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1.1. Introduction 

CHAPTER I 

INTRODUCTION 

The concept of entropy is extensively used In literature as a 

quantitative measure of uncertainty associated with a random 

phenomena. The development of the idea of entropy by Shannon 

(1948) provided the beginning of a separate branch of learning 

namely the 'Theory of information'. Historically a glimpse of the 

concept of entropy is available in an early work by Boltzman (1870) 

in connection with his studies related to the thermodynamic state of 

a physical system. Hartley (1928) used the entropy measure to 

ascertain the transmission of information through communication 

lines Even though an axiomatic foundation to this concept was lClirl 

do W n by S h ann 0 11 , t his III C d SUI t! \va s de v d 0 p c din ani n d e pen den l 

context by Weiner (1948) Earlier work in connection with 

Shannon's entropy was centered around characterizing the same 



based on different set of postulates. The works of Fadeev (1956), 

Khinchin (1957), Tverberg (1958), Chaundy and Mcleod (1960), 

Renyi (1961), Lee (1964), etc proceed in this direction. The classic 

monographs by Fisher (1958), Ash (1965), Aczel and Daroczy 

(1975) and Behra (1990) summarises most of the developments in 

this area. 

In the reliability context, if X is a random variable 

representing the life time of a component or a device, a 

characteristic of special interest 10 the residual life distribution 

which is the distribution of the random variable (X-I) truncated at 

1(>0). A comparison of the residual life distribution and the parent 

distribution as well as characterization of distributions based on the 

form of the residual life time distributions has received a lot of 

interest among researchers. The works of Gupta and Gupta (1983), 

Gupta and Kirmani (1990) and Sankaran (1992) focuses attention on 

this aspect. 

It IS common knowledge that highly uncertain components or 

svstems are inherentlv not reliable. At the stage of designing a 

s y s t em, w hen the rei s en 0 u g h in fo r m at ion re g a r din g the 

deterioration, wear and tear of component parts, factors and levels 

are prepared based on this information. Concepts such as failure 
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rate and the mean residual life function comes up as a handy tool in 

such situations. However in order to have a better system, the 

stability of the component parts should also be taken into account 

along with deterioration. Recently Ebrahimi and Pellerey (1995) 

and Ebrahimi (1996) has used the Shannon's entropy applied to the 

residual life, refered to in literature as the residual entropy 

function, as a measure of stability of a component or a system. 

Because of the above the residual entropy function can be 

advantageously used as a useful tool at the stage of design and 

planning in Reliability Engineering. 

The measurement and comparIson of IDcome among 

individuals in a society is a problem that has been attracting the 

interest of a lot of researchers ID Economics and Statistics. In 

addition to the common measures of income inequality such as 

variance, coefficient of variation, Lorenz curve, Gini index etc, the 

Shannon's entropy has been advantageousl y used as a handy tool to 

measure income inequality. The utility of this measure IS 

highlighted in the works of Theil (1967) and Hart (1971) Ord, 

Pat iI and Ta i 11 i e ( 1 9 8 3) has use d the t run cat e d fo r III () f the e n t r 0 p y 

measure as a measure for examining the inequality of income of 

persons whose income exceeds a specified limit. 



One of the main problems encountered in the analysis of 

statistical data is that of locating an appropriate model followed by 

the observations. Empirical methods such as probability plots or 

goodness of fit procedures fails to provide an exact model. 

However a characterization theorem enables one to determine the 

distribution uniquely in the sense that under certain conditions a 

family F of distributions is the only one possessing a specified 

property. Accordingly characterization theorems are developed in 

respect of most of the distributions. 

The commonly used life time models in Reliability Theory 

are eXl?onential distribution, Pareto distribution, Beta distribution, 

Weibull distribution, and Garnma distribution Several 

characterization theorems are obtained for the above rnodels using 

reliability concepts such as failure rate, rnean residual life function, 

vitality function, variance residual life function etc. Cox (1962), 

Guerrieri (1965), Reinhardt (1968), Shanbhag (1970), Swartz 

(1973), Laurent (1974), Vartak (1974), Dallas (1975), Nagaraja 

(1975), Morrison (1978), Gupta (1981), Gupta and Gupta (1983), 

Mukherjee and Roy (1986), Osaki and Li (1988) etc pru\ide 

characterization results for the above distributions using reliability 



concepts. An excellent revIew of works in the area is given in 

Galambos and Kotz (1978) and Azlarov and Volodin (1986). 

Most of the works on characterization of distributions in the 

reliabi Iity context centers around the failure rate or the mean 

residual life function. Howev.er only very little work seems to have 

been done in using the residual entropy function as the criteria for 

characterization. Since the residual entropy function determines the 

distribution uniquely, a characterization theorem involving this 

concept will enable one to determine the model uniquely through a 

knowledge of its functional form. Motivated by this fact, the 

present study focuses attention on characterization of probability 

distributions based on (1) the form of the residual entropy function 

and (2) relationships between the residual entropy function and 

other reliability measures. 

1.2 Review of literature 

In this section we give a brief outline of the basic concepts in 

Information Theory and Reliabilitv Tbeo(y that arc of use in the . . 

investigations that are carried out in the succeeding chapters 



The Shannon's entropy 

As pointed out in the introduction the Shannon's entropy have 

been extensively used as a quantitative measure of uncertainty. 

Consider a random experiment having 11 mutually exclusive events 

Ak, k = 1, 2, ... , n with respective probabilities Pk, k = I, 2, ... , 11 

n 

satisfying the conditions Pk ~o and LPk = 1. One can represent 
.1:=1 

such a probability space by a complete finite scheme (CFS), 

.. , An) . 

... Pn 

A CFS contains an amount of uncertainty about the particular 

outcome which will occur when the experiment is performed. As 

the probability associated with an event, Ak, IOcreases the 

uncertainty associated with that event decreases and so the amount 

of information conveyed by the occurrence of the event decreases. 

In a CFS there are different events and so different amount of 

information corresponding to these events. Hence the average 

amount of information can be taken as a meaSUft? of uncertainty 

associated with a CFS. Based on the notion, Shannon (1948) used 

the quantity, 

IJ 

Hn(p) = - LP, logp, (11 ) 
, ~C 1 



as a quantitative measure of uncertainty associated with a CFS. As 

a convention 0 log 0 is taken as as zero. If we consider a random 

experiment with n possible outcomes having probabilities PI, P2, 

... ,pn, then (1.1) measures the uncertainty concerning the outcome 

of experi ment. On the other hand, if we consider (1.1) after the 

experiment has been carried out then it measures the amount of 

information conveyed by the complete finite scheme. 

The Shannon's entropy defined by (1.1) satisfies the 

following properties [Guiasu (1977)]. 

2. Hn(PI, P2, .. ·,Pn) is a continuous function of PI, P2, ... ,pn. 

3, HI/V)I, P2, .. ,pn) is a symmetric function of PI, p2"pn, 

4. If P,O = 1 and P, = 0 (l~i~l1, ;-~io) then Hn(Pl, P2, ... ,Pn) =0 

n 

6. For any probability distribution with P, ~o and LP, =1, 
"~I 

7. For any two independent probability distributions P 

11 nl 

... ,p n), () = (q I, q 2, , q ",) w her e LP, = I, L q, = I , 
"\ J \ 

H n. ",(PUQ)=H n( /')+ H",( Q) 



8. If the two schemes are not independent and P(AiBj ) = Pij. then 

" 
Hn+m(PUQ)=Hn(P)+ LP; Hi(Q), 

;=1 

where 
m 

Hi(Q) = - LP(BjIA;)logP(BjIAJ. 
j=1 

In the continuous set up if f(.) denotes the probability density 

function associated with a random variable X defined in the interval 

[a,b], then the continuous analogue of (l.1) turns out to be the 

Boltzman's H function is given by 

b 

Hr = - J f(x)log f(x) dx. ( 1.2) 
Q 

It may be noted that (1.2) IS not the limit of the finite discrete 

entropies corresponding to a sequence of finer partition of the 

interval [a,b] when the norms tend to zero. 

Another important aspect of interest in the study of entropy is 

that of locating distributions for which the Shannon's entropy is 

maximum subject to certain restrictions on the underlying random 

variable. Depending on the conditions imposed, several maximum 

entropy distribution are derived For instance. for a random 

variable in the support of non-negative real numbers, the maxImum 

entropy probability distribution under the condition that the 



arithmetic mean is fixed is the exponential distribution. The 

rationale behind the study of maximum entropy principle is that the 

probability distributions desired has maximum uncertainty subject 

to some expl i citl y stated known i nforma t ion The books by 

Kapur( 1989, 1994) gives a review of the various maximum entropy 

models . 

. The Shannon's entropy finds applications in several branches 

of learning. In communication theory an aspect of interest is the 

flow of information in some net work where information is carried 

from a transmitter to receiver. This may be sending of messages by 

telegraph, flow of electricity, visual communications from artist to 

viewers etc. Things which tends to make errors in the transmission 

is called noise and in general message cannot be transmitted with 

complete reliability because of the effect of noise. In a source with 

a finite number of messages, {xd, k = 1, 2, ... , n, the source selects 

each of the messages at random with probabilities P(Xk) and the 

amount of information associated with the transmission of Xk is 

- log P(Xk). The average information per message for the source is 

n 

1=-LP(xk)logp(xk). 
k=1 



This is referred to as the entropy of the source. This aspect 10 

communication theory was studied by several researchers such as 

Fadeev (1956), Ash (1957), Reza (1971) etc. 

Another field of application of Shannon's entropy IS 

Economics, in connection with measurement of income inequality. 

If there are N individuals In a society, there are N non-negative 

amounts of individual income which adds upto the total income. 

Each of the individual earns non-negative fractions YI, Y2, ... , Y,\' of 

total income where Y/ s are non-negative numbers which add upto 1. 

When there is equality of income YI = Y2 '-'.. "-" YN = IIN and in the 

case of complete inequality y, = 1 for some i and zero for each i-:t:.j. 

The quantity 

is the entropy of income shares. When there is coinplete equality 

H(y) is maximum with value log N. A measure of income inequality 

due to Theil (1967), is 

" 
log N - H(y) = LY; 10g(Ny;). 

;=1 



Ord, Patil and Taillie (1983) points out that the malO draw back of 

the above measure is that it is scale dependent and location 

invariant. 

Tilanus and Theil (1965) and Theil (1967) discusses how the 

entropy concept can be used to forecast input output structures. 

Cozzolino and Zaheer (1973) have used the principle of maximum 

entropy for the prediction of future market price of a stock. Golan, 

Judge and Miller(l996) give a new set of generalized entropy 

techniques designed to recover information about economic systems 

by extending the maximum entropy principle. 

1.3 Some basic concepts in Reliability 

The basic concepts 10 Reliability Theory, which are 

extensively studied, are (1) the reliability function (2) the failure 

rate and (3) the mean residual life function. If X is a random 

variable representing the life time of a device, the reliability 

function (survival function) of X, defined by 

F(t) = P(X>t), t~O (1.3) 

represents the probability of failure free operation of the device at 

time t(~O). Also 

F(t) = 1- F(t). 



where F(t) is the distribution function of the random variable X. 

Defining the right extremity of F(x) by 

L = inf{x: F(x)= I}, 

for x<1-, the failure rate (hazard rate) is defined as 

h(x) =- /(x) 
F(x) 

dlogF(x) 

dx 
(1.4 ) 

In the general case, for a random variable X with support -oo<X<oo, 

Kotz and Shanbhag (1980) defines the failure rate as the Radon-

Nikodym derivative with respect to Lebesgue measure on 

{x: F(x)< I }, of the hazard measure 

H(B) = f dF , 
B F(x) 

for every Borel set B of (-oo,L). Further the distribution of X IS 

uniquely determined through the relationship 

F(x) = O[1-H(u)] exp {-He(-oo,x)} (1.5) 
u<% 

where He is the continuous part of H. When X is a non-negative 

random variable admitting an absolutely continuous distribution 

function, then (l. 5) reduces to 

( 1.6) 



It IS well known that h(x) determines the distribution 

uniquely and that the constancy of h(x) is characteristic to the 

exponential model [Galambos and Kotz (1978)]. Further, for a 

random variable X in the support of non-negative real numbers, a 

failure rate function of the form 

h(x) = (ax+hr l (1.7) 

characterizes the Exponential distribution specified by 

F(x) = e-·h , x>O, ..1>0 (1. 8) 

if a=O, the Pareto distribution specified by 

F(x) = a k (x+ar k , x>O, a>O, k>O (1.9) 

if a>O, and the Beta distribution specified by 

F(x) = KC (R-xt, O<x<R, c>O (1. 10) 

if a<O. 

In the discrete set up, Xekalaki (1983) defines the failure rate 

for a random variable X in the support of non-negative integers as 

h(x) = P(X=x). 
P(X~x) 

(1.11) 

It is established that h(x) determines the distribution uniquely 

through the formula 

x-I 

F(x) = n [1- heY)] . (1. 12) 
y=o 



Further it is shown that if X is a random variable in the support of 

the set {O, 1, 2, .. } then a relation of the form 

h(x) = (px+qr 1 (1.13) 

holds if and only if X follows the Geometric distribution specified 

by 

F (x) = (l, x = 0, I, 2, ... , 0 < q < 1 (1.14) 

if p=O, the Waring distribution specified by 

F(x) = (b t x = 0 
(at' , I, 2, ... , a, b>O (1.15) 

ifp>O, and the Negative hyper geometric distribution specified by 

F(x) 1,2, ... ,11, k>O (1.16) 

if p<O. 

For a continuous random variable X with E(X)<oo, the mean 

residual life function is defined as the Borel measurable function 

r(x) = E(X-xIX~x), (1. 17) 

for all x such that F(x»O. If X is absolutely continuous, r(x) can 

also be expressed as 

1 00 

r(x) = -=- f F(t)dt . 
F(x) x 

(1.18) 
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The following relationship between failure rate and the mean 

residual life function is immediate. 

l+r'(x) 
h(x) = . 

r(x) 
(1.19) 

Also the mean residual life function determines the distribution 

uniquely through the relationship 

F(x) = exp -f-1'(0) {X dt } 

r(x) 0 r(t) 
(1.20) 

for every x in (OJ). A set of necessary and sufficient condition for 

r(x) to be a mean residual life function, given by Swartz (1973), IS 

that along with (1.20), the following conditions holds 

(i) 

(ii) 

(iii) 

(iv) 

r(x) ~O 

r(O) = E(X) 

r'(x) ~-1 and 

"'dx f-- should be divergent. 
o r(x) 

Kupka and Loo (1989) defines the vitality function as the Borel 

measurable function on the real line given by 

m(x) = E(XIX~x). (1.21) 

The vitality function satisfies the properties 

(i) m(x) is non-decreasing and right continuous on (-00, L) 

(ii) m(x)~ x for all x<L 



(iii) lim m(x) = L 
.t- .1. 

(iv) lim m(x) " [(X) 
x ,. ,," 

Moreover 

m(x) == x + r(x) (1.22) 

and 
m'(x) == r(x)h(x). (1.23) 

Cox (1972) established that the mean residual life function is 

constant for the exponential distribution. Mukherjee and Roy (1986) 

observed that a relation of the form 

r(x)h(x) = k (l. 24) 

where k is a constant, holds if and only if X follows the Exponential 

distribution speci fied by (1.8) when k= 1, the Pareto distribution 

specified by (1.9) when k> 1 and the Beta distribution specified by 

(l.10) when k<1. The Pareto case is also established in Sullo and 

Rutherford (1977). In view of (l. 19), (1. 24) reduces to 

r(x) = (k-l) +c, (1.25) 

where c = r(O) = E(X). Hence a linear mean residual life function 

of the form 

r(x) = ax +b (1.26) 

is characteristic to the Exponential distribution specified by (1.8) if 

a=O, the Pareto distribution specified by (1. 9) if a>O and the Beta 

distribution specified by (1.10) if a<O. 
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For a discrete random variable X, in the support of the set of 

non-negative integers, the mean residual life function is defined as 

r(x) = E(X-xIX2:x) 

= [F(x+1)r 1 LF(y). (127 ) 
y~x'l 

The mean residual life function determines the distribution uniquely 

through the relation 

F(x) = fl r (Y-1)-1 [l-f(O)] 
.I'd r(y) 

( 1.28) 

where f(O) is determined such that Lf(x) = 1. Further 

r(x) - 1 
1- h(x) = , x = 0, 1, 2, .... 

r(x + 1) 
(1.29) 

Nair (1983) discusses the notion of memory of life distributions by 

using mean residual life function and also classify life time 

distributions as those possessing no memory, negative memory and 

positive memory. Salvia and Bollinger (1982), Ebrahimi (1986), 

Guess and Park (1988), Abouammoh (1990), Hitha (1991), Roy and 

Gupta (1992), Mi (1993) also discuss the monotone behaviour of 

discrete reliability characteristics such as failure rate and mean 

residual life function. 

Gupta and Gupta (1983) defines the moments of the residual 

life distribution through the relation 
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mr(x) = E[(X-xnX>x)] (1.30) 

and obtains a reccurence relation satisfied by them. Further it is 

established that in general one higher moment does not determine a 

distribution uniquely and that the ratio of two higher moments will 

be required to do so As a special case, the variance residual life 

function is 

V(x) = V(X-xIX~x) 

= E[(X_X)2IX~x] - r 2(x). (1.31) 

This concept was introduced by Launer (1984) in order to define 

certain new classes of life distributions and to provide bounds for 

the reliability function for certain specified class of distributions. 

Gupta and Kirmani (1987) has established the following relat ions 

and 

2 <.0 

V(x) = -=- Jr(/)F(/)dl - r2(x) 
F(x) 

JC 

1.4 The residual entropy function 

(1.32) 

(1.33) 

For a continuous non-negative random variable X, 

representing the life time of a component, Ebrahimi (1996) defines 

the residual entropy function as the Shannon's entropy associated 

with the random variable (X-I) truncated at 1(>0), namely, 
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H(t t) = - I'" ~(x) log .,-(x) dx F(t»O. 
, r F(t) F(t)' 

(1.34) 

(134) can also be written as 

H Cl, I) = log F (t) - F ~ t) t f (x) log f( x) dx. ( 1 .35) 

The residual entropy function can be expressed In terms of the 

hazard rate through the relation 

1 'co 

H(j, t) = 1 - -=-If(x) log hex) dx. 
F(t) r 

(1.36) 

H(j,t) measures the expected uncertainty contained In the 

conditional density of (X-I) given X>t about the predictability of 

remaining life time of the component. It may be noticed that 

-OO5,H(t, t) 5,x: and that H(t, 0) reduces to Shannon's entropy defined 

over (0, 00). It is established that H(f, t) determines the distribution 

uniquely. Also 

H l(f, t) = h(t)[ H(j, t) + log h(t) -1] (1. 3 7) 

and 

H "(j, t) = h 1(1)[ H(j, t) + log h(l)] + H l(f, t) h(l). (1. 3 8) 

Given r(l), if the domain is limited to a half line, the maximum 

entropy occurs for the exponential distribution with mean r(t). 

Therefore 

H(j, t) "5,; 1 + log r(t). (1. 39) 
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It can be easily verified that the maxImum entropy distribution of 

(X-I) truncated at I (>0) subject to the condition that the arithmetic 

mean is fixed is the exponential distribution. From (1.42), the 

finiteness of HU,/) is guaranteed whenever r{l)<:£ It also provide a 

useful upper bound for H(f,/) in terms of the mean residual life 

runet ion r(t) However, if add it ional in format ion in terms of the 

variance residual life function V(t) or equivalently, in terms of the 

residual coefficient of variation VF(t) = v(t)/r(t), is available, 

Ebrahimi and Kirmani (1996a) has proposed a better bound for 

H(j,/) as follows. Suppose E(X2) < 00, then 

H(j, I)'; ;; 0: r'(I) + log(2">,, U,)r(/) <1>(-00 )) 

where 00 is the solution of the equation 

(j ,2(t) = 1 + w( - 0), 

where W(x) = x {6(x)/~(x), ~(x) = 1-{6(x) and {6 and cl> are the density 

and the distribution function respectively of the standard normal 

distribution. 

Ebrahimi (1996) has also proved the following results 

1. If F is an increasing (decreasing) failure rate distribution [IFR 

(DFR)] then it is also a decreasing uncertainty residual life 



(increasing uncertainty residual life) [DURL (IURL)] 

distribution 

2 Let F be a DURL(IURL) then 

h(l)$ (~) exp{ I-H(/~I)}, 1>0. 

3 Let F be a DU RL (I URL) then 

H(f, 1)$ (~) I-log h(O)= I-log f( 0). 

4. Let P be a DURL, then 

H(j, t)$ 1 +log r(O) 

and F be a IURL, 

exp{H(f, 0) -I} $ r(t). 

He has also established there is no relationship between IURL 

(DURL) class of distributions and the class of increasing failure 

rate in average (IFRA) distributions. Subsequently Ebrahimi and 

Kirmani (1996a) has extended 1 to the family of decreasing mean 

residual life (increasing mean residual life) distributions, DMRL 

(lMRL). Further, Ebrahimi and Pellerey (1995) used the residual 

entropy function to introduce a new partial ordering for comparing 

the uncertainties associated with two non-negative random 

variables. 
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Recently Sankaran and Gupta (1999) has proved the following 

characterization results using the functional form of the residual 

entropy function. 

""'_"\."".;, (" ...... C' ...... , ..... ,:!:;~C'!"n variable admitting absolutely 

continuous distribution function, the residual entropy 

function of the form 

H(t, t) = log (a+bt), a>O (1.40) 

characterizes the Exponential distribution with survival 

function (1.8) if b=O, the Pareto distribution with survival 

function (1.9) if b>O and the Beta distribution with survival 

function (1.10) if b<O. 

(ii) A relation of the form 

H(f, t)= 1 +log r(t) (1.41) 

holds if and only if X follows the exponential distribution. 

(iii) A relation of the form 

R(f, t)= a - log het) (1.42) 

holds if and only if X follows the Exponential distribution 

with survival function (1. 8) if a= 1, the Pareto distribution 

with survival function (1.9) if a> 1 and the Beta distribution 

with survival function (1. 10) if a< 1. 

(iv) If g(t) = E( -log XIX>t), then a relationship of the form 

H(f, t)= cg(t) + d, c>O (1.43 ) 
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holds if and only if X follows the Weibull distribution with 

survi val function speci fied by 

/. 

F(x) = e .• t , a>O, h>O, />0. ( I .44) 

Further they have extended the concept of residual entropy function 

to the entire real line and has established the following 

characterization theorem of extreme value distribution. 

If X is a random variable defined over the real line then the 

residual entropy function of the form 

H(t, t)= a met) + b (1.45) 

where m(t) = E(XIX>t), characterizes the extreme value distribution 

with survi val function 

_peqt 
F(x) = e , -00<1<00. 

1.5 Discrimination between two residual life time distributions 

Kullback and Leibler (1951) has extensively studied the 

concept of directed divergence which aims at discrimination 

between two populations. An axiomatic foundation to this concept 

was laid down by Aczel and Daroczy (1975). Kannappan and 

Rathie (1973) has obtained some characterization results based on 

the directed divergence. The concept of generalized directed 

divergence is discussed by Kapur (1968) and Rathie (1971). 



n 

Let P (ql, q2 •...• qm) where LP, =1, 
, 1 

m 

I>f. = I. be the two discrete probability distributions. Then a 
" I 

measure of dirt!cted divergence between J) and fJ is defined as 

( I .46) 

If Pi = qi, then (1.46) reduces to zero. The continuous analogue to 

(1.46) turns out to be 

[(P, Q) = j f(x)log f(x) dx 
", g(x) 

(1.4 7) 

where ./(x) and g(x) be the probability density functions 

corresponding to the probability measures P and Q . 

. Let X and Y be non-negative random variables admitting 

absolutely continuous distribution functions F(x) and G(x) 

respectively, then (1.47) takes the form 

/(X, Y) = /(F, G) = J f(x)log f(x) dx'. 
o g(x) 

( 1.48) 

Recently Ebrahimi and Kirmani (1996a) proposed a measure of 

discrimination between two residual life distributions based on 

(1.48) given by 
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I(X r I) = J(F G I) = f'" ~(x) 10g{f(X) / F(t)}dX 
• • •• I F(t) g(x) / G(t) 

(1.49) 

where F(t) l-F(I) and (;(/) l-G(t).(l.49) can also be written as 

1(;( r.t) = H(f, t) + 10gCi(t) f' f(x) log g(x) c.lx. 
I F(x) 

(1 SO) 

Further they have studied the properties of I(X. r.t) and their 

implications. 

According to the minimum discrimination information (MDI) 

principle, among the probability distributions satisfying the given 

constraints, one should choose that one for which directed 

divergence from a gIven prior distribution is minImum. Ebrahimi 

and Kirmani (1996a) has established that MDI principle when 

applied to modelling survival functions leads to the proportional 

hazard model, given in Cox (1972). If F(t) and G(t) are the 

survival functions of two random variables X and Y then a 

proportional hazards model for the survival functions exists if the 

relation. 

G(x)= [F(x)]P , p>O, holds for all x. 

Ebrahimi and Kirmani (1996b) has further proved that the constancy 

of /(F, G, t) with respect to t is a characteristic property of the 

proportional hazard model. 
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The present thesis is organised in to SIX chapters. After the 

present chapter which includes a brief review of literature on the 

topic, we look into the problem of characterizing probability 

d i s t rib ut ion s b a sed 0 nth e fo r III 0 f the res i d u a I en t r 0 p y fu n c t ion in 

(Oh., ,,,t p," 11 
.. ,./ . -. " Accordingly characterization theorems are established 

in respect of the Exponential distribution. Pareto distribution. Beta 

distribution and the Extreme value distribution. We devote Chapter 

III to the study of the residual entropy function of conditional 

distributions. Certain bivariate life time models such as bivariate 

exponential distribution with independent exponential marginals, 

Gumbel's bivariate Exponential distribution, bivariate Pareto 

distribution and bivariate Beta distribution are being characterized 

using this concept. 

In Chapter IV we define the geometric vitality function and 

examIne its properties. It is established that the geometric vitality 

function determines the distribution uniquely. Further 

characterization theorems In respect of some standard life time 

models are also obtained. The problem of averaging the residual 

entropy function is examiood in Chapter V. Also the truncated form 

version ~f entropies of higher order are defined. Further we look 

into the problem of characterizing probability distributions using 
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the above concepts. Chapter VI is devoted the study of the residual 

entropy function in the discrete time domain. It is established that 

in this case also the residual entropy function determines the 

distribution uniquely and that the constancy of the same IS 

characteristic to the geometric distribution. 



CHAPTER 11 

CHARACTERIZATION OF CONTINl'Ot:S 
PROBABILITY DISTRIBUTIONS 

2.1. Introduction 

A . conventional approach to characterize a life time 

distribution is by using the failure rate or the mean residual life 

function. The works of Kotz and Shanbhag (1980), Gupta (1981) 

and Mukherjee and Roy (1986) proceeds in this direction. As 

pointed out in Chapter I the residual entropy function, being a 

measure of the stability of a component, can be advantageously 

used to describe the physical characteristics of the failure 

mechanism and so a characterization theorem involving this concept 

helps one to determine the life time distribution through a 

knowledge of the form of the residual entropy function. The 

residual entropy function IS evaluated for some standard 

distributions and is given as Appendix-I. 

Some of the results mentioned in this chapter are being published in 
JISA Vo!. 36, pp. 157-166. 
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2.2 Characterizations using relationship between the residual 
entropy function and the mean residual life function 

Galambos and Kotz (1978) has observed that the three 

characteristic properties of the exponential distrIbution namely the 

lack of memory property, constancy of failure rate and constancy of 

mean residual life function are equivalent. In addition to the above 

if we add the property of constancy of the residual entropy function 

one can see that the four properties are equivalent. This is stated as 

Theorem 2. I below 

Theorem 2.1 

Let X be a non-negative random variable admitting an 

absolutely continuous distribution function with finite mean. Then 

the following are equivalent. 

(a) h(t) = c, where c is a constant 

(b)r(t) = r(O) 

(c) P(X;:::t+s/X;:::s) = P(X;:::t) 

(d)H(j. t) = H(f). 

Proof: 

We first show that (d) <=> (a). When (d) holds we have 

H'(j. t)= O. 



Using the expression for H'(f t) given in (1.37) namely 

H'(f, 1)= h(t) [H(f, t) - 1 + log h(t)], 

we get 

hU) f H(f. f) - 1 + log h( 1)]=0 

or 

17(/) fH(f) - )+ log h(t)]=O. 

This gives either h(t) = 0 or h(t) = c, where c = exp[ I-H(f)]. 

This is same as (a). 

When (a) holds using the relation 

we get 

H(f, t) = 1 - -J-J" f{x) log h{x) dx, 
F{I) I' 

H(f,t) = 1- log c = H(f) 

which is same as (d). The rest of the proof follows from Galambos 

and Kotz (1978). 

. 
Since properties (a), (b) and (c) are characteristic to the 

exponential model, in view of Theorem 2.1 it may be observed that 

the constancy of the residual entropy function is characteristic to 

the exponential distribution. 
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Our next result provides a characterization theorem for the 

exponential distribution using a functional relationship between the 

residual entropy function and the mean residual life function. 

Theorem 2.2 

Let X be a non-negative random variable admitting an 

absolutely continuous distribution function such that E(X)<oo. If 

H(f, t) be the residual entropy function and r(t) be the mean residual 

life function, then a relation of the form 

H(f,/) - r(t) c_ H(f) - r(O) (2.1) 

holds for all real I(~O) if and only if X follows the exponential 

distribution. 

Proof: 

When (2.1) holds we have 

H'(f, I) - r'(/) =0. (2.2) 

Using (1.19) and (1.37) in (2.2) we get 

h(t)[H(j, t) - r(t) -1 + log h(t)] = -1 

or 

h(t)[c-l +Iog h(t)] = -1, (2.3 ) 

where c = H(f) - r(O). Differentiating (2.3) with respect to 1 and 

rearranging the terms we get 



h'(t){c+log h(t)} = o. (2.4) 

(24) gIves either h'(t) = 0 or log h(t)'c-c. In either case h(t) is a 

constant. Since the constancy of failure rate is characteristic to the 

exponential distrIbution the only if part of the theorem follows. 

Conversely when X follows the ex ponential distribution with 

survival function 

P(t) = e- A1 , t ~O, )">0, 

by direct calculations we get 

and 

1 
r(t) =-

A 

H(f, t)= I-log A . 

(2.1) is immediate from the above expressions. 

It may be observed that (2.1) can be written in the form 

H(j) - H(j, t) = r(O)- r(t). (2.5) 

In connection with his study relating to memory of 

distributions, Muth (1980) defines the virtual age, v(t), of a 

component at time t as 

v(t) = r(O) - r(t). 



Also when v(t) =0, r(t) = reO) and there is no memory. So 

Theorem 2.2 implies that the excess of entropy resulting from the 

functioning of the component upto time' is equal to the virtual age 

of the component if and only if the distribution is exponential. 

The following theorem provides a characterization for a 

family of distributions using a possible relationship between the 

residual entropy function and the mean residual life function. 

Theorem 2.3 

For the random variable X considered In Theorem 2.2, the 

relation 

H(f, t) - log r(t) = k (2.6) 

where k = H(j) - log r(O), holds for all real t (~ 0) if and only if X 

follows anyone of the following three distributions 

(i) the Exponential distribution with survival function 

F(x) = e-.lx , x~O, A>O, 

(ii) the Pareto distribution with survival function 

F(x) = (~)(/ , x~O, a> 1, O<a<oo, 
x+a 

(iii) the Beta distribution with survival function 

F(x)= (1- ~)C ,0<x<R, c>l. 

(2.7) 

(2.8) 

(2.9) 



Proof: 

When (2.6) holds, we have 

r' (1) 
H'(f,t) = -

r(l) 

Using (137) and (2.6) the above equation can be written as 

h(t) r(l) [k-I +Iog h(t)r(t)] = r'(t). 

Writing e(t) = h(t)r(t) and using (1.19) we get 

e(/) [k-l +loge(t)] = e(/) - 1. (2.10) 

Differentiating (2.10) with respect to I and rearranging the terms we 

get 

e'(t) [k-2+log e(t)] = 0 (2 I 1 ) 

(2.11) gives either 

e'(t) =0 or e(1) = elk. 

In either case 

h(/)r(/) = p. (2.12) 

where p is a constant satisfying (2.11). 

From Mukherjee and Roy (1986), (2.12) characterizes the 

Exponential distribution for p=l, the Pareto distribution for p >1 

and the Beta distribution for p< 1. Hence X follows anyone of the 

three distributions. 
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The if part of the theorem follows from the expresSIOn for 

H(j. I) and r(1) given below 

Distribution r(t) H(f.t) 

Exponential A-I 1- log le 

I +a I + 1. - 10g(_a_) 
a-I (/ I +a 

Pareto 

R-t 
I-1.- 10g(_C ) 

c+l C R-t 
Beta 

Observing that (2.6) can be written as 

r(t) = p exp{-[H(f) - H(f.t)]}, 

where p =E(X). we notice that for the above class of distributions 

the expected remai ning life increases as the excess of entropy 

decreases and vice versa. 

Recently, in connection with their study on ordering and 

asymptotic properties of residual income distributions, Belzunce, 

Candel and Ruiz (1995) consider the random variable 

x 
X(t) = -IX> t 

t 

to define a new class of distributions and used the proportional 

failure rate defined by 

p(t) = th(t) (2.13) 



.H) 

to derive a model for income distributions. We give below a 

characterization for the family of distributions considered in 

Theorem 2.3 using the above concept. 

Theorem 2.4 

Let X be a non-negative random variable admitting absolutely 

continuous distribution function such that E(X)<oo. The 

relationship 

H(f, t) + log p(/) = log kt (2.14) 

holds for all 12.0 if and only if X follows 

(i) the Exponential distribution with survival function (2.7) if k=e, 

(ii) the Pareto distribution with survival function (2.8) if k>e and 

(iii) the Beta distribution with survival function (2.9) if k<e. 

Proof: 

The proof is immediate, observing that (2.14) can be written 

as 

H(j, t) + log h(t) = log k. (2.15) 

Differentiating (2.15) with respect to 1 we get 

H'(f. t) = _ h' (I) . 
, h(t) 

Using (1.37) and (2.15), the above equation can be written as 
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h'(t) - -- = log k -1. 
h 2 (I) 

(2.16) 

(2.16) gives 

flU) =- [(log k - 1)1 + crI (2 17) 

where c is a constant lnview of (1.7), X follows the Exponential 

distribution when k=e, the Pareto distribution when k>e and the 

Beta distribution when k<e. 

2.3 Characterizations using the residual entropy function when 
the support of the random variable is the real line 

Kotz and Shanbhag (1980) has observed that the concept of 

failure rate and the mean residual life function can be used with out 

much difficulty if the support of X is the set of real numbers. They 

defined the failure rate as the Radon-Nikodym derivative with 

respect to Lebesgue measure on {x: F(x)< I} of the hazard measure 

H(x) = J dF(x) 1[1- F(x)], 
B 

for every Borel set B and the mean residual life function as a real 

valued Borel measurable function 

r(x) = E(X- xIX>x), 

for all x such that P(X~x»O. Analogously for a continuous random 

variable X defined over R, we define the residual entropy function 

as 



.)0 

f"" f(x) f(x) 
H(f 1) = - -=-- log ~ dx -oo<t<'XJ 

, I F(t) FU)' 

1 'f 

1 - -:=- f lex) log hex) dx. 
1-(1) I 

(2.18) 

The followi ng theorem provides a characterization of the t::\. t reme 

value distribution using (218). 

Theorem 2.5 

Let X be a random variable in the support of R, admitting an 

absolutely continuous distribution such that E(X).-:oo and let H(f.t) 

be defi ned as in (2.18). The relation 

H(f, t) +r(t) = 1-/ (2.19) 

holds for all real t if and only if X follows the type I extreme value 

distribution with survival function 

- x 
F(x) = e-e ,-oo<x<oo 

Proof: 

When (2.19) holds we have 

or 

1 00 

H(f,/) + ~ fF(x)dx = 1-1 
F(t) t 

CC> 

f F(x)dx = [1- I - H(f ,I)] F(/). 
t 

(2.20) 
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Differentiating the above equation W.T.t. t and simplifying we get 

[1 - I - H(f ,1)] F' (I) - H' (f ,I) P(t) = 0 

llsing (137), (2 21) can be written as 

or 

0.UW lht! leialiullship 

gIves 

as claimed. 

log flU) = I 

flU) I e. 

- x 
F(x} = e e 

(2.21) 

(2.22) 

Conversely when the distribution of X is specified by (2.20), 

using (2. 18), we have 

1 're> x 

H(f t} = 1- -=- Jxe- e .exdx 
, F(t} I 

which is same as (2.19). 

1 OD 

=1-1 - -- JF(x}dx 
F(t} I 

= 1- t - r(t}. 



Gompertz (1825), in connection with his empirical studies on 

human mortality, consider a failure rate function (force of 

mortality) of the form 

and obtained a truncated form of tvpe I extreme value distribution 

srccified by 

F(J) = e p(q' I)ilogq , I~O (2.23) 

as a model for life time data. In the light of Theorem 2.5 it is 

immediate that the relation 

H(f, t) +m(t) log q = 1, 

when m(t) = E(XJX>t)= r(l) + I, holds for all real I~O if and only if 

X follows (2.23) with 1'=1. 

Theorem 2.6 

For the random variable X considered In Theorem 2.5, with 

lim f(x) = 0, the relation 
.x .-'T: 

H(f, t) + rt(t) = a, (2.24) 

where a is a constant and rt(t) denotes the derivative of r(l), holds 

for all real t if and only if X follows the logistic distribution with 

survival function 

ke- a 

F{x) = -oo<x<oo, c>O,k>O. 
1 + ke- a ' 

(2.25) 



·H 

Proof: 

When (2 24) holds we have 

H'(f.1) - r"(1) 

Using (1.19) and II 37), (2.26) l:an be written as 

h(t)[H(f, t) + log h(t) - 1] = - h(t) r'(t) - r(t)h'(t). 

In view of (2 24) the above equation simplifies to 

or 

This gives 

h(t)[ log h(1) + a-I] = - r(t)h'(t) 

d 
---[Iogh(t)] 
dt 

---=~---

r(t) logh(l) + a-I 

d "'- d 
-[logS F(x)dx] = -[log(logh(l) +a -1)]. 
dt t dt 

From (2.27), we get 

DO 

S F(x)dx = b [log h(t) + a-I], 
t 

(2.26) 

(2.27) 

where log b IS the constant of integration. This above equation 

gives 

or 

-F(I) = b h'(t) 
h(t) 

- f(/) = bh'(t) . 

Integrating from -00 to t and using the condition lim f(x) = 0 we get 
X----)Jo-(.() 



F(/) = -b h(t). (2.28) 

Since F(t) and h(t) are non-negative, for (2.28) to be valid we must 

have b<O. Thus (2.28) gives 

.rU) ~ a F(I)[I- F(1)] 

I 
where a = -- > O. The rest of the proof follows from Galambos 

h 

(1992). 

Conversel y when the distribution of Xis speci fied by (2. 2S) 

by direct calculation we get 

and 

c 
h(l) = 1 + ke <'1 ' 

r(/) = (l+k~.CI) log(l+ke Cl) 
kee d 

2 I 10g(1 + ke- Cr ) 
Hif" I) = - oge - -=-'-----'-

ke- cr 

H(j, I) + r'(t) = 1 - log c, 

which is a constant, so that the conditions of the theorem holds. 

In the sequel, we give characterization theorems for the type I 

extreme value distribution and the logistic distribution using 

functional relationships between failure rate, mean residual life 

function and the residual entropy function. 
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Theorem 2.7 

For the random variable considered In Theorem 2.5, the 

relation 

HU.I) + ,. (I) = I - log 11(1). (2.29) 

holds for all real 1 if and only if X follows the type I extreme value 

distribution with survival function 

1 • _ .- e 

F(x) = em, m?O, -oo<x<oo. 

Proof: 

When (2.29) holds, we have 

h' (I) 
H'(f. I) + 1"(/) = - -

h(t) 

Using (l.19) and (l.37), (2.31) can be written as 

h'(I) 
h(l)[k - 1'(1) - 1] + h(/) 1'(/) -1 = - -

h(/) 

or 

h'(/) 1 
---+-=0 

h 2 (I) h(l) . 

If 11(1) = _1_, the above equation takes the form 
h(/) 

u'(/) + 11(1) = 0 

which is a linear differential equation whose solution is 

u(t) = me-I 

(2.30) 

(2.31) 



or 

h(/) = ~ e', 
m 

with m?O. From (222) we have 

The if part follows from the expressions for h(t) and r(l) namely 

so that 

1 I h(/) = - e 
m 

1 DO 1 

r(t) = e;/ J e-;'~ dx, 

1, I 1.1 

H(j. t) = 1 - t - e;;,e J e ;,e dx + log m 

= 1 - log {~ el
} -

1 I ... 
em 

= I - log h(/) - r(/). 

which is same as (2.29). 

Theorem 2.8 

The relation 

H(j, I) + r(/) = 2 - log h(t) 

holds for all real t if and only if X follow the logistic distribution 

with survival function (2.25). 



The theorem follows by proceeding along the same titie's'~s in 

the proof of Theorem 2.7, and so the proof is omitted. 

2.4 Conditional measure of uncertainty 

For a non-negative random variable X with probability 

density function f(x) and survival function F(x) , Sankaran and 

Gupta (1999) define a conditional measure of uncertainty as 

M(f, t) = - E(log f(X)IX>t) 

1 '" 
= - -=- If(x) log f(x) dx. 

F(t) I 

(2.32) 

M(f, t) is related to H(f, t) through the relation 

M(f, I) = H({, t) - log F(t). (2.33) 

Observing that 

( 

I h(x)dx = - log F(t) 
o 

represents the total failure rate, (2.33) implies that the conditional 

measure of uncertainty is simply the sum of the residual entropy 

function and the total failure rate 

We give below a characterization theorem for the exponential 

distribution usi ng the cond it ional measure of u ncert ai nty de fi ned by 

(2.32). 



Theorem 2.9 

For a non-negative random variable X with E(X)<oc, a relation 

of the form 

,"vI (f, I) - P (I) = k, (2.34) 

where p(l) is the proportional hazard rate defined by (2.13) and k is 

a constant, holds for all real I(~O) if and only if X follows the 

exponential distribution with survival function (2.7). 

Proof: 

When (2.34) holds, we have 

M'(f, t) = p'(t) 

Using the relationship 

M'(j, I) = h(/) [M'(j, I) + log /(/)], 

(2.35) becomes 

h(/) [M'(j, I) + log /(/)] = 1 h'(/) + h(t) 

or 

h(/) [k + 1 h(l) + log /(/)] = I h'(l) + h(l). 

Since 

h'(t) = f'(t) + h(t) 
h(/) /(/) 

(2.37) can be written as 

d 1 k-l 
-log/(/) - - log /(t) = -
dt 1 1 

(2.35) 

(2.36) 

(2.37) 
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which is a linear differential equation in log f(t) whose solution is 

.f(t) = it e-~l 

where A = -e }." Thus X has the exponential distribution. 

Con v e r s e I y w hen the d i s t rib uti 0 n 0 f Xis s pe c i fi e d by ( 2 . 7), 

by direct calculation we get 

and 

M(r, I) = 1 - log A + AI, 

p(t) = AI 

M(r, t) - pet) = 1 - log A, 

which is same as in (2.34). 

In the next theorem we look into the situation where M(f, I) 

IS a linear function of h(t). Here we consider the situation where 

domain of X is the set of real numbers. 

Theorem 2.10 

For the random variable X considered 10 Theorem 2.5, the 

relation 

M(f, I) = a + Yz I h(t). (2.38) 

with a= log ~21f e, holds for all real I if and only if X follows the 

standard normal distribution with probability density function 



-18 

1 
f(x) = -- e 2 
. J27r 

-:c<x<:c 

Proof: 

When (2 38) holds, we have 

M' (f, I) = \;2 [I h' (I) + h ( I) ] . 

Using (2 36) and (238). (2 40) can be written as 

or 

a + !.- h(t) + log f{t) = Yzl [f'(t) + h(t)]+ Yz 
2 . f(l) 

f'(t) 2 \,2 
-' - - - log fU) = (a - I'z)-
f(t) I' I 

(2.39) 

(240) 

(241 ) 

(241) is a linear differential equation in log f(/), whose solution is 

log f{t) = - (a - Yz) + h/2 

where h is the constant of integration. Therefore 

" 1 --
ji( t) = -- e 2 -oo<x<oo 

J21f' , 

observing that h= - Y2 for f(t) to be a probability density function. 

Conversely by direct calculations we have 

h(t)= 
e 2 

( I ')' r i'~ 

" t e 2 

M(j, t) = log.J21f + Y2 + ~ (I ,,)' 
,,2 r -. --

2' 2 



so that 

1 
AI (l. I) co Cl J-_ h ( I ) 

2 

The fo Ilow i ng theorem c haract cri zes t he standard normal 

d 1 Sl r i but io n u si ng a fu net ional re I at io nsh i p het ween M(l, 1) and the 

second order moment of residual life 

Theorem 2.11 

For the random variable consider in Theorem 2. S, the relation 

(242) 

where A is a speci fi ed constant, holds for all real I if and only if X 

follows the standard normal distribution with density function 

(2.39). 

Proof: 

When (2.42) holds, we have 

et:! 

P(t) M(f, I) - Y2 J x 2 f(x)dx = A P(t). 
I 

Differentiating the above equation with respect to 1 and simplifying 

we get 

M'(f, I) - h(/) M{j, I) + Y2 12 h(l) = - Ah(t). (2.43 ) 

Using (2.36) in (2.43) we get 

logf(l) = - A-Y2 12. 
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Therefore 

1 
/(1) = --. e 2 

J2; 

\\t her e e· '-' -~ . sin c e.l is to be a pro b a b i lit y den sit y fu n c t ion . 
.... -,' 

Conversel y if the di stri but ion of Xis speci fied by the densit y 

function (2 39), from (2.32), we have 

(f 1 J'" 1 x"21 M ,t) = - --:-- --e og 
I- (I) I J21f 

( 1 -~.) d --e 2 x 
J21f 

1 ar,( 2) X 1 .x'12 = log J21f + -=- J - --e dx 
F(t) I 2 J21f 

which is same as (2.42). 



CHAPTER III 

RESIDUAL ENTROPY OF 
CONDITIONAL DISTRIBUTIONS 

3.1. Introduction 

The fundamental constituents of a multivariate distribution 

are the marginal and the conditional distributions. It is well known 

that, except in the case of independence, the marginals does not 

determine the distribution uniquely. Conditions under which a set 

of margi nal and conditional di stributions u niquel y specifies the 

distribution has been investigated by Abrahams and Thomas (1984), 

Hitha and N air (1991) and Gelman and Speed (1993). In many real 

life phenomena information about the conditional densities are 

easily available. So the question of determining the joint 

distribution using specified conditionals has received considerable 

attention in recent times. The works of Arnold (1987), Arnold and 

Press (1988), Arnold and Strauss (1988) and Geetha and Nair(1997) 

proceed in this direction. 

Some of the results in this chapter have appeared 10 the Statistical 
Methods (2000), Vo\. 2(1), pp. 72-80. 



For two random variables X and Y in the support of set of 

integers, the entropy of the conditional distribution of X given Y=y 

is defined as 

H (. r: }'cc Y) = :L p( xiy) log P (x iy ) (3. I ) 

where p(xjy)is the conditional probability mass function of X given 

Y=y. When the support of X and Y are the set of real numbers, then 

(3. I ) takes the form 

H(X] Y=y) = - f f(xiy) log f(xly)dx 

where .I(xly) is the conditional probability density function of X 

given Y. The conditional entropy of X given Y is defined as the 

weighted average of the entropy of the conditional distributions, 

namely 

H(XIy) = Ey[H(XI Y=y)]. 

Analogous to (1.34) one can define the residual entropy of 

conditional distributions. The form of the same can be 

advantageously used to arrive at bivariate distributions which have 

applications in modelling life time data for systems having more 

than one component. 



:u 

3.2 Definition 

Let .X = ( ... r., X2 ) be a non-negative random vector admitting 

an absol ut c! y co I1t i nuous d i stri but ion with densi ty fu nction I<x .. X2), 

survival function F(x1.x,), marginal density of X,. f,{x,). i=1.2. and 

conditional density of Xi given X,= x" g, (x, I x,), i, .i = I ,2, i~j. 

Using (1.34), the residual entropy function of the conditional 

distribution of X, given X} = I} turns out to be 

(3.2) 

where G,(t,jt,) is the conditional survival function of X, given XJ =IJ . 

If X represents the life time of the components 111 a two 

component system, rl=(XI - Id given XI>/I, X 2 = 12 corresponds to 

the residual life of the first component subject to the condition that 

it has survived up to time 1I and that the second component has 

failed at time 12. The Shannon's entropy corresponding to the 

distribution of r l simplifies to (3.2) with i=1. Similar interpretation 

Since 

tOtO 

F(/pt2) = I I f(X1 ,x2)dx2tixl 

" '2 



we have 

, 

-f f (x I ' '1 )dx I . 

Also 

gl(xll'l) 

(/ I (/11' ~ ) 

Hence (3.2) can also be written as 

and 

3.3 Characterization theorems 

I, 

., 

f f (X I . 12 )ciX I 

I, 

(3.3) 

(3.4) 

In this section we discuss characterization theorems 

associated with some bivariate models based on the functional form 

of the residual entropy function. Our first result focuses attention 

on the constancy of the residual entropy of the conditional 

distributions. 



Theorem 3.1 

Let X = (X I ,X2 ) be a non-negat i ve, non-degenerate random 

vector admitting an absolutely continuous distribution function with 

r~spe\.:t to Lcbesgue measure. The relation 

H,(g,,11,/2 ) = C" i = 1,2 (3.5) 

where c,' s are constants, holds for all real I1 ,/2 ~ ° if and only if X 

\s distributed as a bivariate exponential with independent 

(exponential) marginals. 

Proof: 

When (3 5) holds with i = 1, using (3.3) we can write 

Differentiating with respect to 1\ we get 

Since 1(/\,/2) >0, the above equation can be written as 

or 

(3.6) 

with k\ = e CI -
1 >O. Differentiating (3.6) with respect to 1\ we get 



8l0g/(/) ,/z) = 

011 

Proceeding along similar lines with i=2 in (3 5) we get 

() log f (f I • f 2 ) 1 - - k,: 0 k . • 
! 

Using the argument in Galambos and Kotz (llJ7g, p.12g) we see 

thatf(tI,12) is proportional to exp{--I I) __ I Iz}. The condition 
k) kz 

00 00 

J J /(/),1 z )dl Zd/) = 1 
00 

gIves 

with AI k ' ,12 = _1 >0, as claimed. 
) kz 

Conversely when the distribution of X is specified by (3.7), 

by direct calculations we get 

H i(gi,/I,/2 ) = 1 - log A.i, i = 1,2 

so that the conditions of the theorem holds. 

The following theorem looks into the situation where the 

residual entropy function of the conditional distribution of Xi given 

XJ = IJ is log linear in li. 



Theorem 3.2 

Let X = (X I ,X2 ) be a non-negative, non-degenerate random 

vector admitting an absolutely continuous distribution function and 

lim '/(XI.X2) (>0) exists. The relation 
\, .. '_.' ,l'· 

H,(g" 1\, (2) = log (AI; + B, (1,», i . ./ = 1,2 i 7:-./ (3 8) 

where B,(l j ) are non-negative non-increasing functions of 1., holds 

for all 1\, 12>0 if and only if X follows 

(i) the bivariate distribution with exponential conditionals 

[Arnold and Strauss (1988)] with probability density function 

(3.9) 

if A = o. 
(ii) the bivariate distribution with Pareto conditionals [Arnold 

(1987)] speci fied by 

(3.10) 

if A > 0 

(iii) the bivariate distribution with Beta conditionals specified by 

(3.11 ) 

if A <0. 
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Proof: 

When (3 8) holds with i =1, using (33) we can write 

Differentiating the above equation with respect to I) we get 

Dividing (3.12) throughout by f(/) ,12) (>0) and setting 

(3.13) 

(3.12) can be written as 

Z)(tl,t2) [log Zl(tl,/2) -1]= A. (3.14) 

Differentiating (3.14) with respect to I) and solving the resulting 

equation we get 

(3.15) 
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where C\(t2) is independent of 11. Similarly differentiating (3.14) 

with respect to 12 and proceeding along the same lines we also get 

(3.16) 

where C~(I1) is independent of I~ For (3 15) and (3 16) to hold 

simultaneously we should have 

(3.17) 

where k\ is a constant. 

Similarly when (3.8) holds with i 2 and if 

- f (I I , 12 )( A I 2 + B z (t I » z 2 (t \ , 12) = --=:.----:.....:..:........::..::.....:..-----"-_-=--c....:...:..c... 

aF(/I,l z ) 

cll l 

we can also get 
(3.18) 

where k2 is a constant. From the monotonicity of x (log x-I). it 

follows that k\ = k2. Let k\ = k2 = k. 

From (3.13) and (3.17) we get 

Differentiating with respect to 1\ and rearranging the terms we get 

alogj(ll ,/2 ) _ _ - (k + A) 

all All + RI (12) 
(3.19) 



oil 

or 

(3.20) 

Proceeding on a similar lines we also get 

'.t-.... 

(3 2 I ) 

As 12 ~ O' (321) gives 

or 

(3.22) 

Similarly (3.20) gives 

(3.23 ) 

Also as 12 ~ 0'" (3.20) we get 

(3.24 ) 

Similarly from (3.21) 

(3.25) 

From (3.20), (3.23) and (3.25) we have 



Ul 

f-:fJ f~~) 
/(/1,/2) = [All +BI(/2)] [A12 ~_~12(O)] m2(O) 

\ • I 

[RI (1! )]. . 

(3.26) 

similarly from (3.21), (3 22) and (3 24) we have 

(3.27) 

Equating the two expressions for /(11,/2) we get 

That is 

But 

(3.28) can now be written as 



or 

1 1 1 1 A ----- + --------
BI (12 )B2 (0) 

(3.29) 

Since (3.29) is true for all real 11, 12 ~O we may take both side of 

(3.29) equal to (), where () is a constant. This gives 

and 

B ( ) - [All +B\(0)]B2(0) 
2 11 - ---'------'------=:...--

[1 + BB 2 (0)1 I ]B\ (0) 

8 1(12) = [All +B 1 (0)]81(0) 
[I + (}B 1(0)t z ]B1 (0) 

Substituting for B 1(12) in (3.26) we get 

:.t .. i 
which is of the form (3 10) with kl = Jn2(0) [81 (0)]. • , £.'1 

A 

(3.30) 

c:: = c, AO and d= L+.4 
A 

If A>O sInce H.U.) arc nOI1-

negative functions of '-, we have k l , Cl, C2, Cl >0. 
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If A <0, (3.30) takes the form. 

with k2 ,al,a 2>0, p>O. Further for J(tl, 12) to be a probability 

1 I-alII 
density function we should have 0</1 < - and 0</2< 

at a z -a3/ 1 

When A =0 (3.12) reads as 

or 

This gives 

Differentiating with respect to 11 and rearranging the terms we get 

or 

(llogJ(t I' t 2 ) 

d l 

Proceeding on similar lines we also get 

-e 

(3 3 I ) 



64 

When I1 ~ 0+ in (3.31) we get 

Also 

Further 

and 

+ -e 
10g/(t1,0 ) = -- I1 + ml(O) 

B.(O) 

+ -e 
log/(O , (2) = -- 12 + m2(0). 

B2 (0) 

Hence from (3.31) we get 

1\ + 

and from (3.32) we get 

Equating the two expression for /(1\,12) we get 

-I 

Since this is true for all real 1\, 12 ~ 0, we should have 

(3.32) 

(3.33) 

(3.34) 



1 --- = () 

where () is a constant. This gives 

and 

From (3.33) we get 

so that f(tl,12) has the form (3.9) with k = log m2(0), /31 = 

/32 =~ and fi3 = e(}, which are non-negative. 
8 2 (0) 

-e 
8 1(0) , 

The if part of Theorem 3.2 follows from the expressions for 

the residual entropy function of the conditional distribution of XI 

given X 2 =/2 when the distributions are specified by (3.9), (3.10) 

and (3.11) respectively given by l-log(/3l + fi3(2), 

with similar expression for H2 (g;,tl,12 ) . 



If B;(tj) in (3.8) are linear functions of If, say a; + hJIJ, we 

have the following theorem. 

Theorem 3.3 

For the random vector X = (X\, X 2 ) considered ID Theorem 

3.2, the relation. 

holds for all real 1\, 12 >0 if and only if X follows 

(i) the bivariate exponential distribution with probability density 

function 

if hi = 0, i = 1,2 

(i i) the bivariate Pareto distribution speci fied by 

if hi> 0, i = 1, 2 

and 

(ii i) the bivariate Beta distribution speci fied by 

if hi < 0, i = I, 2 

The proof is analogous to that of Theorem 3.2 and hence omitted. 
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For a random vector· X = (Xl, X 2 ) admitting an absolutely 

continuous distribution function in the support of R;, it is special 

interest to consider another type of conditional distribution namely 

the conditional distribution of X; given Xj >/], i, j = 1, 2, i :t:. j. In 

life testing experiment if (Xl, X 2 ) represents the life time of the 

components in a two component system the above conditional 

distribution focuses attention on the distribution of the ;th 

component subject to the condition that the other has survived up to 

time Ij . The residual entropy of the conditional distribution of Xl 

to 

ff(x t !X2 >/2 )log/(xt !X2 >/2)dxI (3.36) 

'. 

have 

so that 
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Also 

Hence the residual entropy of the conditional distribution of X\ 

given X 2>/2 can also be written as 

where h=(h 1, h2) is the vector valued failure rate considered by 

Iohnson and Kotz (1975), namely h=(hl,h2) with 

Similarly 

The following theorems alms at characterizations of certain 

bivariate distributionsbased on the forms of Hi'(j/, 11, (2) i=1,2. 

Theorem 3.4 

Let X = (X\. X2 ) be a non-negative non-degenerate random 

vector admitting an absolutely continuous distribution function with 

respect to a Lebsegue measure. The relation 

(3.39) 
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where Pi'S are constants, holds for all real 11, 12 ~O if and only if X 

IS distributed as a bivariate exponential with independent 

(exponential) marginals. 

Proof: 

When (3.39) holds with i =1, using (3.37) we have 

(3.40) 

Differentiating (3.40) with respect to 11 we get 

S· ff<'(tt,/z) 0 h b . b' Ince > , tea ove equatIOn can e wfltten as 
at 

or 

Proceeding along similar lines with i = 2 in (3.39) we get 

From Galambos and Kotz (1978) we have 

as claimed. 



IV 

Conversely when X is. specified by (3.7), by direct calculation 

we get 

Hj·(J" 11, (2) =I-Iog A" i=l, 2. 

so that the condition of the theorem holds. 

Theorem 3.5 

For the random vector X, considered in the Theorem 3.1, the 

relation 

(3.41) 

where bj(tj) are non negative function of IJ (>0) holds if and only if 

X is distributed as 

I. the Gumbel' s bi variate exponential distribution with survival 

function 

F(tp/2) = exp{-al / l-a2 /2-BI I12}' aI, a2, 11,12>0, 0<B<ala2 

(3.42) 
if a=O. 

2. the bi varite Pareto d istri bu t io n sp eci fi ed by 

F(tl ,(2 ) = (1 +al I1 +a2/2+bl l 12 rc, al ,a2,C ,/1 ,12>0, O<b~( c+ 1 )ala2 

(343) 
if {/>O and 

3. the bivarite Beta distribution specified by 



if a<O. 

Proof: 

When (3.41) hold with i = 1, we have 

Differentiating with respect to 11 and rearranging the terms we get 

Denoting by 

the above equation takes the form 

Proceeding on similar lines as in the proof of Theorem 3.2, we get 

where k is a constant. This gi ves 

Similarly we can also have 
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The rest of the proof follows from Roy (1989). 

The if part of the theorem follows from the expression for 

( 1 1 J (1 1 J 11·· I,·· 1-- 1·--
e C eel + a I -e d e d 1 - P I 

log --/1 + I I and log --/1 + __ 2 I 

C c c(at+bI1) d d (p2-q/2) 

respectively for distributions specified by (3.42), (3.43) and (3.44) 

with the similar expression for H; (j2, 11, 12). Hence the condition 

of the theorem holds. 

Theorem 3.6 

For the random vector X, considered 10 Theorem 3.4, a 

relation of the form 

(3.45) 

where h,(tl, 12)'S are the components of the bivariate failure rate 

holds for all real 11, '2z0 if and only if X follows anyone of the 

t h r e e d i s t rib uti 0 n s s p e c i fi e d by ( 3 .4 2 ) . (3 4 3 ) and ( 3 .4 4 ) 

respectively according as k= I, k> 1 and k< I. 
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Proof: 

When (3.45) holds using (3.37) we can write 

Differentiating with respect to 11 and simplifying we get 

1 
If U(/l, 12) = the above equation turn out to be 

hi (t"tz) 

whose solution is 

where Cl is a constant. This gives 

Proceeding along similar lines one can also get 

where C2 is a constant. This shows that the components of the 

vector valued failure rate are reciprocal linear The rest of the 

proof is analogous to that of Theorem 3.5. 



1'+ 

The if part follows from the expression for H; (j\, 1\, 12) given 

1 (1+ a I + a I + hI I ) byl-Iog(a\+(}12),I+-+log 11 22 12 and 
c c(al + b12 ) 

I (I-PI -P 1 +qlt) I - - + log 1 I 2 2 1 2 and t hat 0 f h (I I) g i ve n by a + (}I d d \ \, 2 \ 2, 
(PI - q12) 

and 

specified by (3.42), (3.43) and (3.44) respectively with similar 



CHAPTER IV 

GEOMETRIC VITALITY FUNCTION 

4.1. Introduction 

The vitality function, extensively studied by Kupka and 

Loo (1989) in connection with their studies on agetng process, 

provides a useful tool in modelling life time data. Kotz and 

Shanbhag (1980) has used this concept, without specifying the 

name, to obtain several characterizations for life time distributions. 

Where as the hazard rate reflects the risk of sudden death with in a 

life span the vitality function provides a more direct measure of the 

failure pattern in the sense that it is expressed in terms of increased 

average life span. As mentioned in Section 1.2, the vitality 

function defined by 

m(x) = E(XIX>x) 

Some of the results in this chapter have appeared In the IAPQR 
Transaction (2000), Vot. 2S( 1), pp. 1-8 



measures the average life span of components whose age exceeds x. 

In the present chapter we define a new measure based on the 

geometric mean of the residual life time of the components and 

examine its properties. 

4.2 Definition and Properties 

Let X be a random variable admitting an absolutely 

continuous distribution function F(x), with respect to Lebesgue 

measure on (0, L), where 

L = inf{x:F(x)=I} 

with E(log X)<oo. We define the geometric vitality function G(t), 

for 1>0, as 

log G(t) = E(log XIX>t) 

1 '" 
= -=-- Jlogx f(x)dx . 

F(t) I 

(4.1) 

In the reliability context, if X represents the life length of a 

component, G(t) represents the geometric mean of life time of the 

components which has survived upto time 1. (4.1) can also be 

written as 

I ( <i(t») - I J' F(X)dx og -- - -=--
1 F(1) I X . 

(4.2) 



If 

The following properties are immediate from the definition. 

(a) log G(/) is non-decreasing 

(b) lim log G(/) = E[log X] 
1--+0 

(c) m(/) ~ log G(t) for all 1>0 

(d) if h(t) = f(t) is the failure rate of X, 
F(t) 

'! .. logG(t) 

h(l) ~ dl (G(I») 
log -

1 

(4.3 ) 

(a) follows from the expression for the derivative of log G(t) 

obtained from (4.1) namely 

dlogG(t) = log (G(/») h(/) 
dl 1 

(4.4 ) 

in which h(t) ~o and log ((j~t)) ~O, in view of (4.2). (b) is straight 

forward. Using the fact the x>log x for all x>O we have 

E(XIX>/) > E(log XIX>/) 

which is same as (c). (d) is immediate from (4.4). 

Theorem 4.1 

The geo metric v it a I ity fu net ion determines the distribu t io n 

uniquely 



Proof: 

Let /I(t) and h(t) be two probability density functions with 

geometric vitality functions GI(t) and G2 (/) and that 

GI(t) = G 2 (t). 

Since 

we have 

log (G1/(/») = log (G2?»), 1>0. (4.5) 

From (4.3) and (4.5) we have 

hl(t) = h2 (/) 

where hl(t) and h 2(/) are the failure rates corresponding to /1(1) and 

h(t) respectively. Since the failure rate determines the distribution 

uniquely we have 

/1(/) = 12(1). 

Further if 

then 

log (/1(1) 't:. log <h(l), for all I 

Hence the geometric vitality function determines the distribution 

uniquely. 



4.3 Characterization theorems 

In this section we look into the problem of characterizing 

some well known life time models by the form of the geometric 

vitality function. 

Theorem 4.2 

Let X be a random variable in the support of [xo, 'Xl), with 

Xo>O, admitting an absolutely continuous distribution function and 

with geometric vitality function G(t). The relation 

log (G~t)) = a, (4.6) 

where a(>O) is a constant, holds for all I (>0) if and only if X 

follows the Pareto type I distribution specified by 

F(x) __ (Xxo) u x~xo>O, a>O (4.7) 

Proof: 

When (4.6) holds, using (4.2) we can write 

J F(x)dx = a F(t). 
. x 

Differentiating the above equation with respect to I and rearranging 

the terms we get the expression for the failure rate of .r as 



a 
h.(t) = 

t 

I 
where a = ->0. Using the relation 

a 

(4.8) 

we get (4.7) as claimed. 

Conversely when the distribution of X is speci fied by (4.7), 

by direct calculations using (4.2) we get 

log (G~t)) 1 

a 

so that (4.6) holds with a = 
a 

It may be noted that (46) can also be written in the form 

G(t) = kt, 

where k IS a constant. Hence Theorem 4.2 provides a 

characterization for the Pareto distribution when the geometric 

vitality function is proportional to the age 

The followi ng theorem provides a characterization for a 

family of distributions using a possible relationship between the 

geometric vitality function and the first order reciprocal moment of 

X. 
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Theorem 4.3 

Let X be a non-negative random variable admitting an 

absolutely continuous distribution with respect to Lebesgue measure 

on (0, 00). A relation of the form 

( G(I)) log -I - = a + bR(/), b>O (4.9) 

where 

holds for all real 1 (>0) if and only if X follows 

1. the Exponential distribution with survival function (2.7) for a~O 

2. the Pareto distribution with survival function (2.8) for a>O and 

3. the Beta distribution with survival function (2.9) for a<O. 

Proof: 

When (4.9) holds, in the light of (4.2), we have 

.J- Joo F(x)dx= a + b JW f(x)dx 
F(t) I x F(t) I X 

or 

(4 10) 

Differentiating (4.10) with respect to I and rearranging the terms we 

get 



h(t) = [a+btrl. (4.11) 

The rest of the proof follows from Mukherjee and Roy (1986). 

Conversely when the distribution of X is specified by (2.7), 

(2.8) and (2.9) respectively by direct calculations, using (4.2), we 

. f I (G(t») ~-I -I -I R() d -I get the expressIon or og -1- as A ,p + apt an -c 

+Rc- I R(/) respectively so that the conditions of the theorem holds. 

Corollary 4.1 

For the random variable X considered In Theorem 4.3, the 

relation 

log (G~t») = 

where 

holds for all t (>0) if and only if X follows the Weibull distribution 

with survival function 

F(x) = e 
,.a 

, x>O, a>O. (4 12) 

This result can be established proceeding along the same lines as in 

the proof of Theorem 4.3. The special case with a-2 in Corrolary 

4 I provides a characterization for the Rayleigh distribution 
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Now we look into the problem of characterizi ng certain 

distributions using possible relationships between the residual 

entropy function and the geometric vitality function. 

Theorem 4.4 

Let X be a random variable admitting an absolutely 

continuous distribution in the support of (xo, (0), with geometric 

vitality function G(t) and residual entropy function H(f,t). The 

relation 

H(f,/) - log G(t) = c, (4.13) 

where c is a constant, holds for all real 1 (>0) if and only if X 

follows the Pareto type I distribution specified by (4.7). 

Proof: 

When (4.13) holds, using (1.36) and (4.1), we get 

"" '" 
(c-l) F(/) = - f f(x) log x dx - f f(x) log h(x) dx. (4.14) 

Differentiating (4.14) with respect to I we get 

log (th(t» = \- c, 

or 



with Xo = e l -c >0. The relation (4.8) gives the form of P(t) as (4.7). 

Conversely when the distribution of X is specified by (4.7) by 

direct calculations we get 

I 
log G(1) = - + log t 

a 

and 

so that (4.13) holds with c= I-log a. 

Singh and Maddala (1976) has obtained a model for income 

distributions using an increasing and bounded proportional failure 

rate. The model considered by them is specified by the distribution 

function 

F(x) = 1- (l +axhrc , x>O, a>O, h>O, c>O. (4.15) 

(4.15) is also known as the Burr type XII distribution. The 

following theorem examines how the residual entropy function and 

the geometric vitality function can be related so as to provide a 

characterization for (4.15). 

Theorem 4.5 

For the random variable X considered In Theorem 4 3. the 

relation 



Hif, t) + (b-I) log G(t) = 10g(A +Btb ) (4.16) 

where b> 1, A, B>O, holds for all real t (>0) if and only if X follows 

the Burr type XII distribution with distribution function (4.15). 

Proof: 

When (4.16) holds, using (1.36) and (4.1), we get 

~ ~ 

P(t) 10g(A+Btb ) = F(t) - f f(x) log h(x) dx + (b-l) f f(x) log x dx 
I I 

Differentiating the above equation with respect to t we get 

(4.17) 

Setting 

,b 1 1 

~(t) = A + Bt b h(t)' (4.18) 

(4.17) becomes 

Bb~(t) = - log ~(t) -I (4.19) 

Differentiating (4.19) with respect to , and si mplifying we get 

~'( I) { [ ~(,) ] -I + Bb} = 0 . (4.20) 

(4.20) give either ~'(t) == 0 or [~(t)rl= - Bb In either case f/J(t) is a 

constant l.d 

~(t) = k. 

Using (4.18) we get 
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Ib-I 

h(t) = b ,k>O. 
k(A + BI ) 

From the relation 

(4.21) 

we get 

with a = B >0 and c = _1_>0. 
A kBb 

Conversely when the distribution is specified by (4.15), using 

(1.36) we have 

1 «> 

H(r, t) = 1 - F(t) ff(x)log h(x) dx 

= l_~l j"'cabxh-I(I+axbrC-IIOg (cabxh-I ) dx 
f (I) I 1 + axb 

= 1 - log(cab) - (b-l) E(log XIX>t) 

or 

H (r, I) I- (b - 1) E (log XI X> I) = log (A -t. HI" ) 

1 .. 1 1-+1 
e ' e ' 

with A = - and H = - so that (4.16) holds. 
cab cb 
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Theorem 4.6 

For the random variable X considered 10 Theorem 4.3, a 

relation of the form 

H(j, t) + (c-I) log G(t) = 1 - log c, (4.22 ) 

where c(>O) is a constant, holds for all real 1(>0) if and only if X 

follows the Weibull distribution with survival function (4.12) 

Proof: 

When (4.22) holds using (4.1) we get 

'" 
H(j, t) F(t) + (c-l) ff(x)log x dx = (I - log c)F(t). (4.23) 

Differentiating (4.23) with respect to I and using (1.37) we get 

h(t) = et-I 

Using (4.21) we get the form of F(x) as (4.12). 

Conversely when X has the dist.ribution with survival functio~ 

(4.12), we have from (1.36) 

I 'L' 

H(j, t) = 1- log c - (c-I) FU) ff(x)'og x dx 
I 

which is same as (4.22), as claimed 



It may be noted th~t when c= 1, (4.22) speaks about the 

constancy of residual entropy function which is characteristic to the 

exponential model. This result has already been given in Ebrahimi 

(1996). When c=2, (4.22) reduces to 

H(f, I) + log G(/) = 1- log 2 

which is a characteristic property of Rayleigh distribution. 

Belzunce, Candel and Ruiz (1995) defines a new class of 

distributions by using the mean left proportional residual income 

namely 

In a similar way we define the geometric mean left proportional 

residual life, S(1), through the relationship 

log S(/) = E (log( ~)lx > I) . 

= ~ JF(X)dx. 
F(t) I x 

(4.24 ) 

It may be noticed that G(/) and S(t) are related by 

G(t) = 1 S(I), 1>0. (4.25) 

The following theorem focuses attention on the monotonic 

behaviour of S(t) . 



Theorem 4.8 

If log S(/) is increasing and log co.ncave (decreasing and log 

convex) then the failure rate is decreasing (increasing). 

Proof: 

From (4.3) we have 

.'! 10gS(I) 
h(/) = =d=-I __ +! 1 

10gS(I) 1 10gS(/) 

d 1 1 
= -log[logS(I)] + ---

dl 1 10gS(I) 
(4.26 ) 

Differentiating (4.26) with respect to 1 we get 

d Z d [ 1 ] h'(t) = -Z 10g[logS(I)] + - . 
dl dl IlogS(/) 

(4.27) 

Suppose log S(t) is increasing. Then for 1\</2 

or 

----~ ----

This implies is decreasing and hence 
IlogS(I) 

Also if log S(t) is concave, then 
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d 2 

-2 10g[logS(t)]~ o. 
dt 

Hence from (4.26) h'(t)~O. This implies that the failure rate IS 

decreasing. 

4.4 Geometric vitality function in discrete time 

For a random variable X in the support of the set of non-

negative integers, we define the geometric vitality function G(t), 

for 1=0, I, 2, ... , as 

log G(t) = E(log X IX>t) 

1 «) 

= ""'f(x) log x 
F(t + 1) x~\ 

(4.28) 

where f(x) = P(X=x)and F(x) = P(X~x) are the probability mass 

function and the survival function of X respectively. Writing 

f(x)=F(x)-P(x+l), (4.28) can also be written as 

( C(t») 1 "', ( x ) log _I_ = LF(x)log _ . 
1 F(t + I) x=h\ x-I 

(4.29) 

Analogous to the continuous case the geometric vitality 

function satisfies the property (a), (b) and (c) mentioned in 

section 4.3. Also if h(t) = f(l)/ P(t) is the failure rate of X, we have 



~I 

(4.30) 

Further, In view of (4.30), the geometric vitality function 

determines the distribution uniquely. The following theorem 

characterizes a family of discrete distribution based on a 

relationship between the geometric vitality function and the 

reciprocal moments. 

Theorem 4.7 

Let X be a random variable In the support of the set of non-

negative integers. The relation 

(C(/») ". 1 
log -'- = L -[aRn{l)+ PRn-I(/)] 

1 11 I " 

(4.3 I) 

where Rn{l) is the 11th order truncated reciprocal moment of X, 

namely 

(4.32) 

holds for all integers I (>0) if and only if X follows 

(a) the geometric distribution specified by 

y.'\x~ = q" , x '- (J, \, "2, ... , \J<q< \ ~<\.11) 

if /3=0. 

(b) the Wari ng distribution specified by 



1--:;( ) - (b)x - 0 1 2 >0 b>O >b 'X---,x-." , ... ,a, ,a 
(at 

if P>O and 

(c) the negative hypergeometric distribution specified by 

if p<O. 

Proof: 

( k +m-x) 
m-x 

F(x)= ---=-(-----=-)- x = 0,1,2, ... , m, k'?O, 
k+m 

m 

(4.34) 

(4.35) 

Using the sertes expansIon of the logarithm In (4.29) we 

obtain 

(4.36) 

when (4.31) holds, using (4.32) and (4.36) we can write 

(4.37) 

Interchanging the order of summation and using the expansion of 

log(l-x- I ) we get. 

I ' 
. ~)og(l-~) l F(x) -aJ(x) -pxf(x)] = 0 

I, (t j- I) .. /., 

This gives 

F(x) -af(x) -pxf(x) = 0 
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or 

The only if part now follows from Xekalaki (1983). 

Conversel y when the distribution of X is speci fied by (4.33), 

(4.34) and (4.35), (4.31) holds with a = (l-qr 1 and p =0 for the 

a 1 k+m 
geometric, a =--, p =--(>0) for the Waring and a = -- and 

a-b a-b k 

p = - ~ «0) for the negative hypergeometric distribution. 



CHAPTER V 

AVERAGING OF THE RESIDUAL 
ENTROPY FUNCTION AND RESIDUAL 

ENTROPY FUNCTIONS OF HIGHER ORDER 

5.1. Introduction 

When one is interested in the failure of a device in a finite 

interval, instead of examining the nature of failure rate at each 

point in the interval, it will be of more use if the average of the 

failure rate in the whole interval is used. Ray and Mukherjee( 1989) 

have defined the averages of failure rate and has examined utility of 

the same in ordering of life distributions. 

The arithmetic, geometric and harmonic mean of failure rates 

for a non-negative random variable X ha ve been defi ned through the 

relations 

1 x 

A (x) = - J h(l)dl 
x 0 



and 

C(x) ~ exp {~! IOgh(t)dt} 

I IC I 
{ }

-I 

H(x) = - f-d' 
x 0 h(t) 

(5. 1 ) 

The problem of characterizing some well-known life time 

distributions based on the above concept are also examined by 

them. Analogously one can define the averages of the residual 

entropy function. In the sequel we look into the problem of 

characterizing some life time distributions using the residual 

entropy function and the averages of failure rates. 

5.2 Characterization theorems 

Theorem 5.1 

Let X be a non-negative random variable admitting an 

absolutely continuous distribution function with arithmetic, 

geometric and harmonic mean of failure rates A(x), G(x) and H(x) 

respectively. Denote by H(f. I), the residual entropy function. The 

relation 

A (I) = G(t) = H(t) = exp { 1- HU. t)} (5.2) 

holds for all real 1(>0) if and only if X follows the exponential 

distribution. 
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Proof: 

When (5.2) holds, we have 

H(f, t) + log G(t) = 1. 

Using (5.1), the above equation can be written as 

I 

t H(f. t) + J logh(x)dx = 1. (5.3) 
o 

Differentiating with respect to t and using the expression for H'(f, t) 

given in (1.37), (5.3) simplifies to 

This gives 

H(f, t) + log h(t) = 1. 

h'(t) 
H'(f,t) + - = o. 

, het) 

Using (1.37), (5.5) can be written as 

h'(t) 
h(t)[ H(f.t) + log het) -1] = - -. 

h(t) 

In view of (5.4) the above equation simplifies to 

h'(t) = 0, 

(5.4 ) 

(5.5) 

so that h(t) = A, where A is a constant. Since the constancy of 

failure rate is characteristic to the exponential model, X follows the 

exponential distribution Fro III R 0 Y a 11 d 1\1 u k her j e e (I 9 8 9 ) the 

properties A(x) = G(x) = H(x) is characteristic to the exponential 

model and so the sufficiency part follows. 



Conversely when X follows the exponential distribution with 

probability density function 

f(x) = Ae- h , x~O, A>O, 

by direct calculations we get A (x)=G(x)=H(X)=A and H(f, 1)= I-IogA, 

so that (5.2) holds. 

The following theorem provides a characterization for a 

family of distributions using a relationship between residual 

entropy function and arithmetic mean failure rate 

Theorem 5.2 

For the random variable X considered In Theorem 5. I, the 

relation 

H(f./) + cl A(t) = k, (5.6) 

where k IS a constant, holds for all real I (>0) if and only if X 

follows 

(i) the Exponential distribution with survival function (2.7) if 

c=o 

( i i ) the Par e t 0 d i s t rib uti 0 n wit h sur v i v a I fu n c t ion (2. 8) i f c < 0 and 

(iii) the Beta distribution with survival function (29) if c>O. 

Proof: 

When (5.6) holds we have 



H'(j,t) + cl A'(/) + c A(t) = o. 

Using (1.37) the above equation can be written as 

h(t)[ H(j,/) + log h(t) -1] + c[t A'(t) + A(t)] = O. (5.7) 

From (5.1) we have 

tA'(t)+ A(t)=h(t). (5.8) 

Using (5.6) and (5.8), (5.7) can be written as 

h(t)[k - cIA(t) + log h(t)+c -1] = O. (5.9) 

Assume h(t) :t; O. From (5.9) we get 

log h(t) - ciA (I) = 1 - c - k. (5.10) 

Differentiating (5.10) with respect to t and using (5.8) we get 

h'(t) 
-- =c 
h(t) . 

The above equation gives 

h(t)=[a-C/r l , (5.11) 

where a is the constant of integration. From Mukherjee and Roy 

(1986), (5.11) is characteristic to the exponential distribution for 

c=O, the Pareto distribution for c<O and the Beta distribution for 

c>O. 

The if part of the theorem follows from the expressIon for 

H(f, I} and A(t) which are given below. 



Distribution A(t) H(f,t) 

Exponential A- I- log A-

Pareto al ('+a) l+l_log( ~) - og--
t a a t+a 

Beta -c (R-/) l- l -10g(_C ) -log --
t R C R-t 

Instead of using the residual entropy function H(f,/), as such, 

one can utilize average value of H(f,/), namely 

1 I 

H (f. t) = - f H(f,x)dx (5.12) 
I 0 

as a measure of stability of components in a finite interval. The 

following theorem provides a characterization for the family of 

distributions considered in Theorem 5.2 using a functional relation 

between H (f./) and (/(1). 

Theorem 5.3 

For the random variable X considered In Theorem 5.1, the 

relation 

(5.13 ) 

holds for all real /(>0) if and only if X follows 

(i) the Exponential distribution with survival function (2.7) if 

k=O 



100 

(ii) the Pareto distribution with survival function (2.8) if k>O and 

(iii) the Beta distribution with survival function (2.9) if k<O. 

Proof: 

Observing that (5.13) can be written as 

H(j. t) + log h(t) = k, 

the proof is immediate in view of theorem 2.4. 

It may further be noted that the residual entropy function and 

its arithmetic average coincides if and only if the distribution is 

exponential. 

5.3 Other measures of residual entropy 

Entropies of higher order are defined by several authors and 

their properties are being examined. The works of Renyi (1961), 

Havrada and Charvat (1967), Kapur (1968), Behra and Cha wla 

(1974), Sharma and Mittal (1975), proceed in this direction. 

Reny i ( 1961) defi nes entropies of order a as 

1 ' 
Ra(f) = -- log L:f" (x), a ;to 1, a >0 

I-a 
(5 14) 

xoO 

For a continuous non-negative random variable X admitting an 

absolutely continuous distribution, (5.14) takes the form 
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1 00 

Ra(j) = - log J fa (x)dx. (5.15) 
1- a 0 

When a~l, (5.15) reduces to the Shannon's entropy. For the 

random variable (X-I) truncated at t (>0), (5.15) reads as 

1 .r'{f(X)}U 
Ra(f.t) = - log J -=- dx. 

1- a , F(t) 
(5.16) 

Further, (5.16) simplifies to the residual entropy function 

considered in section 1.3, as a~ 1. 

The following theorem focuses attention on the constancy of 

RaC!./)· 

Theorem 5.4 

Let X be a non-negative continuous random variable 

admitting an absolutely continuous distribution function with 

Renyi's entropy measure Ra(f.t) «00). The relation 

(5.17) 

where c is a constant holds for all real /(>0) if and only if X follows 

the exponential distribution. 

Proof: 

When (5.17) holds, using (5.16) we have 
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I.() 

(I-a) c = - a log F(t) + log ffU(x)dx (5.18) 

Differentiating (5.18) with respect to t we get 

a h(t) -
fU(t) 

"', =0 

ffU(x)dx 
I 

or 

", 

.f(t) = a h(t) f fU (x)dx . (5.19) 

Differentiating (5.19) with respect to t and simplifying we get 

a /'(/) = - a h(t) + h'(t) . 
f(t) h(t) 

(5.20) 

Since 
h'(t) = f'(/) +h(t) 
h(t) f(/) 

(5.20) simpl i fies to 

/,(t) = _ h(/) a:t:-l. 
f(t) , 

This gives 
dlogf(t) dlogF(l} 

dl dl 

or 
l(t) = k P(1) 

Hence 

h(t) = k, 
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where k is the constant of integration. Hence X follows the 

exponential distribution. 

Further for the exponential distribution specified by the 

survival function (2.7), by direct calculations we find 

R if, ) = loga 
a ,1 , 

I-a 

so that (5.17) is satisfied. 

In connection with their studies relating to income inequality, 

Ord, Patil and Taillie (1983) has proposed the measure defi ned by 

e (I t) = f'" -,-(x) [1_ {.'-(X)}7] dx 
r· I F(t) F(/) r 

(5.21) 

as a useful measure of income inequality. When y:t:O, (5.21) can be 

written as 

1 "" 
1- re (f I) = ff7+1(X)dx 

r, {F(t)V>1 I . 
(5.22) 

Further when 1=0, (5.21) takes the form 

'C dx 
e,(n = ff(x)[I.:!"(x)] 

u r 
(5 23) 

Taking the limit of (5 23) as y·~O we get 



lim e y(j) = lim 
T"O ,-.0 

co 
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Jdf(X)[I- fT (X)] clx 

o dy 
dy 

dy 

= - j f(x) log f(x) dx 
o 

which is the Shannon's entropy encountered in Section (1.1). By a 

similar argument with (5.21), one can verify that lim ey(!, t) is the 
r .0 

residual entropy function defined by (1.34). 

The following relationship exists between the er(f, t) and the 

Renyi's entropy measure. We have from (5.16) 

I '" 
(I-a) Ra(f.t) = log jf(1(x)clx 

Fa (t) I 

so that 

I '" 
exp{(I-a) Ra(f.t)} = jfa(x)dx 

Fa (t) I 

From (5.22) the above takes the form 

exp{(I-a) Ra(f.t)} = I-(l-a) ea-I(/~t). (5 24) 

We now establish a recurrence relation satisfied by t'i(/' I), as 

a consequence of which it is seen that ey(f, I) determines the 

distribution uniquely. 
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Theorem 5.5 

Let X be a continuous non-negative random variable with 

ey(j, t) <00. Then ey(j, t) uniquely determines the distribution. 

Proof: 

From (5.22) we have 

co 

[l-ye,,(f, t)] pY+I(t)= Jfr+l(x)dx. (5.25) 

Differentiating (5.25) with respect to t and dividing by pY+I(t) we 

get 

-(y+l) [l-y e,,(f, t)]h(t) - ye~(j, t) = - hY+1(t) 

or 

y e ~ (I, t) = h (t ) [( y+ 1 ) Y e r(j, t) + h r (t) - (y+ 1 )] . (5.26) 

Suppose /1 (.) and 12(.) are density functions with 

Using (5.26) we get 

hi (t) [( y+ 1 ) Y e r(/1 , t) + h[ (I) - (y+ 1 )] 

(5,27) 
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where hl(t) and h2(t) are the failure rates corresponding to /1(') and 

12(.) respectively. To prove ~(t) =F2(t) we need to show that 

hl(l)= h2(t) for .all t(~O). Suppos~ 

h,(t) > h2(t). 

From (5.27) we have 

(y+l)ye,,(/'2, t)+ h~(t) - (y+l» (y+l)ye,,(fl, t)+ h[(t) - (y+l). 

This gives 

hl(t) < h 2(t) 

which is a contradiction. Similarly we can see that hi (t) < h2(t) 

also leads to a contradiction. This implies 

hi (I) = h 2(t) 

and so the proof is complete. 

Now we look into the problem of characterizing probability 

distributions using the functional form of e,,(f, I). 

Theorem 5.6 

For the random variable X considered tn Theorem 5.5. the 

relation 

l-yer(f.1) = (At+H), " y>-I 

holds for all real 1 (>0) if and only if X follows 

(5.28) 



(i) the Exponential distribution with survival function (2.7) if 

A=O 

(ii) the Pareto distribution with survival function (2.8) if A>O and 

(iii) the Beta distribution with survival function (2.9) if A<O. 

Proof: 

When (5.28) holds, using (5.22), we can write 

00 J /'+1 (x)dx = F,+I(I) (A t+Brr. 
I 

Differentiating the above equation with respect to 1 we get 

_[!!I(I) = -Ay(At+Br,-1 PY'I(I) -(y+l) FY(t) fU)(AI+Bf Y 

Dividing throughout by p,.I(1) (AI+Brr- 1 we get 

[h(l)(At+B»)'t l = Ay + (y+l)h(l) (Al+B) (5.29) 

Denoting by 

y(t) = h(l) (At+B), (5.30) 

(5.29) takes the form 

yr! 1(1) - (y+l) y(l) = - yA 

Differentiating the above equation with respect to 1 we get 

(y+l) yY(t)y'(t) - (y+l) y'(1) =0 

or 

y'(t) [(y+l) yY(I)- (y+l)]=O. 

In either case 
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y(t) = k, 

where k is a constant. From (5.30) we get 

k 
h(t) =--

At+B 

= [at+hr l (5.31) 

A 
with a = h 

k ' 

B 
k 

From Roy and Mukherjee and Roy (1986), 

(5.31) is characteristic to the exponential distribution if a=O, the 

Pareto distribution if a>O and the Beta distribution if a<O. The if 

part follows by translating the result for A. 

The only if part follows from the expressIon for l-y er(h, t) 

when the distribution are specified by (2.7), (2.8) and (2.9) 

ii.ytl a P1 (t+a) y cY • 1(R-t) r 

respectively given by and ----'----
y + I' (a + I)(y + I) - I (c - I)(y + I) + 1 

Instead of assuming y>-l if we restrict the range of y to the 

set of non-negative reals we arrive at a more general result which 

gi ven as Theorem 5.7. 

Theorem 5.7 

For the random variable X considered In theorem 5.5, the 

relation 

l-ye r(j, t) = k hr(t), y>O (5.32) 
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.holds for all real 1(>0) if and only if X follows anyone of the 

distributions specified by (2.7), (2.8) and (2.9) respectively 

according as k = (l+yr 1, k < (l+yr 1 and k > (l+yr l . 

Proof: 

When (5.32) holds, using (5.22) we can write 

c.() J JT+I(X)dx= FT+I(/)hY(/). (5.33) 

Differentiating (5.33) with respect to 1 and rearranging the terms we 

get 

or 

This gives 

h'(t) _ l-k(y + 1) 
--- -

h(t) ky 

1- k(y + 1) 

ky 

where d is the constant of integration. (5.34) takes the form 

17(1) =(pt+dr 1 

(5.34) 

1- k(y + 1) 
where p = . The rest of the proof of the sufficiency part 

ky 

is similar to that of Theorem 5.6. 



The only if part of the theorem follows from the expressIOn 

for eT(j, I) and h(t) given below. 

Distribution 

Exponential 

Pareto 

Beta 

h(t) 

a 

I+a 

c-I 
R-t 

AY 

y + 1 

aT+1(1 + afT 

(a + I)(y + I) - 1 

CT+1(R -/rT 

(c - I)(y + 1) + 1 



CHAPTER VI 

RESIDUAL ENTROPY FUNCTION 
IN DISCRETE TIME 

6.1. Introduction 

Most of the works in reliability modelling assumes that the 

underlying life time model is a continuous distribution. However 

the limitation of measunng devices and the fact that discrete 

models provide good approximations for their continuous 

counterparts necessitate assessment of reliability in discrete time. 

Xekalaki (1983) provides examples of situations where discrete 

models are appropriate by citing examples. The works of Gupta and 

Gupta (1983), Lawless (1982), Hitha and Nair (1989), Roy and 

Gupta (1992), Shaked, Shanthi Kumar and Torres (1995) aims at 

characterization of probability distribution using discrete reliability 

concepts 

Some of the results in this chapter have appeared in the Far East 
Journal of Theoretical Statistics (1998), Vol. 2(1), pp. 1-10. 
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The residual entropy function discussed in Section 1.3 can 

also be defined in the discrete set up. This enable onc to determine 

the model through a knowledge of the form of the residual entropy 

function. In the present chapter we define the residual entropy 

function in the discrete set up examine its properties. 

6.1 Definition and Properties 

Let X be a random variable in the support of the set of non 

negative integers, with the probability mass function f(x) and 

survival function F(x). Analogous to the definition of failure rate 

given in (1.11) and that of mean residual life function given by 

(1.27), we define the residual entropy function associated with the 

random variable X as 

H((.O 
~ f(x) I lex) 
L.. -=----'--- og . 

x = 1 + I F(t + I) F(t + I) 
(6.1 ) 

(6.1) can also be written as 

I 00. I . 
H(!:/) ~ logF(t+\) - ~ L./(X) og/(x). (6.2) 

/·(I+I)x=I+1 
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Observing that for the random variable Y =- X-I truncated at 

1 (~O), the survival function G(y) and probability mass function 

g(y)are respectively 

G(y)= F(/+y+I)IF(/+I) 

and 

g(y) = f(1 + Y + 1) I F(I + 1) 

we notice that the Shannon's entropy corresponding to Y, namely 

H( ,I) = _ ~ f(/+y+l)lo f(/+y+I), 
g y = 0 F(I + 1) g F(I + I) 

simplifies to (6.1). Hence the Shannon's entropy corresponding to 

the residual life is same as the residual entropy function (6.1). It 

may also be observed that (6. I) serves as a measure of stability of 

the component at time 1 when time is measured at discrete points. 

Also using the relationship h(x) = f(x) and f(x) = F(x) - F(x + I), 
F(x) 

(6.2) can be written as 

H(f. 1)- - log h(t+ I ) ~ F (x + 1) log h( x) ( 6 . 3 ) 
x = 1 + I F(I + 1) h(x+ 1)[I-h(x)] 

In terms of the mean residual life function, considered ID 

section 1.2, H(j, I) can also be written as 

H(f, I) = -log [ru+n-r(t)+I] 
r(1 + I) 
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00 F(x + 1) I [r(X + I)[r(x) - r(x - 1) + 1] ] + 1: og . 
x = 1 + 1 F(t + 1) [r(x - 1) - l][r(x + 1) - r(x) + 1] 

We now establish a recurrence relation satisfied by H(f, t). 

Theorem 6.1 

Let X be a discrete random variable in the support of /+ with 

probability mass function f(x), failure rate h(x) and residual entropy 

function H(f, I). Then H(f, I) satisfies the recurrence relation, 

1 
H(f, t)= {H(f,I-J)+h(t)logh(t) +[I-h(I)]log[l-h(I)]}, 

1- h(l) 

1=1,2,3..... (6.4) 

Proof: 

From (6.2) we have 

00 

H(f,/)P(/+l)'-' F(/+l)logF(I+l)- 1:f(x)logf(x) (6.5) 
x = 1 + 1 

Subtracting (6.5) from the equation obtained by changing 1 to (1+1) 

in (6.5) we get 

HU.I+ 1 ) F(t + 2) - H(t: I) F(I + 1) 

= f(t+ 1) I o gf(t + 1) +F(I + 2) 10gF(1 + 2) -FU + 1) log F(t + 1). (6.6) 

Since f(/+ 1) = F(t + 1) - F(I + 2), (6.6) can be written as 



H(f, t+ 1) = p(t + 1) [H(f, t)+logh(t+ 1)] -log ~(t + I) 
F(t+2) r(t+2) 

or 

1 h(1 + 1) 
H(f,I+I) = [H(f,I)+logh(t+l)] -log . 

1- h(1 + 1) 1 - h(t + I) 

Rearranging the terms in the above equation we get 

1 
H(f, t+ 1)= {R(f, t)+h{t+ 1 )logh(t+ 1) 

1- h(t + I) 

+ [I-h(t+I)]log[l-h(t+l)]}. (6.7) 

Taking I in·the place of(I+I) in (6.7) we get (6.4). 

Theorem 6.2 

The H(f, I), considered In theorem 6.1, uniquely determines 

the distribution. 

Proof: 

Substituting for R(f,I-I) In the recurrence relation (6.4) we 

get 

H(j,1) 
I 1 

-- ---H(f,1-2) 
1 - h(t) 1 - h(t - 1) 

/7(1- 1) log 11(1 - I) + [I - h(t - I) 1 log[ I h(t - I)] 

[1 - /7(1 )][ 1 - h( I - I)] 

h(t)logh(t) + [1- h(t)]log[l- h(1)l 
I ~~=-~~ __ ~~=-__ ~ 

1- h(t) 



110 

Proceeding recursively, we get 

H(f ,-1) 
H(j,t) '''' 

[1- h(t)][I- h(t - 1)]. .. [1- h(O)] 

+ 

+ 

+ 
h(O)logh(O) + [1- h(O)]log[l- h(O)] 

[1- h(t)][I- h(t -I)]. .. [1- h(O)] 

h(l) logh(l) + [1- h(I)]log[l- h(I)] + ~~~~~--~~~--~ 
[1- h(t)][I- h(t - 1)]. .. [1- h(1)] 

+ 

+ 
h(t)logh(t) +[1- h(t)]log[l- h(t)] 

[1- h(t)] 

H(f) 
+ 

h(O) logh(O) + [1- h(O)]log[l- h(O)] 
t 
n[l-h(x)] 

x=O 

t 
n[l-h(x)] 

x=O 

h( I) logh( I) + [1- h(I)]log[l- h(1)] 
+ 

t 
n[l- h(x)] 

x=1 

h(t) logh(t) + [1- h(/)]log[l- h(t)] 

[1- h(t)] 
(6.8) 

where H(f) is the Shannon's entropy associated with X. Since h(t) 

determines the distribution uniquely in view of (6.8), H(f,I) also 

determines the distribution uniquely. 

6.3 Characterization Theorem 

We now look into the situation where the residual entropy 

function is constant. 



Theorem 6.3 

Let X be a discrete random variable in the support of the set 

of non negative integers with residual entropy function H([,/). The 

relation 

H([,t)=c (6.9) 

where c is a constant holds for all integers t~O if and only if X 

follows the geometric distribution. 

Proof: 

When X follows the geometric distribution with probability 

mass function 

f(x) C~ (/p, x·--O,I,2, .... , O<p<l, p+q=l, 

direct calculation using (6.3) gives 

H([, t) '- _l.[p logp + (1- p) 10g(1 - p)] P , (6.10) 

so that the conditions of the theorem are satisfied. 

Conversely when (6.9) holds, (6.4) takes the form 

h(x)logh(x) + [1-h(x)]log[l-h(x)]+ch(x)=O, x=I,2,3, ... (6 11) 

Let 'I and 12 be two positive integers sllch that 11</2. Denote by 

(6 12) 

Consider 



B(I) = A(I)logA(I) -t [1-A(I)]log[I-A(t)]+cA(t). 

From (6.11) and (6.12) we have 

B(II) = B(t2) = o. 

By mean value theorem there exists an xoE(lj,12) such that 

B(t2 ) - B(t, ) 
B'(xo) = = o. 

12 - I, 

But from (6.13) 

Assume that 

A'(xo) "* O. 

From (6.14) and (6.15) we get 

e-C 

A(xo) = --­
I +e-c 

Without loss of generality assume 

h(lI) < h(t2). 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

Since A(t) is the equation of the line segment joining (11,h(tJ) and 

(12, h(12» we have 

h(td $ A(xo) $ h(t2) 

or 

(6.18) 



Now from (6.11) 

and 

1- h(x) 

e -c co.· h(x) [1- h(x)] h(x) 

1- h(x) 
-----------

h(x)[I- h(x)] h(x) 
-..:........:..:~~....:...=..-----:--< h(x) for all x 

1- h(x) , . 

1 +h(x)[I-h(x)] h(x) 

From (6.18) and (6.19) we get 

e-C 
h(/l) =--

l+e-c 

From (6.11) with x=t, we have 

This gives 

-(' 
e 

1-h(1) 
- - - - - - _ .. 

h(/1 ) 
h(t 1 )[1 - h(t 1 )] 

1- h(/1) . 
---
h(1 ) 

l+h(1)[I-h(11)] 1 

1- h(ll) 

h(t 1) 
h(t 1 )[1 - h(t 1 )] 

h(t d = ----=-------'-------
1 - h(t 1 ) 

1 + h(t 1 )[1 - hU 1 )] 
h( 1) 

which is not true since h(tl ):t:O 

(6.19) 
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Therefore in (6 15) log 0 + c cannot be zero. [ 
A(x) ] 

, ., 1- A(x ) 

Hence 

That is 

o 

A'(xo)=O. 

h(t2 ) - h(t1) 

12 -/ 1 
= o. 

This implies h(/d = h(t2) for all II>t2. Proceeding on similar lines 

implies that h(t) is a constant. 

Since the constancy of failure rate is characteristic to the 

geometric distribution, X follows the geometric distribution. 

For a random variable (X-I) truncated at t(>O) in the support 

of non-negative integers, the maximum entropy probability 

distribution under the condition that the arithmetic mean is fixed is 

the geometric distribution. An upperbound for the residual entropy 

function in terms of the mean residual life function can be obtained 

from the above. 
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Theorem 6.4 

Given that r(l)<oo, then 

HCf, I) ~ r(l) log r(/) - [r(/)-I] 10g[r(l)-I]. 

Proof: 

From Kapur (1989) for a random variable X in the support of 

non-negative integers, the maXimum entropy probability 

distribution subject to the condition that the arithmetic mean is 

fixed is the Geometric distribution. Hence given r(/), if the 

domain is restricted to the set of non-negative integers, the 

maximum entropy occurs when the underlying distribution is 

geometric with mean r(/). 

From (6.10) we have, 

1 
HCf, I) ~ - -[Plogp + (l-p) log(l-p)] 

P 

= -r(/) [_1 10g_1 +(1 __ 1 )10g(I-_1 )] 
r(/) r(t) r(t) r(t) 

or 

H(f, t) ~ r(t) log r(t) - [r(/)-I] 10g[r(l)-' 1 

It may be noticed that H(f, t)<'X) whenever r(l)<oo. 



Plan for future Study 

Several problems have opened out during the present 

investigation. The problem of extending the concept of the residual 

entropy function to higher dimensions is yet to be examined. 

Characterizations of some bivariate distributions based on the 

functional form of the bivariate residual entropy function can be 

obtained, analogous to that of bivariate failure rate. The problem 

of obtaining distributions which maximizes the residual entropy 

function under different set of constraints is to be studied in detail. 

Recently Ebrahimi and Kirmani (1996a) has studied the truncated 

version of the Kullback-Leibler measure of directed divergence 

information measure. Characterization of certain bivariate models 

using the above also seems to be in order. The problem of 

estimating the residual entropy function using standard procedures 

and their comparisons is yet another problem to be examined. 

These works are proposed to be under taken in a future study. 
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