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CHAPTER |
INTRODUCTION

1.1. Introduction

The concept of entropy is extensively used in literature as a
quantitative measure of uncertainty associated with a random
phenomena. The development of the idea of entropy by Shannon
(1948) provided the beginning of a separate branch of learning
namely the ‘Theory of information’. Historically a glimpse of the
concept of entropy is available in an early work by Boltzman (1879)
in connection with his studies related to the thermodynamic state of
a physical system. Hartley (1928) used the entropy measure to
ascertain the transmission of information through communication
lines. Even though an axiomatic foundation to this concept was laid
down by Shannon, this measure was developed in an independent
context by Weiner (1948) Earlier work in connection with

Shannon’s entropy was centered around characterizing the same



based on different set of postulates. The works of Fadeev (1956),
Khinchin (1957), Tverberg (1958), Chaundy and Mcleod (1960),
Renyi (1961), Lee (1964), etc proceed in this direction. The classic
monographs by Fisher (1958), Ash (1965), Aczel and Daroczy
(1975) and Behra (1990) summarises most of the developments in

this area.

In the reliability context, if X is a random variable
representing the life time of a component or a device, a
characteristic of special interest in the residual life distribution
which is the distribution of the random variable (X-¢) truncated at
1((>0). A comparison of the residual life distribution and the parent
distribution as well as characterization of distributions based on the
form of the residual life time distributions has received a lot of
interest among researchers. The works of Gupta and Gupta (1983),
Gupta and Kirmani (1990) and Sankaran (1992) focuses attention on

this aspect.

It is common knowledge that highly uncertain components or
svstems are inherently not reliable. At the stage of designing a
system, when there 1is enough information regarding the
deterioration, wear and tear of component parts, factors and levels

are prepared based on this information. Concepts such as failure



rate and the mean residual life function comes up as a handy tool in
such situations. However in order to have a better system, the
stability of the component parts should also be taken into account
along with deterioration. Recently Ebrahimi and Pellerey (1995)
and Ebrahimi (1996) has used the Shannon’s entropy applied to the
residual life, refered to in literature as the residual entropy
function, as a measure of stability of a component or a system.
Because of the above the residual entropy function can be
advantageously used as a useful tool at the stage of design and

planning in Reliability Engineering.

The measurement and comparison of income among
individuals in a society i1s a problem that has been attracting the
interest of a lot of researchers in Economics and Statistics. In
addition to the common measures of income inequality such as
variance, coefficient of variation, Lorenz curve, Gini index etc, the
Shannon’s entropy has been advantageously used as a handy tool to
measure income inequality. The wutility of this measure is
highlighted in the works of Theil (1967) and Hart (1971). Ord,
Patil and Taillie (1983) has used the truncated form of the entropy
measure as a measure for examining the inequality of income of

persons whose income exceeds a specified limit.



One of the main problems encountered in the analysis of
statistical data is that of locating an appropriate model followed by
the observations. Empirical methods such as probability plots or
goodness of fit procedures fails to provide an exact model.
However a characterization theorem enables one to determine the
distribution uniquely in the sense that under certain conditions a
family F of distributions is the only one possessing a specified
property. Accordingly characterization theorems are developed in

respect of most of the distributions.

The commonly used life time models in Reliability Theory
are exponential distribution, Pareto distribution, Beta distribution,
Weibull distribution, and Gamma distribution Several
characterization theorems are obtained for the above models using
reliability concepts such as failure rate, mean residual life function,
vitality function, variance residual life function etc. Cox (1962),
Guerrieri (1965), Reinhardt (1968), Shanbhag (1970), Swartz
(1973), Laurent (1974), Vartak (1974), Dallas (1975), Nagaraja
(1975), Morrison (1978), Gupta (1981), Gupta and Gupta (1983),
Mukherjee and Roy (1980), Osaki and Li (1988) etc provide

characterization results for the above distributions using reliability



concepts. An excellent review of works in the area is given in

Galambos and Kotz (1978) and Azlarov and Volodin (1986).

Most of the works on characterization of distributions in the
reliability context centers around the failure rate or the mean
residual life function. However only very little work seems to have
been done in using the restdual entropy function as the criteria for
characterization. Since the residual entropy function determines the
distribution uniquely, a characterization theorem involving this
concept will enable one to determine the model uniquely through a
knowledge of its functional form. Motivated by this fact, the
present study focuses attention on characterization of probability
distributions based on (1) the form of the residual entropy function

and (2) relationships between the residual entropy function and

other reliability measures.

1.2 Review of literature

In this section we give a brief outline of the basic concepts in

Information Theory and Reliabilityv Theory that are of use in the

investigations that are carried out in the succeeding chapters.



The Shannon’s entropy

As pointed out in the introduction the Shannon’s entropy have
been extensively used as a quantitative measure of uncertainty.
Consider a random experiment having n mutually exclusive events

2,..., n with respective probabilities pi, k = 1, 2, ..., n

satisfying the conditions p; >0 and Zp,,=1. One can represent
k=1

such a probability space by a complete finite scheme (CFS),

[Aj =(A, A4, - A"J

P) \p, p = pJ
A CFS contains an amount of uncertainty about the particular
outcome which will occur when the experiment is performed. As
the probability associated with an event, A4, increases the
uncertainty associated with that event decreases and so the amount
of information conveyed by the occurrence of the event decreases.
In a CFS there are different events and so different amount of
information corresponding to these events. Hence the average
amount of information can be taken as a measurc of uncertainty

associated with a CFS. Based on the notion, Shannon (1948) used

the quantity,

H.(p) = -2 p, logp, (1.1)

11



as a quantitative measure of uncertainty associated with a CFS. As
a convention O log O is taken as as zero. If we consider a random
experiment with » possible outcomes having probabilities p,, pa,
...,Pn, then (1.1) measures the uncertainty concerning the outcome
of experiment. On the other hand, if we consider (1.1) after the
experiment has been carried out then it measures the amount of

information conveyed by the complete finite scheme.

The Shannon’s entropy defined by (1.1) satisfies the
following properties [Guiasu (1977)].
1. Ha(P)20, P = (p1, p2, ....Pn)
2. H,(p1, p2, ...,pn) 1s a continuous function of py, p2, ...,pn.
3. Hy(p1, p2, ...,pn) 1s a symmetric function of py, p2, . ,pn.

4. 1If p, = 1 and p, = 0 (1<i<n, i#io) then Hu(p1, p2, ...,ps) =0
5‘ Hn+l(plsp2) ~~-,1)’170):Hﬂ(p|7p2) ""p")‘

6. For any probability distribution with p, >0 and Zp, =1,

=1
H.(p1, p2, ....pa)< H,,(l,l,‘_,%).

7. For any two independent probability distributions P = (p,, pa,

o Pa)s O = (¢, q2. . ,4m) Where Zp, =1, Zq/ =1,

[ 71

Hn . m(PUQ):Hn(l))+Hr:;(£))



8. If the two schemes are not independent and P(4.B)) = py;, then
Hpen(PUQ)=H.(P)* 3 p,H'(Q),
i=1

where

H(Q) =- i P(B,|4,)log P(B,|4,).

o1
In the continuous set up if f(.) denotes the probability density
function associated with a random variable X defined in the interval
[a,b], then the continuous analogue of (1.1) turns out to be the

Boltzman’s H function is given by
b
Hy=- [ f(x)log f(x) dx. (1.2)

It may be noted that (1.2) is not the limit of the finite discrete
entropies corresponding to a sequence of finer partition of the

interval [a,b] when the norms tend to zero.

Another important aspect of interest in the study of entropy is
that of locating distributions for which the Shannon’s entropy is
maximum subject to certain restrictions on the underlying random
variable. Depending on the conditions imposed, several maximum
entropy distribution are derived  For instance, for a random
variable in the support of non-negative real numbers, the maximum

entropy probability distribution under the condition that the



arithmetic mean is fixed is the exponential distribution. The
rationale behind the study of maximum entropy principle is that the
probability distributions desired has maximum uncertainty subject
to some explicitlv stated known information The books by
Kapur(1989, 1994) gives a review of the various maximum entropy

models.

~ The Shannon’s entropy finds applications in several branches
of learning. In communication theory an aspect of interest is the
flow of information in some net work where information is carried
from a transmitter to receiver. This may be sending of messages by
telegraph, flow of electricity, visual communications from artist to
viewers etc. Things which tends to make errors in the transmission
is called noise and in general message cannot be transmitted with
complete reliability because of the effect of noise. In a source with
a finite number of messages, {xx}, k=1, 2, ..., n, the source selects
each of the messages at random with probabilities p(x;) and the

amount of information associated with the transmission of x; 1is

- log p(xx). The average information per message for the source is

I=-3%" p(x,)logp(x,).

k=1



This is referred to as the entropy of the source. This aspect in
communication theory was studied by several researchers such as

Fadeev (1956), Ash (1957), Reza (1971) etc.

Another field of application of Shannon’s entropy is
Economics, in connection with measurement of income inequality.
If there are N individuals in a society, there are N non-negative
amounts of individual income which adds upto the total income.
Each of the individual earns non-negative fractions yy, y2, ..., yx of
total income where y,’s are non-negative numbers which add upto 1.
When there 1s equality of income y; = y; = . = yy = I/N and in the
case of complete inequality y, =1 for some / and zero for each iz#j.
The quantity

HO) = Y, 1og(i)

i=1 yi
i1s the entropy of income shares. When there is complete equality
H(y) is maximum with value log N. A measure of income inequality

due to Theil (1967), is

log N ~ H(y) = 3, log(My,).

i=]



Ord, Patil and Taillie (1983) points out that the main draw back of
the above measure is that it is scale dependent and location

invariant.

Tilanus and Theil (1965) and Theil (1967) discusses how the
entropy concept can be used to forecast input output structures.
Cozzolino and Zaheer (1973) have used the principle of maximum
entropy for the prediction of future market price of a stock. Golan,
Judge and Miller(1996) give a new set of generalized entropy
techniques designed to recover information about economic systems

by extending the maximum entropy principle.

1.3 Some basic concepts in Reliability

The basic concepts in Reliability Theory, which are
extensively studied, are (1) the reliability function (2) the failure
rate and (3) the mean residual life function. If X is a random
variable representing the life time of a device, the reliability
function (survival function) of X, defined by

F@) = P(X>1), 120 (1.3)
represents the probability of failure free operation of the device at

time #(=0). Also

F@) = 1- F(p).



where F(¢) is the distribution function of the random variable X.
Defining the right extremity of F(x) by
L =1nf{x: F(x)=1},
for x</., the failure rate (hazard rate) is defined as

/(x)
h ] = .'.:._____.
)=

_ dlog F(x)
—

(1.4)
In the general case, for a random variable X with support -co<X<oo,
Kotz and Shanbhag (1980) defines the failure rate as the Radon-
Nikodym derivative with respect to Lebesgue measure on

{x:F(x)<1}, of the hazard measure

HB) = [H
7 F(x)
for every Borel set B of (-o0,L). Further the distribution of X is

uniquely determined through the relationship

F(x) = []'-H@)] exp {-Hc(-,x)} (1.5)

where H. is the continuous part of H. When X is a non-negative
random variable admitting an absolutely continuous distribution

function, then (1.5) reduces to

F(x) = exp{—j.h(t)dt}. (1.6)



It is well known that h(x) determines the distribution
uniquely and that the constancy of h(x) is characteristic to the
exponential mode! [Galambos and Kotz (1978)]. Further, for a
random variable X in the support of non-negative real numbers, a
failure rate function of the form

h(x) = (ax+b)™ (1.7)
characterizes the Exponential distribution specified by
F(x) = e™, x>0, >0 (1.8)
if a=0, the Pareto distribution specified by
F(x) = & (xta)*, x>0, a>0, k>0 (1.9)
if a>0, and the Beta distribution specified by
F(x) = R°(R-x)°, 0<x<R, ¢>0 (1.10)

if a<o0.

In the discrete set up, Xekalaki (1983) defines the failure rate
for a random variable X in the support of non-negative integers as

_ P(X=x)

") = s

(1.11)

It is established that A(x) determines the distribution uniquely

through the formula

F(x) = ﬁ[l—h(y)]. (1.12)



Further it is shown that if X is a random variable in the support of
the set {0, 1, 2, .} then a relation of the form

h(x) = (px+q)" (1.13)
holds if and only if X follows the Geometric distribution specified
by

Fixy=¢",x=0,1,2, .., 0<g<l (1.14)

>

if p=0, the Waring distribution specified by

(8).

F(x) = . ..., a b>0 (1.15)

,2,....n, k>0 (1.16)

if p<0.

For a continuous random variable X with E(X)<ow, the mean
residual life function is defined as the Borel measurable function

r(x) = E(X-x]X2x), (1.17)

for all x such that F(x)>0. If X is absolutely continuous, r(x) can

also be expressed as

r(x) = = Tﬁ(t)dt. (1.18)



The following relationship between failure rate and the mean
residual life function is immediate

hx) = L+ r'(x)

1.19
) (1.19)

Also the mean residual life function determines the distribution

uniquely through the relationship

Py = 19O exp{—ji} (1.20)

for every x in (0,£) A set of necessary and sufficient condition for
r(x) to be a mean residual life function, given by Swartz (1973), is
that along with (1.20), the following conditions holds

(1) r(x) 20

(i)  r(0) = E(X)

(1i1)  r'(x) =2-1 and
(iv) ji should be divergent.
s 7(%)

Kupka and Loo (1989) defines the vitality function as the Borel
measurable function on the real line given by

m(x) = E(X|X>x). (1.21)
The vitality function satisfies the properties
(1)  m(x) is non-decreasing and right continuous on (-, L)

(i) m(x)= x for all x<L



(111) lmll m(x) =1L
(iv)  lim m(x) = E(x)
Moreover
m(x)=x + r(x) (1.22)

and
m'(x) = r(x)h(x) (1.23)

Cox (1972) established that the mean residual life function is
constant for the exponential distribution. Mukherjee and Roy (1986)
observed that a relation of the form
r(x)h(x) =k (1.24)

where k is a constant, holds if and only if X follows the Exponential
distribution specified by (1.8) when k=1, the Pareto distribution
specified by (1.9) when £>1 and the Beta distribution specified by
(1.10) when k<1. The Pareto case is also established in Sullo and
Rutherford (1977). In view of (1.19), (1.24) reduces to

r(x) = (k-1) +c, (1.25)
where ¢ = r(0) = E(X). Heﬁce a linear mean residual life function
of the form

r(x) = ax +b (1.26)
is characteristic to the Exponential distribution specified by (1.8) if
a=0, the Pareto distribution specified by (1.9) if a>0 and the Beta

distribution specified by (1.10) if a<0.



For a discrete random variable X, in the support of the set of
non-negative integers, the mean residual life function is defined as

r(x) = E(X-x|X=x)

[F(x+D] Zl(v (1.27)

yaxel
The mean residual life function determines the distribution uniquely

through the relation

Fx) = leyr;—y%"—l[l-f(O)] (1.28)

where f(0) 1s determined such thath(x) =1. Further

r(x)-1
b x =
r(x+1)

1- h(x) = . (1.29)

Nair (1983) discusses the notion of memory of life distributions by
using mean residual life function and also classify life time
distributions as those possessing no memory , negative memory and
positive memory. Salvia and Bollinger (1982), Ebrahimi (1986),
Guess and Park (1988), Abouammoh (1990), Hitha (1991), Roy and
Gupta (1992), Mi (1993) also discuss the monotone behaviour of
discrete reliability characteristics such as failure rate and mean

residual life function.

Gupta and Gupta (1983) defines the moments of the residual

life distribution through the relation
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m,(x) = E[(X-x)"|X>x)] (1.30)
and obtains a reccurence relation satisfied by them. Further i1t 1s
established that in general one higher moment does not determine a
distribution uniquely and that the ratio of two higher moments will
be required to do so. As a special case, the variance residual life
function 1s

V(ix) = V(X-x|X>x)

= E[(X-x)}|X=x] - r¥(x). (1.31)
This concept was introduced by Launer (1984) in order to define
certain new classes of life distributions and to provide bounds for
the reliability function for certain specified class of distributions.

Gupta and Kirmani (1987) has established the following relations

w0

V(x) = F?x) j r(OF@)dt - r*(x) (1.32)
and
? = h(x) [V*(x) - r*(x)]. (1.33)

1.4 The residual entropy function

For a continuous non-negative random variable X,
representing the life time of a component, Ebrahimi (1996) defines
the residual entropy function as the Shannon’s entropy associated

with the random variable (X-f) truncated at #(>0), namely,
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jf ™) | f (x)

HU0 =150 198 Fa

dx, F(t)>0. (1.34)
(1.34) can also be written as
H(f, 1) = log (1)~ —Fl—,)!_/’(ﬂ log f(x) dx (1.35)

The residual entropy function can be expressed in terms of the

hazard rate through the relation

H(f, )=1 - mjf(x) log h(x) dx. (1.36)

H(f,t) measures the expected uncertainty contained in the
conditional density of (X-f) given X>¢ about the predictability of
remaining life time of the component. It may be noticed that
-o<H(f, t) << and that H(f, 0) reduces to Shannon’s entropy defined
over (0, ). It is established that H(f, ) determines the distribution
uniquely. Also

H'(f, ) =h(O)[ H(f, 1) + log h(1) -1] (1.37)

and

H"(f, )=h'O[ H{, 1) + log h(1)] + H'(f, 1) h(1). (1.38)

Given r(¢), if the domain is limited to a half line, the maximum
entropy occurs for the exponential distribution with mean 7r(¢).

Therefore

H(f, 1) <1 + log r(1). (1.39)
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It can be easily verified that the maximum entropy distribution of
(X-1) truncated at ¢ (>0) subject to the condition that the arithmetic
mean is fixed is the exponential distribution. From (1.42), the
finiteness of H(/f.7) 1s guaranteed whenever r(/)<x. It also provide a
useful upper bound for H(f,t) in terms of the mean residual life
function r(1). However, if additional information in terms of the
variance residual life function V(f) or equivalently, in terms of the
residual coefficient of wvariation ve(t) = v(1)/r(t), 1s available,
Ebrahimi and Kirmani (1996a) has proposed a better bound for

H(f,1) as follows. Suppose E(X?) < oo, then

H(f, N< V2 02 r*(1) + log{(2n)" (oljr(z) D(-60)}

0
where & 1s the solution of the equation

& r’(n) =1+ y(-9),
where y(x) = x ¢(x)/®(x), P(x) =1-¢(x) and ¢ and ® are the density
and the distribution function respectively of the standard normal

distribution.

Ebrahimi (1996) has also proved the following results

1. If F is an increasing (decreasing) failure rate distribution [IFR

(DFR)] then it is also a decreasing uncertainty residual life



(increasing uncertainty residual life) [DURL (IURL)]

distribution
2 Let I/ be a DURL(IURL) then

h(f)s (2) exp{l-H(f.0)}, 1-0.
3 Let / be a DURL (JURL) then
H(f, )< (=)1-log A(0)=1-log f(0).
4 Let I be a DURL, then
H(f, 1)< 1+log r(0)

and F be a IURL,

exp{H(f, 0) -1} < r(1).

He has also established there is no relationship between IURL
(DURL) class of distributions and the class of increasing failure
rate in average (IFRA) distributions. Subsequently Ebrahimi and
Kirmani (1996a) has extended 1 to the family of decreasing mean
residual life (increasing mean residual life) distributions, DMRL
(IMRL). Further, Ebrahimi and Pellerey (1995) used the residual
entropy function to introduce a new partial ordering for comparing
the uncertainties associated with two non-negative random

variables.



Recently Sankaran and Gupta (1999) has proved the following

characterization results using the functional form of the residual

entropy function.

()

(i1)

(iii)

(iv)

I Y is 2 non negetive randem variable admitting absolutely
continuous distribution function, the residual entropy
function of the form

H(f, 1) = log (at+bt), a>0 (1.40)
characterizes the Exponential distribution with survival
function (1.8) if =0, the Pareto distribution with survival
function (1.9) if >0 and the Beta distribution with survival
function (1.10) if 5<0.
A relation of the form

H(f, 1)= 1+log r(t) (1.41)
holds if and only if X follows the exponential distribution.
A relation of the form

H(f, )= a - log h(t) (1.42)
holds if and only if X follows the Exponential distribution
with survival function (1.8) if a=1, the Pareto distribution
with survival function (1.9) if a>1 and the Beta distribution
with survival function (1.10) if a<1.

If g(¢) = E(-log X|X>1), then a relationship of the form

H(f, )= cg(t) + d, ¢>0 (1.43)
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holds if and only if X follows the Weibull distribution with

survival function specified by
Fix) = e ™, a>0, b>0, 1>0. (1.44)
Further they have extended the concept of residual entropy function

to the entire real line and has established the following

characterization theorem of extreme value distribution.

If X is a random variable defined over the real line then the
residual entropy function of the form
H({f, h)=a m() + b (1.45)
where m(t) = E(X|X>1), characterizes the extreme value distribution
with survival function
qt

Fx) = ¢ ¢ | _wo<i<o0.

1.5 Discrimination between two residual life time distributions

Kullback and Leibler (1951) has extensively studied the
concept of directed divergence which aims at discrimination
between two populations. An axiomatic foundation to this concept
was laid down by Aczel and Daroczy (1975). Kannappan and
Rathie (1973) has obtained some characterization results based on
the directed divergence. The concept of generalized directed

divergence is discussed by Kapur (1968) and Rathie (1971).



Let P = (py, p2, ....Pn), O = (41, q2. ....qm) wWhere Zp,=1,

1

m

Zq‘:l_ be the two discrete probability distributions. Then a

measure of directed divergence between /2 and () 1s defined as

1.P.0) = 3 p,logte (1.46)
, q

If p, = q;, then (1.46) reduces to zero. The continuous analogue to

(1.46) turns out to be

1.0 = [ foog? D e (1.47)
g(x)

where f(x) and g(x) be the probability density functions

corresponding to the probability measures P and (J.

‘Let X and Y be non-negative random variables admitting
absolutely continuous distribution functions F(x) and G(x)

respectively, then (1.47) takes the form

I(X,Y) = I(F,G) = jf(x)logf (1.48)

) 4
g(x )
Recently Ebrahimi and Kirmani (1996a) proposed a measure of

discrimination between two residual life distributions based on

(1.48) given by



IF
I(X.Y.1) = I(F.G.1) = ji((’l‘; g%((;‘))/(]g;} (1.49)

where F°(f) = 1-/(1) and G(t) = 1-G(1).(1.49) can also be written as
ICX.Y.0) = H(f 1) + log G (1) j o) 105 g(x) dx.  (1.50)

Further they have studied the properties of J/(X,Y,t) and thcir

implications.

According to the minimum discrimination information (MDI)
principle, among the probability distributions satistying the given
constraints, one should choose that one for which directed
divergence from a given prior distribution is minimum. Ebrahimi
and Kirmani (1996a) has established that MDI principle when

applied to modelling survival functions leads to the proportional
hazard model, given in Cox (1972). If F() and G(¢) are the
survival functions of two random variables X and Y then a
proportional hazards model for the survival functions exists if the
relation.

G(x)=[F(x))?, >0, holds for all x.
Ebrahimi and Kirmani (1996b) has further proved that the constancy

of I(F, G, t) with respect to 7 is a characteristic property of the

proportional hazard model.
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The present thesis is organised in to six chapters. After the
present chapter which includes a brief review of literature on the
topic, we look into the problem of characterizing probability
distributions based on the form of the residual entropy function in
Chaprter 11 Accordingly characterization theorems are established
in respect of the Exponential distribution, Pareto distribution. Beta
distribution and the Extreme value distribution. We devote Chapter
11 to the study of the residual entropy function of conditional
distributions.  Certain bivariate life time models such as bivariate
exponential distribution with independent exponential marginals,
Gumbel’s bivariate Exponential distribution, bivariate Pareto
distribution and bivariate Beta distribution are being characterized

using this concept.

In Chapter IV we define the geometric vitality function and
examine its properties. It is established that the geometric vitality
function determines the distribution wuniquely. Further
characterization theorems in respect of some standard life time
models are also obtained. The problem of averaging the residual
entropy function is examined in Chapter V. Also the truncated form
version of entropies of higher order are defined. Further we look

into the problem of characterizing probability distributions using
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the above concepts. Chapter VI is devoted the study of the residual
entropy function in the discrete time domain. It is established that
in this case also the residual entropy function determines the
distribution uniquely and that the constancy of the same is

characteristic to the geometric distribution.



CHAPTER 11

CHARACTERIZATION OF CONTINUOUS
PROBABILITY DISTRIBUTIONS

2.1. Introduction

A . conventional approach to characterize a life time
distribution is by using the failure rate or the mean residual life
function. The works of Kotz and Shanbhag (1980), Gupta (1981)
and Mukherjee and Roy (1986) proceeds in this direction. As
pointed out in Chapter I the residual entropy function, being a
measure of the stability of a component, can be advantageously
used to describe the physical characteristics of the failure
mechanism and so a characterization theorem involving this concept
helps one to determine the life time distribution through a
knowledge of the form of the residual entropy function. The
residual entropy function 1is evaluated for some standard

distributions and is given as Appendix-I.

Some of the results mentioned in this chapter are being published in
JISA Vol 36, pp. 157-166.
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2.2 Characterizations using relationship between the residual
entropy function and the mean residual life function
Galambos and Kotz (1978) has observed that the three
characteristic properties of the exponential distribution namely the
lack of memory property, constancy of failure rate and constancy of
mean residual life function are equivaient. In addition to the above
if we add the property of constancy of the residual entropy function
one can see that the four properties are equivalent. This is stated as

Theorem 2.1 below

Theorem 2.1

Let X be a non-negative random variable admitting an
absolutely continuous distribution function with finite mean. Then
the following are equivalent.

(a) (1) = c, where ¢ is a constant
(b) () = r(0)
(c) P(X=t+s5|X=s5) = P(X>1)

(d)H({, 1) = H().

Proof:

We first show that (d) < (a). When (d) holds we have

H'(f, )= 0.



Using the expression for H'(f 7) given in (1.37) namely
H'(f 0= k() [H(f.1) - 1+ log h(1)],

we get

A TH.0) = 1+ log A(D]=0
or

h(y [H(H) - 1+ log h(1)]=0.
This gives either A(7) = 0 or A(t) = ¢, where ¢ = exp[l-H(f)].
This is same as (a).

When (a) holds using the relation
.
H(f,)=1- — x) log h(x) dx,
(f.0) 1"(1)!‘” ) log h(x)

we get
H(f,t) = 1-log ¢ = H()
which is same as (d). The rest of the proof follows from Galambos

and Kotz (1978).

Since properties (a), (b) and (c) are characteristic to the
exponential model, in view of Theorem 2.1 it may be observed that
the constancy of the residual entropy function is characteristic to

the exponential distribution.
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Our next result provides a characterization theorem for the
exponential distribution using a functional relationship between the

residual entropy function and the mean residual life function.

Theorem 2.2

Let .Y be a non-negative random variable admitting an
absolutely continuous distribution function such that E(X)<ew. If
H(f.t) be the residual entropy function and »(¢) be the mean residual
life function, then a relation of the form

H(f,t) — r(t) - H(f) - r(0) (2.1)
holds for all real 7(20) if and only if X follows the exponential

distribution.

Proof:

When (2.1) holds we have
H'(f,1) - r'(t) =0. (2.2)
Using (1.19) and (1.37) in (2.2) we get
h(O[H(f 1) - r(1) -1 + log h(1)] = -1
or
h(f)[c-1 +log A(1)] = -1, (2.3)
where ¢ = H(f) - r(0). Differentiating (2.3) with respect to f and

rearranging the terms we get



h'(t){ctlog h()} = 0. (2.4)
(2 4) gives either A'(f) = 0 or log A(t)~—c. In either case h(f) is a
constant. Since the constancy of failure rate is characteristic to the

exponential distribution the only 1f part of the theorem follows.

Conversely when X follows the exponential distribution with

survival function
F()y=e*, 120, A>0,

bv direct calculations we get

1
r(t)y =—
(1) 1
and

H(f,.0)=1-log 4.

(2.1) is immediate from the above expressions.

It may be observed that (2.1) can be written in the form

H(f) - H(f,1) = r(0)- r(1). (2.5)

In connection with his study relating to memory of
distributions, Muth (1980) defines the virtual age, v(/), of a

component at time ¢ as

v(?) = r(0) - r(1).



Also when v(#) =0, r(f) = r(0) and there is no memory. So
Theorem 2.2 implies that the excess of entropy resulting from the
functioning of the component upto time 7 1s equal to the virtual age

of the component 1f and only 1f the distribution 1s exponential.

The following theorem provides a characterization for a
family of distributions using a possible relationship between the

residual entropy function and the mean residual life function.

Theorem 2.3

For the random variable X considered in Theorem 2.2, the

relation
H(f,1) - log r(t) = k (2.6)
where & = H(f) - log r(0), holds for all real # (= 0) if and only if X
follows any one of the following three distributions
(1) the Exponential distribution with survival function
F(x)= e* , x>0, 1>0, (2.7)

(11) the Pareto distribution with survival function

F(x)= ( ) , x20, a>1, 0<a<w, (2.8)

X+a

(111) the Beta distribution with survival function

F(x)= (1—%) 0<x<R, ¢>1. (2.9)
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Proof:

When (2.6) holds, we have

i = 20

Using (1.37) and (2.6) the above equation can be written as
h(t) r(t) [k-1+log h()r(n)} = r'(1).
Writing ¢(f) = A(t)r(t) and using (1.19) we get
c(t) [k-1+loge(D)] = c(1) - 1. (2.10)
Differentiating (2.10) with respect to ¢ and rearranging the terms we
get
c'(t) [k-2+log ¢c(1)] =0 (2.11)
(2.11) gives either
¢'(t) =0 or c(1) = ¢'*.
In either case
h()r(t) = p, (2.12)

where p is a constant satisfying (2.11).

From Mukherjee and Roy (1986), (2.12) characterizes the
Exponential distribution for p=1, the Pareto distribution for p >1
and the Beta distribution for p<1. Hence X follows any one of the

three distributions.
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The if part of the theorem follows from the expression for

H({f.t) and r(t) given below

Distribution r(t) H(f.1)
Exponential 2! 1- log A
Pareto I +a a
— I+ —log
a-1 ¢ [ +a
Bet R—-1t -
et l—lc—log(Lj
c+1 R-1

Observing that (2.6) can be written as
r(t) = pexp{-[H() - H({.D]},
where u =E(X), we notice that for the above class of distributions
the expected remaining life increases as the excess of entropy

decreases and vice versa.

Recently, in connection with their study on ordering and
asymptotic properties of residual income distributions, Belzunce,

Candel and Ruiz (1995) consider the random variable
X(1) = —’§|X>x

to define a new class of distributions and used the proportional

failure rate defined by

p(t) = th(t) (2.13)
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to derive a model for income distributions. We give below a
characterization for the family of distributions considered in

Theorem 2.3 using the above concept.

Theorem 2.4

Let X be a non-negative random variable admitting absolutely
continuous distribution function such that E(X)<ow. The
relationship

H(f,t) + log p(t) = log kt (2.14)
holds for all 20 if and only if X follows
(1) the Exponential distribution with survival function (2.7) if k=e,
(i1) the Pareto distribution with survival function (2.8) if k>e and

(111) the Beta distribution with survival function (2.9) if k<e.

Proof:

The proof is immediate, observing that (2.14) can be written
as
H({f,t) + log h(¢) = log &. (2.15)
Differentiating (2.15) with respect to ¢ we get

PPN U]
H(/ 1 R

Using (1.37) and (2.15), the above equation can be written as



37

h(1)
- = log k -1. 2.16
W) 0g ( )
(2.16) gives
h(1) = [(log k - 1)t + ¢} (2.17)

where ¢ is a constant. Inview of (1.7), X follows the Exponential
distribution when k=e, the Pareto distribution when k>e¢ and the
Beta distribution when k<e.

2.3 Characterizations using the residual entropy function when
the support of the random variable is the real line

Kotz and Shanbhag (1980) has observed that the concept of
failure rate and the mean residual life function can be used with out
much difficulty if the support of X is the set of real numbers. They
defined the failure rate as the Radon-Nikodym derivative with

respect to Lebesgue measure on {x: F(x)<1} of the hazard measure

H(x) = [dF(x)/[1- F(x),

for every Borel set B and the mean residual life function as a real

valued Borel measurable function
r(x) = E(X- x|X>x),
for all x such that P(X>x)>0. Analogously for a continuous random

variable X defined over R, we define the residual entropy function

as



H(f, )= - I{((j; If((j; dx, -00<t<
R
- % _!.f(x) log h(x) dx. (2.18)

The following theorem provides a characterization of the extreme

value distribution using (2. 18).
Theorem 2.5

Let X be a random variable in the support of R, admitting an
absolutely continuous distribution such that E(X)<o and let H(f 1)
be defined as in (2.18) The relation

H(f,t) +r(t) = 1-t (2.19)
holds for all real ¢ if and only if X follows the type I extreme value

distribution with survival function
F(x)= e ,-0<x<w (2.20)
Proof:

When (2.19) holds we have
H(f 1) + ——
o |7

or

w

jﬁ(x)dx= [-1-H(f,0] F().

t
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Differentiating the above equation w.r.t. ¢t and simplifying we get
(L-1=H(f OV F'()-H'(f,0) F() =0 (2.21)

Using (1 37), (2 21) can be written as

log A(t) =t

or
h(t) e
Now the relationship
F(x) - exp{—fh(z)dz} (2.22)

gives

Fx)=e*
as claimed.

Conversely when the distribution of X is specified by (2.20),

using (2.18), we have

I %
H(f,0=1- = .!'xe“ e dx

which is same as (2.19).
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Gompertz (1825), in connection with his empirical studies on
human mortality, consider a failure rate function (force of
mortality) of the form

ht) = pg'. >0 p>0 g>1

and obtained a truncated form ot tvpe | extreme value distribution
specified by

F(1) = e ?9 Deea >0 (2.23)
as a model for life time data. In the light of Theorem 2.5 it is
immediate that the relation

H({f,t) +m(t) log g =1,

when m(t) = E(X]|X>1)= r(t) + 1, holds for all real />0 if and only if

X follows (2.23) with p=1.

Theorem 2.6

For the random variable X considered in Theorem 2.5, with

lim f(x)=0, the relation

H(f,1) + r'(t) = a, (2.24)
where a is a constant and r'(7) denotes the derivative of r(f), holds
for all real 7 if and only if X follows the logistic distribution with

survival function

F(x)= ———, -w<x<w, ¢>0,k>0. (2.25)
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Proof:

When (2 24) holds we have
H'(f.t) —r"(1) (2.26)
Using (1.19) and (1 57), (2.20) can be written as
hA(O[H(ft) + log A(1) = 1] == h(1) r'(1) - r()h'(1).
In view of (2 24) the above equation simplifies to
A log h(t) + a - 1]1=-r()h'(1)

or
d
1 _ &’—[logh(t)]
r(t) logh(t)+a-1

This gives
%[log!ﬁ(x)dx] = %[log(logh(l)Jra—l)]. (2.27)
From (2.27), we get
[FQodx = b [log A1) +a - 1],
where log b is the constant of integration. This above equation
gives
_m,):bi’ﬂl

h(t)

or

—f{)=bn(1).

Integrating from -oo to f and using the condition lim f(x)=0 we get



+Z

F@) =-b h(1). (2.28)
Since /°(t) and h(r) are non-negative, for (2.28) to be valid we must

have #<0. Thus (2.28) gives

Sy =a O 0]
where az—%>0. The rest of the proof follows from Galambos
(1992).

Conversely when the distribution of X is specified by (2.25)

by direct calculation we get

¢
|+ ke @

(1) = (”kﬂ Jlog(l+ke “)
kce *

h(1) =

B log(1+ ke ™)

H({f,H) = 2 -1lo
.1 gc o

and

H{f, )+ r'@)=1-1logc,

which i1s a constant, so that the conditions of the theorem holds.

In the sequel, we give characterization theorems for the type I
extreme value distribution and the logistic distribution using
functional relationships between failure rate, mean residual life

function and the residual entropy function.
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Theorem 2.7

For the random variable considered in Theorem 2.5, the
relation

H(.0) +r(1)y=1-log h(r). (2.29)

holds for all real ¢ if and only if X follows the type I extreme value

distribution with survival function

1
ot

Fx)=em™ |, m20, -c0<x<oo. (2.30)

Proof:

When (2.29) holds, we have

0

H'(f,.1) + r'() = - e

(2.31)

Using (1.19) and (1.37), (2.31) can be written as

h(O[k - r(1) - 1] + h(1) r(1) =1 = - ZT(:))

or

Wy , 1

R () k(1)

1
If u(t) = ——, the above equation takes the form
h(1) 9

u'(t) +u(t)=0
which is a linear differential equation whose solution is

u(t) = me’



e

or

el

b4

h(t) = i

with m>0. From (2.22) we have
— -1
F(x) = exp {—;e‘}

The if part tollows from the expressions for #(f) and r(/) namely

1
h() = — ¢

m
1 =2 1.

r(ty=em Ie " dx,
5o that
1, t,
Hf, )=1-t-em

-~

=1 - log h(1) — r(1).
which is same as (2.29).

Theorem 2.8
The relation

H(f,t) + r(1) =2 - log h(1)

holds for all real 7 if and only if X follow the logistic distribution

with survival function (2.25).



The theorem follows by proceeding along the same \ities as in

the proof of Theorem 2.7, and so the proof is omitted.

2.4 Conditional measure of uncertainty

For a non-negative random variable X with probability
density function f(x) and survival function F(x), Sankaran and

Gupta (1999) define a conditional measure of uncertainty as

M(f, 1) = - E(log f(X)|X>1)

II

wal’
e
~t—3

f(x)log f(x) dx. (2.32)

M(f, 1) is related to H(f, ¢) through the relation

M(f, t) = H(f, 1) - log F(1). (2.33)

Observing that
Ih(x)dx = - log F(1)
0

represents the total failure rate, (2.33) implies that the conditional

measure of uncertainty is simply the sum of the residual entropy

function and the total failure rate

We give below a characterization theorem for the exponential
distribution using the conditional measure ot uncertainty defined by

(2.32).
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Theorem 2.9

For a non-negative random variable X with E(X)<x, a relation

of the form

M(f, 1) - pt1) = &,

(2.34)

where p(7) is the proportional hazard rate defined by (2.13) and 4 is

a constant, holds for all real #(20) if and only i1f X follows the

exponential distribution with survival function (2.7).

Proof:

When (2 34) holds, we have
M(f, 1) = p'(1)
Using the relationship
M/, 1) = h(t) [M'(f, 1) + log f(1)],
(2.35) becomes

h() IM'(f, 1) + log f()) = 1 B'(1) + h(1)

or
h(t) [k +t h(t) + log f(1)]} =1 h'(1) + h(1).
Since
KO _ L0 + h(1)
Wy ()

(2.37) can be written as

d k —
og /(1) - - log /() = =

(2.35)

(2.36)

(2.37)
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which is a linear differential equation in log f(#) whose solution is

i)y =xre?*

where 4 = -¢'* Thus X has the exponential distribution.

Conversely when the distribution of X is specified by (2.7),

by direct calculation we get
M({f,t)=1-log A+ At,

p(t) = At

and

M(f, ) -p(t) =1 - log 4,

which 1s same as in (2.34).

In the next theorem we look into the situation where M(f, 1)
is a linear function of A(¢). Here we consider the situation where

domain of X is the set of real numbers.
Theorem 2.10

For the random variable X considered in Theorem 2.5, the

relation
M(f, 1) =a+ % t h(t). (2.38)
with a= log /27 e, holds for all real 7 if and only if X follows the

standard normal distribution with probability density function



e 2, -o<x<x (2.39)

J(x) =

Proof:

When (2 38) holds, we have
M'(f, 1) =2 [t h'(1) + h(1)]. (2.40)

Using (2 30) and (2 38)., (2 40) can be written as

‘ _ L0 5
a+ 5 h(t) + log f(1) = Yat {f(l) +h(1):‘+ %
or
L'_(!l - 2_ y = a - |'2 g
0 ; log f(1) = (a - 2) ’ (2.41)

(2.41) is a linear differential equation in log f(/), whose solution is
log f(1) = - (a - 4) + bi*
where b is the constant of integration. Therefore

2
H

e ?, -00<x<ow,

1
f(’)_ m >

observing that b= - 2 for f(¢) to be a probability density function.

Conversely by direct calculations we have

h(t) =




+V

so that

A1) = a s ; hir)

The following theorem characterizes the standard normal
distribution using a functional relationship between M(f, ) and the

second order moment of residual life
Theorem 2.11

For the random variable consider in Theorem 2.5, the relation
M(f, t) - 2 E(X*|X>1) = A (2.42)
where A i1s a specified constant, holds for all real 7 1f and only if X

follows the standard normal distribution with density function

(2.39).

Proof:

When (2.42) holds, we have

w

F() M(f, 1) - % Ixzf(x)cix =AF().
'
Differentiating the above equation with respect to ¢ and simplifying
we get
M'(f, ) - h(¢) MKS, 1) + Y2 £ (1) = - Ah(D). (2.43)

Using (2.36) in (2.43) we get

log f(1) = - A-%4 2.
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Therefore

12
N

e !

. 1

_ |
where ¢ = =,
Vo=t

since / is to be a probability density function.

Conversely 1f the distribution of X is specified by the density

function (2.39), from (2.32), we have

1 51 |
MW, 1) = - —— e ?lo ( e :) dx
R ) I NS & \Vzr

] < X'Z ] 2
= log VY27 + — (—j e~ dx
® 1°(1) J,‘ 2/)\2nm

= log V27 + ¥2 E(X21X>1)

which 1s same as (2.42).



CHAPTER I1I

RESIDUAL ENTROPY OF
CONDITIONAL DISTRIBUTIONS

3.1. Introduction

The fundamental constituents of a multivariate distribution
are the marginal and the conditional distributions. It is well known
that, except in the case of independence, the marginals does not
determine the distribution uniquely. Conditions under which a set
of marginal and conditional distributions uniquely specifies the
distribution has been investigated by Abrahams and Thomas (1984),
Hitha and Nair (1991) and Gelman and Speed (1993). In many real
life phenomena information about the conditional densities are
easily available. So the question of determining the joint
distribution using specified conditionals has received considerable
attention in recent times. The works of Arnold (1987), Arnold and
Press (1988), Arnold and Strauss (1988) and Geetha and Nair(1997)

proceed in this direction.

Some of the results in this chapter have appeared in the Statistical
Methods (2000), Vol. 2(1), pp. 72-80.
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For two random variables X and Y in the support of set of
integers, the entropy of the conditional distribution of X given Y=y

1s defined as

HXY=y) = > plx]y)log p(xiy) (3.1)

where p(xiy)is the conditional probability mass function of X given

Y=y. When the support of X and Y are the set of real numbers, then

(3.1) takes the form

H(XY=y) = - [ /(x|y)log f(x|y)dx

where f(x|y) is the conditional probability density function of X
given Y. The conditional entropy of X given Y is defined as the
weighted average of the entropy of the conditional distributions,
namely
H(X|Y) = Ev[H(X|Y=y)].

Analogous to (1.34) one can define the residual entropy of
conditional distributions. The form of the same can be
advantageously used to arrive at bivariate distributions which have
applications in modelling life time data for systems having more

than one component.
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3.2 Definition

Let X = (X}, X2 ) be a non-negative random vector admitting
an absolutc!y continuous distribution with density function f(x,. x;),
survival function /(x,.x,), marginal density of X, fi(x,). i=1.2. and
conditional density of X; given X,= x,, g (x, Ix,/), i, J =12, i%j.
Using (1.34), the residual entropy function of the conditional

distribution of X, given X, =, turns out to be

T ACI AN ACA N
Hi(g,h,1a) = ‘!z;j(l,;lj) o Gl

de,ij=12i=%j (3.2)

where (7,(l,ltj) is the conditional survival function of X, given X, =/,

If X represents the life time of the components in a two
component system, Y,=(X; - {;) given X>t,, X; = {; corresponds to
the residual life of the first component subject to the condition that
it has survived up to time ¢; and that the second component has
failed at time f,. The Shannon's entropy corresponding to the
distribution of ¥, simplifies to (3.2) with i=1. Similar interpretation
can be given for Ha(g2,01,42 ) .

Since

w o

F(t\,tz) = J‘J‘f(xnxz)dxzdxl

ity
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we have
ol (1,.1,)
e ~If(r 1,)dx, .
Also
gl(xll’z) - _,/b(-\'x"z)
G,(1]1,)

Ij(x,.lz)élx,

[

Hence (3.2) can also be written as

oF (1,1,
Hl(gl,ll>12 ) = 108 (_{ (att‘ th)]+ (GF(t t )) If(xlat )lng(xlat )dx

‘J,Z

(3.3)
and

6’1 aF(’h’ )

Hi(ga,t1,12 ) = log (_ (3117(11,12))+
=

j jf(’l’xz)k)gf(’nxz)dx

(3.4)

3.3 Characterization theorems

In  this section we discuss characterization theorems
associated with some bivariate models based on the functional form
of the residual entropy function. Our first result focuses attention
on the constancy of the residual entropy of the conditional

distributions.
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Theorem 3.1

Let X = (X,.X;) be a non-negative. non-degenerate random
vector admitting an absolutely continuous distribution function with
respect to Lebesgue measure. The relation

Hi(gti,t2)= ¢, i=1.2 (3.5)
where ¢,’s are constants, holds for all real ¢,,/; > 0 1f and only if X
is distributed as a bivariate exponential with independent

(exponential) marginals.

Proof:

When (3 5) holds with/ = 1, using (3.3) we can write

| OF(1,1,) _ OF(1,,1,) log (_ aﬁg,,tz)

a’l a’z it )+ !f(x"’l)logf(xl,’z)(jxl .

2

Differentiating with respect to 7, we get

oF (1,,1,)
ot

2

c1 f(th,12) = f(1h,12) + f11,12) log (— )-f(ll,’z) log f(,12).

Since f(!1,12) >0, the above equation can be written as

log (_ AF(t,,1,)

-1 1,12) = -1
a, j og f(11,12) = ¢,

or
COF(t,1,) _

o, ki f(1h,12) (3.6)

with k; = e%'>0. Differentiating (3.6) with respect to f; we get



Olog f(1,1,) _ _ 1
ot k,

Proceeding along similar lines with /=2 in (3 5) we get

Olog /(t,f) _ 1 4 g
&y k,

Using the argument in Galambos and Kotz (1978, p.128) we see

that f(f,,f2) is proportional to exp{—;‘—tl —kitz} The condition

1 2

uﬁf(tl,tz)a'tza'tl =]
00

gives
fltita) = 2y Aaexp{eAg, = At} 1tz 20, (3.7)

with A, = L, Ay = L>0, as claimed.
kl kl

Conversely when the distribution of X is specified by (3.7),
by direct calculations we get

Hl(gi’tlytz ) = l d log 2’1, l =l’2

so that the conditions of the theorem holds.

The following theorem looks into the situation where the
residual entropy function of the conditional distribution of X, given

X, = 1, 1s log linear in ;.



Theorem 3.2

Let X = (X;,X;) be a non-negative, non-degenerate random
vector admitting an absolutely continuous distribution function and

him  f(x1.x2) (>0) exists. The relation

v

H{g:, t, t2) =log (At, + B, (1)), ij=12i=%j (3.8)
where B,(1,) are non-negative non-increasing functions of 7, holds
for all ¢y, 1,>0 if and only if X follows
(1) the bivariate distribution with exponential conditionals

[Arnold and Strauss (1988)] with probability density function
S(x1,x2) = k exp {~ Bix, - px, -ﬂjxlxz}’

k, Br, P2, B3 >0, x1, x2>0 (3.9)
1f4=0.

(11)  the bivariate distribution with Pareto conditionals [Arnold
(1987)] specified by
flx1,x2) = ky (1+ ¢; x1+ ¢2 X2t 3 x,xz)'d;
ky, c1, ¢z, c3 >0, d>1, x3, x>0, (3.10)
ifA>0
(i11) the bivariate distribution with Beta conditionals specified by

S(x1,x2) = k2 (1- a1 x1- a2 x2+ a3 x1x2)°. ky, a1, 2>0, p>0,

1 1-ax

171
l-p<as/ayaq £1,0<x1<—, 0<x;< —11_
a, a, —a,x,

(3.11)

if 4 <0.
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Proof:

When (3 8) holds with / =1, using (3 3) we can write

=~V Af A
F0) o, [ A, [ Fext)log £(x,.1,)d,
o, - l\ (‘?’) ) .

_al,,1)

cl,

log(An+Bi(12)).

Differentiating the above equation with respect to f; we get

aF(,1,)

S, 12) + f(11,12) log [— a,

J'f(’l,IZ) log f(11,12)

OF (1,,1,) 1
= f(t1,12) log(At1+B,(12)) + 4 L . (3.12
J(ry,12) log(An1+By(12)) o AT B ( )

Dividing (3.12) throughout by f(f1,12) (>0) and setting

- f(¢,,t! ! !
21(thut) = S, zl(A‘+Bl(z)), (3.13)
oF(,,1,)
ot,
(3.12) can be written as
z1(11,12) [log z1(11,12) -1]= 4. (3.14)

Differentiating (3.14) with respect to f; and solving the resulting

equation we get

z1(t11,12) = c1(12) (3.15)
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where c¢i(f2) is independent of 7. Similarly differentiating (3.14)

with respect to 7; and proceeding along the same lines we also get

z1(1h,12) = ca(ty) (3.16)

where ¢:(fy) 1s independent of For (3 15) and (3 16) to hold

simultaneously we should have
Z}(l],fz)zkl (3]7)
where k; 1s a constant.

Similarly when (3.8) holds with i 2 and if

_f(txatz)(Atz + Bz(’x))
OF (t,,1,)
ot

z2(t1,12) =

we can also get
z2(t1,12) = ks (3.18)

where k; is a constant. From the monotonicity of x (log x-1), it

follows that k; = k5. Let k1= k2= k.

From (3.13) and (3.17) we get

oF (1,,1,) _
o,

k -f(tl,tz) [At|+Bl(f2)].

Differentiating with respect to #; and rearranging the terms we get

dlog f(t,t,) _  —(k+A)
o1, At + B/(t,)

(3.19)
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or
)
flt,12) = my(12) {4, +B,(1))] ~ .4 =20, (3.20)
Proceeding on a similar lines we also get
Jlti12) = ma(ty) [..4/3 +b’z(/,)] ' (321)

Ast; - 0 (3.21) gives

kn-!]
¢/
2

f(1y, 07) = m.(tz)[Bz(tl)]‘("A

or

k+ 4N
mi(t2) = f(11, 07)/ [Bz(u)]’(‘i?» (3.22)

Similarly (3.20) gives

my(t2) = f(0", 13)/ [Bl(tz)]_(hTA) (3.23)

Also as 13 —> 0" (3.20) we get

S, 07) = mi(0) [4¢, +B,(O)]_(£;-A). (3.24)

Similarly from (3.21)

S0, 12)= m(0) [41, +Bz(0)]"[k‘f7«i). (3.25)

From (3.20), (3.23) and (3.25) we have



(') %)
Sty = A2 B0 [A’Iiﬁz(o)] ,(0) (3.26)

|
VoA

[B,(1,))]

similarly from (3.21), (3 22) and (3.24) we have

AL By 1AL+ BO)  m(0)

flty.12) = Ty (3.27)
[B,(1,)]
Equating the two expressions for f(¢,,12) we get
-“-'-'4] Tk A
{”BIA(Z) AL+ B, (0] " 7 ma(0)
A ( d t{A) [ "J_",’\J
= {1+ BZZ:‘) (At + B,(0)] \ "m1(0).
That is
(k+.4) ,(v‘_ii”}
Aty A At, |V {21
1 1 2 B O A O
{HBI(’Z)} [ +Bz(0)} [B,(0)] m2(0)
a TS, 1 ()
= 2 1+ — B,(0)] * * 0). (3.28
[HBZ(A)} { +B,(0)ji [B,(0)] my(0). (3.28)
But
[BZ(O)]”[T) m(0) = [81(0)]'[ z )ml(O) = f(0", 0") <wo

(3.28) can now be written as



[ At } [ At, } { At, H At }
1+ 1+ = |1+ 1+
B, (1,) B, (0) B,(1,) B,(0)

or

S S A S SRS S A
t,B,(1,) 1,B,(0) B,(,)B,(0) 1,B,(t,) 1,B,(0)  B,(,)B,(0)

(3.29)

Since (3.29) is true for all real ¢, 1 20 we may take both side of

(3.29) equal to 6, where @ is a constant. This gives

(41, +B,(0)15,(0)
[1+68B,(0),18,(0)

Ba(1)) =

and

(41, +5,(0)]5,(0)
[1+6B,(0),1B,(0)

B](/z) =

Substituting for Bi(#2) in (3.26) we get

T k+ AN

() A, Al ROy
f(t,12) = m,(0) {B,(0 1+ ——+—L+ A1, 3.30
2(0) [8,(0)] 50 50 (3.30)
which is of the form (3 10) with k&, = m;(0) [B (0] A , ¢ = ~i~,
B,(0)

A k +
¢ 7 -———_ ¢y = A0 and (/*——i If A>0 since RB.{r) are non-
B,(V) A

negative functions of 7, we have ki, ¢y, ¢z, ¢3 >0.
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If A<0, (3.30) takes the form.
fUn0) =k (1- ay - az 1 + a3 L)’

with k; ,a),a@ >0, p>0. Further for f(1, f2) to be a probability

. . 1 l-a,t
density function we should have 0<f;<— and 0<t3< ———.
a, a, _a.ztx

When A=0 (3.12) reads as

S(1h,12) 108(—M) + f(11,02)- f(1,12) log f(11,12)= f(#1,12)log Bi(12)

2

or
_ A1)
a
logi———>—>% = log By(f2) - 1.
J@,,0)
This gives
A, 1 1
JAULL) L g ) s, 1),
a, e

Differentiating with respect to f; and rearranging the terms we get

Slog f(t,,1,) _  -e
a, B, (1,)
or
tog f(11,12) 4 m (12) (3 31)
L JUhL ) = —— I~ 2)- 30
B, (1,) ‘

Proceeding on similar lines we also get
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log f(11,02) = 1, + my(ly). (3.32)

—e
B, (1)
When 1; > 0" in (3.31) we get

lng(0+, 12) = ml(lz).

Also
log f(11, 07) = my(h).
Further
log f(11, 07) = B"(eo) (1 + my(0)
and
log (07, 13) = 5.00) 1, + my(0).

Hence from (3.31) we get

log f(11,12) = B o+ B:(O) 13 + my(0) (3.33)
and from (3.32) we get
. —e
log f(1,,17) = Bz([]) 1, + BI(O) 1, + m(0). (3.34)

Equating the two expression for f(11,/2) we get

v =m0y S+
1 2 2 - 2
B.(1,) B,(0) B,(1,) B, (0)

{y + m(0) (3.35)

But since m;(0) = my(0) - f(0 ., 07), (3 35) takes the form
- :,I i I _,.] i I
’ZBI(’Z) lsz(O) [182(’[) ’181(0)

Since this i1s true for all real ¢, 1 > 0, we should have



-1 1 -1 1
+ = + =0
1,B,(t,) t,B,(0) t,B,(¢) t,B,(0)

where 6 is a constant. This gives

B, (0
Bz(tl) = __2£)—
1-6 t,B,(0)
and
B, (0
Bilta) = — )
1-6 t,B,(0)
From (3.33) we get
log f(t1,12) = = 1 +eO 1 1 + m4(0)
1,¢2) = 1 2 142 2
B,(0) B,(0)
so that f(#,,f2) has the form (3.9) with & = log m(0), B, = 3 :0)’
1
_e . .
P2 = and f#3 = e6, which are non-negative.
B,(0)

The if part of Theorem 3.2 follows from the expressions for
the residual entropy function of the conditional distribution of X,
given X, =t when the distributions are specified by (3.9), (3.10)

and (3.11) respectively given by l-log(f1+ f312),
d/d-1 d/d-1 1_+_ d/d+1 d/d+1 _
log{< 3 +£ Gz and log {- t +£ -y, |
d-1 d-1\c +cy, d+1 d+1 al+a3t2J

with similar expression for Hy (g;,f1,f2 ) .




If B,(4,) in (3.8) are linear functions of 7, say a, + b,1,, we

have the following theorem.
Theorem 3.3

For the random vector X = (X;, X;) considered in Theorem
3.2, the relation.
H,‘ (g,‘, 11, 12) = lOg (a, + b,‘ t; + bj tj) I,_] = 1, 2, i ;tj

holds for all real #;, £ >0 if and only if X follows

(i) the bivariate exponential distribution with probability density
function
f(t, 1) =crexp A, -A,0,}, c1, A1, A2>0

if b, =0,1i=1,2

(11) the bivariate Pareto distribution specified by
fltit2) = ¢ (L kit + k1), ca, ky, ko, 1y, 1250, k3>2
if6>0,i=1,2
and
(111) the bivariate Beta distribution specified by

a 1 1-at
S 02) = ¢ (1—0,1, —azlz) Y,an, da, ay, 30, 0<1<— | 0y < L

a, a

2

1£b,<0,1=1,2

The proof is analogous to that of Theorem 3.2 and hence omitted.
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For a random vector X = (X;, X2) admitting an absolutely
continuous distribution function in the support of R;, it is special
interest to consider another type of conditional distribution namely
the conditional distribution of X; given X;>¢,, i, j =1, 2, i #j. In
life testing experiment if (X;, X,) represents the life time of the
components in a two component system the above conditional
distribution focuses attention on the distribution of the i'"
component subject to the condition that the other has survived up to

time ¢, The residual entropy of the conditional distribution of X,

given X; >x; is

f(xllX2>tl) f(X1|X2>IZ)
F|X, >1,) °8 F(|X, >1,)

X1

Hl‘(fl’ tl) 12) = - I

1

& (ll ’ Z) F(’lle>’z)

]Ef(XIIXZ>IZ)10gf(Xl‘X2 >1,)dx;  (3.36)

Since F(1,,1,) = F(1|X, >1,) F,(1,), where F(1)= P(X,>1,), i=1, 2, we
have

FUh) _ i xam0) o)
ct

1

so that

[ | X2> 1) = _‘—1 (3’*(11,/2)‘
£y (1) a
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Also
— F(,,t)
1’(1“/\/2 >12) = Tl__l_
FZ(IZ)
Hence the residual entropy of the conditional distribution of X

given X2>1; can also be written as

] A (x,,1,)

H‘(f], 1, 12) = 1+ —
! Fa,.6), &,

lOg h](X],Iz) dx1 (337)

where h=(h,, h;) is the vector valued failure rate considered by

Johnson and Kotz (1975), namely h=(h,h;) with

5103;:(11,12)
a. '

J

hj(tl,t2)= -

Similarly

o

. 1 aF(,,x,)
H,(fi, t1, 12) = 1+ = D727 log ha(ty, x2) dxs (3 .38
2 (N1, Ly, 1) I"(t,,tz)J &, g ha(t1, x2) dx2 (3.38)

5}

The following theorems aims at characterizations of certain

bivariate distributionsbased on the forms of H,'(f,, ty, t7) i=1, 2.
Theorem 3.4

Let X = (X1, X2) be a non-negative non-degenerate random
vector admitting an absolutely continuous distribution function with

respect to a Lebsegue measure. The relation

H (fi, ti, t2) = pi, i=1, 2. (3.39)
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where p;’s are constants, holds for all real ¢, ¢ 20 if and only if X
is distributed as a bivariate exponential with independent

(exponential) marginals.

Proof:

When (3.39) holds with i =1, using (3.37) we have

(pl'l) F(tl’tz) =

j% log hi(x1, 12) dx; (3.40)

f 1
Differentiating (3.40) with respect to #; we get

F(,.t) _ F,L,)

»i-1) a, a. log hi(1, 12)
: (1,1 . _
Since M>O, the above equation can be written as
1
log hi (14, 12)= (pr-1)
or

h(h, 12)=eP = 2, (>0) (say)
Proceeding along similar lines with i = 2 in (3.39) we get
ha(ty, 12)=e'2 " = 2, (>0). (say)
From Galambos and Kotz (1978) we have
[7(1,.4,) = expl{—Ai—Aata}, 1. 17 20,

as claimed.
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Conversely when X is specified by (3.7), by direct calculation
we get
H (f,, 11, 12) =1- log 4,, i=1, 2.

so that the condition of the theorem holds.
Theorem 3.5

For the random vector X, considered in the Theorem 3.1, the

relation
H:(f,, 1y, 12) = log(at;+b,(1)), i, j =1, 2, i#j (3.41)
where b,(1;) are non negative function of ¢, (>0) holds if and only if
X is distributed as
1. the Gumbel’s bivariate exponential distribution with survival
function
F(1,,1,) = exp{-aiti-aat2-0112}, ai, az, 1, 1,20, 0<6<a;a,

(3.42)
if a=0.

2. the bivarite Pareto distribution specified by
F(ll,lz) = (l+a11|+a212+b1112)"', a,,az,c,t,12>0, O<bS(C+1)alaz

(3.43)
if a>0 and

3. the bivarite Beta distribution specified by



— 1
F(t,,t,) = (1-pr1ti—patatqtit)’, I’th’d>0’0<“<;?_’
1

1_[)111
P, — 4

0<ty< J-d<gp, ' p, <l (3.44)

if a<0.
Proof:

When (3.41) hold with i =1, we have

F(t,,0,)log (aiti+b1(t2)) = F(t,,1,)+

T (x,,1
I——S;;Z) log hi(x1, t2) dx,

f 1

Differentiating with respect to f; and rearranging the terms we get

_a
at, +b,(t,)

h(ty, t2) [log (a1thi+b1(t2))tlog h(h, t2) -1]1 =
Denoting by
ci(th, 1) = h(ty, )] aty + b1(82)],
the above equation takes the form
ci(h, 12)[log c1(ty, 12) -1]1 = a.
Proceeding on similar lines as in the proof of Theorem 3 2, we get
ci(ty, 1) =k,

where k is a constant. This gives

k

hi(ty, 1) = ———
1(t1, 2) ot (1)

Similarly we can also have
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k

hao(ty, 3) = ———.
2(h, 1) at, +b.(1)

The rest of the proof follows from Roy (1989).

The if part of the theorem follows from the expression for

given by H[(f1, 11, 12) given byl-log(a+ 612),

|9—I~ lol 1 l«:i— 1»5 ] p
(4 [4 —_ _— )
¢ ¢ Tqh | ong log ¢ { + ¢ P
c ¢ c(a, +bt,) d d (p,-qt,)

respectively for distributions specified by (3.42), (3.43) and (3.44)
with the similar expression for H;(fg, 1), t2). Hence the condition

of the theorem holds.

Theorem 3.6

For the random vector X, considered in Theorem 3 4, a
relation of the form

H (f,, 11, t2) =k- log h(1y, t3), i=1, 2, (3.45)

where h,(7;, t2)’s are the components of the bivariate failure rate

holds for all real 7y, 7,20 if and only if X follows any one of the

three distributions specified by (3.42). (3 43) and (3.44)

respectively according as k=1, k>1 and k<l.



73

Proof:
When (3.45) holds using (3.37) we can write
( 1> 2)

[k = log mi(t1, )] F(t,) = F.1, )+j

Differentiating with respect to ¢, and simplifying we get

: -1 a(,,t) _ - (k-1).
hl (11712) a\
If u(ty, 12) = ! the above equation turn out to be
hl (’1:’2)
at,t,) _ (k-1).
a,

whose solution is
u(ty, 17) = (k-1) ), + ¢4
where ¢, is a constant. This gives
(1, 12) = [(k-1) 11 + 1]
Proceeding along similar lines one can also get

ha(th, 1) = [(k-1) t; + 2]

log hi(x1, 12) dx,

where ¢; i1s a constant. This shows that the components of the

vector valued failure rate are reciprocal linear The rest of the

proof is analogous to that of Theorem 3.5.
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The if part follows from the expression for H; (f1, t1, {2) given

l+at, +a,t, +btt
byl-log(ai+ 6t2), 1+l+ log ( il W L Tl zj and
¢

c(a, +b1,)

1_l+ log(]"Pll1”pzlz+qtltz

) and that of A,(¢,,12) given by a1+ 61,
d(p1 _qtz)

c(a, +bt,) and d(p, —qt,)

when the distribution is
l1+at, +a,t, +b1t, I-pit, - p,t, +qi 1,

specified by (3.42), (3.43) and (3.44) respectively with similar

expression for Ha(f2, 11, 12) and ha(1y,12).



CHAPTER IV

GEOMETRIC VITALITY FUNCTION

4.1. Introduction

The wvitality function, extensively studied by Kupka and
Loo (1989) in connection with their studies on ageing process,
provides a useful tool in modelling life time data. Kotz and
Shanbhag (1980) has used this concept, without specifying the
name, to obtain several characterizations for life time distributions.
Where as the hazard rate reflects the risk of sudden death with in a
life span the vitality function provides a more direct measure of the
failure pattern in the sense that it is expressed in terms of increased
average life span. As mentioned in Section 1.2, the vitality

function defined by

m(x) = E(X|X>x)

Some of the results in this chapter have appeared in the TAPQR
Transaction (2000), Vol. 25(1), pp. 1-8.



measures the average life span of components whose age exceeds x.
In the present chapter we define a new measure based on the
geometric mean of the residual life time of the components and

examine its properties.

4.2 Definition and Properties

Let X be a random variable admitting an absolutely
continuous distribution function F(x), with respect to Lebesgue
measure on (0, L), where

L = inf{x:F(x)=1}
with E(log X)<wo. We define the geometric vitality function G(1),

for >0, as

log G(¢) = E(log X|X>1)

1

= m!mgx f(x)dx . (4.1)

In the reliability context, if X represents the life length of a
component, (G(/) represents the geometric mean of life time of the

components which has survived upto time 7. (4.1) can also be

written as

(;(z)j_ I ¢/ (x)
log = —
og ( y I"(l)-!. dx . (4.2)
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The following properties are immediate from the definition.
(a) log G(¢) is non-decreasing

(b) llmol log G(t) = E[log X]

(c) m(1) 2 log G(¢) for all 1>0

(@) if h(ty = 22 is the failure rate of X,
Fa)

q:-log(}(t)

o)

(a) follows from the expression for the derivative of log G(1)

h(1) = (4.3)

obtained from (4.1) namely

dlogG(t) _ G)
— log( I j h(t) (4.4)

in which A(¢) >0 and log (#} >0, in view of (4.2). (b) 1s straight

forward. Using the fact the x>log x for all x>0 we have
E(X|X>1) > E(log X|X>1)

which is same as (c). (d) is immediate from (4 4).

Theorem 4.1

The geometric vitality function determines the distribution

uniquely.



Proof:

Let fi(1) and f2(¢) be two probability density functions with

geometric vitality functions G;(¢) and G2(¢) and that
G (1) = Ga(1).
Since
log Gi(¢) = log Ga(1),

we have

(G‘(t)
log ;

) (842). o

From (4.3) and (4.5) we have

hi(1) = ha(1)

(4.5)

where h (1) and hy(¢) are the failure rates corresponding to f1(¢) and

f2(t) respectively. Since the failure rate determines the distribution

uniquely we have

N0 = fa(1).

Further if

N = f2(1),

then

log G (1) # log Ga(1), for all 1.

Hence the geometric vitality function determines the distribution

uniquely.



4.3 Characterization theorems

In this section we look into the problem of characterizing
some well known life time models by the form of the geometric

vitality function.
Theorem 4.2

Let X be a random variable in the support of [x,, x), with
x>0, admitting an absolutely continuous distribution function and

with geometric vitality function G(f). The relation

log (@) =a, (4.6)

where a(>0) is a constant, holds for all ¢ (>0) if and only if X

follows the Pareto type I distribution specified by

F(x) = (i) . x2x0>0, a>0 (4.7)
X

Proof:
When (4.6) holds, using (4.2) we can write
J.de =al().
g X

Differentiating the above equation with respect to ¢ and rearranging

the terms we get the expression for the failure rate of .\ as



h(t) = %

where a = —]—>0. Using the relation
a

F(x) = exp {—Ih(l)dt} (4.8)

we get (4.7) as claimed.

Conversely when the distribution of X is specified by (4.7),

by direct calculations using (4.2) we get

o (52)-L.

so that (4.6) holds with a = l

a

It may be noted that (4.6) can also be written in the form
G(t) = ki,
where k& is a constant. Hence Theorem 4.2 provides a
characterization for the Pareto distribution when the geometric

vitality function is proportional to the age

The following theorem provides a characterization for a
family of distributions using a possible relationship between the
geometric vitality function and the first order reciprocal moment of

X.
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Theorem 4.3

Let X be a non-negative random variable admitting an
absolutely continuous distribution with respect to Lebesgue measure

on (0, «). A relation of the form
log (Qtﬁl) =qa + bR(t), b>0 (4.9)

where
R(t) = E(X'X>1)
holds for all real r (>0) if and only if X follows
1. the Exponential distribution with survival function (2.7) for a=0
2. the Pareto distribution with survival function (2.8) for a>0 and

3. the Beta distribution with survival function (2.9) for a<0.

Proof:

When (4.9) holds, in the light of (4.2), we have

LRy, [,
17(!)1 X F()< x

or
Imc{rILIF(I)+hIf(—x)c{x (4 10)
! X | X

Differentiating (4.10) with respect to f and rearranging the terms we

get



h(1) = [a+bt]". (4.11)

The rest of the proof follows from Mukherjee and Roy (1986).

Conversely when the distribution of X is specified by (2.7),
(2.8) and (2.9) respectively by direct calculations, using (4.2), we
get the expression for log (gft—)) as A, pt+ ap! R() and ¢!
+Rc™! R(1) respectively so that the conditions of the theorem holds.

Corollary 4.1

For the random variable X considered in Theorem 4.3, the

relation

a>0

log (G(t)) _ RO

! a

where

Ro(1) = E(X % X>1)
holds for all 1 (>0) if and only if X follows the Weibull distribution
with survival function

I(x) =¢", x>0, a>0. (4.12)
This result can be established proceeding along the same lines as in
the proof of Theorem 4.3 The special case with a2 in Corrolary

4.1 provides a characterization for the Rayleigh distribution
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Now we look into the problem of characterizing certain
distributions using possible relationships between the residual

entropy function and the geometric vitality function.
Theorem 4.4

Let X be a random variable admitting an absolutely
continuous distribution in the support of (xo, ®), with geometric

vitality function G(¢) and residual entropy function H(f,f). The

relation
H({f,1) - log G(1) = ¢, (4.13)
where ¢ is a constant, holds for all real ¢+ (>0) if and only if X

follows the Pareto type | distribution specified by (4.7)
Proof:
When (4.13) holds, using (1.36) and (4.1), we get
(c-VYF(@) = - ]:f(x)log x dx - Tf(x)log h(x) dx. (4.14)

Differentiating (4.14) with respect to  we get

log (th(r))

- ¢,

or

h(r) = %o
{



with xo = ¢! >0. The relation (4.8) gives the form of F@) as (4.7).

Conversely when the distribution of X is specified by (4.7) by

direct calculations we get
. l
log G(t) = —+ log ¢
a

and

Hf) = 1+ + log[i),
x

a

so that (4.13) holds with c=1-log a.

Singh and Maddala (1976) has obtained a model for income
distributions using an increasing and bounded proportional failure
rate. The model considered by them is specified by the distribution
function

F(x) = 1- (1+ax")“, x>0, a>0, b>0, ¢>0. (4.15)
(4.15) is also known as the Burr type XII distribution. The
following theorem examines how the residual entropy function and
the geometric vitality function can be related so as to provide a
characterization for (4.15).

Theorem 4.5

For the random wvariable X considered in Theorem 4 3. the

relation



H(f, 1) + (b-1) log G(¢) = log(4+B1") (4.16)
where b>1, 4, B>0, holds for all real ¢+ (>0) if and only if X follows

the Burr type XII distribution with distribution function (4.15).
Proof:
When (4.16) holds, using (1.36) and (4.1), we get
F() log(A+Bt") = F(t)-Tf(x)log h(x) dx + (b-l)fff(x)log x dx

Differentiating the above equation with respect to ¢/ we get

bt b1
fith" ?X]f) = - log [A:Bz" ﬁ} - 1. (4.17)
Setting
p1) = . . —]—, (4.18)
A+ Bt h(1)
(4.17) becomes
Bbé(t) = - log ¢(1) -1 (4.19)

Differentiating (4.19) with respect to / and simplifying we get
#({[#(1)] ' +Bb}=0. (4.20)
(4.20) give either ¢'(r) = 0 or [¢(r)]'= - Bb. In either case @(7) is a

constant l.ct

#(1) = k.

Using (4.18) we get
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b-1
h(l) = ————, k>0
(1) k(A+ Bt®)
From the relation
F(x) = exp {—jh(r)dz}, (4.21)
0

we get
F(x) =(1+ax")™,

with a = £>0 and ¢ = ——1—>0.
A kBb

Conversely when the distribution is specified by (4.15), using

(1.36) we have

|
H(f, 1) =1 - T_(t—){f(x)log h(x) dx

© b1
=1- _‘1 J'cabx"'I (1+ax®) "' log (cabx b) dx
F(t) 1+ax

=1 - log(cab) - (b-1) E(log X|X>1)

1
(1)

+ cabx’” (1+ax") " log(1+ax")dx

~ Loy §

or

H(f. 1) + (b-1) E(log X].Y>1) = log(4+B1")

14! et
€ ) [

with 4 = S— and B = £ 50 that (4.16) holds.
cab ch
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Theorem 4.6

For the random variable X considered in Theorem 4.3, a
relation of the form

H({f, 1) + (c-1) log G(1) =1 - log c, (4.22)

where ¢(>0) is a constant, holds for all real /(>0) if and only if X

follows the Weibull distribution with survival function (4.12)
Proof:
When (4.22) holds using (4.1) we get
H(f, 1) F(1) + (c-1) Tf(x)log xdx =(1-logc)F(t). (4.23)
Differentiating (4.23) with respect to ¢ and using (1.37) we get

h(t) = ct!

Using (4.21) we get the form of F(x) as (4.12).

Conversely when X has the distribution with survival function

(4.12), we have from (1.36)

H(f, 1) = 1- log ¢ - (c-1) %’) [f(x)10g x dx

which 1s same as (4.22), as claimed



It may be noted that when c=1, (4.22) speaks about the

constancy of residual entropy function which is characteristic to the

exponential model. This result has already been given in Ebrahimi

(1996). When c=2, (4.22) reduces to

H({f, ) +log G(t) = 1-log 2

which is a characteristic property of Rayleigh distribution.

Belzunce, Candel and Ruiz (1995) defines a new class of

distributions by using the mean left proportional residual income

namely

e(t) = E(§|X > tj.

In a similar way we define the geometric mean left proportional

residual life, (), through the relationship
log S(1) = E(log({—){/\’ > t).

1

F(@)

Fx),
X

=t g

It may be noticed that ((¢) and S(7) are related by
Gy =1 8@), >0
The following theorem focuses attention on the

behaviour of S(r) .

(4.24)

(4.25)

monotonic



Theorem 4.8

If log S(¢) is increasing and log concave (decreasing and log

convex) then the failure rate is decreasing (increasing).

Proof:

From (4.3) we have

d
- log$(¢)
h(r) =4 11
log S(¢) t log S(7)
d 1 1
= —log[logS(1)] + - . 4.26
- osllog ()]  TogS() (4.26)
Differentiating (4.26) with respect to 7 we get
d? d 1
h'(t) = —log[logS(1)] + —| ———|. 4.27
(1) E gllog S(1)] dt{tlogS(l)} ( )

Suppose log §(¢) is increasing. Then for ¢,</,

log S(11) < log S(12)

or
1 1
2 :
f,logS(t))  1,logS(¢,)
- . I . :
This implies ———— is decreasing and hence

rlog §(7)

d 1
—f——1<0
u’l[llog.\'(l)}

Also if log S(¢) is concave, then
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2

d
——logflog S(1)]< 0.
o gllog S(1)]

Hence from (4.26) A'(1)<0. This implies that the failure rate is

decreasing.

4.4 Geometric vitality function in discrete time

For a random variable X in the support of the set of non-

negative integers, we define the geometric vitality function G(1),

for t=0,1,2, ..., as

log G(¢)

E(log X |X>1)

1 w
D lef(x)logx (4.28)

i

where f(x)

Il

P(X=x)and ["(x) P(X>x) are the probability mass

function and the survival function of X respectively.

Writing
f(x)=F(x)- IF(x+1), (4.28) can also be written as
(;(1)) R ( x )
lo ( = = F(x)1 — . 4.29
8\ Fa+y Zl (x)log { T (4.29)

Analogous to the continuous case the geometric vitality
function

satisfies the property (a), (b) and (c) mentioned in

section 4.3 Also if h(t) = f(1)/ F(t) is the failure rate of X, we have
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do)
G@-1

W)

Further, in view of (4.30), the geometric vitality function

h(t) = (4.30)

determines the distribution uniquely. The following theorem
characterizes a family of discrete distribution based on a
relationship between the geometric vitality function and the

reciprocal moments.
Theorem 4.7

Let X be a random variable in the support of the set of non-

negative integers. The relation

log ((’(')) Z ~[aRa(0* Ra-1 (1) (4.31)

nl

where R,(r) is the n'™ order truncated reciprocal moment of X,

namely
R.(t) = E(X7|X>1), (4.32)
holds for all integers 7 (>0) if and only if X follows
(a) the geometric distribution specified by
F(xy =q . x 0, 1,2, ..., 0<g<\ (4 33)
if =0

(b) the Waring distribution specified by



F(x)= %L,XZ,O, 1,2, ..., a>0, b>0, a>b (4.34)

if >0 and
(c) the negative hypergeometric distribution specified by
(k +m—x)
F)= —7 X 2 x=0,1,2, ..., m, k>0, (4.35)
(k+m}
m
if <0.

Proof:

Using the series expansion of the logarithm in (4.29) we

obtain

(G YR F(x) .
l%( /) Z L(IH)Z } (4.36)

n|” xrlx

when (4.31) holds, using (4.32) and (4.36) we can write

(4.37)

n

© = F(x) f(X) f(X)
,,Z:’ni‘(1+l) i:x;, X 'B }

Interchanging the order of summation and using the expansion of

log(1-x"") we get.

L
,(M)‘ZH og(1- 1) [ /'(x)-af(x) -Bxf(x)] =

This gives

I (x) -af(x) -pxf(x) = 0
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or

h(x) = (a+px)".

The only if part now follows from Xekalaki (1983).

Conversely when the distribution of X is specified by (4.33),

(4.34) and (4.35), (4.31) holds with @ = (1-9)"" and B =0 for the

k+m

and

geometric, a = a , B = 1 (>0) for the Waring and a =
a-b a-b

1 . e e e
Ji] =—;(<0) for the negative hypergeometric distribution.



CHAPTER V

AVERAGING OF THE RESIDUAL
ENTROPY FUNCTION AND RESIDUAL
ENTROPY FUNCTIONS OF HIGHER ORDER

5.1. Introduction

When one is interested in the failure of a device in a finite
interval, instead of examining the nature of failure rate at each
point in the interval, it will be of more use if the average of the
failure rate in the whole interval is used. Roy and Mukherjee(1989)
have defined the averages of failure rate and has examined utility of

the same in ordering of life distributions.

The arithmetic, geometric and harmonic mean of failure rates
for a non-negative random variable X have been defined through the

relations

A(x) = + jh(l)a’t
X 0



G(x) = exp {%Ilogh(l)dt}

and

151 B
L L 5
H(x) {xoh(t)d,} (5.1)

The problem of characterizing some well-known life time
distributions based on the above concept are also examined by
them. Analogously one can define the averages of the residual
entropy function. In the sequel we look into the problem of
characterizing some life time distributions using the residual

entropy function and the averages of failure rates.
5.2 Characterization theorems

Theorem 5.1

Let X be a non-negative random variable admitting an
absolutely continuous distribution function with arithmetic,
geometric and harmonic mean of failure rates A(x), G(x) and H(x)
respectively. Denote by H(f. ¢). the residual entropy function. The
relation

A1) = G(1) = H(t) = exp{1- H(f,0)} (5.2)
holds for all real #(>0) if and only if X follows the exponential

distribution.
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Proof:

When (5.2) holds, we have
H(f,t) + log G(1) =1.

Using (5.1), the above equation can be written as
!
t H(f.1) + Ilogh(x)dx =1. (5.3)
0

Differentiating with respect to ¢ and using the expression for H'(f./)

given in (1.37), (5.3) simplifies to

H(f,t) + log h(t) =1. (5.4)
This gives
| LA
H'(f,1) + o 0. (5.5)

Using (1.37), (5.5) can be written as

U0l
h(t)

h(O)[ H(f.1) + log A(1) -1] = -
In view of (5.4) the above equation simplifies to

h(t) = 0,
so that A(r) = A, where A 1s a constant. Since the constancy of
failure rate is characteristic to the exponential model, X follows the
exponential distribution From Roy and Mukherjee (1989) the

properties A(x) = (G(x) = H(x) is characteristic to the exponential

model and so the sufficiency part follows.



Conversely when X follows the exponential distribution with
probability density function
f(x) = e, x20, >0,
by direct calculations we get A(x)=G(x)=H(x)=A4 and H(/, )=1-logA,

so that (5.2) holds.

The following theorem provides a characterization for a
family of distributions using a relationship between residual

entropy function and arithmetic mean failure rate
Theorem 5.2

For the random variable X considered in Theorem 5.1, the

relation
H(f,1) + ct A(1) = k, (5.6)

where k is a constant, holds for all real ¢ (>0) if and only if X
follows
(1) the Exponential distribution with survival function (2.7) if

c=0
(11)  the Pareto distribution with survival function (2.8) if ¢<0 and
(111)  the Beta distribution with survival function (2.9) if ¢>0.
Proof:

When (5.6) holds we have



Favs

H'(f,1) + ct A(t) + ¢ A(1) = 0.
Using (1.37) the above equation can be written as
h(O[ H(f,t) + log h(1) -1] + c[t A'(1) + A(1)] = 0. (5.7)
From (5.1) we have
1A + A(D) = h(1). (5.8)
Using (5.6) and (5.8), (5.7) can be written as
h()[k - ctA(1) + log h(f)+c -1]1 = 0. (5.9)
Assume h(?) # 0. From (5.9) we get
log h(f) - ctA(1) =1 —c — k. (5.10)

Differentiating (5.10) with respect to 7 and using (5.8) we get

—h.(t) =cC.
h(1)
The above equation gives
h(t) = [a - ct], (5.11)

where a is the constant of integration. From Mukherjee and Roy

(1986), (5.11) 1s characteristic to the exponential distribution for

¢=0, the Pareto distribution for ¢<0 and the Beta distribution for

¢>0.

The if part of the theorem follows from the expression for

H(f.1) and A(t) which are given below.



Distribution A(1) H(f1)

Exponential A 1- log A

Pareto a l+a . a
— log 1+ —log| —
! a ‘ +a

Beta ~c lo,(R—tj l—l—lo( ¢ )
. AR <O R=t

Instead of using the residual entropy function H(f.,t), as such,

one can utilize average value of H(f,t), namely
— 1 ¢
H(f.0) = - [H(f 0de (5.12)
0

as a measure of stability of components in a finite interval. The
following theorem provides a characterization for the family of
distributions considered in Theorem 5.2 using a functional relation

between H (f,1) and G(¢).
Theorem 5.3

For the random variable X considered in Theorem 5.1, the

relation

lo%/

H(f.1) + G(1) = k. (5.13)
N
holds for all real /(>0) if and only if X follows

(1) the Exponential distribution with survival function (2.7) 1f

k=0
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(i)  the Pareto distribution with survival function (2.8) if &>0 and

(iii) the Beta distribution with survival function (2.9) if £<0.
Proof:

Observing that (5.13) can be written as
H(f,t) + log h(1) = k,

the proof is immediate in view of theorem 2.4

It may further be noted that the residual entropy function and
its arithmetic average coincides if and only if the distribution is

exponential.

5.3 Other measures of residual entropy

Entropies of higher order are defined by several authors and
their properties are being examined. The works of Renyi1 (1961),
Havrada and Charvat (1967), Kapur (1968), Behra and Chawla

(1974), Sharma and Mittal (1975), proceed in this direction.

Renyi (1961) defines entropies of order a as

Ra(H) = la log > f“(x), a #1, a >0. (5 14)
x-0

1—

For a continuous non-negative random variable X admitting an

absolutely continuous distribution, (5.14) takes the form
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1
l-a

R(f) = log Tf“(x)dx. (5.15)

When a-1, (5.15) reduces to the Shannon’s entropy. For the

random variable (X-f) truncated at 1 (>0), (5.15) reads as
Ralf.1) = —— log j{&} dx (5.16)
l-a f

Further, (5.16) simplifies to the residual entropy function

considered in section 1.3, as a—1.

The following theorem focuses attention on the constancy of

Ra(f.1).
Theorem 5.4

Let X be a non-negative continuous random variable
admitting an absolutely continuous distribution function with
Renyi’s entropy measure R,(f,{) (<o). The relation

Raf1) = ¢ (5.17)
where ¢ is a constant holds for all real /(>0) if and only if X follows

the exponential distribution.

Proof:

When (5.17) holds, using (5.16) we have
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(1-a) ¢ = - alog F(t) + log Tf“(x)dx (5.18)

Differentiating (5.18) with respect to 1 we get

a h(i) - :&- =0
[ £ xydx

!

or

S = a h(t) [ £ (x)ax. (5.19)

Differentiating (5.19) with respect to f and simplifying we get

aM =-ah(1)+m. (5.20)
Q) h(t)
Since
h'(t): M) +h(1)
Aty S0
(5.20) simplifies to
SO _ - h(1), a#l.
S
This gives
dlog f(1) _ dlog F (1)
dt dt
or
S = k()
Hence

h(t) = k,
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where & is the constant of integration. Hence X follows the

exponential distribution.

Further for the exponential distribution specified by the
survival function (2.7), by direct calculations we find

loga

a(f’)_

so that (5.17) 1s satisfied.

In connection with their studies relating to income inequality,

Ord, Patil and Taillie (1983) has proposed the measure defined by

L)) S &
ef, 1) frm{ {F(l)} } ; (5.21)

as a useful measure of income inequality. When y#0, (5.21) can be

written as

1
I-yelf, 1) = ——— | f7" (x)dx . 522
7 exf. 1) {[(l)mff (x) (5.22)

Further when =0, (5.21) takes the form

17
(N = [fO)[1-£/(x)] 7’( (5 23)

Taking the limit of (5 23) as y->0 we get
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[RACIEMCI

lim e f) =lim 2 ald
y 0 Y y—0 g—}’
dy

= - [f(x)log f(x) dx

which is the Shannon’s entropy encountered in Section (1.1). By a

similar argument with (5.21), one can verify that linz) e (f, t) is the
y »

residual entropy function defined by (1.34).

The following relationship exists between the e,(f, ¢) and the

Renyi’s entropy measure. We have from (5.16)

(1-@) Ra(f,1) =

so that

exp{(1-a) Ra(f,1)} = (,) j [ (X)dx
From (5.22) the above takes the form
exp{(l-a) Ro(f.1)} = 1-(1-a) ea-1(f.1). (5.24)

We now establish a recurrence relation satisfied by ¢,(f, 1), as

a consequence of which it is seen that e, f, ¢) determines the

distrtbution uniquely.
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Theorem 5.5

Let X be a continuous non-negative random variable with

e f, 1) <o. Then e,(f, f) uniquely determines the distribution.
Proof:
From (5.22) we have
[1-7 ef, D] F“’*‘(t)=ff"‘(x)dx. (5.25)

Differentiating (5.25) with respect to ¢ and dividing by F”*'(1) we
get

(D) [y ef, 01h() - ye, (f, 1) = - h7(1)
or

ve, (f, ) = h(0) [(r+ D)y e (f, D+R"(1) - (y+1)]. (5.26)
Suppose f1(.) and f2(.) are density functions with

e (f1, 1) = ef2, 1), 120

Using (5.26) we get
() [(r+ 1) y ey (fr,)+ A (1) - (y+1)]

= ha(1) [(y+ Dy e, (f2. )+ A (1) - (y+1)]. (5.27)
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where h;(f) and hy(f) are the failure rates corresponding to fi(.) and
f2(.) respectively. To prove F, (1) =F,(f) we need to show that
hy(1)= hy(t) for all 1(20). Suppose

hi(t) > hy(1).
From (5.27) we have

(717 elfa, D+ K (1) - (7¥1)> (r+ D)7 e,f1, D+ K (1) - (7+1).

This gives

hi(t) < ha(1)
which is a contradiction. Similarly we can see that A,(t) < hy(1)

also leads to a contradiction. This implies

h](l) = hg(l)

and so the proof is complete.

Now we look into the problem of characterizing probability

distributions using the functional form of e/, ).

Theorem 5.6

For the random variable X considered in Theorem 5.5. the
relation
-y e (f. 1) = (A1+B) 7, y>-1 (5.28)

holds for all real ¢ (>0) it and only if X follows



(1) the Exponential distribution with survival function (2.7) if
A=0
(ii) the Pareto distribution with survival function (2.8) if 4>0 and

(iii) the Beta distribution with survival function (2.9) if 4<0.
Proof:

When (5.28) holds, using (5.22), we can write

Tf’”(x)dx= F7 () (At+B) .
‘
Differentiating the above equation with respect to / we get
70 = AP ABY TV ET @) (1) () fU)(A+B) T
Dividing throughout by 7#7"'(t) (A1+B)”"' we get
[A()(A1+B)) " = Ay + (y+ 1)h(1) (A1+B). (5.29)
Denoting by
y(1) = h(1) (A1+B), (5.30)
(5.29) takes the form
YU = (1) p(1) = - 74
Differentiating the above equation with respect to / we get
(r+ 1) ¥ (Y1) = (y+1) y'(1) =0
or
y'(@) [(r+1) y7()~ (y+1)]=0.

In either case
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() = &,
where & is a constant. From (5.30) we get

k
Al+ B

h(1)

[at+b]" (5.31)

i

x|

with a = %, b = From Roy and Mukherjee and Roy (1986),

(5.31) is characteristic to the exponential distribution if a=0, the
Pareto distribution if a>0 and the Beta distribution if a<0. The if

part follows by translating the result for 4.

The only if part follows from the expression for 1-y e/(f2, 1)

when the distribution are specified by (2.7), (2.8) and (2.9)

At alit+a)’ HR-1)7

sl @i +D-1 e a1

respectively given by

Instead of assuming y>-1 if we restrict the range of y to the

set of non-negative reals we arrive at a more general result which

given as Theorem 5.7.

Theorem 5.7

For the random variable \' considered in theorem 5.5, the

relation

1-y e f, 1) = k h7(1), y>0 (5.32)
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holds for all real r(>0) if and only if X follows any one of the
distributions specified by (2.7), (2.8) and (2.9) respectively

according as k = (1+3)"', k < (1+y)" and k > (1+y)"".
Proof:

When (5.32) holds, using (5.22) we can write

w0

If’”(x)dx= Fr () k' (1). (5.33)

!

Differentiating (5.33) with respect to f and rearranging the terms we

get
K@) _ 1=k +))
h(1) ky
or
(o)
d
h(1)) _ 1=k(y +1)
dt ky '
This gives
h(1) = {(I—_I((—7+1)Jl+dj| (5.34)
ky

where d 1s the constant of integration. (5.34) takes the form
h(1) =(pr+d)™!

1—k(y +1)

where p =
ky

The rest of the proof of the sufficiency part

is similar to that of Theorem 5.6.



The only if part of the theorem follows from the expression

for e,(f, ) and A(t) given below.

Distribution h(1) e/, 1)
Exponential A A
y +1
Pareto a a Nt +a)”
I+a (a+ 1)y +1)-1
Beta c—1 N(R-1)7
R-1 (c-D)y+1)+1




CHAPTER VI

RESIDUAL ENTROPY FUNCTION
IN DISCRETE TIME

6.1. Introduction

Most of the works in reliability modelling assumes that the
underlying life time model is a continuous distribution. However
the limitation of measuring devices and the fact that discrete
models provide good approximations for their continuous
counterparts necessitate assessment of reliability in discrete time.
Xekalaki (1983) provides examples of situations where discrete
models are appropriate by citing examples. The works of Gupta and
Gupta (1983), Lawless (1982), Hitha and Nair (1989), Roy and
Gupta (1992), Shaked, Shanthi Kumar and Torres (1995) aims at
characterization of probability distribution using discrete reliability

concepts

Some ot‘”t'he; results in this chapter have appeared in the Far East
Journal of Theoretical Statistics (1998), Vol. 2(1), pp. 1-10.



112

The residual entropy function discussed in Section 1.3 can
also be defined in the discrete set up. This enable onc to determine
the model through a knowledge of the form of the residual entropy
function. In the present chapter we define the residual entropy

function in the discrete set up examine its properties.

6.1 Definition and Propertics

Let X be a random variable in the support of the set of non
negative integers, with the probability mass function f(x) and
survival function F(x). Analogous to the definition of failure rate
given in (1.11) and that of mean residual life function given by

(1.27), we define the residual entropy function associated with the

random variable X as

2 f) S (x)
Hft)=- Y = log = . (6.1)
x=r4 1 FU+D F@+1
(6.1) can also be written as
_ I ©
H(fr) = loglFu+l) - = Y f(x)log f(x). (6.2)

17(1+1)'\.:,+1
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Observing that for the random variable Y= X-/ truncated at
{ (20), the survival function G(y) and probability mass function
g(y)are respectively
GCO)= Fu+y+D)/F@+))
and
g =fU+y+DIF@t+1)

we notice that the Shannon’s entropy corresponding to ¥, namely

® f(t+y+1)lo fU+y+1)

H(g”)z—yi:o Fa+1) Fa+1)

simplifies to (6.1). Hence the Shannon’s entropy corresponding to
the residual life is same as the residual entropy function (6.1). It
may also be observed that (6.1) serves as a measure of stability of

the component at time ¢ when time is measured at discrete points.

Also using the relationship A(x) = J[_i((x)) and f(x) = F(x)-F(x+1),
T(x
(6.2) can be written as
H{f.) - - log h(1+1) s KOs h(x) (6.3)

1l FGHD) PR - AC0)

In terms of the mean residual life function, considered in

section 1.2, H(f, ¢) can also be written as

HUf1) = - log [r(f+1)—r(l)+l}

r(f+1)
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020 F(x+1) o r(x+D[r(x)=r(x-1)+1] }
o141 FU+D [r(x=1)=1[r(x+ D) -r(x)+1]|

We now establish a recurrence relation satisfied by H(/,1).

Theorem 6.1

Let X be a discrete random variable in the support of I* with
probability mass function f(x), failure rate h(x) and residual entropy
function H(f, 7). Then H(f, t) satisfies the recurrence relation,

1

HO D= 1000

{H(f.t-1)+h(Dlogh(1) +[1-A(1)]log[1-A(1)]},

=1,2,3,.... (6.4)

k4 k4 b

Proof:
From (6.2) we have

HOF@+) = F(+DlogF(+1) - Ozof(x)logf(x) (6.5)
x=1+1

Subtracting (6.5) from the equation obtained by changing ¢ to (1+1)

in (6.5) we get

H(f A+ )y +2)- HLO F+1)
= f(t+1) logf(1+1) +F( +2)log F(t +2) -F(1 +)logI*(t +1). (6.6)

Since f(1+1) = F(t+1)- F(t+2), (6.6) can be written as



_Fa+1 AR
H(f,1+1) = Fu+2) [H(f,O)+logh(t+1)] —log Fuv2)
or
) 1 IR.(Ea)
H(f,t+1) = ——l—h(t+l) [H({f,t)*logh(t+1)] 10g~1—h(1+1)'

Rearranging the terms in the above equation we get

o
H(f,t+1)—————1_h(t+l) (H(f,0)+h(t+1)logh(t+1)

+ [1-h(+D]log[1-A(t+ D]} (6.7)

Taking 7 in the place of (++1) in (6.7) we get (6.4).
Theorem 6.2

The H(f,1). considered in theorem 6.1, uniquely determines

the distribution.
Proof:

Substituting for H(f,7-1) in the recurrence relation (6.4) we

get

1 1
"0 1= h(r) 1-/:(1—1)H(f"'2)

h(r - Dlog h(t - 1) +[1- h(r - D]log[l Al -1)]
(L=hH)[1-ht - D]

' h()logh(t) +[1 - h(t)]log[1 - h(1)]
1-h(1) '
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Proceeding recursively, we get

H(f,-1)
[1- A1 -hA@ - D)]...[1-A(0)]

H(f.y) =

h(0)log h(0) +[1 - (0)]log[1 - A(0)]
[1-AO11 -~ -1]...[1-h(0)]

. h()logh(1) +[1 - A(1)Jog[l - A(1)]
[1-AO][1- A -D]..[1-A1)]

N h(t)logh(t) +[1 - h(t)}og[1 - h(r)]

[1-h(D)]
i} H(f) . h(0)log h(0) +[1 - h(0)]log[1 - A(0)]
! !
[1{1-A(x)] [1[1-h(x)]
x=0 x=0

. h(Dlogh(l) +[1 - A(1)]log[l - A(1)]

!
[T{1-h(x)]

x=1

i h(t)logh(t) +[1- h(t)]log[1 - h(1))]
[1-A()]

(6.8)

where H(f) is the Shannon’s entropy associated with X. Since A(¢)
determines the distribution uniquely in view of (6.8), H(f.1) also

determines the distribution uniquely.

6.3 Characterization Theorem

We now look into the situation where the residual entropy

function i1s constant.



Theorem 6.3

Let X be a discrete random variable in the support of the set
of non negative integers with residual entropy function H(f,7). The
relation

H(f,1)=c (6.9)
where ¢ is a constant holds for all integers >0 if and only if X

follows the geometric distribution.
Proof:

When X follows the geometric distribution with probability
mass function
f(x) = ¢"p, x=0,1,2,....,0<p<l1, p+qg=1,

direct calculation using (6.3) gives
H(f.0 - = [plogp+(1- plog(i-p)] . (6.10)

so that the conditions of the theorem are satisfied.

Conversely when (6.9) holds, (6.4) takes the form
h(x)logh(x) + [1-h(x)llog[1-A(x)]tch(x)=0, x=1,2,3,... (6 11)
Let 7y and 72 be two positive integers such that 71,<7; Denote by

11
1 l‘h(tz), 1H<I<I;. (6.12)

2 1 2 1

Ay = 22l py
{ {

Consider



B(t) = A()logA(t) + [1-A()]log[1-A(1)]+cA(1).
From (6.11) and (6.12) we have
B(ty) = B(12) = 0.
By mean value theorem there exists an xype(?,,¢;) such that

B(t,)-B()
L -1

B'(X'()) =

But from (6.13)

B'(xp) = A'(xo) [log%+c}.

Assume that
A'(xo) # 0.
From (6.14) and (6.15) we get

—-C

A(X'o) = ~.
l+e¢ €

Without loss of generality assume

h(th) < h(13).

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

Since A(?) is the equation of the line segment joining (¢;,4(f;)) and

(lz, h(iz)) we have

h(t)) < A(xg) < h(tz)

or

(4

h(t)) < < h(1,).

1+e

(6.18)



Now from (6.11)

1-h(x)
e = h(x) [1-h(x)] ")
and
1= h(x)
- h(x)
¢ C _ _HRU-h) < h(x), for all x.  (6.19)
1+e€ 1-h(x)
1+ h()[1-h(x)] ")
From (6.18) and (6.19) we get
—-C
h(t;) = .
l 1+e €
From (6.11) with x=1; we have
1- h(l)
h(t )
(R IO
lee—C 1:h(11) '
h
L+ ([T = h(1))] ‘)
This gives
L= ht))
h
At L= (1)) “)
hiin) = L))
h(ll)

l+h(ll)[l —h(tl)]

which is not true since A(/;)=0.
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A(xo)
Therefore, in (6.15), |log—————+c¢| cannot be zero.
1- A(xo)
Hence
A'(x)=0.
That is

h(t,) - hit,)
274
This implies A(f;) = h(1z) for all £;>1,. Proceeding on similar lines

with ;<f, we can observe that A(fy) = h(f;) for all £,<t,. This

implies that A(f) is a constant.

Since the constancy of failure rate is characteristic to the

geometric distribution, X follows the geometric distribution.

For a random variable (X-f) truncated at /(>0) in the support
of non-negative integers, the maximum entropy probability
distribution under the condition that the arithmetic mean is fixed is
the geometric distribution. An upperbound for the residual entropy

function in terms of the mean residual life function can be obtained

from the above.
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Theorem 6.4

Given that r(f)<w, then

H(f, 1) < r(1) log r(t) — [r(£)-1] log[r(£)-1].
Proof:

From Kapur (1989) for a random variable X in the support of
non-negative integers, the maximum entropy probability
distribution subject to the condition that the arithmetic mean is
fixed is the Geometric distribution. Hence given r(t), if the
domain 1is restricted to the set of non-negative integers, the
maximum entropy occurs when the underlying distribution is
geometric with mean r(?).

From (6.10) we have,

H(, 1) < - i[plogp + (1-p) log(1-p)]

- BREPOUE S U o __b
= -r(f) [r(t)IOgr(t)+(l r(t))log(l r(t)ﬂ

or

H(f. 1) < r(t) log r(1) — [r(£)-1] log[r(#)-1]

It may be noticed that H(f, 1)< whenever r(r)<w.



Plan for future Study

Several problems have opened out during the present
investigation. The problem of extending the concept of the residual
entropy function to higher dimensions is yet to be examined.
Characterizations of some bivariate distributions based on the
functional form of the bivariate residual entropy function can be
obtained, analogous to that of bivariate failure rate. The problem
of obtaining distributions which maximizes the residual entropy
function under different set of constraints is to be studied in detail.
Recently Ebrahimi and Kirmani (1996a) has studied the truncated
version of the Kullback-Leibler measure of directed divergence
information measure. Characterization of certain bivariate models
using the above also seems to be in order. The problem of
estimating the residual entropy function using standard procedures
and their comparisons is yet another problem to be examined.

These works are proposed to be under taken in a future study.
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