The Edge C_{4} Graph of a Graph

Manju K. Menon
Email: manjukmenon@cusat.ac.in
A. Vijayakumar
Department of Mathematics, Cochin University of Science and Technology, Cochin-682 022, India. Email: vijay@cusat.ac.in Abstract. The edge C_{4} graph $E_{4}(G)$ of a graph G has all the edges of G as its

vertices, two vertices in $E_{4}(G)$ are adjajent if their vertices, two vertices in $E_{4}(G)$ are adjacent if their corresponding edges in G are either incident or are opposite edges of some C_{4}. In this paper, characterizations for $E_{4}(G)$ being connected, complete, bipartite, tree etc are given. We have also proved that $E_{4}(G)$ has no forbidden subgraph characterization. Some dynamical behaviour such as convergence, mortality and touching number are also
studied.

1 Introduction

The study of graph dynamics has been receiving wide attention since Ore's work on the line graph operator $L(G)$, see [5,6]. Of concern in this paper is the notion of edge C_{4} graph $E_{4}(G)$ of a graph G. The vertices of $E_{4}(G)$ are in one one correspondence with the edges in G and two vertices in $E_{4}(G)$ are adjacent if their corresponding edges in G either intersect or are opposite edges of some C_{4} in G. So two vertices are adjacent vertices in $E_{4}(G)$ if the union of the corresponding edges in G induces any one of the graphs $P_{3}, C_{3}, C_{4}, K_{4}-\{e\}, K_{4}$. This edge C_{4} graph is the edge graph mentioned in [6].

Clearly the edge C_{4} graph coincides with the line graph for any acyclic graph. But they differ in many properties. As a case, for a connected graph $G, E_{4}(G)=G$ if and only if $G=C_{n}, n \neq 4$. Then we say that $C_{n}, n \neq 4$ is fixed under E_{4}. Also Beineke has proved in [2] that the line graph has nine forbidden subgraphs. In this paper we see that $E_{4}(G)$ has no forbidden subgraphs.

In [1], Bandelt and others proved that a bipartite graph is dismantlable if and only if its edge C_{4} graph is dismantlable and a bipartite graph is neighbourhoodHelly if and only if its edge C_{4} graph is neighbourhood-Helly.

All the graphs considered here are finite, undirected and simple. We denote by P_{n} (respectively C_{n}), a path (respectively cycle) on n vertices. The graph obtained by deleting any edge of K_{n} is denoted by $K_{n}-\{e\}$. A triangle with a pendant edge attached to any one of its vertices is called a 'paw'. A graph G is H-free if G does not contain H as an induced subgraph. P_{4}-free graphs are called cographs [3, 4]. A graph H is a forbidden subgraph for a property P of graphs if no graph having property P contains an induced subgraph isomorphic to H. The cross product $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} is a simple graph with $V\left(G_{1}\right) \times V\left(G_{2}\right)$ as its vertex set and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ if and only if either $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} in G_{2}, or u_{1} is adjacent to u_{2} in G_{1}
and $v_{1}=v_{2}$. For all basic concepts and notations not mentioned in this paper we refer [7].

In this paper, characterizations for the edge C_{4} graph of a graph G being connected, complete, bipartite etc are obtained. We have also proved that the edge C_{4} graph has no forbidden subgraph characterization. The dynamical behaviour such as convergence, periodicity, mortality, transition number and touching number of $E_{4}(G)$ are also studied.

2 The Edge C_{4} Graph of a Graph

Consider the edge $C_{4} \operatorname{graph} E_{4}(G)$ of a graph G. If $a_{1}-a_{2}$ is an edge in G, the corresponding vertex in $E_{4}(G)$ is denoted by $a_{1} a_{2}$.
Theorem 1. $E_{4}(G)$ is connected if and only if exactly one component of G contains edges.

Theorem 2. For a connected graph $G, E_{4}(G)$ is complete if and only if G is a complete multipartite graph.

Proof. Let G be a connected graph such that $E_{4}(G)$ is complete. We shall first show that G is a cograph and is paw-free. If G contains an induced P_{4} then the first and the third edges in P_{4} correspond to two non adjacent vertices in $E_{4}(G)$, and $E_{4}(G)$ is not complete. Thus G must be a cograph. Further if G contains a paw as an induced subgraph then the pendant edge and the edge in the triangle of the paw to which the pendant edge is not adjacent correspond to non adjacent vertices in $E_{4}(G)$. Hence G is also paw-free. Claim: G is a complete multipartite graph. If not, \bar{G} is not a union of complete graphs. Then \bar{G} contains an induced P_{3}. But, since G is a connected cograph, \bar{G} is disconnected. Hence \bar{G} is a disconnotted graph containing an induced P_{3} and so G has a paw, giving a contradiction. This proves the claim.

Conversely suppose that G is a complete multipartite graph. Let e_{1} and e_{2} be any two edges in G. If they are not adjacent, then since G is complete multipartite, they are opposite edges of some C_{4} in G. Hence $E_{4}(G)$ is a complete graph.
Theorem 3. There is no forbidden subgraph characterization for $E_{4}(G)$.
Proof. We shall prove that given any graph G, we can find a graph H such that G is an induced subgraph of $E_{4}(H)$. For any graph G, let $H=G \times K_{2}$. Then in $E_{4}(H)$, all the vertices of the form $u u^{\prime}$ where u is a vertex in G and u^{\prime} is the corresponding vertex in the copy of G used in the construction of $G \times K_{2}$ will induce G. For, if u and v are any two adjacent vertices in $G, u u^{\prime}$ and $v v^{\prime}$ correspond to adjacent, vertices in $E_{4}(H)$ as $u u^{\prime} v^{\prime} v$ forms a C_{4} in H. If u and v are any two non adjacent vertices in G then $u u^{\prime}$ and $v v^{\prime}$ are non adjacent vertices in $E_{4}(H)$.
Theorem 4. For a connected graph $G, E_{4}(G)$ is bipartite if and only if G is either a path or an even cycle of length greater than five.
Corollary 1. For a connected graph $G, E_{4}(G)$ is a tree if and only if G is a path.

3 Dynamical Properties

We shall first list some graph dynamical terminologies from [6].
Let G be any graph. The $n^{\text {th }}$ iterated graph is iteratively defined as $E_{4}^{2}(G)=$ $E_{4}\left(E_{4}(G)\right)$ and $E_{4}^{n}(G)=E_{4}\left(E_{4}^{n-1}(G)\right)$ for $n>2$. We say that G is convergent
under E_{4} if $\left\{E_{4}^{n}(G), n \in N\right\}$ is finite. If G is not convergent under E_{4}, then G is divergent under E_{4}. A graph G is periodic if there is some natural number n with $G=E_{4}^{n}(G)$. The smallest such number is called the period of G. The transition number $t(x)$ of a convergent graph G is defined as zero if G is periodic and as the smallest number n such that $E_{4}^{n}(G)$ is periodic. A graph G is mortal if for some $n \in N, E_{4}^{n}(G)=\phi$, the empty graph. The touching number of a cycle is the cardinality of the set of all edges having exactly one of its vertices on the cycle. For every integer $n \geq 3$, the n-touching number $t_{n}(G)$ of a graph G is the supremum of all touching numbers of C_{n}, provided G contains some C_{n}. If not, $t_{n}(G)$ is undefined.
Theorem 5. The graphs $P_{n}, K_{1,3}, C_{n}(n \neq 4)$ are the only E_{4} convergent graphs.
Proof. If G contains a vertex of degree >3, then $E_{4}(G)$ contains K_{4}. In the subsequent iterations the clique size goes on increasing and hence G diverges. So, for convergent graphs $\Delta(G) \leq 3$. If G is a tree which is neither P_{n} nor $K_{1,3}$, then K_{4} is contained at least in the third iterated graph and hence G cannot converge. The paths P_{n} converge to ϕ and $K_{1,3}$ converges to the triangle.

Consider the graphs which are not trees. If G is not a cycle, then G contains a cycle with a pendant edge as a subgraph (need not be induced). Then K_{4} is a subgraph at least in the second iteration and hence in the subsequent iterations the clique size will go on increasing and hence cannot converge. All cycles except C_{4} are fixed under E_{4} and C_{4} is not convergent.
Corollary 2. For $E_{4}(G)$, the only periodic graphs are the cycles $C_{n}, n \neq 4$ and they have period one.
Proof. Proof is clear from the remark in [6] that a graph G is convergent if and only if G is either periodic or there is some positive integer n with. $E_{4}^{n}(G)$ periodic.
Corollary 3. The transition number $t\left(K_{1,3}\right)=1$ and $t\left(C_{n}\right), n \neq 4=0$.
Corollary 4. For $E_{4}(G)$, the paths are the only mortal graphs.
Proof. Among the convergent graphs, cycles other than C_{4} are fixed and $K_{1,3}$ converges to K_{3}. The paths are the only graphs converging to ϕ.

In the following theorem, we consider only the graphs G for which the touching number $t_{n}(G)$ is defined.
Theorem 6. For any graph $G, t_{n}\left(E_{4}(G)\right) \geq 2 t_{n}(G)$. Further if G contains C_{4} as a subgraph where either an edge or two consecutive edges of C_{4} are the edges of the C_{n} which determines the touching number then $t_{n}\left(E_{4}(G)>2 t_{n}(G)\right.$.
Proof. Let the n-cycle in G be $x_{1}, x_{2}, \ldots, x_{n}, x_{1}$. Then $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n} x_{1}$ is an n-cycle in $E_{4}(G)$. If $y x_{i}$ is a touching edge in G , then $E_{4}(G)$ contains two touching edges say $y x_{i}-x_{i} x_{i+1}$ and $y x_{i}-x_{i-1} x_{i}$.

Let $C_{4}=a_{1} a_{2} a_{3} a_{4}$ be a subgraph of G. Further, suppose that the edge $a_{3} a_{4}$ is a touching edge in G. Then $a_{1} a_{4}, a_{2} a_{3}, a_{1} a_{2}$ are touching edges in $E_{4}(G)$. Hence $t_{n}\left(E_{4}(G)\right)>2 t_{n}(G)$. The proof is similar for the case when any two consecutive edges of C_{4} are the edges on the C_{n} mentioned above.

Acknowledgement: The authors thank Prof. S.B. Rao, ISI, Kolkata for his help during the preparation of this paper and the referee for his valuable suggestions for the improvement of the paper.

References

[1] H.J. Bandelt, M. Farber and P. Hell, Absolute reflexive retracts and absolute bipartite retracts, Discrete Appl. Math., 44 (1993), pp. 9-20.
[2] Beineke, On derived graphs and digraphs, in Beiträge zur Graphentheorie (1968), pp. 17-23.
[3] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes, SIAM, (1999).
[4] D.G. Corneil, Y. Perl and I.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput., 14 (1985), pp. 926-934.
[5] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ., 38 Providence (R.I)
(1962) p. 21.
[6] E. Prisner, Graph Dynamics, Longman (1995).
[7] D.B. West, Introduction to Graph Theory, Prentice Hall of India (2003).

