)

= n+l, which is even and

n

{c l , c 2 , a l , · · .,an,bl,···,bm} U (iV1Ai)

form a tree, say T' of diameter four and C (T') = {cl}.

1
Choose" a vertex a. from some A.. Now,

1 1

is a planar d.c.s graph containing T.

Case 3. Both m and n are odd.

Here T is a spanning tree of the planar d.c.s

graph,

c
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Remark 3.3. (i) In (b), if the central vertex has odd

degree, the result need not be true, as seen in Fig 3.1.

(ii) There exists non solvable trees of diameter six. Also,

if VI and V2 are the bipartition of V(T) such that Ivll is

odd and each vertex of VI is of degree greater than 2, then

T is not solvable.

We ask a problem similar to the problem discussed earlier.

PROBLEM: Find the smallest m.e.s. graph containin9 a given

tree T, ITI ~ 4.

If T

size is 2n.

= K
1

;n ~ 3, K is such a graph
,n 2,n

and its

Theorem 3.4. The size of the smallest m-convex simple graph

containing a tree T ~ (RI ) satisfies,,n

p-l+{m/2) ~ q ~ p+m-2, where IV(T)I = p and m is the number

of pendent vertices.

Proof. Let u
1

be a pendent vertex of T and v be the vertex

pendent

vertices adjacent to v. Let be the pendent



vertices other than u.s.
1
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Add edges to T such that

induce a tree in which

possible by taking a spanning tree of Kk,l. The resulting

graph is triangle-free and neither a vertex nor an edge can

separate G. So, by theorem 2.12, G is an m.c.s. graph and

size of G is p-l+l+k-! = p+m-2 where m is the number of

pendent vertices of T. So size q of the smallest m.c.s.

graph is atmost p+m-2.

Now, note that m.c.s. graphs are triangle free

blocks and hence all vertices are of degree at least two.

Therefore, to make T a block, the degree of each pendent

vertex is to be increased by at least one.

leastI ~l edges are to be added and hence

q ~ p-l+l~l > P-l+~.

So, at

o

The following example illustrate that there are

trees attaining both the bounds. Consider the tree T
1

in

Fig 3.4.
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Here p=9, m=6

Fig. 3.4

The graph G in Fig 3.5 is an m.c.s. graph of size

m
q = 11 = p-l+2 ' containing T.

----o---~

0" /0.
11__/0 O,,-~J

o-----------~o

Fig. 3.5

Consider the tree T
2

of Fig 3.6. In T
2,{x1,x2}

is

a clique such that ~ {x
1,x2}

is totally disconnected. So,

to get an ID.e.s. graph at least five edges are to be added.

So, q = 13 = p+m-2.

11.: 1..---£1--------...--0

o

Fiq. 3.6
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3.2. CENTBR OF DISTANCE CONVEX SIMPLE GRAPH

In this section, we determine the center of d.c.s

graphs. Properties of centers of various type of graphs

have been discussed by Chang [23],. Chepoi [30], Nieminen

[55], Prabir Das [63] and Proskurowski [64].

Theorem 3.5. If G is a planar d.e.s. graph of order at

least four, then,

(1) G is self centered if diam(G) = 2.

(2) diam(G) = 2rad(G) or 2rad(G)-1, if diam(G) > 2
I

-is isomorphic to K
2

or C
4

according as

diam(G) = 2rad(G) or 2rad(G)-1.)-1.

C(G)

Proof: (1) Let G be a planar d.e.s. graph with diam(G) = 2.

It follows from Cl of Theorem 2.1 that rad(G) > 1.

So rad(G) = diam(G) and hence C(G) = V{G).

(2) Suppose diam(G) > 2.

Case I: diam(G) = 2k, k > 1

Let u,v e V(G) be such that d(u,v) = 2k and

Then by
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Cl and theorem 2.3, we get another u-v path

where a: and 8. are partners
1 1

for

i = 1,2, ... , 2k-1. Note that e(a
k)

~ rad(G) ~ k. Let w be

If w = u or v then

e(a
k

) = k, which implies e(a
k)

= rad(G). Note that

e(a
k

) = e(ak)·

If w ~ u, v suppose that I(v,w) contains a
k

or at

(note that if I(v,w) contains a
k

it will contain ak also).

This

imply that e(a
k)

= k. Similarly for I(u,w). Hence in these

two cases e(a
k

) = e(ak) = rad(G). If neither I(u,w) nor

I(v,w) contains these vertices, consider a shortest u-w path

and shortest v-w path. Then using Cl and theorem 2.3 it can

to K3,3'

{8
k

, ak} is

be observed that there is a subgraph homeomorphic

Hence e(ak) = e(ak) = k = rad(G), that is

contained in C(G).

Now, we prove that these are only central

vertices. If there is some other vertex, say c, in C(G)

then d(c,u) ~ rad(G) and d(c,v) S rad(G). But, since
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d(u,v) = 2rad(G), d(c,u) = d(c,v) = rad(G). Thus we get a

u-v path which is different from the two paths mentioned

earlier. Now it can be observed that a subgraph

homeomorphic to K
3,3

is contained in G.

Case 11: diam (0) = 2k+l for some k > o.

As in the case I, if u and v are such that d(u,v) = 2k+l and

u = aO-al- ... -a2k-a2k+l= v and u = aO-ai- ... -a2k-a2k+l = v

are the two distinct paths then rad(G) = k+l and

isomorphic to c
4

.

which will induce subgraph

c

Remark 3.4. Planar d.c.s. graphs resembles trees in

its radius-diameter relation and center-diameter relation.

For a tree T,C(T) ~ K
1

or K
2

according as diam(T) is 2rad(T)

or 2rad(T)-1. For a planar d.c.s. graph G also,

-
C{G) is K

2
~ D

2{K1
) or C

4
= D

2(K2)
according as

diam(G) is 2rad(G) or 2rad(O)-I. D
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3.3. CONVEXITY PROPERTIES OF PRODUCT OF GRAPHS

In this section, it is proved that the property of

being distance convex simple is not productive.

m.c.s graphs behave nicely.

However,

convex simple graphs.

Proof: Let GI(PI,ql) and G2(P2 , Q2 ) be two d.c.s graphs.

Let A be a convex subset of V(G
I

x G
2).

Claim: A = AIX A2 where AI = {u:(u,v) e A} and

A = {v: (u,v) E A.} . To prove that AIX A2 c A.
2

Let U E AI' v E A2 · Then there is a UOE Al and VOE A
2

such that (uO,v) E A and (u,v
O) e A.

Let UO-u1 - · .. -ul-u be a shortest u -u path in G
I

and
0

a (uO,v)-(u,vO) path. Hence (u,v) e A. Therefore, A = A
IXA2.
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Now, even if A. is a trivial convex set in G. for
1 1

i = 1,2, A
1x

A
2

need not be trivial. Thus the non trivial

convex subsets are {x} x V(G
2),

where x is in V(G
1),

V(G
1

) x {y} where y is in V(G
2),

{xl' X
2}

x V(G
2)

where

x
1

x
2

E E(G
1),

V(G 1) x {Yl'Y2} where Y1Y 2 e E(G 2) and

{x
1,x2

} x {Y
1'Y2}

where x
1x2

e E(G
1)

and Y
1Y2

e E(G2).

respectively. Hence G1X 02 is k-convex where

o

Theorem 3.7 Let be connected, triangle free

graphs.G
i
~ K

1
or K

2
for i = 1,2. Then G

1
X G

2
is m-convex

simple.

Proof: Let Gi~ K
1,K2

be connected, triangle free graphs.

paths in G
1

and 02 respectively, then

To prove that G1X G
2

is m.a.s , it is enough to
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prove that any (u,v) in V(G1X G
2)

is in the m-convex hull of

any two nonadjacent vertices (u1,v1) and (u2,v2).

can be easily seen that (u
1,v2)

and (u
2,v1)

lie on a

Assume without loss of generality that (u,v) is

Let u be adjacent to u
1

and v = vI.

(u,v) o----------------------------------o(u,v2)

(u1,v1) ---------------------------------- (u1,v2)I I
I I
I I
I I

(u2,v1)o----------------------------------O(u2,v2)

Fig. 3.7.

If u is on any chordless u1- u 2 path say u1-u-a1···an= u 2

then (ul,vl)-(u,vl)-(al,vl) ... (u2,vl) ... (u2,v2) is a

chordless (u
1,v1)-(u2,v 2)

path containing. (u,v
1)

= (u,v).

So assume that u is not on any chordless path connecting

U
1

and u
2

(See Fig. 3.7).
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Case 1. vI~ v 2 and vI is not adjacent to v
2

-

Then (uI,vI)-(u,vI) ... (u,v2)(ulv2) ... (u2,v2) is a chordless

(u
1

, v
l

) - ( u 2 , v
2

) path containing (u,v
l

) = (u,v).

Case 2. vI is adjacent to v 2'

Then there is vertex v
3

in G
2

different from

and v2 because G21- K2 · Assume v3 to be adjacent -to "i ' Then,

(u1'v3 )
I
I
I
I

(u
2,v3)o

(u,V
I

)
0--------...-.0 (u, v 2)

(u
1,v2 )

I I
I I
I I
I I

(u
2
~-V-l~)-------0(u2 ' v 2)

Fig 3.8

chordless (See

Fig 3.8).
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That is

(u,v) e Co({(u2,vl),(ul'v~)}) c CO({(u1,v1),(u2,v2)}).

If V
3

is adjacent to v
2,

then

is a chordless (u
1,v1)-(u2,v2)

path containing

(u,v
1

) = (u i v }.

Case 3.

adjacent to u
2

-

Then (u
2,v2)

= (u
2,v1)

and u
1

is not

Since °°2 ~ K1,K2 there are two vertices

Let v3 be adjacent to vI and v
4-

Then

(ul,Vl)-(u,vl)-(U,v3)-(u,v4)-(ul,v4)···(u2,v4)

-(u
2,v3)-(u2,v1

)

is a chordless (u
1,v1)-(u2,v1)

path containing

(u,v
1)

= (u,v).

Now, let vI be adjacent to v
3

and v
4.

(See Figure 3.9.)
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I.--------~- - - - - - - - - - - - - - - --

I.--------~- - - - - - - - - - - - - - - --

Fig 3.9

U
1

is not adjacent to u
2.

Then

Hence (u,v) e Co({(u1,v3),(u1,v4)})
c Co({(u

1,v1),(u2,v1)}).

Hence, in any case (u,v). e Co({(u
1,v1)(u2,v 2)})

and so

o

Theorem 3.8. Let G. for i = 1,2 be connected triangle free
1
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As in the proof of theorem 2.16, let (u
1'v1)

and

(u
2

, v
2

) be two non adjacent vertices of G
1

x G
2.

Let (u,v) e G
1

x G
2.

Assume (u,v) to be adjacent to (u
1,v1).

Let U = vI and u
1

is adjacent to u.

If vI is not adjacent to v
2'

then as in the above theorem

Case I.

Fig. 3.10.

Since G
1

is 2-connected, there is a path connecting u and u
2

distinct from the path u-u
1-

... -u
2.



89

is a chordless path.

Case 11 Then and is not

adjacent to u
2.

Since G
2

K, there is a vertex v
2

adjacent

(Ul,vl)-(u,vl)-(u,v2)-(al,v2) ... (an,v2)-(u,v2)-(u2,vl) is a

chordless (u
1,v1)-(u2,vl)

path. c

Now let v be adjacent to vIand U = u
1.

Then if v = v2' then, (ul,vl)-(ul,v2)-(u2,v2) is a chordless

path containing (u
l,v2)

= (u ,v).

If v ~ v
2'

then v,v
1

and v
2

are distinct vertices of 02 and

hence 02 ~ K
2

or RI. Then the theorem holds as in Theorem

3.7. Now if vI = v
2

and v is adjacent to vI' then u
1

is not

adjacent to u
2.

(See Fig. 3.11).

(ul'vl)o--------------~O(u,v)
I I
I I
I I
I I

(u
2,v1)o

o(u
2,v)

Fig. 3.11.



90

In this case (ul,vl)-(ul,v) ... (u2,v)-(u2,vl) is a

(u1 ' V1 ) - ( u2 ' V1 ) path containing (u1,v) = (u,v). D

Remark 3.5. The condition that G
1

is 2-connected is

necessary. For, taking G
2

be K
2

and G
1

to be a graph having

a cut point C, then G x G I the copy of K correepondingto c
122

will be a clique separator for G
1

x G
2

and hence G
1

x G
2

will not be m.e.s.

Theorem 3.9. If G
1

is an m.c.s graph and 02 is any

connected triangle free graph, then G1 x 02 is m.c.s

Proof: If G
2
~ K1, then 01 x 02 ~ 01 and hence is rn.c.s.

If G2~ KI , then using theorem 2.17, G1X G2 is rn.c.s. c





IV

CONVEXITY FOR THE EDGE SET OF A GRAPH

In this chapter we introduce a notion of convexity

for the edge set of a connected graph. This definition is

motivated by the concept of edge lattice of a graph

discussed in [4]. Though there is a vast literature

concerning different aspects of convexity for the vertex set

of a graph, little work is done on similar lines for the

edge set.

We first observe that this convexity on E(G) in

addition satisfies the exchange law and hence is a matroid

(Definition 1,15). Also, its arity is not in general two

and hence the convexity is not induced by an interval. It is

known that the Caratheodory number of a convex structure is

an upper bound for its arity.

In this chapter, we have evaluated the convex

invariants of this convex structure. The Pasch Peano

properties (Definition 1.20) are also discussed and also a

forbidden subgraph characterization. Some results of this

chapter are in [61].



92

4.1 CYCLIC CONVEXITY

Definition 4.1 Let G = (V,E) be a graph with E ~ ~ .

s ~ E is cyclically convex if it contains all edges

comprising a cycle whenever it contains all but one edge of

this cycle.

Equivalently if s is convex and if

where a,8, 1 is an edge of G for i = 1,2, ... ,n-1.
1 1.+

If ~ denotes the collection of all such convex

subsets of E, then (G,~) is convexity space. For

convenience, the cyclic convexity on E will also be referred

to as convexity.

Example (a) For a tree T, every subset of E(T) is

trivially convex.

(b) In the 9raph G of Fig 4.1,
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Pig 4.1

Now, we shall consider a generalization of the notion of

geodetic iteration number (Definition 1.11) of an interval

convexity space to a convexity space of arity greater than

two.

Definition 4.2. Let X be a convexity space of arity n (n>2)

and SeX. The closure of S, denoted by (S) is defined as

(S) : U{Co(F):F c X, IFI ~ n}. Srn is recursively defined as,

sI: (S), Srn: (Srn-I). The smallest positive integer m such

m m+l .that S =8 18 called the iteration number of S. The
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iteration number of X is defined to be max{iteration number

of S : S £ X} if it exists.

Lemma 4.1. For the convexity space (G / I ) , the iteration

number is equal to 1.

Proof: We shall prove that for Se E, S2= S1. It is obvious

1 2 2 1
that S cS. Let e e S = (5). Then, there is a sequence

f d 1· n sI sucho e ges say e 1= 8 18 2 , e 2= a 2a3,···,en_ 1= a n-1 an

that {e
l,e 2

, ... ,e
n_ 1

, e } forms a cycle in G. Then, for each

i = 1 I 2 , ... I n -1, we get,

1
= a. a. I

1 1

such that {e.,e.
1

, ... ,e.
k

} comprise a cycle in G. Now,
1 1 1 .

1

observe that U S. is a sequence in S. which contains
1 1

b 1 2 m f o rmi th · · · dsu sequence~e ,e ",./e ormlng a pa J0101ng a
1

an

i m
Hence, {e,e , ... ,e } forms a cycle in G

2 ··1Thus, S = s .

and so e e

o

a

Theorem 4.2 The arity of (G/I) is 1 if G is a tree and is

one less than the size of the largest minimal cycle in G ,

otherwise.
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Proof: If G is a tree, then the lemma is trivially true. 80

assume G to be a graph having a cycle. Let k be the size of

the largest minimal cycle. Let 8 c E(G) is such that

Co(F) c 5 for Fe 5, IFI ~ k-l. Let e e Co(S). Then by lemma

4.1, there is a sequence {e
1,e2,

... ,e
t}

of edges in S such

that {e,e1, ... ,e
t}

comprise a cycle.

comprise a minimal path, then, {e,e1, ... ,e
t}

comprise a

minimal cycle and hence t ~ k-l. Hence,

If comprise a path

having a chord, assume that, Co(F) C 8 for IFI < t. Let

be a chord of this path such that there is a sequence

i 1 ' · · · , · e {I, 2 , · · · , t} and {eo' e i , ... , e . }
J i 1 1 j

comprise a minimal cycle.

Then e.~ k-1 and eOE Co( e. , ... , e. })e S.
J 1 1 1 j

Now, {e,eO,e1, ... ,et}\{e. , ... ,e. } comprises a cycle of
1

1
1

j

length less than t+1 and e E co({e
O,e1,

... ,e
t

} ) c S by

induction hypothesis. Hence, arity of (G,I) ~ k-l.

Now, if C
k

is some largest minimal cycle in 0,
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then let S = E(C
k

), x, where x is an edge in the cycle. Then

S is with the property that Co(F) c S for each subset of

cardinality at most k-2, but S is not convex. Hence, the

arity of (G,1) is one less than the length of some largest

minimal cycle in G. Hence arity A(G,~) = k-l. o

We shall now consider the concept of rank of a

matroid. For a convex structure X, a nonempty subset F~ X is

convexly independent provided x ~ Co(r' {x}) for each x E F.

Further, if X ~s a matroid (Definition 1.15) there exists a

maximal independent subset of X and such a set is called a

basis of the matroid. The cardinality

called the rank.

of the basis is

Theorem 4.3[12]. In a matroid X the hull of a basis equals

X and all bases of X have the same cardinality.

Now we prove the following,

Theorem 4.4. If G is a connected graph, (G,I) is a rnatroid of

rank p-l, where p = IV(G) I:.

Proof:(G,1) is a matroid follows from the fact that if
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{p,q,X
I,

... ,x
n}

comprise a cycle, p E Co({q,x
l,

... ,X
n

}) and

q E co({p,xl, ... ,x
n}).

Now, we have to prove that rank (G) = p-l. Let T be a

spanning tree of G and let F = E(T). Then each pair of

vertices in G is connected by a path in T. Now if e E E(G)

such that e ~ E(T) then there is a sequence e1, ... ,enof

edges in F connecting the end vertices vI and v
2.

That is

{e
l,e 2,

... ,e
n}

comprise a cycle. Hence E(G) = Co(F).

Hence, rank (G) ~ p-l.

Now, let FeE, be such that IFI < p-l. Then

there are two vertices vI and v
2

in G such that it is not

connected by a path comprised by edges in F. If el, ... ,e
k

are those edges in G which comprise a path joining vI and v
2

and if e
l

, ... ,eke Co(F) then by lemma 4.1 there is a

sequence of edges in F which comprise a v
l-v2

path which is

a contradiction o

Corollary: If G is disconnected, then (G /I) is a matroid of

rank p-k where k is the number of components of G. c
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4.2 CONVEX INVARIANTS

The convex invariants (Definition 1.18) of (G,I)

will be denoted by h(G), c(G), r(G) and e(G) respectively.

Theorem 4.5. If 0 is a connected graph of order p, the Helly

number of (G,1) is p-l.

Proof: Let T be a spanning tree of G and F = E(T). We

shall prove that F is H-independent.

Let
1

e e Co(F'{e}) for every e in F. Then by the

lemma 4.1, there is a sequence of edges, e
1
= 8

182
, e

2
= a

2a3,

en-I: an-1an in ~{e} such thate
1:

a1an, for some e in F.

1
Then e1E F and e E CO(F,{e

1})
also. Again using lemma 4.1,

= a1,kan. This is contradiction, since el~el, ... ,en-l and

e1,1, ... ,e
1'k

will then comprise two distinct paths joining

a
1

and an of T. Hence, n {Co(F-{a})/a E S} is empty and so

h(G) ~ p-l.

Now, we prove that any subset F of cardinality at

least p is H-dependent. In this case F contains a subset,
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c = {e1 ' e2 ' · · · , ek} , comprising a cycle in G and

e,e Co(~ {e}) for each e in F and i = 1,2, ... ,k. Hence,
1

n {Co(F\. {e})/e e F} is not empty. Therefore, F is

H-dependent and so h(G)<p. Thus, h(O) = p-l. o

Theorem 4.6. The Caratheodory number of (0,1) is given by

c(G)
= {I if Gis a tree

Circ(G)-l, otherwise, where Circ(O) is the
circumference of G.

Proof: If G is a tree, then every subset of E is convex.

Hence, for each Fe E with cardinality at least two, we have,

Co(F} = Fee ~ F(F-{e}} =e ~ Fco(F' {e}}. Hence, c(G} = 1.

Now, let C be a l~ngest cycle in G of length k and

s= E(C} = {a
1a 2,a 2a3,··

.,a
k

_
1ak

, a
ka1

} . Then

a,a, lE Co(S' {a,a, I}) for each i = 1,2, ... ,k.
1 1+ 1 1+

Let 51' = (S-{a. a. I})·
1 1+

is not

sequence

thatsuch

This

S.-{e.}
1 1

in

Claim: a.a'+l~ Co(s.' {ei}) for e,~ s ..
11111

If a.a. 1~ Co(Si,{e, }), by the lemma 4.1 we get a
1 1+ 1

e ,e , ... , e
k

of edges
1 2 .

1

{ a e e} comprise a cycle in G.
a, , 1'1'···' K1 1+ .

1
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possible because S-{e.} consists of the edges
1

of a path

only. Hence, Co(S.)c U Co(s.,{ei}:e.e S.} and so c(G) ~ k-l.
1 111

Now, let S be a subset of E of cardinality at

least k. Let e e Co(S). If e e S, e e s-{e
l}

c co(s'{e
1}),

f e l ~ ·or some ~ e 1n S.
•

If e e S, there is a sequence

cycle in G. Also, S ~ { e1 , 1 ' · · · , e l , l } because of the

maximal i ty of c. Let
1

{e1,1,···,e1,l } . Thene e S -

{ell) 1
e e Co( S " and so Co(S) c UCo(S' {e }/e E S) and

c(G) ~ k-l. Hence, c(G) = k-l. 0

Theorem 4.7. If G is a connected graph of order p, the

Radon number of (G,~) is p-l.

Proof. Let T be a spanning tree and let F=E(T). Then

if F can be partitioned into and such that

there is a sequence of edges ell' · · · , ell in F
I

and

e21, · · · , e 2m
in F

2
such that e,e11'····,e1l

and

e,e2l,·· .,e2,mcomprise cycles. Then ell'··· ,ell and

e
21,

... ,e
2m

are paths connecting the end vertices of e and

contains a sequence
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comprising a cycle, which is not possible. So F cannot have

a Radon partition. Hence, r(G) ~ p-l.

Now, let F c E(G) be of cardinality greater than

p-l. Then it contains a subsequence {el, ... ,e
s}

comprising

a cycle C. Then for e ~ ei' eiE Co(F'{e}) for i = 1, ... ,S.

Also e
i

E Co(E(C) , (ei}) C Co(F , {e
i}).

Now, let F=F
l

U F
2

be such that E(C) {e.}
1

c and {e.}
1

c Then

e
i

E Co(F
l)

n Co(F
2).

Hence, r(G) S p-l. Therefore, Radon

number r(G) = p-l. o

Then

Theorem 4.8. For a connected graph G, the exchange number

is given by e(G) = 2 if G is a tree or a cycle

= max {Circ(G-v): v e V(G)}, otherwise.

Proof:

Case I: Let G be a tree. In this case, every subset F of

E(G) is convex. If IFI ~ 2 then let F = {e1,e2} .

F , {ell C F , {e
2},

hence F is E-independent. If IFI ~ 3,

let F = {e
l,

... ,en,p}, n ~ 2. Then,
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Co(F -, {p}) = F -, {p} = {el' ... , en}

= {e1 , · · · , e I} U {e1 , · · · , e 2 ' e } Un- n- n

U {e1,e3,···,en} U {e2 , ... ,en }

c U { F" {ell) : i=l, .. ,n}.
1

Hence, Co(F'{p} c U {CoF , {ell : e ~ p, e e F}.

Case 11: Let G be a cycle. Then either F=E or F has no

subsequence comprising a cycle.

If F = E,Co(F' {ell = F for each e in F. If F ~ E,

since F contains no sequence comprising a cycle, each proper

subset of F is convex and so proof is as in the case of a

tree. Hence for both the cases, the exchange number is 2.

Case Ill: G is a graph having a cycle 'c' and a vertex v

not in 'e'.

Assume without loss of generality that 'c' is the

longest cycle with this property and let v be a vertex not

Let u be a vertex adjacent to v and let

Then it is clear that
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Claim: anal ~ Co(S' {aiai +l}) for any i=l,2, ... ,n. If

not, (8' {aia
i

+
l})

U {anal} contains a sequence comprising

a cycle, which is not possible. Hence ana1~ Co(S , {aia
i

+
l

} )

for any i. Hence S is E-independent and the exchange number

is at least the cardinality of S, which is equal to n.

Now, let S be a subset of cardioality atleast n+1,

say S = {el' , e }, m ~ n+1.
rn

Let e e Co(S , {el}) for some i.
1

To prove that e e Co(S , {el}) for some j~i.
J

Since e E Co(S' {el}) by lemma 4.1, we get a sequence
1

cycle.

Such that comprise a

of length m ~ 0+1 and it contradicts the maximality of C.

such that F = {e,e
i,fl,f2

, .•. ,f
l

} comprise a cycle. Let

f e S , F, then e E Co(S '{f}). Hence S is E-dependent and

so e(G) < 0+1, Thus e(G)=n.

These theorems are illustrated in Fig 4.2.

o
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c

9

d

Fig. 4.2

In figure +.2, Circ(G) = 6, max { Circ(G-v): v e G}=5.

Let F = {el,e2,e3,e4,eS}

Then Co(F) = E(G),

Co(F " {ell) = {e2,e3,e4,eS,e7,eS,eg}'

Co(F -, {e
2

} ) = {el,e3,e4,eS,eS,eg}'

Co(F " {e
3}) = {el,e2,e4,eS,ea}'

Co(F -, {e
4}) = {e

1,e2,e3,eS}
and

Co(F " {e
S}) = {el,e2,e3,e4,e9}'

Also n { co F , {ei} I i=l, ... ,S} is empty.

So, F is an H-independent set. Actually, it is a maximal

H-independent set and hence~

h«G,~» = 5 = 6-1 = p-l.
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F is R-independent, because for any partition F1and F
2

of F,

Co(F1) n Co(F
2)

=~. Hence F is an R-independent set and it

is maximal. So r «G,~» = 5 =p-l.

F is C-independent because e
6

E Co(F) and e6~ Co(F , {e.})
1

for any i=1,2,3,4,5. Also F is maximal. Hence C«G,1»=5.

F is E-independent because e
7

E CO(F , {ell) and

e
7

e Co(F , {e
i

} ) for i=2,3,4,5. Here also F is

maxi~l. Hence C«G,1» = 5.

Note 4.1. (a) In this example, we have h = c = r = e = 5.

(b) If the graph G is Hamiltonian, then

h = c = r.

4.3 PASCH-PEANO PROPERTIES

In this section we shall consider the Pasch Peano

properties (Definition 1.20). It is possible to express the

Pasch Peano properties of a general convexity space by

replacing the interval operator by the convex hull operator.

Here we discuss the Pasch Peano properties of
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Definition 4.3. A convexity space X has Pasch property if,

1 1
for a,b,t,s ,b E X such that

1 1
then Co({a,b }) n Co({a ,h}) ~ ~ and X has Peano property if

for a,b,d,u,v in X such that u e Co({a,b}), v e Co({d,u}),

there is a 'w' in Co({b,d}) such that v e Co({a,w}).

we shall denote the edges of G by a,b,d,f and g.

Theorem 4.9. The convex structure (0,1) is a Pasch space if

~nd only if K
4

- x is not an induced graph of o.

?roof: If R
4-

X is a graph, let u,v,w,t be such that uv = a,

Tt = f, uw = d, vw = g and wt = h are in E and ut ~ E (See

~ig 4.3).

v

a

u

Fig 4.3

w

b

t
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Then d e Co({a,g}), f E Co({b,q}) and

Co({a,f}) n Co({b,d}) = {a,f} n {b,d} = ~.

Now assume that K
4

-x is not a subgraph. Let

a,b,g,d,f e E be such that d e e Co({a,g}), f E Co({a,g}).

If d ~ a, g: f ~ h, 9 then a,b,d,f and 9 will be

as shown in the figure 2. Since K
4

- x is not an induced

subgraph, ut E E and ut e Co({a,f}) n Co({b,d}). If d=a (or

if f=b), clearly Co({b,d}) n Co({a,f}) ~ ~. Now if d=g,

then f E Co({b,g}) = Co({b,d}) and hence Co({a,f}) n
Co({b,d}) ~~. Hence the theorem. (G,1) is Pasch if and

only if K
4

- x is not an induced subgraph of G. c

Theorem 4.10. The convex structure (G,I) is a Peano space if

and only if G does not contain K
4

- x as a subgraph.

Proof: Let G contain K
4

- x as a subgraph. Then 0 contains

8 subgraph isomorphic to the graph in figure 4.4 .
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o

o---------~

o

Fig. 4.4

In G,·a,b,e,d,f are such that e E Co({a,b}), f e Co({e,d}).

But it is not possible to find a '9' in Co({b,d}) ={b,d}

such that f e Co({a,g}).

Now, let G be graph which contain no subgraph

isomorphic to K
4

-x.

condition.

Let a,b,d,e,f be as in the Peano

Let e e Co({a,b}). If e=a or b, then the proof is

trivial. So assume e ~ a or b. If Co({e,d}) = {e,d}, then

f = e or d and belongs to Co({a,b}) or Co({a,d}). If

Co({e,d}) ~ {e/d}, there is an f ~ e,d in Co({e,d}). Then f

is adjacent to e and d and so {a,b,d,e,f} comprise a K - x
4

which is not possible. Hence the theorem.
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Note 4.2. It can be easily observed that for matroids Peano

property implies the Pasch property. In particular, (G,I)

is a Peano space implies that it is a Pasch space. The

converse is not true. (K
4

,1 ) is a pasch space which is not

a Peano space, by theorem 4.9 and 4.10. c
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SOME PROPERTIES OF H-CONVEXITY ON Rn.

In this chapter, we consider some problems posed

by Van de Vel [12] on the H-convexity of Rn. This

convexity on vectorspaces generated by linear functionals

has been studied by Boltyanskii [19] and Bourguin [20] and

has some interesting properties. In general, a

symmetrically generated H-convexity need not be JHC or 8
4.

In the process of answering a Problem of Van de Vel ([12]

and also on a recent private communication), as to whether

each symmetric H-convexity is of arity two, we obtain a

sufficient condition for a symmetrically generated

H-convexity to be of arity two and give an example to

illustrate that the arity could be infinite. A necessary

and sufficient condition for the symmetrically generated

H-convexity to be 8
4

, and an example of a pp space which is

nei ther JHC nor S4 and hence not of arity two are also

obtained.

5.1 H-CONVEXITY

Let V be a vectorspace over a totally ordered
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field K and let $ be a collection of linear functionals

from V -~ K.
-1

Then the family Y = {f (-oo,a] a e k, f e $}

generates a convexity ~ on V, coarser than the standard

one. It is called an H-convexity. If -f e ~ whenever f E ~

then ~ is called a symmetric H-convexity. We usually omit

one of f, -f and say that $ symmetrically generate the

convexity~. The usual convexity in Rn is an H-convexity

generated by the collection of all linear functionals from

n
R -~ R.

a

c

b

Fig.S.l

Figure 5.1 gives a typical polytope
2

of R generated by the
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co-ordinate projections and their sum in which {a,b,c} is a

spanning set. Observe that the standard convex hull of

{a,b,c} is the triangle with vertices a,b, and c and is

contained in this polytope.

Let X and Y be two convexity spaces. A function

f: X -~ Y is a convexity preserving function (CP function)

-1
if for each convex set C c Y, f (C) is convex. A function

f is convex to convex (C C function ) if for each convex set

c c X, f(C) is c onv e x .

If X is Rn with usual convexity and Y is Rn with

an H-convexity then the identity mapping from X -~ Y is a CP

function.

A symmetrically generated H-convexity need not be

Example [12].

Let ~ be the H-convexity symmetrically generated

by the co-ordinate projections f. and their sum, defined on
1
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Let a = (0,3/4,1/4), b = (1/2,1/4,0), c =(0,0,1/2)

u = (1/2,1/4,1/4), v = (1/2,O,l/2).

alJ--------.....-----------I'lb
u

Fig. 5.2.

Then there does not exist a vI E Co{a,c} such that

v e Co({b,v
1}). 1

If such a v exists, then

o ~ f
1

( V
1

) s 1o, hence f1(v ) = 0

f
2

( v
1

) ~ 0 s 1
1/4 hence f

2
( v ) = 0

1/4 ~ f
3

( V
1

) ~ 1/2,
1 s 1/2hence f

3
( v )

and therefore
1

~ 1/2.f
4(v

)

But f
4

( v ) = 1, f
4

( b ) = 3/4. So there can not exists 'vI, in

1
Co ({a,e}) such that v e Co({b,v }).
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That is, ~ does not satisfy the Peano property and hence is

not JHC.

Example 5.2 Let Cl = {(x,y,z): x ~ 0, y ~ O} and

C
2

= {(x,y,z): z ~ -1, x+y+z ~ O}"

Then Cl and C
2

are disjoint convex sets which cannot be

separated by half spaces. That is, the H-convexity is not

in general 54. For another example, see [12].

From Van de Vel [12] we have the following theorems.

Theorem: 5.1 For a surjective C P function f: X -~ y the

following are true.

(1) If h(X) ~ h(Y) and r(X) ~ r(Y)

(2) If f is also C C then C(X) = C(Y) and c(X) ~ c(Y)

Theorem 5.2. The following are equivalent for any convex

structure

(1) If heX) ~ 3 and if X is 53 Then X is 54"

(2) If heX) ~ 2, and if X is 52 then X is 54"

Theorem 5.3. Let V be a finite dimensional vector space

over the totally ordered field K, and let C be the
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H-convexity on V generated symmetrically by a set $ of

linear functionals. If $ is finite or if K = R, then,

minirnaly dependent} is the degree of minimal dependence of $

We also have the following,

Theorem 5.4 [8] . Suppose H is a subset of Rn. Then H is a

hyperplane if and only if there exists a non identically

zero linear functionals f and a real constant 6 such that

f- 1 (6 ) n
f(x) = 6}.H = = {x eR:

From these theorems, the following observations

can be made.

1) The Helly number of any H-convexity on Rn is at most n+1

) · · t 2 ·2 Any symmetr1c H-convex1 y on R 1S 8
4.

3) If ~ is a collection of linear functionals corresponding

to a family of planes in R
3

whose intersection is

singleton and I ~ I ~ 4, then the Helly number of the

symmetrically generated H-convexity is 4.

5.2 A PROBLEM OF VAN DE VEL

In this section we consider a problem of
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Van de Vel [12] and obtain some interesting results of the

symmetrically generated H-convexity of R
3.

PROBLEM: Is 'each symmetric H-convexi ty of ari ty 2 ?

We studied the above problem and give an example

of a symmetric H-convexity of infinite arity. We get a

sufficient condition under which a family of linear

functionals generates a symmetric H-convexity of arity 2.

3
Consider the vector space Rover R and let $ be

any collections of linear functionals over R
3

. Let ~ be the

H-convexity generated by Y.

By [f(x
1),f(x2)]

we mean the set of all convex combinations

By theorem 5.4 each linear functional on

corresponds to a plane in R
3.

Now we prove,

Theorem 5.5. Let $ be a family of linear functionals

corresponding to a family of planes intersecting in a line,
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then the arity of the H-convexity symmetrically generated by

3t is two.

proof:
3

Let C c R have the property that co{x
1

, x
2

} c C

whenever x
1,x2

E C. To prove that C is convex. Let F c C

where IFI > 2 and let y E Co(F). Let f E $. Then,

Claim: There are x
1,x2

E F such that

otherwise, i£ fey) < £(x) for each x e F or fey) > f(x) for

each x in F, then, £-1 ( -00, £(y)] or £-1 [£(y) 00) will be

a half pace containing y and not intersecting with F. So

y ~ Co(F). Hence the claim.

convex hull of F.

Therefore, for each f e $, f- 1 (£(y)} meets the

-1
Since, y e f (f(y» -f or each

standard

f e $',

-1n {f (f(y»: f e $'} ~ <1>. Now, became $' corresponds to the

family of planes intersecting in a straight line, the set

-1n{f (£(y):£ E $} is a straight line. Let f and 9 be such

that the angle between and -1
9 (9(Y» is the

maximum (see fig 5.3)
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y

-1
9 (g(y»

Fig. 5.3

-1 -1
Let x

f
e f f(y) n Fe and xq E q (q(y» n Fe where Fe is

the standard convex hull of F. Then y e Co({x
f

' x }) cC.
9

Hence Co(F) c C and therefore C is convex.

H-convexity generated by $ is of arity 2.

Hence the

a

The above theorem is not true for a family of

functionals corresponding to a family of planes whose

intersection is a singleton. The following example gives an

example of a symmetrically generated H-convexity of infinite

arity.

Let F be the linear functionals corresponding to

the tangent planes of a cone. whose cross section is a

circle parallel to the x-y plane. That is, f e

corresponds to the planes making a constant angle with the
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x-y plane. Let us assume that this angle is n/4. That is,

~ = {f: f(x,y,z) = y cos a -x sin a - z, a e [O,2n)}

c:

Fig. 5.4

Now the solid C which is the convex hull of S (See Fig 5.4)

is a convex set.

Let Cl = C\{y,y'}.

It is clear that y e Co(C
1).

Also Cl is convex with respect

to the standard convexity.

-1
That is f (f(y» n Cl ~ ~ for each f e ~.

h £- 1 f() -1 ( ( » ~ 1'£ f ~ g.But note t at y n 9 9 Y n Cl = ~ ~

hence corresponding to each f, we get xf e Cl

Such that x
f

~ x
g

whenever f ~ g. Now, since ~ is infinite

{x
f

: f e ~ } is infinite.
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Hence Cl is with the property that Co(F) C Cl for each

finite set contained in Cl but Cl is not convex. Hence the

convexity generated by $ is of infinite arity. Further, it

is of uncountable arity.

Remark 5.1. a). Since the above H-convexity is of arity

greater than 2, it is not JHC.

b). For any n, if we replace the cone whose

cross section is a circle by a 'Pyramid whose crossection is

a regular 2n-gon, the H-convexity symmetrically

genetated by the family of functionals corresponding to the

family of tangent planes containing the lateral faces, is of

arity n.

Remark 5.2. R
3

with the H-convexity generated by the

family of functionals corresponding to the tangent planes of

a cone, doesn't have the Peano property. For, let

$ = {f: f(x,y,z) = y cos a - x sin a - z, a e [O,2n)}.

Let a = (-1,0,0), b = (0,0,1), c = (1/2 0 1/2) and

u = (1/2,0,0), v = (1/2,1/4,1/4)
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Then u e Co({a,b}). Also note that v e Co({c,u})

(See fig 5.5)

c:

(1/2, 0 1/2)

__ ---.It\ (1/2,1/4,1/4)

- -..) ~ (1/ 2 , - 1/ 4 , 1/ 4 )

(1/2,0,0)

Fig. 5.5

Note that Co({c,u}) is the solid in fig 5.2, because any

plane P making an angle n/4 with the x-y plane will either

cut the ordinary segment cu or the solid C will be contained

in one of the half spaces determined by P.

c

uo--------~-------~a b

Fig 5.6
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Define f:on R
3

as f(x,y,z) = x-z. Then f e ~.

Then f(x,y,z) ~ 0 is a half plane containing both a and c.

But for v = (1/2,1/4,1/4), x-z > o.

Hence v ~ Co({a,c}).

Note that Co({b,c}) = bc, the ordinary segment

joining band c, because it is the intersection of the solid

c, the plane x+z = 0, and the convex set

Co = {(x,y,z) : 0 ~ x-z ~ 1}.

1
Now for any v ~ c in Co{b,c},.

Let
1

v = Then Xo > 1/2 and Zo < 1/2.

In this case, yO+zO < 1/2.

3
Define g: R -~ R such that g(x,y,z) = y + z. Here 9 e ~.

Then, the half space H: f(x,y,z) < 1/2 contain both v1 and a

but v ~ H.

1
Hence v e Co({a,v }).

Remark 5.3. The H-convexity defined in the example is not

54. For, the sets {(x,y,z) : z = 0, y = O} and

{(x,y,z): z = 1, x = O} are convex sets which can not be

separated.
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Now we give a characterization for on H-convexity'

Theorem 5.6: The H-convexity symmetrically generated by a

family of linear functionals ~ is S4 if and only if for any

two intersecting convex straight lines, the· plane determined

by these lines is convex. That is, $ should contain the

functionals corresponding to the plane determined by these

1ines .

Proof: Let II and l2 be any two intersecting convex lines.

Then, II can be separated from a line l which is parallel to

t
2

and which does not intersect with ll' only by a

containing II and l2'

plane

Now let ~ be the H-convexity on R
3

with the given

~ondition and let Cl and C
2

be disjoint convex sets. Since

~1 and C
2

are determined by half spaces, there are half

spaces
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Now, since the Helly number is at most four, the

intersection of some four membered subfamily of the above

family of half spaces is empty{se.e. (j2J).

half space.

c H.
1

and H.
1

is the required

= ,let P. , P · , P
k

,
1 J

and the

corresponding planes.

Let Po be the plane determined by 1. . and the line l which
1,J

intersect wi th l, . and which is parall el to lk ,l-
0. 1 , J Then P

o

separates Cl and C
2.

c

Now the following example gives an H-convexity on

R
3

which satisfies both Pasch and Peano properties but is

neither JHC nor 6
4

,
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Let $ = {f: f(x,y,z) = tan e (y cos a -x sin a) - z:

a e [O,2n), e e [n/4,n/2)} U {f: f(x,y,z) = ax+by,

a,h eR}.

Then we observe that the H-convexity symmetrically generated

by $ has the following properties.

t 1 h t · ht I' , 3 iProper y . Eac s ralg lne 1n R s convex.

For this we prove that any straight line is contained in two

distinct convex planes. If l is perpendicular to the x-y

plane, it is trivially true. Actually there are infinite

number of convex planes by the choice of~. Now for any l,

there is a plane perpendicular to the x-y plane, which

contains l. Assume without loss of generality that l passes

through (0,0,0). Then for any (x1,y1,zl) e ~ {(O,O,O)}.

Then YIx - x
I Y = 0 is a plane perpendicular to the x-y plane

and containing l.

Now if n/4 ~ e < n/2, then, by the choice of ~ we get an a

such that, the plane,

tan e (y cos a - x sin a ) - z = 0, will contain l.
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Now let 0 ~ e ~ n/2. Assume without loss of generality that

the plane perpendicular to the x-y plane which contain 1 is

the x-z plane.

Then,Let a

Let (h,O,h+k) E i, where k > O. Then

-1= sin (-h/h+k).

y cos a - x sin a - z = 0 is a convex plane containing 1.

Hence each straight line is convex.

Property 2. This is a Pasch- Peano space.

1
For any a,b,c,u,v such that, u e a h, v e c u we get a v on

1
b c such that v e a v. This is because the convex hull of

any two points is the ordinary segment joining those points.

So this is having the Peano property. Using similar

arguments we can prove that it is having the Pasch property.

But this is neither JHc nor 8
4

, because any line on the x-y

plane is convex but the plane is not convex. Therefore by

theorems 1.1 ~nd 1.2 this convexity is not of arity two.

5.3 CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER STUDY.

This thesis is an attempt to find out some

properties of d.c.s. graphs, m.c.s. graphs, interval
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monotone graphs and totally non-interval monotone graphs.

We have also introduced a,new type of convexity to the edge

set of graphs and its convex invariants and Pasch Peano

properties are analysed. Also we discuss some properties of

H-convexity.

The results of this thesis are far from being

complete. We list some of the probl,ems which we have either

not attempted or found the answers to be difficult.

1. Characterize solvable trees.

2. Determine the size of the smallest d.c.s. graph

containing a nonsolvable tree. Equivalently is it possible

to express the size of the smallest d.c.s. graph containing

any tree as a function of the order, diameter, radius and

the degree?

3. In the corollary of Theorem 2.14, is it possible to

replace K by any m.c.s. graph G of sufficiently large
n,n

size with the property that I(a,b) ~ V(G) for any pair

a,b e V(G)?

4. Characterize halfspce free graphs.
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s. Characterize JHC graphs.

6. Since the study of edge convexity has been just

initiated, properties of convexity in V(G) studied in detail

by many authors can be attempted in this case also.

7. Characterize the H-convexity of arity two.

8. Characterize S. graphs for i = 2,3 and 4.
1
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