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Chapter-1
INTRODUCTION

1.1 HELLY'S THEOREM AND AXIOMATIC CONVEXITY

The applicability and the intuitive appeal of the
notion of convexity have led to a wide range of notions
of " Generalized Convekity ", For several of them,
theorems related to Helly's, were either a motive or a
by-product of the investigation. Helly's theorem, which
was first published by Johan Radon in 1921 and later in
1925 by Helly himself states that "each family of convex
sets in Rd, which is finite or whose members are compact,
has a nonempty intersection, provided each subfamily of
at most d+1 sets has nonempty intersection? The formula-
tion of Helly's theorem can be found in the famous paper
of L. Danzer, B. Grunbaum and V. Klee [6], called 'Helly's
theorem and its Relatives". Restricting Helly's theorem
to finite families of convex sets, it is clear that the
theorem is formulated completely in terms of convex sets,

their intersections and the dimension d of the underlying

space.

A convex set can be defined as the intersection of
large basic convex sets (For example, half spaces in

vector spaces) or by the property of being closed with



i,

respect to a certain family of finitary operators
(For example, n-ary operators of the form

n
(xl,x2, ceey X ) > 'Z J\i Xy in Rd, where

i=1
the }\i's are non-negative and sum to 1). This remark

leads to the following definition.

A set X, together with a collection 4 of
distinguished subsets of X, called convex sets, forms
a convexity space or aligned space, if the following

axioms are satisfied:

Cy: g=6 , X6
02: ¥ 1is closed under arbitrary intersections
03: © 1is closed for the unions of totally ordered

subcollections., € is called an alignment or convexity on X.
The convex hull of a set S in X (the smallest convex set
containing S) is defined as conv(S) = []{Aeﬁ s = A} .
Those families of sets which satisfy Cl and C2 are known

as Moore families or closure systems. The axioms Cl and C2
were first used by F.W. Levi [31] in 1951 and later on by
Eckhoff [10], Jamison [24], Kay and Wamble [29] and
Sierksma [43]. The term "alignment" is due to Jamison [24].

Hammer [21] has shown that for Moore families the axiom Cy



is equivalent to the " domain finiteness" condition
which states that for each S & X, conv(S)= L){;onv(T)I
T¢S, |[T| <~} . ( |T| denotes the cardinality of T).
Alternative terminologies for convexity spaces are
*algebraic closure systems" ([5]) and "domain finite
convexity spaces'" ([10], [21], [29], [43]-[45]). As
mentioned earlier, the axiomatization of convexity is
motivated by the fact that most combinatorial properties
of ordinary convex sets in Rd like Helly, Radon and
Caratheodory theorems can be studied in the general

context of convexity spaces.

l. Helly property

A convexity space (X,0% ) has the Helly property Hy»
if a finite family of convex sets of X has an empty inter-
section, then this family contains at most k members with
an empty intersection. The Helly number of (X, &) is
the smallest integer k, such that Hk holds. Helly's
theorem states that the Helly number for the ordinary
convexity in Rd is d+1. For further examples, see

Danzer [6], Jamison [25] and Sierksma [45].



2. Partition property

Closely related to Helly's theorem is the classical
theorem of Radon published in 1921. The theorem states
that each set of d+2 or more points in Rd can be expressed
as the union of two disjoint sets, whose convex hulls have
a common point. See Danzer et al. ([6]). Radon's theorem
was generalized in 1966 by H.Tverberd[50]). Instead of
2-partitions, he has investigated arbitrary m partitions.
The theorem states that each set S in Rd with
S| 5 (m=1)(d+1)+1 can be partitioned into m pairwise

disjoint sets with intersecting convex hulls.

Thus, we have, that the convexity space (X, ) has

i) is a family of n=|I|
iel
points, there exists a partition of I into k parts

Partition property P, , if (p
b

I I «++y I, such that

1 =27 k

1\<?<<k conv( {Pilié Ij} ) £ 4@.

Tverberg's theorem states that the ordinary convexity in Rd

has property (P ) and for k=2, we get Radon's

k?(k-1){d+1)+1
theorem. An important problem related to Radon partitions
posed by Eckhoff in analogy with Tverberg's theorem is the

following:



Eckhoff's conjecture

Suppose an aligned space (X,% ) has Radon number r.
Does the partition inequality P < (m=1)(r-1)+1 always
hold? Jamison [27] has shown that the partition
conjecture holds for order convexities, tree-like

convexities etc.

3. Caratheodory property

The classical theorem of Caratheodory, states that,
when A Q;Rd, each point of conv A is a convex combination
of d+1 or fewer points of A. The theorem of Caratheodory
was published in 1907. See Danzer [6]. A convexity space
(x, &) has the Caratheodory property Cp» if x & conv(A),
then x & conv(F), for some F<A, with |F[ £ k, for any
A=X. The Caratheodory number of (X,$ ) is.the smallest
number such that C, holds. Ordinary convexity in R% has

Caratheodory number d+l (Caratheodory theorem).

1,2, INTERVAL CONVEXITIES

An interval I on a set X is a mapping I: X x X ———)ZX.
The I-closed subsets of X are subsets C&X such that
I(x,y) = C, for every X,y & C. The collection lil of

I-closed subsets satisfies the axioms Cl’C2’C3 of convexity



spaces. The axiom C3 is a consequence of the finitary

property of convex hulls and the fact that, for a subset

A of X, conv(A) = U 1K(A), where IK(A) is defined as
ke N

1°(A) = A and 1¥1(a) = 1(1%(a) x 1¥(A)). The function I

is called an interval-function of the convexity space (X, CI)'
Convexity spaces admitting an interval function are named
Interval Convexity Spaces, see Calder([4]). Most of the usual
convexities are interval convexities. For example,

ordinary convexity in Rd, metric convexity (d-convexity)

in metric spaces, order convexity in partially ordered sets and

geodesic convexity and minimal path convexity in graphs,

Metric convexity

The concept of convexity in metric spaces was introduced
by Menger. It is the interval convexity generated by the
metric interval d-[x,y] =w{z e;XId(x,z)+d(z,y)=d(x,y)J’,
for points x,y in the metric space (X,d). For various
geometric developments involving Menger's and other closely
related notions of metric convexity, see Blumenthal ([2])

and Buseman ([ 3 ]).



Order convexity

The usual order convexity in a partially ordered
set (P, € ) is the interval convexity generated by the
usual order interval [x,y] = {gezP]x<z<y or y{z(x} ,
for points x,y & P. Order convexity generated by the
order interval function has been studied by Franklin ([17])

in 1962. See also Jamison-Waldner ([27]), Jamison ([25)].

1.3 GRAPH CONVEXITIES AND CONVEX GEOMETRIES

Convexity in Graphs

The first explicit use of convexity in graphs has
been made perhaps by Feldman and Hogassen. Most of their
results deal with geodesic convexity. A more general point
of view appeared in Sekanina ([42]) in 1975 and Miilder ([33])

in 1980. A systematic approach arises in Farber-Jamison ([15]).

A graph convexity ( Diichet) is a pair (G, &) formed
with a connected graph G with vertex set V and a convexity &
on V such that (v, ) is a convexity space, satisfying the

additional axiom,

GC: Every convex subset of V induces a connected subgraph.

See ([9]).



In the study of convexity in graphs, two types
of convexity have played a prominent role, namely the
" minimal path convexity or monophonical convexity and

geodesic convexity or d-convexity''.

Minimal path convexity

The minimal path convexity in a connected graph G
is the interval convexity in V(G), generated by the
minimal path interval m-{x,y], where m-[x,y] is the set
of all vertices of all chordless pathsfrom the vertex x
to the vertex y in G, and a chord of a path in G is an
edge joining two nonconsecutive vertices in the path,

See Jamison ([25]) and Diichet ([9]).

Geodesic convexity

Let d-[x,y] denote the set of all vertices of all
shortest paths between the vertices x and y in G. The
convexity generated by the interval function d-[x,y] is
called the geodesic convexity or distance convexity in G.
The d-convexity is the metric convexity associated with

the usual distance function d(x,y) in G.

Early researches on d-convexity in graphs were

motivated by an important problem posed by Ore in 1962,



which is the following: " Characterize the geodetic
graphs: that is, graphs in which every pair of vertices

is joined by a unique shortest path ",

Graphs with only the trivial geodesic subgraphs
have been called distance convex simple graphs by Hebbare
and others. See Hebbare ([23]), Batten ([1]). Unlike
m—-convexity, the geodesic convexity is very general and
has been intensively studied since 1981. See Jamison ([25]),

Soltan ([49]) and Farber ([13]).

Convex geometries

Convex geometries were introduced independently by
Edelman and Jamison in 1980. They are finite convexity
spaces in which the finite Krein-Milman property holds.
That is every convex set is the convex hull of its extreme
points. There are numerous equivalent ways of defining

a convex geometry. See Edelman-Jamison ([12]).
We have the following characterizations of graphs.

(i) The m-convexity in a graph G is a convex geometry
if and only if G is chordal. A chordal graph is one in

which every cycle of length at least four has a chord.
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(ii) The geodesic convexity in G is a convex geometry if
and only if G is a disjoint union of Ptolemaic graphs.

G is a Ptolemaic graph, if for every four vertices x,y,z,w
in G, the Ptolemaic inequality

d(x,y) d(z,y) € d(x,z) d(y,w) + d(x,w) d(z,y) holds. See
Farber-Jamison ([14], [15]). Major references on the
abstract theory of convexity are Jamison ([24], [25]),
Sierksma ([45]) and Soltan ([46]). A recent survey of

various convexities in discrete structures is in Diichet ([8]).

l.4. DIGITAL AND COMPUTATIONAL CONVEXITIES

The growing field of computer science has also seen
the emergence of studies dealing with convexity. This began
in the early 1960's, when Freeman ([56]) investigated the
representation of straight line segments on a digital grid
and Bilanski ([54]), gave an algorithm for determining the
vertices of a convex polyhedron. Convexity can be discussed
in computer science from the following view:

(1) Digital Geometry, and (2) Computational Geometry.

1, Digital geometry

To generalize convexity and related notions such as
straight line segments to the geometry of digital grids,

and analyse their properties, in this framework.



Convexity in the two dimensional digital images has been

studied by several authors in particular Kim ([57]),

Kim and Rosenfeld ([58]) and Ronse ([59]). In contrast

with Euclidean images, several non equivalent definitions

can be given for digital images. The rectangular grid

of two dimensions can be viewed as the set 22, where Z

is the set of integers, so that pixels can be represented

by integer co-ordinates. The basic notions of k-adjacency,

k-connected paths, k-connectedness (k=4 or 8) in the

geometry of rectangular digital grids can be realized

in 22 with the integer valued metrics (graph metrics),

denoted as d, (for k=4) and d, (for k=8), defined as

dl(x,y) = le-yll + lx2-y2| and d,(x,y)= max(lxl-yl|,|x2—y2|),

for x = (Xl’x2) and y = (yl,yz) in Z°.
We can view a k-connected path in the rectangular

grid as a path in the graph metric space (ZQ,d), where d

is dl or d2, according as k=4 or k=8 respectively. Thus

the distance geometry in 22, generated by the integer

valued metrics dl and d2 is closely related to the geometry

of the digital rectangular grid of two-dimension. This

is the motivation of our study of the d,-convexity and

1

d2-convexity in the integer lattice.
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2, Computational Geometry

One wants to evaluate the computational complexity
of various operations related to convex sets, and to find
optimal computer algorithms for them. Important problems
are the determination of the convex hull, that of vertices,
faces, volume or diameter of convex bodies, intersection of
convex polyhedra, extremal distance between convex polyhedra

and maximal convex subsets of non-convex sets.

The first computational question relating to convexity
is the design of algorithms, for finding the convex hull of
a set of points. The digital convex hull is dealt with in
Yau ([62]). A related problem is the determination of the
computational complexity of the construction of the convex
hull of a set of points. A bibliography on digital and
computational convexity is seen in ([61]). See Preperata-
Shamos ([38]}), for recent developments in computational

geometry.

1.5 PRELIMINARIES

Let (X,Y¥) be any convexity space. That is, % is a
collection of subsets of the set X, such that (i) g,Xxe 8 ,

(ii) & 1is closed under arbitrary intersections,
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(iii) § is closed for the unions of totally ordered
subcollactions. & is called an alignment or convexity

on X. The convex hull of a set A in X is defined as

conv(A) =ﬂ{B€Co | A_C_B}.

Definition l.5.1.

The Caratheodory number of a convexity space (X, %)

is defined as the smallest nonnegative integer 'c¢', such

that

conv(A) = U{conv(.B)lB S A and |B| ¢ c}, for all A C X.

Definition 1.5.2.

The Helly number h of (X, () is defined to be the
infimum of all nonnegative integers k, such that the
intersection of any finite collection of convex sets is
nonempty, .provided the intersection of each subcollection

of at most k elements is nonempty. Or equivalently,

Definition 1.5.3.

A convexity space (X, & ) has the Helly number h,
if h is the smallest nonnegative integer such that A€ X
and |A]| = h+l = ﬂ{conv(A\a)laé A} # @, for all AcCX,

where A\ a denotes A \{a} .



Definition 1l.5.4.

A convexity space (X, ¥ ) has the Radon number r,
if r is the infimum of all positive integers k, with the
property that, each set A in X with |A| ) k, admits a
partition A = AjU A, with Alf\A2 = @ and such that
conv(Al)(W conv(A2) £ @. Such a partition is called a

Radon partition of A.

Definition 1.5.5.

The generalized Radon number or Tverberg type Radon
number Pm of a convexity space (X,lﬁ) is defined as the
infimum of all positive integers k, with the property that,
each set A in X with |A| ) k admits an m-partition
A = AlUt-....A)Am, into pairwise disjointsets:Ai such that
conv(Al)(W conv(AQ)(\w...--(\conv(Am)'# @. Such an m-

partition of A is called a Radon m-partition of A. Ve

need the theorem of Levi.

Theorem 1.5.6. {(Levi)

Let (X, & ) be a convexity space. If the Radon
number r of (X, % ) exists, then the Helly number h exists,

and h & r-l.
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Theorem 1.5.7. (Eckhoff and Jamison)
Let (X, ) be a convexity space with Caratheodory
number ¢ and Helly number h., Then the Radon number r of

(X, ) exists, and r§ c(h-1)+2.

Definition 1.5.8.
Let (X,% ) be a convexity space. A subset B of X
is said to be(convexly)independent if b € conv(B\ b), for

each b e B.

Definition 1.5.9.

The rank of a convexity space (X, ) is defined as
the supremum of the cardinalities of the independent sets.
It is noted that the rank of a convexity space (X, &) is
an upper bound for both the Helly number h and the

Caratheodory number c.

N ={},2,3, ....} is the set of natural numbers and
Z denotes the set of integers. The graph theoretic terminology
used in this thesis are as in Harary ([22}). We use induction

in some of the proofs.
1,6. AN OVERVIEW OF THE MAIN RESULTS OF THIS THESIS

A rather active area in modern convexity theory is concerned
with the computation of several "invariants" in general convexi-
ties. This thesis contributes mainly to this in some interval
convexities, where the underlying set is a discrete set. The
"invariants" that we discuss in this thesis are the

Caratheodory, Helly, Radon and Tverberg type Radon numbers.
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In chapter 2, we consider 7" as a model. Metric
convexity (d-convexity), with respect to the integer
valued metrics d,,d,,d5 are defined. For x=(xl,...,xn),

n . .
y=(yl,...,yn)e§ Z", the metrics d;,d, and dj are defined

=5 |y ok, )= max  [x,-y, |

respectively as dl(x,y) =
i 1€ign

1

13
p—

and d3(x,y)= the number of co-ordinates in which x and y differ.

The order convexity is defined with respect to the partial
order x&y if and only if xi\<yi for all i, It is shown

that every dl—convex set is both order convex and d3—convex.
Also it is obtained that there is no finite Helly and Radon
numbers for the order convexity and d3-convexity. The
d,-convex sets has Caratheodory number 'n' and Helly

number 2. Using Jamison-Eckhoff theorem, it is shown

that the Radon number 'r' of the dl-convexity attains

the bound n+2, for n=2 and n=3. For d2-convexity,the

rank is found to be 2n, and the Helly number equals
the rank. The Radon number for dz—convexity is found to

be 2"+1 and the Caratheodey number is on-1, Tverberg

type Radon number is also obtained for d2-convexity.

For d3-convexity the Caratheodory number is n.
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In chapter 3, we extend the definitions of order
convexity and d-convexity in Z" to the infinite dimensional
sequential space Z~. The d-intervals are defined using the
d-intervals in the finite dimensional submodules of Z~. The
analogous results of Caratheodory, Helly and Radon type

. - - 3 oo
numbers are obtained for these convexities in Z .

Chapter 4 deals with the geodesic convexity in the
finite geometric structure known as " Generalized Polygons™",
considering it as a bipartite graph‘“ . The geodesic
convexity in T is not exactly a convex geometry but finite
Krein-Milman property holds for every proper d-convex subset
of I . It is shown that a d-convex subset K of { has the
Krein-Milman property if and only if diam(K) < n. Various
center concepts, such as center, centroid and distance
centre in U are studied. Finally, the Helly, Radon and
Caratheodory type theorems for the geodesic convexity are
obtained. It is shown that the m-convexity in U is the
trivial convexity, consisting of the null set @ and whole
vertex set V of ' ., 1In the last section of this chapter (4.5),
we discuss an interesting result, which holds for any finite
connected bipartite graph G. We order the vertices of G
called the "the canonical ordering of G", as given by Milder,
and show that the "geodesic alignment" on G is the join of
order alignments, with respect to all possible canonical

orderings of G.
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In chapter 5, our discussion is mainly in the
discrete plane 22. Using the concept of hemispaces,
it is shown that an intersection convex set A of Z2
(an intersection convex set of Z" is defined by Doignon
as the intersection of a convex set in R™ with Zn) is
dl—convex if and only if the supporting lines of A are
parallel to the co-ordinate axes and A is d2-convex
if and only if the supporting lines of A have slope + 1.
Finally, a computational problem is dealt with. An
algorithm for computing the d2—convex hull of a finite

set of points in 22 is given and also the complexity of

the algorithm is computed.



Chapter-2

ORDER_AND METRIC CONVEXITIES IN z" ¥

2,1 INTRODUCTION
We consider the n-dimensional integer lattice
2" = {(ml,mz, oeny mn) | m; & Z}. In this chapter we

discuss the order convexity and metric convexity with
respect to three integer valued metrics dl’d2 and d3.
The theory discussed here may work well in any discrete
set, isometric to zZ". In particular

m

n m Mo n
H' = {(q X129 Q@ Xpsr ccey q xn) ! mié Z}’ q € (0,1)

is fixed and (xl,xz,...,xn) is fixed in R". 1In [52],

Vijayakumar has defined D-convex sets for the discrete

m m
plane <{(q X1» 9q Xo5) | m,my, & Z {, q <= (0,1) is fixed,

and studied concepts like the D-convex hull and D-convex
domain, The dl-convex sets that we define are generalizations

of D-convex sets. If x = (xl,xz,...,xn) and

n
Y = (Y]sYps+--sy,) & 27, then d,(x,y) = iillxi-yil,

d~r(x,y) = max |x.=y.| and d,(x,y) = the number of
AR . i’i 3
IKig¢n

co-ordinates in which x and y differ,are three integer

valued metrics in AN partial order relation ' ' in z"

* Some of the results in Sections 2.2 and 2.3 are to
appear in Compo. Math.

19
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can be defined as (xl,x2,...,xn) < (Yl’YQ""’yn) if and

only if X RS Yy for all i=1,2,...,n. We note that dl-
convex sets are boxes with sides parallel to the co-ordinate
axes. The box alignment has been studied by many authors.

See Eckhoff ([11]), Jamison and Waldner ([27]), Sierksma ([44]),

Reay ([39]).

Definition 2.1.1.

A point z € 2" is said to be order between X,y € z"
if x 2z vyory<g€ z<¢ x. The set of all points order
between x and y is denoted by [x,y]. Conventionally

[x,vy] =@, if x and y are not comparable.

Definition 2.1.2.

A point z e z" is said to be metrically between
x,y e zZ", if d(x,z) + d(z,y) = d(x,y), where 'd' is a
metric in Z". The set of all metrically between points
of x and y is denoted by d-[x,y] and is called the metric

interval or d-interval determined by x and vy.

Definition 2.1.3.

A< z" is said to be order convex, if [x,y] = A,

for each pair of points x and y &€ A.



Definition 2.1.4.

A c=z" is said to be metrically convex or d-convex,
if the metric interval d=[x,y] = A, for each pair of

points x,ye A.

Definition 2.1,5.

The order (metric) convex hull of a set A is the
intersection of all order {(metric) convex sets containing A.
The order (metric) convex hull of a set A is denoted by

order conv(A) (d=-conv(A)) and is order convex (metric convex).

2.2. ORDER CONVEXITY AND d,-CONVEXITY

1
Lemma 2.2.1.

For any two points x,y e Zn,

dl-[x,y] = {z = (21s20500-52) é..anzi is order between x, and y,.

for every i = l,...,n-}.

Proof:

A= dl-[x,y]<::)dl(x,z) + dl(z,y) = dl(XyY)

lzi'yil =

.

1

n
¢=%>_2 [xi-z.l +
1=

1 1 i=1

W3
hes

llxi_yi‘

é;:?}Xi-Zil + izi‘yii = !Xi_yi{’

for every i = 1,...,n.
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for if not, there exists j ea{l,...,n} such that
‘Xj'zjl + ’Zj”le > lxj"le

and thus

n n : .
I xg-z] o+ iillzi-yil = I Ixgmzil + L z5-ysl

5
i=1 i#] i#]

+ § Ixj"zjl + } Izj‘le

>i£llxi-yi[, since

lxj-zj|+lzj-le > Ixj‘le’
which is a contradiction. Therefore
}xi—zil + ]zi-yil = Ixi-yil, for every i=l,...,n

4::)21 is order-between x; and y; , for every i=l,...,n

and hence the lemma.

Lemma 2.2.2.

If x<$ vy, then [x,y] = dl-[x,y].

Proof follows from Lemma 2.,2.1.

Note 2.2.3.
It follows from lemma 2.2,2 that every dl—convex set

is order convex. But the converse is not true, for example
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A = {(1,0), (O,lﬁ c 22 is trivially order convex,

but not dl-convex.

Lemma 2.2.4.

If AcZ"™ is finite, then

inf A and
sup A.

dl-conv(A) = dl-[u,v], where u
v

Proof:
We have u ¢ a € v, for all a € A,
Therefore A < [u,v] = dl—[u,v}, by lemma 2.2.2. Also

d,-conv(A) < d;~[u,v], since dl—[u,v] is d,-convex.
Since A is finite both u and v belong to dl-conv(A).
Therefore dl~conv(A) = dl—[u,v].

In |17], Franklin has proved that the Caratheoddry
number for order convexity in any poset is 2.,
We have
Theorem 2.2.5.

The Caratheodory number for dl-convexity in Z" is n,
if n ) 2.
Proof:

We have for any A 2",

d)-conv(A) = L}{?l-conv(B)UBQA and |B] < g}.
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By lemma 2.2.4, if |B| < «, then d,-conv(B) = d,-[u,v],
where u = inf B and v = sup B. Also if |B| ¢ =, u is
the infimum of at most n elements of B and v is the

supremum of at most n elements of B.

Let u

inf {él""’an | a; e.B.}and

V = sup {Pl""’bn I biés 3}

I

Note that a; and bi need not be distinct for all i=l,...,n.

Therefore, we have dl-conv(B) = d,~-conv {?l,...,an, bl,...,bn}.

We shall now show that any point z &€ dl-conv(B) belongs to

the dl-convex hull of at most n points among Apsesesdy

bl"“’bn° Let z = (zl,22,...,zn). We select the n points

al',..., an', aMONG 8y,85y 00 +,8 bl""’bn as follows.

n’

a.' is chosen such that the ith

i co-ordinate of ai' is at

most Zg for all 1 =1,...,n.

h

If the jt co-ordinate of ai' is at most zj,izl,...,n,

i #j, then we delete aj‘ and replace it with one among

81reseyd bl""’bn’ whose jth co-ordinate is greater than

n’

or equal to z The points al’,...,an' selected in this way

jb
satisfies the inequality u'  z £ v', where

u' = inf {al',...,an‘} and v!' = sup {?l',...,an'}and

z & dl-[u',v'] = d,~conv {al',....,an'} and hence the theorem.
We note that this theorem can be obtained as a particular

case of a product theorem due to Sierksma ([44]).
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We shall now prove the Helly-type theorem for dl-

convexity. We begin with a lemma.

Lemma 2.2.6.

1t F = &81,82,83} is a family of three nonempty
dl—convex sets in Zn, such that any two members of‘F have
3 .

nonempty intersection, then M B; £ .
i=1

Proof:
Let x € Blﬂ Byy YE 82ﬁ83 and z € B3F\Bl, If
one of x,y,z belongs to the dl-convex hull of the remaining

two, then we are done. If not, then there are three different

cases.,

Case (i):

One of x,y,z, say x is comparable with y and z, and

y and z are not comparable. Take xy and x{z.

Case (ii):
Only one pair say x and y are comparable, Take x  v.
Case (iii):

None of x,y,z 1s comparable with each other,

(case (iii) happens only if n> 2.)
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We will show that in all these cases,

there exists

a point p, which belongs to all the three dl—intervals

dl—[x,z], dl-[y,z] and dl—[z,x].

Let x =

zZ = (Zl,...,Zn).

Case (1i):

We have xi_4 Vi

(xl’””xn)’ Y = (YlQYQy-~°'Yn) and

and X5 < z5 for all i=l,...,n,

and there exists j such that Z; < Y5 and y; € z; for i £ 3.

Thus we have

Then p = (%,...,yi, R

Case (ii):

e X.
Her X4

Xi<yi\<zi i# ]

xj Sz, €Y

J J

KS Yi for all 1 = 1,...,n and there exists

at least two co-ordinates, with subscripts j and k such

that

and

Then p = (...

%, €y,
23 S X3 S ¥y

X <7 <Yy

xi S y; €z, 1E3#K

< z

,xj,....,zk,,..,yi,....,yn).



Case (iii):

Here there exists i,j,k,4 such that

x; € vy €2y i AGAKAL

Yy < Xy < zZy
Here p = (%.,...,yi, S Y ,...,yn)
3
Thus in all these three cases p ei_r\ Bi’ and hence the

i=1
lemma,

Theorem 2.2.7.

The Helly number h for the dl—convexity in zZ" is 2.

Proof:
We use induction to prove the theorem. Leth'=-{Bl,...,BK}
be a family of k nonempty dl—convex sets in Zn, with k 3, 2
and every two members ofﬁ: has nonempty intersection. For
k=2, conclusion trivially holds and for k=3 it follows

from lemma 2.2.6.

Assuming the result for k=m, to prove for k=m+l, let

F - {Bl,. .. ,Bm+l}.
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Define B,'=B.N B for i=l,...,m. Then B,' # Z and

m+l’
{Bl',...,Bm(} is a family of m nonempty dl—convex sets

satisfying the induction hypothesis, by lemma 2.2.6.
m m+1

Therefore ()} B;' #¢. That is ) B, # @, which
i=1 i=1

completes the proof by induction. We note that the Helly
number h for the dl-convexity in z" can also be obtained

from the following facts. See [30], [44], [47].

The d,-convexity in Z 1s the same as the order convexity

1
in Z with respect to the usual order and the Helly number for
the usual order convexity in Z is 2. The dl—convexity in Z"
is the product convexity of n copies of dl-convexity in Z,
and the Helly number of a product convexity is the maximum

of the Helly numbers of the factors. Hence h=2, for the

dl—convexity in Z".

Note 2.2.8.
For the dl—convexity in Zn, we have r¥n+2, using
Theorem 1.,5.7. We will show that r attains the bound n+2,

for n=2 and n=3.

Theorem 2,2.9.
The Radon number r for the dl—convexity in z" is 4

if n=2 and is 5, if n=3.

Proof:
We will show that there are sets with cardinality 3
and 4, which have no Radon partition when n=2 and n=3

respectively. Consider the sets
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2
A ={a§(al,a2), b:(bl,bQ), c=(cl,c2)}§3.2 , Where

al<bl<cl and a2<c2(b2 and

3
B ={a=(al,a2,a3), b=(bl,b2,b3), C=(Cl,029c3)1 d=(dlad2’d3?}fgz

where al<bl<cl<dl’ a2<c2<d2<b2 and a3<d3<b3<c3

Now the sets A and B have cardinalities 3 and 4 resbectively
and it can be shown that they have no Radon partitions.
Therefore for the dl—convexity in Zn, r=4 and r=5, when n=2
and n=3 respectively.

The following example illustrates that the family
of order convex sets in Zn(n)Z) has an infinite Helly and Radon

number.

Example 2.2.10.

Suppose that there exists finite Helly number 'h' and
Radon number 'r' for the order convexity in z". Consider the seé
A ={'(x,y,0,...,0), (x—l,y+l,0,...,O),...,(x-h,y+h,0,...,O-)} c 7",
Then |A|l=h+l and A is trivially order convex. Now consider

subsets of A defined as

A0

A\ (X,Y,O,...,O), Al '= A\(X“l,y+l,o,...,0),..o

Ah =

AN\ (x=h,y+h,0,...,0).
Then.{Ao,Al,...,Ah}is a family of h+l order convex sets, such that

every .h. members of the family have nonempty intersection,

h

but ) Ay = @, which is a contradiction to the assumption
i=p

that h is the Helly number.
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Since h § r-1, by theorem 1.5.6, for any convexity
it follows that the order convexity in z% has no finite

Radon number also.

2.3. d,~CONVEXITY

In this section, we discuss d2-convexity in z" where

ds is the metric defined by

dy(x,y) = Tii(n |xi-yi], for x=(xl,...,xn), ]
R y=(Y1’°‘°’yn) € Z

In the following discussion, by independent sets, we mean

d2—convexly independent sets,

Lemma 2.3.1.

Let AS 2" be a set with r=2" independent points.

Let n,: 2" — Z, denote the projection to the jth

J
Then for each x€ A and j=l1,...,n, there is a point ye A

factor.

with d2(x,y) = | nj(x) - nj(y) |.

Proof:
We prove the lemma by induction on the dimension n
of Z".

For n=1, it is trivially true.
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For n=2, let A = &xl,xz,x3,x4} be a set of 22=4

independent points in 22. Required to show that, for

each xie A and j=1,2, there is a point Xy € A with

d2(xi,xk) = ]nj(xg—nj(xk)l
Suppose not, that is, for at least one X5 € A, say X1

d2(xl,xk) = Inl(xl)—ﬂl(xk)l or IﬂQ(xl)-nz(xk)l,

for all xke A,

Let m = min {dQ(xl,xk)} and
xkéA\xl

A'= {xke A]d2(xl,xk)=m} .
Then A' # ¢ and X, & d2—conv(A\xl), for every x, & A',

which is a contradiction to the assumption that A is an
independent set, hence the lemma for n=2. Now assume
the result for n-1. Let A = {31,...,x{} r = 2" pe an
independent set in z". For each x; € A, any (n-1)
dimensional projection A' of A containing X5 contains

pn-1 independent points. So by induction assumption,

.

for each j=jl,j2,...,3n_l, there is a point
x, € A' with d2(xi,xk) = lnj(xi)-nj(xk)],

where jl,jz,...,jn_le{l,...,n}.
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Consider another (n-1) dimensional projection B' of A,
containing X5 and again by inductive assumption, there

is a point xk' & B', such that

d2(xi,xk') = ]nj(xi)-nj(xk')l for each j=j,,...,J,

where j2,j3,...,jn e:{},...,g}.

Therefore, for each Xy e A, and j=l,...,n, there is a
point x, € A, with d2(xi,xk) = Iﬂj(xi)-nj(xk)l and hence

the lemma for all n.

Theorem 2,.3.2.

Rank of the dz—convexity in 2" is 27,

Proof:

We prove that every set with cardinality 20,1 is
dependent. Let B = {?l’x2""’xr+{}’ r = 2" pe any
subset of Z". Let A = {xl,...,xr} be any subset of B,
containing 2N independent points. If Xp1 € d2—conv(A),

then we are done. If not,

let m

It

inf do(xg,x. 1) | x; € A}.
Define C = ixj e A!dz(xj,xr+l) = m_}. Then C £ @ and

for X5 e C, let d2(xj’xr+l) be the difference between the
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kth co-ordinates (1¢k¢{n). By lemma 2.3.1, there exists

a point xpi& A such that d2(xp,xj) is also the difference

th

between the k~ co-ordinates. Since X1 ¢ d2-conv(A)

and d2(xj,x ) is the minimum, dQ(Xp’xr+l) is also the

th

r+l

difference between the k co-ordinates. Therefore we have,

d2(xp’xr+l) = d2(xp,xj) + d2(xj’xr+l)

That is,

Therefore

Xy € d2—conv(B \xj), which completes the proof.

Corollary 2.3.3.

Let S < z" be finite with |S| » 2". Then there

exists an independent subset A of S with |A]| ¢ 2", such

that d2-conv(S) = d2—conv(A).

n

We note that if A = {xl,...,x:},r~< 2" is a set of r

independent points in Zn, then for any point x & d2-conv(A),

there is an (n-l)-dimensional submodule of Zn, containing x.

n-1 1 independent points of A,

In Z , there are at most on=
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the d2~convex hull of which contains x. Thus any point
X € d2-conv(A), belongs to the d2 convex hull of a subset

of A, containing at most on-1 points of A.

Therefore,

dy-conv(A) = U{dQ conv(T) \ TCA and |T| < 2“‘9.

In fact this bound is sharp. For example, consider the

subset
A = gfxl’XQ""'xn)EE z“[xi=o or x;=2 for all i:l,...,?}.
Define the subsets A; and A;' of A with cardinality on-1 .

Aj = '{(Xl""’xj""’xn) é:Alxj = O.} and

1

Aj'= {(xl,...,xj',...,xn)esAlxj' 2}, for j=1,...,n.

Then we have

d2—conv(A) = k){§2 conv(B)[BzAj or Aji}

Now consider the point z = (4,1,1,...,1) € d2—conv(A).

Then z € d, conv(Al‘) and it can be verified easily
that z cannot lie in the dz—convex hull of a subset of A

of cardinality less than 2"l Thus we have

Theorem 2.3.4.
The Caratheodory number for the family of d2-convex

sets in z" is 2n—lo



-35=

Theorem 2.3.95.

The Helly number h for the d2-convexity in 2" is 27,

Proof:

The method of proof is by induction.
Let °F = iﬁl,BQ,...,Br} , T Y 2" be a family r dy- convex
sets such that each 2" members of F has nonemtpy inter-
section. When r = 2n+l, then there exists XyseeesXy
such that

DOH

X: &

1
i

S

J
J
consisting of 2041 distinct points in Zn, which by
Theorem 2.3.2 is dependent.

Therefore xiea d2¢conv {fl’“"xi—l’xi+l""’xr_}’ for some 1

Clearly Xs e Bi’ for all i =1,...,r, completing the proof

for r= 241,

Now assuming the result for r = 2n+m, consider r=2"+m+1.
Define

Bi' = Bi (\ Br # ¢, fOI i = l’.oo,r‘-lo

Now {Bl' s Bolyenn, Br_l'} is a family of 2"™+m nonempty

d2 convex sets, satisfying the conditions of the theorem.



—36-

r-1
Therefore by inductive assumption N Bi' £ @.
i=1
T
That is () B, # @ and that completes the proof by
i=1

induction.

Theorem 2.3.6.

The Radon number r ﬁm:thed2 convexity in zM is 2041,

Proof:

We have r € 2n+l, since by theorem 2.,3.2, any 241
points in z" is dependent and therefore any set S cz"
with |S| » 2"+1 has a partition into two disjoint sets
Sl and 82, whose d2-convex hulls contain at least one
common point. Therefore r ¢ 241, To prove that r = 2 '+1,
we will show that there exists a set A with |A| = 27,
which has no Radon partition. Consider the set
A = {(xl,..-,xn)e'z“]xi= 0 or 1, for all i=l,...,n}-
Then [A] = 2", and every subset of A is d,-convex, and

hence A has no Radon partition. Therefore r = 20,1,

Theorem 2.3.7.

The Tverberg type generalized Radon number Pm for the

d2-convexity in 2™ is (m-1) 2"+1.
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Proof:

We will show that every subset S of Zn, with
[S| = (m=1) 2"+1 have a Radon m-partition, and there
exists a subset B with IBI = (m—l)2n, having no Radon
m-partition. Let S &€ Z" be such that |S| = (m-1)2"+1.
Choose F; &S with [F| € 2" and d,-conv(F,)=d,-conv(s),
which is possible, since rank of the d2—convexity is 20,
Again choose F, € SN\F; with |F,| 2" and
d2-conv(F2) = d2-conv(S\\Fl) ol d2—conv(Fl)° Proceeding

in this way, we get a partition of S into (m-1) sets Fi
with lFi] & 2", for each i, and there remains at least

one point z &d, conv(Fm_l) < d, conv(Fm_z) Sl
g;dz_convgi)= d, conv(S). Thus we get a Radon m-partition,

for any subset S of Z" with [S]| = 2"(m-1)+1.

Now consider the subsets Bi of z" for i=0,...,m-2 defined as

B = {ﬂxl,...,xn)Géznlxizogcrxi=2m—3 for all i}

B, = {(xl,...,xn)e anxi=l or x;=2m-2 for all ;}

= {Fxl,...,xn)e anxi=m-2 or xizm-l for all %}

Then{Bo,Bl,...,Bm_2}are m-1 disjoint sets with |B,|=2",
for each i=0,..,m-=2 and the set B=BOL} .o UBm_2 has
cardinality (m-l)2n and has no Radon m-partition. Hence

— n
pm - (m—-l)2 +lo
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2,4 d,-CONVEXITY

3

In this section, we discuss d3-convexity in Zn,

where d3 is the metric defined by
d3(x,y) = Number of co~ordinates in which x and y differ,

where x = (xl,o..,xn) and y = (yl,...,y ). We have

n
d3(x,y).$ n for every x,y € Z". Suppose that z=(zl,...,zn)
belongs to the dy-interval d3-[x,y]. That is
d3(x,z) + d3(z,y) = dj(x,y). We note that z € d3-[x,y]
if and only if Z, = X4 Or z, =Y., for all i=l,...,n.
We have
Lemma 2.4.1,
dy-[x,y] = dy=[x,y] for all x,y e Z",

Proof:

z e da—[x,y] &) zy=x; or z; =y, for every i=l,...,n.

Suppose z & d3-[x,y].

n n
Now d;(x,z)+d,(z,y) = il]xi-zi]+ .lezi-yil

1=

1

L |x,=y.l+ =
R

lxj“Yj] ’

s5i . =X, .y, a i=1,... .
ince z;=X; OT z =y, for all i=1, el
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n
= E Ixi'yi‘ = dl(X:Y)

i=1

and hence the lemma.

Theorem 2.4.2,
d3-[x,y] = dl—[x,y] if and only if

ds(X7Y) = dl(XQY) .

Proof:
Suppose d3(x,y) = dl(x,y) (1)
We have d3(x,y) £ n for all x,y  Z".

Therefore (1) gives dl(x,y) <n

i.e.,
i

LIl e le)

L Ixi“yi’ $n
D |x;=v;l < 1, for all i=l,...,n

Now z e dl"‘[er] Ve dl(X,Z)+dl(Z,Y) = dl(x’Y)

n
<:>i£l l xi"‘zil +

|
It~
)

n
Ellzi“'yil = ‘xi"yil

Y

1

<é=>xi=zi OT Z; =Y for all i=1l,...,n,

since lxi-yilg 1l for all i=l,.

&z e dy-[x,y]
= dl‘[x)Y] & d3-[X7Y]

ao,n.



Therefore dl-[x,y] = d3—[x,y], by lemma 2.4.1.
Conversely suppose dl-[x,y] = d3-[x,y].
Therefore 1z € dl—[x,y]<§=§ z e d3-[x,y]é;$»zi=xi or z.=y,,

for all i = 1,...,n.

n n
That is z e dl-[x,y]<$=$ iillxi—zil + iillzi~yil

& z;=x; or z;=y; for all i=l,...,n.

This is possible only if ]xi-yil £ 1 for all i=1,...,n.

If not, for at least one j, ]xj-le > 1, then there exists

. h that . <z, <
Z. suc a xJ zJ yj or

Y s

3 < z, < Xy, SO that zj;éxj or zj#yj .

Therefore

1l

n
d;(x,y) = I [x;-y

= §b3-yj] + ﬁlxk—ykl, where

lxj—yjl=0 and |[x, -y, |=1

for 1§j<n, 1&k¢&n

n

Z |x -yl
Yy

n

m<n, if there are m co-ordinates
for which x £ Yy e



= The number of co-~ordinates in which x and y differ

d3(x,y), hence the theorem.

Theorem 2.4.3.

If Ac2 is d,-convex, then A is d,-convex.

Proof:

Follows from lemma 2.4.1.

Lemma 2.4.4.

For any A & Zn,

d3-conv(A) = '{Fz(ﬁf""zi""’zn) e:anzi=ai, for some

a=(al,...,ai,..,an) € A for all %}

Let B = {z=(zl,..., Ziye i
.,ai,...,an) e A for all i}

Proof:
..,zn) = Zn]zi=a. for some
a=(al,..
To prove that B is d3-convex, let z,w € B,
Now y € d3—[zgw] & yy=z; or yi=w, for all i=l,...,n

.=a., 0 .=b., for some
yl i r Yl i? T

az(a".oq,ai,ooou,an) and

b—_-(b,,...,bi,...,bn) € A for all i=l,...,n.
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Therefore we have

y = (%,...,yi,...,yn), where

.=a., some a={(a ese 98,9008 =
Yl i for m ( 1? 185 ’ n) A

for all i=l,...,n.
=Yy € B.

=) B is d3-convex.

Since A S B, we have d3-conv(A) & B (1)

Now let z & B, then z= (zl,...,zi,...,zn), where

Z.=a. f some
j=a;» for som

a:(q,...,ai,...,an) € A for all

i=l,|00’no

Thus there are at most n points, say Cl’C2"“’Cn in A,

such that 25

ith co-ordinate of Ci’ for all i=1l,...,n.

the it co-ordinate of z is equal to the

Therefore
z @ dy-conv {Cl, .o ,Cn:& - d3-conv(A)
=2 B < dy-conv(A)

Therefore d3—conv(A) = B by (1), and hence the lemma.

From lemma 2.4.4. we have
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Theorem 2.4,5,

The Caratheodory number for dy-convexity in z" is 'n'.

Note 2.4.6.

It may be noted that there is no finite Helly and
Radon number for the d3-convexity in Z°. Suppose, if
possible, that there exists finite Helly number h, for the

d3-convexity in 2", Now conéider the set

A = {Fal,az,o,...,o), (al+l, astly, Oyevs), oen
(al'+h, a,+h, O,...,O}} c z".

¢

It is clear that a ¢ d3-conv(A \ a), for all ae A.

Consider the h+l member family of d3-convex sets
defined as °F = {513-conv(A\ a)lae A}. Every h members
of ?3 has nonempty intersection, but‘woF = @#, which is a
contradiction to the fact that h is the Helly number.
Therefore, there is no finite Helly number h, for the
d3-convexity in z". Since h § r-1l by 1.5.6, for any
convexity, there is no finite Radon number for the

d3—convexity in 2",



Chapter-3

ORDER AND METRIC CONVEXITIES IN Z%

In this chapter, we extend the definitions of
order convexity and d-convexity in z" to the infinite
dimensional sequential space Z*. Being interval
convexiiies, these are all domain finite convexities,
having no finite Caratheodory number, with the exception
of order convexity. Convexity spaces having finite
Caratheodory number is known as domain bounded convexities.
Therefore these convexities are domain finite, but not
domain bounded. See Hammer ([21)], Sierksma ([45]), Kay

and Womble ([29]).

AP np denote the projection from 2% to z" and

v respectively.

3.1. ORDER CONVEXITY

We consider the infinite dimensional sequential
space 7 = {(ml,mz,...)l nﬁ_e Z}, where Z is the set of
integers.

For x = (xl,x2,...), y:(yl,y2,...) e Z”, the relation x§{y

if and only if x; RS Yi for every is;is a partial order in Z°.

44
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Definition 3.1.1.

A point z € Z¥ is said to be order-between two
points x,y'e.Zw, if x$z§y or Wz¢{x. The usual order
interval [x,y] is the set of all points order-between x

and y. Note that [x,y] =@, if x and y are not comparable.

Definition 3.1.2.

A€ Z” is said to be order convex, if [x,y] €A
for every x,y € A. This is a weak definition of convexity
so that even the finite dimensional projections of order
convex sets need not be order convex in the corresponding

finite dimensional submodule.

For, Example 3.1.3:
The two element set

A = {x:(l,O,l,O,l,O,...), y = (0,1,0,1,0,1,... )} is
trivially order convex, but the 2-dimensional projection

nQ(A) on say the first and third co-ordinates, defined by

x —y  (1,1)

is not order convex in 22, since
Y _> (O;O)

(1,1, (0,0] = {(0,0), (1,00, (0,1), (1,1} & m,(a).

Hence we modify the definition of the interval [x,y] as

follows,
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Definition 3.1.4.

oo

For x = (xl,x2,...), y=(yl,y2,...) e 77,
define <x,y> as{?;(zl’zg”")eizwlzi lies between x; and y,
for all i} .

Thus we have a stronger definition of order convexity.

Definition 3.1.5,

A S 7" is said to be strongly order convex, if
{x,y> & A, for every x,ye@ A. As the definition
indicates, A is strongly order convex, implies that A is
order convex, for [x,y] = <x,y>, if x{y. Example 3.1.3

itself shows that the converse is not true.

3.2. d-CONVEXITY

We extend the definition of integer valued metrics

in Zz" that we have considered in Chapter 1, to Z” as follows.

For x = (xi)°° , y=(yi)°° &€ 2”, define the extended metrics
i=1 i=1

nes8

d,(x,y) = ) [x;=y;|, if the sum is finite.

i
That is if and only if all except a finite number of xi's

and yi's are zero, Or X;=y, for all except a finite number

of i's.



—47=

and dl(x,y) = =, otherwise.
d2(x,y) = max |x.=y.| if and only if the
, i~
sequence {zn} , where z = lxn~yn| is bounded
and d2(x,y) = =, otherwise.
and d3(X,Y) = the number of co-ordinates in which x and y

differ, if Xi=Yi» for all except a
finite number of i's.

and d3(x,y) = =, otherwise.

Note that these extended metrics are integer

valued, when they are finite.

We define, for any extended metric 'd', the

d-interval d-[x,y] as follows:

Definition 3.2.1.

For x = (Xi)m y Y=(Yi)°° (= Z°°, d"[X,Y] is
i=1 i=1

defined as {z e Z°°l1r9(z) = dn-['u),(x), n),(y)] for all ne N ,
where Ty denotes the projection to the first n co-ordinates,

and dn-[ny(x), ﬂi(y)] denotes the d-interval in the

corresponding submodule Z". Note that, when d(x,y) < w,

d-{x,y] = {F & Z°°ld(x,z)+d(z,y)=d(x,y).}°
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Definition 3.2.2.

AcZ” is said to be d-convex, if the d-interval
d-[x,y] S A for all x,ye A. We will show that the
" d-convexity in Z7" is stronger than the d-convexity
in ali the finite dimensional projections. We need a

lemma from Zn, namely

Lemma 3.2.3.

In Zn, the projection of a d-convex set to any
lower dimensional submodule Zm(m<n) is d-convex in Z™.

The proof follows easily,

since np(d-[x,y]) = d—[uu(x), ﬂu(y)1.
Now we have

Theorem 3.2.4.

If A is a d-convex subset of Z”, then every finite
dimensional projection of A is d-convex, in the correspond-

ing finite dimensional submodule of z=.

Proof:

Suppose that A is a d-convex subset of Z”. Assume that
m is the largest integer, for which the projection np(A) is
not d=-convex in the corresponding submodule z™. That is,

ﬂi(A) is d-convex, for every n>m. There are two cases.
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Case (i):
When np = nu*, where np* denotes the projection to
the first m-cordinates. Consider nu+l*. Now fix some

a e A and consider nm+l(a), the projection to the m+1 D

- 3 *
co-ordinate., Let Ap+l be the subset of ﬂp+l (A),
consisting of points with m+lth co-ordinate = nm+l(a).

By assumption Ap+l is d-convex and uu(A = nu(A), and

p+l)
the assumption that ﬂp(A) is not d-convex, contradicts

lemma 3.2.3, and hence the theorem for case (i).

A

Case (ii):

When np £ np*. Let n be a natural number greater
than m, such that Z™ is a submodule of Zn, where Zn=ﬁ9*(2w).
Now using the same argument to that of case (i), we get a

contradiction to lemma 3.2.3, and hence the theorem for case(ii).

The following example shows that the converse of theorem

3.2.4 need not be true.

Example 3.2.5.

Let a = (ai)°° , b = (bi)°° be two members of Z~,
i=1 i=1

having all entries nonzero and distinct in all co-ordinates.
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Let A = {z:(zl,...,zn, zn+l’0’0"") e 77|

(zl,...,zn) é.dn—[ng(a), nQ(b)] and

n+1

Z 417841 OF 2 = bn+l’ zj=0, for J>n+{}

for ne&€ N varies.

It is clear that every n-dimensional projection of A is
d-convex (since projection to the first n- co-ordinates
is d=convex) in the corresponding submodule Zn, but A is

. [}
not d-convex in Z2 ,

For if x,y & A, then x = (xl,xz,...,xn, Xn+l’o’ .o )
and y = (leYQro--yyrn,Ym+l,O, o e e ), Whel‘e

(xl,xz,...,xn) e dn—[ﬂg(a),ﬂ9(b)] and x or b

n+l=an+l n+1

xj=0, for j > n+l

and

m —
(Y1s¥pseeenyy) € di-[n (a), = (b)) and vy ,=a ., or b,
and yj=O, for all j > m+l.
Assume that m > n.

Then
d-[x,y] = {F e Zmlﬁi(z)GEdn—[ﬂ9(X),ﬂ9(y)} for all n

m+l-[‘7‘[

{Z eZwlﬂu+l(z)éd (X)’nml(Y)]’

p+l
nj(z) = 0, for j > m+l} .
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Now there exist an z e d-[x,y], such that z ¢ A, for,

if z = (Zl”"’zm+l’ IS 0,0,...), where am+2<zm+2<bm+2
or b o<z .-<a ., then z & d-[x,y], but z ¢ A. Since
z & A is of the form z = (Zl”"’zm+l’ z .0s 0, 0, ... ),

where (zl,...,

m+1 _
Zm+l) € d -[np+l(a)’ﬂp+l(b)]’ 242 3 2

or z = bm+2 and z, = 0, for all j > mt2.

m+2 j

Now we will show that dl—convexity and strong order

convexity are equivalent.

Theorem 3.2.6.

A € 7% is strongly order convex, if and only if A

is dl-convex.

Proof:
A is strongly order convex implies that for any

pair of points x,y € A, <x,y> €A.

Let 2z e <{x,y> Q—.;.—:)xigzi(y or yz {x; for all i

i

éF=?|xi-zil + |zy-yil = [x;=y;| for all i

n n n
& iil"‘i"zi' + iillzi‘yi‘ = iﬁll"i'yil

for all n€& N, by lemma 2.2.1.
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&L= dy (my(x), mp(2)) + dy (ny(z), my(y))

= d, (ﬂ),(x), n,(y)) for all n&€ N

where 1y denotes the projection to the first

n co-ordinates.

= n),(z) e dln—[n_,(x), 1t9(y)] for all n& N

& 2 E:dl-[x,y], and hence the theorem.

3.,3. INVARIANTS OF d-CONVEXITY

For the order convexity in Z°~, the Caratheodory
number is 2 ([17]), and there is no finite Helly and
Radon numbers, since there is no finite Helly and Radon
numbers, for the order convexity in z"n.

We have

Theorem 3.3.1.

Helly number for the dl—convexity in 2% is 2

Proof:
LetF = {Al,AQ,...,Am} be a finite family of
order convex sets in Zw, with pairwise nonempty inter-

: m
section. To show that N Aj £ D
j=1
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By theorem 3.2.4, every finite dimensional projection
of members of ﬂ: is nonempty,dl-convex and pairwise
intersecting in the corresponding finite dimensional
submodule of Z~. Therefore by Helly's theorem in the

m
finite dimensions (2.2.7), we have 0N “49(Aj) £ @,
j=1

for any n-dimensional projection Tyt 27— z". Let

th

ni(Aj) denotes the projection to the i co-ordinate for

all i and j=1,...,m.

m m
Since F& ni(Aj) £ ¢, let X5 e N ni(Aj), for all i

j: J::]_

Now X (xi)m e Aj for all i

i=1
i.e.y, x & A., hence the theorem.
J

n>os

1
Note 3.3.2.

The example given by Kay and Womble [29] itself shows
that there is no finite Radon number for the dl~convexity
in Z¥. Also note that there is no finite Caratheodory
number for the dl-convexity in Zm, since the Caratheodory

A

number for the d,-convexity in z" is n (2.2.9}.

In chapter 1, it is shown that the Caratheodory,

Helly and Radon numbers for the d2—convoxity in z" is 2n-l,
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2" and 2"+1 respectively (2.3.4, 2.3.5 and 2.3.6 respectively).

Also the Caratheodory number for the d3-convexity in z" is
n (2.4.5), and there is no finite Helly and Radon numbers

for dj-convexity in z" (2.4.6). Hence we have

Theorem 3.3.3,

There exists no finite Caratheodory, Helly and Radon

numbers for the d2-convexity in Z¥, and

Theorem 3.3.4.

There exists no finite Caratheodory, Helly and

Radon numbers for the d3-convexity in Z7.



Chapter-4

CONVEXITY IN GENERALIZED POLYGONS

4,1. INTRODUCTION

In this chapter, we study the convexity in the
finite geometric structure, known as " Generalized
Polygons", considering it as a bipartite graph, denoted
by ' . It is observed that the m-convexity in [ is
the trivial convexity, consisting of the whole vertex
set of | and @. But the geodesic convexity (d-convexity)
in [ has close similarity with a convex geometry ([12]).
We believe that the generalized polygons can be
characterized using the geodesic convexity in certain
bipartite graphs. For details about Generalized Polygons,

see (|16], [37], [40]).

Definition 4.1.1.

A finite incidence structure is a triple S:(P,L,I)
in which P and L are nonempty disjoint finite sets of
objects, called points and lines respectively and I is a

symmetric point-line incidence relation.

Definition 4.1.2.

A path from an element x to an element y in PUL

55
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is a sequence (x;

r
1). such that x =x, x;_; I x

1=0

i? for

i=1l,2,...,1T and X =Y. 'r' is called the length of the

path. A finite incidence structure S = (P,L,I) is said
to be connected if every two elements in PUL can be

joined by a path. Note that if S = (P,L,I) is a finite
connected incidence structure, then S is a finite metric

space with d(x,y) = length of the shortest path from x to vy.

Definition 4.1.3.

A finite connected incidence structure S=(P,L,I)
is called a generalized n-gon, for some positive integer n,

if the following are satisfied:

(i) d(x,y) < n, for all x,ye PUL

(ii) If d(x,y) < n, then there is a unique path
between x and vy.

(iii) For each x e PUL, there is a y € PUL, such
that d(x,y) = n.

If S is a generalized n-gon, then S is said to
have order (s,t) (s»l, t)l), if there are exactly t+l
lines incident with each point and s+l points incident
with each line. A generalized polygon is a generalized

n-gon, for some integer n. When s=t=1, we get oxrdinary
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polygons. We have a famous non-existence theorem of a

generalized n-gon due to Feit-Higman. See ([16] and [40]).

Theorem 4.1.4 (Feit-Higman)
Apart from the ordinary polygons, with s=t=1l, a

generalized n-gon can exist, only if n e {?,3,4,6,8,12}.

Now S can be considered as a bipartite graph with
vertex set V = PU L and two vertices adjacent in the graph
if and only if they are incident in the n-gon. We denote
by [, the bipartite graph corresponding to a generalized

n-gon of order (s,t).

The theory of convexity has a natural role in graph
theory. See Farber ([13]), Farber and Jamison ([14],[15]),
Diichet ([8],[9]) for the notions of geodesic convexity
(d-convexity) and minimal path convexity (m-convexity) in
a finite connected graph. Let G be any graph with vertex
set V. A chord of a path in G is an edge joining two non

consecutive vertices in the path.

Definition 4.1.5:
A set K€V is said to be d-convex (m-convex) if for
any pair of vertices x,y € K, all vertices on all shortest

(chordless) paths from x to y also lie in K.
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That is K&V is d-convex, if d-|x,y]JEK, for every pair
of vertices x,y & K, where

d-[x,y] {z € V| z lies in a shortest x-y path}

it

{z e V]| d(x,z) + d(z,y) = d(x,Y)}

and K€V is m-convex, if m-[x,y] € K, for every x,y € K,

where m-[x,y] ={F € V]z lies in a chordless path from x to Y}

Definition 4.1.6.

If K&V is convex (d-convex or m-convex), a
vertex v € K is said to be an extreme point of K, if
KNv is again convex. EX(K) denotes the set of all extreme
points of K and K is said to have the Krein-Milman property

if K=conv(EX (K)).

For any vertex v e V, Nj(v) denotes the neighbourhood
of radius j about v. That is Nj(v) = {z& Vld(z,v)sj} , for
some integer j. For S&V,. the diameter of S, denoted by
diam(S) is Sup {d(x,y)lx,ye s}. The radius of S with
respect to V is inf {r:Ss; Nr(x), for some x & V}. It is
noted that diam(V) = radius{V) = n = diam(T" ). We need two

lemmas, the proofs of which are seen in [16].
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Lemma 4.1.7.

Let [T be the bipartite graph corresponding to
a generalized n-gon of order (s,t), with vertex set
V:PUL. If xe& P and d(x,y) = n, then there are exactly
t+l distinct paths of length 'n' from x to y. Similarly
if x € L and d(x,y) = n, there are exactly s+l distinct

paths of length n from x to vy.

Lemma 4.1.8.
Let I be as in lemma 4.1.7. Then n is odd implies
that s=t.

4,2 GEODESIC CONVEXITY

We have

Lemma 4.2.1.
In [T, if d(x,y)=n, then d-[x,y], contains every

neighbour of x as well as every neighbour of y.

Proof:

When n is even, then both x and y either belong
to P or belong to L. That is, x and y are of the same
type and when n is odd then s=t, by Lemma 4.1.8. Let

x € P, then x is adjacent with t+l distinct vertices in L.
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Let X19XppeoosXy be the t+1l distinct vertices in L
adjacent with x. We have d(xi,y) = n-1, for all
i=1,...,t+1,for if d(xi,y) < n~l, for some i, then
there is a path of length less than n from x to vy,
which is a contradiction. If d(xi,y) = n, for some i,
then d(x,y) = n and d(xi,y) = n implies that x and xj
are vertices of the same type, which is also a contradic-
tion, since x and x; are adjacent. Therefore all the t+l
neighbours of x belong to d-[x,y]. Similarly if x& L,
all the s+l neighbours of x belong to d-[x,y]. By the

same argument, we can show that all the neighbours of y

also belong to d-[x,y].

Note 4.2.2.

d-[x,y] is not d-convex always. For example,
let one of s,t is greater than one, say t and d(x,y)=n.
Then d-[x,y] is not d-convex, for there are t+l or s+l
distinct shortest paths from x to y, according as x € P

or x € L. Suppose x € L and let

Xs Xg1» Xop» See o¥Xpp 0¥

.0 e L] LI ] L3N

Xy  Xguplr Xepl127°* ' Xerln-1?Y
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be the s+l distinct shortest paths of length n from
x to y. We can easily see that d(xil’xjn-l) = n, for

i#£ 3, 1,3 e-{},...,s+l}. Now x;, € P and therefore

there are t+l distinct shortest paths of length n from

X1 to xjn-l of which only 2 paths namely

Xy19X500 90X Y xjn-l and Xyp X xj"“'xjn-l belong
to d-[x,y]}. Thus d-[x,y] is not d-convex. Note that
in a generalized n-gon I , when d(x,y) = n, the d-interval

d-[x,y] contains, for each neighbour Xi1 of x,a neighbour

X5n-1 of y with d(xil’ xjn-l) = n. Now we have

Theorem 4,2.3.

If K is a d-convex subset of V([T ), with
diam(K) = n, then K = V.

Proof:

Since diam(K) = n, there are vertices x,y @ K
with d(x,y) = n. Let z be any vertex of IT. Since I is
connected, there is a path from x to z. Let XyXq9XpyeooyX =2
be the shortest path from x to z. Since d(x,y) = n and
K is d-convex, by lemma 4.2.1, every neighbour of x belongs

to d-[x,y] and hence belongs to K. Therefore x; & K.
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Also as in Note 4.2.2, d-[x,y] contains a vertex Yy
with d(xl,yl) = n. Therefore again by Lemma 4,2.1,
Xn € K. Again there exists a neighbour Yo of y in

d-[xl,yl] with d(x2,y2) = n, and by Lemma 4.2.1, x; & K.

Applying Lemma 4.2,1, successively, we get z € K. Hence

K=Vo

Corollary 4.2.4.

If KEV is a proper d-convex subset of § , then

diam(K) < n.

Corollary 4.2.5.

I1f K&V is a proper d-convex subset of [ , then
K is a subtree of r'and hence K has the Krein-Milman

property.

Proof:

By Corollary 4.2.4, if K€V is a proper d-convex
subset, then diam(K) < n and therefore, for every pair x,y
of vertices of K, d(x,y) ¢ n, and by the defining condi-
tion (ii) (4.1.3) of a generalized n-gon, there is a unique

path from x to y, which is contained in K. In other words,
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the subgraph induced by K of ™ contains no cycle and
hence is a tree. Clearly K has the Krein-Milman property
and all the end vertices of K (vertices of K having
degree one in the subgraph induced by K) are the extreme

points of K.

Now we have a theorem of a general nature.

Theorem 4,2.6.

Let G be any connected bipartite graph in which
every vertex has degree at least two. Let K be a d-convex
subset of G. If K has the Krein-Milman property, then

diam(K) < diam(G).

Proof:

Suppose diam(K) = diam(G) = n. Since K has the
Krein-Milman property, it is the d-convex hull of its
extreme points. Now there exists two extreme points x,y
of K, which are diametrically opposite vertices of K.

We have that x is an extreme point of the d-convex subset
K, if and only if x is a simplicial vertex in the subgraph
induced by K. A vertex x of K is called a simplicial
vertex, if the neighbourhood (Nl(x)) of x induces a
complete subgraph in the subgraph induced by K. Since G
is a bipartite graph,x is a simplicial vertex implies that

Nl(x) consists of a single vertex in the subgraph induced by K.
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Since each vertex has degree at least 2, x is adjacent

with a vertex z ¢,K4 Now d(x,y) = n and d(x,z) = 1

implies that d(y,z) = n, for if d(y,z) < n, then z € K,

a contradiction. Therefore we have d{(x,y) = n, d(z,y) = n
and d(x,z) = 1. In a bipartite graph, this is not possible,
because x and z are vertices belonging to distinct partition
classes of vertices. Therefore our assumption is wrong,

and hence diam(K) < diam(G).
Now we have

Theorem 4.2.7.

If VU is the bipartite graph corresponding to a
generalized n~gon and K is a d=convex subset of I" . Then

K has the Krein-Milman property if and only if diam(K) < n.

Proof:

The necessity part follows from Theorem 4.2,6,
and sufficiency follows from Corollary 4.2.5, since
diam(K) < n implies that K is a proper d-convex subset and

by Corollary 4.2.5, K has the Krein-Milman property.

Theorem 4.2.8.
in [, Nj(v) is d-convex, for j & [ E%l ], for

all veV.
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Proof:
For any two vertices x,y e Nj(v), we have
d(x,y) € n~l. Therefore, there is a unique path from

x to y in[ , which is contained in Nj(v).

Next we show that the m-convexity in I is the

trivial convexity.

Theorem 4.2.9,.
The m-convexity in [" is the trivial convexity

consisting of the null set § and the whole vertex set V.

Proof:

For any vertex x € V, by the defining condition
(iii), of a generalized n-gon (condition (iii) of 4.1.3),
there exists a vertex y & V with d(x,y) = n, and by
Lemma 4.1.7, there exists t+l or s+l distinct shortest

paths from x to y according as x & P or x& L, and hence

there are (tgl) or (s;l) distinct cycles containing both

x and y. Note that all the cycles are chordless, for

if there is a chord in one of the cycles, then there will
be a path of length less than n from x to y. Hence m-{x,x]
or m-ly,y] contains both x and y. We have by Theorem 4.2.3
d-conv {x,y} =V, since d(x,y) = n, and
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d-convnix,x} C m=conv {x,y} » Since every shortest
path is a chordless path. Therefore m-conv &x,y} =V,
Since y € m-[x,x], m—conv-{x}'= m=conv {x,y}

=V0

Thus the m-convexity in [T is the trivial convexity
consisting only the null set @ and the whole vertex set

V of r..

4,3. CENTRALITY

Nieminen has studied various center concepts in
connection with the geodesic convexity in connected
graphs. See([34], |135), [36]). 1In this section, we
discuss the center, centroid and distance center of | ,
in connection with the geodesic convexity in [T . We need
the following definitions. See ([22], [34], [35]), [36]).
Let G be any finite connected undirected graph, without

loops and multiple edges.

Definition 4.3.1.

The eccentricity e(v) of a vertex v & V(G) is
e(v) = max {q(u,v)hge Vj-. The center Ce of G is the
set consisting of vertices of G having minimum eccentricity.

If K £V(G), then the center of K with respect to V, denoted
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as center (K) is the center of the subgraph of G induced

by K.

Definition 4.3.2.
For any vertex v &V, a copoint of v is a maximal
convex subset of V\v, denoted by Cv’ That is Cv is a

convex subset of VN\v having maximum cardinality.

Definition 4.3.3.

The centroid C of G is {ve v] Jc,l = m:i, where
m = inf {_[cvl ‘vé“V} . That is, the centroid of G
consists of vertices v with the property that, their copoints

Cy has minimum cardinality.

Definition 4.3.4.

The distance d(v) of a vertex v in V(G) is the

sum d(v) = £ d(u,v). The distance center Cq of G,
ueV

also called the median of G consists of vertices of G,

having minimum distance.

If [ is the bipartite graph corresponding to a
generalized n-gon of order (s,t), then we have the following
theorems. (In this section by a convex subset of V, we mean

a d-convex subset of V.)
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Theorem 4.3.5.
The center of a d-convex subset K of | is

d-conveX.

Proof:

If K = V([ ), the whole vertex set, then we
have center(V) =V, since e(v) = n, for all v e V(V )
and therefore the vertices of minimum eccentricity
consists of all the vertices of [, and V is d-convex.
If K&V, then by Corollary 4.2.5, the subgraph induced
by K is a subtree of I , and for a tree, the center
consists of either one vertex or two adjacent vertices
(see Harary ([22]), and hence d-convex. Hence the

theorem,

Theorem 4.3.6.

The centroid C of I is the whole vertex set V(T ).

Proof:

For any vertex ve V(T ), let C, be a copoint of v.
That is Cv is a maximal d-convex subset of [ not containing v.
Therefore C, is such that diam (Cv) = n-1 and
diam (C,, Ui{vl ) = n. We claim that C, is a maximal proper
d-convex subset of r . If K is a proper d-convex subset

of [, with C,& K& V, then v & K and hence diam(K) = n,
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and by theorem 4.2.3, K=V and hence Cv is a maximal

proper d-convex subset of V. Therefore, Cv is a copoint

of every vertex of V \Cv. Now V'\Cv contains vertices

in P as well as vertices in L. Therefore Cv is a
of a vertex in P as well as a vertex in L. Since
vertex in P is identical and every vertex in L is
the copoint of every vertex in T has got the same

Therefore the centroid C of]_ is the whole vertex

Theorem 4.3.7.

If C4

copoint
every
identical,
cardinality.

set V.

is the distance center of | of order (s,t)

with vertex set V = PUL, then (i) Cq = P if and only if s<t,

(ii) Cd = L if and only if t<s, and (iii) Cd = PUL =V if

and only if s=t.

Proof:

To find the distance centier Cd of r-, we shall

find out the vertices in 1 having minimum distance. Since

every vertex in P is identical, every vertex in P has got

the same distance. Similarly every vertex in L has got

the same distance.
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For a vertex pe P, we have

d(p) = 1(t+l) + 2(t+1l)s + 3(t+l)st + .
D13 o ~
+ (n=1)(t+1) s[2J t[2]
+ n(|V]=((t+1)+(t+1l)s+(t+1) st

[31-1 [3]-1

t

+ (t+l)st +..e+(t+l)s ))

= n|V| = ((n=-1)(t+1)+(n=-2) (t+1)s

2]-1 |2]-1
+ (n=3)(t+l)st + ... + l(t+l)s[§] tlg] )

Similarly, for a vertex { €L, we have,

d(2) = n|V|] = ((n=1)(s+1) + (n=2)(s+1)t
2]-1 [2]-1
+ (n=3)(s+1)ts + ... + 1(s+l)tl§] 5[2] )
Therefore we have

d(1) < d(p) if and only if

LS P ] 1.1
(n=-1)(s+1)+(n=2)(s+1)t+ ... + l(s+l)tl2] 5[2]

[51-1 [3)-1
> (n=-D)(t+1)+(n-2)(t+1l)s + ... + (t+1l)s t .



That is,if and only if

(n=1)(s=t)+(n=2) (t=s)+(n=3)ts(s=t)+(n=-4)ts(t=s)+ ... +

That is d({) < d{(p) if and only if

5 [51-1 s[gl-l

(s=t)+(s=t)ts + (s=1)t"s" + ... + (s-1)t > 0.

That is if and only if
[(31-1 [5]1-1
s

(s=-t) (l+ts+t252+ eee + t ) >0
That is d(?) < d(p) if and only if (s-~t) > O,
[5]-1 [5]-1
Since l+ts+t252+ e + t 2 s 2 > 0,

since s31 and t)l always.
Therefore we have

(1) d(2) < d(p) if and only if t < s

(7]
N
c+

(ii) d(p) ¢ d(t) if and only if
(iii) d(p) = d(L) if and only if s = t,
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Therefore the vertices of [ having minimum distance
belong to L if and only if t<s, belong to P if and
only if s<t, and all vertices of I have the same distance

if and only if s=t. Hence we have

C, =1L if and only if t < s

O
]

P if and only if s < t

and C PUL =V if and only if s=t.

Also we have,

Corollary 4.3.8.

The distance center Cj of T order (s,t) is

d-convex if and only if s=t,

Proof:
The distance center Cd is d-convex implies that
Cd=V by Theorem 4.3.7, since P and L are not d-convex

subsets of I and again by Theorem 4.3.7 C4=V if and only

if S=to

4.4, INVARIANTS OF GEODESIC CONVEXITY.

In this section, we shall compute the invariants
of the geodesic convexity in r-, like the Helly, Caratheodory,

Radon and Generalized Radon type numbers.
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Theorem 4.4.1.

The Helly number h for the geodesic convexity

in [T is 2 if n=2 and is 3 if n ) 3.

We prove the theorem using a lemma.

Lemma 4.4,2.

If ASV(l) is an independent set with |A| » 3,
and d-conv(A) # V, then there exists a vertex ve Vv

v ¢ A such that

v € [N{d-conv(A\a) | ae A} .

Proof:

Let A €V be an independent set with |A| = 3,
A is said to be independent, if aé d-conv(A \a), for
any a€ A. Let A = {vl,v2,v3} and let diam(A) = r.

Suppose d(vl’v2) = r, Clearly r § n-l, since d-conv(A) # V.

Suppose 0N {d—conv(A \Vi) | v, € A:} = ¢' (1)

Since d-conv(A) is a proper d-convex subset of [ ,
d-[vy,v5], d-—[vz,v3] and d-[v3,vl} are all proper d-convex
subsets of I .
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Let d(vz,v3) = r; and d(v,,v;) = ry. Clearly

rl\( r and r2\< T.

(1) gives that d-[vl,vz] N d-[v2,v3j N d-[v3,vl] = @.

Let VisY1sYoseea¥Y o = Vo, v2,zl,22,...,zrl = Vg and
VWi, W ,...,wr2 =V, be the unique paths from vy to Vo
Vo to Vjy and Vg to vy respectively. Now VisYiseees¥y = Vo,

21’22,090,zr = V3,Wl,...,Wr = Vl iS a CYCle in d—COl’lV(A),

2
which is a contradiction, since d-conv(A) is a subtree

of r—, being a proper d-convex subset. Hence the lemma.

Proof of Theorem 4.4.1.

We use the definition given by Sierksma of the
Helly number h (1.5.3). If n=2, consider a subset A of
V(") with |A] = 3. Clearly, diam(A) = diam(T") = 2,
and hence A contains 2 vertices a;,a, with d(al,az) =2
and hence d-conv(A) = d-conv( {31’323 ) =V by Theorem 4.2.3,
and thus [\ {?-conv(A \a)lae-A} £ @ hence h=2, if n=2.

If n > 3, consider ASV([T ) with |A|=4 and let A be

an independent set, for if A is dependent then we are done.
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Now there exists a subset B& A with |B| = 3 and
d-conv(B) # V, for if not,then A is dependent. Therefore
by Lemma 4.4.2, there is a vertex ve&V, v ¢ B such that
vV & ﬂ{d—conv(B\b) | b eB}. Clearly
v & ﬂ&i-conv(A \a) | ae A} « Thus h € 3. To show
that h = 3, consider a subset S of V(T") with |S| = 3 and
d-conv(S) = V. Let S = {yl,vz,v3} be such that
d(vl’VQ) = n=-1, d(v2,v3) = n=1 and d(v3,vl) = 2 (we can
always find such a set of 3 vertices in T ). Thus d-[vl,vz],
d-[vz,vs] and d-[vg,vl] are all proper d-convex subsets of
V([ ) and they are all pairwise intersecting but.
d—(v2,v3](\ d-[v3,vl]f7 do[vl,vz] = @#. Therefore h > 2,
Therefore h = 3, if n > 2,

Before we look into the Caratheodory number, we

need a lemma,

Lemma 4.4.3.

Let A =£al,a2,...,ar} C V([T ) pe an independent
set with |A| » 4 and diam(A) # n, then d-conv(A) # V.

Proof:

We prove the lemma using induction on the cardinality

of A.



When |A| = 4, let A = {él,az,a3,aq}’

Since A is independent, d-conv(A‘\ai) is a proper d-convex
subset of V, for all a; € A. Consider d-conv(A \ a4).
d-conv(A \\a4) being a proper d-convex subset of V has

the Krein-Milman property by Corollary 4.2.5, and

EX(d-conv(A‘\a4)) = {?l,aQ,a3} , Since {?l,aQ,a%}
is independent.

We have by Lemma 4.4.2., there exists a vertex
vev, v & {?1’82"33} such that

ved-[al,aQ] ﬂd-[82,33] N d"[asval]

Now consider d-conv(A).

We claim that v € d-[a4,ai], for all i=1,2,3,

for if v ¢ d-[a,,a;], for some a,, say a,, then

d-[vl,al] U d—[al,a4]lj d-[a4,v1] is a cycle in
d-conv {?1’32'34} and hence

d=-conv {?1’32'34} =V, implies that aSE;d-conv{gl,aQ,aq}

a contradiction to the assumption that {al,az,a3,a€} is

independent. Therefore v € d-[a4,ai] for all i=1,2,3.
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Thus we have

for any x € d-conv {al,az,aa}

d-[x,a4j gd-[ai,a4] € d-conv(A), for some
aie{al,az,aq},

since d-[ai,a4] is a proper d-convex subset of V.
Therefore any point x € d-conv {?1'32’33} can be joined
by a unique path to the vertex ays since diam(A) # n
and thus every two vertices in d-conv(A) can be joined
by a unique shortest path. Hence d-conv(A) does not

contain a cycle and d-conv(A) # V.

Induction:
If A = {al,...,am}g_v is an independent set with

|A] > 4 and diam(A) # n, then d-conv(A) # V.

To prove for A with |A| = m+l

Let A = {?l,...,am, il < V be an independent s?t

with diam(A) # n.
To prove that d-conv(A) # V.

Suppose d=conv(A) = V.

We have d-conv {él,aQ,...,am} £V, d-conv {él,...,aq&

has the Krein-Milman property by Corollary 4.2.5 and

Ex(d-conv{él,...,am}) = {?l”"’am} , Since {él""’am} is

independent.
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Therefore d-conv(A) = d-conv i?l,...,am+i3= V, only
if there exists at least two ai'aj‘E{?l""’am}’ such

that d-[am+l,ai] N d-[am+l,aj] = .

Therefore d-conv {ai'aj’am+l} =V, which shows that

{?l”"’am+l} is dependent, a contradiction. Therefore

d-conv(A) #V, and the lemma follows by induction.

Corollary 4.4.4.

Let A = {al""’ar} C V be an independent set

and diam(A) # n. If d-conv(A) =V, then |A] = 3.

Proof:
By Lemma 4.4.3. we have |A| 3.
That is |A| = 2 or |A| = 3. Since diam A # n, |A] # 2,

for then d-conv(A) is a proper d-interval and cannot be V.
Therefore |A| = 3.

Now we have

Theorem 4.4.5,
The Caratheodory number ¢, for the geodesic

convexity in I" is 2, if n=2 and is 3 if n ) 3.



Proof:

For n=2, the proof follows easily. For n ) 3,

there are two cases.

Case (1i):
Let ASV be any subset with |A| » 3 and d-conv(A) # V.
For case (i), by Corollary 4.2.5. d-conv(A) is the d-convex

hull of its extreme points.
Clearly we have

d-conv(A)

I

U {d-—[vi,vj]]vi,vj € EX(d-conv(A))}

L){?-[vi,vj]lvi,vj & A_}, since

every extreme point of d-conv(A) is a member of A. Hence

for case (i), the d-convex hull of any subset A of V can
be expressed as the union of d-convex hulls of two point

subsets of A.

Case (ii):
Let A £V be any subset with d-conv(A) =V and
diam(A) £ n.

If diam(A) = n, then by Theorem 4.2.3,
d-conv(A) =V = d-conv{él,ag} y Where a;,a, € A

with d(al,az) = n, and hence we are done.
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For case (ii), by Corollary 4.4.4, there exists an
independent subset A' of A with |A'| = 3 such that

d-conv{(A') = d-conv(A) = V and hence the theorem.

Theorem 4.4.6.
The Radon number r, for the geodesic convexity

in ¥ is 3 if n=2, and is 4 if n > 3.

Proof:
The proof follows from Theorem 4.4.1, Lemma 4.4.2
and Theorem 4.4.5.

Note 4.4070

Note that diam(A) = diam (d-conv(A)) for all
A €V([M), except for subsets A, which are of the type of
case (ii) of Theorem 4.4.5. and that it is shown in the
proof of Theorem 4.4.% that the minimum cardinality of

such exceptional subsets is 3.

Next we shall find a bound of the generalized
Radon number Pm for the geodesic convexity inT" . we

need a theorem of Jamison. See Jamison-Waldner ([27]).

If P is a point in an aligned space X, then a

copoint at P is a maximal convex subset of X\ P. We
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shall say that X satisfies the copoint intersection
property CIP (m,k), if for each P in X, among any m
distinct copoints at P, there are k with empty inter-

section., We state the theorem as

Remark 4.4.8. (Jamison-Waldner):

Suppose that an aligned space X satisfies CIP
(3,2), and has finite Helly number h. Then the

partition number Pm satisfy

(1) pm< 2m if h=2
(ii) Pm = (m=1)h+l if h » 3

In [27], it is proved that if G is a graph
theoretic tree with vertex set V, then the geodesic
alignment on V(G) satisfies CIP(3,2). Since the
geodesic alignment on a tree has helly number 2,

Pnlé 2m, for the geodesic alignment on a graph theoretic
tree.

Now we have

Theorem 4.4.9.

The generalized Radon number Pm, for the geodesic

alignment in T satisfies the inequality Pm'$ 3m=-2.
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Proof:

The proof is a successive application of
Remark 4.4,8. and Caratheodory's theorem (4.4.5).
Let AS V(I ) be a subset with |A| » 3m-2. We will
show that A has a Radon m-partition. If d-conv(A) #£V,
then the subgraph induced by d-conv(A) is a subtree of I
by Theorem 4.2.3, and hence A has a Radon m-partition
by Remark 4.4.8 , since 3m=2 ) 2m if m » 2. Now if
d=conv(A) =V, then by Theorem 4.4,5, there exist a
subset A; of A with |A;| = 3 and d-conv(A;}) = d-conv(A)=V.
Now B; = A\ A, has cardinality ) 3m-5. If d-conv(B;) £V,
then B; has a Radon (m~1) partition if m ) 3, by
Remark 4.4.8, since 3m=5 ) 2(m-1) if m > 3, and hence
A has a Radon m-partition. If d-conv(Bl) =V, then by

Theorem 4.4.5, there existsa subset A, of B, with |A,[=3

1l
and d-conv(Az) = d-conv(Bl) =V, Now B, = B\ A, has
cardinality » 3m-8. If d-conv(BQ) #V, then by the

same argument,B, has a Radon (m=2)-partition, if m ) 4,

by Remark 4.4.8, and B, has a Radon (m=-1) partition,

1
and hence A has a Radon m-partition. If d-conv(82)=v,

then again by Theorem 4.4.35, there exist A3§;82 with

|a,] = 3 and d-conv(As) = d-conv(Bz) = V. This procedure

3l
continues, until we get a Radon (m-2) partition of A with

each partition class containing 3 members and the d-convex
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hull of each partition class being V. Thus we are
left with a subset B of A of cardinality greater
than or equal to 4 and by Radon's theorem (4.4.6) B
has a Radon partition and hence A has a Radon m-

partition. Thus Pm < 3m-2.,

Remark 4.4.10.

If ™ is a generalized 3-gon, then it can be

shown that Pm = 3m-2.

Consider a generalized 3-gon of order s. Take
s sufficiently larger than m. ( There exists generalized
3-gons of order s = pa, p prime, a & N, being finite
projective planes). Consider (m-1l) distinct vertices
{) 12, ooy lm-l of L and define a subset A of P with

cardinality 3(m-1) as follows.

A = AlL)-.....L)Am_l , where Ai's are disjoint
subsets of P each with cardinality 3 and such that Ii
is the common vertex adjacent to all the three vertices
of Ay, for i=l,..., m=l. Then |A] = 3(m-1) and it can
be shown easily that A has no Radon m=partition. If A
has a Radon m-partition, then there exist at least two

partition classes each with cardinality 2, say

— — ]
B, -{Pi, pi'} and By = pj,pjj.
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Now,

{Pi, P, ,l} and

ipj, P, 1'} , where | and |

d-conv(Bi)

i

d—conv(Bj)

are the unique vertices of L adjacent with Pi

and Pi' and Pj and PJ' respectively. Thus
d-conv(B,) N d-conv(Bj) = @#. Therefore A cannot have
a Radon m-partition, and thus Pm = 3m-2, for the
geodesic convexity inV , if I is a generalized 3~-gon
of order s > m. A generalized polygon of order (s,t)
is called thick, if s>1 and t>1. We believe that if I
is a thick generalized polygon, then Pm = 3m-2, This
is one of the problems, which we have attempted, but

could not answer completely.

4,5, ORDER AND GEODESIC ALIGNMENTS OF A CONNECTED
BIPARTITE GRAPH

In this section, we will show that the geodesic
alignment on the vertex set V of any finite connected
bipartite graph G is the join of order alignments with

respect to all possible canonical orderings on V.

Let G be any finite connected bipartite graph

with vertex set V. We can order V with respect to any
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vertex u, which give rise to a graded poset on V.
A graded poset V is a poset V with a height function
h:V —) Z, such that

(i) if u g v, then h(u)  h(v)

(ii) if v covers u, then h(v) = h(u)+l, the
integer h(v) is called the height of v.

Let u be any vertex of G. For i=0,1,... diam(G)-1,
we direct the edges between Ni(u) and Ni+l(u) from Ni+l(u)

th

to Ni(u), where Ni(u) denotes the i~ 1level of u. That is,

N (u) =5‘Lv eV | d(u,v) = 1} .

Define v £ & w, whenever there is a directed path

u
from w to v. With this ordering on V with respect to
the vertex u, gives a graded poset (V <y ), of which

G is the digraph. The height function is hu(v)=d(u,v)
for ve V. That is hu(v) = i, for any v & Ni(u). Since
G is connected, we have u <u v, for all v eV, and so

u is the universal lower bound of this poset . This
kind of ordering on the vertex set V of a finite
connected bipartite graph G has been considered by
Milder in [33] . The ordering so constructed on V is

called the canonical ordering of G with respect to the

vertex u.



-86~

We have a theorem of Miilder, we state it as

Remark 4.5.1. (Milder)

A graph G is connected and bipartite if and only
if G is the digraph of a finite graded poset with a

universal lower bound.

Let E denote any canonical ordering of G, and let
DE denote the order alignment on V with respect to E,
where, as usual KV 1is said to be order convex, if

[x,y] = {z e V|x$z§y or yLz{x}{C K, for every x,y € K.

Definition 4.5.2.
For any set X, if (L.) is a collection of

el
alignments on X, then the smallest alignment R on X,

containing all Li's is called the join of Li's in the

lattice of all alignments on X, denoted by R= \/ Li.
iel

It is shown by Jamison in [25] that if R = \V/ L

ie1 Y

then R(A) = (\ Li(A) for all finite subsets A of X.
il

If this is true for all subsets of X, then R = \V/ Li
iel

is called the strong join of Li‘s.
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Now we have

Theorem 4.5.3.

If IL denotes the geodesic alignment on the
vertex set V of a finite connected bipartite graph G,
then f_ = \//{PE | E & Canonical orderings of q} ,
where DE denotes the order alignment on V with respect

to the canonical ordering E.

Proof:

Suppose K.ej: « Now every d-convex subset of V
induces a connected subgraph of G. Therefore the sub-
graph induced by K of G is connected and bipartite,
since G is bipartite. Therefore by Remark 4.5.1.,
there exists an ordering on K which gives a graded poset
on K with a universal lower bound, say u. Since ueV,
there is a canonical ordering E on V, with u as the
universal lower bound. Clearly K is a sub poset of
the graded poset (V, <u) and hence K € D.

Therefore,

K E \'/DE’ thus <f—- —C-"\/DE.

Conversely suppose

K Q-_\/{DEIE & canonical orderings of G}.
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That is K & DE’ for all canonical orderings E of G.

Let K = &Pl"“'“n}' Then K € D¢ , for all i=l,...,n,

vy

where DE denotes the canonical ordering on V, with u

uy i

as the universal lower bound.

Now consider any two ujsuy € K and u e d-[ui,uj].
We have uyg \<u. u\<u uj .
i i
That is u e [ui,uj], the order interval with

respect to the canonical ordering Eu on V.,
i

and [ui,uj] € K, since K e DEu .
i

Therefore d-[ui,uj] & K, for every ui,uj € K and hence Keﬁ—

Thus£~ = \V/{PE]E € canonical ordering of é}

and hence the theorem.

Remark 4.5.4,

Several graphs are characterized using the convexity
structure on the vertex sets. For example chord&l graphs,
Ptolemaic graphs, block graphs, bridged graphs etc. See
([12], [13], [14], [15]).
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We believe that the following statement 'P' will hold,
although we do not have a complete proof; it trivially

holds for n=2 and for s=t=1.

P: A connected bipartite graph I' with diam(V )=n

and vertex set V = PUL, in which every vertex of P

has degree t+l and every vertex of L has degree s+l
(s»1, tyl) and having the property that every proper
d-convex subset of V has the Krein-Milman property, is
the bipartite graph corresponding to a generalized n-gon

of order (s,t).



Chapter-5

INTERSECTION CONVEX SETS AND d=CONVEX SETS 1IN 22

O.1. INTRODUCTION

In this chapter, we will show that the d-convex
sets (dl-convex or d2-convex) in Zn are intersection
convex sets defined by Doignon, with special supporting
half lattices. We discuss mainly the case with n=2, and
tinally an algorithm for computing the d2-convex hull of
a finite planar set in the discrete plane Z2 is given,
and the time complexity of the algorithm is computed.

We consider Z" as a crystallographic lattice defined by

Doignon. We need some preliminary definitions and theorems.

See Doignon [7].

Definition 5.1.1.
n

A lattice in R" is the set{ I n;as;|n;, € Z
i=1 *

where {?l,...,aé} is any basis of R" and R is the set of
real numbers. When we take the standard basis
{}O,...,i,O,...,O)]i=l, for i=l,2,...,§}, we get the lattice
z".
Definition 5.1.2.

The lattice lines, lattice half lines and lattice

line segments are defined as the intersections of Z" with

90



the lines, half lines and line segments of R respectively,
intersecting Z™ in at least two points., When n=2, the
slope of the lattice line [ is defined as the slope of the
line in R2, whose intersection with ZQ, will give the

line Q .

Definition 5.1.3.
A subset of z" is called intersection convex, if
it is the intersection of Z" with an ordinary convex subset

of Rn.

Definition 5.1.4.
A half space of R" is any subset of Rn, whose
intersection with every line of R" is either the empty

set, a half line or a line.

Definition 5.1.5,

The intersections of Z"™ with the half spaces of R"
are called half lattices. Note that every half lattice of
Zz" is intersection convex, since every half space of R is

ordinary convex.

Definition 5.1.6,

A half lattice H is said to support the intersection
convex set C of zZ", if it is minimal among all the half
lattices containing C. Points in HNC are said to be the
contact points of C with H, and H is said to support C at

each contact point.



Detinition 5.1.7.

For any intersection convex set C of Zn, the
boundary of C is defined as the set bd{C)= z" N fr(conv (C)
where conv(C)denotes the ordinary convex hull of C in R"
and tr{conv(C) denotes the boundary of conv(C)in Rn. We
call the boundary of a supporting half lattice H of an
intersection convex set C, the supporting line of C at

the contact points of C with H.

Theorem 5.1.8.

Any intersection convex set of z" is the inter-

section of half lattices of z" and conversely.

The theorem states that every intersection convex

set is an intersection of supporting half latfices°

We need a few more definitions in the discrete

plane 22..

Definition 5.1.9,

Two points x=(xl,x2) and y:(yl,yz) of Z2 are said
to lie in a horizental set or in a vertical set, if Y1=Yo
OT X=X, respectively., We call a lattice line L of 22

an axial line, if it is a horizontal set or a vertical set.

Definition 5.1.10.
A lattice line 2 of 22 is called a diagcnal line,

if the slope of i is +1 or -1.
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Definition 5.1.11.

A half lattice H of Z2 is said to be an axial
half lattice or a diagonal half lattice, if the boundary

of H is an axial line or a diagonal line respectively.

5.2. INTERSECTION CONVEX SETS AND d-CONVEX SETS

Theorem 5.2.1.
If A is either a dl—convex set or a d2-convex

set of Zn, then A is an intersection convex set of z".

Proof:
Proof follows easily since A can be expressed
as
A = conv(A)N z", where conv(A)denotes the ordinary

convex hull of A in R".

Note 5.2.2.

Note that a d3-convex subset of z" need not be
intersection convex. For example, the set
A = {50,0), (2,0), (0,2), (2,22} c 7% is d;-convex in 22,
but A is not intersection convex, since any ordinary convex
subset containing A contains the points (1,0), (0,1), (1,1),

which does not belong to A.

Lemma 5.2.3.

A lattice line Q of Z2 is dl—convex if and only

if § is axial.
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Proof:

L is an axial line implies that l is dl-convex.
Conversely suppose 1 is a lattice line which is dl-convex,
but not axial. Then there exist two points x = (xl,x2),

y = (y)»Y5) in { with Xy £ y; and x, # Yo Clearly the
points z; = (xl,y2) and z, = (yl,x2) e dl-[x,y], but
z, zzéﬁ , and hence the lemma.

Lemma 5.2.4.

2

A lattice line 1 of Z© is dy=-convex, if and

only if L is diagonal,

Proof:

{ is a diagonal line implies that ¥ is d,-convex.
Conversely suppose that ﬂ is a lattice line, which is
dz-convex, but not diagonal. Then there exist points
x=(xl,x2), y=(yl,y2)eﬂ with le-yll < ]x2-y21 and
d2(x,y) > 2.

Consider the point z = (21’22)’ where z ,=x;+ 1.
(zi=x1+l if x;<y; and z;=x;-1 if x>y, for i=1,2). Clearly
z evdz-[x,y] and x and z lie in a diagonal line. Since
is not a diagonal line z ¢E- , a contradiction, and hence

the lemma.



-95-

Theorem 5.2.5.
A half lattice H of 2° is d -convex (respectively
d2-convex) if and only if H is an axial half lattice

(respectively a diagonal half lattice).

Proof:

H is d;-convex (respectively d2-convex) if and
only if the boundary of H is dl-convex (respectively d2-
convex). Therefore the theorem follows by Lemma 5.2.3 and

Lemma 5.2.4. Now we have the main theorem.

Theorem 5.2.6,
Every dl-convex set (respectively d2-convex set)
of 22 is the intérsection of axial half lattices (respectively

diagonal half lattices) and conversely.

Proof:

Intersection of axial half lattices (respectively
diagonal half lattices) in Z2 is dl—convex (respectively
d2-convex), since axial half lattices and diagonal half
lattices are dl-convex and d2-convex respectively by
Theorem 5.2.5., Conversely, every dl-convex set and dz—convex
set in 7% 1is intersection convex by Theorem 5.2,1,

and using Theorem 5.1.8, they are the intersections of

supporting half lattices. Now the boundaries of the
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supporting half lattices must be dl-convex or d2-convex.
Therefore the supporting half lattices must be axial
respectively diagonal, if the set is dl-convex,

respectively d2-convex. Hence the theorem.

Note 5.2.7.

A hemispace of a convexity space is a convex
subset with a convex complement. In this situation, we
observe that the axial half lattices and diagonal half
lattices are the hemispaces of the dl-convexity and dz-
convexity in Z2 respectively, since they have convex

complements.

5.3. AN ALGORITHM FOR DETERMINING THE d,-CONVEX HULL

OF A FINITE PLANAR SET IN 22.

Computation of the convex hull of a finite set
of points particularly in the plane is an interesting
problem in computational geometry. Preparata and
Shamos ([38]) have described various convex hull algorithms
in the plane and in higher dimensional spaces, its time
complexity, and other related computational problems. In
this section we describe an algorithm, which determines
the d2-convex hull of a finite set of points S in the
discrete plane 22. The computation of the dl-convex hull
of S in 22 is very trivial, since it is the smallest rectangle
in 22, containing S, with sides parallel to the co-ordinate

axes.
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Our algorithm is based on the fact that the
d2—conv(S)contains the intersection convex hull of S
in 22 and the supporting half lattices of d2-conv(s)are
diagonal half lattices (Theorem 5.2.6)., We first
compute the intersection convex hull of S in 22, using
the Graham Scan, described in [18], and add the necessary
points to get the d2-conv(s). The algorithm works in not
more than (%i%%ng) + an + b operations where a and b
are positive constants and n is the cardinality of S.
The algorithm we give determines which points of S are
the end vertices of d2-conv(SL which of course define

d2—conv(SL The algorithm proceeds in four steps.

Let S = {Xl’xQ""’xn} be the given set in 22.

Step=-1:

Find the intersection convex hull of S using
Graham Scan ([18]), and obtain a list of points S*
ordered by polar angle, which determines the extreme
points of the intersection convex hull of S. It has

been proved in [18], that step-l1 takes not more than

n_logn + cn operations. Let S! ={:Xl”"’xg}’

clearly r & n.
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Step-2:

In this step, we remove the d2-convexly dependent
points in S', because we have d2¥-conv(s)=d2—conv(5') =d,-conv (1),
where T is an independent subset of S'. Start with 3

There are

consecutive points in S', say Xi, Xi+l’xi+2‘
two possibilities.

. = )
(1) dalXysXy) + Xy 10X;,0) = A (X, ,5)

Then we delete X.1+l from S', since it cannot be an independ-
ent point of S', and return to the beginning of Step-2, with

the points X;, Xi410 Xi+2 replaced by Xi-l’xi’ Xi+2 (where

indices are reduced modulo r).

(ii) dp (X4 »X 1 )+da (X, 15X ,0) > dp(X{,X, »). Then
return to the beginning of Step-2 with the points xi’xi+l’
Xi+2 replaced by Xi+l’Xi+2’xi+3' Note that each application
of Step-2 either reduces by one the number of possible
dependent points of S' or increases by one the current

total number of points of S' considered. By arguing
similarly as in Step~5 of Graham Scan, with less than Zr
iterations of Step-2, we must be left with a subset T of
d2—convexly independent points of S'. The cardinality of T
is at most four because the rank of the d2—convexity

(cardinality of the maximal independent set) in z2 is four.

Let T = {Xi, Xi+1”"’xi+t}’ where t £ 4.



Step-3:
Add new points to obtain d2-conv($. Since the

Caratheodory number for the d2-convexity in Z2

is 2,
every point in d2-conv(5)belongs to the d2-convex hull

of a subset of T of cardinality two. So we add points
corresponding to two consecutive points in T. Start with
two consecutive points X;, X;,; in T. Let L be the

lattice line joining Xi and Xi+l' There are two possibilit-

ies.

1. If the slope of L is +1 or =1, then no point
is to be added, because in this case ! is the boundary
of a supporting diagonal half lattice of d2-conv(5l

Return to the beginning of Step-3 with the points Xi,X

irl

replaced by X; 4, X;,0¢ 514.17:5%12.817
MAN

II. If the slope of L is different from +1 and -1,

then proceed as follows:

Let X; = (x3oy3) and Xy,.0 = (X595 Vi)

Let Xip1 = xi+k and Yigl = yi+h.

(1) If k > h and k=h is even, then add two points

( xi+ ‘.%EJ: Yi-[%])a (xi+l_l_.k7-h], Yi+l+['1£§"l])
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(ii) If k > h and k-h is odd, then

(a) if |kx| > |h], add four points

(e 5B, vi-U552D), G L5204, v, -1

l+l [ ]9 1+l[ ])9 (x1+l—([ ]+l),yl+l+[ ])

(b) if |k| < |h|, then add 4 points

(e + (5527, v, -[52D), (e + 5521, v =(155R141)),

(x Xi+1™ [ ]’ 1+l+[ Q—]), (x1+l [ ] Yi+l+[ ]+l)

(iii) If h > k and h-k is even, then add two points
(e=(3551, v+ (55D, (xg, #1555, v, -IB55D)
(iv) If h>k and h~k is odd, then
(¢) if |h] > |k|, add four points

(x-[25%1, v+ 255D, (xp, #0550, v, -IB55D)

1+l

(x;-[8551, v+ [B55040), (g, #1555, vy, ~(1B550+1))
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(d) if |h| < |x|, then add four points,

(x, "'[ :l’ Y +[ ]), (x "‘([ ]+l)’yi+[ ])

(#5550, v = (B35, (xy, + 1055041,y ~[B55D)

Return to the beginning of Step-3 with Xi’xi+l replaced
by Xi+l’ Xi+2‘ Since there are at most four points in T,
Step-3 requires the addition of at most sixteen new points
and hence requires less than a constant number say ¢y

operations. Let T' be the new set obtained. Clearly |T'[{ 20.

Step-~4:

Since the new set T' may contain interior points
d2-conv(s),we need to find the intersection convex hgll of
T' to obtain d2-conv(8% So Step-4 is to determine the
intersection convex hull of T' as in Step-1l. By the end

of Step-4, we are left with the end vertices of d,y-conv(S).

Since T!' contain at most twenty points, step-4

requires at most 20 igg 20 + ¢.20 = ¢, operations.

Therefore the time complexity of the algorithm is

n ig%_g + ¢n + 2r + ¢ +C,, where n

= 1 loo D 4+ an + b, where a and b are positive constants.
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Computer implementation of this algorithm makes it
quite feasible to consider examples with large n.

Say n = 50000. We give some examples to illustrate
this algorithm in the following pages. @ represents

the data point and ® represents the end vertex of

the d2~convex hull.
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CONCLUDING REMARKS

Kay and Chartrand ([28]) defined a metric space
(M,d) as a graph metric space, if there exists a connected
graph G, whose vertex set can be put in one to one corres-
pondence with the points of M in such a way that the
distance between every two points of M is equal to the
distance between the corresponding vertices of G. In that
case the metric spaces (Zz,dl), (22,d ), (22,d3) are graph

metric spaces.

In this thesis, we have studied mainly the d-convexity
in these graph metric spaces. But we can easily show that
the minimal pazth convexity (m-convexity) in all these graphs
(graphs corresponding to the graph metric spaces (Zz,dl),

%,d,) and (z°,d;)) is the trivial convexity consisting

(z
of the whole vertex set and @#. We proved that the m-convexity
in the bipartite graph r-corresponding to a generalized n-gon
is the trivial convexity. Thus in all the situations, where

the d-convexity have been discussed the m-convexity is found

to be the trivial convexity.

Hebbare ([23]) called the graphs, which have only the
trivial d-convex sets as distance convex simple graphs.
Similarly, we call the graphs, which have only the trivial

m-convex sets, the m-convex simple graphs. Thus all the
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graphs which we have discussed in this thesis are m-convex

simple graphs.

Another thing that we want to mention is about the
Eckhoff's conjecture. For all the convexities that we
have discussed in this thesis and for which the Tverberg
type Radon number Pm or its bound has been computed, the

Eckhoff's conjecture hold.

That is, P_ < (m=1)(r-l)+1, where r is the Radon number.
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