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Chapter-l

INTRODUCTION

1.1 HELLY'S THEOREM AND AXIOMATIC CONVEXITY

The applicability and the intuitive appeal of the

notion of convexity have led to a wide range of notions

of " Generalized Convexity I'. For several of them,

theorems related to He11y's, were either a motive or a

by-product of the investigation. Helly's theorem, which

was first published by Johan Radon in 1921 and later in

1925 by Helly himself states that "each family of convex

sets in Rd, which is finite or whose members are compact,

has a nonempty intersection, provided each subfamily of

"at most d+l sets has nonempty intersection. The formu1a-

tion of Helly's theorem can be found in the famous paper

of L. Danzer, B. Grunbaum and V. Klee [6], called '~ellyls

theorem and its Relatives". Restricting HaIly's theorem

to finite families of convex sets, it is clear that the

theorem is formulated completely in terms of convex sets,

their intersections and the dimension d of the underlying

space.

A convex set can be defined as the intersection of

large basic convex sets (For example, hal~ spaces in

vector spaces) or by the property of being closed with

1
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respect to a certain family of finitary operators

(For example, n-ary operators of the form
n d

(x1,x2 , ••• , xn) > i:lA i xi in R , where

the J\.'s are non-negative and sum to 1). This remark
1.

leads to the following definition.

A set X, together with a collection ~ of

distinguished subsets of X, called convex sets, forms

a convexity space or aligned space, if the following

axioms are satisfied:

c2 : ~ is closed und e r arbitrary intersections

c3 : ~ is closed for the unions of totally ordered

subcollections ~ is called an alignment or convexi ty on X.

The convex hull of a set S in X (the smallest convex set

containing S) . is defined as conv(S) = n1.Ae ~ Is c:: A}.
Those families of sets which satisfy Cl and C2 are known

as Moore families or closure systems. The axioms Cl and C2

were first used by F.W. Levi [31] in 1951 and later on by

Eckhoff [10], Jamison [24], Kay and Wamble [29] and

Sierksma [43]. The term 'alignment" is due to Jamison [24].

Hammer [21] has shown that for Moore families the axiom C3
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is equivalent to the" domain finiteness" condition

which states that for each S ~ X, conv(S)= U tconv(T) I
TC;;;;S, ITI < co} (ITI denotes the cardinality ofT).

Alternative terminologies for convexity spaces are

'algebraic closure systems" ([5]) and "domain finite

convexity spaces" ([10], [21], [29], [43]-[45]). As

mentioned earlier, the axiomatization of convexity is

motivated by the fact that most combinatorial properties

of ordinary convex sets in Rd like Helly, Radon and

Caratheodory theorems can be studied in the general

context of convexity spaces.

1. Helly property

A convexi ty space (X, ~) has the Helly property Hk,

if a finite family of convex sets of X has an empty inter­

section, then this family contains at most k members with

an empty intersection. The Helly number of (X, ~ ) is

the smallest integer k, such that Hk holds. Helly's

theorem states that the Helly number for the ordinary

convexity in Rd is d+l. For further examples, see

Danzer [6], Jamison [25] and Sierksma [45].
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2. Partition property

Closely related to Helly's theorem is the classical

theorem of Radon published in 1921. The theorem states

that each set of d+2 or rno r e points in Rd can be expressed

as the union of two disjoint sets, whose convex hulls have

a common point. See Danzer et al. ([6]). Radon's theorem

was generalized in 1966 by H.TverbeI'<.i[50]). Instead of

2-partitions, he has investigated arbitrary m partitions.

The theorem states that each set S in Rd with

,sI ~ (m-l)(d+l)+l can be partitioned into m pairwise

disjoint sets with intersecting convex hulls.

Thus, we have, that the convexity space (X,~) has

Partition property Pk ,if (P.) is a family of n=III
,n 1 iC:I

points, there exists a partition of I into k parts

11, 12, •.. , I k such that

T b I th t t th t th d· ·t · Rdver erg s eorem s a es a e or lnary conveXl y 1n

has property (Pk'(k-l)(d+l)+l) and for k=2, we get Radon's

theorem. An important problem related to Radon partitions

posed by Eckhoff in analogy with Tvergerg's theorem is the

following:



Eckhoff's conjecture

Suppose an aligned space (X,~ ) has Radon number r.

Does the partition inequality P ( (m-l)(r-l)+l alwaysm

hold? Jamison [27] has shown that the partition

conjecture holds for order convexities, tree-like

convexities etc.

3. Caratheodory property

The classical theorem of Caratheodory, states that,

when A c;;. Rd, each point of conv A is a convex combina tion

of d+l or fewer points of A. The theorem of Caratheodory

was published in 1907. See Danzer [6]. A convexity space

(X,c,) has the Caratheodory property Ck, if x Econv(A),

then x econv(F), for some F~A, with IFI ~ k , for any

A~x. The Ca ra theodory number of (X, r;) is. the sma1le s t

number such that Ck holds. Ordinary convexity in Rd has

Caratheodory number d+l (Caratheodory theorem).

1.2. INTERVAL CONVEXITIES

An interval I on a set X is a mapping I: X x X~ 2X•

The I-closed subsets of X are subsets C6X such that

I(x,y) ~ C, for every x,y c;;;;; C. The coLl e c t Lon ~I of

I-closed subsets satisfies the axioms C1,C2,C3 of convexity
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spaces. The axiom C3 is a consequence of the finitary

property of convex hulls and the fact that, for a subset

A of X, conv(A) = U Ik(A), where Ik(A) is defined as
ke N

IO(A) = A and Ik+l(A) = I(Ik(A) x Ik(A». The function I

is called an interval-function of the convexity space (X, ~I).

Convexity spaces admitting an interval function are named

Interval Convexity Spaces, see Calder([4]). Most of the usual

convexities are interval convexities. For example,

ordinary convexity in Rd, metric convexity (d-convexity)

in metric spaces, order convexity in partially ordered sets and

geodesic convexity and minimal path convexity

Metric convexity

in graphs.

The concept of convexity in metric spaces was introduced

by Menger. It is the interval convexity generated by the

metric interval d-[~,y] =[z E Xld(x,Z)+d(z,y)=d(X,y)],

for points x,y in the metric space (X,d). For various

geometric developments involving Menger's and other closely

related notions of metric convexity, see Blumenthal ([2])

and Buseman ([ 3 ]).
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Order convexity

The usual order convexity in a partially ordered

set (p, ~ ) is the interval convexity generated by the

usual order interval [x,y] = tz ePI x.(z",y or y,," z"" xJ'
for points x,y 6 P. Order convexity generated by the

order interval function has been studied by Franklin ([17])

in 1962. See also Jamison-Waldner ([27]), Jarnison ([25)].

1 03 GRAPH CONVEXITIES AND CONVEX GEOMETRIES

Convexity in Graphs

The first explicit use of convexity in graphs has

been made perhaps by Feldrnan and Hogassen. Most of their

results deal with geodesic convexity. A more general point

of view appeared in Sekanina ([42]) in 1975 and MUlder ([33])

in 1980. A systematic approach arises in Farber-Jamison ([15]).

A graph convexity ( Duch e t ) is a pa ir (G, t:) formed

with a connected graph G with vertex set V and a convexity ~

on V such that (V,~) is a convexity space, satisfying the

additional axiom,

GC: Every convex subset of V induces a connected 5ubgraph.

See ([9]).
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In the study of convexity in graphs, two types

of convexity have played a prominent role, namely the

It minimal path convexity or monophonical convexity and

geodesic convexi ty or d-convexi ty".

Minimal path convexity

The minimal path convexity in a connected graph G

is the interval convexity in V(G), generated by the

minimal path interval m-[x,y], where m-[x,y] is the set

of all vertices of all chordless paths from the vertex x

to the vertex y in G, and a chord of a path in G is an

edge joining two nonconsecutive vertices in the patho

See Jamison ([25]) and DUchet ([9]).

Geodesic convexity

Let d-[x,y] denote the set of all vertices of all

shortest paths between the vertices x and y in G. The

convexity generated by the interval function d-[x,y] is

called the geodesic convexity or distance convexity in G.

The d-convexity is the metric convexity associated with

the usual distance function d(x,y) in G.

Early researches on d-convexity in graphs were

motivated by an important problem posed by Ore in 1962,
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which is the following: ft Characterize the geodetic

graphs: that is, graphs in which every pair of vertices

is joined by a unique shortest path ".

Graphs with only the trivial geodesic subgraphs

have been called distance convex simple graphs by Hebbare

and others. See Hebbare ([23]), Batten ([1]). Unlike

m-convexity, the geodesic convexity is very general and

has been intensively studied since 1981. See Jamison ([25]),

Soltan ([49]) and Farber ([13]).

Convex geometries

Convex geometries were introduced independently by

Edelman and Jamison in 1980. They are finite convexity

spaces in which the finite Krein-Milman property holds.

That is every convex set is the convex hull of its extreme

points. There are numerous equivalent ways of defining

a convex geometry. See Edelman-Jamison ([12]).

We have the following characterizations of graphs.

(i) The m-convexity in a graph G is a convex geometry

if and only if G is chordal. A chordal graph is one in

which every cycle of length at least four has a chord.
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(ii) The. geodesic convexity in G is a convex geometry if

and only if G is a disjoint union of l~olemaic graphs.

G is a Ptolemaic graph, if for every four vertices x,y,z,w

in G, the Ptolemaic inequality

d(x,y) d(z,y) ~ d(x,z) d(y,w) + d(x,w) d(z,y) holds. See

Farber-Jamison ([14J, [15]). Major references on the

abstract theory of convexity are Jamison ([24], [25]),

Sierksma ([45]) and Soltan ([46]). A recent survey of

various convexities in discrete structures is in DUchet ([8]).

1.4. DIGITAL AND COMPUTATIONAL CONVEXITIES

The growing field of computer science has also seen

the emergence of studies dealing with convexity. This began

in the early 1960's, when Freeman ([56]) investigated the

representation of straight line segments on a digital grid

and Bilanski ([54]), gave an algorithm for determining the

vertices of a convex polyhedron. Convexity can be discussed

in computer science from the following view:

(1) Digital Geometry, and (2) Computational Geometry.

1. Digital geometry

To generalize ~onvexity and related notions such as

straight line segments to the geometry of digital grids,

and analyse their properties, in this framework.



Convexity in the two dimensional digital images has been

studied by several authors in particular Kim ([57]),

Kim and Rosenfeld ([58]) and Ronse ([59]). In contrast

with Euclidean images, several non equivalent definitions

can be given for digital images. The rectangular grid

of two dimensions can be viewed as the set Z2, where Z

is the set of integers, so that pixels can be represented

by integer co-ordinates. The basic notions of k-adjacency,

k-connected paths, k-connectedness (k=4 or 8) in the

geometry of rectangular digital grids can be realized

in Z2 with the integer valued metrics (graph metrics),

denoted as dl (for k=4) and d2 (for k=8), defined as

dl(x,y) = Ixl-yll + IX2-Y21 and d2(x,y)= max(lxl-yll ,lx2-Y2 1 ) ,

for x = (x l,x2) and Y = (Yl'Y2) in Z2.

We can view a k-connected path in the rectangular

grid as a path in the graph metric space (Z2,d), where d

is d1 or d2, according as k=4 or k=8 respectively. Thus

the distance geometry in Z2, generated by the integer

valued metrics d1 and d2 is closely related to the geometry

of the digital rectangular grid of two-dimension. This

is the motivation of our study of the dl-convexity and

d2 - conv e x i t y in the integer lattice.
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2 0 Computational Geometry

One wants to evaluate the computational complexity

of various operations related to convex sets, and to find

optimal computer algorithms for them. Impo~tant problems

are the determination of the convex hull, that of vertices,

faces, volume or diameter of convex bodies, intersection of

convex polyhedra, extremal distance between convex polyhedra

and maximal convex subsets of non-convex sets.

The first computational question relating to convexity

is the design of algorithms, for finding the convex hull of

a set of points. The digital convex hull is dealt with in

Yau ([62]). A related problem is the determination of trie

computational complexity of the construction of the convex

hull of a set of points. A bibliography on digital and

computational convexity is seen in ([61]). See Preperata­

Shamos ([38]), for recent developments in computational

geometry.

1.5 PRELIMINARIES

Let (X, ~) be any convexi ty spa ce 0 Tha t is, ~ is a

collection of subsets of the set X, such that (i) ~,xe~ ,

(ii) ~ is closed under arbitrary intersections,
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(iii) ~ is closed for the unions of totally ordered

subcollections. t is called an alignment or convexity

on X. The convex hull of a set A in X is defined as

conv(A) = n lB e G, I A ~ B} .

Definition 1.5 0 1 .

The Ca ra theodory number of a eonvexi ty space (X, t; )

is defined as the smallest nonnegative integer 'e', such

that

conv (A) = U~ 0 nv (.B) IB £. A and IBI ~ c J, for a 11 A G X.

Definition 1 05.2.

The Helly number h of (X, l:) is defined to be the

infimum of all nonnegative integers k, such that the

intersection of any finite collection of convex sets is

nonempty, .provided the intersection of each subcollection

of at most k elements is nonempty. Or equivalently,

Definition 105.3.

A convexity space (X, ~ ) has the Helly number h,

if h is the smallest nonnegative integer such that A~X

and IAI = h+l-} n{conv(A,\a)lac;;; AJ 1= (l5,for all ACX,

where A \ a denotes A '\{aJ 0



Definition 1.5.4.

A convexity space (X, ~ ) has the Radon number r,

if r is the infimum of all positive integers k, with the

property that, each set A in X with JAI ~ k, admits a

partition A = AlUA2 with AlnA2 = 91 and such that

conv(A l) n conv(A2) F 91. Such a partition is called a

Radon partition of A.

Definition 1.5.5.

The generalized Radon number or Tverberg type Radon

number Pm of a convexity space (X, ~) is defined as the

infimurn of all positive integers k, with the property that,

each set A in X with IAI ~ k admits an m-partition

A = AlU •.••••.U A , into pairwise disjoint sets A. such tha tm 1

conv(A l) n conv(A2)().· ••• _·(\conv(Am) F 91. Such an m-

partition of A is called a Radon m-partition of A. We

need the theorem of Levi.

Theorem 1.5.6. (Levi)

Let (X, ~ ) be a convexity space. If the Radon

number r of (X, ~) exists, then the Helly number h exists,

and h" r-l.
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Theorem 1.5.7. (Eckhoff and Jamison)

Let (X,~) be a convexity space with Caratheodory

number c and Helly number ho Then the Radon number r of

(X, ~) exists, and r ~ c(h-l)+2.

Definition 1.5.8.

Let (X, ~) be a convexity space. A subset B of X

is said to be (convexly)independent if b t:j conv(B \ b), for

each b E: B.

Definition 1.5.9.

The rank of a convexi ty space (X, (;) is defined as

the supremum of the cardinalities of the independent sets.

It is noted that the rank of a convexity space (X, C) is

an upper bound for both the Helly number h and the

Caratheodory number c.

N =tl,2,3, •••. } is the set of natural numbers and

Z denotes the set of integers. The graph theoretic terminology

used in this thesis are as in Harary ([22]). We use induction

in some of the proofs.

106. AN OVERVIEW OF THE MAIN RESULTS OF THIS THESIS

A rather active area in modern convexity theory is concerned

with the computation of several "invariants" in general convexi-

ties. This thesis contributes mainly to this in some interval

convexities, where the underlying set is a discrete set. The

"invariants" that we discuss in this thesis are the

Caratheodory, Helly, Radon and Tverberg'type Radon numbers.
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nIn chapter 2, we consider Z as a model. Metric

convexity (d-convexity), with respect to the integer

valued metrics d l,d2,d3 are defined. For x=(xl, ••• ,xn),

Y=(Yl' •.. 'Yn) G Zn, the metrics dl,d2 and d3 are defined

n
respectively as d1(x,y) = L Ix·-y·l,d2 ( x, y)= max IX.-Yi l

i=l 1 1 1( i( n 1

and d3(x,y)= the number of co-ordinates in which x and y differ.

The order convexity is defined with respect to the partial

order x4Y if and only if x.'y. for all i. It is shown
1 1

that every d1-convex se"t is both order convex and d3-convex.

Also it is obtained that there is no finite Helly and Radon

numbers for the order convexity and d3-convexity. The

d1-convex sets has Caratheodory number 'n' and Helly

number 2. Using Jamison-Eckhoff theorem, it is shown

that the Radon number 'r' of the d1-convexity attains

the bound n+2, for n=2 and n=3. For d2- c o nv e x i t y, the

rank is found to be 2n, and the Helly number equals

the rank. The Radon number for d2-convexity is found to

be 2n+l and the Caratheodey number is 2n-1• Tverberg

type Radon number is also obtained for d2-convexity.

For d3-convexity the Caratheodory number is n.
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In chapter 3, we extend the definitions of order

convexity and d-convexity in Zn to the infinite dimensional

sequential sp~ce Z~. The d-intervals are defined using the
00

d-intervals in the finite dimensional submodules of Z • The

analogous results of Caratheodory, Helly and Radon type

numbers are obtained for these convexities in Z~.

Chapter 4 deals with the geodesic convexity in the

fini te geometric structure known as I' Gene ra 1 ized Polygons 'I,

considering it as a bipartite graph r 0 The geodesic

convexity in r- is not exactly a convex geometry but finite

Krein-Milman property holds for every proper d-convex subset

of r. It is shown that a d-convex subset K of r has the

Krein-Milman property if and only if diam(K) < n. Various

center concepts, such as center, centroid and distance

centre in ~ are studied. Finally, the Helly, Radon and

Caratheodory type theorems for the geodesic convexity are

obtained. It is shown that the m-convexity in r is the

trivial convexity, consisting of the null set ~ and whole

vertex set V of r. In the last section of this chapter (4.5),

we discuss an interesting result, which holds for any finite

connected bipartite graph G. We order the vertices of G

called the "the canonical ordering of G", as given by Mulder,

and show tha t the "geodes ic al ignment I' on G is the join of

order alignments, with respect to all possible canonical

orderings of G.
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In chapter 5, our discussion is mainly in the
2discrete plane Z. Using the concept of hemispaces,

it is shown that an intersection convex set A of Z2

(an intersection convex set of Zn is defined by Doignon

as the intersection of a convex set in Rn with Zn) is

d1-convex if and only if the supporting lines of A are

parallel to the co-ordinate axes and A is d2-convex

if and only if the supporting lines of A have slope + 1.

Finally, a computational problem is dealt with. An

algorithm for computing the d2-convex hull of a finite

set of points in Z2 is given and also the complexity of

the algorithm is computed.
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ORDER AND METRIC CONVEXITIES IN Zn *

2 01 INTRODUCTION

We consider the n-dimensional integer lattice

z" = l(m1,m2 , ••. , mn) I mi lE: z}. In this chapter we

discuss the order convexity and metric convexity with

respect to three integer valued metrics d1,d2 and d3­

The theory discussed here may work well in any discrete

set, isometric to Zn. In particular

q E:: (0,1)

is fixed and (x1,x2 ' ••. ,xn) is fixed in a". In [52],

Vijayakumar has defined D-convex sets for the discrete

plane ZJ, q liO: (0,1) is fixed,

and studied concepts like the D-convex hull and D-convex

donain, The d1-convex sets that we define are generalizations

of D-convex sets. If x = (x1,x2 ' ••. ,xn) and
n
l: I x . -y·l ,

· 1 1. 1.1.=

d2 ( x, y ) = max Ix.-y. I and d3(x,y) = the number of
l~ i~ n 1. l.

co-ordinates in which x and y differ, are three integer

valued metrics in Zn o A partial order relation I ~ , in Zn

* Some of the results in Sections 2.2 and 2 03 are to
appear in Compo. Math.

19
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only if x . ~ y., for all i=1,2, ••. ,ne We note that d1­1 l.

convex sets are boxes with sides parallel to the co-ordinate

axes. The box alignment has been studied by many authors.

See Eckhoff ([11]), Jamison and Waldner l[27]), Sierksma ([44]),

Reay ([39J).

Definition 2.1.1.

A point z e Zn is said to be order between x,y E Zn

if x ~ z ~ y 0 r y ( z ~ x . The 5 et 0 fall po in t s 0 rde r

between x and y is denoted by [x,y]. Conventionally

[x,y] =~, if x and y are not comparable.

Definition 2.1.2.

A point z e Zn is said to be metrically between

x,y E Zn, if d(x,z) + d(z,y) = d(x,y), where Id' is a

metric in Zn. The set of all metrically between points

of x and y is denoted by d-[x,y] and is called the metric

interval or d-interval determined by x and y.

Definition 2.103.

A ~ z" is said to be order convex, if I x.vl S;; A,

for each pair of points x and y ~ A.



Definition 2.1 04 0

A c;; z" is said to be metrically convex or d-convex,

if the metric interval d-[x,y] ~ A, for each pair of

points x,yG A.

Definition 2.1 05.

The order (metric) convex hull of a set A is the

intersection of all order (metric) convex sets containing A.

The order (metric) convex hull of a set A is denoted by

order conv(A) (d-conv(A)) and is order convex (metric ~onvex).

2.2. ORDER CONVEXITY AND d1-CONVEXITY

Lemma 2.2.1.

For any two points x,ye,Zn,

for every i = 1, •.. , n J·
Proof:

n
~2J L Ix . -z. j +

· 1 1. 11=

n
r

i=l

n
Jz.-y. I = L Jx.-y. I
1], · 1 1 11=

I x . -y·1 ,
1 1

for every i = l, ••. ,n.
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for if not, there exists j E {l, ••• ,n} such that

Ix.~z·1 + Iz·-y·1 > Ix·-y·1
J J J J J J

and thus

n n
L Ix.-z.1 + E IZ.-Yi l = E Ix.-z-I + E Iz·-y·1

· 1 1 1 · 1 1 i.1.J- 1 1. • .1. • 1 11= 1= F 1FJ

n
> E Ix.-y.J, since

· 1 1 11=

which is a contradiction. Therefore

~ )Zi is order-between xi and Yi ' for every i=l, ••• ,n

and hence the lemma.

Lemma 2.2.2.

If x.( y, then [x,y] = dl-[x,y].

Proof follows from Lemma 2 02.1.

Note 2.2.3.

It follows from lemma 2.2 0 2 that every d1-convex set

is order convex. But the converse is not true, for example



-23-

A = {(I,O), (O,l~ G Z2 is trivially order convex,

but not d1-convex.

Lemma 2.2.4.

If A~ z" is finite, then

dl-conv{A) = dl-lu,v), where u = inf A and
v = sup A.

Proof:

We have u , a , v, for all a G A •

Therefore A~ [u,v) = dl-[u,v), by lemma 2.2.2. Also

dl-conv(A) ~ dl-[u,v], since dl-[u,v) is dl-convex.

Since A is finite both u and v belong to dl-conv(A).

Therefore dl-conv(A) = dl-[U,v].

In L17], Franklin has proved that the Caratheodory

number for order convexity in any poset is '2-.

We have

Theorem 2.2.5.

The Caratheodory number for d1-convexity in Zn is n,

if n ~ 2.

Proof:

We have for any A s z",

dl-conv(A) = U(dl-ConV(B)IBSA and IBI < ooJ.
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By lemma 2 .2.4, if IBI < 00, then dl-conv(B) = dl-[u,v],

where u = inf B and v = sup B. Also if JBj < ~, u is

the infimum of at most n elements of B and v is tl-le

supremum of at most n elements of B.

Let u = inf {al, •.• ,an

v = sup Lbl, •.. ,bn

a i e: B Jand

biC BJ
Note that a. and b. need not be distinct for all i=l, ... ,n.

1 1

Therefore, we have dl-conv(B) = dl-conv lal,···,an, bl, •.. ,bn}.

We shall now show that any point z E dl-conv(B) belongs to

the dl-convex hull of at most n points among al, •.. ,an,

bl, ••. ,bn• Let z = (zl,z2, •.• ,zn). We select the n points

, a 'a 1 , ... , n'

a. 1 is chosen such that the i t h co-ordinate of a. 1 is at
1 l

most z., for all i = l, •.. ,n.
1

If the jth co-ordinate of a. I is at most z . ,i=l, •.. ,n,
1 J

i ~ j, then we delete a. 1 and replace it with one among
J

al, ••. ,an, bl, ••• ,bn, whose jth co-ordinate is greater than

orequa1 to z j . The po i nt sal I , • • • , an I s e lee t edin th is way

satisfies the inequality u' ~ z ~ Vi, where

u' = inf tall , ••. ,an
I J and VI = sup Lal', ••• ,an'}and

z E dl-[u ' ,VI] = dl-conv [all , •... ,an
l} and hence the theorem.

We note that this theorem can be obtained as a particular

case of a product theorem due to Sierksma ([44]).
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We shall now prove the Helly-type theorem for d1­
convexity. We begin with a lemma.

Lemma 2.2.6.

If9F = tBI,B2,B3) is a family of three nonempty

dl-convex sets in z", such that any two members of': have
3

nonempty intersection, then f) Bi ~ ~.
i=l

Proof:

Let x E BIn B2, y E B2 n B3 and Z E B3nBl o If

one of x,y,z belongs to the d1-convex hull of the remaining

two, then we are done. If not, then there are three different

cases.

Case (i):

One of x,y,z, say x is comparable with y and z, and

y and z are not comparable. Take x(y and x'z.

Case (ii):

Only one pair say x and y are comparableo Take x ~ y.

Case (iii):

None of x,y,z is comparable with each othero

(case (iii) happens only if n) 2 0 )
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We will show that in all these cases, there exists

a point p, which belongs to all the three d1-intervals

d1-[x,z], d1-[y,z] and d1-[z,x].

Let x = (x1,···,xn), y = (Yl'Y2'.'.'Yn) and

z = (z1 ' • • · , zn) ·

Case (i):

We have x . ~ y. and x. ~ z .. for all i=l,o •• ,n,
1 1 1 1

and there exists j such that z . < y. and y. ~ z. for i f; j .
J J 1 1

Thus we have x . , y. ~ z. i f; j
1 1 1

X j ~ z.~ y.
J J

Then p = (Ys-'...' y., ..., z.,..., y ).
. 1 J n

Case (ii):

Here x. ~ y. for all i = l, •.. ,n and there exists
1 1

at least two co-ordinates, with subscripts j and k such

that

and

Zj < Xj < Yj

xk < zk < Yk

x . "' y. ~ z., i ~ j ~ k ,111

Then p = (~, ... ,x., •... ,zk'o •. ,Y. , •... ,y ).
J 1 n



Case (iii):

Here there exists i,j,k,l such that

x• ~ y. ~ z. i F j f; k F1
1 1 1

x. < z. < y.
J J J

Yk < Xk < Zk

Zt < Yt < x~

Here p = ( Yt , ... ,y., Zjt ••• ,xk , .•. ''>l , •.. ,Yn )
1

3
Thus in all these three cases p e:n B. , and

i=l 1

lemma 0

Theorem 2.2.7.

hence the

The Helly number h for the dl-convexity in Zn is 2.

Proof:

We use induction to prove the theorem. Let'F = { Bl , •• • ,B k)

be a family of k nonempty dl-convex sets in Zn, with k ~ 2

and every two members ofOf= has nonempty intersection. For

k=2, conclusion trivially holds and for k=3 it follows

from lemma 2.2.6.

Assuming the result for k=m, to prove for k=m+l, let

'F = tBl'··· ,Bm+1]·
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Define B.'=B.n B l' for i=I, •.. ,m. Then B. I ~ d and
1 1 m+ l P

tSl" •.. 'Sm'J is a family of m nonempty dl-convex sets

satisfying the induction hypothesis, by lemma 2.2 0 6 .

m ~l

Therefore n B.' ~~. That is n B. ~ ~, which
· 1 1 · 1 11= 1=

completes the proof by induction. We note that the Helly

number h for the d1-convexity in Zn can also be obtained

from the following facts. See [30], [44], [47].

The dl-convexity in Z is the same as the order convexity

in Z with respect to the usual order and the Helly number for

the usual order convexity in Z is 2. The d1-convexity in Zn

is the product convexity of n copies of d1-convexity in Z,

and the Helly number of a product convexity is the maximum

of the Helly numbers of the factors. Hence h=2, for the

dl-convexity in Zn.

Note 2.2.8.

For the d1-convexity in Zn, we have I(n+2, using

Theorem 1 05 07. We will show that r attains the bound n+2,

for n=2 and n=3.

Theorem 2.2.9.

The Radon number r for the dl-convexity in Zn is 4

if n=2 and is 5, if n=3.

Proof:

We will show that there are sets with cardinality 3

and 4, which have no Radon partition when n=2 and n=3

respectively. Consider the sets
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A =ta~(al,a2)' b=(b1,b2), C=(Cl,C2U~Z2, where

a1<b1<c1 and a2<c2<b2 and

B = {a=(a1,a2,a3), b=(b1,b2,b3), c=(c1,c2,c3), d=(dl,d2,d3~~ Z3

where a1<b1<c1<d1, a2<c2<d 2<b2 and a3<d 3<b3<C3

Now the sets A and B have cardinalities 3 and 4 respectively

and it can be shown that they have no Radon partitions.

nTherefore for the d1-convexity in Z , r=4 and r=5, when n=2

and n=3 respectively.

The following example illustrates that the family

of order convex sets in Zn(n~2) has an infinite Helly and Radon

number.

Example 2.2.10.

Suppose that there exists finite Helly number 'hI and

Radon number 'r' for the order convexity in Zn. Consider the set

A =0X,y,0, ••• ,0), (x-l,y+I,O, ••• ,O), ••. ,(x-h,y+h,O, •.. ,og. ~Zn.
Then IAI=h+l 'and A is trivially order convex. Now consider

subsets of A defined as

Ao = A \ (x,y,O, ••• ,0), Al .= A \ (x-l,y+I,O, ••. ,0), •••

Ah = A \ ( x-h , y+h,O, •.. ,0) •

Then { Ao,AI' • • · ,AJ is a f'am LIy of h+1 order convex sets, such that

~very ..h. members of the family have nonempty intersection,
h

but .n Ai = ~, which is a contradiction to the assumption
1=0

that h is the ~elly numbero
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Since h ~ r-l, by theorem 1.5.6, for any convexity

it follows that the order convexity in Zn has no finite

Radon number also.

In this section, we discuss d2-convexity in Zn where

d2 is the metric defined by

max IXi-Yi l , for x=(x1, ••• ,xn),
l~ i~n () z"Y= Yl' •.. 'Yn E

In the following discussion, by independent sets, we mean

d2-convexly independent sets.

Lemma 2 03.1.

Let A S z" be a set wi th r=2n independent points 0

Let n.: Zn ~ Z, denote the projection to the jth factor.
J

Then for each x e A and j=l, ••. ,n, there is a point yeA

\~ i th d2 ( x , y ) = J n , ( x) - n , ( Y) I.
J J

Proof:

We prove the lemma by induction on the dimension n

For n=l, it is trivially true.
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For n=2, let A = tX1'x2,x3,x4} be a set of 22=4

independent points in Z2. Required to show that, for

each xi e A and j=1,2, there is a point xk E A with

=

Suppose not, that is, for at least one xi E A, say xl'

for all X k 6 Ao

Let m = min {d2(x1,xk ) ) and

xkeA'.x1

AI = {xk e= AId2 ( xl' xk ) =mJ ·

which is a contradiction to the assumption that A is an

independent set, hence the lemma for n=2. Now assume

the resu1 t for n-1. Let A = LXI'.'" xr} r = 2n be an

independent set in Zn. For each x. 6 A, any (n-l)
1

dimensional projection AI of A containing x., contains
1

2n-1 independent points. So by induction assumption,

for each j=jl,j2, ... ,jn-l' there is a point

XkE A' with d2(x i,x k) = Inj(xi)-nj(xk)l,

where jl'j2'··· ,jn-l E: t1 , ••• ,nJ.
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Consider another (n-l) dimensional projection B t of A,

containing x. and again by inductive assumption, there
1

is a point xk' E S', such that

d2(X i,Xk') = l1tj ( xi)-1t j ( xk')1 for each j=j2, ••• ,jn

where j 2 ' j 3' • • · , j n G [l, • • · , n] •

Therefore, for each xi e A, and j=l, •.. ,n, there is a

point xkE A, with d2(xi,xk) = l1tj ( xi)-1t j ( Xk)I and hence

the lemma for all n.

Theorem 2.3.2.

Rank of the d2-convexity in Zn is 2n•

Proof:

We prove that every set with cardinality 2n+l is

dependent. Let B = tXl,X2'."'Xr+l}' r = 2
n

be any

subset of Zn. Let A = [xl, ••. ,Xr } be any subset of B,

containing 2n independent points. If xr+ l e d2-conv(A),
then we are done. If not,

let

Define C = lX j £: AId2( xj ' Xr+ l) = IDJ. Then C -j ~ and

for xj E C, let d2(x j,x r+ l) be the difference between the
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kt h co-ordinates (l~k~n). By lemma 2.3.1, there exists

a point xp E': A such that d2( xp' xj ) is also the difference

between the kt h co-ordinates. Since xr +l ~ d2-conv(A)

and d2(x j,xr +l) is the minimum, d2(xp'xr+ l) is also the

difference between the kt h co-ordinates. Therefore we have,

That is,

Therefore

X j e d2-conv(B 'x j ) , which completes the proof.

Corollary 2.3.3.

Let S ~ Zn be finite with JsI ~ 2 n. Then there

exists an independent subset A of S with IAI ~ 2n, such

that d2-conv(S) = d2-conv(A).

We note that if A =tXl, ••• ,xrJ,r" 2n is a set of r

independent points in Zn, then for any point x 6 d2-conv(A),
there is an (n-l)-dimensional submodule of Zn, containing x.

n-l 2n-1 · d d · AIn Z ,there are at most ln epen ent pOlnts of ,
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the d2~convex hull of which contains x. Thus any point

x E d2-conv(A), belongs to the d2 convex hull of a subset

2n- 1 ·of A, containing at most pOlnts of A.

Therefore,

d2-conv(A) = Uld2 conv(T) \ T~A and lTI " 2
n--:J .

In fact this bound is sharp. For example, consider the

subset

A = ~X1,X2, ••. ,Xn) E: znlxi=o or xi=2 for all i=l, ••• ,J.
A I 2 n- 1Define the subsets . and A. of A with cardinality as

J J

Aj = i (xl' • • • , xj , • • • , xn) E: AIxj = 0 J and

Ajl= [(x1,.··,X j ' , •.. ,xn)E:Alx j
l= 2J, for j=l, ••• ,n.

Then we ha ve ..

Now consider the point z = (4,1,1, ••• ,1) E d2-conv(A).

Then z € d2 conv(A 1
1

) and it can be verified easily

that z cannot lie in the d2-convex hull of a subset of A

2 n- l •of cardinality less than Thus we have

Theorem 2.3.4.

The Caratheodory number for the family of d2~convex

sets in Zn is 2 n-1
o
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Theorem 2.3.5.

The Helly number h for the d2-convexity in Zn is 2 n•

Proof:

The method of proof is by induction.

Let""F = \'Bl,B2, ••• ,Br} , r ~ 2 n be a family r d2- convex

sets such that each 2n members oflF has nonemtpy inter-

section.

such that

nWhen r = 2 +1, then there exists x1, ... ,xr '

x. E
1

r
(\

j=l
j"fi

B .•
J

consisting of 2 n+l distinct points in Zn, which by

Theorem 2.3.2 is dependent.

Therefore xi E d2 - c onv tXl' ••• 'Xi_l'Xi+l' •• ·'Xr]' for some i

Clearly x. e B., for all i = l, •.. ,r, completing the proof
1 1

for r= 2 n+l.

Now assuming the result for r = 2n+ffi , consider r=2 n+m+l.

Define

B.' = B. Cl B 1= ~, for i = 1,..., r-l .
1 1 r

Now iBl', B2',···, Br-1'J is a family of 2
n+m

nonempty

d2 convex sets, satisfying the conditions of the theorem.
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Therefore by inductive aSSuffiRtion
r-l
n

i=l
B. '

1.

That is
rn B. F ~ and tha t completes the proof by

i=l 1

induction.

Theorem 2.3.6.

The Radon number r for the d2 convexi ty in z" is 2 n+l .

Proof:

We have r ~ 2n+l, since by theorem 2 03.2, any 2n+l

points in Zn is dependent and therefore any set S G Zn

with JSJ ~ 2 n+1 has a partition into two disjoint sets

SI and 52' whose d2~convex hulls contain at least one

common point. Therefore r (2n+l. To prove that r = 2n+1,

we will show that there exists a set A with IAI = 2n,

which has no Radon partition. Consider the set

A = t(xl, ••• ,xn)E.tllxi = 0 or 1, for all i=l, ••. ,J.
Then IAI = 2n, and every subset of A is d2-convex, and

hence A has no Radon partition. Therefore r = 2n+l.

Theorem 2.3.7.

The Tverberg type generalized Radon number Pm for the

d2-convexity in Zn is (m-I) 2n+l.
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Proof:

We will show that every subset S of Zn, with

Isl = (m-I) 2n+l have a Radon m-partition, and there

exists a subset B with IBI ~ (m-l)2n, having no Radon

m-partition. Let S c Zn be such that Isl = (m-l)2n+l.

Choose F1 cS with IFll ~ 2n and d2-conv(Fl)=d2-conv(S),
which is possible, since rank of the d2-convexity is 2n•

Again choose F2 ~ S 'F1 with IF21 , z" and

d2-conv(F2) = d2-conv(S"Fl) ~ d2-conv(Fl ) 0 Proceeding

in this way, we get a partition of S into (m-I) sets F.
l.

with IFil ~ 2n, for each i, and there remains at least

one point Z 6 d2 conv(Fm-I) ~ d2 conv l Fm-2) ~ •.. · .. ·

C.d2-conv(Fl) = d2 conv(S). Thus we get a Radon m-parti tion,

for any subset 5 of Zn with Isl = 2n(m- l )+1 .

Now consider the subsets B. of Zn for i=O, ... ,m-2 defined as
1

B = l( xl' • • · , xn) E: z" I xi=0 <.arx i =2m-3 for all iJ0

B1 = [(Xl' •• "Xn)~ ZnlXi=l or x1=2m-2 for all i}

..

ThentBo,Bl,.·.,Bm_2}are m-I disjoint sets with IBil=2n,

for each i=O, •• ,m-2 and the set B=BoU UBm_2 has

cardinality (rn-l)2n and has no Radon rn-partition. Hence

P = (m-l)2n+l
om
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In this section, we discuss d3-convexity in Zn,

where d3 is the metric defined by

d3(x,y) = Number of co-ordinates in which x and y differ,

where x = (Xl,o •• ,xn) and y = (Yl' ••. 'Yn). We have

d3(x,y) ~ n for every x,y E z". Suppose that z=(zl, ••• ,zn)

belongs to the d3-interval d3-[x,y]. That is

if and only if z. = x. or z. = y., for all i=l, •.. ,n.
1 1 1 1

We have

Lemma 2.4.1.

Proof:

Z e d3-[X,y] ~ ) zi=x i

Suppose Z E d3-[x,y].

or z , = y. for eve ry i =1 , . . . , n •
1 1

n n
Now d1(x,z)+d1(z,y) = E Jx.-z·l+ L Iz·-y·l

-1 1 1 '1 1 1.1= 1=

= 1: j Xl' -y l' l-i- L 1xj -y · j ,
· . .1' J1 J ,-}.

since z.=x. or z.-y. for all i=l, ... ,n.
1. 1 1. 1.
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n
= L Ix~-y-I = d1(x,y)

i=l 1 :L

and hence the lemma.

Theorem 2.4.2.

d3-[x,y] = dl-[x,y] if and only if

d3(x,y) = dl(x,y).

Proof:

Suppose d3(x,y) = dl(x,y)

We have d3(x,y) ~ n for all x,y E Zn.

Therefore (1) gives dl(x,y) ~ n

(1)

I , e. ,
n
E

i=l
Ix . -y - j ~ n

1 :L

n n
~ ~ L Ix.-z.J + E IZ.-Yi l-Ill -1l.l.= 1=

n
= L j x . -Y-l

· 1 l. 11=

4 .\ x. =z. or z -=y - for all i=l, ... , n,
-.; 1. 1. 1. 1

~ ~ z e d3- [ x., y]

:;:=) dl-[X,y] G d3-[x,y]



Therefore dl-[x,y] = d3-[x,y], by lemma 2.4.1.

Conversely suppose dl-[x,y] = d3-[x,y].

Therefore Z E dl-[x,y]< ~ Z 6 d3-[X'Y]~ Zi=Xi or zi=Yi'

for all i = l, •.. ,n.

n
That is Z E d1-[x,y] 4; ~ L Ix.-z.J +

· 1 1 11=

n
L I z .-Y·l

· 1 1 11=

~=) z.=x. or z.=y. for all i=l, •.. ,n.
1 1 1 1

This is possible only if IXi-Yil ~ 1 for all i=l, •.. ,n.

If not, for at least one j, J x .-y. J ) 1, then there exists
J J

Zj such that xj < Zj < Yj

Yj < Zj < xj'

Therefore

or

so that z.lx. or Z.~Yj •
J J J

n
L

i=l
1 x.-y.) =

1 1

= r Ix.-Yj I +
j J

= m < n, if there are m co-ordinates

for which xk ~ Yk.



= The number of co-ordinates in which x and y differ

= d3( x, y) , hence the theorem.

Theorem 2.4.3.

I fA£: z" is d1-convex, then A is d3-convex.

Proof:

Follows from lemma 2.4.1.

Lemma 2.4.4.

For any A G z",

d3-conv(A) = -lZ =( 21' • • • , Zi'···,Z n) E: znlz.=a., for some
1 1

a=(a1, ••• ,a. , •. ,a ) 6 A for all iJ1 n

Proof:

Let B = ~ z=(Zl' ... ' z., ... ,z ) E Zn'z.=a. for someL 1. n 1 1

a=(al, •• ·,ai,.··,an) ~ A for all iJ

To prove that B is d3- c onv e x , let z,w e B,

y.=a. or y.=b., for some
1 1 1 1

a =(a., . . . , a . , • • • • , a) and
1 n

b= (bl , ••. , b. , ••• , b ) EA· for a 11 i=l, ... , n .
1 n
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Therefore we have

y.=a. for some a=(a 1, ... ,a., ... ,a ) l:: A
1 1 J. n

for all i=l, ... ,n.

~) Y E B.

~ B is d3-convex.

Since A ~ B, we have d3-conv(A) c= B ( 1)

Now let Z 6 B, then Z= (zl' ... 'z., ... ,z ), where
1 n

z . =a ., for some
1 1

a=(a., ... ,a., ... ,a ) E A for all
.. 1 n

i=l, ... , n •

Thus there are at most n points, say CI,C2 , ••• ,Cn in A,

h th t th · th d · t f· 1 t thsue a z., e 1 co-or lna e 0 Z lS equa 0 e
l.

i t h co-ordinate of Ci, for all i=l, ••• ,n.

Therefore

z e d3-conv tCI' ••. , Cn] C d3-conv(A)

~ B c d3-conv (A )

Therefore
j, .,

d3-conv(A) ~ B by (1), and hence the lemma.

From lemma 2.4.4. we have
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Theorem 2.4 05.

The Caratheodory number for d3-convexity in Zn is 'n'.

Note 2.406.

It may be noted that there is no finite Helly and

Radon number for the d3-convexity in Zn. Suppose, if

possible, that there exists finite Helly number h, for the

d3-convexity in Zn. Now consider the set

A = t(a 1,a2,0, ••. ,O), (a1+l, a2+1, 0, ••• ),

(a1+h, a2+h, 0, ••. ,D)} ~ z",

... ,

It is clear that a fs d3-conv(A " a), for all a e A.

Consider the h+l member family of d3-convex sets

defined as Of = ~3-conv(A" a) Ia e AJ. Every h members

of 9C has nonempty intersection, but n;: = ~, which is a

contradiction to the fact that h is the Helly number.

Therefore, there is no finite Helly number h, for the

d3-convexity in Zn. Since h' r-l by 1.5.6, for any

convexity, there is no finite Radon number for the

d3-convexity in Zn.



Chapter-3

ORDER AND METRIC CONVEXITIES IN Z~

In this chapter, we extend the definitions of

order convexity and d-convexity in Zn to the infinite
00

dimensional sequential space Z. Being interval

convexities, these are all domain finite convexities,

having no finite Caratheodory number, with the exception

of order convexity. Convexity spaces having finite

Caratheodory number is known as domain bounded convexities.

Therefore these convexities are domain finite, but not

domain bounded. See Hammer ([21)], Sierksma ([45]), Kay

and Womble ([29]).

n~, n~ denote the projection from ZOO to Zn and

Zm respectively.

3.1. ORDER CONVEXITY

We consider the infinite dimensional sequential

space ZOO = t(ml'~' ••. ) I mi E z}, where Z is the set of

integers.

For x = (xl,x2, •.• ), Y=(Yl'Y2' ••• ) E Zoo, the relation x'Y

if and only if xi ~ Yi for every i,is a partial order in Zoo.

44
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Definition 3 01.1.

A point z € ZOO is said to be order~between two

points x,ye Zoo, if x'z,"y or y~~x. The usual order

interval [x,y] is the set of all points order-between x

and y. Note that [x,y] =~, if x and y are not comparable.

Definition 3.1.2.

Ac.= ZOO i s 5 aid to be 0 rd er convex, i f [x, y] ~ A

for every x,y e A. This is a weak definition of convexity

so that even the finite dimensional projections of order

convex sets need not be order convex in the corresponding

finite dimensional submodule.

For, Example 3.1 03:

The two element set

A = LX=(l,O,l,O,l,O, ••• ), y = (0,1,0,1,0,1, ••• )J is

trivially order convex, but the 2-dimensional projection

n2 (A) on say the first and third co-ordinates, defined by

x -) (1,1)
· t d · Z2 ·1S no or er convex In , Slnce

y -) (0,0)

[ (1 , 1), (°,°)] = t(°,0), (1, 0), (°,1), (1, 1 )Jq; n2 (A) •

Hence we modify the definition of the interval [x,y] as

follows.
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Definition 3.1.4.

For x = (x l,x2, •.• ), Y=(YI'Y2' ••• ) E: Zoo,

define (x,y) ast.Z=(Z-l,z2' -,- -)EZoo/"Zi lies between Xi and Y
i

for all i] .
Thus we have a stronger definition of order convexity.

Definition 3.1.5 0

A ~ Z~ is said to be strongly order convex, if

(x,y> ~ A, for every x,y e A. As the definition

indicates, A is strongly order convex, implies that A is

order convex, for [x,y] = (x,y>, if x~y. Example 3.1.3

itself shows that the converse is not true.

3.2. d-CONVEXITY

We extend the definition of integer valued metrics

in Zn that we have considered in Chapter l,to Z~ as follows.

For x = (x.)OO ,Y=ly.)OO Ea Zoo, define the extended metrics
1 · 1 1 · 11= 1=

00

L IXi-Yi l , if the sum is finite.
i=l

That is if and only if all except a finite number of xi's

and Yi's are zero, or xi=Yi for all except a finite number

of i's.
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and dl(x,y) = =, otherwise.

= max Ix.-y. I if and only if thel' i~oo 1 1

sequence f z l , where z = Jx -y I is boundedt nj n n n

and d2(x,y) = =, otherwise.

and d3(x,y) = the number of co-ordinates in which x and y

differ, if xi=Yi' for all except a
finite number of its.

and d3(x,y) = =, otherwise.

Note that these extended metrics are integer

valued, when they are finite.

We define, for any extended metric Id', the

d-interval d-[x,y] as follows:

Definition 3.2.1.

For x = (x.)oo , y=(y.)OO e Zoo, d-[x,y] is
1. 1 1 · 11= 1=

defined as lz e z=l1ty( z ) e dn_ [1t)l( x), 1t" (y)] for all n E N

where n~ denotes the projection to the first nco-ordinates,

and dn_[n~(x), 1ty {Y) ] denotes the d-interval in the

corresponding submodule Zn. Note that, when d(x,y) < 00,

d- [ x, y] = [z e 2"0 Id ( x , z)+d (z,y ) =d ( x , y) } 0
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Definition 3.2.2.

A~ZOO is said to be d-convex, if the d-interval

d-[x,y] s;;: A for all x,y E: A. \Ve will show that the

I1 d-convexi ty in Zoo" is stronger than the d-convexi ty

in all the finite dimensional projections. We need a

lemma from Zn, namely

Lemma 3.2.3.

In Zn, the projection of a d-convex set to any

lower dimensional submodule Zm(m<n) is d-convex in Zm.

The proof follows easily,

since n (d-[x,y]) = d-[n (x), nll(y)].
~ ~,....

Now we have

T.heorem 3.2.4.

If A is a d-convex subset of Zoo, then every finite

dimensional projection of A is d-convex, in the correspond-
00

lng finite dimensional subrnodule of Z •

Proof:

Suppose that A is a d-convex subset of Zoo. Assume that

m is the largest integer, for which the projection n (A) is
~

not d-convex in the corresponding submodule ZID. That is,

~y(A) is d-convex, for every n>rn. There are two cases.
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Case (i):

When n~ = n~*, where n~* denotes the projection to

the firstm-cordinates. Consider n~+l*. Now fix some

a e A and consider nm+1(a), the projection to the m+lt h

co-ordinate. Let A~+l be the subset of n~+l*(A),

consisting of points with m+l t h co-ordinate = nrn+l(a).

By assumption A +-1 is d-convex and ~ (A 1) = n (A), and
il Il ~+ IJ.

the assumption that n~(A) is not d-convex, contradicts

lemma 3.2.3, and hence the theorem for case (i).

Case (ii):

When n ~ n * Let n be a natural number greater
~ i-l.

than rn, such that Zm is a submodule of Zn, where Zn=n~*(ZOO).

Now using the same argument to that of case (i), we get a

contradiction to lemma 3.2.3, and hence the theorem for case(ii).

The following example shows that the converse of theorem

3.2.4 need not be true.

Example 3.2.5.

Let a = (a.)OO , b = (b.)OO be two members of Zoo,
1. 1 1. 11= 1=

having all entries nonzero and distinct in all co-ordinates.
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Let A = tZ=(Zl, •.• ,Zn' Zn+l'O,O, ••. ) G ZOO 1

(zl, ••. ,zn) ~ dn_[n~(a), n~(b)] and

zn+l=an+l or zn+l = bn+l, zj=O, for j)n+:}

for n E N varies.

It is clear that every n-dimensional projection of A is

d-convex (since projection to the first n- co-ordinates

is d-convex) in the corresponding submodule Zn, but A is

not d-convex in Zoo,

and

and

y = (Yl'Y2' ••. 'Ym'Y~1'0, 0 •• ), where

(x l,x2'.··,xn) e dn_[n~(a),ny(b)] and xn+l=an+ l or bn+l

x j =0, for j ) n+1

(Yl'Y2'···'Y ) E dm_[n (a), n (b)] and y l=a 1 or b 1m ~ ~ m+ m+ m+

and y.=O, for all j > m+l.
J

Assume that m > n.

Then
<-Ix.v] = [z IS zCOjnj(z) Edn-[ny(x) ,n,,(y)] for all n

= [z e: ZOO 1n
ll+ l (z) E dm+l_[ n

ll+ l (x) ,nm+l (y)],

nj(z) = 0, for j ) m+l}.



Now there exist an z e d-[x,y], such that z ~ A, for,

if Z = (zl,.·"zm+l' zrn+2' a,a, ... ), where am+2<zm+2<bm+2

or bm+2<zm+2<a rn+2, then Z 6 d-[x,y], but Z +A. Since

Z € A is of the form Z = (zl' •• ' ,zm+l' zm+2' a, a, ... ),

where (zl,.·"zm+l) € dm+l_[n~+l(a),n~+l(b)], zrn+2=arn+2

or zrn+2 = bm+2 and Zj = a, for all j > m+2.

Now we will show that d1-convexity and strong order

convexity are equivalent.

Theorem 3.2 06 0

A c. ZOO is strongly order convex, if and only if A

is d1-convex.

Proof:

A is strongly order convex implies that for any

pair of po i.n t s x,y e A, <x,y> ~A.

Let Z E: (x,y> /-:- )x.'z.",y. or y.~z.",x. for all i
~ 111 111

n n
&:---) L Ix · -z · I + L Iz · -y. I =

-1 1 1 .1 1 1
1= 1=

n
E 1x ·-y-l

- 1 1 11=

for all ne N, by lemma 2.2.1.
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where n~ denotes the projection to the first

nco-ordinates.

<:: -;> It)l(z) € dl
n-['It7l(x),

lt~(y)] for all n So N

~) Z e dl-[X,y], and hence the theorem.

3 03. INVARIANTS OF d-CONVEXI1Y

For the order convexity in Zoo, the Caratheodory

number is 2 ([17]), and there is no finite Helly and

Radon numbers, since there is no finite Helly and Radon

numbers, for the order convexity in Zn.

VVe have

Theorem 3.3.1.

Helly number for the dl-convexity in Z~ is 2 .

Proof:

Letf= = {AI,A2, ••. ,Am] be a finite family of

order convex sets in Zoo, with. pairwise nonempty inter­
ID

section. To show that n A. f ~o
j=l J
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By theorem 3.2.4, every finite dimensional projection

of members of iF is nonempty,d1-convex and pairwise

intersecting in the corresponding finite dimensional
00

submodule of Z. Therefore by Helly's theorem in the
m

finite dimensions (2.2.7), we have n n y (A.) ~~,
j=l J

for any n-dimensional projection ny : Z= ----~ Zn. Let

n.(A.) denotes the projection to the i t h co-ordinate for
1 J

all i and j=l, •.. ,m.

Since
m m
~ n.(A.) ~~, let x. e n n.(A.), for all i

j=l 1 J 1 j=l 1 J

Now x = (x.)~ e A. for all i
1 · 1 J1=

m
x c n

j=l
A., hence the theorem.

J

Note 3.3.2.

The example gj_ven by Kay and Womble [29] itself shows

that there is no finite Radon number for the d1-convexity

· ZOOIn • Also note that there is no finite Caratheodory
00

number for the d1-convexity in Z , since the Caratheodory

number for the d1-convexity in Zn is n (2.2 05).

In chapter 1, it is shown that the Caratheodory,

Helly and Radon numbers for the d2-convexity in Zn is 2 n-1,
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2 n and 2 n+l respectively (2.3.4, 2.3.5 and 2.3 0 6 respectively).

Also the Caratheodory number for the d3-convexity in Zn is

n (2 04.5), and there is no finite Helly and Radon numbers

for d3-convexity in Zn (2.4.6). Hence we have

Theorem 3.3.3 0

There exists no finite Caratheodory, Helly and Radon

numbers for the d2-convexity in Zoo, and

Theorem 3.3 04.

There exists no finite Caratheodory, Helly and

Radon numbers for the d3-convexity in Zoo.



Chapter-4

CONVEXITY IN GENERALIZED POLYGONS

4.1. INTRODUCTION

In this chapter, we study the convexity in the

finite geometric structure, known as " Generalized

Polygons", considering it as a bipartite graph, denoted

by r-. It is observed that the m-convexity in r- is

the trivial convexity, consisting of the whole vertex

set ofl and~. But the geodesic convexity (d-convexity)

in r has close similarity with a convex geometry ([12]).

We believe that the generalized polygons can be

characterized using the geodesic convexity in certain

bipartite graphs. For details about Generalized Polygons,

see (l16], [37], [40]).

Definition 4.1.1.

A finite incidence structure is a triple S:(P,L,I)

in which P and L are nonempty disjoint finite sets of

objects, called points and lines respectively and I is a

symmetric point-line incidence relation.

Definition 4.1.2.

A path from an e Leme n t x to an element y in P U L

55
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1. 5 a sequence (x.)r surh that x x I f-.. = , x. 1 x., or
1 i=o 0 1- 1

i=1,2, ••• ,r and x =y. er' is called the length of ther

path. A finite·incidence structure 5 = (P,L,I) is said

to be connected if every two elements in PUL can be

joined by a path. Note that if S = (P,L,I) is a finite

connected incidence structure, then S is a finite metric

space with d(x,y) = length of the shortest path from x to y.

Definition 4.1.3.

A finite connected incidence structure S=(P,L,I)

is called a generalized n-gon, for some positive integer n,

if the following are satisfied:

(1) d(x,y) ~ n, for all x,ye pUL

(ii) If d{x,y) < n, then there is a unique path

between x and y.

(iii) For each xe PUL, there is a ye PUL, such

that d(x,y) = n.

If S is a generalized n-gon, then S is said to

have order (s,t) (s~l, t~l), if there are exactly t+l

lines incident with each point and 5+1 points incident

with each line. A generalized polygon is a generalized

n-gon, for some integer n. When s=t=l, we get ordinary
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polygons. We have a famous non-existence theorem of a

generalized n-gon due to Feit-Higman. See ([16] and [40J).

Theorem 4.1.4 (Feit-Higman)

Apart from the ordinary polygons, with s=t=l, a

generalized n-gon can exist, only if n E t2,3,4,6,8,12}.

Now S can be considered as a bipartite graph with

vertex set V = P U L and two vertices adjacent in the graph

if and only if they are incident in the n-90n. We denote

by r , the biparti te graph corresponding to a generalized

n-gon of order (s,t).

The theory of convexity has a natural role in graph

theory. See Farber ([13]), Farber and Jamison ([14],[15]),

Duchet ([8],[9]) for the notions of geodesic convexity

(d-convexity) and minimal path convexity (m-convexity) in

a finite connected graph. Let G be any graph with vertex

set V. A chord of a path in G is an edge joining two non

consecutive vertices in the path.

Definition 4.1.5:

A set KC V is said to be d-convex (m-convex) if for

any pair of vertices x,y ~ Kt all vertices on all shortest

(chordless) paths from x to y also lie in K.
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That is K~ V is d-convex, if d-lx,y]~K, for every pair

of vertices x,y~ K, where

d-[x,y] = ~z E vi z lies in a shortest x-y path}

= tz ~ Vi d(x,z) + d(z,y) = d(x,y)j

and K~V is m-convex, if m-Lx,y] ~K, for every x,yE K,

where m-[x,y] =[z E Viz lies in a chordless path from x to ~

Definition 4.1.6.

I f KG V is convex (d-convex or m-convex), a

vertex v E K is said to be an extreme point of K, if

K" v is again convex. EX(K) denotes the set of all extreme

points of K and K is said to have the Krein-Milman property

if K=conv(EX (K»).

For any vertex v e V, Nj(V) denotes the neighbourhood

of radius j about v. That is Nj(V) = tze Vld(Z,V)~j} , for

some integer j. For 5 ~V,. the diameter of S, denoted by

diam(S) is Sup td( x, y) Ix, y E: sJ. The radius of S wi th

respect to V is inf lr:S~ Nr(x), for some x G vJ. It is

noted that diim(V) = radius(V) = n = diam(r). We need two

lemmas, the proofs of which are seen in [16].
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Lemma 4.1.7.

Let r be the bipartite graph corresponding to

a generalized n-gon of order (s,t), with vertex set

V:PUL. If x e P and d(x,y) = n , then there are exactly

t+l dis~inct paths of length 'ne from x to y. Similarly

if x eLand d(x,y) = n, there are exactly 5+1 distinct

paths of length n from x to y.

Lemma 4.1.8.

Let r be as in lemma 4.1.7. Then n is odd implies

that s=t.

4.2 GEODESIC CONVEXITY

We have

Lemma 4.2.1.

In r, if d(x,y)=n, then d-[x,y], contains every

neighbour of x as well as every neighbour of y.

Proof:

When n is even, then both x and y either belong

to P or belong to L. That is, x and y are of the same

type and when n is odd then s=t, by Lemma 4.1.8. Let

x e P, then x is adjacent with t+l distinct vertices in L.
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Let x1,x2, ••. ,x t +1 be the t+l distinct vertices in L

adjacent with x. We have d(x.,y) = n-l, for all
1

i = l, ••. ,t+l-,for if d(xi,y) < n-l, for some i, then

there is a path of length less than n from x to y,

which is a contradiction. If d(xi,y) = n, for some i,

then d(x,y) = nand d(xi,y) = n implies that x and xi

are vertices of the same type, which is also a contradic-

tion, since x and xi are adjacent. Therefore all the t+l

neighbours of x belong to d-[x,y]. Similarly if x ~ L,

all the s+l neighbours of x belong to d-[x,y]. By the

same argument, we can show that all the neighbours of y

also belong to d-[x,y].

Note 4.2.2.

d-[x,y] is not d-convex always. For example,

let one of s,t is greater than one, say t and d(x,y)=n.

Then d-[x,y] is not d-convex, for there are t+l or s+1

distinct shortest paths from x to y, according as x € P

or x e L. Suppose x eLand let

x, XII' x12 '

x, x2 1 , x22 , •••

,X1n-1,Y

,x2n-1,Y

x , x s+11' x 5+12' • • • ,x·s+1 n-1' y
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be the 5+1 distinct shortest paths of length n from

x to y. We can easily see that d{Xil,Xjn_l) = n, for

i I: j, i,j E (:, ••• ,S+lJ. Now xiI e P and therefore

there are t+l distinct shortest paths of length n from

xiI to xj n_ l of which only 2 paths namely

xil,xi2,···,xin_lY xj n_ l and xiI x xj, ••• ,x j n_ l belong

to d-[x,y]. Thus d-[x,y] is not d-convex. Note that

in a generalized n-gon r , when d(x,y) = n, the d-interval

d-[x,y] contains, for each neighbour xiI of x)a neighbour

Xj n_l of y with d{x i l, Xj n_1) = n. Now we have

Theor-em 4.2.3.

If K is a d-convex subset of V( r ), wi th

diam{K) = n, then K = V.

Proof:

Since diam(K) = n, there are vertices x,y ~ K

with d(x,y) = n. Let z be any vertex of r. Since r is

connected, there is a path from x to z. Let x,x1,x2, ... ,xr=z
be the shortest path from x to z. Since d(x,y) = nand

K is d-convex, by lemma 4.2.1, every neighbour of x belongs

to d-[x,y] and hence belongs to K. Therefore xl E: K.
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Also as in Note 4.2.2, d-[x,y] contains a vertex YI

with d{x1'Yl) = n. Therefore again by Lemma 4.2.1,

x2 e K. Again there exists a neighbour Y2 of Y in

d-[x1'Y1] with d(x2'Y2) = n, and by Lemma 4.2.1, x3 e K.

Applying Lemma 4.2.1, successively, we get z ~ K. Hence

K = V.

Corollary 4.2.4.

If K~V is a proper d-convex subs et of r , then

d i amf K) < n •

Corollary 4.2.5.

If K~V is a proper d-convex subset of r, then

K is a subtree of r and hence K. has the Krein-Milman

property.

Proof:

By Corollary 4.2.4, if K~V is a proper d-convex

sUbset, then diam{K) < n and therefore, for every pair x,y

of vertices of K, d(x,y) < n, and by the defining condi­

tion (ii) (4.1.3) of a generalized n-gon, there is a unique

path from x to y, which'is contained in K. In other words,
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the subgraph induced by K of r contains no cycle and

hence is a tree. Clearly K has the Krein-Milman property

and all the end vertices of K (vertices of K having

degree one in the subgraph induced by K) are the extreme

points of K.

Now we have a theorem of a general nature.

Theorem 4 0 2 0 6 .

Let G be any connected bipartite graph in which

every vertex has degree at least two. Let K be ad-convex

subset of G. If K has the Krein-Milman property, then

diam(K) < diam(G).

Proof:

Suppose diam(K) = diam(G) = n. Since K has the

Krein-Milman property, it is the d-convex hull of its

extreme points. Now there exists two extreme points x,y

of K, which are diametrically opposite vertices of K.

We have that x is an extreme point of the d-convex subset

K, if and only if x is a simplicial vertex in the 5ubgraph

induced by K. A vertex x of K is called a simplicial

vertex, if the neighbourhood (Nl(~» of x induces a

complete 5ubgraph in the 5ubgraph induced by K. Since G

is a bipartite graph,x is a simplicial vertex implies that

Nl(x) consists of a single vertex in the sUbgraph induced by K.
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Since each vertex has degree at least 2, x is adjacent

with a vertex z ~ K. Now d{x,y) = nand d(x,z) = 1

implies that d(y,z) = n, for if d(y,z) < n, then z & K,

a contradiction. Therefore we have d(x,y) = n, d(z,y) = n

and d(x,z) = 1. In a bipartite graph, this is not possible,

because x and z are vertices belonging to distinct partition

classes of vertices. Therefore our assumption is wrong,

and hence diam(K) < diam(G).

Now we have

Theorem 4.2.7.

If r is the bipartite graph corresponding to a

generalized n-gon and K is a d-convex subset of r. Then

K has the Krein-Milman property if and only if diam(K) < n.

Proof:

The necessity part follows from Theorem 4.2.6,

and sufficiency follows from Corollary 4.2.5, since

diam(K) < n implies that K is a proper d-convex subset and

by Corollary 4.2.5, K has the Krein-Milman property.

Theorem 4.2 08.

In r t Nj(V) is d-convex, for j ~ [ n;l ], for

all v E V.
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Proof:

For any two vertices x , y E: N. (v), we have
J

d(x,y) ~ n-l. Therefore, there is a unique pat~ from

x to y in r , which is contained in N.(v).
J

Next we show that the m-convexity in r is the

trivial convexity.

Theorem 4.2.9.

The m-convexity in r is the trivial convexity

consisting of the null set ~ and the whole vertex set V.

Proof:

For any vertex x ~ V, by the defining condition

(iil), of a generalized n-gon (condition (iii) of 4.1.3),

there exists a vertex y e V with d(x,y) = n, and by

Lemma 4.1.7, there exists t+l or 5+1 distinct shortest

paths from x to y according as x ~ P or x e L, and hence

there are (t~l) or (S~l) distinct cycles containing both

x and y. Note that all the cycles are chordless, for

if there is a chord in one of the cycles, then there will

be a path of length less than n from x to y. Hence m-Lx,x]

or m-lY,Y] contains both x and yo We have by Theorem 4.2.3

d-conv tX,y} = V, since d(x,y) = n, and
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d-conv tx,YJ c;;;; m-conv tx,y) ,since every shortest

path is a chordless path. Therefore m-conv tx,y} = v.
Since y E: m-[x,x], m-conv tx J= m-conv [x,y)

= V.

Thus the m-convexity in r is the trivial convexity

consisting only the null set ~ and the whole vertex set

V of r .

4.3. CENTRALITY

Nieminen has studied various center concepts in

connection with the geodesic convexity in connected

graphs. See([34], l35J, [36J). In this section, we

discuss the center, centroid and'distance center of r ,
in connection with the geodesic convexity in r. We need

the following definitions. See ([22], [34], l35J, [36]).

Let G be any finite connected undirected graph, without

loops and multiple edges.

Definition 4.3.1.

The eccentrici ty e( v) of a vertex v E: V(G) is

e(v) = max td(U,v) IUE vJ. The center Ce of G is the

set consisting of vertices of G having minimum eccentricity.

If K C V(G), then the centerof K with respect to V, denoted
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as center (K) is the center of the sUbgraph of G induced

by K.

Definition 4.3.2.

For any vertex v 6 V, a copoint of v is a maximal

convex subset of V'v, denoted by Cv. That is Cv is a

convex subse t of V" v having ma ximum card inal i ty.

Definition 4.3.3.

The centroid C of G is tv ~ VI ICvl = mJ, where

m = inf {ICvl lve- VJ . That is, the centroid of G

consists of vertices v with the property that, thei~ copoints

Cv has minimum cardinality.

Definition 4.3.4.

The distance d(v) of a vertex v in V(G) is the

sum d(v) = t d(u,v). The distance center Cd of G,
UE:V

also called the median of G consists of vertices of G,

having minimum distance.

If r is the bipartite graph corresponding to a

generalized n-gon of order (s,t), then we have the following

theorems. (In this section by a convex subset of V, we mean

a d-convex subset of V.)
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Theorem 4.3.5.

The center of a d-convex subset K of r is

d-convex.

Proof:

If K = V( r ), the whole vertex set, then we

have c en t e r l V) = V, since e{ v) = n, for all v e v: \' )
and therefore the vertices of minimum eccentricity

consists of all the vertices of r , and V is d-convex.

If Kt;V, then by Corollary 4.2 05, the subgraph induced

by K is a 5ubtree of r , and for a tree, the center

consists of either one vertex or two adjacent vertices

(see Harary ([22]), and hence d-convex. Hence the

theorem.

Theorem 4 03.6.

The centroid C of r is the whole vertex set V( r).

Proof:

For any vertex v e v( r ), let C be a copoint of v ,v

That is Cv is a maximal d-convex subset of r not containing v.

Therefore Cv is such that diarn (Cv) = n-l and

diam (Cv U Lv} ) =. n. We claim that Cv is a maximal proper

d-convex subset of r 0 If K is a proper d-convex subset

of r , wi th Cv~ K~ V, then v & K and hence diam(K) = n ,
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and by theorem 4.2.3, K=V and hence Cv is a maximal

proper d-convex subset of v. Therefore, Cv is a copoint

of every vertex ofV\Cv• Now V \ Cv contains vertices

in P as well as vertices in L. Therefore Cv is a copoint

of a vertex in P as well as a vertex in L. Since every

vertex in P is identical and every vertex in L is identical,

the copoint of every vertex in r has got the same cardinality.

Therefore the centroid C of r is the whole vertex set v.

Theorem 4.3.7.

If Cd is the distance center of ,- of order (s,t)

with vertex set V = P U L, then (i) Cd = P if and only if sx t ,

(ii) Cd = L if and only if t(s, and (iii) Cd = PUL =V if

and only if s=t.

Proof:

To find the distance center Cd of r , we shall

find out the vertices in r having minimum distance. Since

every vertex in P is identical, every vertex in P has got

the same distance. Similarly every vertex in L has got

the same distance.
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For a vertex peP, we have

d(p) = l(t+l) + 2(t+l)s + 3(t+l)st + •••

[!l]-l [11]-1
+ (n-1)(t+1) 5 2 t 2

+ n(IVI-«t+l)+(t+l)s+(t+l)st

(~]-1 [~]-l
+ ( t+ 1 ) s t +...+ ( t+ 1 ) 5 to) )

= nlV/ - «n-1)(t+1)+(n-2)(t+1)s

[9]-1 19]-1
+ (n-3)(t+l}st + ••• + l(t+l)s t )

Similarly, for a vertex {e L, we have,

d(l) = nlvl - «n-l)(s+l) + (n-2)(s+1)t

l~]-1 [~]-l
+ (n-3)(s+1)ts + ••• + l(s+l)t s )

Therefore we have

d(l) < d(p) if and only if

[~]-l [~]-l
(n-l)(s+1)+(n-2)(s+1)t+ ••. + l(s+l)t s

[nJ-l [~J-l
) (n-l)(t+l)+(n-2)(t+l)s + ••. + (t+1)s 2 t .



That is,if and only if

(n-l){s-t)+(n-2)(t-s)+(n-3)ts(s-t)+(n-4)ts(t-s)+ ..• +

[~]-l [~]-l
(s-t)s t > o.

That is d(l) < d(p) if and only if

2 2(s-t)+(s-t)ts + (s-l)t 5 +

That is if and only if

• •• +
[~]-l [~]-l

(s-t)t s > o.

2 2(s-t) (l+ts+t s +
[~]-l [~]-l

••• +t s »0

That is d(f) ( d(p) if and only if (s-t) > 0,

[~]-l l~]-l
Since 1+ts+t

2s2
+ ••• + t 5 > 0)

since 5)1 and t~l always.

Therefore we have

(i) d{t) < d(p) if and only if t < s

(ii) d(p) < d(!) if and only if 5 ( t

(iii) d(p) = d(l) if and only if 5 = t.
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Therefore the vertices ofr having minimum distance

belong to L if and only if t<s, belong to P if and

only if s<t, and all vertices of r have the same distance

if and only if s=t. Hence we have

Cd = L if and only if t < 5

Cd = P if and only if s < t

and Cd = PUL=V if and only if s=t.

Also we have,

Corollary 4.3 08.

The distance center Cd of r- order (s,t) is

d-convex if and only if s=t.

Proof:

The distance center Cd is d-convex implies that

Cd=V by Theorem 4.3.7, since P and L are not d-convex

subsets of r and again by Theorem 4.3.7 Cd=V if and only

if s=t.

4.4. INVARIANTS OF GEODESIC CONVEXITY.

In this section, we shall compute the invariants

of the geodesic convexity in r-, like the Helly, Caratheodory,

Radon and Generalized Radon type numbers.



-73-

Theorem 4.4.1.

The He11y number h for the geodesic convexity

in r is 2 if n=2 and is 3 if n 4 3.

We prove the theorem using a lemma.

Lemma 4.4.2.

If A c. v(r) is an independent set wi th lA I ~ 3,

and d-conv(A) F V, then there exists a vertex v e V

v, A such that

V €. Cl {d-conv (A \ a ) I a E AJ·
Proof:

Let A ~V be an independent set with JAI = 3.

A is said to be independent, if a f. d-conv{A '\ a), for

any a€ A. Let A = {.V l , v2 , v3} and let diam(A) = r ,

Suppose d(vl,v2) = r. Clearly r ~ n-l, since d-conv(A) ~ v.

Suppose f) td-conv (A x v i ) (1 )

Since d-conv(A) is a proper d-convex subset of r ,
d-[vl,v2], d-[v2'v3] and d-[v3,vl] are all proper d-convex

subsets of r.
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Let dlv2,v3) = r l and d(v3,vl) = r2 0 Clearly

r1 ~ rand r2 ~ r ,

Let vl'Yl'Y2'···'Yr = v2' v2'Zl'Z2'···'Zrl
= v3

v3'Wl'W2'.··'Wr2 = vl be the unique paths from vl to v2'

zl,z2, •• ·,zr = v3 ,wl , · · · ,w
r 2

= vl is a cycle in d-conv(A),

which is a contradiction, since d-conv(A) is a subtree

of r-, being a proper d-convex subset. Hence the lemma.

Proof of Theorem 4.4.1.

We use the definition given by Sierksma of the

Helly number h (1.5.3). If n=2, consider a subset A of

V(r) with tAl = 3. Clearly, diam(A) = d i aml F") = 2,

and h enc e A contains 2 vertices a1,a2 with d(a l,a2) = 2

and hence d-conv(A) = d-conv{ tal,a2) ) = V by Theorem 4.2.3,

and thus (\ td-Conv{A \ a) Ia~ AJf; ~ hence h=2, if n=2.

If n ~ 3, consider AS;V(,) with IA1=4 and let A be

an independent set, for if A is dependent then we are done.
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Now there exis ts a subset BC A wi th IBI = 3 and

d-conv(B) F V, for if not)then A is dependent. Therefore

by Lemma 4.4 02, there is a vertex v ev, v ~ B such that

v € n~-conv(B' b) b €; BJ. Clearly

v E [) ~-conv(A \ a) a ~ A}. Thus h" 3. To show

that h = 3, consider a subset S of V(r-) with Isl = 3 and

d-conv(S) = V. Let S = tVl'v2,v3] be such that

d(vl,v2) = n-l, d(v2,v3) = n-l and d(v3,vl) = 2 (we can

always find such a set of 3 vertices in r-). Thus d-lvl,v2],
d-[v2,v3] and d-lv3,vl) are all proper d-convex subsets of

V(r-) and they are all pairwise intersecting but·

d-[v2,v3) n d-[v3,vl] n d~[vl,v2] =~. Therefore h ) 2.

Therefore h = 3, if n > 2.

Before we look into the Caratheodory number, we

need a lemma.

Lemma 4.4.3.

Let A =[a1,a2, ••• ,aJ SV(r) De an independent

set with IAI ~ 4 and diam(A) F 0, then d-conv(A) F V.

Proof:

We prove the lemma using induction on the cardinality

of A.



Since A is independent, d-conv{A \ a.) is a proper d-convex
1

subset of V, for all a i €: A. Consider d-conv(A , a4).
d-conv(A ,a4) being a proper d-convex subset of V has

the Krein-Milman property by Corollary 4.2.5, and

EX(d-conv(A 'a4') = tl,a2,a3J ' since [a l,a2,a3j
is independent.

We have by Lemma 4.4.2. there exists a vertex

v e V, v 4 ~1,a2,a3} such that

v e d-[al'a2 ] Od-[a2,a3] f\ d-[a3,al]

Now consider d-conv(A).

We claim that v e d-[a4,a i], for all i=1,2,3,

for if v +d-[a4,a i], for some ai' say aI' then

d-[vl,a l] U d-[a l,a4] U d-[a4,vl] is a cycle in

d-conv tal,a2,a4] and hence

d-conv tal,a2,a4} = V, implies that a 3E:d-Conv{a l,a2,aJ

a contradiction to the assumption that {al,a2,a3,a~ is

independent. Therefore v E d-[a4,a i] for all i=1,2,3.
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Thus we have

for any x € d-conv tal,a2.a3}

d-[x, a41«;;d-[a i.a4] ~ d-conv(A), for some

a i Ea -la1 •a2 •a3J.
since d-[a i.a4] is a proper d-convex subset of V.

Therefore any point x E d-conv ~1,a2,a3J can be joined

by a unique path to the vertex a4, since diam(A) F n

and thus every two vertices in d-conv(A) can be joined

by a unique shortest path. Hence d-conv(A) does not

contain a cycle and d-conv(A) FV.

Induction:

If A = Lal' ••.•am}~V is an independent set with

IAI ~ 4 and diam(A) F n, then d-conv(A) FV.

To prove for A wi th jA J = rn+l

Let A = tal' ••• ,am' am+~C V be an independent set

with diam(A) ~ n.

To prove that d-conv(A) ~ v.

Suppose d-conv(A) = V.

We have d-conv ta l . a2 , ••• ,amJ FV. d-conv tal, ••• ,a~

has the Krein-Milman property by Corollary 4.2.5 and

EX(d-convtal'.··.am~) = tal,· •• ,am} • since [al, •••• am] is

independent.
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Therefore d-conv(A) = d-conv t.al' • • · , am+lJ = V, only

if there exists at least two ai,a j E:ta l ' ••• ,am}' such

that d-[am+l,a i] f) d-[am+l,a j ] = {is.

Therefore d-conv tai,aj,am+1) = V, which shows that

tal, ••• ,am+1) is dependent, a contradiction. Therefore

d-conv(A) ~ V, and the lemma follows by induction.

Corollary 4.4.4.

Let A = tal, ••• ,ar} ~ V be an independent set

and diarn(A) ~ n. If d-conv(A) = V, then IAJ = 3.

Proof:

By Lemma 4.4.3. we have IAI ~ 3.

That is IAI = 2 or IAI = 3. Since diam A F n, lA) F2,

for then d-conv(A) is a proper d-interval and cannot be V.

Therefore IAI = 3.

Now we have

Theorem 4.4.5 0

The Caratheodory number e, for the geodesic

convexi ty in r is 2, if n=2 and is 3 if n ~ 3.



Proof:

For n=2, the proof follows easily. For n ~ 3,

there are two cases.

Case (1):

Let Aq;V be any subset with IAI ~ 3 and d-conv(A) 1= v.

For case (i), by Corollary 4.2.5. d-conv(A) is the d-convex

hull of its extreme points.

Clearly we have

d-conv(A) = Ufd-[v.,v.]!v.,v. E EX(d-conv(A)~L 1 J 1 J ~

= Ufd-[ v. , v.] !v . , v. E: AJ, sinceL 1 J 1 J

every extreme point of d-conv(A) is a member of A. Hence

for case (i), the d-convex hull of any subset A of V can

be expressed as the union of d-convex hulls of two point

subsets of A.

Case (ii):

Let A ~ V be any subset with d-conv(A) = V and

diam(A) I: n ,

If diarn(A) = n, then by Theorem 4.2.3,

d-conv(A) = V = d-conv{a1,a2] , where a1,a2 E A

with d(a1,a2) = n, and hence we are done.
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For case (ii), by Corollary 4.4.4, there exists an

independent subset AI of A with lA' j = 3 such that

d-conv(A') = d-conv(A) = V and hence the theorem.

Theorem 4.4.6.

The Radon'number r, for the geodesic convexity

in r- is 3 if n=2, and is 4 if n ~ 3.

Proof:

The proof follows from Theorem 4.4.1, Lemma 4.4.2

and Theorem 4.4.5.

Note 4.4.7.

Note that diam(A) = diam (d-conv(A)) for all

A ~v(r), except for subsets A, which are of the type of

case (ii) of Theorem 4.4.5. and that it is shown in the

proof of Theorem 4.4.3 that the minimum cardinality of

such exceptional subsets is 3.

Next we shall find a bound of the generalized

Radon number Pm for the geodesic convexity in r. We

need a theorem of Jamison. See Jamison-Waldner ([27]).

If P is a point in an aligned space X, then a

copoint at P is a maximal convex subset of X, P. We
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shall say that X satisfies the copoint intersection

property CIP (m,k), if for each P in X, among any m

distinct copoints at P, there are k with empty inter­

section. We state the· theorem as

Remark 4.4.8. (Jamison-Waldner):

Suppose that an aligned space X satisfies CIP

(3,2), and has finite Helly number h. Then the

partition number Pm satisfy

( i ) Pm" 2m if h=2

(ii) Pm = (m-l)h+l if h ~ 3

In [27], it is proved that if G is a graph

theoretic tree with vertex set V, then the geodesic

alignment on V(G) satisfies CIP(3,2). Since the

geodesic alignment on a tree has helly number 2,

p ~ 2m, for the geodesic alignment on a graph theoreticm

tree.

Now we have

Theorem 4.4.9.

The generalized Radon number Pm' for the geodesic

alignment in r satisfies the inequality P , 3m-2.m
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Proof:

The proof is a successive application of

Remark 4.4.8. and Caratheodory's theorem (4~4.5).

Let A G V(r) be a subset wi th jA' ~ 3m-2. Vie will

show that A has a Radon m-partition. If d-conv(A) F V,

then the 5ubgraph induced by d-conv(A) is a 5ubtree of r­
by Theorem 4.2.3~ and hence A has a Radon m-partition

by Remark 4.4.8 J since 3m-2 ~ 2m if m ~ 2. Now if

d-conv(A) = V, then by Theorem 4.4.5, there exist a

subset Al of A with IA11 = 3 and d-conv(A1) = d-conv(A)=V.

Now B1 = A\ Al has cardina1ity ~ 3m-5. If d-conv(B1) 1= V,

then B1 has a Radon (m-I) partition if m ~ 3, by

Remark 4.4.8, since 3m-5 ~ 2(m-l) if m ~ 3, and hence

A has a Radon m-partition. If d-conv(B1) = V, then by

Theorem 4.4.5, there exisma subset A2 of B1 with JA21=3

and d-conv(A 2) = d-conv(B1) = V. Now B2 = B1, A2 has

cardina1ity ~ 3m-8. If d-conv(B2) F V, then by the

same argument,B2 has a Radon (m-2)-partition, if m ~ 4,

by Remark 4.4.8, and 81 has a Radon (m-I) partition,

and hence A has a Radon m-partition. If d-conv(B2)=V,
then again by Theorem 4.4.5, there exist A3 <.; 82 with

IA31 = 3 and d-conv(A 3) = d-conv(B2) = V. This procedure

continues, until we get a Radon (m-2) partition of A with

each partition class containing 3 members and the d-convex
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hull of each partition class being V. Thus we are

left with a subset B of A of cardinality greater

than or equal to 4 and by Radon's theorem (4.4.6) B

has a Radon partition and hence A has a Radon m­

partition. Thus Pm ~ 3m-2.

Remark 4.4.10.

If r is a generalized 3-gon, then it can be

shown that P = 3m-2.m

Consider a generalized 3-gon of order s. Take

5 sufficiently larger than m. (There exists generalized

3-gon5 of order s = pa, p prime, a e N, being finite

projective planes). Consider (m-I) distinct vertices

t1 , ~, ••• , i m- 1 of L and define a subset A of P with

cardinality 3(m-l) as follows.

A = A1U .•••.• UA l' where A.ls are disjointm- 1

subsets of P each with cardinallty 3 and such that li

is the common vertex adjacent to all the three vertices

of Ai' for i=I, ••. , m-I. Then IAI = 3(m-l) and it can

be shown easily that A has no Radon m-partition. If A

has a Radon m-partition, then there exist at least two

partition classes each with cardinality 2, say

B i ={Pi' Pi~ and Bj = [Pj,pj'J.
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Now,

d-conv(B.)
l.

d-conv(B.)
J

and l'

are the unique vertices of L adjacent with Pi

and Pi' and P j and Pj ' respectively. Thus

d-conv( Bi ) (\ d-conv( Bj ) = ~. Therefore A cannot have

a Radon m-partition, and thus Pm = 3m-2, for the

geodesic convexity in r, if r is a generalized 3-gon

of order 5 > m. A generalized polygon of order (s,t)

is called thick, if s>1 and t>l. We believe that if r­
is a thick generalized polygon, then P = 3m-2. Thism
is one of the problems, which we have attempted, but

could not answer completely.

4.5. ORDER AND GEODESIC ALIGNMENTS OF A CONNECTED

BIPARTITE GRAPH

In this section, we will show that the geodesic

alignment on the vertex set V of any finite connected

bipartite graph G is the join of order alignments with

respect to all possible canonical orderings on V.

Let G be any finite connected bipartite graph

with vertex set V. We can order V with respect to any
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vertex u, which give rise to a graded poset on V.

A graded poset V is a poset V with a height function

h:V --~ Z, such that

(1) if u ~ v, then h(u) ~ h(v)

(ii) if v covers u, then h(v) = h(u)+l, the

integer h(v) is called the height of v.

Let u be any vertex of G. For i=O,l, ••. diam(G)-l,

we direct the edges between Ni(u) and Ni+l(u) from Ni+l(u)

to Ni(u), where Ni(u) denotes the i t h level of u. That is,

Ni(u) =i..v €:V I d(u,v) =i}.

Define v ~u W, whenever there is a directed path

from w to v. With this ordering on V with respect to

the vertex u, gives a graded poset (V ~u ), of which

G is the digraph. The height function is hu(V)=d(u,v)

for v e V. That is hue v) = i, for any v e: Ni (u}, Since

G is connected, .we have u 'u v, for all v 6 V, and so

u is the universal lower bound of this poset. This

kind of ordering on the vertex set V of a finite

connected bipartite graph G has been considered by

MUlder in [33] • The ordering so constructed on V is

called the canonical ordering of G with respect to the

vertex u.
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We have a theorem of MUlder, we state it as

Remark 4.5.1. (Mulder)

A graph G is connected and bipartite if and only

if G is the digraph of a fini te graded .poset wi th a

universal lower bound.

Let E denote any canonical ordering of G, and let

DE denote the order alignment on V with respect to E,

where, as usual K~V is said to be order convex, if

[ x , y] = tz E; V Ix", z.(y or y~~x} C K, for every x, y E K.

Definition 4.5.2.

For any set X, if (L.) is a collection of
1 le I

alignments on X, then the smallest alignment R on X,

containing all L.'s is called the join of L. t S in the
1 1

lattice of all alignments on X, denoted by R= V L .•
i E. I 1

It is shown by Jamison in [25] that if R = V Lt'
i c I

then R(A) = fl Li(A) for all finite subsets A of X.
iEI

If this is true for all subsets of X, then R = V L
lE-I i

is called the strong join of Li's.
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Now we have

Theorem 4.5.3.

If t- denotes the geodesic alignment on the

vertex set V of a finite connected bipartite graph G,

then f- = \I tDE I E ~ Canonical orderings of GJ '

where DE denotes the order alignment on V with respect

to the canonical ordering E.

Proof:

Suppose K E:f-. Now every d-convex subset of V

induces a connected 5ubgraph of G. Therefore the sub­

graph induced by K of G is connected and bipartite,

since G is bipartite. Therefore by Remark 4.5.1.,

there exists an ordering on K which gives a graded poset

on K with a universal lower bound, say u. Since u c V,

there is a canonical ordering E on V, with u as the

universal lower bound. Clearly K is a sub poset of

the graded poset CV, -'u> and hence K E DE.

Therefore,

K E. VOE, thus i- c.VDE.

Conversely suppose

K E.V~EIE E: canonical orderings of eJ.
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That is K G DE' for all canonical orderings E of G.

Let K = Lul, ••• ,un}. Then K C;; DE ' for all i=l, ••• ,n,
u.

1

where DE denotes the canonical ordering on V, with u
iu

i

as the universal lower bound.

Now consider any two ui,u j e K and u ~ d-[Ui,u j ] .

We have ui -' u
i

U -'U
i

uj

That is U _ [ui,uj ] , the order interval with

respect to the canonical ordering E on V.u.
].

and [ Ui ' Uj] C K, sinceKe DE •
u.

1

Therefore d-[Ui,u j ] G K, for every ui,u j E K and hence K € f-

ThUS!- = \vf~EIE E canonical ordering of GJ

and hence the theorem.

Remark 4.5.4.

Several graphs are characterized using the convexity

structure on the vertex sets. For example chordal graphs,

ptolemaic graphs, block graphs, bridged graphs etc. See

([12], [13], [14], [15]).
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We believe that the following statement 'P' will hold,

although we do not have a complete proof; it trivially

holds for n=2 and for s=t=l.

P: A connected bipartite graph r with diam(r )=n

and vertex set V = PV L, in which every vertex of P

has degree t+l and every vertex of L has degree 5+1

(s~l, t~l) and having the property that every proper

d-convex subset of V has the Krein-Milman property,is

the bipartite graph corresponding to a generalized n-gon

of order (s,t).



Chapter-5

INTERSECTION CONVEX SETS AND d-CONVEX SETS IN Z2

~.l. INTRODUCTION

In this chapter, we will show that the d-convex

sets (dl-convex or d2-convex) in Zn are intersection

convex sets defined by Doignon, with special supporting

half lattices. We discuss mainly the case with n=2, and

finally an algorithm for computing the d2-convex hull of

a finite planar set in the discrete plane Z2 is given,

and the time complexity of the algorithm is computed.

We consider Zn as a crystallographic lattice defined by

Doignon. We need some preliminary definitions and theorems.

See Doignon [7].

Definition 5.1.1.

A lattice in Rn is the set ~~lniailni E Z~
where {al, ••. ,an) is any basis of Rn and R is the set of

real numbers. When we take the standard basis

t(O, ••• ,i,o, ••. ,O)li=l, for i=l,~, ••• ,n], we get the lattice

Zn.

Definition 5.1.2.

The lattice lines, lattice half lines and lattice

line segments are defined as the intersections of Zn with

90



the lines, half lines and line segments of Rn respectively,

intersecting Zn in at least two points. When n=2, the

slope of the lattice line 1 is defined as the slope of the

line in R2, whose intersection with Z2, will give the

1 ine Q •

Definition 5.1.3.

A subset of Zn is called intersection convex, if

it is the intersection of Zn with an ordinary convex subset

of a".

Definition 5.1.4.

A half space of Rn is any subset of Rn, whose

intersection with every line of Rn is either the empty

set, a half line or a line.

Definition 5.1.5.

The intersections of Zn with the half spaces of Rn

are called half lattices. Note that every half lattice of

Zn is intersection convex, since every half space of Rn is

ordinary convex.

Definition 5.106.

A half lattice H is said to support the intersection

convex set C of Zn, if it is minimal among all the half

lattices containing C. Points in H ne are said to be the

contact points of C wi th H, and H is .sa i.d to support C at

each contact point.



Detinition 5.1.7.

For any intersection convex set C of Zn, the

boundary of C is defined as the set bd CC) = z" n fr( conv Le))

where conv(C)denotes the ordinary convex hull of C in Rn

and rr l cony (CD denotes the bounda ry of conv(C) in a". We

call the boundary of a supporting half lattice H of an

inter~ection convex set et the supporting line of C at

the contact points of C with H.

Theorem 5.1.8.

Any intersection convex set of Zn is the inter­

section of half lattices of Zn and converselyo

The theorem states that every intersection convex

set is an intersection of supporting half latticeso

We need a few more definitions in the discrete
2 .

plane Z •

Definition 5.1090

Two points x=(xl'~2) and Y=(Yl'Y2) of Z2 are said

to lie in a horizontal set or in a vertical set, if Y1=Y2

or xl=x2 respectively. We call a lattice line 1 of Z2

an axial line, if it is a horizontal set or a vertical set.

Definition 5.1.10.

A lattice line i of Z2 is called a diagonal line,

if the slope of i is +1 or -1.
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Definition 5.1.11.

A half lattice H of Z2 is said to be an axial

half lattice or a diagonal half lattice, if the boundary

of H is an axial line or a diagonal line respectively.

5.2. INTERSECTION CONVEX SETS AND d-GONVEX SETS

Theorem 5.2.1.

If A is either a d1-convex set or a d2-convex

set of Zn, then A is an intersection convex set of Zn.

Proof:

Proof follows easily since A can be expressed

as

A = conv(A) (") z", where conv(A) denotes the ordinary

convex hull of A in Rn.

Note 5.2.2.

Note that a d3-convex subset of Zn need not be

intersection convex. For example, the set

A = ~o,o), (2,0), (0,2), (2,2~ C Z2 is d3-convex in Z2,

but A is not intersection convex, since any ordinary convex

subset containing A contains the points (1,0), (0,1), (1,1),

which does not belong to A.

Lemma 5.2.3.

A lattice line i of Z2 is dl-convex if and only

if ~ is axial.
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Proof:

1 is an axial line implies that 1 is d1-convex.

Conversely suppose 1 is a lattice line which is dl-convex,

but not axial. Then there exist two points x = (xl,x2),

Y = (Yl'Y2) in t with xl F Yl and x2 F Y2. Clearly the

points zl = (xl'Y2) and z2 = (Y1,x2) c dl-[x,y], but

zl z2 ~! , and hence the lemma.

Lemma 5.2.4.

A la t tice line 1 of Z2 is ~-convex, if and

only if l is diagonal.

Proof:

! is a diagonal line implies that Q is d2-convex.
Conversely suppose that 1 is a lattice line, which is

d2- conve x , but not diagonal. Then there exist points

x=(xl,x2), Y=(Yl'Y2) Et with Ixl-yll < !x2-Y2 1 and

d2 (x, y) > 2.

Consider the point Z = (zl,z2)' where zi=xi± 1.

(zi=xi+l if xi<Yi and zi=xi-l if Xi)Yi for i=1,2). Clearly

z e d2-[x,y] and x and z lie in a diagonal line. Since i

is not a diagonal line z ,,1 ,a contradiction, and hence

the lemma.
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Theorem 5.2.5.

A half lattice H of Z2 is dl-convex (respectively

d2-convex) if and only if H is an axial half lattice

(respectively a diagonal half lattice).

Proof:

H is dl-convex (respectively d2-convex) if and

only if the boundary of H is dl-convex (respectively d2­

convex). Therefore the theorem follows by Lemma 5.2.3 and

Lemma 5.2.4. Now we have the main theorem.

Theorem 5.2.6.

Every dl-convex set (respectively d2-convex set)

of Z2 is the int~rsection of axial half lattices (respectively

diagonal half lattices) and conversely.

Proof:

Intersection of axial half lattices (respectively

diagonal half lattices) in Z2 is dl-convex (respectively

d2-convex), since axial half lattices and diagonal half

La t t Lces are d1-convex and d2-convex respectively by

Theorem 5.2.5.

. ··2 iset "in z· s

Conversely, every d1-convex set and d 2- c o nve x

intersection convex by Theorem 5.2 01,

and using Theorem 5.108, they are the intersections of

supporting half lattices. Now the boundaries of the
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supporting half lattices must be d1-convex or d2-convex.
Therefore the supporting half lattices must be axial

respectively diagonal, if the set is d1-convex,

respectively d2-convex. Hence the theorem.

Note 5.2.7.

A hemispace of a convexity space is a convex

subset with a convex complement. In this situation, we

observe that the axial half lattices and diagonal half

lattices are the hemispaces of the dl-convexity and d2­
convexity in Z2 respectively, since they have convex

complements.

5.3. AN ALGORITHM FOR DETERMINING THE d2-CONVEX HULL
OF A FINITE PLANAR SET IN Z2.

Computation of the convex hull of a finite set

of points particularly in the plane is an interesting

problem in computational geometry. Preparata and

Shamos ([38]) have described various convex hull algorithms

in the plane and in higher dimensional spaces, its time

complexity, and other related computational problemso In

this section we describe an algorithm, which determines

the d2-convex hull of a finite set of points S in the

discrete plane Z2. The computation of the dl-convex hull
2of 5 in Z is very trivial, since it is the smallest rectangle

in Z2, containing S, with sides parallel to the co-ordinate

axes.
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Our algorithm is based on the fact that the

d2-conv(~ contains the intersection convex hull of 5

in Z2 and the supporting half lattices of d2-conv(5) are

diagonal half lattices (Theorem 5.2.6). We first

compute the intersection convex hull of 5 in Z2, using

the Gtaham Scan, described in [18], and add the necessary

points to get the d2- conv (S ) . The algorithm works in not

more than (n log n) + an + b operations where a and blog 2

are positive constants and n is the cardinality of S.

The algorithm we give determines which points of S are

the end vertices of d2-conv (5), which of course define

d2- conv (5). The a 19ori thm proceeds in four 5 t eps ,

step-I:

Find the intersection convex hull of S using

Graham Scan ([18]), and obtain a list of points S'

ordered by polar angle, which determines the extreme

points of the intersection convex hull of S. It has

been proved in [18], that step-l takes not more than

n log n + en
log 2

clearly r ~ n ,

operations. Let 5' =[xl, ••• ,xJ,
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Step-2:

In this step, we remove the d2-convexly dependent

points in S', because we have d2:"conV(S)=d2-conv(S') =d2-conv (T),

where T is an independent subset of 5' _ Start with 3

consecutive points in S', say Xi' Xi +1,X i +2- There are

two possibilities.

Then we delete Xi +1 from S', since it cannot be an independ­

ent point of SI, and return to the beginning of Step-2, with

the points Xi' Xi +l, Xi +2 replaced by Xi_I,Xi, Xi +2 (where

indices are reduced modulo r).

return to the beginning of Step-2 with the points Xi,X i +l,

Xi +2 replaced by Xi+l,Xi+2,Xi+3- Note that each application

of Step-2 either reduces by one the number of possible

dependent points of S' or increases by one the current

total number of points of S' considered_ By arguing

similarly as in Step-5 of Graham Scan, with less than Lr

iterations of Step-2, we must be left with a subset T of

d2-convexly ~ndependent points of 5'. The cardinality of T

is at most four because the rank of the d2-convexity

lcardinality of the maximal independent set) in Z2 is four.

Let T = {Xi' Xi +1, •• · ,X i +t}, where t ~ 4.



Step-3:

Add new points to obtain d2-conv (~. Since the

Caratheodory number for the d2-convexity in Z2 is 2,

every point in d2-conv(~ belongs to the d2-convex hull

of a subset of T of cardinality two. So we add points

corresponding to two consecutive points in T. Start with

two consecutive points Xi' Xi + l in T. Let t be the

lattice line joining Xi and Xi +1• There are two possibilit-

ies.

I. I f the slope of 1. is +1 or -1, then no point

is to be added, because in this case I is the boundary

of a supporting diagonal half lattice of d2-conv~.

Return to the beginning of Step-3 with the points Xi,X i +1

replaced by Xi +1, Xi +2• 514.. 17:5
'

,2 . 8 17
r'/\ A, N

11. If the slope of 1 is different from +1 and -1,

then proceed as follows:

Let = x.+k
1

and

(i) If k > hand k-h is even, then add two points
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lii) If k > hand k-h is odd, then

(a) if IkJ > Ihl, add four points

(b) if Ikj < IhJ, then add 4 points

(iii) If h > k and h-k is even, then add two points

(iv) If h>k and h-k is odd, then

(c) if Ihl > Ikl, add four points
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(d) if 'hI < Ik', then add four points,

Return to the beginning of Step-3 with Xi,X i + 1 replaced

by Xi +1, Xi +2• Since there are at most four points in T,

Step-3 requires the addition of at most sixteen new points

and hence reqtlires less than a constant number say Cl

operations. Let T' be the new set obtained. Clearly IT'I' 20.

Step-4:

Since the new set T' may contain interior points

d2-conv~),we need to find the intersection convex hull of

r' to obtain d2-conv (5). So Step-4 is to determine the

intersection convex hull of T' as in Step-I. By the end

of Step-4, we are left with the end vertices of d2-conv(S).

Since T' contain at most twenty points, step-4

requires at most 20 log 20 + c 20 - c operations.log 2 · - 2

Therefore the time complexity of the algorithm is

n log ~ + en + 2r + c +c where ~nlog 1 2' .L~

= n 126 n + an + b, where a and b are positive constants.
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Computer implementation of this algorithm makes it

qui~e feasible to consider examples with large n.

Say n = 50000. We give some examples to illustrate

this algorithm in the following pages. rn represents

the data point and m represents the end vertex of

the d2-convex hull.
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CONCLUDING REMARKS

Kay and Chartrand ([28]) defined a metric space

(M,d) as a graph metric space, if there exists a connected

graph G, whose vertex set can be put in one to one corres-

pondence with the points of M in such a way that the

distance between every two points of M is equal to the

distance between the corresponding vertices of G. In that
222case the metric spaces (Z ,dl), (Z ,d2), (Z ,d3) are graph

metric spaces.

In this thesis, we have studied mainly the d-convexity

in these graph metric spaces. But we can easily show that

the minimal path convexity (m-convexity) in all these graphs

(graphs corresponding to the graph metric spaces (Z2,d l),
(Z2,d2) and (Z2,d3 » is the trivial convexity consisting

of the whole vertex set and 0. We proved that the m-convexity

in the bipartite graph r- corresponding to a generalized n-gon

is the trivial convexity. Thus in all the situations, where

the d-convexity have been discussed the m-convexity is found

to be the trivial convexity.

Hebbare ([23]) called the graphs, which have only the

trivial d-convex sets as distance convex simple graphs.

Similarly, we call the graphs, which have only the trivial

m-convex sets, the m-convex simple graphs. Thus all the
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graphs which we have discussed in this thesis are m-convex

simple graphs.

Another thing that we want to mention is about the

Eckhoff's conjecture. For all the convexities that we

have discussed in this thesis and for which the Tverberg

type Radon number Pm or its bound has been computed, the

Eckhoff's conjecture hold.

That is, P ~ (m-l)(r-l)+l, where r is the Radon number.m
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